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Study objectives: Unobtrusive monitoring of sleep and sleep disorders in children presents challenges.
We investigated the possibility of using Ultra-Wide band (UWB) radar to measure sleep in children.
Methods: Thirty-two children scheduled to undergo a clinical polysomnography participated; their ages
ranged from 2 months to 14 years. During the polysomnography, the children's body movements and
breathing rate were measured by an UWB-radar. A total of 38 features were calculated from the motion
signals and breathing rate obtained from the raw radar signals. Adaptive boosting was used as machine
learning classifier to estimate sleep stages, with polysomnography as gold standard method for
comparison.
Results: Data of all participants combined, this study achieved a Cohen's Kappa coefficient of 0.67 and an
overall accuracy of 89.8% for wake and sleep classification, a Kappa of 0.47 and an accuracy of 72.9% for
wake, rapid-eye-movement (REM) sleep, and non-REM sleep classification, and a Kappa of 0.43 and an
accuracy of 58.0% for wake, REM sleep, light sleep and deep sleep classification.
Conclusion: Although the current performance is not sufficient for clinical use yet, UWB radar is a
promising method for non-contact sleep analysis in children.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sleep is thought to play a crucial role in infants' and children's
brain development [1,2]. The human sleep cycle has two main
stages: rapid-eye-movement (REM) sleep and Non-REM (NREM)
sleep [3]. The latter can be subdivided in three stages: N1 and N2
(light sleep) and N3 (deep sleep, slow wave sleep). REM sleep and
NREM sleep each seem to contribute to different aspects of brain
maturation [4]. During early brain development REM sleep is
thought to provide important endogenous neural stimulation,
laying the groundwork for early neural circuitry [4]. NREM sleep
seems to be involved in regulating synaptic homeostasis [4].
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While acute or transient changes in sleep may impact a person's
cognitive and behavioral performance [5,6], long-term sleep
deprivation or sustained changes in sleep patterns carry the risk
factor for several diseases and suboptimal development (eg, dia-
betes, obesity, mood swings, suboptimal growth and school per-
formance) [7,8]. Analyzing the sleep duration and the distribution of
sleep stages may well offer useful clinical insights and deeper un-
derstanding of sleep physiology and pathology in young children.

To date, a level 1 polysomnography (PSG) with clinical evalua-
tion remains the gold standardmethod to study sleep. PSG has been
widely used in clinical and laboratory settings through multi-
channel bio-signal recordings manually assessed by sleep tech-
nologists. Performing a PSG can be a very challenging procedure for
children, and a level 1 full PSG cannot be performed easily outside a
laboratory setting [9e11].

These limitations promote the demand for an unobtrusive, or
even non-contact sleep monitoring system for home monitoring.
Assessing sleep in the child's safe environment andwithout sensors
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attached to its body for several days can provide valuable infor-
mation and could serve as screening method for the necessity of an
in-hospital PSG. Several techniques have been suggested for this
purpose, such as actigraphy, radar, ballistocardiography, or Doppler
laser [12]. These techniques make use of non-EEG vital signs and
behavioral measurements that are easier to obtain unobtrusively,
such as heart rate, respiration and body movements.

Radar is a contactless method for the monitoring of human vital
signs and relies on the modulation effect, due to the chest-wall
displacement of a radio signal sent by a transmitter towards the
patient. Depending on the type of signal it transmits, four types of
radar can be distinguished: pulsed wave, continuous wave (CW),
frequency-modulated continuous-wave (FMCW) or stepped-
frequency continuous-wave (SFCW) [13].

CW radar systems, such as Doppler radar, have frequently been
used for vital sign monitoring because of their relatively low power
consumption and simple radio architecture [14]. Several studies
have shown that CW radar is a feasible method for vital sign esti-
mation [15e19]. However, complex signal processing techniques
are required to accurately detect and measure these vital signs, and
these techniques increase the power consumption significantly.
These technical difficulties hinder the use of CW radar for wide-
spread public usage [13]. Kagawa et al. investigated sleep stage
classification using two Doppler radars, but showed lower accuracy
compared to other non-contact methods [20].

