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Adaptive Graph Signal Processing:
Algorithms and Optimal Sampling Strategies

Paolo Di Lorenzo , Member, IEEE, Paolo Banelli , Member, IEEE, Elvin Isufi , Student Member, IEEE,
Sergio Barbarossa , Fellow, IEEE, and Geert Leus, Fellow, IEEE

Abstract—The goal of this paper is to propose novel strategies
for adaptive learning of signals defined over graphs, which are
observed over a (randomly) time-varying subset of vertices. We
recast two classical adaptive algorithms in the graph signal pro-
cessing framework, namely the least mean squares (LMS) and the
recursive least squares (RLS) adaptive estimation strategies. For
both methods, a detailed mean-square analysis illustrates the effect
of random sampling on the adaptive reconstruction capability and
the steady-state performance. Then, several probabilistic sampling
strategies are proposed to design the sampling probability at each
node in the graph, with the aim of optimizing the tradeoff between
steady-state performance, graph sampling rate, and convergence
rate of the adaptive algorithms. Finally, a distributed RLS strategy
is derived and shown to be convergent to its centralized counter-
part. Numerical simulations carried out over both synthetic and
real data illustrate the good performance of the proposed sam-
pling and recovery strategies for (distributed) adaptive learning of
signals defined over graphs.

Index Terms—Adaptation and learning, graph signal processing,
sampling on graphs, successive convex approximation.

I. INTRODUCTION

IN A large number of applications involving sensor, trans-
portation, communication, social, or biological networks, the

observed data can be modeled as signals defined over graphs,
or graph signals for short. As a consequence, over the last few
years, there was a surge of interest in developing novel anal-
ysis methods for graph signals, thus leading to the research
field known as graph signal processing (GSP), see, e.g., [1]–[3].
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The goal of GSP is to extend classical processing tools to the
analysis of signals defined over an irregular discrete domain,
represented by a graph, and one interesting aspect is that such
methods typically come to depend on the graph topology, see,
e.g., [2], [4]–[7]. Probably, the most important processing tool
is represented by graph spectral analysis, which hinges on the
definition of the graph Fourier transform (GFT). The GFT was
defined in two alternative ways, i.e., the projection of the graph
signal onto the eigenvectors of either the Laplacian, see, e.g.,
[1], [8], [9], or of the adjacency matrix, see, e.g. [2], [10]. Quite
recently, a third approach was also proposed, which builds the
GFT as the set of orthonormal vectors that minimizes the Lovász
extension of the graph cut size [11].

A fundamental task in GSP is to infer the attributes of some
vertices from the observation of other vertices. In the GSP liter-
ature, this learning task is known as interpolation from samples,
and emerges whenever cost constraints limit the number of ver-
tices that we can directly observe. An important contribution to
sampling theory in GSP is given by [8], later extended in [12]
and, very recently, in [10], [13]–[16]. Then, several interpolation
methods were proposed to reconstruct signals on graphs from a
subset of samples. Machine learning methods typically exploit
smoothness of the signal over the graph, see, e.g., [17]–[20],
whereas GSP usually considers estimators for graph signals that
adhere to the bandlimited model, i.e., signals that belong to the
span of some eigenvectors of the graph Laplacian or adjacency
matrices, see, e.g., [10], [13], [16]. Sampling theory for graph
signals will represent the basic tool to enable proactive sensing
of large-scale cyber physical systems, with the aim of ensuring
proper control of the system within its physical constraints and
guaranteing a target level of performance, by only checking a
limited number of nodes, over a limited number of time instants.
In fact, as illustrated in several recent works as, e.g., [10], [13],
[21]–[23], when sampling graph signals, what matters is not
only how many samples are taken but, most importantly, where
such samples are collected over the graph, thus catalyzing the
interest for designing novel criteria and algorithms to select the
set of sampled vertices.

In many applications such as, e.g., transportation networks,
brain networks, or communication networks, the observed graph
signals are typically time-varying. This requires the develop-
ment of effective methods capable to learn and track dynamic
graph signals from a carefully designed, possibly time-varying,
sampling set. Some previous works have considered this specific
learning task, see, e.g., [24]–[27]. Specifically, [24] proposed
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an LMS estimation strategy enabling adaptive learning and
tracking from a limited number of smartly sampled obser-
vations. The LMS method in [24] was then extended to
the distributed setting in [25]. The work in [26] proposed a
kernel-based reconstruction framework to accommodate time-
evolving signals over possibly time-evolving topologies, lever-
aging spatio-temporal dynamics of the observed data. Finally,
reference [27] proposes a distributed method for tracking ban-
dlimited graph signals, assuming perfect observations (i.e., there
is no measurement noise) and a fixed sampling strategy.

The goal of this paper is to provide fundamental contributions
toward the development of an adaptive graph signal processing
framework, whose aim is to extend classical adaptive processing
methods to the analysis of signals defined over graphs. The main
contributions of this work are summarized in the following two
points.

1) Similarly to the distributed case in [25], we extend the
LMS algorithm of [24] to incorporate a probabilistic
sampling mechanism, where each node of the graph, at
every time instant, is sampled with a given probability.
Then, we derive a mean-square analysis that illustrates
the role played by the sampling probabilities on the re-
construction capabilities and performance of the LMS
algorithm. On the basis of the developed analysis, we de-
sign probabilistic sampling strategies aimed at minimizing
the graph sampling rate (or maximizing the mean-square
performance) while imposing accuracy (and/or sampling)
constraints.

2) We propose an RLS reconstruction strategy that collects
data over the graph by the same probabilistic sampling
method. Then, after giving necessary and sufficient con-
ditions for adaptive graph signal reconstruction, we for-
mulate an optimization problem to design the sampling
probability at each node in the graph, with the aim of
reducing the sampling rate while guaranteeing signal re-
construction and a prescribed steady-state performance.
Finally, we derive a distributed RLS strategy for graph
signals exploiting the alternating direction method of mul-
tipliers (ADMM) [28].

The proposed methods can be applied to any graph structure
describing the observed signal and, under a bandlimited assump-
tion, enable adaptive reconstruction and tracking from a limited
number of observations taken over a (possibly time-varying)
subset of vertices. An interesting feature of our strategies is that
this subset is allowed to vary over time, provided that the ex-
pected sampling set satisfies specific conditions enabling graph
signal recovery.

The rest of the paper is organized as follows. In Section II,
we summarize some GSP tools that will be used throughout the
paper. Section III introduces the proposed LMS algorithm for
adaptive learning of graph signals, illustrating the conditions
enabling signal reconstruction from a (time-varying) subset of
samples, deriving a detailed mean-square analysis, and develop-
ing useful sampling strategies. Similarly, Section IV considers
RLS on graphs, along with its mean-square properties, sampling
strategies, and distributed implementation. Then, in Section V
we report several numerical simulations, aimed at assessing
the validity of the theoretical analysis and the performance

of the proposed algorithms. Finally, Section VI draws some
conclusions.

II. BACKGROUND ON GRAPH SIGNAL PROCESSING

Let us consider a graph G = (V, E) consisting of a set
of N nodes V = {1, 2, ..., N}, along with a set of weighted
edges E = {aij}i,j∈V , such that aij > 0, if there is a link from
node j to node i, or aij = 0, otherwise. The adjacency ma-
trix A of a graph is the collection of all the weights, i.e.,
A = {aij}, i, j = 1, . . . , N . The Laplacian matrix is defined
as L = diag(1T A)−A, where 1 denotes the vector composed
of all ones, and diag(x) is a matrix having x as main diagonal,
and zeros elsewhere. If the graph is undirected, the Laplacian
matrix is symmetric and positive semi-definite, and can be de-
composed as L = UΛUH , where U collects an orthonormal
set of eigenvectors of L in its columns, whereas Λ is a diagonal
matrix containing the real eigenvalues of L.

