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a b s t r a c t

The complex structure of bituminous mixtures ranging from nanoscale binder components
to macroscale pavement performance requires a comprehensive approach to material char-
acterization and performance prediction. This paper provides a critical analysis of advanced
techniques in paving materials modeling. It focuses on four main approaches: finite element
method (FEM), discrete element method (DEM), phase field method (PFM), and artificial
neural networks (ANNs). The review highlights how these computational methods enable
more accurate predictions of material behavior, from asphalt binder rheology to mixture
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Physics informed neural networks performance, while reducing reliance on extensive empirical testing. Key advances, such as
the smooth integration of information across multiple scales and the emergence of physics-
informed neural networks (PINNs), are discussed as promising avenues for enhancing model
accuracy and computational efficiency. This review not only provides a comprehensive overview
of current methodologies but also outlines future research directions aimed at developing more
sustainable, cost-effective, and durable paving solutions through advanced multiscale modeling
techniques.

Contents

1. Introduction .............................................................................................................................................................................. 2
2. Hierarchical structure and influencing factors of bituminous mixtures: a comprehensive study overview........................................... 3
3. Multiscale modeling approaches for paving mixtures .................................................................................................................... 5

3.1. Micromechanical models ................................................................................................................................................. 5
3.2. Constitutive models ........................................................................................................................................................ 6
3.3. Phase field modeling (PFM) of bituminous mixtures .......................................................................................................... 9
3.4. Artificial neural networks (ANNs) .................................................................................................................................... 9

4. Multiscale modeling of bituminous mixture.................................................................................................................................. 11
4.1. Modeling the response of asphalt binders and mastics ....................................................................................................... 11
4.2. Applications of ANNs in asphalt binder and mastic performance prediction......................................................................... 13
4.3. Applications of numerical simulations in asphalt mortar and mixture ................................................................................. 13
4.4. Application of ANNs in asphalt mortar and mixture .......................................................................................................... 15

5. Integration of scales and information: addressing limitations and mapping future directions ............................................................ 15
6. Conclusions ............................................................................................................................................................................... 17

CRediT authorship contribution statement ................................................................................................................................... 18
Declaration of competing interest ................................................................................................................................................ 18
Acknowledgment ....................................................................................................................................................................... 18
Appendix A. Comparative analysis of FEM and GSCM for asphalt mastic modeling ......................................................................... 18
Appendix B. Phase field simulation of microstructural evolution in PMB ........................................................................................ 20
Appendix. Data availability ........................................................................................................................................................ 21
References................................................................................................................................................................................. 21

1. Introduction

Multiscale modeling is a sophisticated approach to modeling that involves analyzing the behavior of entities across different scales
to understand how they operate and interact with each other [1,2]. This methodology is useful for addressing complex challenges that
xhibit significant characteristics across multiple dimensions of time and/or space [3,4]. In civil engineering, multiscale modeling is

a crucial tool for analyzing the behavior of complex materials, including concrete, rocks, and asphalt mixtures [3–5]. Through the
integration of various scales of material and structural interactions, multiscale modeling improves material design and construction
practices [6].

In the field of pavement engineering, multiscale modeling is essential for designing and analyzing asphalt mixtures. Asphalt
mixtures are the most commonly used material for road construction in the pavement sector. It is influenced by several factors,
ncluding the natural variability of the materials used, reflected by their strength, dimensions, and chemical composition. The
roperties of the aggregate and fillers, as well as the category of binders employed, also contribute to the overall performance.
nvironmental influences such as aging and weathering are additional determinants. Furthermore, the actual performance in the

field, coupled with the methodologies employed for testing and characterization, are critical considerations. Understanding and
ptimizing these factors allows for the design and construction of high-quality, long-lasting pavements that can withstand various
onditions while minimizing environmental impact, reducing costs, and enhancing safety [7–10].

In light of the intricate and interconnected nature of the factors influencing asphalt mixture performance and pavement
construction, it is crucial to employ a comprehensive and sophisticated approach to modeling and simulation. However, the
challenges associated with modeling and simulation in pavement engineering are significant, including the need to account for the
complex interplay between material properties, structural behavior, and environmental factors. In addition to the large number of
variables involved, the high dimensionality of the problem space makes it difficult to develop accurate and reliable models. Despite
these challenges, the potential benefits of advanced modeling and simulation in pavement engineering are substantial. Numerical
methods such as the finite element method (FEM), discrete element method (DEM), phase field method (PFM), and micromechanical
nalytical models, along with machine learning (ML) algorithms, emerge as promising approaches [11]. The core objective of this

paper is to provide a critical analysis of how numerical methods and machine learning algorithms are applied in multiscale modeling
f paving materials. The study examines in depth the constraints and challenges encountered when modeling and simulating these
aterials. Additionally, the paper explores potential future directions in this field, suggesting areas where research could be focused

o overcome current limitations and advance the understanding and modeling capabilities of paving materials.
2 
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Fig. 1. Review paper’s framework — an overview of methodologies and predictive strategies for paving materials.

The first half of the study focuses primarily on clarifying the hierarchical structure of bituminous mixture, from nanoscale to
macroscale level. This involves addressing the complexities inherent in modeling the distinct behaviors exhibited by individual
components across varying scales. Section 3 presents a thorough examination of the multiscale modeling approaches, including
micromechanical models, constitutive models, PFM, and artificial neural networks (ANNs). Section 4 explores the practical
pplications of these modeling techniques at different scales, from asphalt binders and mastics to mortars and mixtures. Finally,
ection 5 addresses the integration of all scales, current limitations, and future research directions in multiscale modeling of
ituminous mixtures. Fig. 1 provides a visual representation of the paper’s organization, serving as a useful guide for navigating the

content of the manuscript.

2. Hierarchical structure and influencing factors of bituminous mixtures: a comprehensive study overview

The behavior of asphalt mixtures is influenced by a variety of factors that span multiple scales, from the nanoscale to the
macroscale (Fig. 2). Asphalt binder, which is characterized by polarity into saturates, aromatics, resins, and asphaltenes (often
referred to as SARA fractions), demonstrates a complex composition at the nanoscale. While the exact distribution of these
component fractions within the binder matrix remains a topic of ongoing debate, research has shown that they can be randomly
dispersed. For instance, previous research has challenged the traditional understanding of asphalt binder’s molecular structure [13].
Instead of the widely accepted belief that asphalt binder components form micellar structures, this research suggested that asphalt
inder is a complex blend of intermingled molecules in a state of mutual solubility. This non-micellar model highlights the impact
f molecular polarity on binder’s properties, such as elasticity, at working temperatures, providing a more detailed insight into the
ehavior of asphalt binder at the nanoscale. Conversely, it has been suggested that asphalt binder forms a colloidal model, in which

asphaltenes and resins create micelle chains surrounded by saturates and aromatics [11,14]. These contrasting theories underscore
he complexity of binder’s molecular structure and the impact of molecular polarity on its properties.

Given the complex molecular structure of asphalt binder and the significant role of SARA fractions, many steps have been taken
to comprehend their impact on the behavior of asphalt binder and subsequently, the behavior of the upper scales. For instance,
asphaltenes, which are the heavier and more polar constituents within the entire spectrum of asphalt molecules, have been found
to be directly related to the appearance of the bee structure. The bee structure represents points in the material that are susceptible
to the initiation of microcracks. These microcracks can expand under applied loads, emphasizing their role in the overall behavior
of the bituminous material [13,15]. This structure is a critical concept as it helps in understanding how the material respond under
certain conditions.

Asphalt binder, on the other hand, undergoes short-term and long-term aging, which significantly influences how the pavement
behaves during its service life. Short-term aging occurs during the production, construction, and storage of asphalt binders. Long-
term aging represents the thermal and oxidative aging of asphalt binder during the pavement service life and is mostly driven
by environmental exposure and loads [16]. A significant study in this field developed an aging protocol to understand how
xidative aging affects the mechanical and chemical properties of asphalt pavements [10]. This research utilized both field-collected

samples and laboratory aging simulations. The findings highlighted the spatial variability of aging within the pavement layers and
mphasized that aging processes in real world conditions are more complex than those in controlled laboratory settings.
3 
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Fig. 2. Hierarchical structure, including the asphalt binder scale (bitumen), mastic-scale (bitumen + filler), mortar-scale (mastic + sand particles), and asphalt
mixture scale, adapted from [12].

Moving from the nanoscale to larger structural elements, the ‘‘mastic’’ is recognized at the microscale. The mastic is composed of
illers distributed throughout an asphalt binder matrix at a specific volume percentage. At this scale, the selection of filler material
nd the rheological properties of asphalt binders are crucial in determining the bonding behavior between asphalt and aggregate
n pavement structures. Numerous studies have explored this intricate relationship, shedding light on how different variables come
nto play. For instance, a recent study investigated how different filler materials, asphalt mastic properties, and water immersion

conditions interact and influence the bonding behavior between asphalt mastics and aggregates in asphalt mixture [17]. Additionally,
nvestigations into the effects of fillers on asphalt binder have revealed their favorable impact on mitigating age-hardening,
inking this to oxygen transport and adsorption processes [18–20]. A comprehensive framework was developed to understand the
nteractions between various filler materials and asphalt binder in asphalt mastic, demonstrating how these interactions influence
astic’s stiffness and shearing behavior [21]. Further research also examined the impact of active fillers on the rheological properties

and fatigue resistance of Cold Bitumen Emulsion (CBE) mastics used in pavement construction [22]. This study emphasizes how
the type of filler chosen and its chemical characteristics may impact how well CBE mixes operate, with some fillers enhancing the
material’s stiffness and fatigue resistance.

