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Abstract
We consider a class of multi-layer interacting particle systems and characterize the set
of ergodic probability measures with finite moments. The main technical tool is duality
combined with successful coupling.

Keywords Interacting particle systems · Duality · Multi-layer random walks · Coupling

1 Introduction

In this paper we consider a class of multi-layer particle systems with duality properties.
The study of multi-layer random walks and interacting particle systems is motivated by

the study of active particles, where the motion is determined by an internal degree of freedom
(determining the direction ofmotion) and a random componentwhichmodels the influence of
collisions with surrounding particles. Other terms for such randommotions are e.g. persistent
random walk and run-and-tumble motion.

When the internal degree of freedom takes a finite number of values and evolves
autonomously as a finite state space continuous Markov chain, then one can view the motion
as a randomwalk on a multi-layer system, where the layers are indexed by the internal states.
There are various studies of the asymptotic properties of such random walks including law
of large numbers (asymptotic speed), invariance principle (central limit behavior), and large
deviations. See e.g. [6, 9, 14, 16, 17] and references therein.

In this paper, we study a system of particles performing multi-layer random walks which
possibly have interaction of inclusion or exclusion type (see Sect. 2.1 below for a precise
description of the models). We characterize the set of invariant probability measures with
finite moments. More precisely we prove that under an appropriate condition of moment
growth, the only ergodic invariant probabilitymeasures are homogeneous product probability
measures, indexed by the first moment (particle density). In the case of independent particles,
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these probability measures are product Poisson measures, in the case of interacting systems
they are products of binomial (exclusion) resp. negative binomial (inclusion) distributions.

The characterization of the invariant probability measures of multi-layer exclusion pro-
cesses has been obtained recently in [1]. The study of the hydrodynamic limit of a system of
active particles has been studied in [12], and for a two-layer system with duality in [7].

The important ingredient in our setting here is duality combined with the existence of a
successful coupling for the dual process. This road is followed for the symmetric exclusion
process in [15] chapter 8. Duality allows to characterize the invariant probabilitymeasures via
the characterization of bounded harmonic functions of the dual process, which is a countable
state spaceMarkov chain. If thisMarkov chain admits a successful coupling, then the bounded
harmonic functions are constants, indexed by the number of dual particles. The proof of the
existence of a successful coupling is a combination of coupling the finite state space internal
state process and the Ornstein coupling of randomwalks. These two ingredients are sufficient
in the non-interacting case. In the interacting case, we use the approach of [13] which consists
of “spreadingout” the particles combinedwithOrnstein couplingof symmetric randomwalks.

The rest of our paper is organized as follows. In Sect. 2 we provide the general setup of
multi-layer particle systems, after which we define the three types of processes (exclusion,
inclusion and independent walkers) we will study in this paper. Afterwards, we study the
duality properties and invariant probability measures of these processes.

In Sect. 3 we provide a characterization of the ergodic invariant probability measures
in a slightly more general setting, where the only assumptions are duality with polynomial
duality functions and the existence of a successful coupling. This unifies and generalizes
earlier results from chapter 8 of the book of Liggett [15] and Kuoch [13].

Section 4 is devoted to the proof of a successful coupling for the models under consid-
eration. For independent particles this amounts to generalize the Ornstein coupling to the
multi-layer setting. For interacting particles, it amounts to generalize the approach of Liggett
for the exclusion process [15] and Kuoch for the inclusion process [13].

2 Models and Their Duality Properties

2.1 Models: Definitions

In this paper we will look at models of configurations where the coordinates of individual
particles are of the form (x, σ ), with x ∈ Z

d the position of the particle and σ ∈ S the
internal state, where S is some finite set. We will denote the single particle state space as
V := Z

d × S, which we will think of as |S| layers of Z
d . For this reason, we will also refer

to σ ∈ S as the layer on which a particle at (x, σ ) resides.
We consider a configuration process {η(t) : t ≥ 0} on a state space�s that will be defined

later. The generator of the process is of the following type,

Ls f (η) =
∑

v,w∈V
p(v,w)ηv(α + sηw)∇v,w f (η). (2.1)

Here ηv is equal to the number of particles at site v ∈ V and, if we denote ηv→w as the
configuration η where a single particle has moved from v to w (if possible), we have

∇v,w f (η) = f (ηv→w) − f (η).
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The value of s ∈ {−1, 0, 1} in (2.1) determines the type of the processwe consider (exclusion,
inclusion or independent particles). For this reason, the parameter s also determines the state
space �s we consider and the single particle transition rates p(v,w) and constants α ∈ R+
we allow. Below we will define the process for each possible value of s.

The main characteristic of our multi-layer particle systems is that the transition rates are
determined by the layer on which a particle resides. Therefore, for every σ ∈ S we consider
a nearest neighbor symmetric random walk on Z

d with translation invariant transition rates.
We denote by πσ (x) the corresponding rate to jump from z to z + x . Note that πσ (x) > 0 if
and only if |x | = 1 and that πσ (x) = πσ (−x). Furthermore, we let {c(σ, σ ′) : σ, σ ′ ∈ S} be
transition rates on the set of layers S which we will assume to be symmetric and irreducible.
Then we define the following processes:

1. Symmetric exclusion process (s = −1). Every site contains at most α ∈ N particles and
jumps to sites where there are already many other particles are less likely. The state space
of the multi-layer SEP is given by�−1 = {0, 1, ..., α}V , and the single particle transition
rates we will study for this model are of the following form,

p
(
(x, σ ), (y, σ ′)

) = πσ (y − x)δσ,σ ′ + c(σ, σ ′)δx,y, (2.2)

with δ· the Kronecker delta.
2. Symmetric inclusion process (s = 1). In contrast to the exclusion process, this process

actually encourages jumps to sites where other particles already reside. The state space
of the multi-layer SIP is given by �1 = N

V , and the transition rates are again given by
(2.2). Furthermore, we allow for any α > 0.

3. Independent particles (s = 0). For this paper, our model for independent particles will be
the run-and-tumble particle process (RTP). A run-and-tumble particle is a particle with
the following dynamics.