Moreover, frequency modulation of the radar is needed for the
detection of multiple subjects and human presence [21]. SFCW is
not commonly used for human vital sign detection. FMCW on the
other hand already demonstrated its potential for vital sign moni-
toring [22e25]. Turppa et al. [24] demonstrated that FMCW can
provide accurate vital sign monitoring during sleep. However, un-
like the radars discussed above, pulse-based radars are able to
detect vital signs of humans behind solid objects and have high
power efficiency [13]. Furthermore, a comparison by Wang et al.
showed that Impulse radio ultra-wide band radar (IR-UWB) had
better accuracy ratios than FMCW [26].

UWB radar is the most commonly used pulse-based radar and is
considered a promising and reliable technique that can capture
patients' vital signs without contacting the body [27]. By measuring
reflected RF signals, the distance and movement of an object can be
determined [14]. This way, movements of the chest and abdomen
can be quantified. The UWB radar technique has a high range res-
olution and a strong penetrationwith good capability to distinguish
between multiple targets [28].

Several studies have used radar technology to measure respi-
ratory information [29e34]. One of these, by Immoreev and Tao
[33] measured the agreement between UWB radar and impedance
pneumography in four infants under the age of two months. The
authors reported that >95% of sample pair differences lay within
the ±95% confidence interval. Kang et al. have used IR-UWB radar to
measure sleep and sleep apnea and compared it with a PSG with
good results in 21 adults [35]. At the moment, however, studies
validating UWB radar sleep data against PSG as the gold standard
are still very limited, especially in children.

The aim of our study was to make a pediatric sleep stage clas-
sification algorithm based on UWB radar data with PSG as gold
standard method; a secondary aim was to assess the UWB radar
accuracy in automatically determining sleep stages.

2. Methods

2.1. Study population, inclusion and exclusion criteria

The study was conducted at the Erasmus MC - Sophia Children's
Hospital Rotterdam. The institutional medical ethics review board
2

approved this study (Rotterdam, the Netherlands. File No. MEC-
2017-159). Children scheduled to undergo a clinical PSG were
eligible for inclusion in this study. Parents or guardians of the
children provided informed consent was given by all, and children
from the age of 12 years provided consent themselves. A subject
was excluded in case of technical failure of the sensor or the PSG.

2.2. Study set-up

Connected to a stand-alone laptop that stored the radar data, the
UWB-sensor was placed on a standard at the head of the bed at
approximately 1.5 m distance from the child, as shown in Fig. 1.
While the radar was functioning, the clinically indicated level 1 PSG
was carried out as usual.

2.3. Polysomnography

The level 1 PSG included the following: ECG, 14-channel EEG,
nasal airflow (thermistor), video recording, chest and abdominal
wall motion (plethysmography), a capillary blood gas test, arterial
blood oxygen-hemoglobin saturation using pulse oximetry (SpO2),
and transcutaneous partial pressure of carbon dioxide (tcpCO2). The
monitoring was a single-night recording. Sleep stages were scored
on each 30-s non-overlapping epoch according to the rules of the
American Association of Sleep Medicine (AASM) [3]. Respiratory
events were also scored according to the rules of the latest AASM
criteria and the apnea-hypopnea index (AHI) was calculated [3].
The child was classified as having obstructive sleep apnea (OSA) if
the obstructive AHI was higher than 1 event per hour [37], and
central sleep apnea (CSA) if the central AHI was higher than 1 [38].
The limited restricted comparison to only OSA vs. non-OSA, and
CSA vs. non-CSA. These groups were compared to the total group.
To explore the effect of age, the population was split in a group
younger than 1 year old and a group older than 1 year old.

2.4. Radar system

The XeThru X2M200 and X4M200 radar modules (Novelda AS,
Oslo, Norway) [39] were used for this research. They rely on
observing periodic movements when a person is resting and
breathing. Thesemodules make use of pulse-Doppler processing. in
which coherent pulses produced by a local oscillator are trans-
mitted through an antenna. These pulses propagate through space
until they meet reflectors. Some of the transmitted energy will be
reflected back to the receiver along with phase modulation caused
by motion. The received RF signals are then down-converted by the
local oscillator to a baseband signal. The baseband signal is split
into two quadrature signals [40](see Fig. 2). The XeThru modules
we used to convert the RF signals into baseband frequencies of
20 Hz in X2M200 and 17 Hz in X4M200. Both radar modules pro-
vide In-Phase and Quadrature (IQ) or amplitude/phase (AP) data.

