
  

Exploring Modelling 
Assumptions and their 
Impact on Extreme 
Discharges for the 
Meuse Catchment 

 

  
2023 

MASTER’S THESIS 
ELIZABETH TAYLOR 



 

i 

 

Exploring Modelling Assumptions and their Impact 
on Extreme Discharges for the Meuse Catchment 

FINAL REPORT 

 

 

By 

Elizabeth TAYLOR 
 

In partial fulfillment of the requirements for the degree of 

 

Master of Science 
Civil Engineering 

 

 

At the Delft University of Technology, 

To be defended publicly October 24, 2023 at 1:30 PM 

 

 

Thesis Committee: Dr. Elisa Ragno TU Delft 
 Dr. Markus Hrachowitz TU Delft 
 Dr. Laurène Bouaziz Deltares 
 Dr. Anaïs Couasnon Deltares 

 

 

 



  

  



 

iii 

ABSTRACT 
Floods are the most frequent natural disaster and due to climate change the frequency and 
intensity of these events are increasing. Therefore, it is becoming increasingly important to 
obtain accurate estimations of extreme discharges. Statistical modelling is widely used to 
estimate extreme discharges by fitting observed extreme discharges to an extreme value 
distribution. However, limited historical data makes it difficult to confidently model the tail 
behavior of extremes. Additionally, several modelling assumptions impact extreme discharge 
estimates including selection of the nonstationary method, extreme value distribution, 
parameter estimation method, and the impact of seasonality. In an effort to reduce 
uncertainties, a new method has been developed to derive design discharges for the Meuse in 
the Netherlands. This method, GRADE (Generator of Rainfall and Discharge Extremes) 
consists of three components: a stochastic weather generator, a hydrological model, and an 
extreme value analysis (EVA). However, the stochastic weather generator is not capable of 
producing daily rainfall that exceeds the range of historical data. Therefore, a physically 
based climate model, RACMO, is now being studied. RACMO is capable of generating 1,040 
years of synthetic meteorological data that can be routed in a hydrological model to obtain 
1,040 years of synthetic discharges. The physically based climate model makes it possible to 
capture the underlying physical processes of extreme events and the hydrological model can 
provide discharge information at locations where there are no observations. This thesis 
evaluates the impact various modelling assumptions have on estimated discharges using 
synthetic data generated by the RACMO through application of a case study in the Meuse. 

The identified modelling assumptions are individually evaluated to assess their impact on 
extreme discharge estimates and their uncertainty.  Based on the results presented in this 
thesis, longer record lengths provide considerable value in an EVA. At the six stations of 
interest, the width of the confidence interval of 100-year discharges obtained using Gumbel 
(GEV) for a record length of 1,040 years decreased between 75 and 85 percent (70 and 89 
percent) from estimates obtained from a record length of 65 years. However, this increase in 
certainty could still lead to significant over and underestimations of extreme discharge if the 
other modelling assumptions are not carefully considered.  

It is discovered the tail behavior of extreme discharges varies throughout the Meuse, so it is 
important to compare the fit of distributions at each location where estimates are required. At 
the six stations of interest, GEV and Gumbel (GP and Gumbel) estimates of the 100-year 
discharge obtained from the 1,040 years of synthetic data vary between 3 and 14 (4 and 9) 
percent. Additionally, the MLE and MoM parameter estimation methods used to fit the 
distribution to the 1,040 years of synthetic data resulted in up to a 9 percent difference in 
estimates of the 100-year discharge. Neglecting seasonality resulted in up to a 2 percent 
difference in 100-year discharges obtained from the 1,040 years of synthetic data. However, 
it is discovered there are limited number of summer extremes in the modelled discharges. 
Neglecting seasonality in historical data led to under and overestimations up to 24 and 22 
percent, respectively.  

The results presented in this thesis demonstrate the added value of estimating extreme 
discharges using ensemble members from physically based climate models. Additionally, it is 
emphasized that each modelling assumption impacts estimated discharges and should, 
therefore, be carefully considered.  
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1. INTRODUCTION 
Floods are the most frequent natural disaster that can devastate communities causing property 
damage and loss of life. Over 2 billion people were affected by floods globally between 1998 
and 2017 (World Health Organization, 2023). Floods are increasing in frequency and 
intensity as a result of human intervention, natural climatic variability, and climate change; 
therefore, accurate estimation of the magnitude and frequency of floods is becoming 
increasingly important to manage and design flood defenses (Salas & Obeysekera, 2014).  

Statistical modelling is widely used to estimate extreme discharges by fitting extreme 
discharges to an extreme value distribution. Annual maxima (AM) or peaks over a threshold 
(POT) are methods commonly used to obtain extremes. Extreme value models are used to 
estimate return periods (RP) which describe the probability of an extreme event to occur in 
any given year. In the Netherlands, discharge corresponding to the 1250-year RP is used for 
the design and maintenance of flood defenses in riverine areas. In coastal areas the 10,000-
year RP is used. Due to limited historical data, statistical extrapolation of the distribution of 
AM discharges is required to obtain the 1250-year design RP which introduces large 
uncertainties in estimated discharges (Parmet & Mulders, 1999).  

In an effort to reduce uncertainties, a new method has been developed to derive design 
discharges for the Meuse in the Netherlands. This method, GRADE (Generator of Rainfall 
and Discharge Extremes) consists of three components: a weather generator, a hydrological 
model, and an extreme value analysis (EVA). The stochastic weather generator uses a 
nonparametric resampling technique to simulate 50,000 years of daily rainfall and 
temperature data (Hegnauer M., 2014). However, the stochastic weather generator had two 
main limitations: it was limited to producing observed rainfall amounts which would make it 
difficult to incorporate climate change and it was not capable of producing daily rainfall that 
exceeded the range of historical data (Hegnauer M., 2014).     

Due to the limitations of the stochastic weather generator, a physically based climate model 
capable of generating long synthetic meteorological time series is now being studied. The 
climate model relies on equations derived from knowledge of climate processes to generate 
time series long enough to eliminate the need for statistical extrapolation to evaluate the 
1250-year design RP. While physically based models are able to capture the underlying 
processes that statistical extrapolation cannot, there is still more to be learned about this new 
methodology. This thesis evaluates the impact various modelling assumptions have on 
estimated discharges using synthetic data generated by the physically based climate model, 
RACMO, through application of a case study in the Meuse catchment. 

1.1. BACKGROUND 

A large portion of the Netherlands lies below sea level; therefore, the design and maintenance 
of flood protection is of critical importance. Large areas surrounding the Meuse River are 
prone to floods indicating a need to reduce the uncertainty in extreme discharge estimates 
used in design of flood defenses (Tu et al., 2005a). 
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In July 2021, slow propagation of a low-pressure system led to extreme precipitation, well 
beyond a 100-year event, that caused significant flooding in the Rhine and Meuse catchments 
in central Europe (Mohr et al., 2023). However, what made this event particularly unique was 
that it occurred during the summer, while most flood events in the Meuse occur during the 
winter. Extremes from different seasons can be driven by different flood mechanisms 
indicating a mixed distribution that should not be fit to a single extreme value distribution. 
Additionally, discharge estimates are often obtained from limited historical data, therefore, 
there may not be observed summer events. This makes it difficult to obtain reliable estimates 
of rare events, like what occurred in July 2021, from short historical records.  

In the Netherlands, GRADE (Generator of Rainfall and Discharge Extremes) is used to obtain 
long synthetic discharges that can be used to obtain more robust estimates. GRADE consists 
of three components: a weather generator, hydrological model, and a flood frequency 
analysis. A statistical weather generator to obtain meteorological time series as long as 
50,000 years that can be used in a hydrological model to obtain 50,000 years of synthetic 
discharges (Bouaziz et al., 2022). As shown in Figure 1, GRADE eliminates the need for 
statistical extrapolation of extreme value distributions since this process is capable of 
generating time series long enough to evaluate higher RP. Rather than performing an EVA on 
short historical records of river discharge, the analysis is performed on the long series of 
synthetic discharge produced using GRADE. 

 
Figure 1: Comparison of Statistical Methods to the GRADE Methodology (Generator of Rainfall and Discharge 

Extremes (GRADE) for the Rhine and Meuse Basins-Final Report of GRADE 2.0, n.d.) 

However, this method cannot be used to obtain estimates for smaller tributaries which have 
faster reactions and require sub-daily time steps to capture extreme discharges. Additionally, 
the statistical weather generator uses statistical resampling of observed time series and, 
therefore, is not capable of producing daily rainfall exceeding the range of historical data. No 
summer event in the 50,000 years generated by GRADE reached the magnitude of the July 
2021 event. Therefore, although the increased record length reduces the statistical uncertainty 
in discharge estimates, the statistical weather generator used in GRADE is not able to capture 
the physics of extreme events.  
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The new methodology used to obtain long series of discharges is shown in Figure 2. 
RACMO, a physically based climate model is used to generate 16 ensemble members of 65 
years, each with slightly different initial conditions resulting in 1,040 years of synthetic 
meteorological data. RACMO assumes the natural variability of the current climate and the 
data is bias corrected so that the resulting modelled data is considered to be stationary. 
Additionally, it is able to capture climate change and preserve the statistical properties of 
observations (Bouaziz et al., 2022). The long meteorological time series is used in a 
hydrological model to obtain longer discharge time series. No anthropogenic forcing is added 
to the hydrological model; therefore, climate change could be evaluated by comparing 30 
years of modelled meteorological data with future scenarios of an equally long time series. 
The physically based climate model makes it possible to capture the underlying physical 
processes of extreme events and the hydrological model can provide discharge information at 
locations where there are no observations available.  

 
Figure 2: Method used to Generate Long Series of Discharges for EVA (Slomp, 2021) 

1.1.1. MODELLING ASSUMPTIONS IMPACTING DISCHARGE ESTIMATES AND 
THEIR UNCERTAINTY 

Several modelling assumptions impacting discharge estimates and their uncertainty are 
identified including nonstationarity in observations, selection of an extreme value 
distribution, method used to estimate distribution parameters, effects of seasonality, and 
impact of record length. The modelling assumptions are presented Figure 3 and briefly 
described below.  

 
Figure 3: Modelling Assumptions Impacting Discharge Estimates and their Uncertainty 
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Stationarity 
The synthetic data generated by RACMO is bias corrected so that the time series input into 
the hydrological model is stationary. Since no land use change is incorporated in the 
hydrological model, the generated modelled discharges are stationary. However, climate 
change and human intervention have led to increasing rainfall and river discharges. 
Therefore, before performing an EVA on observed discharge it is necessary to identify 
whether nonstationarity is present. However, statistical tests should not be solely relied on to 
infer the persistence of nonstationarity. The predictive capability of various nonstationary 
methods is compared to demonstrate the potential implications of extrapolating a 
nonstationary linear trend.  

One of the limitations of GRADE is that the stochastic weather generator is limited to 
resampling from observed time series and is, therefore, not capable of producing daily 
rainfall exceeding the range of historical data. However, since the implementation of GRADE 
in 2015, events like what occurred in July 2021 add additional information about the statistics 
of extreme discharges. Therefore, observed changes in river discharges are studied to 
evaluate how much discharge estimates have changed since 2015.  

Lastly, uncertainty in discharge estimated from performing a nonstationary EVA on 
observations is compared to uncertainty in estimates from various simulations of the current 
climate.  

Extreme Value Model 
Selection of an extreme value model is expected to impact discharge estimates. Therefore, 
various extreme value distributions will be compared to explore their impact on estimated 
discharges. In addition, the parameter estimation methods used to fit extreme value 
distributions can impact return level estimates and will also be included in this study. 

Event Sets 
Event sets describe the time series that is used to obtain discharge estimates such as the 
seasonality and record length. Event sets are expected to impact estimations of extreme 
discharge because they affect the amount of data that is included in the analysis. The 
availability of data and frequency of events is often limited; therefore, event sets are 
important to consider when studying the impact of extreme discharge estimates.  

Limited historical data presents a significant impact on the sensitivity of estimates. The long 
synthetic discharge series generated by RACMO can be used to evaluate estimated discharges 
and their uncertainty at various record lengths.  

Flood events of the Meuse generally result from back-to-back rainfall events that occur in the 
winter (Hegnauer et al., 2014). Tu et al. (2005a) found that 82 of 91 AM at Borgharen, where 
the Meuse enters the Netherlands, during the period 1912 through 2002 occurred in the 
winter. However, as shown by the recent flooding in July 2021, the Meuse is also susceptible 
to summer floods. To study the effect of seasonality, discharge estimates can be compared 
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when including and neglecting summer rainfall events. In addition, an EVA can be performed 
by partitioning summer and winter events before combining the results.  

1.2. OBJECTIVES AND RESEARCH QUESTIONS 

The goal of this master’s thesis is to evaluate the impact various modelling assumptions have 
on estimated discharges using synthetic data generated by RACMO. Estimates and their 
uncertainty will be compared for various extreme value models, parameter estimation 
methods, record lengths, and seasonal assumptions. Before analyzing the stationary modelled 
data, available observations are studied to identify any potential trends in the time series and 
evaluate the performance of various nonstationary methods.  

The following research questions have been developed to fulfill the objective of this thesis: 

• How much impact can a very extreme event, such as what occurred in July 2021 in 
central Europe, have on the statistics of extreme discharge? 

• To what extent do nonstationary statistical methods impact discharge estimates when 
a trend in observed discharge is identified? 

• How does the confidence of discharges estimated from various simulations of the 
current climate compare to the confidence of estimates resulting from a nonstationary 
extreme value analysis? 

• To what extent do the modelling assumptions in an extreme value analysis affect the 
estimation of extreme discharge return levels? 

o How much influence do event sets have on discharge estimates and their 
uncertainty? 

o How much influence do extreme value models have on discharge estimates 
and their uncertainty? 

1.3. THESIS OUTLINE 

Chapter 2 provides a brief theoretical background on the methodology to answer the research 
questions through application of a case study introduced in Chapter 3. The methods and 
results that address the research questions in this thesis are split into three main chapters: 

• Chapter 4: Nonstationarity of Observed Discharge 

• Chapter 5: Extreme Value Models Influence on Discharge Estimates and Their 

Uncertainty 

• Chapter 6: Event Sets Influence on Discharge Estimates and Their Uncertainty 

Chapter 4 discusses nonstationarity of observed discharge, compares the performance of 
various nonstationary statistical methods, and compares the uncertainty of discharge 
estimates resulting from various simulations of the current climate to uncertainty resulting 
from a NEVA. The impact selection of extreme value distributions and parameter estimation 
methods have on discharge estimates and their uncertainty is evaluated in Chapter 5. Chapter 
6 studies the impact event sets, record length and seasonality, have on discharge estimates 
and their uncertainty. A comprehensive discussion of the results presented in this thesis is 
included in Chapter 7 and conclusion and recommendations are presented in Chapter 8. 
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2. LITERATURE REVIEW 
This chapter describes the theoretical background of the methods and tools used throughout 
this thesis. Section 2.1 describes the frequency and probability of exceedance of extreme 
events. The theoretical background behind a stationary EVA is discussed in Section 2.2. 
Parameter estimation methods are described in Section 2.3. Statistical tests to evaluate or 
compare the fit of distributions are discussed in Section 2.4. Statistical methods that are used 
to analyze observed trends are described in Section 2.5. Various methods of performing 
NEVA are introduced in Section 2.6. Lastly, a method of combining partitioned EVA, which 
is used when summer and winter extremes are separated, is discussed in Section 2.7.  

2.1. FREQUENCY AND PROBABILITY OF EXCEEDANCE 

When analyzing extreme events, frequency and probability of exceedance are often used 
interchangeably. However, there is a difference. Exceedance probability quantifies the chance 
of an event to occur at least once during a certain period, such as a year, and is equal to the 
inverse of the RP of annual extremes, Ta. Frequency quantifies the number of times an event 
occurs on average during a certain period and is equal to the inverse of the RP of an event, T.  

For example, an event with an exceedance probability of 1/100 per year (Ta = 100 year) 
indicates that there is a probability of 1 in 100 that that the event will occur in any given year. 
The exceedance frequency of this event is also 1/100 per year (T = 100 year) which indicates 
the event will occur on average once every 100 years. However, probability and frequency 
differ for smaller RP; the lowest annual maxima could also occur during years with higher 
annual maxima. For example, an event with a frequency of 2/year occurs on average twice 
per year and has a RP, T, of 0.5 year. However, probability must be between 0 and 1 and the 
RP of annual maxima, Ta, must be greater than 1. Therefore, for very extreme events with 
large RPs probability and frequency are nearly equal because it is unlikely that a very 
extreme event will occur more than once per year. A common assumption is that extremes 
can be modelled as a Poisson process so the probability can be estimated from the frequency 
using the following equation.  

𝑃𝑒𝑥𝑐𝑒𝑒𝑑 =  1 − 𝑒−𝑁      (2-1) 

Where 𝑃𝑒𝑥𝑐𝑒𝑒𝑑 is the probability of exceedance and 𝑁 is the frequency of exceedance.  

2.2. STATIONARY EXTREME VALUE ANALYSIS 

Extreme Value Theory (EVT) is applied to model the stochastic behavior of extremes 
through an EVA so that extreme discharges can be estimated. While long synthetic time 
series generated from RACMO provide more information about the statistical behavior of 
extremes there is still some uncertainty for events with higher RPs. Events with higher RPs 
occur less frequently, so there are larger differences in the empirical distribution function for 
these events. Therefore, although more extremes are available it is still necessary to perform 
an EVA.  
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Application of EVT requires two main assumptions: events are independent and identically 
distributed (i.i.d.) and there are a large enough number of events each year so that the 
distribution of the extremes is asymptotic (Marra et al., 2019).  

EVA refers to the process of modelling events that deviate from the median of a probability 
distribution, e.g., fitting a distribution to either the AM or values above a specified threshold. 
The two methods, Block Maxima and Peak over Threshold, are described in Section 2.2.1 
and Section 2.2.2. 

2.2.1. BLOCK MAXIMA 

The block maxima approach involves dividing the time series into blocks, usually years, and 
taking the maximum value within each block. An advantage to taking the AM is that the 
extremes that are extracted will be independent from one another. According to the Fisher-
Tippet-Gnedenko theorem, the maximum values of a sample of independent random values 
should converge to the Gumbel, Fréchet, or reverse Weibull distribution. These three 
distributions were combined to become the Generalized Extreme Value (GEV) distribution 
shown below (Nerantzaki & Papalexiou, 2022).  

 
𝐹(𝑥) = exp(−(1 + 𝛾 (

𝑥 − 𝛼
𝛽

))
−1 𝛾⁄

) 

 1 +
𝛾(𝑥 − 𝛼)

𝛽
≥ 0 𝑎𝑛𝑑 𝛾 ≠ 0     

γ < 0 
Reverse Weibull 
(Type III) “light-

tailed” 
(2-2) 

 γ = 0 Gumbel (Type I)  

γ > 0 
Fréchet (Type 
II), “heavy-

tailed” 
 

Where: α, β, γ are the location, scale, and shape parameters, respectively. 

The location parameter describes the position of the distribution along the x-axis and 
influences the up and down movement of the discharge frequency curve. The scale parameter 
describes the spread of the data and influences the slope of the discharge frequency curve. 
The shape parameter distinguishes the tail behavior displayed by the three types of the GEV 
distribution. The tail behavior of a distribution describes how quickly the probabilities 
decrease with increasing extremes. Heavy tail behavior refers to slowly decreasing 
probabilities and indicates that very extreme events occur frequently. While light tailed 
behavior refers to probabilities that decrease quickly indicating that very extreme events are 
not as common. 