Shifting to the mesoscale level, which holds significant importance in bituminous research. The mesoscale level focuses on the
complex interactions between the mortar and larger aggregate particles. This level can be further divided into two main components:
the mortar and the mixture. The mortar is primarily made up of mastic and fine sand particles with diameters less than 2 mm. The

ortar plays a crucial role in providing cohesiveness and durability to the asphalt mixture by acting as a glue that holds the larger
ggregates together and fills the voids between them. The mixture component consists of aggregate particles of varying sizes and
hapes, which form the structure of the asphalt mixture, as well as the voids created between them and the mortar. These voids
ave a significant impact on properties such as permeability, density, and thermal conductivity. The interplay between the mortar,

aggregates, and voids is what gives asphalt mixtures their unique mechanical and functional characteristics [12].
Various studies have highlighted the importance of examining asphalt mixtures. For instance, innovative algorithms have been

developed to identify and quantify the various elements within the asphalt mixtures to better understanding of their compositions
and behaviors [23]. Research has also highlighted the influence of aggregate shapes on asphalt adhesion and the resulting mechanical
properties, emphasizing the need to consider aggregate morphology during pavement design [24]. Additionally, new testing
techniques have been proposed to understand the behavior of asphalt mixtures under complex stress conditions [25]. These studies
underscore the importance of studying asphalt mixtures to enhance their performance and durability. Owing to the aforementioned
impacts, it is essential to combine information from different scales to create a comprehensive multiscale framework that identify
the key factors influencing the ultimate behavior of asphalt mixture.
4 
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Table 1
Predictive analytical models for determining effective properties of composite materials: 𝐺𝑐 = modulus of the composite; 𝐺𝑚
= modulus of the matrix; 𝐺𝑝 = modulus of the particle inclusions; 𝐶𝑣 = volume concentration of the particle inclusions; 𝑣𝑚 =
Poisson’s ratio of the matrix.
Model Equation

DeBruijn
𝐺𝑐

𝐺𝑚
= 1 + 2.5𝐶𝑣 + 1.55𝐶2

𝑣 (1)

Roscoe
𝐺𝑐

𝐺𝑚
= (1 − 𝐶𝑣)−2.5 (2)

Eshelby
𝐺𝑐

𝐺𝑚
= 1 −

15(1 − 𝑣𝑚)(1 − 𝐺𝑝

𝐺𝑚
)

7 − 5𝑣𝑚 + 2(4 − 5𝑣𝑚) 𝐺𝑝

𝐺𝑚

𝐶𝑣 (3)

Hashin
𝐺𝑐

𝐺𝑚
= 1 −

15(1 − 𝑣𝑚)(1 − 𝐺𝑝

𝐺𝑚
)𝐶𝑣

7 − 5𝑣𝑚 + 2(4 − 5𝑣𝑚)[ 𝐺𝑝

𝐺𝑚
− ( 𝐺𝑝

𝐺𝑚
− 1)𝐶𝑣]

(4)

Mori–Tanaka
𝐺𝑐

𝐺𝑚
= 1 + 5𝐶𝑣(𝐺𝑝 − 𝐺𝑚)

5𝐺𝑚 + 2(1 − 𝐶𝑣)(𝐺𝑝 − 𝐺𝑚)
(5)

GSCM 𝑎(
𝐺𝑐

𝐺𝑚
)2 + 𝑏(

𝐺𝑐

𝐺𝑚
) + 𝑐 = 0 (6)

3. Multiscale modeling approaches for paving mixtures

3.1. Micromechanical models

Multiscale modeling involves studying complex systems by breaking them down into smaller, lower-dimensional components
nd understanding their behavior. This requires a detailed examination of the lower-dimensional components to identify the key
actors that influence their behavior. One of the key approaches in multiscale modeling is the use of analytical micromechanical
odels, which offer a mathematical representation of the microstructure of materials. These models are built upon fundamental
aterial properties such as Poisson’s ratio, elastic modulus, and the volume fraction of different components within the material.
hey incorporate particle interactions through effective medium techniques, which allows for the prediction of large scale material
ehavior based on microscopic components. There are several such representations, including those by DeBruijn, Roscoe, as well
s the Eshelby, Hashin, Mori–Tanaka, and Generalized Self-Consistent approaches. The DeBruijn model is a mathematical model
sed to predict the effective properties of a composite material. It examines the distribution of inclusions, such as particles or fibers,
ithin a matrix [26]. The Roscoe model is a widely used model in geomechanics and soil mechanics to describe the behavior

of granular materials, such as soils, by analyzing the arrangement of particles and their interactions. It is particularly useful for
modeling soil deformation and strength. The Eshelby model is a mathematical framework for examining how stress and strain are
distributed in materials with heterogeneities like inclusions or flaws [27]. This model allows researchers to better understand how
the presence of these inclusions affects the overall mechanical behavior of the material. Building upon the Eshelby model, the Hashin
model provides upper and lower bounds for the effective properties of the composite, enabling a more accurate prediction of the
mechanical behavior [28]. The Mori–Tanaka model and the Generalized Self-Consistent Model (GSCM) are both used for predicting
the mechanical properties of composite materials with complex microstructures [26,27]. However, the Mori–Tanaka model is based
on the assumption that the inclusions within the composite material are spherical while the GSCM is a more advanced model that
can handle a wider range of inclusion shapes, sizes, and orientations. Each of these models has specific applications and assumptions,
making them valuable tools for studying materials with multiscale structures and behaviors. Researchers choose the model that best
suits the material and properties they want to analyze. The equations that are used in each of the models mentioned above are
provided in Table 1 [29]. However, although these models can effectively predict the mechanical properties of multidimensional
composite materials with inclusions, their applicability is restricted when it comes to complex structures. The models’ limitations
become more pronounced when dealing with intricate geometries, non-uniform distributions of inclusions, and interactions between
inclusions. In such cases, more advanced models and numerical methods are needed to accurately predict the mechanical properties
of complex composite structures. Research has identified that the main challenge in using Continuum-Based Micromechanical
Models (CBMM) for asphalt materials is to accurately model the strengthening effect of particle contacts under conditions of
high concentrations of fillers and elevated temperatures [30]. To effectively address this challenge, a comprehensive approach
has been proposed that includes creating a realistic microstructure model, taking into account the physical mechanisms behind
particle-contact stiffening, considering the viscoelastic behavior of the matrix material, and using DEM as a valuable numerical tool.
Additionally, research indicates that existing micromechanical models fall short in accurately predicting the mechanical properties
of porous asphalt mixtures such as Zeer Open Asphalt Beton (ZOAB), which is commonly used in the Netherlands due to its noise
reduction properties, efficient water drainage, and resistance to rutting. Analysis of ZOAB suggests that this mixture may possess
unique characteristics or microstructural features that call for a different modeling approach and more advanced models specifically
designed to identify its properties.

To address the challenges in modeling complex mixtures like ZOAB, researchers have been exploring more sophisticated
micromechanical approaches. In this context, the ‘‘Generalized Self-Consistent scheme’’ has been introduced as a novel concept [31].
This approach provides a more accurate depiction of these materials’ behavior compared to the commonly employed Mori–Tanaka
5 
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scheme, especially when modeling materials with matrix-inclusion structures. Consequently, the selection of an appropriate method
depends on the specific requirements of the investigation at hand.

3.2. Constitutive models

The transmission of information between multiple scales is also possible by the effective connection between ordinary differential
quations (ODEs) and partial differential equations (PDEs) provided by finite element (FE) or discrete element (DE) techniques [32].

Once a solid understanding of the governing equations is achieved, these models can predict the behavior of a system based on the
initial and boundary conditions, which are typically known at specific points.

However, the accuracy of these predictions relies on understanding the system’s physics, including aspects such as kinematic
equations and the principles of mass, momentum, and energy balance. To make accurate predictions, the constitutive equations
hat describe the system’s behavior are also needed. These constitutive equations must be calibrated using experimental data or
ata generated through multiscale modeling [28].

In the case of bituminous mixtures, the viscoelastic behavior of the asphalt binder is particularly important. The Maxwell model
is commonly used to represent this behavior. The Maxwell model consists of linear springs (elastic elements) and linear dashpots
(viscous elements) as shown in Fig. 3. In the Maxwell model, the stress is decomposed into deviatoric and volumetric components
as follows [33]:

𝑆 = 2𝐺0(𝑒 −
𝑛
∑

𝑖=1
𝑔𝑖𝑒𝑖) (7)

𝜎 = 3𝐾0(𝑒 −
𝑛
∑

𝑖=1
𝑘𝑖𝑒𝑖) (8)

where 𝑆 is the deviatoric stress, 𝜎 is the volumetric stress, 𝐺0 and 𝐾0 are the instantaneous shear and bulk moduli, respectively. 𝑔𝑖
and 𝑘𝑖 are the Prony series parameters, and 𝑒𝑖 is the viscous strain in each Maxwell element. However, while the Maxwell model
rovides a foundational framework, for more comprehensive 3D numerical applications in viscoelastic materials like asphalt, a more
etailed constitutive description is necessary [34]. In the general 3D case, the stress–strain relationship for a linear viscoelastic
aterial can be expressed using the Boltzmann superposition principle as follows [35]:

𝜎𝑖𝑗 (𝑡) = ∫

𝑡

0
2𝐺(𝑡 − 𝜏)

𝜕 𝑒𝑖𝑗 (𝜏)
𝜕 𝜏 𝑑 𝜏 + 𝛿𝑖𝑗 ∫

𝑡

0
𝐾(𝑡 − 𝜏)

𝜕 𝜖𝑘𝑘(𝜏)
𝜕 𝜏 𝑑 𝜏 (9)

where 𝜎𝑖𝑗 is the stress tensor, 𝑒𝑖𝑗 is the deviatoric strain tensor, 𝜖𝑘𝑘 is the volumetric strain, 𝐺(𝑡) is the shear relaxation modulus,
(𝑡) is the bulk relaxation modulus, and 𝛿𝑖𝑗 is the Kronecker delta. The relaxation moduli 𝐺(𝑡) and 𝐾(𝑡) can be represented as

ollows [35]:

𝐺(𝑡) = 𝐺∞ +
𝑛
∑

𝑖=1
𝑔𝑖𝑒

−𝑡∕𝜏𝑖 (10)

𝐾(𝑡) = 𝐾∞ +
𝑛
∑

𝑖=1
𝐾𝑖𝑒

−𝑡∕𝜏𝑖 (11)

where 𝐺∞ and 𝐾∞ are the long-term shear and bulk moduli, 𝑔𝑖 and 𝑘𝑖 are the Prony series coefficients, and 𝜏𝑖 are the relaxation
times.

