
”How Much Data is Enough?” Learning Curves
for Machine Learning

Investigating alternatives to the Levenberg-Marquardt algorithm for learning curve extrapolation.

Lucian Negru1

Supervisors: Dr. Jesse Krijthe1, Dr. Tom Viering1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Lucian Negru
Final project course: CSE3000 Research Project
Thesis committee: Dr. Jesse Krijthe, Dr. Tom Viering, Dr. Zhengjun Yue

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
The conducted research explores fitting algorithms
for learning curves. Learning curves describe
how the performance of a machine learning model
changes with the size of the training input. There-
fore, fitting these learning curves and extrapolating
them can help determine the required data set size
for any desired performance.
The paper specifically explores the Learning Curve
Database (LCDB) [1] and investigates alterna-
tive fitting algorithms to the employed Levenberg-
Marquardt (LM). These algorithms are Gradient
Descent and BFGS, and the paper aims to deter-
mine whether they are more suitable for fitting
learning curves than LM.
The algorithms were implemented, both in their
default and optimised states, and the results were
compared to LM. The results measured mean-
squared error (MSE), L1 Loss, individual paramet-
ric model performance, and computation time.
The findings showed that Gradient Descent is not a
suitable alternative to LM; however, BFGS proved
to be competitive, as it is practically identical in
performance while being significantly faster than
LM.
Further exploration of the BFGS algorithm and
its application on learning curve fitting is recom-
mended. Comparisons between the MSE distri-
bution of LM and BFGS can be further explored,
as well as comparisons on new parametric models,
learners, and datasets.

Keywords: learning curve · Levenberg-Marquardt
· Gradient Descent · Broyden-Fletcher-Goldfarb-
Shanno · LCDB

1 Introduction
This research focuses on learning curves. Viering and Loog
[2] state that learning curves display the performance of ma-
chine learning models relative to the number of training ex-
amples. Generally, the more data and training samples a
model is fed, the better its performance. However, the rate
of improvement is not always increasing with the size of the
input.

Estimating how much improvement can be expected given
a certain increase in training samples is important for appli-
cations that deal with complex data and expensive labelling.
As applications of machine learning models are developed
and applied at an increased rate, the training data they require
will have to be larger, more complex, and more extensively la-
belled. OpenAI researcher Ben Cottier [3] estimates the train-
ing costs of large AI models to reach as high as $300 million
by 2030. These include the cost of resources (such as hard-
ware and electricity) as well as the cost of experts labelling
data. Therefore, the performance gained from enlarging the
training data must outweigh the increase in costs. For this

reason, we are interested in learning curves; to observe the
estimated increase in performance given an increase in data
size.

Related work: The research conducted by Viering and
Loog [2] goes in-depth on various models and their respective
learning curve shapes, as well as provides the results of their
rounds of training in the Learning Curve Database (LCDB)
[1]. Their research aimed to study the different shapes learn-
ing curves can have and why they do so. The results of this
study indicate that, for the majority of learning curves, error
rates are non-increasing as training set sizes increase.

The study uses fitting algorithms to assign a parametric
model to the error data and extrapolate. A limitation of the re-
search is its sole use of the Levenberg-Marquardt (LM) [4, 5]
fitting algorithm without exploring the performance of other
promising optimisation methods such as the Gradient De-
scent1 and the Broyden-Fletcher-Goldfarb-Shanno2 (BFGS)
algorithm, which are widely used in minimisation and opti-
misation applications.

This research, therefore, aims to answer the following
question:

Are Gradient Descent and BFGS better suited for learning
curve extrapolation than Levenberg-Marquardt?

In Section 2, the Methodology will be described, including
the three algorithms and the general fitting procedure of the
LCDB. Section 3 will explain the setup conditions of the ex-
periments. The results will be shown in Section 4 and their
implications will be discussed further in Section 5.

2 Methodology
This work considers two alternative methods of fitting learn-
ing curves, specifically Gradient Descent and BFGS. This
section will explore the curve fitting method of the LCDB
theoretically, and the two proposed alternative algorithms.

We will first explore the learning curve fitting process, fol-
lowed by the currently implemented algorithm, LM. Then,
we shall explore the two alternatives and how they function.