When the shape parameter is less than zero, equal to zero, or greater than zero the GEV is 
equivalent to the Weibull, Gumbel, or Fréchet distribution, respectively. The parent 
distribution determines the shape parameter of the resulting GEV distribution. As shown in 
Figure 4, the shape parameter is influenced by the tail of the distribution. Distributions whose 
tails decrease exponentially, such as the normal, exponential, gamma, lognormal, or Weibull 
distribution, lead to a shape parameter of zero. Distributions whose tail exhibit a polynomial 
decay, such as the Pareto or Student-t distribution, result in a positive shape parameter. 
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Distributions with finite tails, such as the uniform or beta distribution, lead to a negative 
shape parameter. 

Sample sizes of AM are usually small, especially due to limited length of observations, 
resulting in return values with large uncertainties. Therefore, an alternative method, peak 
over threshold, is described below. 

 
Figure 4: GEV Distribution Types 

2.2.2. PEAK OVER THRESHOLD 

The peak over threshold (POT) approach involves taking values of observations that exceed a 
certain threshold. According to the Balkema and de Haan and Pickands theorem, as the 
threshold increases, the peaks over the threshold converge to the Generalized Pareto (GP) 
distribution shown below (Nerantzaki & Papalexiou, 2022). 
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(2-3) 

 

Where β and γ are the scale and shape parameters and α corresponds to the threshold, xp. 

Similar to GEV, the GP distribution has a type I, type II, or type III tail if the shape parameter 
is equal to zero, greater than zero, or less than zero, respectively. For a shape parameter equal 
to zero, GP is the exponential distribution. For a positive shape parameter, it is the Pareto 
distribution and for a negative shape parameter it is a special case of the beta distribution.  

In order to apply the Balkema and de Haan and Pickands theorem, the data should be i.i.d as 
required by EVT, and the threshold should be optimized for convergence to the GP 
distribution. Hydrological time series are typically not i.i.d due to strong temporal 
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autocorrelation; hydrological processes are dependent on past conditions. Application of POT 
could lead to dependent data, therefore before applying EVT, declustering is required to 
ensure the peaks obtained from in the time series are independent.  

Threshold Selection 
Selection of a threshold should be carefully considered in a POT analysis because the choice 
of a threshold can have a strong impact on EVA results. High thresholds will result in less 
peaks and a large uncertainty while thresholds that are too low will result in a sample that is 
poorly modelled by the GP distribution.  

According to threshold stability property of the GP distribution, if GP is valid for excesses 
over a threshold u0, then it is valid for excesses over thresholds u > u0. The expected value of 
threshold excesses given that they are greater than the threshold can be calculated using the 
following equation (Coles, 2001): 

𝐸[𝑋 − 𝑢|𝑋 > 𝑢] =  
𝜎𝑢0 + 𝜉𝑢
1 −  𝜉

 

 
(2-4) 

Where 𝜎𝑢0 is the scale parameter for excesses over the threshold u0 and 𝜉 is the shape 
parameter.  

From this equation it is clear that for thresholds u > u0, the mean of excesses of the threshold 
u, 𝐸[𝑋 − 𝑢|𝑋 > 𝑢], is a linear function of u. A Mean Residual Life Plot (MRLP) can be 
created by plotting the mean threshold excess against u. To determine a sufficiently high 
threshold for modelling GP, the MRLP can be used to select the lowest threshold where the 
graph is linear with increasing thresholds. The linear portion describes a valid range for 
thresholds because there will be higher variance and uncertainty for thresholds that are too 
high and have few exceedances and for thresholds that are too low such that the sample is 
poorly modelled. A slope of zero where the MRLP plot is linear indicates the extremes 
closely follow an exponential tail (El Adlouni et al., 2008).  

2.3. PARAMETER ESTIMATION METHODS 

One difficulty of applying statistical distributions is accurately estimating the unknown 
parameters. There are several methods to fit a parametric distribution to data. Method of 
Moments (MoM) and Maximum Likelihood Estimation (MLE) are among the most widely 
known and used methods for estimating parameters of Gumbel (Aydin & Şenoğlu, 2015a). 
Extreme discharges at Borgharen, where the Meuse enters the Netherlands, are closely 
modelled by Gumbel. Additionally, MoM and MLE are the two available methods used in the 
Scipy Stats Python package used to fit distribution parameters (Virtanen et al., 2020). 
Therefore, to evaluate the influence of parameter estimation methods, AM modelled 
discharge is fit to Gumbel using MoM and MLE. 

2.3.1. MAXIMUM LIKELIHOOD ESTIMATION 

One common method of estimating distribution parameters is maximum likelihood estimation 
(MLE). The probability density function (PDF) of the parametric distribution, f, to which the 
dataset, T = {ti,…,tn} will be fit has a given parameter set, θ. To fit a dataset to a parametric 



2.4. FORMAL AND INFORMAL TESTS 2-5 

 

distribution the estimated parameters, 𝜃, must be found so that the theoretical distribution 
closely matches the distribution of the observations.  

MLE is a method of finding the estimated parameters 𝜃 by maximizing the likelihood of 
observing the data. The likelihood is the joint probability distribution of a specific probability 
distribution and its parameters. The likelihood function can be used to describe how likely a 
dataset is given the estimated parameters. Assuming observations are independent so that the 
total probability is equal to the product of the marginal probabilities, the likelihood function 
can be written as (Cousineau et al., 2004): 

𝐿(𝜃, 𝑇) =  ∏𝑓(𝑡𝑖|𝜃)
𝑛

𝑖=1

 (2-5) 

2.3.2. METHOD OF MOMENTS 

Method of moments (MoM) is another parameter estimation technique that could be 
advantageous because of its simplicity. MoM estimates parameters by equating sample and 
theoretical moments to obtain the unknown parameters (Hazelton, n.d.).  

The statistical model is defined by a parameter vector, θ = (θ1,…,θp)T, the kth moment about 
zero of a random variable X is, μk = E[Xk], and the moment is a function of θ,  μk = μk(θ). 

For a random sample X1,…,Xn the method of moments estimator 𝜃 can be determined from 
the following equations: 

𝜇(𝜃) =  𝜇̂𝑘                      k = 1,2, …, q (2-6) 

Where q is the smallest integer for which the system has a unique solution. The kth sample 
moment can be calculated as 𝜇̂𝑘 = 𝑛−1 ∑ 𝑋𝑖𝑘𝑛

𝑖=1  

2.4. FORMAL AND INFORMAL TESTS 

Formal and informal tests are commonly used to indicate how well a distribution fits a 
dataset. Formal tests are hypothesis-based tests that apply confidence levels that define the 
probability of rejecting a null hypothesis when it is true. For example, a confidence level of 
0.05 indicates there is a 5 percent chance of incorrectly rejecting a null hypothesis.  The 
Kolmogorov Smirnov test is a formal, hypothesis-based test that is commonly used to 
indicate how well a distribution fits data.  Informal tests refer to tests that are not based on a 
formal hypothesis. Akaike’s information criteria (AIC) is an informal test that is commonly 
used to compare the performance of statistical models. 

2.4.1. FORMAL TESTS 

The goodness-of-fit (GOF) of a distribution to a dataset can be evaluated through various 
methods including the Kolmogorov-Smirnov (KS) test and a quantile-quantile (Q-Q) plot.  

The KS test is a formal test used to assess the GOF by calculating the maximum difference 
between the empirical cumulative distribution and the parametric cumulative distribution.  

The empirical cumulative distribution function (ECDF) needs to be determined to evaluate 
how well an extreme value distribution fits observed data. The ECDF, 𝐹̂(𝑥), is a step 
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function that describes the sample of observations that are less than or equal to a value x 
defined by the following equation (Taboga, 2021). 

 
𝐹𝑛(𝑥) =  

1
𝑛
∑1{𝑥𝑖≤𝑥}
𝑛+1

𝑖=1

 

 
(2-7) 

Where n is the sample size and 1{𝑥𝑖≤𝑥} is equal to 1 if 𝑥𝑖 ≤ 𝑥 and zero if 𝑥𝑖 > 𝑥. 

A graphical representation of the KS test is shown in Figure 5.  If the deviation between the 
two distributions is small, then it is reasonable to assume the data fits the parametric 
distribution. The KS test statistic is calculated using the following equation. 

 𝐷𝑛 = 𝑠𝑢𝑝𝑥|𝐹̂(𝑥) − 𝐹(𝑥)| (2-8) 

Where 𝐹̂(𝑥) is the empicial cumulative distribution and 𝐹(𝑥) is the parametric distribution. 

The null hypothesis of the KS test is that the random variable follows the distribution. If the 
p-value of the KS test is less than the desired confidence level, such as 0.05, the null 
hypothesis is rejected indicating the distribution is not a good fit.  

 
Figure 5: Kolmogorov-Smirnov Test  

Another method for assessing GOF is a Q-Q plot, which is a graphical method. As shown in 
Figure 6, the x-axis contains the quantiles of the observations, and the y-axis contains the 
quantiles predicted by the fitted distribution. If the points lie on a 45-degree line y=x, the two 
distributions have a perfect fit. In the specific case shown in Figure 6, higher quantiles stray 
from the 45-degree line. For higher values, the theoretical quantiles estimated from the 
extreme value distribution are lower than the empirical quantiles indicating that the tail of the 
distribution underestimates high quantiles.  

 
Figure 6: Q-Q Plot  
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2.4.2. INFORMAL TESTS 

Akaike’s information criteria (AIC) is an informal test to compare performance between 
statistical models and is commonly used to select the best distribution. The AIC is defined 
below (Akaike H., 1974): 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿̂) + 
2𝑘2 + 2𝑘
𝑛 − 𝑘 − 1

 
(2-9) 

Where 𝑘 is the number of estimated parameters in the model, 𝐿̂ is the maximized value of the 
likelihood function, and n is the number of selected extremes. 

As shown in the equation, the AIC penalizes distributions that require more parameters that 
need to be estimated. The model with the lowest AIC is determined to be the best fit model.  

Burnham et al. (2011)  state that models with AIC values that have a difference of 2 or less 
are equally good, models with a difference of 5 indicates the model with the lower AIC is 
better, and models with a difference of 10 has strong evidence that the model with the lowest 
AIC is a good fit. 

2.5. TEMPORAL TREND ANALYSIS 

2.5.1. MANN KENDALL TEST 

Prior to performing an EVA, it is necessary to determine whether trends exist in the dataset. 
While parametric techniques assume the data follows a normal distribution, nonparametric 
techniques make no assumption about the underlying distribution. Nonparametric techniques 
are recommended to detect trends in time series because it is typically unknown whether the 
data in a time series is normally distributed or not. In addition, nonparametric techniques are 
less affected by missing data points compared to parametric techniques (Kamal et al., 2018). 
The Mann-Kendall (MK) test is a widely used nonparametric, hypothesis-based test to 
determine if there is a monotonic trend in a time series. The MK test can be used to evaluate 
if there is a trend in extreme discharges. MK’s test statistic, S, describes the number of times 
the variable of interest in a time series, mt, increases by calculating the number of times 𝑚𝑡2 
is greater than 𝑚𝑡1, minus the number of times 𝑚𝑡1 is greater than  𝑚𝑡2. A positive value 
indicates the time series increases more than it decreases (Kendall M.G., 1955; Mann, 1945). 

𝑆 =  ∑ ∑ 𝑠𝑔𝑛(𝑚𝑡2 − 𝑚𝑡1)
𝑇

𝑡2= 𝑡1+1

𝑇−1

𝑡1=1

 
(2-10) 

Where mt represents the variable of interest (extreme discharge), 𝑠𝑔𝑛 ( ) indicates the sign of 
(𝑚𝑡2 − 𝑚𝑡1), t= 1,…,T. 

For datasets with more than 10 observations the MK’s test statistic is normalized by 
calculating a Z score. The value of Z indicates an increasing trend if the value is positive and 
a decreasing trend if the value is negative. The Z value can be determined using the following 
formula (Kamal et al., 2018). 
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𝑍 =  

{
 
 

 
 

𝑆−1
√𝑣𝑎𝑟(𝑠)

     𝑖𝑓 𝑆 > 0

0                   𝑖𝑓 𝑆 = 0
𝑆+1

√𝑣𝑎𝑟(𝑠)
    𝑖𝑓 𝑆 < 0

     (2-11) 

The null hypothesis of the MK test is that there is no trend in the data and the alternative 
hypothesis is that there is a trend. The MK test assumes that under the null hypothesis the 
data are independently distributed in time. The null hypothesis is rejected if the specified 
significance level, α, is greater than the p-value.  

The significance level is the probability of incorrectly rejecting a true null hypothesis. For 
example, a significance level of 0.10 indicates there is a 10 percent chance of incorrectly 
rejecting a true null hypothesis. For the MK test this means there is a 10 percent chance of 
concluding there is a trend in the data when there is not. In other words, there is a 90 percent 
confidence level that there is a trend if one is identified.  

A two-tailed test is used such that the relationship is tested in both directions, both increasing 
and decreasing trends are considered. For a two-tailed test the p-value corresponding to a Z 
score can be determined using the following formula: p-value=2*(1-Area to left of Z-score) 
where the area to the left of a Z-score can be found using the standardized Z-tables, or 
standard normal tables. 

In the example provided in Figure 7, the standard normal tables are used to determine the 
area to the left of the Z-score table as 0.9032. Since the total area under the curve is 1, the 
area to the right is 1-0.9032=0.0968 or 9.68% of the area under the curve. For a two-tailed 
test the area of rejection is equal to 9.68% of the area under the upper tail and 9.68% of the 
area under the lower tail as shown in Figure 7. This results in a p-value of 2*(0.9032) 
=0.1936. The null hypothesis is rejected if the alpha value exceeds this p-value. 

 
Figure 7: Example of two-tailed test, not drawn to scale. 

When performing the MK test, it is important to consider the record length because the test 
results in higher accuracy for longer time series.  

2.5.2. SEN’S SLOPE ESTIMATOR 

While the MK test determines whether or not a trend exists in the AM of a time series, Sen’s 
slope estimator can be used to determine the magnitude of that trend (Sen, 1968). Sen’s slope 
estimator is a more robust method in determining the magnitude of a trend compared to linear 
regression because it is less affected by outliers and errors in data. The slope is determined 
using the following equation (Sen, 1968).  
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𝑄𝑖 =
𝑥𝑗−𝑥𝑖
𝑗−𝑖

, 𝑖 = 1, 2, … ,𝑁       (2-12) 

Where xj and xi are values at time j and i (j>i). For n values of xi in a time series, there will be 
N = n(n-1)/2 slope estimates.  

2.6. NONSTATIONARY EXTREME VALUE ANALYSIS 

A time series is stationary if it does not exhibit trends, shifts, or cyclicity and the statistical 
parameters are constant in time. While stationary time series contains statistical parameters 
that are constant in time, the statistical parameters of a nonstationary time series vary in time 
(Mudersbach & Jensen, 2010). The change in extremes can be modelled using other 
covariates such as land use and temperature or be modelled linearly, quadratically, or 
exponentially. However, increasing the number of parameters that need to be estimated 
increases model complexity and the uncertainty of the estimates. The three nonstationary 
methods that are studied in this thesis include the Nonstationary Linear Model, Approximated 
Stationary Model, and the Updated Stationary Model. 

2.6.1. NONSTATIONARY (NS) LINEAR MODEL 

In this thesis, Gumbel is used to compare the predictive capabilities of the various 
nonstationary statistical methods because the behavior of extremes at Borgharen is closely 
modelled by Gumbel. The nonstationary form of Gumbel with time varying parameters is 
shown below.  

𝐹 (𝑥) =  𝑒−𝑒−(𝑥−𝛼(𝑡))/𝛽(𝑡)         (2-13) 

Where, 𝛼(𝑡) is time varying Gumbel location parameter at time 𝑡, 𝛽(𝑡) is the time varying 
Gumbel scale parameter. 

In this thesis a Nonstationary Linear (NS) Model is used assuming the change in distribution 
parameters can be modelled as a linear function in time as shown in the equations below.  

𝛼(𝑡) =  𝛼0 + 𝛼1𝑡          (2-14) 

𝛽(𝑡) =  𝛽0 + 𝛽1𝑡      (2-15) 

Where, 𝛼(𝑡) is the Gumbel location parameter at time 𝑡, 𝛽(𝑡) is the Gumbel scale parameter 
at time 𝑡, and 𝛼0, 𝛼1, 𝛽0, and 𝛽1 are the slope and intercept of the Gumbel parameters 
estimated from observations. 

For this research, a sliding window length of 30 years is chosen, which covers approximately 
one climate period, so that the data within the window may be considered stationary 
(Mudersbach & Jensen, 2010). Therefore, the NS linear model used in this assumes that data 
within each 30-year window is stationary. An overview of the linear NS model adopted from 
Mudersbach and Jensen is provided in Figure 8 (Mudersbach & Jensen, 2010).  
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Figure 8: Overview of the Linear NS Model for the Gumbel Distribution (First Year and Last Year refer to the first 

and last year in the record or the first and last year in the fitting period of the distribution parameters) – 
Methodology adopted from (Mudersbach & Jensen, 2010) 

2.6.2. APPROXIMATED STATIONARY (aST) MODEL 

If it is uncertain whether observed trends will persist, approximated stationary models may be 
preferred over NS models. In the approximated stationary approach, the median Gumbel 
parameters within the fitting period are used to approximate the return levels for the 
evaluation period under the assumption of stationarity. Therefore, this approach assumes that 
the median return value of the linear trend within the fitting period can be used to obtain 
return values under stationary conditions (Luke et al., 2017). An illustration of the aST model 
is shown in blue in Figure 9. 

2.6.3. UPDATED STATIONARY (uST) MODEL 

Luke et. al. (2017) found that updated stationary models may be preferred over aST and NS 
models if discharges within the fitting period are impacted by physical changes in the 
watershed or if persistence of a trend is uncertain. The updated stationary model uses Gumbel 
parameters estimated by the NS model at the end of the fitting period to obtain return values 
under stationary conditions. An example of the uST model is shown in yellow in Figure 9. 
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Figure 9: Nonstationary Modelling Techniques 

2.7. COMBINING PARTITIONED EVA  

Palutikof et al. (1999) describe seasonality as the seasonal variation in underlying 
meteorological drivers of extremes. Partitioning data can be useful when incorporating 
seasonality in an EVA and can result in more accurate estimates because separating the data 
results in simpler datasets with less meteorological drivers. For example, extremes from 
different seasons can be driven by different meteorological mechanisms and belong to 
different populations. Therefore, splitting the analysis between two seasons allows the two 
populations to be first treated individually. In this research project, the impact of seasonality 
is studied by splitting each year into summer and winter months and obtaining summer and 
winter maxima; two maxima are selected for each year. The combined distribution of summer 
and winter events can be determined using the following equation (Dullaart et al., 2021). 

𝑅𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =  
1 

1
𝑅𝑃𝑠𝑢𝑚𝑚𝑒𝑟

+ 1
 𝑅𝑃𝑤𝑖𝑛𝑡𝑒𝑟

 
    (2-16) 

Where RP is the combined return period, RPsummer is the return period of summer events, and 
RPwinter is the return period of winter events. 

When using this methodology to combine partitioned analyses it is important to distinguish 
between the frequency of exceedance and the probability of exceedance discussed in Section 
2.1. For less extreme events, the RP and RP of annual extremes will differ. A RP less than 1 
will result in a frequency greater than 1, indicating the event may occur on average more than 
once per year. However, the RP of annual maxima does not go below 1 and results in a 
probability of exceedance between 0 and 1.       
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3. CASE STUDY 

3.1. THE MEUSE RIVER 

The Meuse basin covers approximately 34,550 km2 in France, Belgium, Germany, 
Luxembourg, and the Netherlands. It has a mean annual discharge of approximately 10 
km3/year (Descy et al., 2022). The river extends 874 kilometers from the source in France 
(Berger, 1992).  