For numerical implementation, it is often convenient to use a recursive algorithm. The stress at time 𝑡𝑛 can be expressed as [36]:

𝜎𝑖𝑗 (𝑡𝑛) = 2𝐺∞𝑒𝑖𝑗 (𝑡𝑛) +𝐾∞𝜖𝑘𝑘(𝑡𝑛)𝛿𝑖𝑗 + 𝑠𝑛𝑖𝑗 + 𝑝𝑛𝛿𝑖𝑗 (12)

where 𝑠𝑛𝑖𝑗 and 𝑝𝑛 are history variables that can be updated recursively.
In multiscale modeling of paving materials, two primary numerical methods are commonly employed to solve these constitutive

quations:
FEM, based on continuum mechanics, discretizes the domain into elements and solves for nodal displacements using the principle

f virtual work:

∫𝛺
𝝈 ∶ 𝛿𝜺 𝑑 𝛺 = ∫𝛤

𝐭 ⋅ 𝛿𝐮 𝑑 𝛤 + ∫𝛺
𝐟 ⋅ 𝛿𝐮 𝑑 𝛺 (13)

where 𝝈 is the stress tensor, 𝜺 is the strain tensor, 𝐭 is the traction vector, 𝐟 is the body force vector, and 𝛿𝐮 is the virtual displacement.
FEM excels in modeling complex geometries and is efficient for large scale problems, but can struggle with discontinuities and large
deformations.

Conversely, DEM treats the material as discrete particles and models their interactions directly. The motion of each particle 𝑖 is
governed by Newton’s second law:

𝑚𝑖
𝑑2𝐱𝑖
𝑑 𝑡2 = 𝐅𝑖 (14)
6 
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Fig. 3. Configuration of the Maxwell model: 𝐸𝑖 = Springs; 𝜂𝑖 = dashpots.

Table 2
Summary of Prony series optimization methods.

Reference Method Description Key features

[37,38] Levenberg–Marquardt Iterative technique that locates a local
minimum of a function

Efficient for nonlinear least squares problems; combines
gradient descent and Gauss–Newton method

[39] Genetic algorithms Evolutionary algorithm inspired by
natural selection

Uses mechanisms like mutation, crossover, and selection;
good for global optimization

[40,41] Particle swarm optimization Population-based stochastic optimization
technique

Inspired by social behavior of bird flocking or fish schooling;
effective for high-dimensional problems

[42] Hybrid Methods Combination of two or more
optimization techniques

Combines strengths of multiple methods; can overcome
limitations of individual techniques

where 𝑚𝑖 is the particle mass, 𝐱𝑖 is the mass position, and 𝐅𝑖 is the total force acting on it. DEM naturally handles particulate materials
and discontinuities, but is computationally intensive for large systems. The choice between FEM and DEM depends on the specific
aspects of the paving material behavior being modeled, with each method offering distinct advantages in different scenarios.

Regardless of the chosen numerical method (FEM or DEM), the accurate representation of material behavior through constitutive
models often involves determining the parameters of the Prony series representation. Various optimization techniques were
employed to determine these parameters (Table 2). One common approach is to minimize the error between the experimentally
measured complex modulus and the predicted complex modulus [37]. The complex modulus can be expressed in terms of the Prony
series parameters:

𝐺∗(𝜔) = 𝐺∞ +
𝑛
∑

𝑖=1

𝑔𝑖(𝜔𝜏𝑖)2

1 + (𝜔𝜏𝑖)2
+ 𝑖

𝑛
∑

𝑖=1

𝑔𝑖𝜔𝜏𝑖
1 + (𝜔𝜏𝑖)2

(15)

The optimization problem can be formulated as:

min
{𝑔𝑖 ,𝜏𝑖}

𝑚
∑

𝑗=1

(

|𝐺∗
exp(𝜔𝑗 )| − |𝐺∗

pred(𝜔𝑗 )|

|𝐺∗
exp(𝜔𝑗 )|

)2

+
( 𝛿exp(𝜔𝑗 ) − 𝛿pred(𝜔𝑗 )

𝛿exp(𝜔𝑗 )

)2

(16)

where |𝐺∗
exp| and 𝛿exp are the experimentally measured magnitude of the complex modulus and phase angle, and |𝐺∗

pred| and 𝛿pred
are the predicted values. Algorithm Algorithm 1 outlines the general procedure for determining Prony series parameters.

The Burger model expands upon the Maxwell model by incorporating an additional ‘‘dashpot-spring’’ element (Fig. 4). This
parallel combination of spring and dashpot allows the Burger model to capture more complex viscoelastic behaviors [43]. The
constitutive equation for the Burger model can be expressed as:

𝜖(𝑡) = 𝜎0
𝐸1

+
𝜎0
𝐸2

(1 − 𝑒
− 𝐸2

𝜂2
𝑡
) + 𝜎0

𝜂1
𝑡 (17)

where 𝜖(𝑡) is the strain, 𝜎0 is the applied stress, 𝐸1 and 𝐸2 are the elastic moduli of the springs, and 𝜂1 and 𝜂2 are the viscosities of
the dashpots.
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Algorithm 1 Determination of Prony Series Parameters
Require: Experimental data {(𝜔𝑗 , |𝐺∗

exp(𝜔𝑗 )|, 𝛿exp(𝜔𝑗 ))}𝑚𝑗=1
Require: Number of Prony terms 𝑛
Ensure: Prony series parameters {𝑔𝑖, 𝜏𝑖}𝑛𝑖=1 and 𝐺∞

1: Initialize {𝑔𝑖, 𝜏𝑖}𝑛𝑖=1 and 𝐺∞
2: while not converged do
3: for 𝑗 = 1 to 𝑚 do
4: Compute 𝐺∗

pred(𝜔𝑗 ) using Eq. (8)
5: Compute |𝐺∗

pred(𝜔𝑗 )| and 𝛿pred(𝜔𝑗 )
6: end for
7: Compute error 𝐸 using Eq. (9)
8: if 𝐸 < tolerance then
9: converged ← true

10: else
11: Update {𝑔𝑖, 𝜏𝑖}𝑛𝑖=1 and 𝐺∞ using chosen optimization method
12: end if
13: end while
14: return {𝑔𝑖, 𝜏𝑖}𝑛𝑖=1 and 𝐺∞

Fig. 4. Configuration of the Burger model: 𝐸𝑖 = Springs; 𝜂𝑖 = dashpots.

Other advanced models like Huet, Huet-Sayegh-Soleimani, and 2S2P1D have been developed to describe more complex
viscoelastic behaviors [44,45]. For instance, the 2S2P1D model (2 Springs, 2 Parabolic elements, 1 Dashpot) is described by the
following complex modulus:

𝐸∗(𝜔) = 𝐸0 +
𝐸∞ − 𝐸0

1 + 𝛿(𝑖𝜔𝜏)−𝑘 + (𝑖𝜔𝜏)−ℎ + (𝑖𝜔𝛽 𝜏)−1 (18)

where 𝐸0 is the static modulus, 𝐸∞ is the glassy modulus, 𝜏 is the characteristic time, 𝑘 and ℎ are exponents, 𝛿 is a dimensionless
constant, and 𝛽 is a parameter linked to the dashpot viscosity. Another important aspect that needs to be considered is the inclusions
such as microscale fillers and mesoscale aggregates in viscoelastic models, which add a layer of complexity to the analysis of material
behavior. These inclusions, often modeled as elastic materials, are characterized by their Poisson’s ratio (𝜈) and Young’s modulus
(𝐸). The effective properties of the composite can be estimated using techniques like the rule of mixtures:

𝐸𝑐 = 𝐸𝑚𝑉𝑚 + 𝐸𝑖𝑉𝑖 (19)

where 𝐸𝑐 , 𝐸𝑚, and 𝐸𝑖 are the Young’s moduli of the composite, matrix, and inclusions respectively, and 𝑉𝑚 and 𝑉𝑖 are their volume
fractions.

More advanced homogenization methods for the accurate estimation of the effective properties are provided in Section 3.1
The interaction between inclusions and the matrix can be modeled using various approaches, including perfect bonding (‘‘tie

contact’’), cohesive zone models for adhesive forces, or friction models for relative motion. These interactions significantly influence
the overall behavior of the composite material and can be captured in FE analyses.

However, while these models provide valuable insights, it is crucial to validate them through experimental testing, as real
materials may exhibit behaviors beyond the scope of simplified models. The choice of modeling approach depends on the specific
material system and the required level of detail. More detailed examples of the applications of these models are in Section 4.1.
8 
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3.3. Phase field modeling (PFM) of bituminous mixtures

PFM is another robust computational method utilized for simulating the evolution of microstructures in various materials. This
technique has been applied in numerous areas such as the crystallization process during a metal’s solidification, transformations of
solid-state phase, grain growth within materials, crack progression, and electromigration [46,47]. In the context of paving materials,
PFM has been effectively used to study the evolution of microstructure and phase separation in polymer-modified bitumen (PMB).

he fundamental principle of PFM is the use of a continuous order parameter 𝜙 to describe the spatial and temporal evolution of
ifferent phases or microstructural features [48].