Random walk jumps. With rate κ , a particle at (x, σ ) performs a nearest neighbor
symmetric random walk jump on Z

d according to the transition rates πσ (·), i.e.,
(x, σ ) → (x + y, σ ) with rate κπσ (y).
Active jumps.With rate λ, a particle at (x, σ ) performs an active jump in the direction
determined by the internal state σ , i.e., there exists a function v : S → Z

d such that
(x, σ ) → (x + v(σ ), σ ) with rate λ.
Internal state jumps. A particle changes its internal state according to the transition
rates {c(σ, σ ′) : σ, σ ′ ∈ S}.

The state space of this process is �0 = N
V , and from the dynamics we conclude that the

single particle transition rates are of the following form,

p
(
(x, σ ), (y, σ ′)

) = κπσ (y − x)δσ,σ ′ + λδσ,σ ′δy,x+v(σ ) + c(σ, σ ′)δx,y . (2.3)

In this case, any choice of α > 0 is possible. However, without loss of generality we put
α = 1. Furthermore, in the special case where κ = 0 we will assume that λ > 0 and that
the range of v spans the whole of Z

d , i.e.,

vct{R(v)} = Z
d . (2.4)

This condition is crucial in order to construct the successful coupling cf. (4.3) below.

Remark 2.1 Notice that for the interacting models we only allow for symmetric transitions
on every layer. This is because for asymmetric transition rates we only have duality when
the particles are independent.
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2.2 Duality

Wewill state and prove duality results for the processes we just defined. Recall the following
definition of duality of Markov processes.

Definition 2.1 Let {η(t) : t ≥ 0} and {ξ(t) : t ≥ 0} be two Markov processes on the state
spaces � and �′ respectively, and let D : �′ × � → R be a measurable function. We say
that {η(t) : t ≥ 0} and {ξ(t) : t ≥ 0} are dual to one another, with respect to D, if

Eη [D(ξ, η(t))] = Êξ [D(ξ(t), η)] . (2.5)

Here Eη denotes the expectation in {η(t) : t ≥ 0} starting from η, Êξ the expectation in the
dual process {ξ(t) : t ≥ 0} starting from ξ , and we assume that both sides are bounded. We
then call D the duality function.

2.2.1 Duality Results

Let |ξ | := ∑
x ξx denote the number of particles in ξ and let �s, f := {ξ ∈ � : |ξ | < ∞} be

the subspace of �s consisting of only those configurations with a finite number of particles.
In the following theorem we will give duality results of the processes defined in Sect. 2.1
with duality functions Ds : �s, f × �s → R of the following form:

Ds(ξ, η) =
∏

v∈V
ds(ξv, ηv). (2.6)

The proof of the first two statements can be found in for example [8, Theorem 4.1]. For the
third statement, we will make use of another duality result, with the so-called associated
deterministic system, that is introduced in [2].

Theorem 2.1 1. If s = −1 then the process generated by L−1 is self-dual with duality
function

D−1(ξ, η) =
∏

v∈V

ηv!
(ηv − ξv)! · (α − ξv)!

α! · I (ξv ≤ ηv),

where I (·) denotes the characteristic function.
2. If s = 1, then the process generated by L1 is self-dual with duality function

D1(ξ, η) =
∏

v∈V

ηv!
(ηv − ξv)! · �(α)

�(α + ξv)
· I (ξv ≤ ηv).

3. If s = 0 then the process generated by L0, with transition rates p(v,w) given by (2.3),
is dual to its time-reversed process, i.e., the RTP process with single particle transition
rates

p̂
(
(x, σ ), (y, σ ′)

) = κπσ (y − x)δσ,σ ′ + λδσ,σ ′δy,x−v(σ ) + c(σ, σ ′)δx=y, (2.7)

and with the same parameter α > 0. We denote this as the R̂TP process. The
corresponding duality function is given by

D0(ξ, η) =
∏

v∈V

ηv!
(ηv − ξv)! · I (ξv ≤ ηv).
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Remark 2.2 If ξ = δv is the configuration containing a single particle at v ∈ V and no
particles elsewhere, then D(ξ, η) = cα,sηv , with cα,s a positive constant depending on the
model (s ∈ {−1, 0, 1}) and the constant α. As a consequence we have that

Eη[ηv(t)] = 1

cα,s
Eη[D(δv, η(t))] = 1

cα,s
Êv[D(δv(t), η)] = Êv[ηv(t)], (2.8)

where Êv denotes the expectation of the dual process starting from δv .

2.2.2 Proof of Duality for the RTP Process

Let {v(t) : t ≥ 0} be the random path of a single particle in V performing the RTP dynamics
starting from v(0) = v. The deterministic system we will consider is the following: for a
function f : V → R, define

ft (v) :=
∑

w∈V
pt (v,w) f (w) = E

[
f
(
v(t)

)]
,

where pt (v,w) is the transition kernel of a single RTP particle. In other words, the process
{ ft : t ≥ 0} follows the Kolmogorov backwards equation of the RTP process. We now have
the following duality result:

Proposition 2.1 Let f : V → R be such that f (v) 	= 1 for only a finite number of v ∈ V .
For the deterministic processes { ft : t ≥ 0} and the process {η(t) : t ≥ 0} generated byL0,
it holds that

Eη

[
∏

v∈V
f (v)ηv(t)

]
=

∏

v∈V
ft (v)ηv , (2.9)

i.e., the two processes are dual to one another with duality function

D( f , η) =
∏

v∈V
f (v)ηv .

The proof of this result is straightforward and only relies on the fact that the particles in the
RTP process move independently.

Proof Define {vi (t) : i ∈ I , t ≥ 0} as the paths of the particles in the configuration η(t) with
I an arbitrary set of labels, i.e., ηv(t) = ∑

i∈I I (vi (t) = v) for all v ∈ V and t ≥ 0. We then
have that

E

[
∏

v∈V
f (v)ηv(t)

]
= E

[
∏

i

f (vi (t))

]
=

∏

i

E [ f (vi (t))] =
∏

i

ft (vi ) =
∏

v∈V
ft (v)ηv ,

where in the second step we used the independence of particles. 
�
We will now prove item 2.1 of Theorem 2.1 using the duality result in (2.9).