2.1 LCDB Fitting Procedure
The LCDB is a database consisting of 4,367 distinct learn-
ing curves. Every learning curve features different learners
implemented in Python and has varying error rates given the
training data size. Therefore, the LCDB provides an exten-
sive analysis of how some of the most widely used learners
perform.

The process of fitting the curves begins with generating the
anchors. These are the average error rates of 125 testing set
runs at any particular training set size. The anchors are calcu-
lated by running each learner on the specific training size of
the data set 125 times, and their varying results are averaged
into a single anchor.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.fmin cg.html

2https://docs.scipy.org/doc/scipy/reference/optimize.
minimize-bfgs.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_cg.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_cg.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

Parametric models are chosen for each learning curve
which best display the trend of the data. These models can
have anywhere from 1 to 4 parameters and various func-
tions. The best performing models from Viering and Loog’s
study [1] are mmf4 and wbl4 seen bellow:

mmf4 = (αβ + γxδ)/(β + xδ)

wbl4 = −βexp(−αxδ) + γ

Multiple parametric model fits are performed on the final
anchor points, each with a different number of training and
testing anchors. The training anchors are used in the fitting
procedure, they are the points on which the fitting algorithm
attempts to fit. The testing anchors are used to evaluate the
fit concerning the extrapolation and prediction performances.
An important distinction is that achieving a low MSE on the
training anchors does not always guarantee a low MSE on
the testing anchors. Therefore, when running the fitting algo-
rithms, it is important to consider which type of anchor MSE
should be minimised. This research will focus on minimising
the MSE on testing anchors, as those best represent extrapo-
lation.

Finally, the results of the fits can be analysed to determine
which learning curve best describes the performance of the
learner and data set.

2.2 Defining Performance
The research compares the performances of the fitting algo-
rithms. This performance is composed of MSE and L1 Loss.
Comparisons between computation times have also been ad-
dressed, but not regarded as ’performance’. The functions of
these metrics can be observed below, where n represents the
amount of data.

MSE = 1
n

∑n
i=1(Yactual − Ypredicted)

2

L1 Loss Function =
∑n

i=1 |Yactual − Ypredicted|

2.3 The Levenberg-Marquardt Algorithm
The Levenberg-Marquardt (LM) algorithm is an iterative
method of finding the minimum of a function that represents
the sum of squares of non-linear functions [4, 5]. It can be
described as an interpolation between Gauss-Newton (New-
ton’s) method and Gradient Descent [5], and benefits from
higher robustness than the individual methods it is derived
from.

(JkT Jk + λk I) pk = −JkT fk

The above function describes the LM algorithm searching
in the direction of the optimum solution p. Jk represents the
Jacobian – a matrix of partial derivatives – of the objective
function at point k. I is the identity matrix. λ is the dampen-
ing factor and f is the objective function.

One interesting property of the LM algorithm is that it be-
haves differently depending on the value of the damping fac-
tor λ – which relates to how close it is to the solution. When
it is far from the solution it behaves similarly to Gradient De-
scent, and when it is close to the solution it behaves simi-
larly to the Newton’s method [6]. Therefore, by alternating

between the two algorithms, LM does not suffer from their
limitations.

The LM implementation in the LCDB makes use of the
SciPy least squares3 library and is aimed at finding the op-
timum parameters for the model curve such that the MSE of
the testing anchors is minimal. One limitation of the imple-
mentation is that the initial parameters of the model curves
are selected from a normal distribution of values rather than
a model-specific initialisation, resulting in higher chances of
the algorithm reaching a local minimum rather than a global
one [7].

2.4 Gradient Descent
Gradient Descent is an optimisation method widely used in
mathematics and machine learning. It aims to minimise ob-
jective functions, or in the case of the LCDB, minimise the
MSE of the generated fits. It does so by following the di-
rection opposite to the gradient to find the minimum of the
aforementioned function [8]. This leads to a solution that pro-
gresses very quickly at the start but shuffles back and forth the
nearer it gets to the solution [9].