The core of the PFM approach is the free energy functional, which for a binary system like PMB can be expressed as:

𝐹 [𝜙] = ∫𝛺

[

𝑓 (𝜙) + 𝜅
2
|∇𝜙|2

]

𝑑 𝑉 (20)

where 𝑓 (𝜙) is the bulk free energy density, 𝜅 is the gradient energy coefficient, and 𝛺 is the domain of interest. The gradient term
𝜅
2 |∇𝜙|

2 penalizes sharp interfaces, leading to a diffuse interface description characteristic of PFM.
The temporal evolution of the order parameter is typically described by the Cahn-Hilliard equation [49]:

𝜕 𝜙
𝜕 𝑡 = 𝑀∇2

(

𝛿 𝐹
𝛿 𝜙

)

(21)

where 𝑀(𝜙) is the mobility function and 𝛿 𝐹
𝛿 𝜙 is the functional derivative of the free energy with respect to 𝜙.

Several studies have investigated the microstructure evolution in PMB systems [50,51]. The following form for the bulk free
energy density was proposed:

𝑓 (𝜙) = 𝐴𝜙2(1 − 𝜙)2 + 𝐵 𝜙(1 − 𝜙) (22)

where 𝐴 and 𝐵 are parameters related to the interaction energy between the polymer and bitumen phases. This model successfully
aptured the formation of polymer-rich domains within the bitumen matrix and demonstrated how factors such as polymer
oncentration and temperature affect the phase separation process.

Beyond PMB, PFM has also been applied to study other aspects of bituminous mixtures. For example, it has been employed to
model low-temperature cracking in asphalt binders [52]. This model integrates the viscoelastic properties of the binder with the
fracture process, offering valuable insights into the mechanisms of crack initiation and propagation. The applications of PFM are
discussed in detail in Section 4.1.

3.4. Artificial neural networks (ANNs)

The perceptron, which was first introduced by Rosenblatt, (1958), served as the basis for early ANNs, was designed as a binary
lassifier and was based on a simplistic model of the biological neuron [53]. The basic idea was to receive inputs, process them, and
roduce an output (0 or 1). The perceptron was trained by strengthening the weights of connections that lead to correct predictions
nd weakening those that do not contribute to the predictions. The perceptron computes a weighted sum of the input features as

follows:

𝑧 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯ +𝑤𝑛𝑥𝑛 =
𝑛
∑

𝑖=1
𝑤𝑖𝑥𝑖 (23)

where, 𝑥𝑖 represents the input features, 𝑤𝑖 are the corresponding weights, and 𝑛 is the number of input features. The perceptron
ses an activation function to make a decision (classification). The perceptron is trained using the perceptron learning rule, which
pdates the weights based on the errors made in predictions. The weight update rule is given by:

𝑤𝑖 ← 𝑤𝑖 + 𝛥𝑤𝑖 (24)

𝛥𝑤𝑖 = 𝜂(𝑡 − 𝑦)𝑥𝑖 (25)

where 𝛥𝑤𝑖 is the change in the weight, 𝜂 is the learning rate (a small positive constant), 𝑡 is the true label, and 𝑦 is the predicted
abel. This update is performed for each weight (𝑤𝑖) and is repeated for all training examples. However, the major limitation of the
riginal perceptron was its inability to solve problems that are not linearly separable.

ANNs represent a dynamic and expanding field within artificial intelligence (AI) that has influenced numerous sectors due
to their ability to solve complex and nonlinear problems [54]. ANNs have experienced significant evolution since their origin,
aking inspiration from the perceptron and human nervous system. Modern ANNs, especially deep learning networks, consist of

multiple layers of neurons. These layers include hidden layers between the inputs and outputs. Unlike the simple learning rule of
the perceptron, modern ANNs use more sophisticated algorithms such as backpropagation. This allows them to learn from errors in
a more nuanced way and adjust weights throughout the network.

In a basic ANN, each neuron computes a weighted sum of its inputs. For a neuron 𝑗 in layer 𝑙, the weighted sum 𝑧(𝑙)𝑗 is computed
as:

𝑧(𝑙)𝑗 =
𝑛
∑

𝑤(𝑙)
𝑗 𝑖 𝑥(𝑙−1)𝑖 + 𝑏(𝑙)𝑗 (26)
𝑖=1
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where, 𝑤(𝑙)
𝑗 𝑖 are the weights connecting neurons 𝑖 in layer 𝑙 − 1 to neuron 𝑗 in layer 𝑙, 𝑥(𝑙−1)𝑖 are the outputs from the previous layer

or input features for the first hidden layer), and 𝑏(𝑙)𝑗 is the bias term of neuron 𝑗 in layer 𝑙. Each neuron’s output is typically passed
through a non-linear activation function. Common activation functions include the sigmoid, tanh (hyperbolic tangent), and ReLU
(Rectified Linear Unit). The output 𝑎(𝑙)𝑗 of neuron 𝑗 is:

𝑎(𝑙)𝑗 = 𝑓 (𝑧(𝑙)𝑗 ) (27)

where 𝑓 is the activation function. The final layer’s output depends on the specific task (e.g., classification, regression). For
lassification, a softmax function is often used in the output layer. The network’s performance is evaluated using a loss function, such
s mean squared error (MSE) for regression or cross-entropy loss for classification. The network learns by adjusting the weights to
inimize the loss. This is done using the backpropagation algorithm, which computes the gradient of the loss function with respect

o each weight in the network, and then updates the weights in the direction that reduces the loss. The weight update rule is:
𝑤(𝑙)

𝑗 𝑖 ← 𝑤(𝑙)
𝑗 𝑖 − 𝜂 𝜕Loss

𝜕 𝑤(𝑙)
𝑗 𝑖

(28)

where 𝜂 is the learning rate. During training, the network undergoes a forward pass where inputs are fed through the network to
produce an output. Then, a backward pass is conducted using backpropagation to compute the gradient of the loss function and
pdate the weights.

Modern ANNs can tackle a vast array of complex tasks, including image and speech recognition, natural language processing.
As a result, researchers have categorized ANNs into three main types based on their network structure.

The first type is the Multi-Layer Perceptron Neural Network (MLPNN), which consists of at least three layers: an input layer, an
output layer, and one or more hidden layers. Each layer is fully connected to the next, allowing MLPNNs to learn non-linear models.

hey can be applied to both classification and regression tasks [55]. The backpropagation algorithm used for training enables them
o learn from errors and adjust weights throughout the network [56].

The second type is the Recurrent Neural Network (RNN), which processes sequential data by using the output from the previous
step as input for the current step. This gives RNNs a form of memory, making them useful for tasks such as speech recognition,
natural language processing, and time-series prediction [57,58]. In multiscale modeling, this method has been widely used when
the loading rate/path impacts the outputs [53,54]. The basic equations for an RNN can be written as follows:

ℎ𝑡 = 𝑓 (𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ) (29)

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (30)

where ℎ𝑡 is the hidden state at time 𝑡, 𝑥𝑡 is the input at time 𝑡, 𝑦𝑡 is the output at time 𝑡, 𝑊ℎℎ, 𝑊𝑥ℎ, 𝑊ℎ𝑦 are weight matrices, 𝑏ℎ and
𝑦 are bias vectors, and 𝑓 is an activation function. Fig. 5 illustrates the structural differences and typical applications of MLPNNs

and RNNs in paving materials.
The third type is the Convolutional Neural Network (CNN), which is particularly effective at processing images and videos.

CNNs use a series of convolutional and pooling layers to extract features from input data, which the network then uses to classify
the input or make predictions [59]. CNNs are designed to learn spatial hierarchies of features from the input data in an automatic
nd adaptive way. For example, they can be used to identify pavement distresses such as cracking and disintegration [60]. The main

operation in a CNN is the convolution, which can be represented as:

(𝑓 ∗ 𝑔)(𝑥, 𝑦) =
∑

𝑖

∑

𝑗
𝑓 (𝑖, 𝑗) ⋅ 𝑔(𝑥 − 𝑖, 𝑦 − 𝑗) (31)

where 𝑓 is the input, 𝑔 is the kernel or filter, and (𝑥, 𝑦) are the coordinates in the output feature map. Additionally, the pooling
operation, often used in CNNs, can be represented as:

pool(𝑥) = max(𝑥𝑖) or avg(𝑥𝑖) (32)

where 𝑥𝑖 are the values in a local region of the feature map. However, CNNs are not within the scope of this study. ANNs are
believed to be superior to conventional multiscale methods as the data obtained from lower scale computations are utilized to
predict the behavior of materials. These data are adjusted and converted into material datasets to accurately depict the material’s
properties [57,61].

In materials science, the accurate prediction of materials performance is essential for enhancing their quality and minimizing
environmental and safety risks [62]. Complex, high-dimensional datasets with nonlinear relationships often pose significant
hallenges for traditional regression techniques. This is especially true when the behavior of the data changes across different scales,
aking it difficult for conventional models to capture the full range of patterns and interactions present. This has prompted the

ntegration of ANNs into multiscale modeling frameworks. ANNs excel at detecting complex patterns within extensive datasets that
pan from the molecular to the macroscopic scale [63]. Training ANNs with data from these scales allows for precise predictions

of how materials respond under various conditions, thereby addressing the limitations of traditional methods and resulting in more
obust and reliable material performance predictions. More detailed examples of the applications of ANNs are in Sections 4.2 and

4.4.
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Fig. 5. ANN architectures for predicting paving material properties with outputs examples of each case: (a) MLPNN, and (b) RNN.