Proof Let {ξ(t) : t ≥ 0} denote an R̂TP process and, for a given η, define the sequence of
finite configurations (η(N ))N∈N as

η
(N )
(x,σ ) :=

{
η(x,σ ) if x ∈ [−N , N ],
0 else.
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We will first prove the result for the dual process starting from n particles at position vi ∈ V ,
i.e., ξ = n · δvi , with δvi the configuration with a single particle at vi , and by replacing the
starting configuration η by η(N ). By taking the n-th order derivative with respect to f (vi ) on
the left-hand side of (2.9) and afterwards setting f ≡ 1, we find that

∂n

∂ f (vi )n
Eη(N )

[
∏

v∈V
f (v)η

(N )
v (t)

]∣∣∣∣∣
f ≡1

= Eη(N )

[
∂n

∂ f (vi )n
∏

v∈V
f (v)η

(N )
v (t)

]∣∣∣∣∣
f ≡1

= Eη(N )

[
ηvi (t)!

(ηvi (t) − n)! · I (n ≤ ηvi (t)
)]

. (2.10)

Here we were able to interchange the derivatives and the expectation using dominated
convergence. Note that the right-hand side is equal to Eη(N )

[
D0(ξ, η(N )(t))

]
.

Applying the same operations as in (2.10) to the right hand side of (2.9), we obtain

∂n

∂ f (vi )n
∏

v∈V

(
∑

w∈V
pt (v,w) f (w)

)η
(N )
v

∣∣∣∣∣∣∣
f ≡1

=
n∑

m=1

∑

v(1),...,v(m)∈V
v(i) 	=v( j)

∑

k1+...+km=n

(
n

k1, ..., km

) m∏

j=1

∂k j

∂ f (vi )k j

(
∑

w∈V
pt (v

( j), w) f (w)

)η
(N )

v( j)

∣∣∣∣∣∣∣∣∣
f ≡1

=
n∑

m=1

∑

v(1),...,v(m)∈V
v(i) 	=v( j)

∑

k1+...+km=n

(
n

k1, ..., km

) m∏

j=1

d0
(
η

(N )

v( j) , k j
)
pt

(
v( j), vi

)k j

=
n∑

m=1

∑

v(1),...,v(m)∈V
v(i) 	=v( j)

∑

k1+...+km=n

(
n

k1, ..., km

) m∏

j=1

d0
(
η

(N )

v( j) , k j
)
p̂t

(
vi , v

( j)
)k j

.

Here p̂t (w, v) is the transition kernel of a single R̂TP particle, and we have used that
pt (v,w) = p̂t (w, v) for all v,w ∈ V . Notice that the last line in the above formula is
the expected value of D0(ξ(t), η(N )), i.e.,

∂n

∂ f (vi )n
∏

v∈V

(
∑

w∈V
pt (v,w) f (w)

)η
(N )
v

∣∣∣∣∣∣∣
f ≡1

= Êξ

[
D0(ξ(t), η(N ))

]
. (2.11)

Combining (2.9), (2.10) and (2.11), we find that

Eη(N )

[
D0(ξ, η(N )(t))

] = Êξ

[
D0(ξ(t), η(N ))

]
.

The claim now follows from monotone convergence as N → ∞.
If we consider any finite configuration of particles ξ ∈ �0, f , i.e., ξ = ∑n

i=1 δvi for some
n ∈ N and vi ∈ V , then the duality result can be found by taking the derivative with respect
to each f (vi ) on both the left-hand side and right-hand side of the equation (2.9). 
�
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2.3 Invariant Probability Measures

Proposition 2.2 For the processes defined in Sect. 2.1, the following probability measures
denoted by μρ,s are invariant.

1. If s = −1, then μρ,−1 with ρ ∈ [0, 1] is distributed according to a product Binomial
distribution, i.e.,

μρ,−1(η) =
∏

v∈V

(
α

ηv

)
ρηv (1 − ρ)α−ηv .

2. If s = 1, thenμρ,1 withρ ∈ [0, 1) is distributed according to a productNegativeBinomial
distribution, i.e.,

μρ,1(η) =
∏

v∈V

�
(
α + ηv

)

�(α) · ηv! ρηv (1 − ρ)α.

3. If s = 0, then μρ,0 with ρ ≥ 0 is distributed according to a product Poisson distribution,
i.e.,

μρ,0(η) =
∏

v∈V

ρηv

ηv!e
−ρ.

Proof The first two results are well-known and follow from the fact that the probability
measures satisfy the detailed balance condition (see e.g. [3]). For the third result, a system
of independent walkers on V with single particle transition rates p(v,w), such that for all
w ∈ V

∑

v∈V
(ρ(v)p(v,w) − ρ(w)p(w, v)) = 0

has invariant product Poisson measures
⊗

v∈V Pois(ρ(v)) (see e.g. [5]). Note that in our case
we have for all (y, σ ′) ∈ V ,

∑

(x,σ )∈V
p((x, σ ), (y, σ ′)) =

∑

(x,σ )∈V
p((y, σ ′), (x, σ )) =

∑

u∈Zd

πσ ′(u) + λ +
∑

σ∈S
c(σ, σ ′).

(2.12)

Therefore, the product Poisson measures with constant density ρ > 0 are invariant. 
�
The following proposition provides the relation between the probability measures of

Proposition 2.2 and the duality functions of Theorem 2.1.

Proposition 2.3 Let μ ∈ P(�s), then μ = μρ,s if and only if for every ξ ∈ �s, f and every
v ∈ V ,

∫
Ds(ξ, η) dμ(η) =

(∫
Ds(δv, η) dμ(η)

)|ξ |
. (2.13)

Proof A straightforward calculation shows that (2.13) holds for μρ,s . The uniqueness prop-
erty follows from the fact that Ds(ξ, η) is a (multivariate) polynomial of order at most |ξ |.
This implies that (2.13) is actually a moment problem, which in the case ofμρ,s has a unique
solution since the marginals have a finite moment generating function (see e.g. [11]). 
�

123
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From this relation, the invariance of the probability measures also follows from the
conservation of particles in the dual process. Namely, by duality and Fubini we have that
∫

Eη [Ds(ξ, ηt )] dμρ,s(η) = Eξ

[∫
Ds(ξt , η)dμρ,s(η)

]
=

(∫
Ds(δv, η) dμρ,s(η)

)|ξ |
.