To implement the Gradient Descent algorithm on the fit-
tings of the LCDB, the SciPy optimize.fmin cg function was
used on the LCDB’s objective function that needed to be min-
imised. While the method does not allow for extensive hyper-
parameter tuning, the tolerance for termination can be altered
to influence the learning rate – and by extension the step size
– by decreasing or increasing the acceptable offshoot towards
the optimum solution. Offshoot refers to Gradient Descent’s
possibility to skip over the minimum of the function, causing
it to iterate in the opposite direction.

2.5 The Broyden-Fletcher-Goldfarb-Shanno
Algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is
another promising non-linear optimisation algorithm widely
used for unconstrained problems – problems in which the
variables can take any value. Similarly to gradient descent,
it makes use of the estimated gradient at a certain point. The
gradient is estimated numerically using secants, which are
lines that cut through the function curve at two points x − δ
and x + δ to estimate the gradient at x [10]. The algorithm
decreases the size of δ as it approaches the minimum of the
function.

The advantage that BFGS has over Gradient Descent and
Newton’s method is that it does not need matrix inversions
for calculating the gradient, resulting in a lower computa-
tional complexity of O(n2), compared to O(kn2) and O(n3)
respectively. Therefore, it may prove to not only be an accu-
rate optimisation algorithm but also faster than the current
Levenberg-Marquardt implementation – composed of both
Gradient Descent and Newton’s method.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.
optimize.least squares.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

3 Experimental Setup
Having explored the current fitting implementation of the
LCDB, as well as the two alternative algorithms, the ex-
periments were carried out to answer the research question:
are Gradient Descent and BFGS better suited for learning
curve extrapolation than Levenberg-Marquardt? In the exper-
iments, performance was measured using the metrics from
Section 2.2. The research question was split into the follow-
ing two hypotheses:

• Gradient Descent offers a more performant fitting alter-
native for learning curves than Levenberg-Marquardt.

• BFGS offers a more performant fitting alternative for
learning curves than Levenberg-Marquardt.

The following section will describe the environment and
explore the reasoning and implementation behind the two ex-
periments. The first experiment explored the performance of
the alternative algorithms implemented with their default pa-
rameters – matching the implementation of LM. The second
experiment featured optimised implementations of the alter-
native algorithms.

3.1 Experiment Environment
The experiments featured in this study have been written in
Python4 and compiled using Jupyter Notebooks5; these are
all available on the author’s GitHub6.

The experiments use the LCDB library7 for accessing the
learners and datasets used in the initial study by Viering and
Loog [2], as well as for comparing results. The learners are
implemented using the Scikit Learn8 library and the datasets
are retrieved from OpenML [11].

3.2 Experiment 1: Default Algorithm Performance
The alternative algorithms were implemented and ran upon
the same 10,000 randomly sampled learning curves from the
LCDB with their maximum number of anchors. 10,000 sam-
ples were chosen as it is a large portion of all samples and can
accurately represent the LCDB as a whole while keeping the
duration of the experiment down.

Gradient Descent was implemented with the aforemen-
tioned optimize.fmin cg library and a scalar objective func-
tion – the function that is minimised. The BFGS algorithm
was implemented by passing the MSE function gradient as
the Jacobian matrix, as recommended in the SciPy library.
The MSE function gradient is calculated numerically using
the following function:

4https://www.python.org/
5https://jupyter.org/
6https://github.com/MissingCurlyBracket/research-project
7https://github.com/fmohr/lcdb
8https://scikit-learn.org/stable/

def o b j e c t i v e d e r (b e t a) :
g r ad = np . z e r o s l i k e (b e t a)
f o r i in range (l e n (b e t a)) :

b e t a p l u s = b e t a . copy ()
b e t a m i n u s = b e t a . copy ()
b e t a p l u s [i] += 1e −8
b e t a m i n u s [i] −= 1e −8
grad [i] = (o b j e c t i v e (b e t a p l u s)

− o b j e c t i v e (b e t a m i n u s))
/ (2 * 1e −8)

re turn g rad

It should be noted that the function uses estimations and in
the instance of a highly varying learning curve, such as a very
sudden and large increase, this may affect the accuracy of the
estimation.

3.3 Experiment 2: Optimised Algorithm
Performance

The second experiment featured more optimised versions of
the Gradient Descent and BFGS algorithms. The experiment
was run on various values for hyperparameters and the best-
performing combinations were kept in the results section.