4. Multiscale modeling of bituminous mixture

4.1. Modeling the response of asphalt binders and mastics

Asphalt binder, commonly referred to as bitumen, is characterized by its viscoelastic nature. This denotes a combination of both
elastic solid and viscous liquid behaviors. The properties of asphalt binder are significantly influenced by various factors, including
the conditions under which it is tested in the laboratory (such as temperature and frequency) and the aging processes it undergoes.
The chemical complexity of bitumen and the variability in its properties make it an interesting subject of study. It plays a crucial
role in determining the behavior of the other scales (mastic, mortar, mixture). To simulate the mechanical characteristics of asphalt
binder in a FE or DE model, certain parameters are needed. These include the Young’s Modulus and Poisson ratio, which characterize
the elastic response, along with parameters derived from models such as the Maxwell model (Prony Series Parameters) [64]. These
parameters should be calibrated based on experimental tests such as the dynamic shear rheometer test (DSR), and three-point
bending test. The temperature can also be set using parameters from the WLF equation. For example, ABAQUS allows the WLF
equation to be used at any convenient temperature, other than the glass transition temperature, as the reference temperature. The
form of the equation remains the same, but the constants are different [33].

Efforts have been made to integrate the time-dependent characteristics of bitumen into numerical simulations. For example, the
Burger model has been utilized within a DE framework to simulate the DSR tests on a bitumen sample across a frequency range of
0.01 to 10 Hz [43]. The mechanical behavior of bituminous mastic has also been modeled using both Burger and Maxwell models.
One approach incorporated the Burger model into a DEM framework to investigate how changing the proportions of cement and
limestone filler in a bitumen emulsion mixture affects its rutting resistance under temperature variations and repeated stress [65].
Another study employed the Maxwell model within a FE model to examine the behavior of mastic with different filler types [66].
Additionally, a preliminary PFM was developed to study the evolution of microstructure in a mixture comprising SARA fractions [67].
This model revealed a separation between high and low polar fractions (asphaltenes and saturates) and the formation of a bee
structure, which is considered to be a weak point where cracks may initiate and propagate.

The bee phase is also believed to be a phase-separated from the bulk of the bitumen and blooms to the surface of the bitumen
due to the low surface free energy of the wax [68]. Table 3 summarizes some studies on asphalt binder performance prediction
using FE and DE models.

However, it is crucial to note that these models have not been extensively evaluated under extreme conditions such as high
frequencies, temperatures, or varying loads. Consequently, the behavior of these models may vary when subjected to different
loading tests, such as linear sine sweep tests or log sine sweep tests. Moreover, the models’ responses under various aging conditions
have not been compared in existing studies. Aged bitumen usually becomes more elastic, which could potentially yield different
results compared to the GSCM [69,70]. The GSCM assumes a certain level of homogeneity and consistency in the material properties.
However, when bitumen ages, it undergoes physical and chemical changes that can alter its properties. To tackle this problem, a
sensitivity analysis specifically designed for these conditions, using FE/DE models, different loading tests, and aging conditions, is
suggested. Additionally, while some studies investigated two different volumetric percentages of fillers within bitumen, illustrations
of how the rheological properties change with varying frequencies for different filler percentages are still not clear [65]. It is expected
that the response of the mastic at low frequencies remains consistent for different filler percentages, with differences primarily
11 
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Table 3
Overview of published FE and DE models for asphalt binder and mastic.

Reference Method Material Model Analysis

[43] DEM Binder Burger Mechanical response under different frequencies
[76] FEM Binder Maxwell New fatigue test
[65] DEM Mastic Burger Different types of fillers to bitumen ratio
[66] FEM Mastic Maxwell Different types of fillers
[77] FEM Mastic Maxwell Response under different frequencies
[78] FEM Mastic Burger Response when adding sunflower oil as a modifier
[67] FEM Binder PFMa Separation of SARA fractions
[50,79] FEM Polymer-Modified Bitumen PFMa Polymer separation at various temperatures and conditions
[80] FEM Binder PFMa Fracture failure in crack interaction of Asphalt Binders at Low Temperature
[81] FEM Mastic 2S2P1Db Asphalt-filler interaction

a PFM refers to the Phase Field Method.
b Model consists of combinations of two springs , two parabolic elements and one dashpot.

Fig. 6. Potential approaches for incorporating SARA fractions into FE models.

appearing at higher frequencies where the mastic becomes more elastic. Furthermore, beyond mechanical loads, to the best of the
author’s knowledge, there are currently no numerical aging models at the binder/mastic scale that can replicate laboratory aging
conditions. Moreover, the complexity of asphalt binder presents a significant challenge in developing numerical models that can
accurately link its chemical composition to its mechanical behavior [71]. Fig. 6 demonstrates possible strategies for integrating
SARA fractions into FE models while also indicating a larger scale (mastic scale). Three scenarios are presented. In the first scenario
(Fig. 6a), a basic homogeneous situation is proposed. The second scenario suggests a random distribution of SARA fractions in the
matrix inspired by [13] (Fig. 6b). The third scenario presents a concept of colloidal structure, where asphaltenes and resins create
micellar chains that are surrounded by saturates and aromatics, indicating a more intricate interaction within the bitumen matrix
(Fig. 6c). The properties of the SARA fractions, which need to be implemented in these model (i.e., Prony series parameters), can
be determined by first separating the SARA fractions and then individually testing each fraction using the DSR test [72,73]. An
upscaling can be performed to the mastic by introducing spheres (treated as an elastic substance) into the matrix, and a sensitivity
analysis can be performed (Fig. 6d). In a similar approach, two scales models were developed to estimate the elastic properties
of shales at the core scale (fine-grained, laminated sedimentary rocks consisting of silt- and clay-sized particles) [8,74]. In these
models, solid grains representing minerals were randomly distributed based on their volume fraction and elastic properties to form
different types of shales [75].

This methodology could potentially be applied at the binder scale. However, it is critical to consider that the SARA fractions are
viscoelastic materials, unlike the elastic materials such as solid grains. Therefore, the implementation of this methodology requires
careful consideration.
12 
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Table 4
ANNs models of asphalt binder and asphalt mastic: 𝑇 = test temperature; 𝑓 = test frequency; 𝐺′ = storage modulus; 𝐺′′ = loss modulus; 𝜂 = viscosity; 𝐺𝑐 =
ifferent geopolymer concentration; FAR = filler-asphalt ratio; 𝐺𝑟 = five gradation components, 𝑉𝑏 = base binder viscosity; 𝐶𝑡 = compaction temperature; AV =
ir voids percentage; ITS = indirect tensile strength; and SBS = Styrene butadiene styrene.
Reference Material Input parameters Predicted parameters

[84] Binder 𝑇 , 𝑓 , 𝐺′, 𝐺′′, 𝜂 Recovery and nonrecoverable compliance
[85] Modified Binder 𝑓 , 𝑇 , 𝐺𝑐 Complex shear modulus
[86] Mastic 𝑇 , 𝑓 , FAR Complex shear modulus
[87] Binder 𝑇 , 𝑓 , 𝐺𝑟, 𝑉𝑏 Rutting performance parameters
[88] Binder 𝐶𝑡, AV, ITS Degree of binder activity
[89] SBS Modified Asphalt ATR-FTIR data SBS content, needle penetration, softening point

4.2. Applications of ANNs in asphalt binder and mastic performance prediction

The complex behavior of asphalt binder and mastic under various conditions suggests that traditional analytical models may not
e sufficient for accurate predictions. In addition, FE and DE models may also fall short due to their inability to incorporate all the

parameters that influence the behavior of these materials. This is where ML can provide significant value, as it excels at identifying
complex patterns and relationships within large datasets [82]. Various ML algorithms have been employed to predict properties
across different scales of bituminous and modified bituminous mixtures [83]. However, the majority of research has concentrated
on using ANNs due to their robust capability to model complex, non-linear relationships within the data. These studies have sought to
create models capable of precisely predicting the mechanical properties of asphalt mixtures, including strength and durability, using
inputs like mixture composition, temperature, and age. Nevertheless, the implementation of these models at the binder scale remains
constrained by the limited availability of extensive datasets that cover the wide range of parameters influencing its properties.

To illustrate this point, a study developed an ANN model capable of predicting recovery and nonrecoverable compliance of
asphalt binder at high stress [84]. The model used five input parameters: test temperature, test frequency, storage modulus, loss
modulus, and viscosity. The high accuracy of the predictions suggests that such models could be valuable in designing asphalt
mixtures that perform optimally under various conditions.

In another study, an ANN model was established to predict the performance of geopolymer modified asphalt binder [85]. The
research tested different combinations of parameters, algorithms, and network architectures, and identified the best performing

odel based on statistical measures. The results highlighted not only the potential of ANNs in predicting complex material behaviors
ut also the significance of choosing the right model architecture and training algorithm for accurate predictions. Moving beyond
he asphalt binder scale, research has also shown how ANNs can predict 𝐺∗ of asphalt mastic samples using input parameters such
s temperature, frequency, and filler-asphalt ratio [86]. This study demonstrated that ANN models can be a useful and efficient tool

for evaluating the material properties of asphalt mastic. Table 4 provides a summary of various studies focusing on the prediction
of asphalt binder/mastic using ANNs models.

However, while the use of ANNs in predicting the characteristics of asphalt binder and mastic shows great potential, the main
issue is the lack of extensive datasets that cover all the parameters affecting these materials’ behavior. For example, there is a
significant gap in research that includes crucial factors such as SARA fractions and essential physical properties such as penetration
and softening point. These factors are critical in understanding asphalt binder and mastic and can greatly influence their performance
under various conditions. Moreover, despite the demonstrated potential of ANNs, there is still a need for an exhaustive comparative
study that investigates various algorithms and methodologies to identify the most impactful parameters on these materials’ properties
and determine which ANN architectures and training algorithms provide the most precise predictions. Integrating all these methods
could lead to more accurate and flexible predictive models for asphalt binder and mastic behavior, addressing the complex and
varied nature of these materials.