The amplitude baseband data was used in this study because
magnitudes carry the most comprehensible information. Body
motion and respiration rate were obtained by processing these
baseband data. The motion signal was created by integrating the
differences between two subsequent time frames across the
amplitude baseband signals [36]. It is expressed by

MVMwin¼
Xti

t¼ti�winþ1

j½AðtÞ�Aðt�1Þ�j

where MVMwin represents the movement quantity within a time
window win at a specific sample point t. A is the amplitude of the
baseband data, and ti is the sample point in time.



Fig. 2. Block diagram of I/Q mixer analog implementation in a radar system [41].

Fig. 1. Radar sensor setup at the Erasmus MC - Sophia Children's Hospital, the Netherlands [36].
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A Fast Fourier Transform (FFT) analysis on amplitude baseband
data was then performed to create a ‘range-frequency’ matrix.
Static objects were removed, and small movements of breathing
were measured. By means of localizing the peak of the range-
frequency matrix, the breathing rate (BR, in respirations per min-
ute) was detected (see Fig. 3).

2.5. Feature extraction

Thirty-eight motion and respiratory features were extracted in
this study, summarized in Table 1. Nine features came from the
motion signals ’twenty-nine from the BR.

1) Respiratory features: The variance and average of the BR from a
6 min epoch were computed. Also, the variance and mean value
of BRwere computed over an epoch. Besides, the sample entropy,
approximate entropy, andmultiscale sample entropy scaled from
1 to 10 with different time delays were computed over an epoch
[42e44]. These features were obtained by various methods to
measure the complexity and similarity of time-series signals. The
mean values of Teager energy in both the time domain and fre-
quency domainwithin an epochwere calculated [45,46]. Lastly, a
robust algorithm, Katz's fractal dimension, was applied to
3

estimate the fractal dimension of the signals [47]. All these fea-
tures were subjected to a Z-score normalization by subtracting
the mean of the feature values and dividing by their standard
deviation for each recording. The normalization step aims to
decrease physiological variance from subject to subject by
reducing data redundancy and improving data integrity.

2) Motion feature: On the analysis of the baseband data, two mo-
tion signals were obtained by the motion detection algorithm in
different settings. One was the signal with a window of 1 s,
which represented the amount of the movements within 1 s,
MVM1, also called fast movement signal. The other one was the
movement quantity for a time window of 20 s, MVM20. These
motion signals were normalized by their maximum values. The
average, area, variance, and entropies of motion signals were
computed. Besides, we computed the fast movement ratio, ie,
the relative time within 10 min in which MVM1 exceeds a
threshold of 10% of the 20-s window signal.

2.6. Classifier

An adaptive boosting (AdaBoost) algorithm based on decision
trees was adopted for the classification tasks due to its multiple
advantages in good classification performance, low susceptibility to



Fig. 3. An example of a frequency analysis, in which the breathing rate was 39 respirations per minute [36].

Table 1
Description of all features used for the machine learning algorithm.

Feature Index (#) Description

1 BR Variance of BR 6 min centered at the epoch
2 BR Average of BR 6 min centered at the epoch
3 BR Variance of BR
4 BR Average of BR
5 BR Sample entropy of BR
6 BR Approximate entropy of BR
7e16 BR Multiscale sample entropy scaled from 1 to 10

with unity delay
17e26 BR Multiscale sample entropy scaled from 1 to 10

with a delay of 2 units
27 BR Teager Energy in the frequency domain
28 BR Teager Energy in the time domain
29 BR Katz's fractal dimension
30 Motion Average of MVM20 signal
31 Motion Average of MVM1 signal
32 Motion Area of MVM20 signal
33 Motion Area of MVM1 signal
34 Motion Variance of MVM20 signal
35 Motion Variance of MVM1 signal
36 Motion Information entropy of MVM1 signal
37 Motion Information entropy of MVM20 signal
38 Motion Fast movement ratio within the last 10 min
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overfitting, and relatively high computational efficiency. For com-
parison, we used two other popular and widely used classification
algorithms, the k-nearest neighbors (KNN) algorithm and support
vector machine (SVM).
2.7. Evaluation