3 Ergodic Theory of Particle Systems with Homogeneous Factorized
Duality Polynomials

In this section we provide a characterization of the ergodic invariant probability measures
satisfying a certain moment growth condition in a general setting where we assume the
existence of homogenous factorized duality polynomials, and the existence of successful
coupling for the dual process. This generalizes earlier results from [15] chapter 8 for the
symmetric exclusion process, and [13] for the inclusion process. The characterization will
be applied in Sect. 4 to our models (see Theorem 4.1 below).

3.1 Basic Assumptions

3.1.1 Configurations

We consider a configuration process {η(t) : t ≥ 0} on (a subset of) the state space � = N
G ,

where G is assumed to be an infinite countable set. We denote by S(t) the semigroup of this
process, i.e., S(t) f (η) = Eη f (η(t)).We further denote by� f the set of finite configurations,
i.e., elements of ξ ∈ � such that |ξ | = ∑

x ξx < ∞.

3.1.2 Factorized Duality Fsunctions

We assume that there exists a duality function

D : � f × � → R+ (3.1)

such that we have the duality relation

EηD(ξ, η(t)) = Êξ D(ξ(t), η). (3.2)

We assume that D(∅, η) = 1 where ∅ denotes the empty configuration. Moreover we
assume that the duality functions are in homogeneous factorized form, i.e., of the form

D(ξ, η) =
∏

x∈G
d(ξx , ηx ), (3.3)

where d(0, n) = 1, i.e., in the product only a finite number of factors is different from one,
and where d(k, ·) is a non-negative polynomial of degree k. Moreover, we assume that every
polynomial p(n) of degree k can be expressed as a linear combination of the polynomials
d(r , n) with 0 ≤ r ≤ k.

We assume that both in the process {η(t) : t ≥ 0} and in the dual process {ξ(t) : t ≥ 0}
the number of particles is conserved.

In the examples of this paper, the duality functions are multivariate polynomials of degree
|ξ |, and the dual process {ξ(t) : t ≥ 0} is either the sameprocess (for the interacting examples)
or the process obtained by reverting the velocities (the R̂TP process defined in Theorem 2.1).
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In this section we take an abstract point of view and prove under general assumptions a
structure theorem for the set of (tempered) invariant probability measures.

3.1.3 Tempered Probability Measures

Given a duality function, we define the D-transform of a probability measure μ on the
configuration space � by

μ̂(ξ) =
∫

D(ξ, η) dμ(η),

where we implicitly assume that for all ξ ∈ � f , D(ξ, ·) is μ-integrable.

Definition 3.1 We then say that a probability measure μ is tempered if

1. μ satisfies a uniform moment condition, i.e., for all n ∈ N

cn := sup
|ξ |≤n

∫
D(ξ, η) dμ(η) < ∞. (3.4)

2. μ is determined by its D-transform, i.e., μ̂ = ν̂ if and only if μ = ν.
3. The following space

D = vct{D(ξ, ·) : ξ ∈ � f },
i.e., the vector space spanned by the functions D(ξ, ·), is dense in L2(μ).

Notice that by the assumptions on the duality functions, the condition (3.4) can be expressed
equivalently by the requirement that all moments of the occupation variables are finite
uniformly in x , i.e., for all n ∈ N

sup
x∈G

∫
ηnxdμ(η) < ∞.

Using Hölder’s inequality, we then also obtain that under (3.4) we have that for all n ∈ N

sup
ξ,ξ ′:|ξ |≤n,|ξ ′|≤n

∫
D(ξ, η)D(ξ ′, η) dμ(η) < ∞. (3.5)

The condition that the D-transformdetermines the probabilitymeasure uniquely is implied
by a growth condition on cn which implies that the measure μ is uniquely determined by
its multivariate moments. Examples of sufficient growth conditions can be found in e.g. [11,
Section 3.2]. In these settings, the condition that D is dense in L2(μ) is also natural. In the
setting of processes of exclusion type, i.e., when there are at most α particles at each site, the
condition of density of D is natural and follows from the Stone Weierstrass theorem, i.e., D
is uniformly dense in the set of continuous functions C (�).

3.1.4 Assumptions on the Dual Process

For the dual process {ξ(t) : t ≥ 0}, we assume that it is irreducible on the sets �n = {ξ :
|ξ | = n}. Moreover we assume that eventually the process {ξ(t) : t ≥ 0} started at ξ with
|ξ | = n, spreads out over the infinite set �n . This is expressed via the condition that for all
ξ ′ ∈ � f

lim
t→∞ P̂ξ (ξ(t) ⊥ ξ ′) = 1, (3.6)

123
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where we denote ξ ⊥ ξ ′ the event that the supports of ξ and ξ ′ are disjoint. In words, (3.6)
means that the probability that the configuration at time t has non-zero occupation at fixed
sites tends to zero as t → ∞.

3.1.5 Ergodic Probability Measures

We denote by I the set of invariant probability measures of the process {η(t) : t ≥ 0} and
by T the set of tempered probability measures on �. Both I and T are convex sets.

We are then interested in characterizing the ergodic probability measures which belong to
T . We recall that a probability measure μ ∈ I is ergodic if, for any f ∈ L2(μ), S(t) f = f
for all t ≥ 0 implies f = ∫

f dμ almost surely. The set of ergodic probability measures
coincides with Ie, the set of extreme points of I. Ergodicity is implied by mixing (see e.g.
[18, Section 6.3]) which is the property that for all f , g ∈ L2(μ)

lim
t→∞ covμ( f , S(t)g) = lim

t→∞

∫ (
f −

∫
f dμ

) (
S(t)g −

∫
g dμ

)
dμ = 0. (3.7)

By bilinearity of the covariance and the fact that, for μ ∈ I, S(t) is a contraction in L2(μ), it
suffices to show (3.7) for a set of functions f , g ∈ W , where W is such that the vectorspace
spanned by W is a dense subspace in L2(μ).