The Gradient Descent implementation discussed in section
2.4 does not allow for extensive hyperparameter tuning; how-
ever, it does allow for tuning of the tolerance for termination.
This also affects the rate at which the solution is reached. The
final value used for the tolerance was 1e− 5.

For BFGS, the main difference was the calculation of the
Jacobian matrix. Previously, the gradient of the MSE func-
tion was calculated numerically. While that is fast for most
learning curves, some exceptions occur where the algorithm
reaches the maximum number of iterations – needed to avoid
infinite loops – and settles on the current optimisation. This
can be improved by allowing for more iterations per learning
curve, increased from 5 to 15, requiring faster gradient cal-
culations. Therefore, the Autograd9 library is used to instead
calculate the analytical gradient. Thus, the gradient of the ac-
tual parametric model function can be used directly without
needing to estimate [12], increasing the number of possible
iterations significantly.

4 Results
This section features the results of the aforementioned exper-
iments and analysis of the various performance metrics, such
as testing data MSE, L1 Loss, computation time, and para-
metric model performance. Firstly, the results of experiment
1 will be analysed, and then experiment 2.

4.1 Experiment 1 Results: Default Algorithm
Performance

Given that the alternative algorithms have been implemented
with their default parameters, to match the original LM im-
plementation, large performance improvements were not ex-
pected. When running the algorithms on 10,000 samples, it
became clear that the size was too much for Gradient Descent
to compute the fitting; causing it to crash around the one-hour

9https://pytorch.org/docs/stable/notes/autograd.html

https://pytorch.org/docs/stable/notes/autograd.html

Figure 1: Plot showing test anchor MSE distributions of the three
default algorithms, as tested on 5,000 random samples. The X-axis
represents the value of MSE, and the Y-axis represents the portion of
samples featuring the certain MSE, i.e., the largest green line peak
would show that approximately 10% of the samples resulted in an
MSE of approximately 10−0.5. In plots such as these, right-sided
distributions mean higher MSE.

mark each time. This is most likely due to a Jupyter Notebook
limitation such as maximum available memory. Therefore,
results for 5,000 samples are also included to allow for equal
comparisons. Figures 1 and 2 showcase the results.

Observing the results, it is clear that Gradient Descent is
very similar in performance to the initial LM, nearly perfectly
doing so on the 5,000 samples run. The default implementa-
tion of BFGS, however, seems to perform consistently worse
by degrees of approximately 10 ∼ 100 times higher MSE.

A promising result for BFGS is the narrower distribution,
although on average it performs worse, its performance does
not vary as much as LM or Gradient Descent; this may be
an indication that a more optimised version of this algorithm
may prove more consistent than LM.

Table 1: Table showcasing the fitting times of the three tested default
algorithms on 128, 5,000, and 10,000 sample sizes. The outlying
Gradient Descent time appears as expected due to the algorithm’s
limitations when being near a solution. Furthermore, BFGS shows
considerably lower fitting time than Levenberg-Marquardt.

Algorithm Time on sample size
128 size 5,000 size 10,000 size

Levenberg-Marquardt 4.73 s 88.86 s 477.74 s
Gradient Descent 64.00 s 593.09 s N/A
BFGS 3.88 s 66.98 s 406.69 s

Figure 2: Plot showing test anchor MSE distributions of LM and
BFGS, as tested on 10,000 samples. Graph is read as in Figure 1.

One outstanding factor was the computation time of these
learning curves, shown below in Table 1. As stated in Sec-
tion 2.4, Gradient Descent slows down significantly when ap-
proaching the minimum objective, resulting in the increased
fitting time. It can be observed that the differences in com-
plexity, stated in Section 2.5, result in the BFGS algorithm
being considerably faster than LM on all sample sizes.

4.2 Experiment 2 Results: Optimised Algorithm
Performance

The results of the second experiment show that the optimi-
sations improved the overall performance of the algorithms,
particularly BFGS. As with the first experiment, 5,000 and
10,000 sample runs were fitted to test both the slower Gradi-
ent Descent and the BFGS algorithms.