The catchment is split into two regions as shown in Figure 10. Ardennes covers a steeper, 
rocky region of the Meuse within Belgium between Chooz, France and Borgharen, 
Netherlands. Lorraine covers the broad and gently sloping river valley upstream of Chooz, 
France. It consists of more porous soils which allows for more infiltration. Therefore, 
Lorraine has a much slower response to rainfall compared to Ardennes. As a result, rainfall 
events typically lead to two distinct peaks in discharge: the first from the runoff produced in 
the Ardennes and the second from the slow response of Lorraine.  

 
Figure 10: Meuse Catchment  

The main tributaries of the Meuse are Chiers, Viroin, Semois, Lesse, Sambre, Ourthe, Roer, 
Niers, and Dieze. The longitudinal profile of the main tributaries is shown in Figure 11. The 
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Ourthe, Vesdre, and Ambleve have very steep slopes and the Belgian Meuse is also relatively 
steep. As shown in Figure 12, the Ardennes, shown in the middle of the figure, is at a much 
higher elevation than the rest of the catchment resulting in higher annual precipitation. High 
precipitation and the impermeability of the soil results in a high flood wave contributed by 
the Ardennes region of the Meuse (Berger, 1992).    

 
Figure 11: Longitudinal Profile of the Meuse (Berger, 1992) 

 
Figure 12: Meuse Elevation Map  

3.1.1. LAND USE 

The land use of the Meuse basin is shown in Table 1. Out of the 34,550 km2 of the Meuse 
basin, the major uses are arable, forest, and pasture which account for 38.7, 28.7, and 18.1 
percent of the total area.  
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Table 1: Land Use of the Meuse River Basin (Descy et al., 2022) 
Land Use Category Percentage of Catchment 
Urban 11.4 
Arable 38.7 
Pasture 18.1 
Forest 28.7 
Natural Grassland 1.7 
Sparse Vegetation 0.1 
Wetland 0.4 
Freshwater Bodies 0.9 
Protected Area 0.2 

3.2. DATA 

RACMO provides synthetic precipitation and temperature data that are input into the 
hydrologic model. The hydrologic model provides the discharge time series that is used to 
obtain extreme value discharges used in the EVA.  

In this study, up to 55 years of hourly discharge observations collected from 192 stations 
throughout the Meuse are available. In addition, 65 years for each of the 16 members, which 
represent 16 plausible initial climate conditions, result in 1,040 years of daily synthetic 
discharge. Average daily discharge is obtained so that observed and modelled results can be 
compared. Reported discharge obtained from the two-parameter lognormal distribution for 
the 50-, 100-, and 1000-year RP, provided by Service Public de Wallonie (SPW), is also 
available for comparison. 

Hourly rainfall data is available at 68 locations throughout the Meuse with the earliest record 
on January 1, 1983, and the latest record on December 31, 2021.  

3.2.1. DATA CURATION 

Before determining the locations of interest for this study, careful data curation was 
performed to remove discharge stations with short records or those heavily impacted by 
humans such as canals or stations just upstream or downstream of hydraulic structures. 
Stations with a minimum record length of 20 years are chosen to maximize the number of 
stations included while excluding stations with short records. As shown in Figure 13, 140 out 
of the 192 stations in the Meuse have record lengths longer than 20 years. A summary of the 
justifications for discharge stations removed from this study is provided in Table 16. Further 
details are provided in Appendix B.  
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Figure 13 : Histogram of Number of Years Available at all Stations 

Table 2: Summary of Stations (with more than 20 years) Removed from Study 
Station ID Reason for Removing 

5771 Irregular flow pattern, Located along canal 
7132 Flow influenced by nearby hydraulic structure 
7831 Flow influenced by nearby hydraulic structure 
8017 Flow influenced by nearby hydraulic structure 
8022 Flow influenced by nearby hydraulic structure 
9214 Flow influenced by nearby hydraulic structure 
6220 Irregular flow pattern  
6340 Irregular flow pattern  
6440 Irregular flow pattern  
5820 Change in base flow 

Out of the remaining stations, three did not include information regarding the upstream 
subcatchment area. The Digital Elevation Model (DEM) for the Meuse was exported as a 
raster from the wflow model and the subcatchment area was calculated in Quantum 
Geographic Information Software (QGIS). The DEM was converted from a geographic 
coordinate system to a projected coordinate system, UTM zone 32N, with units of meters. 
The resulting area for each of these stations is included in Table 3. Although these stations 
are not the stations of interest that will be introduced in Section 3.3, obtaining the area is 
necessary to calculate the normalized Sen’s slope which will be calculated at stations in the 
Meuse with more than 20 years of observations and a trend in AM observed discharge. 

Table 3: Subcatchment Areas 
Station ID Subcatchment Area  

5451 20,530 km2 

5904 2,760 km2 
5436 20,720 km2 

3.3. LOCATIONS OF INTEREST 

Stations 5921, 8221, 6228, and 6621 are outlets of major tributaries in the Ardennes and are 
of interest to the Belgian authorities because if it rains in these catchments water will quickly 
reach the Netherlands; some of these stations were strongly impacted by the July 2021 flood. 
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In addition to these four stations, stations 6850 and 8702 with the highest increasing and 
decreasing trends in observed AM discharge, respectively, will also be analyzed. The stations 
of interest are shown in Figure 10. 

Table 4: Stations of Interest 

ID River Name Subcatchment 
Area 

Observed Record 
Length 

5921 Ourthe Moyenne Tabreux 1610 km2 54 
8221 Lesse Gendron 1290 km2 55 
6228 Vesdre Chaudfontaine 680 km2 56 
6621 Ambleve Martinrive 1070 km2 49 
6850 Ruisseau de Laval Sprimont 70 km2 20 
8702 Haute Meuse Chooz 10,120 km2 38 

 

 





 

 4-1
  

4. NONSTATIONARITY OF OBSERVED 
DISCHARGE 
Currently, the meteorological time series generated from RACMO is bias corrected so the 
time series input into the hydrological model is stationary. No land use changes are modelled 
in the hydrological model; therefore, the generated modelled discharges are stationary. 
However, rainfall intensities and extreme river discharges are expected to increase in 
Northern Europe as a result of climate change (Diermanse et al., 2010). In addition, Milly et 
al. (2008) argue that as a result of changing climate and land use, the use of time-invariant 
probability distributions should not be the default assumption when estimating flood risk.     

However, application of NS methods should not be solely based on results of statistical trend 
tests applied to relatively short historical records. Serinaldi et al. (2018) state that the results 
of these statistical tests should be interpreted carefully and should not be solely relied on to 
infer the persistence of nonstationarity.  Instead, they emphasize the importance of studying 
the underlying physical mechanisms before applying NS methods. Even if a trend is 
identified there is still uncertainty on whether it will persist and how it will persist. For 
example, if an identified trend is indeed present it is still uncertain whether it will continue 
linearly, exponentially, or continue at all!   

In this chapter the following research questions are addressed: 

• How much impact can a very extreme event, such as what occurred in July 2021 in 
central Europe, have on the statistics of extreme discharge? 

• To what extent do nonstationary statistical methods impact discharge estimates when 
a trend in observed discharge is identified? 

• How does the confidence of discharges estimated from various simulations of the 
current climate compare to the confidence of estimates from a nonstationary extreme 
value analysis? 

Before performing an EVA on observed discharge, it is necessary to identify whether 
nonstationarity is present. Therefore, trends in AM observed discharge and corresponding 
rainfall events are identified and estimated in Section 4.1. In Section 4.2, the change in return 
values estimated from observed discharge is evaluated to study how much statistics have 
changed in the last eight years. The predictive capabilities of the aST, uST, and NS models 
are compared in Section 4.3. Lastly, in Section 4.4, results of a stationary EVA and NEVA on 
observed discharge are compared to results of stationary EVA on 16 synthetic time series 
with the same length as observations. 

4.1. TRENDS IN ANNUAL MAXIMA DISCHARGE AND 
RAINFALL 

As previously mentioned, modelled discharge is stationary, however, before performing an 
EVA on observations, it is necessary to test the data for nonstationarity. A time series is 
considered nonstationary if it contains trends, shifts, or cyclicity. In this section the MK test 
is used to identify trends in AM discharge and corresponding rainfall events. 
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4.1.1. DATA AND METHODOLOGY  

The MK test, introduced in Section 2.5.1, is a hypothesis-based test that will be used to 
identify trends in AM discharge throughout the Meuse and determine with what confidence 
there is a trend. Sen’s slope is calculated to estimate the magnitude of observed trends. To 
compare the magnitude of trends across the Meuse, Sen’s slope is calculated after 
normalizing the discharge by dividing by the subcatchment area and is converted to mm/day; 
in this report this is referred to as the normalized Sen’s slope. 

To determine if observed trends in AM discharge result from trends in rainfall, the MK test is 
used to identify trends in 1-day, 3-day, and 5-day cumulative rainfall for subcatchments 
upstream of stations with trends in AM discharge. Thiessen polygons are used to obtain the 
weighted average rainfall for each subcatchment. To ensure the rainfall contributing to 
extreme discharge is obtained, the maximum rainfall between the day corresponding to the 
AM discharge and the day prior to the AM discharge is selected. A summary of the 
methodology used to identify statistically significant trends in observed AM discharge and 
corresponding rainfall events is provided in Figure 14. 

 
Figure 14: Trends in AM Discharge and Corresponding Rainfall Events Methodology 

4.1.2. RESULTS  

4.1.2.1. TREND IN ANNUAL MAXIMUM OBSERVED DISCHARGE 

Results are presented in Figure 15. Stations with increasing trends are shown in blue and 
stations with decreasing trends are shown in red. A larger symbol indicates a larger 
normalized Sen’s slope, larger trend in AM discharge, and a darker shade indicates increasing 
confidence in the identified trend.  
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Figure 15: Trend in AM Observed Discharge (The shade of the symbol indicates the confidence of the trend 

determined from the Mann Kendall test, the size of the symbol indicates the magnitude of the trend determined by 
the Normalized Sen’s Slope) 

MK indicated with 90 percent confidence that 9 of the 130 stations exhibited a trend in AM 
discharge. As shown in Figure 15, more stations exhibit increasing trends than decreasing 
trends which can be attributed to effects of climate and land use change.  Decreasing trends in 
AM discharge may be due to flood control measures, climate change, or long-term water 
storage (Slater et al., 2021). 

MK and Sen’s slope results for observed discharge are included in Appendix B.1. The time 
series with the largest increasing and largest decreasing trend in AM discharge are shown in 
Figure 16 and Figure 17, respectively. Due to the several data gaps at the beginning of the 
historical record at Station 8702, normalized Sen’s slope is also calculated from data after the 
last data gap in 1990. 

 
Figure 16: Station with Largest Increasing Trend in AM Discharge 
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Figure 17: Station with Largest Decreasing Trend in AM Discharge 

4.1.2.2. TRENDS IN OBSERVED RAINFALL 

To evaluate whether trends in AM discharges result from increase in precipitation due to 
climate change, MK is used to identify possible trends in observed rainfall.  

As a preliminary analysis, AM 1-day rainfall at each rain gauge is studied. As shown in 
Figure 18, the most common season for AM discharges and AM rainfall within the Meuse do 
not correspond. Most AM discharges occur in the winter while most AM 1-day rainfall 
events occur in the summer. Therefore, rainfall corresponding to the same day as AM 
observed discharges will be selected to analyze trends in observed rainfall. To ensure rainfall 
contributing to extreme discharge is obtained, maximum rainfall between the day 
corresponding to the AM discharge and the day prior will be compared and the highest value 
will be selected for this analysis.  

 
Figure 18: Most Common Season for AM Discharge and AM 1-day Cumulative Rainfall at all Stations 
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Weighted average rainfall for subcatchments upstream of stations with trends in AM 
discharge is obtained using Thiessen polygons. Thiessen polygons are created for each 
timestep so that the weighted average only includes rain gauges with data available for that 
timestep. An example of a Thiessen polygon produced for one timestep is shown in Figure 
19. After obtaining the rainfall for the Thiessen polygons the weighted average rainfall is 
obtained for each subcatchment upstream of stations with trends in AM discharge.  

 
Figure 19: Example of Thiessen Polygon for One Timestep 

Te Booij (2022) performed trend analysis on 1-day, 3-day, and 5-day rainfall within the 
Meuse, therefore, it was decided to use the same rainfall durations and put more emphasis on 
results depending on the sizes of the upstream subcatchments. The hydrologic response in 
small subcatchments is shorter and more impacted by short duration rainfall events, while the 
response in large subcatchments is longer and more impacted by long duration rainfall events. 
Therefore, 1-day rainfall is emphasized for small subcatchments (less than 500 km2), 3-day 
rainfall is emphasized for medium sized subcatchments (between 500 km2 and 2,000 km2), 
and 5-day rainfall is emphasized for large subcatchments (larger than 2,000 km2).   

A summary of MK results for AM discharge and corresponding rainfall events is provided in 
Table 5. Results are sorted by catchment size with the station with the largest subcatchment 
area at the top. An emphasis on rainfall trend results for the various rainfall durations based 
on subcatchment size, as previously described, is shown in bold.  

From Table 5, it can be seen that not all stations with trends in AM discharge have 
statistically significant trends in corresponding rainfall events at the evaluated confidence 
levels. However, this does not mean that trends do not exist but that they could not be 
verified at the specified confidence levels with available observations. Overall, the direction 
of statistically significant trends, increasing versus decreasing, for observed rainfall and 
discharge correspond which indicates that rainfall likely contributes to trends in discharge at 
those stations. It should also be emphasized that the smallest rainfall duration considered in 
this analysis was 1-day rainfall which may be too long of a duration for subcatchments with 
very small areas. If a smaller rainfall duration was applied for stations with smaller 
subcatchment areas, more statistically significant trends may have been found.  
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Table 5: Trends in AM Discharge and Corresponding Rainfall Events 

 

4.2. OBSERVED CHANGES IN RIVER DISCHARGE SINCE 2015 

4.2.1. DATA AND METHODOLOGY  

As previously mentioned, the stochastic weather generator used in GRADE is limited to 
resampling from observations and is, therefore, not capable of producing daily rainfall 
exceeding the range of historical data. However, since the implementation of GRADE in 
2015, events like what occurred in July 2021 add additional information about the statistics of 
extreme discharges. To evaluate the change in estimated discharges since 2015, observed AM 
are fit to Gumbel using MLE for data up until 2015 through 2022. Therefore, eight sets of 
AM are fit to Gumbel for data through 2015, 2016, 2017, 2018, 2019, 2020, 2021, and 2022 
at each station. 

In addition, the change in GEV estimates is studied to emphasize how estimates differ 
between extreme value models. Station 6228 is chosen since it was the station of interest 
most impacted by the July 2021 event. This is a very extreme case; therefore, Station 8221 is 
selected for comparison.  
 
The methodology for this analysis is summarized in Figure 20. 

 
Figure 20: Observed Changes in River Discharge Since 2015 

4.2.2. RESULTS  

Observed changes in Gumbel estimates for Station 5921 are presented in Figure 21; results 
for all stations of interest are included in Appendix B.1. The eight sets of AM fit to Gumbel 
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and corresponding AM are shown on the left side of Figure 21. For example, the curve using 
data until 2015 and the 2015 AM are shown in the lightest blue and the curve using data until 
2022 and the 2022 AM are shown in the darkest blue. The 2021 event is shown in red.  

The change in the 10-year RP from 2015 to 2022 is shown on the right side of Figure 21. The 
confidence interval shown in blue is created by only resampling values before 2020 and the 
confidence interval shown in red is created by resampling data until 2022. This is done to 
highlight the impact the July 2021 event had on the confidence of estimates.  

 
Figure 21: Observed Changes in Gumbel Estimates Since 2015 - Station 5921 

GEV curves for Stations 6228 and 8221 are presented on the left and right of Figure 22, 
respectively.  

 
Figure 22: Discharge Frequency Curve for GEV (Left: Station 6228, Right: Station 8221) 

A summary of the impact the 2021 event had at each station is presented in Table 6. The ratio 
of the 100-year discharge estimated by fitting Gumbel and GEV before and after the 2021 
event, Q100, post2021/Q100, pre2021 are shown to highlight the impact this extreme event had on 
estimated discharges. Additionally, the last column of this table presents the ratio between the 
magnitude of the 2021 event and the previously recorded highest AM discharge. The 2021 
event exceeded all previously recorded AM at all stations except Station 8702. 
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Table 6: Impact of 2021 Event at Stations of Interest 

Station Record 
Length 

Gumbel 
Q100, post2021/Q100, pre2021 

GEV 
 Q100, post2021/Q100, pre2021 

2021 Event was XX times 
higher than previously 
recorded highest AM 

5921 54 1.05 1.13 1.2 
8221 55 1.07 1.20 1.4 
6228 56 1.08 1.20 2.2 
6621 49 1.08 1.22 1.4 
6850 20 1.10 1.35 1.3 

8702 1 38 0.99 0.99 -- 

Note:   
   

1. 2021 Event did not exceed the previously recorded highest annual maximum discharge. 

There are three main findings from these results: 

• Short historical records make it difficult to obtain reliable estimates of discharges.  
• Selection of the extreme value model impacts estimated discharges and RPs. This 

concept will be further explored in Section 5.1. 
• Addition of one extreme event can significantly impact estimated discharges obtained 

from observations. 

First, results illustrate that estimated quantiles vary year to year due to limited historical data. 
This is seen by the change in discharge frequency curves fit using data until 2015 through 
2022 at each station. Additionally, as shown in Table 6, the ratio between estimated 100-year 
discharges before and after the 2021 event tends to increase when less data is available. For 
example, Station 6850 has the shortest record length, 20 years, and has the largest ratios 
between estimated 100-year discharges before and after the 2021 event indicating there is a 
larger difference between Q100, post2021 and Q100, pre2021. This highlights the difficulty of 
obtaining robust estimates from limited historical records. However, many other factors, 
other than record length, impact these ratios including various modelling assumptions and the 
magnitude of the 2021 event relative to historical AM.  

Second, comparison between the RP corresponding to the 2021 event for Gumbel and GEV 
demonstrate the extreme value model can significantly impact RPs. As mentioned in Figure 
22, the RP corresponding to the 2021 event estimated fitting data until the end of 2021 to 
GEV are 726 years and 138 years at stations 6228 and 8221, respectively. When fit to 
Gumbel the RPs are 9,232 years and 2,683 years at stations 6228 and 8221, respectively. The 
estimated RPs using Gumbel are 13 and 19 times as large as those estimated using GEV. This 
demonstrates how difficult it can be to estimate very extreme events and how different 
models can result in significantly different results. The impact of various extreme value 
models is further explored in Section 5.1.  

Third, adding one very extreme event, like what occurred in 2021, can have a very large 
impact on estimated discharges.  The ratio of the estimated 100-year discharges before and 
after the 2021 event indicate the 100-year Gumbel (GEV) estimated discharges increased 
between factors of 1.05 and 1.10 (1.13 and 1.35) at the five stations of interest heavily 
impacted by the July 2021 event. While the addition of the 2021 event impacted discharges 
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estimated from both Gumbel and GEV, the ratio of GEV estimates is likely higher due to the 
flexibility provided by the GEV shape parameter.  