Leave-one-out cross validation was conducted, which implies
that each patient in turn was used as a test set while the remaining
ones form a training set during each iteration of the Leave-one-out
cross validation. Classification results and performance metrics
from each patient during each test iteration were obtained. Three
sleep stage classification tasks were performed and evaluated: 1)
Wake-sleep (WS) classification, 2) Wake-REM-NREM (WRN) clas-
sification, and 3) Wake-REM-Light-Deep (WRLD) classification. To
4

evaluate the performance of the classifiers, the overall accuracywas
computed. Aswewere dealing with class imbalance, Cohen's Kappa
coefficient of agreement was also computed. In addition, to show
the discriminative power of a single feature towards the output, we
calculated the feature importance for each iteration. Furthermore,
an unpaired Wilcoxon rank-sum test served to test for significant
differences in performance between different groups.

3. Results

3.1. Subjects

Initially, 40 patients were included. Six had to be excluded
because of software issues. These issues were resolved for the
subsequent measurements. Two with severe mental retardation
did not have a single episode of normal REM-sleep during the
recording, and were excluded as well. Thus, data of 32 patients
were analyzed. Characteristics of these patients are presented in
Table 2.

3.2. Data

Fig. 4 displays the performance of the three different classifiers
(SVM with a linear kernel, AdaBoost, and KNN) when using all 38
features. KNN presented a relatively low Kappa coefficient for all
the classification tasks, in particular for WRLD classification with a
significantly lower Kappa (p < 0.01) than the other two classifiers.
AdaBoost and SVM showed similar performance, but because the
computational cost of AdaBoost was much lower than that of SVM,
we used AdaBoost in the remainder of this study.

Fig. 5 shows the importance of each featurewithin themodel for
the three classification tasks. The feature numbers in Fig. 5 corre-
spond to the features listed in Table 1. This quality indicates that the
motion features and respiratory features are complimentary. In
general, motion features occupy the leading positions in the clas-
sifications due to their capability of distinguishing between wake
and sleep states. For example, the motion feature average of
MVM20 signal within 30 s (#30), the variance of MVM1 signal
within 30 s (#35), and the fast movement ratios within the last



Table 2
Patient characteristics.

Characteristics

N 32
Age (range) 3.25 y (2 moe14 y)
<1 y 15
1 ye12 y 15
>12 y 2

Syndromes/Diagnosis
Bronchopulmonary dysplasia 6
Pierre Robin Sequence 4
Spinal Muscular Atrophy type II 4
Down syndrome 3
Crouzon syndrome 2
Apert syndrome 1
Myastenia gravis 1
Neuroendocrine hyperplasia of
infancy (NEHI)

1

PradereWilli syndrome 1
Saethre-Chotzen syndrome 1
Tracheomalacia 1
other (Seizures, ex-preterm,
MECP2-duplication)

3

No syndrome 2
Unknown 2

Sleep stages, % (mean in minutes)
Wake 10.6 (20.0, range 3.7e44.1)
REM 6.3 (19.4, range 7.0e29.0)
NREM 9,2 (59.8, range 43.0e78.2)
Light Sleep 11.1 (30.4, range 2.1e59.6)
Deep Sleep 9.4 (29.4, range 14.8e52.1)
TST (min) 501.8 (88.5)
Arousal index 8.7 (6.6)

Parameters
oAHI mean 3.7 (range 0.0e43.5)
oAHI � 1 20
1 < oAHI � 5 8
5 < oAHI � 10 0
oAHI > 10 4

cAHI mean 2.3 (range 0.0e11.3)
cAHI > 1 21
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10 min (#38) were of high importance. Interestingly, the BR feature
variance of BR 6 min centered at the epoch (#1), and Katz's fractal
dimensionwithin 30 s (#29), were given higher scores in WRN and
WRLD classifications than in WS classification.

The summary of the classification performance per patient group
is presented in Table 3. For all patients, we achieved amean Kappa of
0.67 ± 0.14 with an overall accuracy of 89.82 ± 5.5% for the WS
classification, a mean Kappa of 0.47 ± 0.12 with an accuracy of
72.93 ± 6.8% for the WRN classification, and a mean Kappa of
0.43 ± 0.11 with an accuracy of 57.99 ± 7.7% for the WRLD classifi-
cation. The summary of the classification performance presented as
positive predictive value (PPV) and sensitivity is shown in Table 4.