3.2 Successful Coupling

We say that the dual process admits a successful coupling if for all n ∈ N, ξ, ξ ′ ∈ �n there
exists a coupling {(ξ (1)(t), ξ (2)(t)) : t ≥ 0} of the processes {ξ(t) : t ≥ 0} starting from ξ

and ξ ′ such that the following stopping time

τξ,ξ ′ = inf{T > 0 : ξ (1)(t) = ξ (2)(t) for all t ≥ T }
is a.s. finite. We call this stopping time the coupling time. For this paper, we will make use
of the following consequence of a successful coupling,

lim
t→∞ P̂ξ,ξ ′(ξ (1)(t) 	= ξ (2)(t)) = 0, (3.8)

where P̂ξ,ξ ′ is the path space probability measure of {(ξ (1)(t), ξ (2)(t)) : t ≥ 0} starting from
(ξ, ξ ′).

3.3 Characterization of Tempered Invariant Probability Measures

The following theorem has two parts: the first parts is well-known and appears in various
context, e.g. [15] chapter 2, chapter 8. We give its proof in this general context mainly for
the sake of completeness. The second part is inspired by [13] in the context of the inclusion
process.

Theorem 3.1 1. If there exists a succesful coupling for the dual process, then for every
tempered invariant probability measure μ there exists a function f : N → [0,∞) such
that for all ξ ∈ �n,

μ̂(ξ) = f (n). (3.9)
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2. Ifμ is a probability measure on� which is tempered, invariant and ergodic then f (n) =
f (1)n. As a consequence, μ is a product measure.

Proof To prove item 1, by duality and the assumption thatμ is tempered, we can use Fubini’s
theorem combined with duality to compute

Êξ μ̂(ξ(t)) =
∫

Êξ (D(ξ(t), η)) dμ(η) =
∫

EηD(ξ, η(t)) dμ(η) =
∫

D(ξ, η) dμ(η) = μ̂(ξ).(3.10)

Here in the last equality we used the invariance of μ. We conclude that μ̂ is a harmonic
function, which is bounded on each �n by the assumption that μ is tempered.

Therefore, using the assumed existence of a successful coupling, by (3.8) together with
dominated convergence, we obtain for ξ, ξ ′ ∈ �n the following

μ̂(ξ) = Êξ,ξ ′ μ̂(ξ (1)(t))

= Êξ,ξ ′ μ̂(ξ (1)(t))I (ξ (1)(t)) = ξ (2)(t))) + o(1)

= Êξ,ξ ′ μ̂(ξ (2)(t))I (ξ (1)(t)) = ξ (2)(t))) + o(1)

= Êξ ′(μ̂(ξ(t))) + o(1) = μ̂(ξ ′) + o(1), (3.11)

where o(1) → 0 as t → ∞. This gives that μ̂ is constant on �n , i.e., μ̂(ξ) = f (n) for some
f : N → R.
To prove item 2, we start by using the ergodicity combined with duality to write

∫
D(ξ, η) dμ(η)

∫
D(ξ ′, η) dμ(η)

= lim
T→∞

1

T

∫ T

0

∫
D(ξ, η)S(t)D(ξ ′, ·)(η) dμ(η) dt

= lim
T→∞

1

T

∫ T

0

∫
D(ξ, η)Êξ ′ D(ξ(t).·)(η) dμ(η) dt, (3.12)

Here in the first step we used that 1
T

∫ T
0 S(t)D(ξ ′, ·)(η) dt → ∫

D(ξ ′, η)dμ(η) holds almost
surely and in L1(μ), and in the second step we used duality. Now let ξ ∈ �n, ξ ′ ∈ �m be
given. By item 1, we have f (n) = μ̂(ξ), f (m) = μ̂(ξ ′). By the homogeneous factorization
of D, we have for ξ ∈ �n, ξ ′ ∈ �m, ξ ⊥ ξ ′

D(ξ, η)D(ξ ′, η) = D(ξ + ξ ′, η),

and therefore, if ξ ⊥ ξ ′, we have that
∫

D(ξ, η)D(ξ ′, η) dμ(η) = f (n + m).

Now combine (3.12) and the assumption (3.6) with the temperedness of the probability
measure μ to conclude

f (n) f (m) =
∫

D(ξ, η) dμ(η)

∫
D(ξ ′, η) dμ(η)

= 1

T

∫ T

0

∫
D(ξ, η)Êξ ′ D(ξ(t), ·)(η) dμ(η) + o(1)

= 1

T

∫ T

0

∫
D(ξ, η)Êξ ′ D(ξ(t), ·)(η)I (ξ(t) ⊥ ξ) dμ(η) + o(1)
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= 1

T

∫ T

0

∫
Êξ ′ D(ξ + ξ(t), ·)(η)I (ξ(t) ⊥ ξ) dμ(η) + o(1)

= 1

T

∫ T

0
Eξ ′ (I (ξ(t) ⊥ ξ) f (n + m)) + o(1)

= f (n + m) + o(1), (3.13)

where o(1) → 0 as T → ∞ via (3.5), (3.4). This proves that for all ξ ∈ �n, ξ
′ ∈ �m we

have

μ̂(ξ + ξ ′) = μ̂(ξ)μ̂(ξ ′),

which gives f (n) = f (1)n . This implies that for all x1, . . . , xn ∈ G, k1, . . . , kn ∈ N,
∫ n∏

i=1

d(ki , ηxi ) dμ(η) = f (1)k1+...+kn =
n∏

i=1

∫
d(ki , η) dμ(η),

which implies that μ is a product measure. 
�
In the next theorem we prove that invariant tempered product probability measures are

ergodic. This, combined with Theorem 3.1, completes the characterization of the set of
tempered ergodic probability measures.

We introduce

K :=
{∫

D(δx , η)dμ(η) : μ is an invariant tempered product probability measure

}
.

Theorem 3.2 1. Ifμ is an invariant tempered product probability measure then it is ergodic.
2. If there exists a successful coupling for the dual process, then the only tempered invariant

probabilitymeasureswhichare ergodic are the product probabilitymeasuresμθ forwhich
μ̂θ (ξ) = θ |ξ | with θ ∈ K.