The impact the July 2021 event had on GEV estimates is also illustrated in Figure 22. At 
Station 6228 the GEV tail behavior changed from a GEV type III exhibiting a light tail 
behavior prior to the 2021 event to a GEV type II exhibiting heavy tail behavior after the 
2021 event. From Table 6 it can be seen that the magnitude of the July 2021 event exceeded 
the previously recorded highest AM by a factor of 2.2 making it a particularly unique event at 
this station. This could suggest that the July 2021 event may come from a separate 
distribution of rare, extreme events (Ludwig et al., 2023).  

As mentioned at the bottom of Figure 22, at Station 6228 the 2021 event had a RP of 726 
years and 108 years when including and excluding the 2021 event, respectively. RP of 108 
years seems unrealistic since removing only the highest AM, the July 2021 event, would 
result in RP over 1.385 (108 years/726 years) times lower than if it were included.  

Station 8221 was also heavily impacted by the July 2021 event with a magnitude of 1.4 times 
the previously recorded highest AM. However, as shown in Figure 22 this event did not 
impact the limiting type of the GEV distribution. All curves exhibit heavy tailed behavior. 
When the 2021 event was excluded from the analysis, the RP of this event was estimated to 
be over 2.7 (372 years/138 years) times as high as when it was included. 

4.3. COMPARISON OF PREDICTIVE CAPABILITY OF NEVA 
METHODS 

Sections 4.1 and 4.2 identified trends in observed AM discharge and demonstrated the 
vulnerability of applying EVA to short historical records with rare events. While many 
authors, including Milly et al. (2008), argue that stationarity should not be the default 
assumption when estimating flood risk due to the changing climate, results of statistical trend 
tests on short historical records should be interpreted carefully and not be solely relied on to 
infer the persistence of nonstationarity. Therefore, in this section, predictive capabilities of 
the nonstationary linear (NS), approximated stationary (aST), and updated stationary (uST) 
models are compared to evaluate their performance in estimating discharges from observed 
data. 

4.3.1. DATA AND METHODOLOGY 

Before comparing the predictive capabilities of the nonstationary models, the evolution of 
estimated parameters and discharges are studied using the NS linear model. This approach 
assumes the change in distribution parameters can be modelled as a linear function in time 
using the equations introduced in Section 2.6.1. Gumbel is used for this analysis because 
extreme discharge at Borgharen, where the Meuse enters the Netherlands, is closely modelled 
by Gumbel. Gumbel parameters are estimated from observations using MLE with sliding 
windows. A sliding window length of 30 years is chosen, which covers approximately one 
climate period, so that the data within each window can be considered stationary 
(Mudersbach & Jensen, 2010). Therefore, it is assumed that data within each 30-year window 
is stationary. Stations with a trend in AM discharge and at least 45 years of observed data are 
considered for this analysis such that the evolution of distribution parameters and estimated 
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return levels can be studied over a sufficient period. Out of the nine stations with a trend, four 
stations have at least 45 years of observed discharge and are considered for this analysis.  

Station 8221 is chosen to evaluate the predictive capabilities of the nonstationary models 
described in Section 2.6 because it has the longest historical record of the stations with trends 
in observed AM discharge with data available from 1968 through 2021. To evaluate the 
predictive capabilities of each NS method only data up until 2009 are used to fit the Gumbel 
parameters of the linear NS model using a moving window of 30 years. This will result in 25 
estimates of parameters and return levels for Station 8221. The period from 1968 through 
2009 will be referred to as the fitting period and the period from 2009 through 2021 will be 
referred to as the evaluation period.  

A summary of the methodology used to this analysis is presented in Figure 23. 

 
Figure 23: Methodology to Evaluate Predictive Capability of Nonstationary Methods 

4.3.2. RESULTS  

Gumbel parameters and return levels estimated using the linear model for Station 8221, Lesse 
at Gendron, are presented in Figure 24 and Figure 25. Results for the other three stations are 
included in Appendix B.3. There are 55 years of observations available at Station 8221, 
therefore, using a sliding window of 30 years results in 25 estimates of the Gumbel 
parameters and discharges, shown in black. A linear trendline is fit to the estimated 
parameters and return levels and is show in red. The dotted black lines indicate the 95 percent 
confidence interval of the first estimate; for Station 8221 this includes the 30 years from the 
beginning of observations in 1968 until 1997. The confidence interval is created by 
resampling the observed annual maxima between 1968 and 1997 100 times and calculating 
the 2.5th and 97.5th percentile of the estimates. For simplicity, when describing results 
obtained using the sliding windows the last year of the sliding window is mentioned when 
discussing results. For example, when discussing results obtained using the sliding window 
from 1968 until 1997, ‘estimate in 1997’ is mentioned. 
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Figure 24: Evolution of Gumbel Parameters - Station 8221 using 30-year Sliding Window 

 
Figure 25: Evolution of Estimated 100-year Discharge - Station 8221 using 30-year Sliding Window 

As shown in Figure 24, an increasing linear trendline is fit to the estimated Gumbel location 
parameter which increases 15 m3/s throughout the fitting period. The location parameter 
describes the location or shift in the distribution; therefore, it is expected that there is an 
increasing tendency in the location parameter at stations with an increasing trend in AM 
discharge. An increasing linear trendline is also fit to the Gumbel scale parameter. The scale 
parameter describes the spread of the distribution; therefore, an increase in the scale 
parameter indicates increased variability in the extremes used to obtain the parameters. Only 
30-years is considered to obtain each estimate, because 30-years covers approximately one 
climate period. Therefore, there is some variability of each estimate shown in the solid black 
line. Although a linear trendline can be fit to the estimates, it may not be the best model to 
characterize this relationship.  

Gumbel parameters and estimated discharges at all stations, except for Station 9081 increase 
(decrease) during the fitting period where increasing (decreasing) trends in AM are identified. 
At Station 9081 the MK test indicated with 95% confidence that there was an increasing 
trend in AM and the Sen’s Slope estimated the magnitude of the trend to be 0.07 mm/day. As 
shown in Appendix B.1, the largest recorded AM at this station was recorded in 1980 and is 
nearly twice as large as the majority of observed AM. Therefore, when the 1980 AM is 
included in the 30-year window used to estimate the Gumbel parameters, the scale parameter 
is high and relatively stable but starts to lower in 2010 when it is no longer included in the 
estimation. Similarly, when the 1980 AM is included in the 30-year window used to estimate 
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the location parameter, the location parameter increases and slowly flattens after 2010 when 
it is no longer included in the estimation. The estimated return level also slightly increases 
until 2010 and flattens out. This demonstrates the difficulties of fitting a linear model with 
very extreme events. Thirty-year windows are used to obtain the distribution parameters, 
because that covers approximately one climate period and can be considered stationary. 
However, as seen at Station 9081, very extreme events can have an impact on the NS linear 
model.     

The estimated 100-year discharges for Station 8221 using the NS, aST, and uST approaches 
inferred from the fitting period are shown in Figure 26.  

 
Figure 26: Change in 100-year Observed Discharge Estimated using the NS, aST, and uST models - Station 8221 

AIC values for the models for the fitting period are provided in Table 7. The AIC values 
indicate there is little evidence that the aST model performs better than the NS and uST 
models; the difference between AIC values is less than five.  

Table 7: NS and aST Comparison of Model Fit 
Model AIC 

NS Linear Model 468 
uST Model 468 
aST Model 464 

However, the three models vary significantly throughout the evaluation period. As shown in 
Table 8, Q100 estimated for 2022 from the NS Linear, uST, and aST models were 10 percent 
higher, 5 percent lower, and 12 percent lower, respectively, than those estimated from 
observations. When these models are extrapolated to the year 2050, the NS linear model 
results in 100-year discharges 1.5 and 1.6 times higher than those obtained from the uST and 
aST models, respectively. This demonstrates the challenges and risks associated with 
applying nonstationary models, especially when limited historical data is available. 
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Table 8: Comparison of Q100 for the Various NS Statistical Methods 

Model 
Percent Difference between Q100, 2022 

Estimated from Observations and the 
Three Nonstationary Statistical Methods1 

Q100, 2050 (m3/s)2 

NS Linear Model 10% 563 

uST Model -5% 375 

aST Model -12% 346 

Notes:   
1. Positive percent difference indicates estimate obtained from nonstationary statistical method 
was higher than what was obtained from observations. 
2. 100-year discharge extrapolated to the year 2050. 

4.4. VARIABILITY OF CURRENT CLIMATE 

In Section 4.1, the MK test concluded that nine stations in the Meuse have a trend in 
observed AM discharge. However, modelled discharge is stationary. Therefore, it is 
important to reflect on the assumption of stationarity in the generation of synthetic discharge 
when observed trends are identified.  

KNMI provides 1,040 years of stationary meteorological data generated from the RACMO 
climate model using 16 climate scenarios, 65 years each, with different possible initial 
climate conditions. One reason for currently using stationary time series is the large amount 
of uncertainty in realizations of the current climate. In this section, the range of possible 
estimates for a NEVA is compared to the range of possible estimates estimated using the 
synthetic data generated from realizations of the current climate. 

4.4.1. DATA AND METHODOLOGY 

Stationary and nonstationary EVA on observations are performed and compared to a 
stationary EVA on 16 synthetic time series from each of the 16 modelled members. The 
methodology introduced in Section 2.6.1 is used to perform the NEVA on observed 
discharge. Observed AM are detrended under the assumption that nonstationarity can be 
described by a linear trend before performing a stationary EVA. Station 8221 is chosen for 
this analysis because it has the longest historical record of the stations with trends in observed 
AM discharge. A comparison of the uncertainty of estimates between the methodologies is 
quantified by comparing the generated confidence intervals. A summary of the methodology 
used for this analysis is presented in Figure 27.  

 
Figure 27: Methodology to Compare Uncertainty in Estimates using Nonstationary Methods to Uncertainty resulting 

from the Variability of Current Climate 
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4.4.2. RESULTS  

Results are presented in Figure 28. Results of the stationary EVA of the 16 synthetic series 
randomly sampled from each of the 16 modelled members to be the same length as 
observations, 55 years, are shown in black. Results of the stationary EVA on the detrended 
AM are shown in red and results of the NEVA, performed using the methodology introduced 
in Section 2.6.1, are shown in blue. 

 
Figure 28: Stationary and Nonstationary EVA on Observations compared to Stationary EVA on 16 Time Series 

Randomly Sampled to be the same length as observations from the 65 years available at each of the 16 Members of 
Stationary Modelled Discharge 

Results indicate that the large variability in climate simulations leads to more uncertainty in 
discharge estimates than the NEVA on observations. The confidence intervals, which indicate 
the range of possible estimates, is wider for the 16 synthetic series, shown in black, than the 
NEVA on observations, shown in red. It should be mentioned that the confidence interval of 
the NEVA does not account for the uncertainty resulting from the assumption of a linear 
trend in the Gumbel parameters. Therefore, there is additional uncertainty in the assumption 
of modelling a linear trend. Similarly, there is additional uncertainty in assumptions made in 
the climate and hydrological models not accounted for in the confidence intervals for the 
modelled data. The confidence interval for the 1,000-year RP for the stationary EVA of the 
16 climate scenarios is still nearly twice as wide as the confidence interval generated for the 
nonstationary EVA of observations. This demonstrates the 16 members result in a wide range 
of discharge estimates when analyzed individually due to the variability in climate prediction 
and the shorter dataset.  

The 16 synthetic series were resampled to be the same length as observations, 55 years, so 
results could be compared to results obtained from observations. Each of the 16 members 
have slightly different initial conditions to represent different realizations of the current 
climate. Therefore, the members were analyzed separately to demonstrate that estimates 
obtained from each member can vary due to the variability in simulations of the current 
climate. However, if the 16 members were stacked to obtain 1,040 years of modelled data the 
variability in the estimates would be much smaller. More extremes would be available to fit 
the distribution leading to more precise estimates. The impact of record length is further 
explored in Section 6.1.  
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5. EXTREME VALUE MODELS INFLUENCE 
ON DISCHARGE ESTIMATES AND THEIR 
UNCERTAINTY 
This chapter gives an answer to the research question “How much influence do extreme value 
models have on discharge estimates and their uncertainty?” To answer this question, 
discharge estimates and their uncertainty are compared using various extreme value 
distributions and parameter estimation methods.  

5.1. EXTREME VALUE DISTRIBUTIONS 

Statistical models are commonly used to assess the RPs of extreme events by fitting observed 
extremes to a distribution and extrapolating to estimate extreme discharges. This method 
assumes the full distribution of extremes is described by the distribution. Different 
distributions can result in significantly different estimates for the same RP; therefore, it is 
important to carefully select the best fit distribution (Coulson, 1991). In this section the 
performance of GP, GEV, and Gumbel are compared for three datasets: observations, 
modelled data the same length as observations, and 1,040 years of modelled data.  

5.1.1. DATA AND METHODOLOGY 

Stations of Interest 
The six stations of interest include the four major outlets in the Ardennes and the stations 
with the highest increasing and highest decreasing trends in AM discharge.  

Data and Time Series Length 
Observed hourly discharge is available at each station of interest. Average daily observed 
discharge is obtained before performing the EVA so results may be compared with modelled 
discharge. Daily modelled discharge of 1,040 years is available for each station of interest. In 
addition, to evaluate the impact record length has on the fit of the extreme models, two 
different record lengths are considered: same length as observations and 1,040 years. 
Modelled data is randomly sampled from the stacked 1,040 years of modelled data at each 
station to obtain modelled data that is the same length as observations. 

Extreme Value Model 
AM are fit to either Gumbel or GEV using MLE and peaks are fit to GP using MLE. To 
ensure events are independent in the POT approach a declustering time, minimum separation 
distance between extremes, of 48 hours is chosen. Thresholds are determined by studying the 
MRLP plots and comparing the results GOF tests for different thresholds.  

Evaluation of Results 
Confidence intervals of the discharge frequency curves are obtained using parametric 
bootstrapping (Caires, 2007). Parametric bootstrapping assumes the data follows a specific 
distribution function. First, estimated discharges are obtained by fitting AM or peaks to the 
desired distribution. The estimated discharges are randomly sampled, with replacement, 100 
times, each the same size as the original dataset, and fit to the desired distribution. 
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Resampling with replacement indicates that after a value is randomly sampled it is replaced 
before the next sample is taken; this ensures the resampled datasets vary, because duplicate 
values are possible, and the estimates can differ. The quantiles with probability of 0.025 and 
0.975 of the empirical distribution of the sample of bootstrap estimates are calculated to 
obtain the 95 percent confidence intervals. Percentile confidence intervals tend to be 
asymmetric and are typically more realistic than confidence intervals obtained assuming the 
sample is normally distributed (Caires, 2007). 

Akaike’s criterion, described in Section 2.4, is used to select the best fit distribution. 
According to this criterion, the distribution with the lowest AIC score best fits the data. In 
addition, discharges estimated from fitting observations are compared to evaluate the 
performance of the synthetic data. Reported discharge provided by Service Public de 
Wallonie (SPW), obtained from the two-parameter lognormal distribution, is also compared 
to the estimated return levels.  

A summary of this methodology is described in Figure 29.   

 
Figure 29: Extreme Value Model EVA Methodology 

5.1.2. RESULTS  

The 50-year, 100-year, and 1,000-year discharges from the GEV (blue), GP (green), and 
Gumbel (red) distributions at Station 5921 are shown in Figure 30, Figure 31, and Figure 32. 
The error bars show the estimates and confidence intervals obtained from the modelled data; 
lighter shaded bars on the left are for modelled data the same length as observations and the 
darker shaded bars on the right are for 1,040 years of modelled data. Estimates obtained from 
observations are shown in the dashed blue (GEV), green (GP), and red (Gumbel) lines; 
confidence intervals for estimates obtained from observations are not shown. Reported 
discharge provided by SPW, obtained from the two-parameter lognormal distribution, is 
shown in the solid pink line. Results for the remaining stations are provided in Appendix C.1 
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Figure 30: 50-year Discharges Estimated from GEV, GP, and Gumbel - Station 5921 

 
Figure 31: 100-year Discharges Estimated from GEV, GP, and Gumbel - Station 5921 

 
Figure 32: 1,000-year Discharges Estimated from GEV, GP, and Gumbel - Station 5921 

Comparing results between the six stations of interest the following is discovered: 

• The tail behavior of extremes varies at different locations in the Meuse. 

The five stations where GEV provides the highest estimate exhibit heavy tails and belong to 
the Fréchet distribution. Station 8702 has a light tail and belongs to the Reverse Weibull 
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distribution. Figure 33 shows PDFs that illustrate the heavy and light-tailed behavior of these 
two distributions. Extreme discharges that exhibit heavy tail behavior, as shown by the 
Fréchet distribution, indicate that extreme discharges are more likely to occur than extreme 
discharges that exhibit light tailed behavior, such as those that belong to the Reverse Weibull 
distribution. Therefore, it is important to consider heavy tailed behavior, if it exists, to 
prevent underestimating the probability of extremes.  

 
Figure 33: PDF GEV Type III (Light-Tailed) on Left & PDF GEV Type II (Heavy-Tailed) on Right 

The three main findings from comparing discharges estimated from observed and modelled 
data for the three distributions, as shown in Figure 30, Figure 31, and Figure 32 for Station 
5921 include: 

• Estimates obtained from observations are fairly comparable to those obtained from 
synthetic data. However, there are some differences discrepancies between observed 
and modelled discharges. 

• Extreme value distributions can result in significantly different estimated discharges 
for the same RP. The difference between estimates obtained from different 
distributions increases with increasing RP. 

• Increasing the record length resulted in narrower confidence intervals which indicates 
that longer datasets can be used to obtain more precise estimates.  

Regarding the first point, GEV, GP, and Gumbel estimates obtained from observations are 
fairly comparable to those obtained from modelled data. However, larger differences between 
estimates obtained from modelled and observed data at some stations of interest indicate 
there are some discrepancies between observed and modelled discharges. It is discovered that 
at the stations of interest estimates of the best fit model obtained from 1,040-years of 
modelled data (modelled data the length of observations) are between 31% (43%) lower and 
12% (16%) higher than those obtained from observations. Additionally, the largest 
difference, 43 percent, in GEV estimates obtained from observed and modelled data are 
Station 6850. This could be a result of the statistical uncertainty in fitting the GEV shape 
parameter with limited historical data at this station; As presented in Table 4, Station 6850 
has only 20 years of observations compared to the other five stations of interest with between 
38 and 56 years. The percent differences in 100-year estimated discharges obtained from 
observed and modelled data at each station are presented in Table 18 in Appendix C.1. 

Second, results of this analysis demonstrate extreme value distributions can result in 
significantly different estimated discharges for the same RP. At the stations of interest GEV 
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and Gumbel estimates of the 100-year discharge vary between 3 and 14 percent and GP and 
Gumbel estimates vary between 4 and 9 percent. These percentages do not include those 
obtained at Station 6228 because Gumbel was not a good fit for the 1,040 years of modelled 
data. Differences between GEV and Gumbel are smallest at Station 8702 indicating the shape 
parameter is very close to zero. The percent difference between GEV (GP) and Gumbel 
estimates for the 50-, 100-, and 1,000-year RPs at each station are shown in Table 19 in 
Appendix C.1.  

Differences between GEV and Gumbel are smallest at Station 8702 indicating near 
exponential tail behavior. The remaining five stations of interest all exhibit heavy tailed 
behavior and, as previously presented in Table 4, have much smaller upstream catchment 
areas than Station 8702. This indicates the possibility of very large local extreme discharges. 