Fig. 6 illustrates the classification results (Kappa values) and the
sleep stage distribution for each patient. Accuracy for Non-OSAwas
higher than that OSA for all classifications: 90.71% vs. 86.13% for
WS; 71.67% vs. 68.80% for WRN, and 57.98% vs. 53.66% for WRLD.
Accuracy for Non-CSA was lower than that for CSA, with 88.49% vs.
89.12% for WS; 69.64% vs. 71.48% for WRN; and 54.29% vs. 57.72%
for WRLD classification.

4. Discussion

This study shows that sleep stage classification in children can
be accurately assessed using UWB-radar technology and shows that
it can be a reliable technique to contactlessly assess children's sleep.
From the machine learning classifiers that we tested in this study,
AdaBoost proved to be the most accurate classifier for the machine
learning algorithm. This study effectively identified the most useful
5

features for the classification tasks. While movement features were
more important for the wake-sleep differentiation, breathing rate
features were more important to differentiate between sleep
stages. Differentiating between wake and sleep was the most ac-
curate. Differentiating between more sleep stages became less ac-
curate, with the WRLD classification being the least accurate.

The accuracy of our machine learning algorithm reached was
similar to that reported in other studies [20,48e53]. Some of these
studies have used UWB radar, similar to our study; others have used
ECG signals, video-based actigraphy, or combined different types of
sensors and microphones to get the results. However, most studies
show similar accuracies for the three types of sleep stage classifi-
cation: approximately 90% for the WS classification, 60e70% for the
WRN classification, and 55e75% for WRLD classification [49].

In the present study, we have made use of UWB radar tech-
nology to classify sleep stages. At the moment, several other mo-
dalities may be used for this purpose. Probably the most popular
method at the moment is actigraphy with the use of a watch. ECG
and methods with other kinds of bands, such as ballistocardiog-
raphy, are also used to estimate sleep [49,54e56]. In the end, it
comes down to different methods of quantifying physiologic sig-
nals and using a machine learning algorithm to estimate sleep
variables. The advantage of UWB radar is that it is a truly unob-
trusive device to measure a person's breathing and movement
during sleep. This non-obtrusive tool has the potential of increasing
patient compliance in sleep diagnostics. The device can be placed
on a fixed location next to the bed, and does not have to be attached
to the person's body. Furthermore, close to or within the device,
several other factors can be measured, such as room temperature,
sound, and light exposure. Note that UWB radar is unable to
measure is oxygen saturation. To measure oxygen saturation, a
single extra sensor could be added to the set-up.

For sleep stage classification, many studies have focused on
extracting informative features from respiratory signals. For
instance, features such as breathing rate, respiratory self-similarity
and regularity and inhalation/exhalation rate and volume have
been applied [50,57]. Very few sleep staging studies using radar
technology have been performed in infants and children. Some of
these studies applied other contactless monitoring approaches (eg,
capacitive ECG and video camera) to acquire vital signs for sleep
stage classification. Werth et al. [53] developed an algorithm to
automatically detect sleep stages from capacitive ECG data from 8
preterm infants (gestational age 30 ± 2.5 weeks). In that study, a
performance of Kappa 0.44 was achieved for classifying active
sleep, quiet sleep, and caretaking and wakefulness. Recently, Long
et al. [51] used video-based actigraphy to identify wakefulness and
sleep states in 10 healthy term infants (<18 months), whereby they
obtained a Kappa of 0.73 and an overall accuracy of 92% [51].

This study has several limitations. For one thing, the wide age
range of subjects, from newborn infants to adolescents. For the
sleep stage classification, age could not be included in our machine
learning algorithm. In our exploratory analysis, however, there was
no difference in accuracy between children younger than 1 year of
age and children older than 1 year of age.

Second, there was also a wide range of diseases among the
subjects. As this pilot study was performed in a tertiary referral
university medical center, the study population does not reflect the
average pediatric population. Further research has to be done to
also validate the algorithm in a healthy population.