3. If there exists a successful coupling for the dual process, then

(T ∩ I)e = T ∩ Ie = {μθ : θ ∈ K },
where (T ∩ I)e are the extreme points of T ∩ I.

Proof For item 1, as indicated in the section where we defined mixing, it suffices to show
that

lim
t→∞

∫
D(ξ, η)EηD(ξ ′, η(t)) dμ(η) = μ̂(ξ)μ̂(ξ ′) (3.14)

because by assumption the vectorspace spanned by the D(ξ, ·) is dense in L2(μ).
Using duality, the assumption (3.6), the product character of the probability measure μ

as well as the assumed temperedness of μ (cf. (3.5)), and denoting o(1) for a term which
converges to zero as t → ∞, we get

∫
D(ξ, η)EηD(ξ ′, η(t)) dμ(η) =

∫
D(ξ, η)Êξ ′ D(ξ(t), η) dμ(η)

= Êξ ′
∫

D(ξ, η)D(ξ(t), η)I (ξ(t) ⊥ ξ) dμ(η) + o(1)

=
(∫

D(ξ, η) dμ(η)

∫
Êξ ′ D(ξ(t), η) dμ(η)

)
+ o(1)
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=
∫

D(ξ, η) dμ(η)

∫
Eη(D(ξ ′, η(t))) dμ(η) + o(1)

=
∫

D(ξ, η) dμ(η)

∫
D(ξ ′, η) dμ(η) + o(1)

= μ̂(ξ)μ̂(ξ ′) + o(1). (3.15)

Item 2 follows immediately from item 1 and item 2 of Theorem 3.1. To prove item 3, we
only have to prove that

(T ∩ I)e = T ∩ Ie.

The implication “μ ∈ T ∩Ie impliesμ ∈ (T ∩I)e” is obvious. To prove the other implication,
start from μ ∈ (T ∩ I)e and assume that we have

μ = λν1 + (1 − λ)ν2,

with ν1, ν2 ∈ I and 0 < λ < 1. Then we have, because μ ∈ T , that ν1, ν2 ∈ T , and
therefore, ν1, ν2 ∈ T ∩I. But then, using that μ ∈ (T ∩I)e we have μ = ν1 = ν2, therefore
we conclude that μ ∈ Ie. 
�

4 Existence of a Successful Coupling

We can now state the main result of our paper, i.e., the characterization of the tempered
ergodic probability measures for the three models of Sect. 2.1.

Theorem 4.1 For all s ∈ {−1, 0, 1}, the probability measures μρ,s defined in Proposition
2.2 are the only tempered ergodic probability measures of the process generated by Ls .

By Theorem 3.2 we need to show the the dual processes defined in Sect. 2.2.1 satisfy the
assumptions from Sect. 3.1.4, along with the existence of a successful coupling. We will start
by proving that the original assumptions hold.

The irreducibility of the processes on the sets �s,n = {ξ ∈ �s, f : ∑
x ξx = n} is clear

from the irreducibility of the single particle random walk. For (3.6), let ξ ′ ∈ �s,n and let
(vi )

n
i=1 ⊂ V be the coordinates of the particles in the configuration ξ ′. Note then that for

every ξ ∈ �s, f

P̂ξ (ξ(t) 	⊥ ξ ′) ≤
n∑

i=1

P̂ξ (ξvi (t) ≥ 1) ≤
n∑

i=1

Êξ [ξvi (t)].

We are able to write ξvi (t) = 1
cα,s

Ds(δvi , ξ(t)) cf. Remark 2.2. Hence, using duality

Êξ [ξvi (t)] = Evi [ξv(t)] =
∑

w∈V
pt (vi , w)ξw,

where v(t) is the path of a particle under the dynamics of the original process starting from
vi , and pt (v,w) is the corresponding transition kernel. Here we also used that the dual of
the dual is the original process (cf. Theorem 2.1, item 3). Because ξ is finite, the sum on the
right-hand side is actually a finite sum, and so (3.6) follows if pt (v,w) → 0 as t → ∞ for
all v,w ∈ V . To see that this holds, note that for all x, y, z ∈ Z

d and σ, σ ′ ∈ S we have that

pt ((x, σ ), (y, σ ′)) = pt ((x + z, σ ), (y + z, σ ′)).
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Therefore, there can not exist an invariant probability measure for the single particle random
walk, whichmeans that the randomwalk is either null-recurrent or transient. Hencewe indeed
have that limt→∞ pt (v,w) = 0 for all v,w ∈ V (see e.g. [4, p. 26]).

In order to prove the existence of a successful coupling for the dual processes we proceed
as follows:

First, we consider multi-layer symmetric independent randomwalkers (IRW) on V where
the jump rates depend on the layer, i.e., R̂TP with λ = 0 in (2.3), which will be needed for the
proof of our models. Second, we deal with interacting particles, distinguishing the transient
and recurrent cases for both models. Finally, we prove the existence of a successful coupling
for a general RTP, distinguishing the cases where there are random walk jumps and the case
where there are only active jumps.

In order to prove the successful coupling of finite configurations with identical par-
ticle numbers, we pass to a more convenient labeled particle configuration, i.e., when
ξ ∈ N

V with
∑

v∈V ξv = n, then ξ = ∑n
i=1 δ(xi ,σi ) and we identify ξ with(

(x1, σ1), ..., (xn, σn)
) ∈ V n where over the course of time, these initially chosen labels

remain fixed. With this prescription, the configuration process ξ(t) induces a unique process(
(X1(t), σ1(t)), ..., (Xn(t), σn(t))

)
on V n .

4.1 Successful Coupling of Multi-layer Symmetric IRW

The proof of existence of a successful coupling of multi-layer symmetric IRW makes use of
the Ornstein-coupling which is also used for the existence of a successful coupling of simple
symmetric IRW on Z

d . The argument can be found in e.g. [10], however for completion we
will give a proof here as well.