A signal x over a graph G is defined as a mapping from the
vertex set to the set of complex numbers, i.e., x : V → C. The
GFT s of a signal x is defined as the projection onto the set of
vectors U = {ui}i=1,...,N , i.e.,

s = UHx, (1)

where {ui}i=1,...,N form an orthonormal basis and are com-
monly chosen as the eigenvectors of either the graph Laplacian
[1], or of the adjacency matrix [2], [10] (always assuming these
matrices are normal). In this paper, we basically follow the ap-
proach from [1], but the theory can be directly extended to other
cases by simply substituting in (1) the corresponding GFT basis.
We denote the support of s in (1) as

F = {i ∈ {1, . . . , N} : si �= 0},

and the bandwidth of the graph signal x is defined as the car-
dinality of F , i.e., |F|. The space of all signals whose GFT is
supported on the set F is known as the Paley-Wiener space for
the set F [8].

Finally, given a subset of vertices S ⊆ V , we define a vertex-
limiting operator as the diagonal matrix

DS = diag{1S}, (2)

where 1S is the set indicator vector, whose i-th entry is equal
to one, if i ∈ S, or zero otherwise. Similarly, given a subset of
frequency indices F ⊆ V , we introduce the filtering operator

BF = UFUH
F , (3)

where UF ∈ CN ×|F| collects the subset of columns of matrix
U in (1) associated to the frequency indices F . It is immediate
to check that both matrices DS and BF are self-adjoint and
idempotent, and so they represent orthogonal projectors onto
the set of vertices S and the Paley-Wiener space F , respectively.

III. ADAPTIVE LEAST MEAN SQUARES ESTIMATION

OF GRAPH SIGNALS

Let us consider a signal xo = {xo
i }N

i=1 ∈ CN defined over
the graph G = (V, E). To enable sampling of xo without loss of
information, the following is assumed:
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Assumption 1 (Bandlimited): The signal xo is F-band-
limited over the graph G, i.e., its spectral content is different
from zero only on the set of indices F . �

If the signal support F is fixed and known beforehand, from
(1), the graph signal xo can be modeled in compact form as:

xo = UFs
o , (4)

where so ∈ C|F| is the vector of GFT coefficients of the fre-
quency support of the graph signal xo . At each time n, noisy
samples of the signal are taken over a time-varying subset of
vertices, according to the following model:

y[n] = DS[n ] (xo + v[n]) = DS[n ]UFs
o + DS[n ]v[n] (5)

where DS[n ] = diag{d1 [n], . . . , dN [n]} ∈ RN ×N [cf. (2)],
with di [n] denoting a sampling random binary coefficient, which
is equal to 1 if i ∈ S[n], and 0 otherwise (i.e.,S[n] represents the
instantaneous, random sampling set at time n); and v[n] ∈ CN

is zero-mean, spatially and temporally independent observa-
tion noise, with covariance matrix Cv = diag {σ2

1 , . . . , σ2
N }.

The estimation task consists in recovering the vector xo (or,
equivalently, its GFT so ) from the noisy, streaming, and partial
observations y[n] in (5). Following an LMS approach [29], from
(5), the optimal estimate for so can be found as the vector that
solves the optimization problem1:

min
s

E ‖DS[n ](y[n] − UFs)‖2 (6)

where E(·) denotes the expectation operator, and in (6) we have
exploited the fact that DS[n ] is an idempotent matrix for any
fixed n [cf. (2)]. A typical LMS-type solution proceeds to op-
timize (6) by means of a stochastic steepest-descent procedure,
relying only on instantaneous information. Thus, letting ŝ[n] be
the current estimate of vector so , the LMS algorithm for graph
signals evolves as:

ŝ[n + 1] = ŝ[n] + μUH
F DS[n ] (y[n] − UF ŝ[n]) , (7)

where μ > 0 is a (sufficiently small) step-size, and we have ex-
ploited the fact that DS[n ] is an idempotent operator. Finally,
exploiting (4) and (3), recursion (7) can be equivalently re-
cast with respect to the current estimates of graph signal xo ,
say x̂[n], as illustrated in Algorithm 1. At every iteration n,
Algorithm 1 evolves implementing an alternating orthogonal
projection onto the instantaneous sampling set S[n] (through
DS[n ]) and the Paley-Wiener space F (through BF ), with an
overall complexity given by O(|F||S[n]|). The LMS strategy
in Algorithm 1 extends the method previously proposed in [24]
by incorporating the random sampling mechanism defined by
the time-varying sampling operator DS[n ] . Of course, the mean-
square properties of the LMS recursion crucially depend on the
properties of the random sampling operator DS[n ] . Thus, in the
following, we will show how the design of the sampling strategy
affects the reconstruction capability, the learning rate, and the
steady-state performance of Algorithm 1. Before moving for-
ward, we introduce an independence assumption on the random
sampling process.

1Note that, since UF has orthonormal columns, estimating so or xo is
equivalent from a mean square error perspective.

Algorithm 1: LMS On Graphs.

Start with random x̂[0]. Given a sufficiently small step-size
μ > 0, for each time n ≥ 0, repeat:

x̂[n + 1] = x̂[n] + μBFDS[n ] (y[n] − x̂[n])

Assumption 2 (Independent sampling): The random vari-
ables extracted from the sampling process {di [l]} are temporally
and spatially independent, for all i, and l ≤ n. �

Assumption 2 can be easily realized in practice if we collect
data using a set of sensors, each one working in an indepen-
dent fashion (i.e., spatial independence) and without taking into
account past or future actions (i.e., temporal independence).

A. Adaptive Reconstruction From Probabilistic Sampling

Assuming the random sampling and observation processes
{di [n]}N

i=1 and {y[n]} to be stationary over time,2 the solution
of problem (6) is given by the vector so that satisfies:

UH
F diag(p)UFs

o = UH
F E{y[n]}, (8)

where p = (p1 , . . . , pN )T ∈ RN represents the sampling prob-
ability vector, with pi = E{di [n]}, i = 1, . . . , N , denoting the
probability that node i is sampled at time n. The system of
equations (8) admits a unique solution so if the square matrix
UH

F diag(p)UF is full rank or, equivalently, if

λmin

(

UH
F diag(p)UF

)

> 0, (9)

where λmin(Y) is the minimum eigenvalue of matrix Y. Also,
let us denote the expected sampling set by

S = {i = 1, . . . , N | pi > 0},

i.e., the set of nodes of the graph that are sampled with a prob-
ability strictly greater than zero. To provide a necessary and
sufficient condition for signal reconstruction, we proceed simi-
larly to [13], [25]. Since pi > 0 for all i ∈ S ,

rank
(

UH
F diag(p)UF

)

= rank
(

UH
F DSUF

)

, (10)

i.e., condition (9) holds true if matrix UH
F DSUF has full rank,

where DS is a vertex-limiting operator that projects onto the ex-
pected sampling setS [cf. (2)]. Let us now introduce DSc

= I −
DS , which projects onto the complement of the expected sam-
pling set, i.e.Sc = V \ S = {i = 1, . . . , N | pi = 0}. Then, sig-
nal reconstruction is possible if UH

F DSUF = I − UH
F DSc

UF
is invertible, i.e., if

∥

∥UH
F DSc

UF
∥

∥

2
< 1 or, equivalently, if

∥

∥DSc
UF
∥

∥

2
< 1. (11)

As illustrated in [13], [24], condition (11) implies that there
are no F-bandlimited signals that are perfectly localized over
the set Sc , thus providing a necessary and sufficient condition

2The stationarity assumption is necessary to study analytically the asymptotic
behavior of adaptive filters, and is typically used in the literature [29].
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for adaptive graph signal reconstruction. In particular, differ-
ently from previous works on deterministic and time-invariant
sampling of graph signals, see, e.g., [8], [10], [12]–[15], [24],
condition (11) depends on the expected sampling set. As a con-
sequence, the proposed LMS algorithm with probabilistic sam-
pling does not need to collect all the data necessary to recon-
struct the graph signal at each iteration, but can learn acquiring
the needed information over time. The only important thing re-
quired by condition (11) is that a sufficiently large number of
nodes is sampled in expectation (i.e., the expected sampling set
S contains a sufficiently large number of nodes). Moreover, as
we will see in the following sections, a great advantage of our
probabilistic methods with respect to deterministic ones comes
from a simplification of the algorithms that we use to select the
optimal sampling strategy. Indeed, deterministic sampling typ-
ically leads to complex integer optimization problems, which
must be either relaxed or solved approximatively using greedy
approaches, when a brute force method is not feasible due to
complexity reasons. On the other side, using our probabilistic
formulation, we can obtain sampling strategies that are based on
convex problem formulations [see, e.g., (18) and (35)], whose
globally optimal solution can be found using efficient numerical
methods. To this aim, in the sequel, we will carry out a detailed
mean-square analysis for Algorithm 1.