Fig. 7 proposes a multiscale methodology that utilizes ANNs to establish a connection between input variables and rheological
haracteristics like 𝐺∗ and 𝛿. The ANNs are then used to identify the most impactful features that affect these properties. The analysis
egins at the binder level, taking into account aspects such as aging conditions, chemical composition, and physical properties. The

process then progresses to the mastic level, where the model’s complexity and accuracy are improved by incorporating additional
properties, specifically the percentage of filler and stiffness. This approach allows ANNs to integrate these elements, providing a
thorough evaluation of the material’s behavior.

4.3. Applications of numerical simulations in asphalt mortar and mixture

When shifting from modeling asphalt binder and mastic on their own to modeling them in the context of mortar and mixture,
it is notable that a broader range of studies becomes available [90]. This can be attributed to the practical importance, complexity,
ngineering challenges associated with asphalt mixtures, and the availability of data and the growing interest in infrastructure

applications. Building on this, modeling asphalt mixture behavior involves a blend of mechanistic principles, empirical relationships,
umerical simulations, and statistical methods. These models are not isolated; they draw upon data from various sources, including

material characterization, traffic data, climate data, and laboratory tests. For example, a FE model was built to assess the fatigue
ehavior of asphalt mortar under repeated loading over time [91]. This work found that voids negatively affect the fatigue
erformance of asphalt mixtures, with damage primarily starting at the edges of voids and significantly increasing as the void
13 
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Fig. 7. Upscaling analysis approach from binder level to mastic level using ANNs.

ratio rises. In another study, a multiscale FE model of asphalt mixture was created to understand the cracking mechanisms
in asphalt mixtures [92]. This comprehensive model considered asphalt mixtures as two separate phases: asphalt mortar and
aggregates. It explored various factors influencing cracking and highlighted performance differences between different asphalt
mixtures. Additionally, a FE model was developed to predict crack propagation, branching, and coalescence in asphalt mixtures,
shedding light on how cracks evolve in asphalt concrete [93].

Furthermore, advanced FE models for predicting how asphalt pavement materials behave under different conditions have been
proposed, with a focus on understanding their microstructure and incorporating damage-coupled viscoelastic behavior into the
models [9]. Moreover, a 3D microstructural numerical model has been developed that combines the viscoelastic properties of
the asphalt mortar and the elastic properties of aggregates to predict how the material responds to triaxial loads within a linear
viscoelastic range [94,95].

However, researchers have not limited their investigations to understanding how asphalt mortar and asphalt mixtures react to
mechanical loads such as stresses and strains. In fact, they have made significant efforts to develop models for heat conduction,
oxygen, and moisture diffusion within asphalt mixtures. These research are valuable because they help predicting the performance
of pavements under varying environmental conditions, which ultimately affects the pavement’s service life [96–98].

For instance, porous asphalt concrete (PAC) has been found to have distinct thermal properties compared to dense-graded asphalt
mixtures due to the presence of interconnected air voids [99]. Another study proposed a FE model to predict the mechanical
properties of asphalt mixtures, considering the mastic and aggregates as the main components [7]. Expanding on this approach,
detailed microscale modeling has been combined with macroscopic simulations to understand how moving wheel loads affect asphalt
pavement structures under various conditions [100]. This type of research offers a broader perspective on pavement performance.
To further enhance the efficiency and accuracy of these simulations, a novel approach has been proposed to accelerate numerical
simulations by combining neural networks with physics-based knowledge from classical material modeling [101]. This approach
aims to address the challenges associated with purely data-driven surrogate models and shows promise in accurately predicting
material behavior, even in scenarios not explicitly seen during training.

Building upon these advancements, researchers have developed more specialized models to address specific aspects of asphalt
mixture performance. For example, a FE model has been introduced that captures the impact of aging and moisture damage on
the performance of asphalt mixtures. This model serves as a foundation for incorporating other damage mechanisms in asphalt
mixtures, such as fatigue or permanent deformations caused by a combination of environmental and loading conditions [102]. In
another study, an equation-based model has also been proposed to capture the aging behavior of asphalt pavement [14]. However,
even though this research is essential for advancing the understanding and design of road construction materials, there remains
a lack of clarity regarding how properties transition from the nanoscale to the mesoscale and how the mechanical properties at
each scale affect the subsequent one. Table 5 summarizes some studies on asphalt mortar/mixture performance prediction using
numerical models.

Nevertheless, despite the extensive body of research available, the precise prediction of asphalt mixture behavior faces several
notable challenges. On one hand, asphalt materials exhibit nonlinear behavior, which makes it difficult to predict their performance
accurately. The relationship between stresses, strains, and other mechanical properties can change significantly under different
loading conditions and scenarios [112,113]. On the other hand, environmental conditions such as UV radiation, freeze-thaw cycles,
14 
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Table 5
Overview of published FE and DE models for asphalt mortar, mixture.

Reference Method Material Analysis

[91] DEM Mortar Fatigue conditions
[76] FEM Mixture Crack initiation in asphalt mixture
[65] FEM Mixture Damage within asphalt mixture
[77] FEM Mortar Response under shear load
[94,95] FEM Mixture Response under a triaxial load
[103–105] FEM Mixture Moisture diffusion
[99] FEM Mixture Thermal conductivity
[106] DEM Mixture Behavior during the compaction process
[107] DEM Mixture Effects of aggregate on permanent deformation
[108] FEM Mixture Predict the complex modulus and creep stiffness
[109] DEM Mixture Micromechanical behavior evolution
[110] FEM Mixture Effect of the interfacial zone on the tensile-damage behavior
[111] DEM Mixture Effect of rejuvenator-modified mastic on asphalt mixture stiffness
[14] FEM Pavements Oxidative aging of asphalt pavements

and chemical exposure contribute to the deterioration of asphalt mixtures over time. Modeling the long-term effects of these factors
is challenging. Additionally, achieving a detailed simulation of asphalt mixtures often demands the utilization of advanced numerical
methods and substantial computational resources, rendering it both computationally intensive and time-consuming. Consequently,
alternative techniques are sought for improved solutions.

4.4. Application of ANNs in asphalt mortar and mixture

ANNs have been effectively utilized in predicting various properties of asphalt mixtures, including mechanical properties such
as tensile strength, flexural modulus, and durability properties like resistance to rutting and abrasion. The availability of data for
training ANNs is generally higher for asphalt mixtures compared to asphalt binder and mastic, given the large-scale production and
usage of these mixtures. For instance, an ANN has been developed to predict the impact of aging on asphalt mixture properties
using asphaltenes as the performance indicator [114]. This work highlighted the power of neural networks in identifying the
nonlinear correlations between the mixture aging index (AMI) and other input factors. In another study, deep convolutional neural
networks (DCNNs) with six convolution blocks have been utilized to determine the dynamic modulus (𝐸∗) [115]. This model
utperformed linear regression models in terms of prediction accuracy, thereby reducing the laboratory efforts required to measure
∗ of asphalt mixture. Additionally, global sensitivity analysis revealed that certain parameters related to aggregates, binders, and
ixture properties significantly impact 𝐸∗ predictions [116]. Beyond predicting mechanical properties of asphalt mixtures, ANNs

have also been employed to predict the rutting depth of asphalt pavement [117]. The proposed model is employed to analyze and
rank the relative influence of the different model inputs on rutting depth. This wide range of applications showcases the ability and
ffectiveness of ANNs in this field. Table 6 summarizes some studies on asphalt mixture performance prediction using ANNs models.

However, the main limitation when using ANNs to predict properties of asphalt mixture is the quality of the data used to train
the models and their ability to perform on unseen data. This is especially important when dealing with datasets related to factors
such as traffic patterns, climate, and environmental conditions, which can show variability depending on the specific dataset in
use. Furthermore, just as with the binder and mastic scale, relying solely on one technique to identify the factors influencing the
dynamic modulus is not advisable. Different algorithms yield different results, thereby it is essential to analyze and compare results
btained from different algorithms to identify patterns and develop the most effective models. This allows researchers and industry

professionals to focus their data collection efforts on the most critical factors affecting asphalt mixture properties.

5. Integration of scales and information: addressing limitations and mapping future directions

To create reliable models of bituminous mixtures, it is crucial to adopt a multiscale strategy that merges data and insights
rom various levels of detail from the behavior of asphalt binder at the nanoscale to the overall performance of pavements at the

macroscale [124]. This process involves a combination of laboratory experiments, computational modeling, data integration, and
alidation, with an iterative feedback loop that enables continuous refinement and enhancement of the models as new data and
nsights emerge. The integration between different scales can be achieved through the following steps:

1- Nanoscale level: this level focuses on the behavior of the asphalt binder, which acts as the adhesive that binds the mixture. Un-
derstanding the rheological properties, aging protocols, and temperature-dependent behavior of the binder is essential. Additionally,
he chemical composition of the binder significantly influences its overall behavior and should not be disregarded.

2- Microscale level: this level investigates the interaction between fillers and the asphalt binder. Despite numerous studies on filler
impact on mastic performance, there is still ambiguity about the specific nanoscale factors that significantly influence both mastic
nd asphalt mixture behavior and their contribution to overall performance.