Gradient Descent performance has shown a trade-off be-
tween MSE and computation time due to the increased toler-
ance of termination. The average MSE increased by a degree
of 10, as seen in Figure 3, but the computation time decreased
from 593.09 to 477.95. Although not a proportional trade-
off, some learning curve fitting tasks may benefit from the
increased speed while not being affected by the higher MSE.

BFGS has benefited greatly from the analytical gradient
optimisation, increasing the number of iterations per second,
as well as the larger number of repetitions, increasing the ac-
curacy of the final optimisation. In the 5,000 sample run,
Figure 3, it performed within ∼ 2% average MSE and 1% L1
Loss off LM. In the 10,000 sample run, BFGS showed 3.6%
higher MSE than LM and < 1% L1 Loss, represented in Fig-
ures 4 and 5 respectively. The faster analytical gradient cal-
culation also resulted in a decreased computation time from
406.69 seconds to 366.53, making BFGS practically identical
in performance to LM, while being ∼ 23% faster.

Figure 3: The testing anchor MSE distributions of all three algo-
rithms after optimisations, tested on 5,000 samples. Graph is read as
in Figure 1.

Interestingly, for the outer MSE performance bins < 10−3

and > 10−2 BFGS consistently shows lower distribution,
while the inner range features higher distribution of MSE.
These observations are carried out to the 10,000 sample run,
Figure 4, showing that the distribution of BFGS has lower a
variance than that of LM.

Table 2: The average testing anchor MSE of the top five performing
parametric models for each of the tested algorithms. The data was
generated from a 5,000 sample run and has been cleaned up before
analysis to remove overflows, NaNs, infinities, and fits with over 100
MSE.

Levenberg-Marquardt Gradient Descent BFGS
Curve Model MSE Curve Model MSE Curve Model MSE
last1 0.005832 last1 0.005832 last1 0.005832
wbl4 0.092318 wbl4 0.586516 wbl4 0.120457
exp4 0.094922 exp4 0.693752 exp4 0.094035
mmf4 0.113522 mmf4 0.846390 mmf4 0.135952
pow4 0.130181 pow4 1.136965 logpower3 0.207976

Taking a look at the specific parametric model performance
of the tested algorithms, Table 2, we see that the LM results
indicate similar top-performing models as the initial study
by Viering and Loog [2]. Gradient Descent shows the same
top contenders as LM, albeit with an average MSE 10 times
higher, unsurprising given the results in Figure 4 and the fact
that LM implements Gradient Descent. Surprisingly, BFGS
also features most of the same top-performing parametric
models (logpow3 out-performs pow4). This result supports
the initial study’s findings that 4-parameter models are the
most competitive for extrapolating learning curves.

4.3 Answering The Hypotheses
Gradient Descent showed very similar performance to the LM
implementation on the LCDB, however, it did so at the cost of
very high computation time. This indicates that there would
be no purpose in considering Gradient Descent over LM, as

Figure 4: Plot showing the testing anchors MSE distribution of
the optimised BFGS algorithm, with analytical gradient calculation,
compared to the LM implementation. Tested on 10,000 samples.
Graph is read as in Figure 1.

the compromise between MSE performance and computation
time would result in an implementation that is either not ac-
curate or extremely slow.

BFGS, on the other hand, proved to be a very competi-
tive algorithm. It matched the LM implementation in MSE
of the testing anchors, often resulting in better performance
for some parametric models. Furthermore, it is a consider-
ably faster algorithm, allowing for more use cases in learn-
ing curve extrapolation. Therefore, BFGS has been found
to perform better at fitting learning curves than Levenberg-
Marquardt.

5 Discussion
With the obtained results, the algorithms can be analysed to
determine where they excel and fall short. This section will
offer analysis and theoretical explanations behind the results,
as well as limitations to the research.

5.1 Insights
These experiments helped compile new insights about fitting
algorithms and their applications on learning curves. In gen-
eral, Gradient Descent was determined to not be a suitable
alternative to the Levenberg-Marquardt algorithm due to its
substantial computation time and no real benefits.

However, the fact that Gradient Descent follows so closely
to LM may be an indication that LM relies more on the Gra-
dient Descent functionality and not as much on the Gauss-
Newton counterpart. This would entail that LM, and all tested
algorithms in retrospect, manage to reach close to the opti-
mum solution very fast.