Additionally, the difference between estimates increases with increasing RP due to the 
different tail behaviors of the distributions. GEV and Gumbel estimates of the 1000-year 
discharge vary between 5 and 26 percent and GP and Gumbel estimates vary between 6 and 
16 percent.  The difference between estimates obtained from different distributions 
demonstrates the importance of selecting the best distribution.  

Regarding the third point, increasing the record length resulted in narrower confidence 
intervals. GEV is widely used to model extremes due to the flexibility provided by the shape 
parameter. However, as shown in Figure 30, Figure 31, and Figure 32, this flexibility results 
in high uncertainty in discharge estimates when limited data is available.  As expected, when 
additional data is available this uncertainty decreases for all three distributions. However, as 
shown in Figure 32, there is not a lot of overlap in the confidence intervals of estimates 
obtained from the 1,040 years of data. This demonstrates that when using longer datasets, it is 
especially important to find the most suitable model for the data to prevent a false perception 
of accuracy. The impact of record length is further explored in Section 6.1. 

A summary of the best fit distribution based on AIC is provided in Table 9. At all stations 
included in this analysis, the Q-Q plot and KS tests, introduced in Section 2.4, indicated that 
all three distributions were a good fit for all three datasets except for the 1,040 years of 
modelled data at Station 6228. A summary of the GOF tests for this station is provided in 
Appendix C.1.2. As shown in Table 9, AIC indicates that GEV is the best fit distribution for 
most datasets, however, the best fit model shifts to a different distribution at three of the six 
stations when more synthetic data is added. Two possible explanations are: 

• Differences in sampling methods; less extremes are fit to GEV model. 
• Calculation in distribution selection criteria, AIC, penalizes distributions that require 

estimation of additional parameters. 

While the AM approach is commonly preferred due to its straightforward sampling process, it 
is often critiqued since it neglects useful information such as the second highest event in a 
year which could be higher than other extremes in an AM series. POT extracts a larger 
number of extremes, therefore, providing more information about the tail behavior of 
extremes.  

Additionally, AIC penalizes distributions that require more parameters to be estimated. As 
previously mentioned, the flexibility provided by the GEV shape parameter results in 
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significant uncertainty when limited data is available. When more data is added the 
uncertainty in estimates decreases; this concept will be further explored in Section 6.1. 
However, the AIC penalizes the GEV distribution because it requires estimation of this 
additional parameter.  

At the three stations where GP was the most suitable model for the 1,040 years of synthetic 
data, Stations 8221, 6228, and 8702, the average difference between 100-year discharges 
obtained from GEV and GP is three percent. Therefore, while AIC indicates that GP is a 
better fit for the 1,040 years of modelled data than GEV at three of the six stations of interest, 
estimated discharges obtained from the two distributions do not significantly vary. 

Table 9: Best Fit Distribution Based on AIC 

Station Record Length Observed or Modelled Best Fit Distribution(s) 
based on AIC 

8221 
55 years Observed   GEV 
55 years Modelled GEV 

1,040 years Modelled GP 

5921 
54 years Observed   GEV 
54 years Modelled GEV 

1,040 years Modelled GEV 

6228 

56 years Observed   GEV 
56 years Modelled GEV 

1,040 years1 Modelled GP 

6621 

49 years Observed   GEV 
49 years Modelled GEV 

1,040 years Modelled GEV 

8702 
33 years Observed   GEV 
33 years Modelled GEV 

1,040 years Modelled GP 

6850 
20 years Observed   GP 
20 years Modelled GEV 

1,040 years Modelled GEV 
Notes: 
1. KS test indicated the Gumbel Distribution was not a good fit.  

5.2. PARAMETER ESTIMATION METHODS 

This section investigates the impact parameter estimation techniques used to fit data to 
Gumbel have on estimated discharges and their uncertainty. 

5.2.1. DATA AND METHODOLOGY 

Stations of Interest 
The six stations of interest include the four major outlets in the Ardennes and the stations 
with the highest increasing and highest decreasing trends in AM discharge.  
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Data and Time Series Length 
Observed hourly discharge is available at each station of interest. Average daily observed 
discharge is obtained before performing the EVA so that results may be compared with 
modelled discharge. Daily modelled discharge of 1,040 years is available for each station of 
interest. In addition, the record length can have a considerable impact on distribution 
parameters, therefore, two different record lengths are considered: same length as 
observations and 1,040 years. Modelled data is randomly sampled from the stacked 1,040 
years of modelled data to obtain modelled data that is the same length as observations. 

Extreme Value Model 
Gumbel is used for this analysis because extreme discharges at Borgharen, where the Meuse 
enters the Netherlands, can be closely modelled by Gumbel. MoM and MLE are among the 
most widely known and used methods for estimating the Gumbel parameters (Aydin & 
Şenoğlu, 2015a). Therefore, to evaluate the influence of parameter estimation methods, AM 
modelled discharge is fit to Gumbel using MoM and MLE. 

Evaluation of Results 
As in Section 5.1, parametric bootstrapping is used to obtain the confidence intervals and 
Akaike’s criterion is used to select the best fit model. 

A summary of the methodology used in this analysis is described in Figure 34.   

 
Figure 34: Parameter Estimation EVA Methodology 

5.2.2. RESULTS 

A box plot showing the estimated discharges for Station 5921 estimated by fitting the data to 
Gumbel using MoM and MLE is shown in Figure 35. Estimates are grouped by model, for 
example “MLE Obs” shown on the x-axis shows the results of observed AM fit to Gumbel 
using MLE; further explanation is provided in the caption. The light, medium, and dark blue 
bars, shown for each model, specify the estimate and confidence intervals corresponding to 
the 50-, 100-, and 1000-year RPs. The red shaded lines show the reported discharges obtained 
from SPW. Results for the remaining stations are provided in Appendix C.2.  
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Figure 35: Station 5921 - Comparison of Discharges Estimated Using Different Parameter Estimation Techniques 

(Obs, Mod, and Mod1000 refers to observations, modelled data the same length of observations, and modelled data 
1,040 years long; The reported discharge is the discharge provided by SPW and was obtained by fitting the two 

parameter lognormal distribution using MLE.) 

The two main findings from comparing of estimates obtained using MoM and MLE include: 

• Estimated discharges vary depending on the parameter estimation method. 
• Estimates obtained from MLE are more precise than those obtained from MoM. 

First, results of this analysis indicate estimated discharges vary depending on the parameter 
estimation method. Estimates at the five stations heavily impacted by the 2021 event obtained 
using MLE and MoM to fit observed extremes varied between 8 and 14 percent; Station 
8702, that was not heavily impacted by the 2021 event had a 2 percent difference between 
estimates obtained using MLE and MoM. The 2021 event may contribute to the difference 
between estimates obtained using MLE and MoM. The presence of one very extreme event 
likely makes it more difficult to obtain accurate estimates of the distribution parameters.  

The difference between estimates of the 100-year discharge obtained using MLE and MoM to 
fit 1,040 years (same length of observations) of modelled extremes varied between 1 and 9 (0 
and 5) percent. These values do not include the percent differences at Station 6228 because 
Gumbel was not a good fit for the 1,040 years of modelled data. These results suggest that 
estimates obtained using MLE and MoM can vary up to 9 percent. The percent difference 
between estimates of the 100-year discharge obtained using MLE and MoM at all stations is 
provided in Table 21 in Appendix C.2. 

Second, estimates obtained using MLE have narrower confidence intervals than those 
obtained using MoM indicating estimates obtained using MLE are more precise.  

The AIC values for Station 5921 are presented in Table 10. Results of the remaining stations 
are included in Appendix C.1.2. The AIC indicated the model fit using MLE fit the data 
better than the model fit using MoM for all datasets at all stations.   
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Table 10: Comparison of Model Fit for MLE and MoM - Station 5921 
Distribution - Fit Method Record Length Observed or Modelled AIC 

Gumbel - MLE 54 years Observed 613 
Gumbel - MoM 54 years Observed 614 

Gumbel - MLE 54 years Modelled 593 
Gumbel - MoM 54 years Modelled 594 
Gumbel - MLE 1,040 years Modelled 12071 
Gumbel - MoM 1,040 years Modelled 12090 
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6. EVENT SETS INFLUENCE ON DISCHARGE 
ESTIMATES AND THEIR UNCERTAINTY 
This chapter gives an answer to the research question “How much influence do event sets 
have on discharge estimates and their uncertainty?” Event sets describe the time series used 
to obtain discharge estimates and, therefore, affect the amount of data included in the 
analysis. The sensitivity of discharge estimates is compared for two types of event sets: 
record length and seasonality. 

6.1. RECORD LENGTH 

The disadvantage of the commonly adopted approach of fitting observed AM or peak 
discharges to extreme value distributions is that extrapolation is necessary to estimate 
extreme quantiles. The asymptotic assumption in EVT assumes the tail of the distribution of 
extremes follows a specific distribution as the sample size approaches infinity. However, 
limited historical data makes it difficult to confidently model the tail behavior of extremes. 
RACMO makes it possible to generate long synthetic time series to provide more information 
about the tail behavior of extreme discharges. This section studies the impact record length 
has on the estimation of discharges and their uncertainty.  

6.1.1. DATA AND METHODOLOGY 

Stations of Interest 
The six stations of interest include the four major outlets in the Ardennes and the stations 
with the highest increasing and highest decreasing trends in AM discharge.  

Data and Time Series Length 
The impact record length has on the uncertainty of estimated discharge is assessed by 
sequentially stacking all 16 members of the RACMO data so that return levels are estimated 
using various record lengths. Modelled data is randomly sampled from the stacked 1,040 
years of modelled data to obtain modelled data the same length as observations. 

Extreme Value Model 
AM are fit to Gumbel using MLE. Gumbel is used because extreme discharges at Borgharen, 
where the Meuse enters the Netherlands, are closely modelled by Gumbel. In addition, AM 
are fit to GEV using MLE to evaluate the impact record length has on the shape parameter.  

Evaluation of Results 
As in Section 5.1, parametric bootstrapping is used to obtain the confidence intervals. The 
evolution of distribution parameters with increasing record length is shown using parameters 
obtained from the Scipy Stats Python package which uses the opposite sign convention of the 
shape parameter than what was introduced in Section 2.2.1 (Virtanen et al., 2020). 

A summary of the methodology used in this analysis is described in Figure 36.   
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Figure 36: Length of Time Series EVA Methodology 

6.1.2. RESULTS 

Estimations of discharges and parameters for GEV and Gumbel at Station 5921 are shown for 
various record lengths in Figure 37 and Figure 38. Results for the remaining stations are 
included in Appendix D.1.  

 
Figure 37: Discharges Estimated from the Gumbel Distribution for varying Record Lengths - Station 5921 
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Figure 38: Discharges Estimated from the GEV Distribution for varying Record Lengths - Station 5921 

The main findings from this analysis include: 

• The confidence of estimated discharges increases with increasing record length. 
• The flexibility of the GEV shape parameter results in significant uncertainty in 

discharge estimates for short records. 

First, from Figure 37 and Figure 38 it can be seen that the confidence of estimates for all RPs 
increases with increasing record length. The range of percent differences in the width of 
confidence intervals of the 100-year discharge obtained for various record lengths from those 
obtained from a record length of 65 years is presented in Table 11; results for individual 
stations are provided in Table 22 in Appendix D.1. For example, at the six stations of interest 
the width of the confidence interval of 100-year discharges obtained using Gumbel from a 
record length of 130 years decreased between 20 and 45 percent from estimates obtained 
from a record length of 65 years. GEV estimates obtained from a record length of 130 years 
decreased between 15 and 61 percent from estimates obtained from a record length of 65 
years. The width of the confidence interval decreases further for increasing record length 
which demonstrates that estimates become more precise. The width of the confidence interval 
of 100-year discharges obtained using Gumbel and GEV from a record length of 1,040 years 
decreased between 75 and 85 percent and 70 and 89 percent, respectively, from estimates 
obtained from a record length of 65 years.  
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Table 11: Range of Percent Differences in Width of Confidence Intervals of 100-year Discharges Obtained from 
Various Record Lengths from those Obtained from a Record Length of 65 years 

Record 
Length 

Range of Percent Differences in Width of 
Confidence Intervals of 100-year Discharges 

Obtained from Various Record Lengths from those 
Obtained from a Record Length of 65 years 

Gumbel GEV 
130 years 20% - 45% 15% - 61% 
195 years 38% - 65% 26% - 74% 
260 years 50% - 72% 52% - 81% 
1040 years 75% - 84% 70% - 89% 

Second, as shown by the confidence intervals in Figure 38, there is significant uncertainty in 
the GEV estimates when limited data is available. This is a result of the flexibility of the 
GEV shape parameter. For shorter record lengths, the uncertainty in the GEV shape 
parameter is wide enough to cover the three possible GEV types: Reverse Weibull, Gumbel, 
and Fréchet. Therefore, the tail behavior of extremes cannot be confidently modelled with 
short records. However, with increasing record length the shape parameter converges to one 
GEV type. While GEV is widely used to model hydrologic extremes due to the flexibility 
provided by the shape parameter, it can also result in high uncertainty when few extremes are 
fit the distribution. However, the long time series can improve and reduce the uncertainty of 
extreme discharge estimates.  

6.2. SEASONALITY 

Application of stationary EVA assumes events are i.i.d and there are no trends, shifts, or 
cyclicity in the time series. However, presence of seasonality in a hydrologic time series can 
invalidate these two assumptions.  In the presence of seasonality, AM selected from different 
seasons could belong to different distributions contradicting the assumption of i.i.d. events. 
Additionally, the assumption of stationarity assumes there is no cyclicity, however the 
presence of seasonality implies cyclicity is present and parameters are not constant in time. 
Therefore, it is important to identify whether seasonality is present and understand the 
potential impact it can have on discharge estimates.  

First, a brief introduction of the seasonality in the Meuse is included in Section 6.2.1. Section 
6.2.2 describes the methodology used to study the impact of seasonality on extreme discharge 
estimates and results are provided in Section 6.2.3. 

6.2.1. OBSERVED SEASONALITY IN THE MEUSE 

As mentioned in Section 4.1, AM discharges and AM 1-day rainfall events do not 
correspond. To gain a better understanding of seasonality within the Meuse, the seasonality 
of AM discharge and 1-day rainfall is studied. Figure 39 shows the percent of AM for each 
season; discharge is shown in the left column and 1-day rainfall is shown in the right column.  
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Figure 39: Percent of Annual Maximum Discharge and 1-Day Annual Maximum Rainfall Events in the Meuse 

From this figure it is clear the majority of AM 1-day rainfall events occur during summer and 
the majority of AM discharge events occur during the winter. This agrees with Berghuijs et 
al. (2011) who studied various flood generating mechanisms across Europe and found 
maximum daily precipitation tends to occur in summer for most of central and (north) eastern 
Europe. It also agrees with Villarini et al. (2011) who analyzed seasonal and AM daily 
discharge records for central Europe and found a large fraction of AM flood peaks occur in 
winter.  
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The season of highest AM discharge and 1-day rainfall is shown in Figure 40.  

 
Figure 40: Season of Highest Annual Maximum Discharge and 1-Day Annual Maximum Rainfall 

The majority of the highest AM rainfall and discharge in the Lorraine occur in winter while 
the majority of highest AM rainfall and discharge in the Ardennes occur in the summer. 
However, as previously shown in Figure 18 of Section 4.1.2, most AM 1-day rainfall in the 
Meuse occur in the winter. This illustrates that the 2021 event had the most impact in the 
Ardennes; the highest summer AM resulted from the 2021 event. This matches the results 
shown in Table 6 that were discussed previously in Section 4.2; Station 8702 is the only 
station of interest not in the Ardennes and the magnitude of the 2021 event did not exceed the 
previously recorded highest AM. 

This preliminary analysis demonstrates the seasonal variability present throughout the Meuse 
which is important to consider when estimating extreme discharges.  

6.2.2. DATA AND METHODOLOGY 

Two analyses are performed to study the impact of seasonality in the Meuse: including versus 
excluding summer events and considering winter and summer events separately before 
combining the results. The variables involved in the analyses are briefly described below. 
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Stations of Interest 
The six stations of interest include the four major outlets in the Ardennes and the stations 
with the highest increasing and highest decreasing trends in AM discharge.  

Data and Time Series Length 
Observed hourly discharge is available at each station of interest. Average daily observed 
discharge is obtained before performing the EVA so that results may be compared with 
modelled discharge. Daily modelled discharge of 1,040 years is available for each station. 

To account for the variation of modelled discharge when obtaining modelled data the same 
length as observations, the 1,040 years of stacked modelled discharge is randomly sampled 
100 times to obtain 100 time series the same length of observations. To ensure seasonality is 
intact, the sampled modelled discharge is randomly sampled from the same month for which 
it was modelled. The median of the 100 discharge frequency curves will be used to evaluate 
the modelled data the same length as observations. The confidence interval can then be 
determined by taking the 2.5 and 97.5 quantiles of the 100 discharge frequency curves.  

Seasonality 
To evaluate the influence seasonality has on return level estimates, two analyses are 
performed. In the first analysis estimates obtained using datasets including summer events is 
compared to estimates obtained excluding summer events. Summer months, April through 
September, are removed before obtaining AM.  

In the second analysis “summer” and “winter” months are partitioned and individual EVA are 
performed before combining the results as described in Section 2.7. Summer months include 
April through September and winter months include October through March. EVT requires 
the assumption that events are i.i.d, therefore, this analysis is based on the assumption that 
events that occur in the months from April to September and October to March belong to the 
same distribution. 

Extreme Value Model 
AM are fit to Gumbel and GEV, using MLE.  

Evaluation of Results 
As in Section 5.1, parametric bootstrapping is used to obtain the confidence intervals.  

A summary of the methodology used to evaluate the impact of seasonality is described in 
Figure 41.  



6-8 6. EVENT SETS INFLUENCE ON DISCHARGE ESTIMATES AND THEIR 
UNCERTAINTY 

  

 
Figure 41: Seasonality EVA Methodology 

6.2.3. RESULTS 

This section presents the results for Station 5921; results for the remaining stations are 
included in Appendix D.2.  

Seasonality of Annual Maximum Discharge 
The seasonality of AM discharge at Station 5921 is shown in Figure 42. The upper left and 
right figures of Figure 42 show median discharge, grouped by month, for the stacked 1,040 
years of modelled discharge and observed discharge, respectively. The lower right figure of 
Figure 42 shows the months of observed and modelled AM discharge. The lower left figure 
of Figure 42 shows the 95 percent confidence interval of median discharge, grouped by 
month, of 100 randomly sampled modelled discharge the same length of observations. This is 
shown to demonstrate the possible variability in magnitude of AM each month when 
resampled from the stacked modelled members. The 95% confidence interval of minimum 
and maximum discharge is also shown to highlight the variation in the sampled discharge 
throughout the year. The dashed lines show the minimum and maximum discharge available 
each month from the stacked 1,040 years of modelled discharge. 
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Figure 42: Seasonality of Annual Maximum Discharge - Station 5921 

Three main findings from studying seasonality of observed and modelled discharge shown in 
Figure 42 and Appendix D.2 include: 

• The Meuse is dominated by winter events. 
• Summer peaks are present in both observed and modelled discharge. However, at four 

of the six stations included in this analysis the modelled summer peaks do not reach 
the magnitude of the July 2021 event. 

• Less summer AM are present in the modelled data compared to what has been 
observed. 

First, from this analysis it is clear that the Meuse is dominated by winter events. The majority 
of observed and modelled AM occur in the winter. However, extreme events like what was 
observed in July 2021 not only demonstrate that the Meuse is susceptible to summer events, 
but summer events can exceed the magnitude of extreme winter events.   