3- Macroscale level: while it is recognized that aggregate distribution, size, and shape have a significant effect on asphalt mixture
behavior, how information from smaller scales influences this behavior remains unclear.
15 
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Table 6
ANNs models of asphalt mortar and asphalt mixture: 𝑇 = temperature; 𝑓 = frequency; 𝐴𝐼 = asphaltene aging index; 𝑉 𝑀 𝐴 = voids in aggregates; 𝐴𝑉 = air
oids; 𝐴𝐺 = aggregate gradation; 𝑀 𝑉 = mixture volumetric; 𝐵 𝑃 = binder properties; 𝐿𝐹 = loading frequency; 𝑇 𝑃 = test parameters; 𝜂 = viscosity; 𝐴𝐵 𝑃 =
sphalt binder parameters; 𝐴𝑃 = aggregate percentage; 𝐸 𝐴𝐶 = effective asphalt content; 𝑉 𝑃 𝑀 𝐴 = voids percentage in aggregates; 𝑉 𝐹 𝐵 = voids filled with
inder; 𝐶 𝑉 = contact volume; 𝑇 𝐶 = traffic climate; 𝐴𝐶 𝐿 = AC layer; 𝐵 𝐿 = base layer; 𝑆 𝐿 = subgrade layer parameters; 𝑀 𝑇 = mixture type (SMA, HMA);
 𝑒𝑐 ℎ = technology (warm, hot); 𝐷 𝑆 𝑀 = dynamic shear modulus of binder; 𝐵 𝑃 𝐴 = binder phase angle, 𝐶 𝑃 𝑅 = cumulative percent retained on different sieve
izes; 𝑃 𝑃200 = percent passing no. 200 sieve; 𝑃 𝐴 = percentage of air voids in the mix; 𝑉 𝐸 𝐵 = volumetric effective binder content; 𝑃 𝑃 𝑀 = physical properties
echanical; 𝑀 𝑃 𝑀 = properties gradation of the aggregate blend; 𝐺 𝐴𝐵 = bitumen content; 𝐵 𝐶 also refers to bitumen content; 𝑀 𝑀 𝑀 𝐷 = marshall mix design
arameters; 𝑃 𝑅𝐵 = percentage of rubber in the binder; 𝑃 𝑅𝐴𝑃 = percentage of RAP in the mixture; 𝐼 𝐹 = initial flexural strain; 𝑉 𝐹 𝐴 = percentage of voids
illed with asphalt binder; 𝐼 𝑀 𝑆 = initial mix stiffness; 𝑅𝑏 = the percentage of rubber in the binder; 𝑅𝑝 = the percentage of RAP in the mixture; 𝜖 = initial
lexural strain; 𝑉 𝐹 𝐴 = Volume of Voids filled with asphalt binder; 𝑆 = initial mix stiffness; 𝐴𝐺 𝑆 = aggregate gradation sieves; 𝑉 𝐵 = volume of binder, 𝐸 𝑃 𝑉 𝑀 𝐴

effective percentage of voids in mineral aggregate; 𝐵 𝑆 𝐺 = bulk specific gravity; 𝑇 𝑀 𝑆 𝐺 = theoretical maximum specific gravity; 𝑅𝐴𝑆 = recycled asphalt
hingles; 𝑅𝐴𝑃 = recycled asphalt pavement; 𝐴𝐵 𝑅 = asphalt binder replacement; 𝑃 𝑀 𝐴𝐶 = polymer modified asphalt concrete content; 𝐵 𝐺 = binder grade; 𝑁 𝑂 𝐺

number of gyrations; 𝑃 𝐿 = pavement layer; 𝐴𝐶 𝑀 𝐷 = asphalt concrete mix design properties.
Reference Asphalt material ANNs input parameters Predicted parameters

[114] Mixture 𝑇 , 𝑓 , 𝐴𝐼 , 𝑉 𝑀 𝐴, 𝐴𝑉 Aging index
[115] Mixture 𝐴𝐺, 𝑀 𝑉 , 𝐵 𝑃 , 𝐿𝐹 Dynamic modulus
[116] Mixture 𝑇 𝑃 , 𝜂, 𝐴𝐵 𝑃 , 𝐴𝑃 , 𝐴𝑉 , 𝐸 𝐴𝐶, 𝑉 𝑃 𝑀 𝐴, 𝑉 𝐹 𝐵, 𝐶 𝑉 Dynamic modulus
[117] Mixture 𝑇 𝐶, 𝐴𝐶 𝐿, 𝐵 𝐿, 𝑆 𝐿 Rutting depth
[118] Stone Mastic Asphalt 𝑀 𝑇 , 𝑇 𝑒𝑐 ℎ, 𝑓 , 𝑇 Dynamic modulus
[119] Hot Mix Asphalt 𝐷 𝑆 𝑀 , 𝐵 𝑃 𝐴, 𝐶 𝑃 𝑅, 𝑃 𝑃200, 𝑃 𝐴, 𝑉 𝐸 𝐵 Dynamic modulus
[120] Mixtures Inputs representing the percentages passing from different

sieves
Optimum asphalt content
in asphalt mixture

[121] Mixtures 𝑃 𝑃 𝑀 , 𝑀 𝑃 𝑀 , 𝐺 𝐴𝐵, 𝐵 𝐶, 𝑀 𝑀 𝑀 𝐷, 𝑃 𝑅𝐵, 𝑃 𝑅𝐴𝑃 , 𝐼 𝐹 , 𝑉 𝐹 𝐴,
𝐼 𝑀 𝑆

Mix design

[122] Mixtures 𝑅𝑏, 𝑅𝑝, 𝜖, 𝑉 𝐹 𝐴, 𝑆 Fatigue life
[123] Concrete 𝐴𝐺 𝑆, 𝑉 𝐵, 𝐸 𝑃 𝑉 𝑀 𝐴, 𝐴𝑉 , 𝐵 𝑆 𝐺, 𝑇 𝑀 𝑆 𝐺, 𝑅𝐴𝑆, 𝑅𝐴𝑃 , 𝐴𝐵 𝑅,

𝑃 𝑀 𝐴𝐶, 𝐵 𝐺, 𝑁 𝑂 𝐺, 𝑃 𝐿, 𝐴𝐶 𝑀 𝐷
Mix design

Researchers need to employ a variety of laboratory tests, computational models, and ML algorithms to investigate the different
scales and to optimize the ultimate performance of asphalt mixture. An example of this is highlighted in [125], which pointed
out that oxidative aging significantly impacts the properties of asphalt binder. However, these changes do not directly translate
to similar changes in the modulus of asphalt mixtures. Therefore, more advanced models are required to predict how the aging
of asphalt binder influences the modulus of asphalt concrete mixtures. Another example comes from findings that adding fibers to
asphalt binders enhances their performance at high temperatures and increases their resistance to deformation [126]. The fiber-
modified asphalt binders showed less penetration and a higher softening point, indicating better resilience to temperature changes
and deformation. Fig. 8 shows a suggested multiscale FE/ML framework of bituminous mixture that address these issues. This
ramework shows a detailed process for collecting and analyzing data, applying ML models, and using FE analysis to interpret the

results of the bituminous mixture. This framework also suggests the use of SHapley Additive exPlanations (SHAP) algorithm which
uses a trained ANN to identify the most influential factors affecting the outputs. This is a significant advantage over traditional
statistical methods such as Analysis of Variance (ANOVA) and Chi-Square tests. Traditional methods like ANOVA and Chi-Square
tests rely on certain assumptions about the data while SHAP uses game theory to attribute the contribution of each feature to the
prediction for each individual observation [127].

To further enhance the accuracy and efficiency of the multiscale approach, the use of physics-informed neural networks (PINNs),
hich combine the power of deep learning with the physical laws governing the behavior of the material, can be used [107,109,128].

PINNs are specialized neural networks that combine the power of ML with the governing physics equations, and they can play a
pivotal role in enhancing the understanding and optimization of bituminous mixtures.

One of the primary advantages of PINNs is their ability to incorporate the known physical principles and equations governing
ituminous mixtures into the ML framework. These physical principles, which describe the behavior of asphalt binders, fillers, and
ggregates at different scales, can be challenging to capture accurately through traditional empirical data alone. Incorporating these
rinciples into the neural network architecture ensures that the models adhere to the laws of physics, resulting in more accurate
nd physically meaningful predictions. Fig. 9 shows a proposed PINN framework designed to simultaneously solve three interlinked

PDEs which are crucial in the study of bitumen aging. These equations model the diffusion of temperature (𝑇 ), oxygen (𝑃 ) and the
formation of the carbonyl area (𝐶 𝐴), which is a critical indicator of aging in bitumen materials. While traditional methods such as
FEM, as applied in the research by [14], have been the standard for solving such complex PDEs, the emergence of PINNs brings
several advantages. Unlike FEM, which requires extensive computational resources and can be time-consuming especially when
dealing with nonlinear, transient, or multi-physical problems, PINNs introduce a more efficient approach. The efficiency of PINN in
he automatic differentiation makes it possible to encode the PDEs as part of the learning process [129]. This results in a flexible and
ighly adaptive model that can predict the complex behaviors of bitumen aging with remarkable accuracy and significantly reduced
omputational cost. The proposed PINN can be upscaled to the mastic level or mixture level after incorporating the additional
roperties (fillers, aggregates). More detailed examples can be found in [130–135]. However, while PINNs have shown promise in

various applications, they still face limitations, including occasional inaccuracies in predictions. These challenges underscore the
need for further research to enhance their performance and reliability [130,136].
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Fig. 8. Multiscale FE-ML framework of asphalt mixture.

Fig. 9. PINN architecture to solve three interrelated 2D PDEs that model temperature diffusion 𝑇 , oxygen diffusion 𝑃 , and carbonyl area—an indicator of
bitumen aging 𝐶 𝐴. data(𝜃) represents the data-driven loss based on known measurements, PDE(𝜃) represents the physics-based constraints from the PDEs, and
𝜆 (lambda) parameter allows for tuning the relative importance of these two aspects in training.