The main finding of this study was the insight that BFGS
is very competitive to LM, to the extent that it can be rec-
ommended as the alternative for learning curve fitting. It is
as performant while being faster, and features slightly lower

Figure 5: Plot showing the L1 Loss distribution of the optimised
BFGS algorithms compared to LM. Graph is read as in Figure 1 but
features L1 Los instead of MSE.

MSE variance on average (although this should be further
tested).

The final insight gained from this study was that the best-
case scenario runs for both LM and BFGS averaged around
10−3 ∼ 10−2. Their performance differences on individual
parametric models were also non-significant, suggesting that
perhaps these results are as good as possible with the current
parametric models. This outlines the possibility of exploring
more parametric models in the future, as they are currently
the determining factor in performance.

5.2 Limitations
One of the limitations encountered during the fitting process
was the initialisation of the parameters. In the LCDB, before
the fitting algorithm is run, parameters are initialised from
a normal distribution. This method has been noted to have
limitations by Kim [7], and alternative initialisation methods,
such as K–Means clustering, have proved to be more per-
formant. The performance of the alternative algorithms may
have increased if initialisation was optimised as well.

Another limitation is the experiments being run on an up-
per bound of 10,000 samples, instead of the entire data set.
This choice was made to save time, which could later be
used for further optimisation, but will always be limited in
not showing the ’full picture’.

The Gradient Descent algorithm could have also been more
thoroughly optimised if it were implemented by hand instead
of using SciPy. This could have been done with the Tensor-
Flow10 or PyTorch11 libraries.

The final limitation would be that the experiments were run
on datasets with the maximum number of training anchors.
Alternative tests could be made on various ’ranks’, different

10https://www.tensorflow.org/api docs/python/tf/compat/v1/
train/GradientDescentOptimizer

11https://pytorch.org/docs/stable/generated/torch.optim.SGD.
html

splits between training and testing anchors, to measure con-
sistency or lack thereof. It could be that BFGS performs very
similarly to LM when considering as much data is available
as possible, but what if the data is minimal? Would it still
perform as well?

6 Responsible Research
The following section will explore the reproducibility of the
study following the Yale Law Roundtable recommendations
[13] for upholding credibility.

The first recommendation is to publish the source code
of the experiments and statistical analyses [13]. The source
code for the implementations of the algorithms and the sta-
tistical scripts can be publicly viewed at https://github.com/
MissingCurlyBracket/research-project. Furthermore, the
used learners, datasets, and parametric models can be found
at https://github.com/fmohr/lcdb.

The second recommendation is to assign a unique version
ID to the pieces of software developed. This recommendation
does not apply to the study, as it contains the sole version of
the implementations and no future updates are yet considered.

The third recommendation is to describe the computing en-
vironments and software used in producing the experiments.
The implementations and experiments were written in Jupyter
Notebooks using Python version 3.8.3. The experiments were
run on an 8-core M1 Pro processor on macOS 13.4. The
required libraries and their versions can also be found at
https://github.com/fmohr/lcdb.

The fourth recommendation is to use open-licensed code.
As the code developed in the study is not licensed, this rec-
ommendation does not apply.

As the fifth recommendation, Yale Law recommends that
the study be published using an open-access contract. This
paper will be featured in the TU Delft Repository, open to the
public.

The sixth and final recommendation is to consider readabil-
ity and re-usability. The implemented algorithms have been
named and written using standard Python conventions. The
use of the code and the procedure for running it has been doc-
umented, both in https://github.com/MissingCurlyBracket/
research-project as well as in https://github.com/fmohr/lcdb.

7 Conclusions and Future Work
To conclude the study, alternative algorithms were suggested
for fitting learning curves in the LCDB – these being Gra-
dient Descent and BFGS. Default and optimised versions of
both alternative algorithms were implemented in the fitting
procedure and were analysed based on the MSE of the test-
ing anchors, L1 Loss of the testing anchors, average MSE on
individual parametric models, and computation time.