B. Mean-Square Performance

We now illustrate how the sampling probability vector p af-
fects the mean-square behavior of Algorithm 1. Let x̃[n] =
x̂[n] − xo and s̃[n] = ŝ[n] − so be the error vectors on the
graph signal and its GFT, respectively, at time n. Thus, using
(5) in (7), we obtain:

s̃[n + 1] = (I − μUH
F DS[n ]UF ) s̃[n] + μUH

F DS[n ]v[n].
(12)

Starting from (12), it is possible to derive a complete mean-
square analysis of Algorithm 1, which relies also on the follow-
ing assumption.

Assumption 3 (Small step-size): The step-size μ is chosen
sufficiently small so that terms that depend on higher-order
powers of μ can be ignored. �
The main results are summarized in the following Theorem.

Theorem 1: Given model (5), under Assumptions 2 and 3,
and for any initial condition, Algorithm 1 is stable in the mean-
square error sense if the sampling probability vector p and the
step-size μ are chosen to satisfy (11) and

0 < μ <
2λmin

(

UH
F diag(p)UF

)

λ2
max

(

UH
F diag(p)UF

) . (13)

Furthermore, the mean-square deviation (MSD) writes as3

MSD = lim
n→∞

E‖x̃[n]‖2 = lim
n→∞

E‖s̃[n]‖2 (14)

=
μ

2
Tr
[

(

UH
F diag(p)UF

)−1
UH

F diag(p)CvUF

]

+ O(μ2)

3Note that, if (11) holds and considering spatially white noise samples with
equal variance σ2

v , expression (14) reduces to MSD = μ
2 |F|σ2

v + O(μ2 ).

and the convergence rate α is well approximated by

α 
 1 − 2μλmin

(

UH
F diag(p)UF

)

(15)

when μ �
2λmin

(

UH
F diag(p)UF

)

λ2
max

(

UH
F diag(p)UF

) .

Proof: See Appendix A. �

C. Optimal Sampling Strategies

The mean-square analysis in Sec. III-B illustrates how
the convergence rate and the mean-square performance of
Algorithm 1 depend on the sampling probability vector p [cf.
(14) and (15)]. Then, following a sparse sensing approach [30],
[31], the goal of this section is to develop optimal sampling
strategies aimed at designing the probability vector p that op-
timizes the tradeoff between steady-state performance, graph
sampling rate, and convergence rate of Algorithm 1. In the se-
quel, under Assumption 3, we neglect the term O(μ2) in (14),
and consider (15) as the convergence rate.

1) Minimum Graph Sampling Rate Subject to Learning Con-
straints: The first sampling strategy aims at designing the prob-
ability vector p that minimizes the total sampling rate over the
graph, i.e., 1T p, while guaranteeing a target performance in
terms of MSD in (14) and of convergence rate in (15). The
optimization problem can be cast as:

min
p

1T p

subject to

λmin

(

UH
F diag(p)UF

)

≥ 1 − ᾱ

2μ
(16)

Tr
[

(

UH
F diag(p)UF

)−1
UH

F diag(p)CvUF

]

≤ 2γ

μ

0 ≤ p ≤ pmax

The first constraint imposes that the convergence rate of the al-
gorithm is larger than a desired value, i.e., α in (15) is smaller
than a target value, say, e.g., ᾱ ∈ (0, 1). Note that the first con-
straint on the convergence rate also guarantees adaptive signal
reconstruction [cf. (9)]. The second constraint guarantees a tar-
get mean-square performance, i.e., the MSD in (14) must be
less than or equal to a prescribed value, say, e.g., γ > 0. Fi-
nally, the last constraint limits the probability vector to lie in
the box pi ∈ [0, pmax

i ], for all i, with 0 ≤ pmax
i ≤ 1 denoting an

upper bound on the sampling probability at each node that might
depend on external factors such as, e.g., limited energy, process-
ing, and/or communication resources, node or communication
failures, etc.

Unfortunately, problem (16) is non-convex, due to the pres-
ence of the non-convex constraint on the MSD. To handle the
non-convexity of (16), we follow two different approaches. In
the first place, under Assumption 3 [i.e., neglecting the terms
O(μ2)], we exploit an upper bound of the MSD function in (14),
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given by [32]:

MSD(p) ≤ MSD(p) � μ

2
Tr
(

UH
F diag(p)CvUF

)

λmin

(

UH
F diag(p)UF

) , (17)

for all p ∈ RN . Of course, replacing the MSD function (14)
with the bound (17), the second constraint of problem (16) is
always satisfied. Thus, exploiting the upper bound (17), we
formulate a surrogate optimization problem for the selection of
the probability vector p, which can be cast as:

min
p

1T p

subject to

λmin

(

UH
F diag(p)UF

)

≥ 1 − ᾱ

2μ

Tr
(

UH
F diag(p)CvUF

)

λmin

(

UH
F diag(p)UF

) ≤ 2γ

μ

0 ≤ p ≤ pmax

(18)

Problem (18) is now a convex optimization problem. Indeed,
the second constraint of problem (18) involves the ratio of a
convex function over a concave function. Since both functions
at numerator and denominator of (17) are differentiable and pos-
itive for all p satisfying the first and third constraint of problem
(18), the function is pseudo-convex [33], and all its sub-level
sets are convex sets. This argument, coupled with the convexity
of the objective function and of the sets defined by the first and
third constraints, proves the convexity of the problem in (18),
whose global solution can be found using efficient numerical
tools [34].

The second approach exploits successive convex approxima-
tion (SCA) methods [35], whose aim is to find local optimal
solutions of (16). The issue in (16) is the non-convexity of the
feasible set. Thus, following the approach from [35], we define
the (non-convex) set T and the (convex) set K as:

T �

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

λmin

(

UH
F diag(p)UF

)

≥ 1 − ᾱ

2μ
μ

2
Tr
[

(

UH
F diag(p)UF

)−1
UH

F diag(p)CvUF

]

≤ γ

0 ≤ p ≤ pmax

and

K �

⎧

⎨

⎩

λmin

(

UH
F diag(p)UF

)

≥ 1 − ᾱ

2μ
0 ≤ p ≤ pmax

Then, we replace the (second) non-convex constraint in T
with a convex approximation ˜MSD(p;z) : K × T → R that
satisfies the following conditions:

C1) ˜MSD(•;z) is convex on K for all z ∈ T ;
C2) ˜MSD(z;z) = MSD(z) for all z ∈ T ;

C3) MSD(p) ≤ ˜MSD(p;z) for all p ∈ K and z ∈ T ;

C4) ˜MSD(•; •) is continuous on K × T ;
C5) ∇pMSD(z) = ∇p

˜MSD(z;z) for all z ∈ T ;

Algorithm 2: SCA Method for Problem (16).