6. Conclusions

This review paper has comprehensively explored the evolving field of multiscale modeling in paving materials, highlighting the
applications of numerical methods and ML. Through this study, it is evident that multiscale modeling stands as a significant technique
in understanding and predicting the behavior of complex civil engineering materials like asphalt mixtures. The hierarchical nature
of bituminous mixtures, from the nanoscale to the macroscale, presents unique challenges and opportunities. It is observed that
numerical methods provide a robust framework for analyzing and modeling these complexities, enabling engineers to simulate
physical phenomena with high accuracy. At the same time, the emergence of ML has opened new avenues, allowing for the
incorporation of large datasets and the development of prediction models with higher accuracy and efficiency. The discussion on the
integration of numerical methods and ML algorithms underscores a significant advancement in the field. This integration not only
enhances the predictive capability of models but also significantly reduces the time and resources required for empirical testing.
The ability to accurately predict pavement performance demonstrates the effectiveness of these coupled techniques.
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However, the integration of data across different scales, the need for more comprehensive datasets, and the continuous evolution
of ML algorithms are areas that require further exploration and development in this field. Additionally, the refinement of numerical
simulations and advancements in ML hold the potential to revolutionize the approach to pavement design and maintenance in the
future.

In conclusion, this review paper not only sheds light on the current state of multiscale modeling in paving materials but also
outlines the path for upcoming research. The integration of numerical simulations and ML marks a substantial progress to create
more resilient, economical, and eco-friendly paving alternatives.
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Appendix A. Comparative analysis of FEM and GSCM for asphalt mastic modeling

This appendix presents a comprehensive numerical case study demonstrating the practical application of the techniques discussed
in Section 3.2. The study focuses on the identification of Prony series parameters using a Genetic algorithm, followed by the
simulation of the DSR test using the Maxwell model. The results are then compared with predictions from the GSCM. The study
began with the collection of experimental data from DSR tests, which served as the foundation for subsequent steps. A Genetic
algorithm was then applied to identify the Prony series parameters. These parameters were implemented in a FEM to simulate the
DSR test, providing predictions of 𝐺∗. This study considered fillers as elastic materials, which were combined with the binder to
form asphalt mastic. Fig. A.10 illustrates the methodological flow of this case study.

Fig. A.10. Flowchart of the numerical case study, inspired from [137].

The FEM simulation employed several key features to accurately replicate the experimental conditions. An implicit time
integration scheme was chosen for the analysis. A logarithmic sweep of frequencies with a range of 0.0159 to 16 Hz was used
to replicate the experimental test conditions. Tie contacts were implemented to ensure proper load transfer between different parts
of the model. Additionally, a cohesive stiffness contact was defined between the mastic sample and the top and bottom plates
(Fig. A.11). The simulation was conducted at a constant temperature of 20 ◦C to match the experimental conditions.

The Genetic algorithm parameters are chosen to balance thorough exploration of the solution space with computational
efficiency. Tables A.7 and A.8 summarizes the key parameters used in this study, including the filler properties, binder properties,
Genetic algorithm and Prony series parameters. The results of the numerical simulations are presented in Fig. A.12, which compares
the predictions from the FEM model and the GSCM across six different scenarios with varying filler percentages: (a) 28%, (b) 24%,
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Fig. A.11. FEM setup for DSR testing. (a) Logarithmic sine sweep input: amplitude vs. time (top) and frequency vs. time (bottom). (b) FE model of the DSR
test.

Table A.7
Parameters used in the FEM simulation.

Parameter Value

Temperature [◦C] 20 ◦C
Frequency [Hz] [0.0159-16]
Population Size 15
Recombination 0.7
Mutation Rate [0.5, 1]
Number of Prony Parameters 10
Fillers Stiffness [GPa] 70
Fillers [%] [8-28]
Instantaneous Young’s Modulus (𝐸0) [MPa] 240.5
Poisson’s ratio (𝜈) 0.35

Table A.8
Prony Series Parameters used in the FEM simulation.
i Relaxation times (𝜏𝑖) Weights (𝑔𝑖)
1 0.004694686 0.093632628
2 0.115054235 0.117440582
3 0.012508845 0.097836541
4 0.004675019 0.098564454
5 0.033004199 0.093474197
6 0.039371971 0.034233612
7 0.004888031 0.157408419
8 4.005918554 0.051016550
9 0.004949636 0.149722400
10 0.568111227 0.086711249

(c) 20%, (d) 18%, (e) 13%, and (f) 8%. A clear trend emerges across all filler percentages. GSCM consistently predicts higher
modulus values than FEM. This difference becomes more pronounced as the filler percentage decreases from 28% to 8%. At higher
filler contents, the two methods produce very similar results, but as the filler content reduces, a growing discrepancy appears. Both
methods show the characteristic behavior of asphalt materials, with 𝐺∗ values rising as frequency increases. This indicates that the
material becomes stiffer at higher loading rates, which is typical for viscoelastic materials like asphalt mastic.

The divergence between FEM and GSCM predictions at lower filler percentages suggests that these methods may be handling
the interaction between the asphalt binder and filler particles differently. GSCM appears to be more sensitive to changes in filler
content by overestimating the stiffening effect of the filler at lower concentrations.
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Fig. A.12. Comparison of FEM and GSCM predictions for complex shear modulus (𝐺∗) across different frequencies and filler percentages.

This comparison highlights the need for careful consideration when selecting the modeling method for asphalt mastic, particularly
when studying materials with varying filler contents or when precise modulus predictions are required across a range of loading
frequencies.

Appendix B. Phase field simulation of microstructural evolution in PMB

This appendix presents a practical example of a PFM applied to study the separation between polymer and bitumen. The
simulation demonstrates the evolution of microstructure and phase separation in a PMB system, illustrating the concepts discussed
in Section 3.3 of the main text.

The simulation employs a binary PFM based on the Cahn-Hilliard equation. The order parameter 𝜙(𝐫, 𝑡) represents the local
composition, where 𝜙 = 1 corresponds to a polymer-rich phase and 𝜙 = −1 to a bitumen-rich phase. The free energy functional is
given by:

𝐹 [𝜙] = ∫𝛺

[

𝐴(𝜙2 − 1)2 + 𝜅
2
|∇𝜙|2

]

𝑑 𝑉 (B.1)

where 𝐴(𝜙2− 1)2 is the bulk free energy density with a double-well potential to encourage phase separation. The gradient term 𝜅
2 |∇𝜙|

2

penalizes sharp interfaces, leading to a diffuse interface description. The temporal evolution of 𝜙 is governed by the Cahn-Hilliard
equation:

𝜕 𝜙
𝜕 𝑡 = 𝑀∇2

(

𝛿 𝐹
𝛿 𝜙

)

= 𝑀∇2 (4𝐴𝜙(𝜙2 − 1) − 𝜅∇2𝜙
)

(B.2)

where 𝑀 is the mobility, assumed constant in this simulation.
The simulation is performed on a 256 × 256 grid using finite difference methods with periodic boundary conditions. Key

parameters include a time step of 0.05, double-well potential parameter 𝐴 of 0.1, gradient energy coefficient 𝜅 of 0.1, and mobility
𝑀 of 1.0. The initial condition is set to mimic a partially mixed state of polymer and bitumen:

𝜙0(𝑥, 𝑦) = t anh((0.5 −
√

𝑥2 + 𝑦2) ⋅ 5) + 0.1 ⋅ randn(𝑥, 𝑦) (B.3)

This creates a circular polymer-rich domain (positive 𝜙) surrounded by a bitumen-rich matrix (negative 𝜙), with added random
fluctuations to initiate phase separation.

The simulation reveals the evolution of the polymer-bitumen system over time (Fig. B.13). Initially, a rapid breakdown of the
circular polymer-rich domain is observed. This is followed by the formation of smaller polymer-rich regions throughout the matrix,
and a gradual coarsening of these regions over time. This behavior is consistent with experimental observations in PMB systems,
where initial polymer domains disperse and then reorganize within the bitumen matrix. The simulation captures key phenomena
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Fig. B.13. Time evolution of phase separation in a polymer-modified bitumen system simulated using the PFM.

such as spinodal decomposition, evidenced by the initial rapid formation of polymer-rich and bitumen-rich regions. Additionally,
larger polymer-rich areas grow while smaller ones shrink and disappear, a process known as Ostwald ripening.

Additionally, the simulation demonstrates interface dynamics, maintaining diffuse interfaces between phases, which is charac-
teristic of the phase-field approach. The evolution of the system provides insights into the microstructural development of PMB
materials. The final distribution and size of polymer-rich domains can significantly influence the mechanical and rheological
properties of the mixture.

This simulation example demonstrates the capability of PFM to model complex microstructural evolution in bituminous mixtures.
By adjusting parameters such as 𝐴, 𝜅, and 𝑀 , various scenarios relevant to PMB systems can be explored. These include different
polymer concentrations (by modifying the initial condition), varying interaction strengths between polymer and bitumen (by
adjusting 𝐴), and different processing conditions (through changes in 𝑀 and 𝜅). Such simulations can guide the optimization of
PMB formulations and processing conditions to achieve desired microstructures and, consequently, enhanced material properties.

However, this model represents a simplified binary system, whereas real bitumen is a complex mixture of many components.
Additionally, the model does not account for temperature-dependent behavior, which is crucial in bitumen systems. Furthermore,
mechanical properties and their coupling with phase separation are not included in this simulation. Future work could address these
limitations by extending to multi-component systems to include SARA fractions, incorporating temperature-dependent parameters,
and coupling with mechanical models to simulate the interplay between microstructure and material properties.
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