Second, while AM summer events are present in both modelled and observed discharge, the 
highest summer events in the 1,040 years of synthetic data did not reach the magnitude of the 
July 2021 event.  The ratio of highest modelled summer AM to highest observed summer AM 
ranged between 0.7 and 1.7 as shown in Table 12. At Stations 6228 and 6621 this ratio is 
above one indicating that the highest modelled summer AM exceed the highest observed 
summer AM by factors of 1.7 and 1.3, respectively. However, there is only one summer AM 
that exceeds the magnitude of the July 2021 event in the 1,040 years of synthetic data at 
Stations 6228 and 6621. Therefore, the average ratio between highest modelled summer AM 
of 100 synthetic series randomly sampled to be the same length of observations and highest 
observed summer AM at Stations 6228 and 6621 is 0.5 and 0.4, respectively. This 
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demonstrates that although summer AM are present in the 1,040 years of synthetic data, the 
magnitude of the July 2021 event is not reproduced in most series of modelled discharges.   

Station 8702 was the only station included in this study where the highest observed AM did 
not occur during summer; the July 2021 event is not the highest recorded observed AM and 
was the only observed summer AM. There are only 2 percent of summer AM present in the 
1,040 years of synthetic discharges at this station.  As previously shown in Figure 40, winter 
is the most common season of AM in the Lorraine, which is upstream of Station 8702. In 
addition, Station 8702 has a significantly larger upstream area compared to the other five 
stations of interest; Station 8702 has approximately 10,120 km2 area upstream while the other 
five stations of interest vary between 70 km2 and 1,610 km2. Therefore, Station 8702 is likely 
impacted by multiple hydrological responses caused by various meteorological factors and 
soil characteristics of upstream tributaries. These factors influence the seasonal variability at 
locations throughout the Meuse that is seen by comparing the results of the six stations. 

Third, there are less synthetic summer AM than what has been observed. As shown in Table 
12, between 5 and 27 percent of observed AM and between 2 and 11 percent of modelled AM 
occur during the summer. The average percentage of summer AM in 100 randomly sampled 
series the same length as observations is between 1 and 6 percent. This indicates that more 
summer AM have been observed than what is present in the modelled data.   

Table 12: Comparison Between Observed and Modelled Summer Annual Maxima 

Station  
Observed 

Record 
Length 

Ratio of Highest Modelled 
Summer AM to Highest 
Observed Summer AM1 

Percent of AM that Occur during 
Summer in: 

Modelled 
Data  

(1,040 yr.) 

 Modelled 
Data  

(Length of 
Obs.)3 

 
Observed 

Data 

Modelled 
Data  

(1,040 yr.) 

 Modelled 
Data 

(Length of 
Obs.)3 

8221 55 0.7 0.3 11% 5% 3% 
5921 54 0.8 0.4 11% 5% 3% 
6228 56 1.7 0.5 27% 11% 6% 
6621 49 1.3 0.4 12% 5% 3% 

8702 2 38 0.9 0.3 11% 2% 1% 
6850 20 0.8 0.2 5% 5% 3% 

Note: 

1. Ratio above 1 indicates highest modelled summer AM exceeded highest observed summer AM. 
2. At all stations of interest, except Station 8702, the July 2021 event was the highest observed summer 
AM. 
3. Average value of 100 synthetic series randomly sampled to be the same length as observations. 

Extreme Value Analysis Including versus Excluding Summer Events 
Results of the EVA including and excluding summer for Station 5921 are presented in Figure 
43.  The discharge frequency plot for observations, modelled data the same length of 
observations, and stacked 1,040 years of modelled data are shown on the left, middle, and 
right, respectively. For clarity, confidence intervals are only shown for GEV.  
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Figure 43: Results of EVA Including and Excluding Summer Events (April - September) - Station 5921 

The main findings from this analysis include: 

• Gumbel and GEV estimated discharges decreased when summer was removed from 
observed data in the Ardennes. 

• Removing summer AM had minimal impact on discharges estimated from modelled 
data. 

First, 100-year Gumbel (GEV) estimates decreased between 6 and 16 (15 and 48) percent 
when observed summer AM were removed at the five stations where the July 2021 event 
exceeded all previously recorded AM. Percent differences of 100-year discharges are 
presented in Table 13. Although the July 2021 event was an AM at Station 8702, it did not 
exceed previously recorded AM. In addition, the highest summer AM was only half the 
magnitude of the highest winter AM. Therefore, removing summer events increased 100-year 
Gumbel and GEV estimates by 1 and 7 percent, respectively.  

As previously seen in Section 4.2, the July 2021 event impacted the tail behavior of extreme 
discharges at Station 6228 when fitting observed AM to GEV. Therefore, when removing 
observed summer events from this station the GEV tail behavior changed from a heavy tail to 
a light tail. Additionally, removing observed summer AM had the most impact at this station 
with 100-year Gumbel and GEV estimates decreasing 16 and 34 percent, respectively.  
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Table 13: Percent Difference Between Q100 when Including versus Excluding Summer  

Station  

Percent Difference Between Q100 when Including versus 
Excluding Summer Events1 

Observations Modelled Data 
(Length of Obs.)2 

Modelled Data 
(1,040 years) 

Gumbel GEV Gumbel GEV Gumbel GEV 
8221 -11% -20% -0.3% -0.2% -0.3% -0% 
5921 -6% -15% -0% -1% -0.2% -0.2% 
6228 -16% -34% -1% -6% -2% -2% 
6621 -10% -32% -1% -1% -1% -1% 
8702 1% 7% 0% 0.1% 0.1% 0.3% 
6850 -13% -48% 0% 0% 0% 0% 

Note: 
1. A negative percent difference indicates Q100 was lower when excluding summer events. 
2. Average value of 100 synthetic series randomly sampled to be the same length as 
observations. 

Second, removing summer from the 1,040 years of modelled discharge changed 100-year 
discharges between -2 and 0.3 percent. The average percent difference for 100 randomly 
sampled series the same length as observations estimated for Gumbel and GEV was between 
-1 and 0 percent and -6 and 0.1 percent, respectively. Stations with a higher percentage of 
modelled summer AM, as previously shown in Table 12, appear to have a larger difference in 
estimated discharges when summer is excluded. For example, 11 percent of the 1,040 years 
of modelled data at Station 6228 occurred during the summer and when removing summer, 
Gumbel and GEV estimates decreased 2 percent. While this difference is much less than the 
difference in estimates for observations, Table 12 also indicates that there is a less percentage 
of summer AM in all six modelled series compared to what has been observed.  

Extreme Value Analysis Partitioning Summer and Winter Events 
The extreme value analyses obtained by considering winter and summer months separately 
before combining results for Station 5921 is presented in Figure 44.  

 
Figure 44: Combined Winter and Summer (GEV and Gumbel) - Station 5921 

The main findings from partitioning summer and winter months include: 

• Summer events exhibit heavier tails than winter events. 
• While winter events dominate the Meuse, at some locations, summer has a strong 

influence on the tail behavior. 
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First, for both observed and modelled data, summer extremes exhibit heavier tails than winter 
extremes. This means that at a certain RP summer AM can exceed winter AM which could 
indicate summer and winter extremes are generated by different flood mechanisms and 
belong to different statistical distributions. Therefore, the assumption of i.i.d. events is no 
longer valid, and summer and winter extremes should be considered separately.   

Second, winter events dominate the distribution of extremes. Estimated discharges when only 
considering winter maxima are close to those obtained when considering the full year of 
extremes. However, locations with more summer AM exhibit heavier tailed behavior 
indicating very extreme discharges are more common. For example, Station 6228 has 27% 
observed summer AM, as previously mentioned in Table 12, and results in a strong heavy 
tailed behavior as shown in the bottom left corner of Figure 107.  Therefore, at some 
locations summer events have a strong influence on the tail behavior of the extreme value 
distribution. 

As shown in Table 14, GEV is a better fit for both summer and winter EVA at all six stations.  

Table 14: AIC Results for EVA for Summer and Winter (dark green indicates strong evidence that model is better 
fit, medium green indicates model is better fit, light green indicates weak evidence that model is better fit) 

Station ID Distribution Observations 1,040-year Modelled Data 
Summer AIC Winter AIC Summer AIC Winter AIC 

5921 
Gumbel 572 602 10407 12083 

GEV 560 598 10295 12063 

8221 Gumbel 579 589 9804 11570 
GEV 559 585 9698 11556 

6228 Gumbel 558 548 8686 10518 
GEV 535 546 8423 10442 

6621 Gumbel 510 531 9639 11440 
GEV 488 527 9486 11406 

6850 Gumbel 99 100 4073 5918 
GEV 78 96 3965 5910 

8702 Gumbel 488 527 12626 14548 
GEV 485 524 12600 14545 

A comparison between the combined winter and summer EVA and an EVA neglecting 
seasonality is presented in Figure 45.  

 
Figure 45: EVA of full series of AM (neglecting seasonality shown in grey) Compared to Combined Summer and 

Winter EVA (shown in green) 
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The main findings of this analysis include: 

• Neglecting seasonality can result in over or underestimations of extreme discharges. 
• Over and underestimations of discharges obtained from modelled discharge are 

smaller than those obtained from observed discharges. 

First, the differences between the discharge frequency curves for the combined summer and 
winter and the full series, neglecting seasonality, illustrate that neglecting seasonality can 
result in under or overestimations of extreme discharges. The percent difference between the 
100-year discharges obtained from the full year of AM (grey dashed line in Figure 45) and 
the winter AM (blue line in Figure 44) or the combined summer and winter analysis (green 
line in Figure 45) is presented in Table 15. At the six stations, neglecting seasonality in 
historical data underestimated 100-year discharges up to 24 percent and overestimated 
discharges up to 22 percent.  

Second, the over and underestimations of discharges obtained from modelled discharge are 
smaller than those obtained from observed data. Modelled discharges the same length as 
observations (1,040 years) were underestimated up to 5 (0) percent and overestimated up to 2 
(2) percent. Smaller differences could be a result of limited synthetic summer events. As 
shown in Table 15, 100-year discharges estimated from modelled winter AM the same length 
as observations (1,040 years) differed between 0 and 6 (0 and 2) percent. Therefore, the 
smaller difference between the estimates obtained from the combined summer and winter and 
the full series, neglecting seasonality, could also be due to the limited summer events in the 
synthetic data as previously discussed in this section and shown in Table 12. 

Table 15: Percent Difference in 100-year Discharges Obtained from GEV for the Full Year of AM and Winter, 
Combined Analysis 

Station  

Percent Difference in Q100 Obtained from GEV for the Full Year and 
Winter, Combined Analysis1 

Observations Modelled Data  
(Length of Obs.) 

Modelled Data  
(1,040 years) 

Winter Combined Winter Combined Winter Combined 
8221 -20% -9% 0% 1% 0% 2% 
5921 -15% -7% -1% -4% 0% 2% 
6228 -34% 15% -6% -5% -2% 1% 
6621 -32% -24% -1% -4% -1% 1% 
8702 21% 22% 0% 2% 0% 0% 
6850 -48% -17% 4% 0% 0% 0% 

1. Negative percentage indicates Q100 for winter or combined analysis was lower than what was 
obtained considering the full year of AM.  
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7. DISCUSSION  
The objective of this thesis is to evaluate the modelling assumptions affecting extreme 
discharge estimates and their uncertainty. Several factors influencing discharge estimates and 
their uncertainty were identified in the development of the research questions presented in 
Section 1.2. Each research question was individually addressed in Chapters 4 through 6 of 
this report through application of the case study which focuses uses synthetic data generated 
by RACMO for the Meuse. Within each chapter several analyses were performed to evaluate 
the impact various modelling assumptions have on extreme discharges and their uncertainty. 
This chapter provides a high-level discussion of the results presented in this thesis.  

7.1. NONSTATIONARITY OF OBSERVED DISCHARGE  

7.1.1. TRENDS IN ANNUAL MAXIMA DISCHARGE AND RAINFALL 

What is the interpretation of the results: 
Statistically significant trends in observed AM discharge were identified at nine of 130 
stations in the Meuse: seven increasing trends and two decreasing trends. Of those nine 
stations, four had statistically significant trends in corresponding rainfall events. While land 
use change was not explored in this thesis, Tu et al. (2005b) investigated the change in flood 
peaks of the Meuse and concluded that while flood peaks have increased since the 1980s, 
land cover has remained relatively stable in the last century. Therefore, increasing trends 
should be attributed to climate change rather than changes in land use. Decreasing trends may 
be due to flood control measures, climate change, or long-term water storage.   

What are the limitations of these results: 
The main limitations of these results arise in the application of a statistical trend test whose 
results depend on record length and strength of the trend. The longest available record of 
discharge and rainfall were only 56 and 40 years long, respectively; however, results of the 
MK test become more powerful with increasing record length. Additionally, Kundzewicz et 
al. (2004) mention that it is difficult to identify weak trends using statistical tests. Therefore, 
limited record length and weak trends make it difficult to accurately identify trends. 

What did other researchers find, do my results agree: 
Diermanse et al. (2010) performed four statistical tests and found there is no statistically 
significant increasing trend in AM discharges of the Meuse River at Borgharen, where the 
Meuse enters the Netherlands. However, if the original data was extended from 92 to 130 
years by repeating the last years of observed AM, the probability of detecting a statistically 
significant trend increased. In addition, results of the tests were close to the significance level 
therefore they concluded that if hypothesized trends were to continue over the next few 
decades statistical tests would detect an increasing trend. Although Borgharen was not a 
station of interest in this thesis, results from the study by Diermanse et al. (2010) indicate 
record length is likely a limiting factor of identifying statistically significant trends.  

What are the implications, how does it fit in the bigger picture: 
While statistically significant trends were identified at only 9 of the 130 stations, short 
historical records and the limited power of statistical tests likely limit the number of 
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statistically significant trends that can be identified. Many researchers, such as Milly et al. 
(2008), argue against the use of stationary methods when estimating flood risk due to the 
changing climate. However, results presented in this thesis, later discussed in Section 7.1.3, 
also demonstrate the potential implications of solely relying on statistical trend tests to infer 
the persistence of nonstationarity. Regardless, these conclusions should serve as a warning 
for flood risk management practitioners to reevaluate the assumption of stationarity as more 
observations become available in the coming years. 

7.1.2. OBSERVED CHANGES IN RIVER DISCHARGE SINCE 2015 

What is the interpretation of the results: 
Since the implementation of GRADE in 2015, events like what occurred in July 2021 have 
added additional information about the tail behavior of extreme discharges. At Station 6228, 
the RP of the 2021 event was estimated to be 726 years when including the 2021 AM and 108 
years when excluding the 2021 AM; At this station the 2021 event was 2.2 times the 
magnitude of the previously recorded highest AM. Additionally, the 2021 event changed the 
tail behavior of extremes at this station from a light to heavy tail. This suggests that the 
addition of just one very extreme event can change the estimated RP of an event by a factor 
of 1.385 (108 years/726 years) which demonstrates the vulnerability of applying an EVA to 
limited historical data. 

What are the limitations of these results: 
Two limitations of these results include limited record length and potential for measurement 
errors. Station 6228 had the longest historical record out of the 130 stations in the Meuse, 
however there are only 56 years of discharges. Additionally, observed discharge extremes are 
susceptible to measurement inaccuracies; During very extreme floods river gauges may get 
lost or stop working altogether. Based on these limitations, it should be acknowledged that 
historical records may not offer a complete picture of extreme discharge events. 

What did other researchers find, do my results agree: 
Vorogushyn et al. (2022) performed a similar analysis but fit AM to GEV at a German gauge 
in the Ahr subcatchment, also heavily impacted by the July 2021 event, and had similar 
findings. They estimated that the July 2021 event corresponded to a RP over 108 years when 
only considering data from 1946 to 2019 and concluded this estimated RP was unrealistic 
because events of this magnitude occurred in 1804 and 1910.  

What are the implications, how does it fit in the bigger picture: 
While the 2021 event provides valuable information about extreme discharges in the Meuse, 
results suggest that the addition of this one very extreme event is likely not enough to justify 
use of a stochastic weather generator over a physically based climate model. Even with the 
addition of the 2021 event, there is still significant uncertainty in the tail behavior of 
extremes; Adding just one extreme event at Station 6228 changed the estimated RP of the 
2021 event by a factor of 1.385. Additionally, observed records are susceptible to potential 
measurement accuracies which adds additional uncertainty to estimates. However, 
comparison between the performance of the stochastic weather generator and RACMO, with 
the additional observations now available, could be an interesting topic for further research.  
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7.1.3. COMPARISON OF PREDICTIVE CAPABILITY OF NEVA METHODS 

What is the interpretation of the results: 
The 100-year discharges estimated for the year 2022 from the NS Linear, uST, and aST 
models were 10 percent higher, 5 percent lower, and 12 percent lower, respectively, than 
those estimated from observations. Additionally, when these models were extrapolated to the 
year 2050, the NS linear model resulted in 100-year discharges 1.5 and 1.6 times higher than 
those obtained from the uST and aST models, respectively. These results demonstrate there 
are significant differences between different NS methods and highlights the possibility of 
significantly overestimating discharges when projecting NS linear trends. 

What are the limitations of these results: 
The main limitation of these results is that only one NS model was considered in this study, 
however, there are many approaches of NS modelling that will result in different predictions 
making it even more difficult to account for nonstationarity. For simplicity, it was assumed 
that the change in AM can be modelled as a linear function of time, however, it is difficult to 
predict how nonstationarity will persist, especially with limited historical records; changes 
after the fitting period are not considered. Time was the only covariate considered, however, 
several physical processes impact hydrological extremes such as temperature or land use 
changes. Additionally, Gumbel was the only distribution considered for this analysis, 
however, distributions can result in significantly different estimates. Lastly, only one station 
was analyzed to demonstrate the limitations of NS models as a predictive tool for flood risk. 

What did other researchers find, do my results agree: 
Luke et al. (2017) compared the performance of NS, aST, and uST models and found that 
when a trend is present in the fitting period, the AIC typically favors the NS model. However, 
they argue against NS methods because extrapolation of a trend based on limited historical 
data can lead to unrealistic discharges. They concluded that the uST model is preferred over 
the NS model when a detected trend can be attributed to a known physical alteration in the 
watershed. Otherwise, the aST model is preferred.   

What are the implications, how does it fit in the bigger picture: 
Application of NS models implies the time varying model continues to persist which is often 
difficult to confirm from limited historical records. While stationarity should not be the 
default assumption when estimating hydrological extremes, statistical tests should not be 
solely relied upon to infer the persistence of nonstationarity. Practitioners should investigate 
possible sources of nonstationarity before deciding how best to estimate future flood risk. 
Based on the conclusions made by Luke et al. (2017), if changes can be attributed to physical 
changes in the watershed the uST model is preferred; otherwise, the aST model is preferred. 

7.1.4. VARIABILITY OF CURRENT CLIMATE 

What is the interpretation of the results: 
The 16 members of RACMO, each with 65 years, demonstrate that for limited record length, 
the uncertainty in estimates from simulations of the current climate is larger than the 
uncertainty in estimates from a NEVA.  

What are the limitations of these results: 
One main limitation of these results is the selection of the NS linear model; The assumptions 
made in this model were discussed in Section 7.1.3. The assumption of a linear trend results 
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in additional uncertainty not accounted for in the confidence interval. Similarly, the 
confidence interval of the 16 members does not account for the uncertainty from assumptions 
made to model the climate. Lastly, since the synthetic discharge is bias corrected to be 
stationary this analysis could only be performed on series the same length as observations. 