Set k = 1. Start with p[1] ∈ T . Then, for k ≥ 1, repeat until
convergence the following steps:

S.1) p̂[k] = arg min
p∈˜T (p[k ])

1T p+
τ

2
‖p− p[k]‖2

S.2) p[k + 1] = p[k] + ε[k]
(

p̂[k] − p[k]
)

C6) ∇p
˜MSD(•; •) is continuous on K × T ;

where ∇p
˜MSD(z;z) denotes the partial gradient of ˜MSD with

respect to the first argument evaluated at z (the second argument
is kept fixed at z). Among the possible choices for ˜MSD (see
[35] for details), since the MSD function in (14) has Lipshitz
continuous gradient on K (with Lipshitz constant L), a possible
choice for the approximation is given by:

˜MSD(p;z) = MSD(z) + ∇pMSD(z)T (p− z)

+
L

2
‖p− z‖2 , (19)

with p ∈ K, z ∈ T , and satisfying all conditions C1-C6. Thus,
given the current estimate of p at time k, say p[k], we define a
surrogate optimization set ˜T (p[k]) given by:

˜T (p[k]) �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λmin

(

UH
F diag(p)UF

)

≥ 1 − ᾱ

2μ
˜MSD(p;p[k]) ≤ γ

0 ≤ p ≤ pmax

with ˜MSD(p;p[k]) given by (19). Then, the SCA algorithm for
problem (16) proceeds as described in Algorithm 2. The updat-
ing scheme reads: at every iteration k, given the current estimate
p[k], the first step of Algorithm 2 solves a surrogate optimization
problem involving the objective function 1T p, augmented with
a proximal regularization term (with τ > 0), and the surrogate
set ˜T (p[k]). Then, the second step of Algorithm 2 generates
the new point p[k + 1] as a convex combination of the current
estimate p[k] and the solutions p̂[k] of the surrogate problem,
using a step-size sequence ε[k]. Several choices for the step-size
rule are possible to guarantee convergence of Algorithm 2. In
particular, we might use a diminishing step-size rule satisfying
the following properties:

ε[k] > 0,

∞
∑

k=0

ε[k] = ∞,

∞
∑

k=0

ε2 [k] < ∞. (20)

Using a step-size rule satisfying (20), and assuming ˜T (p[k]) as a
surrogate feasible set at each iteration k, the sequence generated
by Algorithm 2 converges to a local optimal solution of problem
(16), see [35, Theorem 2] for details.

2) Minimum MSD With Sampling and Learning Constraints:
The second sampling strategy aims at designing the probability
vector p that minimizes the MSD in (14), while imposing that
the convergence rate is larger than a desired value, and the
total sampling rate 1T p is limited by a budget constraint. The
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Algorithm 3: Dinkelbach Method for Problem (22).

Set k = 1. Start with p[1] ∈ C and ω[1] = f(p[1])/g(p[1]).
Then, for k ≥ 1, repeat the following steps:

S.1) p [k + 1] = arg
p∈C

min h(p, ω [k])

S.2) If h(p [k + 1], ω [k]) = 0, STOP and p∗ = p [k + 1];

otherwise, ω [k + 1] = f(p [k + 1])/g(p [k + 1]), k = k + 1,

and go to S.1

optimization problem can then be cast as:

min
p

Tr
[

(

UH
F diag(p)UF

)−1
UH

F diag(p)CvUF

]

s.t. p ∈ C �

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λmin

(

UH
F diag(p)UF

)

≥ 1 − ᾱ

2μ
1T p ≤ P
0 ≤ p ≤ pmax

(21)

where P ∈ [0,1T pmax] is the budget on the total sampling rate.
Problem (21) has a convex feasible set C, but it is non-convex
because of the MSD objective function. Again, to handle the
non-convexity of (21), we can follow two different paths. Ex-
ploiting the bound in (17), it is possible to formulate an approx-
imated optimization problem for the design of the probability
vector p, which can be cast as:

min
p∈C

Tr
(

UH
F diag(p)CvUF

)

λmin

(

UH
F diag(p)UF

) . (22)

Problem (22) is a convex/concave fractional program [36], i.e.,
a problem that involves the minimization of the ratio of a convex
function over a concave function, both defined over the convex
set C. As previously mentioned, since both functions at numer-
ator and denominator of (17) are differentiable and positive for
all p ∈ C, the objective function of (22) is pseudo-convex in C
[33]. As a consequence, any local minimum of problem (22) is
also a global minimum, and any descent method can be used to
find such optimal solutions [36].

To solve problem (22), in this paper we consider a method
based on the Dinkelbach algorithm [37], which converts the
fractional problem (22) into the iterative solution of a sequence
of parametric problems as:

min
p∈C

h(p, ω) = f(p) − ωg(p) (23)

with ω denoting the free parameter to be selected by the algo-
rithm, and

f(p) = Tr
(

UH
F diag(p)CvUF

)

, (24)

g(p) = λmin

(

UH
F diag(p)UF

)

. (25)

Letting ω(p) = f(p)/g(p), and noting that h(p∗, ω(p∗)) = 0
at the optimal value p∗, the Dinkelbach method proceeds as
described in Algorithm 3, and is guaranteed to converge to

Algorithm 4: SCA Method for Problem (21).

Set k = 1. Start with p[1] ∈ C. Then, for k ≥ 1, repeat until
convergence the following steps:

S.1) p̂[k] = arg min
p∈C

˜MSD(p;p[k])

S.2) p[k + 1] = p[k] + ε[k]
(

p̂[k] − p[k]
)

global optimal solutions of the approximated problem (22), see,
e.g., [36], [37].

The second approach aims at finding local optimal solutions
of (21) using an SCA method with provable convergence guaran-
tees. Following the approach proposed in [35], and letting p[k]
be the guess of the probability vector at iteration k, the SCA
algorithm proceeds as described in Algorithm 4. More formally,
the updating scheme reads: at every iteration k, given the current
estimate p[k], the first step of Algorithm 4 solves a surrogate op-

timization problem involving the function ˜MSD(p;p[k]), which
represents a strongly convex approximant of MSD in (14) at the
point p[k] that satisfies the following conditions:

F1) ˜MSD(•;z) is uniformly strongly convex on C ∀z ∈ C;

F2) ∇p
˜MSD(z;z) = ∇pMSD(z) for all z ∈ C;

F3) ∇p
˜MSD(•; •) is continuous on C.

Among all the possible choices satisfying the requirements
F1-F3 (see [35] for details), in this paper we consider the fol-
lowing surrogate function:

˜MSD(p;p[k]) =
τ

2
‖p− p[k]‖2

+
μ

2
Tr
[

(

UH
F diag(p[k])UF

)−1
UH

F diag(p)CvUF
]

+
μ

2
Tr
[

(

UH
F diag(p)UF

)−1
UH

F diag(p[k])CvUF

]

(26)

with τ > 0, which satisfies F1-F3 and preserves much of the
convexity hidden in the original function (14). Then, the second
step of Algorithm 4 generates the new pointp[k + 1] as a convex
combination of the current estimate p[k] and the solutions p̂[k]
of the surrogate problem, exploiting the step-size sequence ε[k].
Under conditions (20) on the step-size sequence ε[k], and using
(26), the sequence generated by Algorithm 4 converges to a
local optimal solution of (21), see [35, Theorem 2] for details.

IV. RECURSIVE LEAST SQUARES ESTIMATION

OF GRAPH SIGNALS

As is well known, LMS strategies have low complexity, but
typically suffer of slow convergence rate. To improve the learn-
ing rate of the adaptive estimation task, we can employ an RLS
method, which in turn has a larger computational burden, see,
e.g. [29]. In particular, the optimal (centralized) RLS estimate
for so at time n, say, ŝc [n], can be found as the vector that solves
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Algorithm 5: RLS on Graphs.