Proposition 4.1 For all n ∈ N and y(1), y(2) ∈ (
Z
d
)n
, there exists a successful coupling(

Y(1)(t),Y(2)(t)
)
of simple symmetric IRW on Z

d with initial conditions Y(1)(0) = y(1) and
Y(2)(0) = y(2).

Proof Since the particles move independently, we only have to show that there exists a
successful coupling of two simple symmetric random walkers on Z

d . Namely, if we can suc-
cessfully couple any two particles in the two configurations Y(1)(t) = (

Y (1)
1 (t), ..., Y (1)

n (t)
)

and Y(2)(t) = (
Y (2)
1 (t), ..., Y (2)

n (t)
)
, then every stopping time

τi := inf
{
T > 0 : Y (1)

i (t) = Y (2)
i (t) for all t ≥ T

}

is a.s. finite. Note that the coupling time of Y(1)(t) and Y(2)(t) is then equal to τ =
max1≤i≤n τi , which is therefore also a.s. finite.

For the successful coupling of the pair Y (1)
i (t) and Y (2)

i (t), let {e1, e2, ..., ed} be the
standard basis vectors of Z

d . Then we can write

Y (1)
i (t) − Y (2)

i (t) = a1(t)e1 + a2(t)e2 + ... + ad(t)ed .

Here every ak(t) is a simple symmetric random walk on Z. Now define the stopping times

τak := inf{t ≥ 0 : ak(t) = 0}.
It is clear that every τak is a.s. finite. After time τak we let the processes Y

(1)
i (t) and Y (2)

i (t)
copy each others jumps in the direction of ek , i.e. ak(t) = 0 for all t ≥ τak . The proof is now
finished after the observation that τi = max1≤k≤d τak . 
�
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Proposition 4.2 For all n ∈ N and y(1), y(2) ∈ V n, there exists a successful coupling(
Y(1)(t),Y(2)(t)

)
of multi-layer symmetric IRW on V , i.e., R̂TP with λ = 0, with initial

conditions Y(1)(0) = y(1) and Y(2)(0) = y(2).

Proof Similarly as in the proof of Proposition 4.1, we only have to show that there exists
a successful coupling of two random walkers (Y (1)(t), σ (1)(t)) and (Y (2)(t), σ (2)(t)) on V .
Initially we let the two random walkers evolve independently, up until the stopping time ς

defined as

ς := inf {t ≥ 0 : σ (1)(t) = σ (2)(t)}. (4.1)

Note that this stopping time is a.s. finite since the set S is finite and the transition rates
{c(σ, σ ′) : σ, σ ′ ∈ S} on S are irreducible. After the stopping time ς , we let the two random
walkers copy each others internal state jumps, i.e., we define the processes (Ỹ (i)(t), σ̃ (i)(t))
for i = 1, 2 such that (Ỹ (i)(t), σ̃ (i)(t)) = (Y (i)(t), σ (i)(t)) for t ≤ ς and σ̃ (i)(t + ς) = σ̃ (t)
for t ≥ 0, where σ̃ (t) is an internal state process starting from σ̃ (0) = σ (1)(ς) = σ (2)(ς).

We can again write

Ỹ (1)(ς + t) − Ỹ (2)(ς + t) = a1(t)e1 + a2(t)e2 + ... + ad(t)ed ,

where every ak(t) is a continuous-time nearest neighbor symmetric random walk on Z with
(time-dependent) transition rates 2πσ̃(t)(ek) > 0. We again define the stopping times

τak := inf{t ≥ 0 : ak(t) = 0},
and after time τak we let the processes (Ỹ (1)(t), σ̃ (1)(t)) and (Ỹ (2)(t), σ̃ (2)(t)) copy each
others jumps in the direction of ek . Note that the coupling time τ is now equal to τ =
ς + max1≤k≤d τak , which is a.s. finite. 
�

4.2 Successful Coupling of Multi-layer SEP

LetX(1)(t) andX(2)(t) be two finite configurations ofmulti-layer SEP particles with the same
number of particles. We split the proof of the successful coupling up in two parts, namely
the transient case and the recurrent case.

4.2.1 Transient Case

Assume d ≥ 3, then the random walk corresponding to the transition rates πσ (·) is transient
onZ

d for every σ ∈ S. LetY(t) be an IRW process onN
V with finitely many particles. Since

the transition rates are transient, for any R > 1 and any starting position y = (y1, y2, ..., yn)
such that ||yi − y j ||1 > R for all i 	= j , with positive probability p(R) the particles in Y(t)
starting from ywill never have collisions. Here a collisionmeans that there is a t > 0 such that
two particles (Y1(t), σ1(t)) and (Y2(t), σ2(t)) in the configuration Y(t) are at neighboring
positions of each other, i.e. we either have

||Y1(t) − Y2(t)||1 = 1 and σ1(t) = σ2(t),

or

Y1(t) = Y2(t) and c(σ1(t), σ2(t)) > 0.

It follows that, conditional on the event that there are no collisions, the multi-layer SEP
particles move the same as multi-layer IRW particles.
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We now let the configurations X(1)(t) and X(2)(t) move for some time T > 0. We denote
by R(T ) the minimal distance between two particles in the same configuration at time T ,
i.e.

R(T ) := min
i 	= j

{||X (1)
i (t) − X (1)

j (t)||1, ||X (2)
i (t) − X (2)

j (t)||1},

with X (1)
i (t) ∈ Z

d the position of particle i in configuration X(1)(t). After time T , we start
the coupling attempt by letting the SEP particles copy the jumps of IRW particles starting
from X(1)(T ) and X(2)(T ). By Proposition 4.2, this attempt is successful with probability
larger than p(R(T )). This proof is now finished by noting that in the transient case, we have
that R(T ) → ∞ as T → ∞ and p(R) → 1 as R → ∞.