What did other researchers find, do my results agree: 
Slingo et al. (2011) studied uncertainty in climate models and concluded the natural 
variability of the climate will always lead to a level of uncertainty in climate models no 
matter how much the model uncertainty is reduced. Due to the natural variability, even the 
current observed climate is just one possible scenario of many that could have occurred. 
Therefore, simulations of the current climate can result in significant differences based on the 
initial conditions. 

What are the implications, how does it fit in the bigger picture: 
These results demonstrate that, for limited record length, there is a wider range of possible 
discharge estimates from the 16 climate scenarios than estimates obtained from a NS linear 
model. This implies the variability of the current climate generates more uncertainty in 
estimated discharges than NEVA. Therefore, for limited record length, application of NS 
models offers little value due to the large variability of the current climate. However, while 
the long series of synthetic discharges available for this study were stationary it would be 
interesting to reperform this analysis using longer datasets after incorporating nonstationarity 
in the generation of synthetic discharges.  

7.2. EXTREME VALUE MODELS INFLUENCE ON DISCHARGE 
ESTIMATES AND THEIR UNCERTAINTY 

7.2.1. EXTREME VALUE DISTRIBUTION 

What is the interpretation of the results: 
At five of the six stations, GEV and Gumbel (GP and Gumbel) estimates of the 100-year 
discharge obtained from the 1,040 years of synthetic data vary between 3 and 14 (4 and 9) 
percent; KS indicated Gumbel was not a good fit for the 1,040 years of synthetic data at 
Station 6228, therefore, those results are not included in the previous statement. The 
difference between estimates increased up to 26 percent for the 1,000-year RP. Therefore, 
although models can pass statistical GOF tests, different distributions can result in different 
estimates for the same RP. Additionally, the tail behavior of extremes varies at different 
locations further emphasizing the importance of comparing the performance of different 
distributions; heavy tail behavior was found at five of the six stations. 

What are the limitations of these results: 
The primary limitation of these results is that only three distributions were considered. GEV 
and GP are widely used, however several distributions have been proposed to fit hydrological 
extremes. For example, the United States, uses the Log-Pearson Type-3 (LP3) distribution. 
Additionally, for simplicity the commonly used AIC was the only distribution selection 
criteria considered, however, comparing results from several tests could provide more insight.  

What did other researchers find, do my results agree: 
Many researchers have found that while POT is often underemployed due to the difficulty of 
threshold selection, it makes use of extremes more efficiently than AM because it allows 
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more than one extreme per year. For example, Bezak et al. (2014) concluded POT led to 
better results than AM when estimating extreme discharges from 116 years of observations. 
In this study, the most suitable model for synthetic data shifted from GEV to GP at three of 
the six stations when more synthetic data was added; possible explanations were discussed in 
Section 5.1. However, the average difference between 100-year discharges obtained from 
GEV and GP at these stations was three percent indicating minor differences. 

In literature there is limited understanding on the processes that cause heavy tailed behavior 
in extreme distributions. However, Merz et al. (2022) studied heavy tails of flood peak 
distributions and drew several hypotheses to possible mechanisms. A few hypotheses 
included heavy tails of rainfall, type of flood generation process, and mixture of flood types. 
It is relevant to emphasize the importance of modelling heavy tailed flood distributions, when 
they exist, to prevent underestimation of extreme discharges. 

What are the implications, how does it fit in the bigger picture: 
While a fully distributed hydrological model can provide discharge information at locations 
where no observations are available, the same distribution cannot be applied at all locations 
within a catchment. Based on these results, it is recommended to compare the fit of various 
distributions at each location to avoid over or underestimation of estimated discharges. 

7.2.2. PARAMETER ESTIMATION METHODS 

What is the interpretation of the results: 
Estimated discharges obtained using MLE and MoM to fit AM from 1,040 years of synthetic 
data differed up to nine percent. This demonstrates that selection of the parameter estimation 
method alone can strongly influence discharge estimates. 

What are the limitations of these results: 
The primary limitations of these results are that only two parameter estimation methods are 
compared using the Gumbel distribution. However, many methods are discussed in literature.  

What did other researchers find, do my results agree: 
Aydin et al. (2015b) used Monte Carlo simulations to compare seven parameter estimation 
methods, including MoM, MLE, modified maximum likelihood (MML), method of least 
squares (LS), method of weighted least squares (WLS), method of percentile (PE), and 
probability weighted moments (PWM), for the Gumbel distribution using sample sizes from 
5 to 1000. Comparing the bias, PWM demonstrated the best performance for both the 
location and scale parameters for all sample sizes. This agreed with results obtained by 
Mahdi et al. (2005) who used simulations to compare MoM, MLE, and PWM for Gumbel 
using sample sizes from 5 to 100. Mahdi et al. (2005) concluded that, in terms of accuracy, 
PWM outperformed MLE and MoM for all sample sizes and MLE outperformed MoM for all 
sample sizes. While PWM was not considered in this study, the results also showed that, 
based on AIC, MLE outperformed MoM.  

Additionally, Vivekanandan (2015) stated that MLE is a more precise method than MoM 
which agrees with the results obtained in this research; The width of the confidence interval 
for estimates obtained using MLE is smaller than MoM.  
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What are the implications, how does it fit in the bigger picture: 
These results highlight the importance of selecting the most appropriate parameter estimation 
method and demonstrated that the selected method directly impacts the obtained estimates. 
Therefore, flood risk management practitioners should select a robust method to prevent 
under or overestimations.  

7.3. EVENT SETS INFLUENCE ON DISCHARGE ESTIMATES 
AND THEIR UNCERTAINTY 

7.3.1. RECORD LENGTH 

What is the interpretation of the results: 
The width of the confidence interval of 100-year discharges obtained using Gumbel (GEV) 
for a record length of 130 years decreased between 20 and 45 percent (15 and 61 percent) 
from that obtained from a record length of 65 years. When a record length of 1,040 years was 
used, the width of the confidence interval decreased up to 89 percent from that obtained from 
a record length of 65 years. Longer series are particularly valuable when estimating the GEV 
shape parameter which converges for longer record lengths. 

What are the limitations of these results: 
The main limitation of these results is that only Gumbel and GEV were considered. As 
presented in Section 5.1, GP was the most suitable distribution for the 1,040 years of 
synthetic data at three of the six stations. However, threshold selection is time consuming and 
GEV estimates differed on average three percent at the three stations where GP was most 
suitable. Therefore, only Gumbel and GEV were considered. Additionally, a common rule of 
thumb is that estimated return levels are most reasonable for RPs up to one-third the record 
length (Ludwig et al., 2023). Based on this rule, 1,040 years of synthetic data can provide 
accurate estimates up to approximately the 340-year RP.  

What did other researchers find, do my results agree: 
Slater et al. (2021) studied global changes in the 20, 50, and 100-year floods and found that 
uncertainties tend to be smaller at locations with records longer than 100 years; similar results 
are found in this case study. Results presented in this thesis are also in agreement with 
Papalexiou and Koutsoyiannis (2013) who studied over 15 thousand rainfall records with 
varying record lengths. They concluded that the record length has a large effect on the 
estimation of the GEV shape parameter which determines the limiting type. Similar results 
were found in this research; the GEV shape parameter required longer record lengths to 
converge. 

Wiel et al. (2019) demonstrated the added value of large ensemble simulations to study 
extreme hydrological events in some of the major rivers in the world. They compared GEV 
estimates obtained from 100 years of data, GEV estimates obtained from 2,000 years of data, 
and empirical distribution estimates from 2,000 years of data. The 100-year GEV fit did not 
provide statistically significant estimates of changes in extreme floods. The 2,000-year GEV 
fit was comparable to the approach using the empirical distribution. The empirical 
distribution approach is advantageous in the presence of multiple flood generating 
mechanisms since it is capable of capturing the double distribution. However, there are still 
large uncertainties for high RPs using the empirical approach.   
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What are the implications, how does it fit in the bigger picture: 
Application of EVT requires the assumption that a large enough number of events occur each 
year, so the distribution of extremes is asymptotic. However, often only a few decades of 
observations are available. The longest historical record of the 130 stations in the Meuse is 
only 56 years meaning that reasonable return levels can be obtained up until the 18-year RP, 
one-third the record length. However, higher RPs are needed for the design and maintenance 
of flood defenses; In the Netherlands the discharge corresponding to the 1250-year (10,000-
year) RP is used for the design of flood defenses in riverine areas (coastal areas). Based on 
the results presented in this thesis, generating long series of synthetic data can be used to 
improve estimates of extreme events. Therefore, to obtain reasonable estimates for higher 
RPs, it is recommended to investigate large ensemble techniques.   

7.3.2. SEASONALITY 

What is the interpretation of the results: 
Both observed and modelled summer AM exhibited heavier tail behavior than winter AM 
which suggests that extreme summer and winter events are generated by different flood 
mechanisms. This contradicts the assumption of i.i.d. events and indicates summer and winter 
extremes should be analyzed separately. Comparison between the 100-year discharge 
estimated from the combined winter and summer approach and the full year of AM, 
demonstrated that neglecting seasonality in historical data (1,040 years of modelled data) led 
to under and overestimations up to 24 (0) and 22 (2) percent, respectively. Differences are 
likely smaller for modelled data due to the limited extreme synthetic summer events. 

What are the limitations of these results: 
The main limitation of these results is that both the number and intensity of summer events is 
limited in the synthetic discharges. Modelled summer AM exceeded the magnitude of the 
July 2021 event at only two of the six stations of interest. Additionally, there are between 5 
and 27 percent of historical summer AM at the six stations of interest but only between 2 and 
11 (1 and 6) percent of modelled summer AM in the 1,040 years of synthetic data (modelled 
data the length of observations).  

What did other researchers find, do my results agree: 
Allamano et al. (2011) performed a stochastic experiment to study the impact of neglecting 
seasonality in hydroclimatic extremes and concluded that neglecting seasonality induces a 
downward bias in estimates. They emphasized the importance of accounting seasonality in 
the estimation of hydroclimatic extremes to avoid over or underestimations. 

What are the implications, how does it fit in the bigger picture: 
When seasonality is present, the assumption of i.i.d. events is no longer valid. The results 
shown in this thesis demonstrated that summer and winter events have different tail behaviors 
and, therefore, belong to different distributions. Therefore, the traditional annual maxima 
approach cannot be used, and seasonality must be explicitly considered.   
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8. CONCLUSION AND ANSWER TO 
RESEARCH 
The objective of this thesis is to evaluate the influence various modelling assumptions have 
on extreme discharge estimates by analyzing the long synthetic discharge series generated 
using synthetic data obtained from RACMO. Several factors influencing discharge estimates 
and their uncertainty were identified in the development of the research questions that will be 
directly answered in this chapter. Recommendations are provided in Sections 8.3 and 8.3.   

8.1. CONCLUSION AND ANSWERS TO THE RESEARCH 
QUESTIONS 

How much impact can a very extreme event, such as what occurred in July 2021 in central 
Europe, have on the statistics of extreme discharge? 

Results demonstrated the impact a very extreme event, like what occurred in July 2021, can 
have on discharge estimates varies depending on the available record length, selection of 
extreme value model, and magnitude of the extreme event relative to historical AM. The 
three main conclusions from this analysis are briefly described below: 

• It is difficult to obtain reliable discharge estimates from short historical records. The 
ratio between Q100, post2021 and Q100, pre2021 was the largest for the station with the 
shortest historical record of 20 years and decreased with increasing record length. 

• GEV estimates were more impacted by the addition of rare events than Gumbel 
estimates due to the flexibility provided by the GEV shape parameter. At the five 
stations of interest where the 2021 event exceeded previously recorded AM, the 
Gumbel 100-year estimated discharges increased by a factor between 1.05 and 1.10. 
GEV 100-year estimated discharges increased by a factor between 1.13 and 1.35.  

• Lastly, the addition of one very extreme event can significantly impact estimates 
obtained from relatively short historical records. At Station 6228, the 2021 event was 
2.2 times the magnitude of the previously recorded highest AM and changed the tail 
behavior of extremes from a light to a heavy tail. When the 2021 event was excluded 
from the analysis, the RP of this event was estimated to be over 1.385 (108 years/726 
years) times as high as when it was included. At Station 8221, the 2021 event was 1.4 
times the magnitude of the previously recorded highest AM. When the 2021 event 
was excluded from the analysis, the RP of this event was estimated to be over 2.7 
(372 years/138 years) times as high as when it was included.  

To what extent do nonstationary statistical methods impact discharge estimates when a trend 
in observed discharge is identified? 

The predictive capability of the NS, aST, and uST models were compared to evaluate their 
impact on discharge estimates. From this analysis the following conclusions are made: 

• NEVA assumes that the time varying model persists into the future which is difficult 
to confirm from short records. When the models were extrapolated to the year 2050, 
the NS linear model resulted in 100-year discharges 1.5 and 1.6 times higher than 
those obtained from the uST and aST models, respectively. This demonstrates that 
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while a linear model may fit observations well and pass statistical GOF tests, 
projecting a linear trend could result in large under or overestimations of estimates. 

• The uST and aST models provide estimates much closer to observations. 

How does the confidence of discharges estimated from various simulations of the current 
climate compare to the confidence of estimates from a nonstationary extreme value analysis? 

The uncertainty in discharge estimated from performing a NEVA on observations were 
compared to uncertainty in estimates from various simulations of the current climate. The 
main conclusions from this analysis are briefly described below: 

• For limited record length, the uncertainty in estimates from simulations of the current 
climate is larger than the uncertainty in estimates from a NEVA.  

• Short records, 55 years in this analysis, contributes to the statistical uncertainty of 
estimated discharges. The impact of record length was further explored in Section 6.1.  
 

How much influence do extreme value models have on discharge estimates and their 
uncertainty 

Extreme Value Distributions 
In Section 5.1, the performance of GP, GEV, and Gumbel were compared for three datasets 
at each station of interest. From this analysis the following conclusions are made: 

• The tail behavior of extremes varies at different locations in the Meuse.  
• At the six stations estimates of the best fit model obtained from 1,040-years of 

modelled data (modelled data the length of observations) are between 31% (43%) 
lower and 12% (16%) higher than those obtained from observations.  

• GEV and Gumbel estimates of the 100-year discharge varied between 3 and 14 
percent and GP and Gumbel estimates vary between 4 and 9 percent. Additionally, the 
difference between estimates increases with increasing RP. GEV and Gumbel 
estimates of the 1000-year discharge vary between 5 and 26 percent and GP and 
Gumbel estimates vary between 6 and 16 percent.  

• Increasing the record length resulted in narrower confidence intervals, however, this 
could lead to a false sense of accuracy if the most suitable model is not selected.  

Parameter Estimation Methods 
Section 5.2 compared the impact MLE and MoM have on estimated discharges when used to 
fit data to Gumbel. The main conclusions of this analysis include: 

• Estimates obtained using MLE and MoM to fit the 1,040 years of synthetic data had 
up to 9 percent difference.  

• Estimates obtained from MLE were more precise than those obtained from MoM. 
• AIC indicated that models fit using MLE fit the data better than those fit using MoM.  
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How much influence do event sets have on discharge estimates and their uncertainty? 

Length of Time Series 
Results presented in Section 6.1 demonstrate that estimates become more precise with 
increasing record length. The two main conclusions from this analysis are: 

• Estimates become more precise with increasing record length. The width of the 
confidence interval of 100-year discharges obtained using Gumbel (GEV) for a record 
length of 130 years decreased between 20 and 45 percent (15 and 61 percent) from 
estimates obtained from a record length of 65 years. The width of the confidence 
interval of 100-year discharges obtained using Gumbel (GEV) for a record length of 
1,040 years decreased between 75 and 85 percent (70 and 89 percent) from estimates 
obtained from a record length of 65 years. 

• The flexibility of the GEV shape parameter results in significant statistical uncertainty 
in discharge estimates for short records. When a shorter record length is used the 
confidence in the estimate of the GEV shape parameter is wide enough to cover the 
three limiting types of GEV. However, with increasing record length, the GEV shape 
parameter converges to one of the three limiting types. 

Seasonality 
Results presented in Section 6.2 demonstrate that neglecting seasonality could under or 
overestimate extreme discharges. From this analysis the following conclusions are made: 

• Modelled summer AM exceeded the magnitude of the 2021 event at two of the six 
stations. Additionally, there are between 5 and 27 percent of historical summer AM at 
the six stations but only between 2 and 11 (1 and 6) percent of modelled summer AM 
in the 1,040 years of synthetic data (modelled data the length of observations). Both 
the magnitude and intensity of modelled summer events is limited.  

• Gumbel (GEV) estimates decreased between up to 16 (48) percent when summer was 
removed from observed data at the five stations of interest where the 2021 event 
exceeded all previously recorded AM. Gumbel (GEV) estimates changed up to 6 
percent when summer was removed from modelled data. The smaller difference when 
removing summer from modelled data is likely due to the limited extreme summer 
events present in the synthetic data. 

• Analyzing summer and winter events separately revealed that summer extremes 
exhibit a heavier tail behavior than winter extremes which suggests that summer and 
winter extremes are generated by different flood mechanisms. This indicates that 
summer and winter extremes belong to different statistical distributions contradicting 
the assumption of i.i.d. events. Therefore, seasonality should be accounted for.  

• Comparison between the 100-year discharge estimated from the combined winter and 
summer approach and the full year of AM, demonstrated that neglecting seasonality 
in historical data led to under and overestimations up to 24 and 22 percent, 
respectively. Modelled discharges the same length as observations (1,040 years) were 
underestimated up to 5 (0) percent and overestimated up to 2 (2) percent. Differences 



8-4 8. CONCLUSION AND ANSWER TO RESEARCH 

  

are likely smaller for modelled data due to the limited extreme synthetic summer 
events.  

To what extent do the modelling assumptions in an extreme value analysis affect the 
estimation of extreme discharge return levels? 

Throughout this thesis several modelling assumptions were evaluated to determine their 
influence on the estimation of extreme discharges using 1,040 years of synthetic data 
generated by RACMO. While short historical records make it difficult to obtain precise 
discharge estimates, the results presented in this thesis demonstrate that each decision made 
throughout an EVA can impact estimates.  

Longer records provide considerable value to an EVA. At the six stations of interest, the 
width of the confidence interval of 100-year discharges obtained using Gumbel (GEV) for a 
record length of 1,040 years decreased between 75 and 85 percent (70 and 89 percent) from 
estimates obtained from a record length of 65 years. However, even with the added value of a 
longer series of synthetic series, results presented in this thesis demonstrate that there is still 
significant variability in discharge estimates under the various modelling assumptions. For 
the six stations, the maximum percent difference of the 100-year discharge obtained from the 
1,040 years of synthetic data under various modelling assumptions are summarized below:  

• Neglecting (full year of AM) versus accounting for seasonality (partitioned summer 
and winter analysis and combining results) led to estimates that varied up to 2 percent. 
However, it was also shown that there are a limited number of synthetic summer AM 
with respect to observed summer AM. Neglecting versus accounting for seasonality 
led to estimates obtained from observations that varied up to 24 percent.  

• GEV (GP) and Gumbel estimates varied up to 14 (9) percent. Percentage does not 
include results obtained at Station 6228 because Gumbel was not a good fit for the 
1,040 years of synthetic data at this station. 

• MLE and MoM estimates varied up to 9 percent. Percentage does not include results 
obtained at Station 6228 because Gumbel was not a good fit for the 1,040 years of 
synthetic data at this station. 

Therefore, while long series of discharges reduce the statistical uncertainty, careful 
consideration should be given to each modelling assumption to avoid precise but inaccurate 
estimates.  