Start with random ψ[0], and Ψ[0] = Π. For n > 0, repeat:

Ψ[n] = β Ψ[n − 1] + UH
F DS[n ]C−1

v UF

ψ[n] = βψ[n − 1] + UH
F DS[n ]C−1

v y[n]

x̂c [n] = UFΨ−1 [n]ψ[n]

the following optimization problem:

min
s

n
∑

l=1

βn−l
∥

∥DS[l](y[l] − UFs)
∥

∥

2
C−1

v
+ βn‖s‖2

Π (27)

where 0 � β ≤ 1 is the exponential forgetting factor, Π � 0 is
a regularization matrix, and we have exploited the fact that DS[n ]
is an idempotent matrix for all n. Typically, Π = δI, where
δ > 0 is small [29]. Solving (27) and using (4), the optimal
estimate for xo at time n is given by:

x̂c [n] = UF ŝc [n] = UFΨ−1 [n]ψ[n] (28)

where

Ψ[n] =
n
∑

l=1

βn−lUH
F DS[l]C−1

v UF + βnΠ, (29)

ψ[n] =
n
∑

l=1

βn−lUH
F DS[l]C−1

v y[l]. (30)

The regularization term in (29) avoids invertibility issues in
(28), especially at early values of n. Given the structure of the
recursion of Ψ[n] and ψ[n] in (29)–(30), we obtain

Ψ[n] = β Ψ[n − 1] + UH
F DS[n ]C−1

v UF , (31)

ψ[n] = βψ[n − 1] + UH
F DS[n ]C−1

v y[n], (32)

with Ψ[0] = Π, which recursively update both Ψ[n] and ψ[n]
given their previous values. Thus, the RLS algorithm for graph
signals evolves as illustrated in Algorithm 5, which has com-
putational complexity of the order of O(|F|3), due to the pres-
ence of the inverse operation Ψ−1 [n]. Since typically |F| � N ,
the cost O(|F|3) is often affordable.4 The properties of the
RLS algorithm strongly depend on the random sampling oper-
ator DS[n ] . Thus, we will show how the design of the random
sampling strategy affects the reconstruction capability and the
steady-state performance of Algorithm 5. Since the study of the
mean-square performance of RLS adaptive filters is challenging
[29], in the sequel we will exploit the following assumption in
order to make the analysis tractable.5

Assumption 4 (Ergodicity): ∃n0 such that, for all n > n0 ,
the time average Ψ[n] in (29) can be replaced by its expected
value, i.e., Ψ[n] = EΨ[n], for n > n0 . �

4A sequential version of the RLS on graphs can be readily derived using the
matrix inversion lemma, and leading to a complexity equal to O(|F|2 ).

5This is a common assumption in the analysis of RLS-type algorithms, see,
e.g., [29], and yields good results in practice.

A. Adaptive Reconstruction From Probabilistic Sampling

Under Assumption 4, the steady state behavior of matrix Ψ[n]
in (29) can be approximated as:

Ψ = lim
n→∞

Ψ[n] = lim
n→∞

EΨ[n]

=
1

1 − β
UH

F diag(p)C−1
v UF (33)

where p = (p1 , . . . , pN )T ∈ [0, 1]N represents the sampling
probability vector. Thus, from (28) and (33), we deduce that
asymptotic reconstruction ofxonecessarily requests the positive
(semi-) definite matrix UH

F diag(p)C−1
v UF to be invertible (or

full rank), which is similar to condition (9) in Sec. III-A for LMS
reconstruction. Thus, proceeding as in Sec. III-A, under the as-
sumption that the observation noise is spatially uncorrelated,
i.e., matrix Cv is diagonal, it is easy to show that condition (11)
is necessary and sufficient to guarantee adaptive graph signal
reconstruction using Algorithm 5.

B. Mean-Square Performance

In this section, we illustrate the effect of the probability vector
p on the mean-square behavior of Algorithm 5.

Theorem 2: Assume model (5), condition (9), Assumptions
2 and 4 hold. Then, Algorithm 5 is mean-square stable, with
mean-square deviation given by

MSD = lim
n→∞

E‖x̂c [n] − xo‖2

=
1 − β

1 + β
Tr
[

(

UH
F diag(p)C−1

v UF
)−1
]

. (34)

Proof: See Appendix B. �

C. Optimal Sampling Strategies

Exploiting the results obtained in Sec. IV-B, the goal of this
section is to develop optimal sampling strategies aimed at se-
lecting the probability vector p to optimize the performance
of the RLS on Graphs. In particular, the method leads to opti-
mal sampling strategies aimed at selecting a probability vector
p that minimizes the total sampling rate, while guaranteing a
target value of MSD. To this aim, we formulate the following
optimization problem:

min
p

1T p

s.t. Tr
[

(

UH
F diag(p)C−1

v UF
)−1
]

≤ γ
1 + β

1 − β

0 ≤ p ≤ pmax

(35)

The linear objective function in (35) represents the total graph
sampling rate that has to be minimized. From (34), the first
constraint in (35) imposes that the MSD must be less than or
equal to a constant γ > 0 [this constraint implicitly guarantees
the reconstruction condition in (9)]. As before, the last constraint
limits the vector to lie in the box pi ∈ [0, pmax

i ], for all i. It is easy
to check the convexity of problem (35), whose global solution
can be found using efficient algorithms [34]. Obviously, one can
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consider also the related problem where we aim at minimizing
the MSD in (34) while imposing a maximum budget on the
total graph sampling rate, which also translates into a convex
optimization program.

D. Distributed Adaptive Implementation

In many practical systems, data are collected in a distributed
network, and sharing local information with a central processor
might be either unfeasible or not efficient, owing to the large
volume of data, time-varying network topology, and/or privacy
issues [38], [39]. Motivated by these observations, in this section
we extend the RLS strategy in Algorithm 5 to a distributed
setting, where the nodes of the graph are connected through
a sparse communication network described by the graph Gc =
(V, Ec). The topology of the communication graph Gc does not
necessarily coincide with that of the graph used to process the
data, i.e., G. To ensure the diffusion of information over the
network, we assume the following.

Assumption 5 (Topology): The communication graph Gc is
symmetric and connected. �

To derive distributed solution methods for problem (27), let
us introduce local copies {si}N

i=1 of the global variable s, and
recast problem (27) in the following equivalent form:

min
{si }N

i = 1

N
∑

i=1

n
∑

l=1

βn−l di [n]
σ2

i

(yi [n] − uH
F ,isi)2 +

βn

N

N
∑

i=1

‖si‖2
Π

subject to si = sj for all i ∈ V, j ∈ Ni , (36)

where Ni denotes the set of local neighbors of agent i on the
communication graph Gc , anduH

F ,i is the i-th row of matrix UF .

Now, letting s = {si}N
i=1 and λ = {λij}j∈Ni

i∈V , the augmented
Lagrangian for problem (36) writes as:

La (s,λ) =
N
∑

i=1

n
∑

l=1

βn−l di [l]
σ2

i

(yi [l] − uH
F ,isi)2

+
βn

N

N
∑

i=1

‖si‖2
Π +

N
∑

i=1

∑

j∈Ni

λT
ij (si − sj )

+
�

4

N
∑

i=1

∑

j∈Ni

‖si − sj‖2 (37)

where � > 0 is a positive coefficient. Since the augmented La-
grangian function in (37) is strongly convex for all n, we can
employ ADMM to solve problem (36), see, e.g., [28]. The first
step of ADMM aims at minimizing the augmented Lagrangian
in (37) with respect to the primal variable s. In particular, we
apply a parallel method where each node minimizes (37) with
respect to its local variable, while keeping fixed the variables
of its neighbors at the previous iteration. The local variables at
each node can then be updated as the solution of the following

Algorithm 6: DRLS on Graphs.