The results favoured against the first hypothesis and Gra-
dient Descent indicated to not be a suitable alternative to
Levenberg-Marquardt for learning curve fitting, according to
the tests. On the other hand, the first hypothesis was sup-
ported, showing that BFGS performs practically to the same
degree of accuracy as LM while being significantly faster.
Therefore, BFGS is a suitable alternative to LM for learning
curve fitting.

https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/GradientDescentOptimizer
https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/GradientDescentOptimizer
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://github.com/MissingCurlyBracket/research-project
https://github.com/MissingCurlyBracket/research-project
https://github.com/fmohr/lcdb
https://github.com/fmohr/lcdb
https://github.com/MissingCurlyBracket/research-project
https://github.com/MissingCurlyBracket/research-project
https://github.com/fmohr/lcdb

Further research is recommended in the field, particularly
regarding the promising results of BFGS. Firstly, the exper-
iments can be run on the entirety of the LCDB, a test that
proved infeasible due to time constraints. Second, more para-
metric models can be explored, perhaps with even more pa-
rameters. The most interesting finding that merits further in-
vestigation, I believe, is the smaller MSE variance of BFGS
and its significance. If indeed BFGS shows significant signs
of being less varied than LM, that could mean it can be ap-
plied in practice more consistently.

References
[1] Felix Mohr, Tom J Viering, Marco Loog, and Jan N van

Rijn. Lcdb 1.0: An extensive learning curves database
for classification tasks. In Machine Learning and
Knowledge Discovery in Databases. Research Track -
European Conference, ECML PKDD 2022, Grenoble,
France, September 19-24, 2022, 2022.

[2] Tom Viering and Marco Loog. The shape of learning
curves: A review. IEEE Trans. Pattern Anal. Mach. In-
tell., PP:1–20, November 2022.

[3] Ben Cottier. Trends in the dollar training cost of ma-
chine learning systems, 2023. Accessed: 2023-4-25.

[4] Kenneth Levenberg. A method for the solution of cer-
tain non-linear problems in least squares. Quarterly of
applied mathematics, 2(2):164–168, 1944.

[5] Donald W Marquardt. An algorithm for least-squares
estimation of nonlinear parameters. Journal of the soci-
ety for Industrial and Applied Mathematics, 11(2):431–
441, 1963.

[6] Manolis IA Lourakis et al. A brief description of
the levenberg-marquardt algorithm implemented by lev-
mar. Foundation of Research and Technology, 4(1):1–6,
2005.

[7] Donghwi Kim. Different approaches to fitting and ex-
trapolating the learning curve. EEMCS Faculty Delft
University of Technology, 2022.

[8] Haskell B Curry. The method of steepest descent for
non-linear minimization problems. Quarterly of Ap-
plied Mathematics, 2(3):258–261, 1944.

[9] Claude Lemaréchal. Cauchy and the gradient method.
Doc Math Extra, 251(254):10, 2012.

[10] JE Dennis Jr and Robert B Schnabel. Secant methods
for unconstrained minimization. Numerical Methods for
Unconstrained Optimization and Nonlinear Equations,
Englewood Cliffs, NJ: Prentice-Hall, pages 194–215,
1983.

[11] Matthias Feurer, Jan N Van Rijn, Arlind Kadra,
Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, An-
dreas Müller, Joaquin Vanschoren, and Frank Hut-
ter. Openml-python: an extensible python api for
openml. The Journal of Machine Learning Research,
22(1):4573–4577, 2021.

[12] Fei-Fei Li, Yunzhu Li, and Ruohan Gao. Convolutional
neural networks for visual recognition. Stanford Vision
and Learning Lab (SVL), 2023.

[13] Victoria C Stodden. Reproducible research: Address-
ing the need for data and code sharing in computational
science. 2010.

	Introduction
	Methodology
	LCDB Fitting Procedure
	Defining Performance
	The Levenberg-Marquardt Algorithm
	Gradient Descent
	The Broyden-Fletcher-Goldfarb-Shanno Algorithm

	Experimental Setup
	Experiment Environment
	Experiment 1: Default Algorithm Performance
	Experiment 2: Optimised Algorithm Performance

	Results
	Experiment 1 Results: Default Algorithm Performance
	Experiment 2 Results: Optimised Algorithm Performance
	Answering The Hypotheses

	Discussion
	Insights
	Limitations

	Responsible Research
	Conclusions and Future Work