Thirdly, some of the subjects in this study had OSA. This means
that their breathing pattern and movement pattern were disturbed
by apneas and arousals during the measurements. Due to the
relatively small sample size, we could not correct for apneas and
arousals in this particular study. OSA seemed to have some negative
effect on the accuracy of the algorithms, but the patient numbers in



Fig. 4. Performance of sleep stage classification using different classifiers. Abbreviation: NS ¼ not significant at p ¼ 0.05, *p < 0.01.

Fig. 5. The feature importance (feature weight in AdaBoost classifier) for WS, WRN, and WRLD classifications derived from data of all patients.

Table 3
Performance of the Adaboost algorithms in different groups, presented as Kappa and accuracy.

WS WRN WRLD

Kappa Acc. [%] Kappa Acc. [%] Kappa Acc. [%]

All 0.67 (0.14) 89.82 (5.5) 0.47 (0.12) 72.93 (6.8) 0.43 (0.11) 57.99 (7.7)
Non-OSA 0.70 (0.14)* 90.71 (5.0) 0.48 (0.11)* 71.67 (6.8) 0.43 (0.10)* 57.98 (7.6)
OSA 0.54 (0.16) 86.13 (7.7) 0.39 (0.12) 68.80 (6.4) 0.36 (0.11) 53.66 (7.1)
Non-CSA 0.60 (0.13) 88.49 (6.3) 0.38 (0.11) 69.64 (8.1) 0.35 (0.10) 54.29 (12.6)
CSA 0.67 (0.16) 89.12 (6.2) 0.48 (0.11)* 71.48 (6.6) 0.43 (0.09) 57.72 (6.7)
Young (<1 yr) 0.69 (0.12) 89.28 (5.3) 0.48 (0.10) 70.74 (6.5) 0.44 (0.07) 58.56 (5.5)
Old (>1 yr) 0.66 (0.16) 90.53 (5.3) 0.45 (0.11) 73.37 (6.4) 0.38 (0.10) 55.00 (6.7)

*p <. 05.
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Table 4
Performance of the Adaboost algorithms presented as positive predictive value (PPV) and sensitivity. The results are specified per classification outcome.

Adaboost WS WRD WLRD

Wake Sleep Wake REM Deep Wake REM Light Deep

PPV (mean, SD) 0.72, 0.15 0.94, 0.04 0.73, 0.17 0.57, 0.25 0.73, 0.08 0.69, 0.18 0.54, 0.21 0.43, 0.14 0.63, 0.15
Sensitivity (mean, SD) 0.77, 0.17 0.92, 0.07 0.77, 0.15 0.22, 0.14 0.88, 0.06 0.82, 0.14 0.46, 0.19 0.34, 0.13 0.76, 0.14

Fig. 6. Sleep stage classification performance and sleep stage distribution of each patient.
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this study are too small to correct for having OSA. In future studies,
investigators should try to only include subjects that do not suffer
from OSA or any other disease.

Lastly, the hypnograms of the polysomnography are scored by
three different observers. Although theywere blinded for the UWB-
radar results, this may have caused some bias in the gold standard
method of determining sleep stages and might have lowered the
accuracy of the sleep stage classification by the UWB-radar sensor.
In an ideal situation, every hypnogram should have been scored by
two observers independently, and their results combined through
consensus.

Even given these limitations, the yielded results tally well with
those of other studies and we therefore believe that our results
could have been even better in a larger and more homogenous
study group.

Our current study has only focused on sleep stage classification,
even thoughmany other aspects in a night's sleep can be evaluated.
Future studies could focus on adding new parameters to the algo-
rithm, such as the total sleep time, sleep onset latency, and wake
time after sleep onset. Future studies could also focus on detecting
obstructive and central sleep apneas, and might be able to detect
sleep apnea. Some studies in adults have already proven the
feasibility of detecting apneas using an UWB radar [58,59].

In conclusion, this study shows that sleep classification using an
UWB radar could be a feasible non-contact method in children.
Since this was a pilot study with a heterogeneous study population,
the accuracy of the sleep stage classification is not yet sufficient for
clinical use. However, the results are promising for the future of this
radar technique in sleep diagnostics. This study paves the way for
more in-depth and more detailed studies on sleep quantification
using radar-technologies.
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