Start with {ψi [0]}N
i=1 , {si [0, 0]}N

i=1 , {λij [0, 0]}j∈Ni

i∈V chosen
at random, and set {Ψi [0]}N

i=1 = Π/N , and � ∈ [0, �max].
for n > 0 do

All i ∈ V: update Ψi [n] and ψi [n] using (40) and (41);
for k = 0, . . . , K − 1 do

All i ∈ V: transmit λij [n, k] to each j ∈ Ni ;
All i ∈ V: update ŝi [n, k + 1] using (39);
All i ∈ V: transmit ŝi [n, k + 1] to each j ∈ Ni ;
All i ∈ V: update {λij [n, k + 1]}j∈Ni

using (42);
end

end

optimization problems:

ŝi [n, k + 1] = argmin
si

n
∑

l=1

βn−l di [l]
σ2

i

(yi [l] − uH
F ,isi)2

+
βn

N
‖si‖2

Π +
∑

j∈Ni

(

λij [n, k] − λj i [n, k]
)T
si

+
�

2

∑

j∈Ni

‖si − ŝj [n, k]‖2 , i = 1, . . . , N. (38)

Each local subproblem in (38) corresponds to an unconstrained
minimization that admits closed-form solution given by:

ŝi [n, k + 1] =
(

Ψi [n] + �|Ni |I
)−1

[

ψi [n] + �
∑

j∈Ni

ŝj [n, k]

− 1
2

∑

j∈Ni

(λij [n, k] − λj i [n, k])
]

, (39)

for i = 1, . . . , N , where, setting Ψi [0] = Π/N , we have

Ψi [n] = β Ψi [n − 1] + di [n]uF ,iu
H
F ,i/σ2

i , (40)

ψi [n] = βψi [n − 1] + di [n]yi [n]uF ,i/σ2
i . (41)

Finally, the second step of the ADMM algorithm updates the
Lagrange multipliers as:

λij [n, k + 1] = λij [n, k] +
�

2

(

ŝj [n, k + 1] − ŝi [n, k + 1]
)

,

(42)

for i ∈ V , j ∈ Ni . Recursions (39) and (42) constitute the
ADMM-based distributed RLS algorithm (DRLS), whereby all
sensors i ∈ V keep track of their local estimate ŝi and their mul-
tipliers {λij}j∈Ni

, which can be arbitrarily initialized. Then, all
the steps of the DRLS strategy for distributed adaptive recon-
struction of graph signals are summarized in Algorithm 6. The
proposed DRLS method has a double time-scale. The inner loop
on index k has the goal of forcing consensus among variables
ŝi [n, k]. However, when the network is deployed to track a time-
varying graph signal, one cannot afford large delays in-between
consecutive sensing instants. In this case, we can run a sin-
gle consensus iteration per acquired observation, i.e., K = 1 in
Algorithm 6, thus making the method suitable for operation in
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Fig. 1. IEEE 118 bus system: Graph Topology, and optimal probability vectors obtained from (22), for different values of ᾱ.

nonstationary environments. In the sequel, we will validate the
proposed distributed approach via numerical simulations.

V. NUMERICAL RESULTS

In this section, we illustrate the performance of the proposed
strategies applied to both synthetic and real data.

A. LMS on Graphs

Let us consider an application to the IEEE 118 Bus Test Case,
which represents a portion of the American Electric Power Sys-
tem (in the Mid-western US) as of December 1962 [40]. The
graph is composed of 118 nodes (i.e., buses), and its topology
(i.e., transmission lines connecting buses) is illustrated in Fig. 1.
The dynamics of the power generators give rise to smooth graph
signals (e.g., powers, currents, voltages), whose spectral content
is assumed to be limited to the first ten eigenvectors of the Lapla-
cian matrix of the graph in Fig. 1, i.e., |F| = 10. The observation
noise in (5) is zero-mean, Gaussian, with a diagonal covariance
matrix where each element is illustrated in Fig. 2 (bottom). The
other parameters are: μ = 0.1, and P = 118. Then, in Fig. 2
(A , B, and C), we plot the optimal probability vector obtained
using Algorithm 3 for different values of ᾱ (0.99 for case A,
0.98 for both cases B and C) and upper bound vectors pmax (1
for cases A and B and as illustrated in the figure for case C).
In all cases, we have checked that the constraint on the conver-
gence rate in (21) is attained strictly. From Fig. 2, as expected,
we notice how the method enlarges the expected sampling set
if we either require (see cases A and B) a faster convergence
rate (i.e., a smaller ᾱ), or if stricter bounds are imposed on the
maximum probability to sample “important” nodes (see case C).
Also, from Fig. 2, it is clear that the method finds a very sparse
probability vector and avoids to assign large sampling probabil-
ities to nodes having large noise variances. We remark that with
the proposed formulation, sparse sampling patterns are obtained
thanks to the optimization of the sampling probabilities, with-
out resorting to any relaxation of complex integer optimization
problems. The corresponding positions of the samples collected
over the IEEE 118 Bus graph are illustrated in Fig. 1, where the
the color (in gray scale) of the vertices denotes the value of the
sampling probability.

Fig. 2. Optimal probabilities and noise variance, obtained from (22) with
Algorithm 3 for different values of ᾱ and pm ax .

To compare the results obtained using Algorithms 3 and 4,
in Fig. 3, we report the temporal evolution of MSD in (14)
evaluated for each instantaneous estimate p[k], obtained using
the aforementioned strategies. Both algorithms are initialized
such that pi [1] = 0.5 for all i, and we set pmax = 1. The SCA
algorithm exploits the surrogate function in (26) with τ = 10−6 ,
and the step size sequence in (27) is chosen to satisfy (20), and
obeying to the diminishing rule ε[k] = ε[k − 1](1 − ηε[k − 1]),
with ε[0] = 1, and η = 0.001. The surrogate problem in S.1 of
Algorithm 4 is solved using the CVX software [34]. As we can
see from Fig. 3, both algorithms illustrate a very good conver-
gence behavior, reaching their final state in a few iterations.
In particular, we notice that the Algorithm 3 is slightly faster
than Algorithm 4. But most importantly, we notice that both
methods converge to very similar final solutions. This means
that local optimal solutions of the original non-convex problem
(21) are very similar to global optimal solutions of the approx-
imated convex/concave fractional problem in (22). This result
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Fig. 3. Behavior of MSD(p[k]) versus iteration index, obtained using
Algorithms 3 and 4.

Fig. 4. Learning curve of Algorithm 1, obtained solving (18) for different
values of ᾱ.

justifies the approximation made in (17) to formulate the sam-
pling design problem (22) and to derive Algorithm 3, which also
guarantees convergence to global optimal solutions.

To validate the theoretical results derived in Sec. III-B, in
Fig. 4 we report the learning curve (in terms of MSD) of the
LMS on Graphs (cf. Algorithm 1), obtained solving (18) for
different values of ᾱ. In particular, we set a target performance
on the MSD given by γ = −30 dB. The other parameters are:
μ = 0.1, pmax = 1, andP = 118. The curves are averaged over
100 independent simulations. As we can see from Fig. 4, thanks
to the effect of the sampling strategy (18), the LMS algorithm
can increase its convergence rate (reducing the value of ᾱ),
while always guaranteing the performance requirement on the
MSD. This curve also confirms the theoretical analysis derived
in Sec. III-B, and further justifies the approximation of the MSD
function made in (17).