8.2. RECOMMENDATIONS FOR FLOOD RISK 
PRACTITIONERS 

Based on the results presented in this thesis the following recommendations may be given to 
flood risk practitioners: 

• When limited data is available, one extreme event can significantly impact discharge 
extremes. Additionally, observed extremes are susceptible to measurement 
inaccuracies. Therefore, it is recommended to investigate ways to generate longer 
series of meteorological data that can be used in a hydrological model to obtain long 
series of discharges. 
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• Results of statistical tests should not be solely relied on to infer the persistence of 
nonstationarity. Before applying a NS model, possible mechanisms responsible for 
nonstationarity should be investigated, such as climate or land use changes.  

• Generating stationarity synthetic data for a NS system can result in under or 
overestimations of extreme discharges. A physically based climate model can be used 
to obtain long, synthetic NS meteorological data and land use changes can be 
incorporated into a hydrological model to obtain long, synthetic series of NS 
discharges. Statistical trend tests for observed and modelled data can be compared to 
evaluate and improve model performance. 

• Large differences between observed and modelled estimates could be due to limited 
data making it difficult to obtain robust estimates from short historical record or be 
indicative of poor model performance. Results could be corrected by using the 
location and scale parameters obtained from observations and the shape parameter 
estimated from the long series of modelled data, which as shown in Section 6.1, 
becomes more precise when more data is available.   

• While multiple distributions can pass formal GOF tests at one location, each 
distribution has distinct tail behavior that describes how often extremes occur. 
Additionally, the tail behavior of extremes varies at different locations in the same 
system. Therefore, different distributions should be compared at each location of 
interest when estimating hydrological extremes.  

• A robust parameter estimation method should be selected to prevent over or 
underestimations of hydrological extremes. 

• To obtain reliable estimates of high RPs, beyond one-third of the record length, it is 
recommended to investigate ways to generate longer time series to obtain more 
precise discharge estimates. 

• Results presented in Section 6.2 illustrate that both the number and intensity of 
summer events is limited in the synthetic discharges. This likely indicates that the 
RACMO climate model does not capture the physical mechanisms that generate 
summer events. Therefore, it is recommended to further refine the RACMO climate 
model and focus on the calibration of summer events. 

• Results demonstrated that summer AM have a heavier tail behavior than winter AM, 
which indicates that at a certain return period summer AM can exceed winter AM. 
This suggests that summer and winter extremes belong to different distributions and 
seasonality should be explicitly accounted for in EVA. 

8.3. RECOMMENDATIONS FOR FURTHER RESEARCH 

Recommendations for further research related to the impact of nonstationarities include: 

• Incorporate the climate and land use changes in the hydrological model.  

Recommendations for further research related to the uncertainties resulting from extreme 
value models include: 

• Study the performance of additional parameter estimation methods. This thesis was 
limited to comparison between MLE and MoM but it may be interesting to investigate 
Bayesian approaches to estimate parameters. 

• Evaluate the performance of additional extreme value distributions such as the 
Metastatistical Extreme Value (MEV) distribution which does not require the 
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asymptotic assumption required in the application of EVT (Marani & Ignaccolo, 
2015). Therefore, it would be interesting to compare the MEV framework EVA. 

Recommendations for further research related to the uncertainties in event sets include: 

• RACMO climate data could be used as input to the stochastic weather generator to 
obtain 50,000 years of data that can be put into the hydrological model. Using this 
approach, could eliminate the need for statistical extrapolation and would be capable 
of capturing double distribution in the case of multiple flood generating mechanisms.  

• Evaluate the impact seasonality has using POT. In this study some datasets were best 
modelled using the POT method. Allamano et al. (2011) studied the impact of 
neglecting seasonality and concluded that the annual maxima approach often 
disguises the seasonality. However, they found that when using the POT method, 
neglecting seasonality can result in underestimations of discharges. Therefore, this 
would be interesting to explore for future research.  

There are several modelling assumptions that impact extreme value estimates. In the initial 
stages of this research, several modelling assumptions impacting discharge estimates and 
their uncertainty were identified and are recommended for future research including:  

• Uncertainties related to the hydrologic model.  
• Uncertainties related to the temporal resolution applied in the hydrologic model.    
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APPENDIX A: DATA CURATION 
Three processes were performed to filter out discharge stations inadequate for this study 
including: 

• Filtering out stations with less than 20 years of observations; 
• Plotting the time series and inspecting satellite imagery to remove stations that may be 

impacted by nearby hydraulic structures; and  
• Inspection of the name, river, and basin data fields for each station to identify stations 

along canals. 

Filtering out stations with less than 20 years of observations 
Out of the 192 discharge stations within the Meuse, 141 have more than 20 years of 
observations.  

Plotting the time series and inspecting satellite imagery 
The time series of 141 discharge stations with more than 20 years of observations were plotted to 
identify any irregularities that would warrant removing the station from the study. A brief 
summary of the stations removed after plotting the time series is provided below. 

The time series of Station 5771, shown in Figure 46, exhibits irregular flow patterns which 
appeared to be human influenced. The river field for this station, Canal Albert, confirmed that 
this station measures the discharge along a canal. Therefore, this station was removed from this 
study. To ensure that no other stations along canals are included in this study, the name, river, 
and basin fields for each station are carefully examined as mentioned in the following section. 

 
Figure 46: Discharge Time Series for Station 5771 

Inspection of satellite imagery showed that stations 7132, 7831, 8017, 8022, 9214 are located 
nearby hydraulic structures. The satellite imagery and time series of these stations are shown in 
Figure 47 through Figure 56.  
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Figure 47: Satellite Imagery near Station 7132 

 
Figure 48: Discharge Time Series for Station 7132 

 
Figure 49: Satellite Imagery for Station 7831 

 
Figure 50: Discharge Time Series for Station 7831 
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Figure 51: Satellite Imagery for Station 8017 

 
Figure 52: Discharge Time Series for Station 8017 

 

 
Figure 53: Satellite Imagery for Station 8022 
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Figure 54: Discharge Time Series for Station 8022 

 
Figure 55: Satellite Imagery for Station 9214 

 
Figure 56: Discharge Time Series for Station 9214 

There were a few stations with irregular flow patterns, but trees made it difficult to determine 
whether or not there were structures in these areas. Due to the irregular flow patterns stations 
6220, 6340, and 6440 were removed. The satellite imagery and time series for these stations are 
provided in Figure 57 through Figure 62. 
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Figure 57: Satellite Imagery near station 6220 

 
Figure 58: Discharge Time Series for Station 6220 

 

 
Figure 59: Satellite Imagery near Station 6340 
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Figure 60: Discharge Time Series for Station 6340 

 
Figure 61: Satellite Imagery near Station 6440 

 
Figure 62: Discharge Time Series for Station 6440 

During inspection of the discharge time series, it was discovered that station 5820 had a change 
in base flow around 2003. The time series for this station, showing this change in base flow is 
shown in Figure 63.  
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Figure 63: Discharge Time Series for Station 5820 

Inspection of the name, river, and basin data fields 
To ensure no other canals are included in this study, the name, river, and basin fields for each 
station are carefully examined. No other stations along canals are found.  

Summary 
A summary of the justifications for discharge stations removed from this study is provided in 
Table 16.  

Table 16: Summary of Stations (with more than 20 years) Removed from Study 

Station ID Reason for Removing 
5771 Irregular flow pattern, Located along canal 
7132 Flow influenced by nearby hydraulic structure 
7831 Flow influenced by nearby hydraulic structure 
8017 Flow influenced by nearby hydraulic structure 
8022 Flow influenced by nearby hydraulic structure 
9214 Flow influenced by nearby hydraulic structure 
6220 Irregular flow pattern  
6340 Irregular flow pattern  
6440 Irregular flow pattern  
5820 Change in base flow 

 



 

 

APPENDIX B: NONSTATIONARITY OF 
OBSERVED DISCHARGE 
B.1. MANN KENDALL AND SEN’S SLOPE RESULTS FOR 
DISCHARGE 

Table 17: Trend in AM Observed Discharge 
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B.2 OBSERVED CHANGES IN RIVER DISCHARGES SINCE 2015   
 

 

 

 

 

B.2. OBSERVED CHANGES IN RIVER DISCHARGES SINCE 2015 
The eight sets of AM fit to the Gumbel distribution for each station of interest are presented in 
Figure 64 through Figure 69. 
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Figure 64: Discharge Frequency Curve (Left) and 10-year Discharges (Right) for Station 5921 

 
Figure 65: Discharge Frequency Curve (Left) and 10-year Discharges (Right) for Station 8221 

 
Figure 66: Discharge Frequency Curve (Left) and 10-year Discharges (Right) for Station 6228 
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Figure 67: Discharge Frequency Curve (Left) and 10-year Discharges (Right) for Station 6621 

 
Figure 68: Discharge Frequency Curve (Left) and 10-year Discharges (Right) for Station 6850 

 
Figure 69: Discharge Frequency Curve (Left) and 10-year Discharges (Right) for Station 8702 



 

 

B.3. EVOLUTION OF DISTRIBUTION PARAMETERS AND RETURN LEVELS AT 
STATIONS WITH A TREND IN OBSERVED ANNUAL MAXIMUM DISCHARGE 

 
Figure 70: Evolution of Gumbel Parameters and Estimated Return Levels for Station 7244 using 30-year Sliding Window 

 
Figure 71: Evolution of Gumbel Parameters and Estimated Return Levels for Station 9081 using 30-year Sliding Window 
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Figure 72: Evolution of Gumbel Parameters and Estimated Return Levels for Station 8211 using 30-year Sliding Window 

 

 
Figure 73: Evolution of Gumbel Parameters and Estimated Return Levels for Station 8341 using 30-year Sliding Window 



 

 

APPENDIX C: EXTREME VALUE MODELS INFLUENCE ON 
DISCHARGE ESTIMATES AND THEIR UNCERTAINTY 
C.1. EXTREME VALUE DISTRIBUTIONS 
 

 
Figure 74: Extreme Value Distributions - Station 6228 
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Figure 75: Extreme Value Distributions - Station 6621 

 

 
Figure 76: Extreme Value Distributions - Station 5921 
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Figure 77: Extreme Value Distributions - Station 8221 

 
Figure 78: Extreme Value Distributions - Station 8702 
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Figure 79: Extreme Value Distributions - Station 6850 

The percent differences in 100-year estimated discharges obtained from observed and modelled data are presented in Table 18. For 
example, at Station 5921 GEV estimates obtained from modelled data the same length as observations were ten percent lower than 
GEV estimates obtained from observations. However, as will be discussed later on in this section, the best fit model for observations, 
modelled data resampled to be the same length as observations, and 1,040 years of modelled data varies which partially contributes to 
the differences in estimates between the datasets. Therefore, the percent difference of the 100-year discharge obtained from the best fit 
model is also provided. 
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Table 18: Percent Difference in 100-year Estimated Discharges Obtained from Observed and Modelled Data 

Station  
GEV GP Gumbel Best Fit Model2 

Modelled, 
Length of Obs.1 

Modelled, 
1040-years 

Modelled, 
Length of Obs. 

Modelled, 
1040-years 

Modelled, 
Length of Obs. 

Modelled, 
1040-years 

Modelled, 
Length of Obs. 

Modelled, 
1040-years 

8221 -6%  -17%  -15%  -12%  +4%  0%  -6%  -16%  

5921 -10%  +4%  -13%  +11%  +8%  +17%  -10%  +4%  

6228 +16%  +2%  +22%  +12%  +2%  -10%  +16%  +10%  

6621 -41%  -31%  -23%  -1%  -7%  -1%  -41%  -31%  

8702 +13%  +14%  -4%  +2%  +22%  +14%  +13%  +12%  

6850 -65%  -43%  -50%  -7%  -30%  +4%  -43%  -7%  
Notes: 
1. Percent differences between observations and modelled data, length of observations is shown to give an idea of how much estimates obtained from modelled data randomly sampled to be the 
same length as observations can vary from those obtained from observations.  
2. The percent difference between estimates is calculated using the 100-year discharge from the best fit model for each dataset (the best fit model between observations, modelled data the length of 
observations, 1,040-years of modelled data varies).  
3. A positive percentage indicates that estimates obtained from modelled data, either length of observations or 1,040-years, are higher than those obtained from observed data.  

Percent differences between GEV (or GP) and Gumbel estimates obtained from 1,040 years of modelled data are shown in Table 
19. At the stations of interest GEV and Gumbel estimates of Q100 vary between 3 and 24 percent and GP and Gumbel estimates vary 
between 4 and 30 percent. Additionally, the difference between estimates increases with increasing RP. 

Table 19: Percent Difference between GEV (or GP) and Gumbel Estimates obtained from 1,040 years of Modelled Data 

Station  
Percent Difference from Gumbel Estimate 

QGEV,50 QGEV,100 QGEV,1000 QGP,50 QGP,100 QGP,1000 
8221 +6% +8% +15% +6% +9% +15% 
5921 +8% +11% +19% +5% +7% +11% 
62281 +18% +24% +42% +28% +30% +35% 
6621 +11% +14% +26% +3% +7% +16% 
87022 -2% -3% -5% -3% -4% -11% 
6850 +4% +8% +8% +4% +8% +6% 

Notes: 
1. Gumbel was not a good fit for the 1,040 years of modelled data at Station 6228. 
2. Station 8702 exhibited light tail behavior.  
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C.1.1. THRESHOLD ESTIMATION FOR GP DISTRIBUTION  

Table 20: Thresholds for Generalized Pareto Distribution 

Station 
ID 

Threshold 

Observations Modelled Data 
(Length of Obs.) 

Modelled Data 
(1,040 years) 

6228 60 60 60 
6621 60 65 65 
5921 100 100 120 
8221 100 100 94 
8702 400 400 470 
6850 2.5 6 6 

 

 
Figure 80: MRLP for Station 6228 
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Figure 81: MRLP for Station 6621 

 
Figure 82: MRLP for Station 5921 
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Figure 83: MRLP for Station 8221 

 
Figure 84: MRLP for Station 8702 
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Figure 85: MRLP for Station 6850 

C.1.2. GOODNESS OF FIT 
At all stations included in this analysis, the Q-Q plot and Kolmogorov Smirnov tests, introduced in Section 2.4, indicated that all three 
distributions were a good fit for all three datasets except for Station 6228. The Kolmogorov Smirnov test indicated that the Gumbel 
distribution was not a good fit for the 1,040 years of modelled data at Station 6228. The alpha value of the KS test for the Gumbel 
distribution was 0.04979, therefore, the null hypothesis that the data fits the Gumbel distribution is rejected. The Q-Q plot is shown in 
Figure 86. 
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Figure 86: Gumbel Q-Q plot for Station 6228 

C.2. PARAMETER ESTIMATION METHODS 

 



C.2 PARAMETER ESTIMATION METHODS   
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Table 21: Percent Difference in Estimates of the 100-year Discharge using MLE and MoM 

Station 
Percent Difference between Estimates Obtained from MLE and MoM 

Observations Modelled Data, Length of Obs. 1,040-years of Modelled Data 
8221 14% 5% 6% 
5921 8% 3% 6% 

6228 1 12% 27% 49% 

6621 13% 2% 9% 
8702 2% 5% 1% 
6850 12% 0% 4% 

Note:    
1. Gumbel was not a good fit for the 1,040 years of modelled data at Station 6228 when using MLE or MoM. 



 

 

APPENDIX D: EVENT SETS INFLUENCE ON 
DISCHARGE ESTIMATES AND THEIR 
UNCERTAINTY 
D.1. RECORD LENGTH 

Table 22: Percent Decrease in Width of Confidence Interval from a Record Length of 65 years 

Station  Return 
Level 

Percent Decrease in Width of Confidence Interval from a Record Length of 65 years 

Gumbel  GEV 
130 

years 
195 

years 
260 

years 
1040 
years 

130 
years 

195 
years 

260 
years 

1040 
years 

8221 
50-year 26% 53% 63% 78% 31% 46% 65% 83% 

100-year 27% 52% 64% 77% 32% 48% 66% 84% 
1000-year 29% 53% 63% 78% 37% 53% 71% 87% 

5921 
50-year 46% 64% 71% 83% 58% 69% 69% 85% 

100-year 45% 65% 72% 84% 61% 72% 72% 87% 
1000-year 47% 66% 72% 84% 71% 80% 81% 90% 

6228 

50-year 36% 57% 69% 83% 42% 71% 78% 88% 
100-year 36% 57% 70% 83% 46% 74% 81% 89% 

1000-year 37% 57% 69% 83% 58% 82% 88% 93% 

6621 

50-year 37% 51% 66% 82% 39% 49% 67% 83% 
100-year 38% 51% 66% 82% 42% 53% 70% 85% 

1000-year 40% 52% 67% 82% 52% 64% 78% 89% 

8702 
50-year 21% 41% 51% 75% 17% 26% 52% 71% 

100-year 20% 41% 51% 75% 15% 26% 52% 70% 
1000-year 19% 40% 51% 75% 5% 24% 53% 68% 

6850 
50-year 29% 43% 57% 71% 38% 50% 50% 88% 

100-year 25% 38% 50% 75% 39% 52% 52% 87% 
1000-year 27% 36% 55% 73% 38% 55% 55% 87% 
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D.1.1. GUMBEL DISTRIBUTION 

 
Figure 87: Estimated Discharges for varying Record Lengths - Station 8221 

 
Figure 88: Estimated Discharges for varying Record Lengths - Station 5921 
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Figure 89: Estimated Discharges for varying Record Lengths - Station 6228 

 
Figure 90: Estimated Discharges for varying Record Lengths - Station 6621 
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Figure 91: Estimated Discharges for varying Record Lengths - Station 8702 

 
Figure 92: Estimated Discharges for varying Record Lengths - Station 6850 
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D.1.2. GEV DISTRIBUTION 

 
Figure 93: Estimated Discharges for varying Record Lengths - Station 8221 

 
Figure 94: Estimated Discharges for varying Record Lengths - Station 5921 
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Figure 95: Estimated Discharges for varying Record Lengths - Station 6228 

 
Figure 96: Estimated Discharges for varying Record Lengths - Station 6621 
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Figure 97: Estimated Discharges for varying Record Lengths - Station 8702 

 
Figure 98: Estimated Discharges for varying Record Lengths - Station 6850 
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D.2. SEASONALITY 

 
Figure 99: Seasonality of Annual Maximum Discharge - Station 5921 

 
Figure 100: Seasonality of Annual Maximum Discharge - Station 8221 
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Figure 101: Seasonality of Annual Maximum Discharge - Station 6228 

 
Figure 102: Seasonality of Annual Maximum Discharge - Station 6621 
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Figure 103: Seasonality of Annual Maximum Discharge - Station 6850 

 
Figure 104: Seasonality of Annual Maximum Discharge - Station 8702 
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Figure 105: Results of Extreme Value Analysis Including and Excluding Summer Events (April - September) – Stations 5921, 8221, and 6228 
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Figure 106: Results of Extreme Value Analysis Including and Excluding Summer Events (April - September) – Stations 6621, 6850, and 8702 
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Figure 107: Results of EVA for Summer and Winter (Summer: April - September, Winter: October - March) – Stations 5921, 8221, and 6228 
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Figure 108: Results of EVA for Summer and Winter (Summer: April - September, Winter: October - March) – Stations 6221, 6850, and 8702 
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Figure 109: Comparison of Combined EVA (green) and Neglecting Seasonality (grey) (Summer: April - September, Winter: October - March) – Stations 5921, 8221, and 

6228 
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Figure 110: Comparison of Combined EVA (green) and Neglecting Seasonality (grey) (Summer: April - September, Winter: October - March) – Stations 6621, 6850, and 

8702 