4.2.2 Recurrent Case

For the case of d ≤ 2, where every πσ (·) is recurrent, we will define the multi-layer SEP
process on the ladder graph (see e.g. [8]), i.e., we define the state space �′−1 := {0, 1}V×A

with A = {1, 2, ..., α}). This space can be seen as the space where on every site v ∈ V there
is a ladder with α steps, and every particle chooses a step of this ladder if it moves to a new
site. We can easily go back from a configuration η′ ∈ �′−1 to a configuration in η ∈ �−1 by
setting

η(x, σ ) =
α∑

i=1

η′(x, σ, i), for all (x, σ ) ∈ V . (4.2)

We now define the process on �′−1 through the generator

L ′−1 f (η
′) =

α∑

j,k=1

∑

v,w∈V

p(v,w)

α
η′

(v, j)

(
α − η′

(w,k)

)
∇(v, j),(w,k) f (η

′),

i.e., it is the simple symmetric exclusion process on V × A where particles choose a step on
the ladder A uniformly. It is easy to see that L ′−1 on �′−1 corresponds to the generator L−1

on �−1 through (4.2). The successful coupling of the multi-layer SEP now follows from the
successful coupling of the simple symmetric exclusion process on �′−1. Since the set V × A
is countable, this result is already known, for example in [15, Chapter VIII].

4.3 Successful Coupling of Multi-layer SIP

The successful coupling of SIP on Z
d has already been shown by Kuoch and Redig in [13]

and can be extended to our framework of multi-layer particles. In the transient case, this
proof uses the same principle as the proof of a successful coupling for multi-layer SEP
above, i.e., we let the particles spread out far enough such that there are no collisions with
positive probability, after which the particles move like independent random walkers for
which there exists a successful coupling by Proposition 4.2. The proof of the recurrent case
actually uses a similar approach as in the transient case, in which it lets the particles spread
out over time and afterwards makes a coupling attempt. The probability that this coupling
attempt is successful has non-zero probability. If the attempt fails, i.e., there is a collision, a
new coupling attempt is made. Since these coupling attempts have non-zero probability of
success and are independent, there will be a successful coupling eventually. For more details
on both proofs, see [13].

123



Ergodic Theory of Multi-layer Interacting... Page 17 of 19 88

4.4 Successful Coupling of ̂RTP

For the R̂TP process we will also look at two cases, namely the case with randomwalk jumps
of particles, i.e., κ > 0 in (2.3), and without random walk jumps. For the case of κ > 0,
we will see that the successful coupling of R̂TP is a corollary of Proposition 4.2 by copying
the active and internal jumps of the process. If κ = 0, then we will need the additional
assumption given in (2.4). With this assumption we are able to use a similar argument as in
the proof of Proposition 4.2 to prove the existence of a successful coupling.

Successful Coupling of ̂RTP with � > 0

For (X(t), σ (t)) a single R̂TP particle, we can decouple the dynamics of X(t) through the
following decomposition,

X(t) = Y (t) + Z(t),

where Y (t) is a symmetric random walk starting from X(0) and Z(t) are the active jumps
starting from 0, both of which are dependent of σ(t).

Since we are dealing with configurations of independent random walkers again, we only
have to prove the existence of a successful coupling of two randomwalkers (X (1)(t), σ (1)(t))
and (X (2)(t), σ (2)(t)). Similarly as in the proof of Proposition 4.2, we let the two random
walkers evolve independently up until the stopping time ς defined as in (4.1). Afterwards,
we let the random walkers copy each others internal state jumps, i.e., we define the processes
(X̃ (i)(t), σ̃ (i)(t)) for i = 1, 2 as (X̃ (i)(t), σ̃ (i)(t)) = (X (i)(t), σ (i)(t)) for t ≤ ς , and

(X̃ (i)(ς + t), σ̃ (i)(ς + t)) = (Ỹ (i)(t) + Z̃(t), σ̃ (t))

where Ỹ (i)(t) is again a symmetric random walk starting from X (i)(ς), Z̃(t) are again the
active jumps starting from 0, and σ̃ (t) is as defined in the proof of Proposition 4.2. Note that
the difference of the positions of the two processes is now equal to

X̃ (1)(ς + t) − X̃ (2)(ς + t) = Ỹ (1)(t) − Ỹ (2)(t),

i.e., the difference between two symmetric random walkers. The result now follows from
Proposition 4.2.

Successful Coupling of ̂RTP with � = 0 and � > 0

Just as in the previous case, for two R̂TP processes (X (1)(t), σ (1)(t)) and (X (2)(t), σ (2)(t))
we define the stopping time ς as in (4.1), and set up the processes (X̃ (i)(t), σ̃ (i)(t)) for
i = 1, 2 such that (X̃ (i)(t), σ̃ (i)(t)) = (X (i)(t), σ (i)(t)) for t ≤ ς and σ (i)(ς + t) = σ̃ (t)
for t > 0.

By (2.4) we can now write

X̃ (1)(ς + t) − X̃ (2)(ς + t) = b1(t)v(σ1) + b2(t)v(σ2) + ... + bm(t)v(σm) (4.3)

for m = |S|, σk ∈ S and bk(t) ∈ Z for all k and t ≥ 0. For every k, the couple (bk(t), σ̃ (t))
is a random walk on Z × S with the following dynamics:

– If σ̃ (t) = σk , bk(t) moves as a continuous-time nearest neighbor symmetric random
walker on Z with rate λ.

– If σ̃ (t) 	= σk , bk(t) does not move.
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Since S is finite and the transition rates c(σ, σ ′) are irreducible, these random walks are
recurrent as their discrete counterparts are recurrent. This implies that the stopping times

τbk := inf{t ≥ 0 : bk(t) = 0} (4.4)

are almost surely finite. After every time τbk , we let the process X̃
(2)(ς + t) copy the jumps

of X̃ (1)(ς + t) in the direction of v(σk). For the coupling time τ , we then again have that
τ = ς + max1≤k≤m τbk .

Remark 4.1 We are able to extend the results of this section to the case where we take S
countable. We would need the additional assumption that the transition rates c(σ, σ ′) are
positive recurrent, which ensures that we return to any σ ∈ S in almost surely finite time. For
the interacting particles we would then distinguish between the cases where the transition
rates p(v,w) in (2.1) are transient and recurrent (note that the latter need not be the case
where d ≤ 2). For the R̂TP, the positive recurrence of c(σ, σ ′) ensures that every stopping
time τbk in (4.4) is almost surely finite.
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