Finally, we compare the sampling strategy in (18) with some
established sampling methods for graph signals, namely, the
leverage score sampling from [22], the Max-Det greedy strat-
egy from [13], and the (uniformly) random sampling. For each
strategy, we keep adding nodes to the sampling set according to
the corresponding criterion until the constraints on the conver-
gence rate and the MSD in (18) are satisfied. Then, in Fig. 5, we

Fig. 5. Graph sampling rate versus convergence rate ᾱ, for different sampling
strategies.

report the behavior of the total graph sampling rate 1T p versus
the parameter ᾱ in (18), obtained using the four aforementioned
strategies. The other parameters are: μ = 0.1, pmax = 1, and
γ = −25 dB. The results for the random sampling strategies
are averaged over 200 independent simulations. As expected,
from Fig. 5, we notice how the graph sampling rate increases
for lower values of ᾱ, i.e., increasing the convergence rate of
the algorithm, for all strategies. Furthermore, we can notice the
large gain in terms of reduced sampling rate 1T p obtained by
the proposed strategy with respect to other methods available in
the literature.

B. RLS on Graphs

Let us consider the same setting as before. An example of
optimal probabilistic sampling, obtained solving problem (35),
with β = 0.95, is illustrated in Fig. 6, for three different values
of γ. As we can notice from Fig. 6, the method finds a very
sparse probability vector in order to guarantee the performance
requirement on the MSD. In all cases, we have checked that
the constraint on the MSD is attained strictly. As expected, from
Fig. 6, we notice how the proposed method enlarges the expected
sampling set if we require a stricter requirement on the MSD,
i.e., a lower value of γ, and avoids to select nodes having large
noise variance (at least at low values of γ).

To validate the theoretical results derived in Sec. IV-B, in
Fig. 7 we report the learning curve (in terms of MSD) of the
RLS on graphs (cf. Algorithm 5), with probability vector p
obtained by solving Problem (35) for three different values of γ
(the same as in the previous example). The curves are averaged
over 200 independent simulations. The theoretical expression
of MSD in (34) is also reported for comparison purposes, for all
values of γ. As we can see from Fig. 7, simulations match well
the theoretical results.

Finally, in Fig. 8, we report the temporal evolution of the MSD
obtained using four different algorithms: the proposed LMS on
Graphs in Algorithm 1; the RLS on Graphs in Algorithm 5;
the Diffusion LMS on Graphs from [25]; and the DRLS on
Graphs strategy in Algorithm 6, considering different numbers
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Fig. 6. Optimal sampling probability vector, and noise variance, versus node
index, for different values of γ .

Fig. 7. MSD versus iteration index n, obtained using Algorithm 5 and the
Sampling Strategy in (35).

Fig. 8. MSD versus iteration index n, for different algorithms.

Fig. 9. True temperature and estimates at a randomly picked unobserved
station, for different algorithms.

K of inner consensus iterations, i.e., K = 1 and K = 3. We
consider a graph composed of N = 20 nodes, whose topology
is obtained from a random geometric graph model, and having
algebraic connectivity equal to 0.82. The graph signal is such
that |F| = 5. The sampling strategy of the RLS (and of the
DRLS) was designed solving problem (35), where γ = −23
dB, β = 0.95, andpmax = 1. The sampling strategy of the LMS
(and of the Diffusion LMS) was obtained solving problem (22),
with P given by the optimal sampling rate obtained by the RLS
strategy in (35), pmax = 1, μ = 0.1, and ᾱ chosen to match
the MSD steady-state performance of the RLS method. The
communication graph is chosen equal to the processing graph.
As we can see from Fig. 8, the RLS strategy is faster than the
LMS on Graphs, at the cost of a higher complexity. Also, the
proposed DRLS significantly outperforms the Diffusion LMS
on graphs proposed in [25]. Finally, increasing the number K of
inner consensus iterations, the behavior of the DRLS algorithm
approaches the performance of the centralized RLS, at the cost
of a larger number of exchanged parameters over the network.

C. Application to Real Data

The first data set collects temperature measurements at
N = 109 stations across the United States in 2010 [41]. A sim-
ilarity graph was built using a 7 nearest neighbors approach
[26], which relies on geographical distances. The graph signal
at each vertex i represents the temperature observed at the i-th
station. In first place, we test the performance of the proposed
sampling and recovery strategies in a stationary condition. To
this aim, we consider a fixed graph signal (the first one recorded
in the dataset) and, in Fig. 9, we illustrate the true value of the
temperature measured at an unobserved station chosen at ran-
dom, along with its estimates carried out by the LMS on Graphs
in Algorithm 1 (with μ = 1.5 and |F| = 40), and the RLS on
Graphs (with β = 0.5 and |F| = 40) in Algorithm 5. For a fair
comparison among the algorithms, the sampling strategy was
chosen equal for both of them. In particular, we consider the
probabilistic sampling strategy in (35), where γ = 0.1, and the
noise covariance matrix was chosen diagonal, and such that
each element was randomly selected in the interval [0, 0.01].
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Fig. 10. True temperature and estimates across time at a randomly picked
unobserved station.

Fig. 11. NMSD versus time, for different algorithms.

As a result, the method selects a sparse probability vector such
that the expected sampling set is composed of 42 nodes. As we
can notice from Fig. 9, both algorithms are capable to produce
a sufficiently accurate estimate of the temperature at the un-
observed station, with a small bias of the order of fractions of
degree, which is due to the non perfect bandlimitedness of the
real graph signal considered in this experiment.

In second place, we aim to test the tracking capabilities of our
proposed strategies. To this aim, in Fig. 10, we illustrate the true
behavior of the temperature measured at an unobserved station
chosen at random, over the first 80 hours of 2010, along with its
online estimates carried out using three different algorithms: the
LMS on Graphs in Algorithm 1 (with μ = 1.5 and |F| = 40),
the RLS on Graphs (with β = 0.5 and |F| = 40) in Algorithm 5,
and the Kernel Kalman Filter (KKF) from [26] (using the same
settings as in [26]). For a fair comparison among the recovery
strategies, the sampling set is chosen equal for all algorithms and
fixed over time, according to the Max-Det strategy in [13], se-
lecting 50 samples. As we can notice from Fig. 10, the proposed
LMS and RLS on graphs show good tracking performance that
are comparable with KKF, while having a lower computational
complexity. This can be noticed also from Fig. 11, which illus-
trates the temporal behavior of the normalized MSD (NMSD),

Fig. 12. True ECoG and estimates across time at three randomly selected
unobserved regions of the brain.

i.e., NMSDi [n] = (x̂i [n] − xo
i [n])2/(xo

i [n])2 , obtained by the
three aforementioned algorithms at the same unobserved node
previously considered in Fig. 10.

The second dataset presents test results on Electrocorticog-
raphy (ECoG), captured through experiments conducted in an
epilepsy study [42]. Data were collected over a period of five
days, where the electrodes recorded 76 ECoG time series, con-
sisting of voltage levels measured in different regions of the
brain (see [42] for further details). The GFT matrix UF in (4) is
learnt from the first 200 samples of ictal data, using the method
proposed in [43], and imposing a bandwidth equal to |F| = 30.
In Fig. 12, we illustrate the true behavior of the ECoG present at
three unobserved electrodes chosen at random, over the first 400
samples of ictal data, along with estimates carried out using two
different algorithms: the LMS on Graphs in Algorithm 1 (with
μ = 1.5), and the RLS on Graphs (with β = 0.7) in Algorithm
5. As before, the sampling set is chosen equal for all algorithms
and fixed over time, according to the Max-Det strategy in [13],
selecting 32 samples over the graph. As we can notice from
Fig. 12, both methods are capable to efficiently infer and track
the unknown dynamics of ECoG data at unobserved regions of
the brain.

VI. CONCLUSION

In this paper, we have introduced LMS and RLS strategies
for adaptive learning of graph signals based on a probabilistic
sampling mechanism over the graph. A mean-square analysis
sheds light on how the random sampling strategy affects the
performance of the proposed methods, and paved the way to
the formulation of several criteria aimed at designing the sam-
pling probabilities as an optimal trade-off between graph sam-
pling rate, mean-square performance, and learning rate of the
algorithms. Finally, a distributed RLS strategy is derived and is
shown to be convergent to its centralized counterpart. Numerical
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simulations carried out on both synthetic and real data illustrate
the good performance of the proposed methods for (possibly
distributed) adaptive learning of graph signals.

As a final comment, we would like to remark that the proposed
methods can be applied to the adaptive processing of signals
residing on an arbitrary subspace not necessarily related to a
graph. In this sense, the methods have a broader applicability
that is not strictly limited to GSP. Nevertheless, the sampling
operation, which lies at the core of this paper, is the aspect that
finds a more direct explanation if we think at the useful signal
as residing over a graph, i.e., the graph that makes that signal be
represented as bandlimited.

APPENDIX A
PROOF OF THEOREM 1

Following energy conservation arguments [44], we con-
sider a general weighted squared error sequence ‖s̃[n]‖2

Φ =
s̃[n]H Φs̃[n], where Φ ∈ C|F|×|F| is an Hermitian nonnegative-
definite matrix that we are free to choose. Of course,
since ‖s̃[n]‖2 = ‖x̃[n]‖2 for all n [cf. (4)], it is equiva-
lent to consider the mean-square behavior of s̃[n] or x̃[n].
Then, from (12), exploiting Assumption 2 and the fact that
E{DS[n ]v[n]v[n]H DS[n ]} = PCv , we can establish:

E‖s̃[n + 1]‖2
Φ = E‖s̃[n]‖2

Φ ′ + μ2 Tr(ΦUH
F PCvUF ) (43)

where Tr(·) denotes the trace operator, matrix P = diag(p) =
E{DS[n ]}, and

Φ′ = E
(

I − μUH
F DS[n ]UF

)

Φ
(

I − μUH
F DS[n ]UF

)

(44)

= Φ − μΦUH
F PUF − μUH

F PUFΦ

+ μ2E{UH
F DS[n ]UFΦUH

F DS[n ]UF}. (45)

The last term in (45) can be computed in closed form. Letting
UFDS[n ]UH

F =
∑N

i=1 di [n]uF ,iu
H
F ,i , where uH

F ,i is the i-th
row of UF , the last term in (45) is given by:

E{UH
F DS[n ]UFΦUH

F DS[n ]UF} =
N
∑

i=1

N
∑

j=1

m
(2)
i,j Cij (46)

where Cij = uF ,iu
H
F ,i ΦuF ,ju

H
F ,j , and

m
(2)
i,j = E{di [n]dj [n]} =

{

pi, if i = j;
pipj , if i �= j.

(47)

In the sequel, to study mean-square stability of Algorithm 1, we
consider the following approximation:

Φ′ = E
(

I − μUH
F DS[n ]UF

)

Φ
(

I − μUH
F DS[n ]UF

)

(48)



(

I − μUH
F PUF

)

Φ
(

I − μUH
F PUF

)

, (49)

which is accurate under Assumption 3, i.e., for small step-sizes.6

In particular, it is immediate to see that (49) can be obtained from
(45)–(46), by substituting the terms pi in (47) with p2

i , for the
case i = j. Such approximation appears in (49) only in the term

6This kind of approximations are typical when studying long-term dynamics
of adaptive filters, see, e.g., [45, Ch.4], and lead to good results in practice.

O(μ2) and, under Assumption 3, it is assumed to produce a
negligible deviation from (44).

Now, we proceed by showing the stability conditions for
recursion (43). Letting H = UH

F PUF , Q = (I − μH)2 , and
Φ = I, recursion (43) can be bounded as:

E‖s̃[n]‖2 ≤ E‖s̃[0]‖2
Qn + μ2c

n
∑

l=0

‖Q‖l (50)

where c = Tr(UH
F PCvUF ). We also have

‖Q‖ = ‖I − μUH
F PUF‖2 =

(

ρ
(

I − μUH
F PUF

))2

≤ max
{

(1 − μδ)2 , (1 − μν)2}

(a)
≤ 1 − 2μν + μ2δ2 = 1 − 2μν

(

1 − μ

2ν
δ2
)

(51)

where ρ(X) denotes the spectral radius of matrix X, δ =
λmax(UH

F PUF ), ν = λmin(UH
F PUF ), and in (a) we have ex-

ploited δ ≥ ν. Taking the limit of (50) as n → ∞, and since
‖Q‖ < 1 if conditions (9) [i.e., (11)] and (13) hold, we obtain

lim
n→∞

E‖s̃[n]‖2 ≤ μ2c

1 − ‖Q‖
(a)
≤ μc

2ν − μδ2 , (52)

where (a) follows from (51). The upper bound (52) does not ex-
ceed μc/ν if 0 < μ < ν/δ2 . Thus, for sufficiently small values
of the step-size, i.e., under Assumption 3, it holds

lim
n→∞

E‖s̃[n]‖2 = O(μ). (53)

Also, from (50), the transient component of E‖s̃[n]‖2 vanishes
as Qn , for n → ∞. Thus, from (51), the convergence rate of
Algorithm 1 (i.e., ‖Q‖) is well approximated by (15) when
μ � 2ν/δ2 . Finally, to derive (14), we recast (43) as:

E‖s̃[n + 1]‖2
Φ = E‖s̃[n]‖2

Φ − μE‖s̃[n]‖2
HΦ+ΦH

+ μ2E‖s̃[n]‖2
HΦH + μ2 Tr(ΦUH

F PCvUF ) (54)

Taking the limit of (54) as n → ∞ (assuming that conver-
gence conditions are satisfied), since limn→∞ E‖s̃[n + 1]‖2

= limn→∞ E‖s̃[n]‖2 and limn→∞ E‖s̃[n]‖2
HΦH = O(μ) [cf.

(53)], we obtain the following expression:

lim
n→∞

E‖s̃[n]‖2
HΦ+ΦH = μTr(ΦUH

F PCvUF ) + O(μ2)

(55)

Using now Φ = H−1 in (55), we obtain (14).

APPENDIX B
PROOF OF THEOREM 2

From (33), (29), and (30), we obtain:

x̂c [n] = UF

(

n
∑

l=1

βn−lUH
F DS[l]C−1

v UF + βnΠ

)−1

×
(

n
∑

l=1

βn−lUH
F DS[l]C−1

v y[l]

)

(56)

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 12:55:08 UTC from IEEE Xplore.  Restrictions apply. 



DI LORENZO et al.: ADAPTIVE GRAPH SIGNAL PROCESSING: ALGORITHMS AND OPTIMAL SAMPLING STRATEGIES 3597

Exploiting now Assumption 4, the relations (5), (33), and (11)
[i.e., (9)], for sufficiently large n, the long-term behavior of
recursion (56) is well approximated by:

x̂c [n] = xo + UFΨ
−1

n
∑

l=1

βn−lUH
F DS[l]C−1

v v[l], (57)

where we have neglected the term βnΠ at large values of n.
Thus, from (57), we have

lim
n→∞

E‖x̂c [n] − xo‖2

(a)
= lim

n→∞
E

n
∑

l=1

β2(n−l)vH [l]C−1
v DS[l]UFΨ

−2
UH

F DS[l]C−1
v v[l]

(b)
=

1
1 − β2 Tr

(

UH
F diag(p)C−1

v UFΨ
−2
)

(c)
=

1 − β

1 + β
Tr
[

(

UH
F diag(p)C−1

v UF
)−1
]

where in (a) we used UH
F UF = I; in (b) we exploited

Assumption 2, the uncorrelatedeness of the observation
noise, the relation E{DS[l]C−1

v DS[l]} = diag(p)C−1
v , and

limn→∞
∑n

l=1 β2(n−l) = 1/(1 − β2); finally, in (c) we have
used (33). This concludes the proof.
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