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Abstract

Observations from spaceborne radar contain considerable information about vegetation dynamics. 

The ability to extract this information could lead to improved soil moisture retrievals and the increased 

capacity to monitor vegetation phenology and water stress using radar data. The purpose of this review 

paper is to provide an overview of the current state of knowledge with respect to backscatter from 

vegetated (agricultural) landscapes and to identify opportunities and challenges in this domain. Much 

of our understanding of vegetation backscatter from agricultural canopies stems from SAR studies to 

perform field-scale classification and monitoring. Hence, SAR applications, theory and applications are 

considered here too. An overview will be provided of the knowledge generated from ground-based 

and airborne experimental campaigns which contributed to the development of crop classification, crop 

monitoring and soil moisture monitoring applications. A description of the current vegetation modelling 

approaches will be given. A review of current applications of spaceborne radar will be used to illustrate 

the current state of the art in terms of data utilization. Finally, emerging applications, opportunities and19
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challenges will be identified and discussed. Improved representation of vegetation phenology and water20

dynamics will be identified as essential to improve soil moisture retrievals, crop monitoring and for the21

development of emerging drought/water stress applications.22

Index Terms23

IEEE, IEEEtran, journal, LATEX, paper, template.24

I. INTRODUCTION25

Several recent studies suggest that backscatter data, at C-band and higher frequencies, contains26

a lot more information on vegetation dynamics than that currently used (e.g. [1]–[3]), with27

potential implications for agricultural monitoring. Radar backscatter from a vegetated surfaces28

comprises contributions of direct backscatter from the vegetation itself, backscatter from the soil29

which is attenuated by the canopy and backscatter due to interactions between the vegetation and30

the underlying soil [4]–[6]. The interactions between microwaves and the canopy are influenced31

by the properties of the radar system itself, namely the frequency and polarization of the32

microwaves, and the incident and azimuth angles at which the canopy is viewed (e.g. [7]–33

[10]). Interactions between microwaves and the canopy are governed by the dielectric properties,34

size, shape, orientation, and roughness of individual scatterers (i.e. the leaves, stems, fruits etc.)35

[11]–[13], [14] and their distribution throughout the canopy [15]–[17]. The dielectric properties36

of vegetation materials depend primarily on their water content and to a lesser degree on37

temperature and salinity [18], [19]. These crop-specific canopy characteristics vary during the38

growing season, and are influenced by environmental conditions and stress [20]–[28]. Scattering39

from the underlying soil is influenced by its roughness and dielectric properties (e.g. [29],40

[30]), which depend primarily on its moisture content (e.g. [31], [32]). Consequently, there is41

significant potential for the use of radar remote sensing in agricultural applications, particularly42

classification, crop monitoring and soil/vegetation moisture monitoring. Furthermore, the ability43

of low frequency microwaves (1-10GHz) to penetrate cloud cover, and to allow day and night44

imaging, ensures timely and reliable observations [33].45

Currently, most crop classification and crop monitoring activities rely on spaceborne SAR46

data due to their finer spatial resolution [34]–[37]. The difficulty in using scatterometry for47

crop classification is the mismatch between the resolution requirements for agricultural appli-48

cations (from meters in precision agriculture to km for large-scale monitoring) and the spatial49
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resolution attainable with spaceborne scatterometers. These typically have resolutions of tens of50

kilometers and are therefore better suited to large-scale vegetation classification and monitoring51

[38]–[43]. For soil moisture, on the other hand, both SAR and scatterometry have been used52

successfully. High (spatial) resolution SAR observations from ALOS-PALSAR proved sensitive53

to soil moisture (e.g. [44]), however the limited revisit time means that they are not suitable54

for many applications. NASA’s SMAP mission [45] planned to combine passive radiometry55

with SAR measurements, but the radar instrument failed six months after launch in 2015. Soil56

moisture observations from ASCAT have been used in a wide range of climate and hydrological57

applications [46]–[49]. The archive of ERS1/2 data and the future operational availability of58

ASCAT data from MetOp constitutes a soil moisture data cornerstone for climate studies.59

The goal of this manuscript is to review microwave interactions with vegetation and present a60

vision to facilitate the increased exploitation of the past, current and future radar data records for61

agricultural applications. A review will be provided of ground-based scatterometer experiments62

and airborne radar experiments focussed on crop classification, crop monitoring and soil moisture63

retrieval. We will highlight the commonality in how vegetation is modeled for both scatterometry64

and SAR applications. It will be shown how this shared heritage contributed to the operational65

exploitation of current spaceborne scatterometer and SAR data for crop classification, monitoring66

and soil moisture monitoring. We will review recent research indicating that spaceborne radar67

observations are sensitive to vegetation dynamics at finer temporal scales than those considered68

in current applications. Finally, we will conclude with a vision of how the synergy between69

SAR and scatterometry, as well as new ground-based sensors could be utilized to facilitate the70

increased exploitation of spaceborne radar observations for agricultural monitoring.71

II. EXPERIMENTAL CAMPAIGNS72

This section will review the ground-based and aircraft campaigns that contributed to our current73

understanding of microwave interactions with vegetation in agricultural landscapes. Tower- and74

truck-based scatterometers are used for ground-campaigns, while SAR instruments are more75

commonly used in airborne campaigns. Both technologies are used to investigate the sensitivity76

of backscatter to soil moisture, and vegetation structure and moisture content as a function of77

frequency, polarization and incidence angle. This knowledge has been utilized in the design and78

exploitation of spaceborne scatterometry and SAR systems.79
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A. Ground-based scatterometers80

Ground-based scatterometers are suitable for the collection of multi-temporal datasets with81

high temporal resolution (diurnally, daily or over the entire growth cycle). Data are typically82

collected at plot scales. Operating a tower-based instrument is a lot less expensive than flying83

an airborne instrument, so the data record can be a lot denser in time than that from an airborne84

campaign. It is also much easier to vary the observation parameters such as incidence and azimuth85

angle, so it is easy to compare different observation strategies. Detailed and repeated ground data86

can be collected at plot scales over time, and plots can be manipulated by imposing specific soil87

or crop treatments or by modifying moisture conditions using irrigation. Consequently, ground-88

based scatterometer experiments are ideal for collecting the detailed data necessary for theoretical89

developments and validation activities and have played a critical component of radar studies for90

over forty years.91

Early field experiments using ground -based scatterometers from the University of Kansas92

yielded important preliminary evidence of the sensitivity of radar backscatter to soil moisture and93

vegetation cover. The University of Kansas Microwave Active and Passive Spectrometer (MAPS)94

from 4-8GHz was used by Ulaby and Moore to demonstrate that sensitivity to soil moisture is95

greatest at lower frequencies and in horizontally polarized backscatter and that rain on the soil96

makes the surface appear smoother [50]. MAPS was used in one of the first studies to show that97

the radar response to soil moisture depends on surface roughness, microwave frequency and look98

angle [51]. In a subsequent study in corn, milo, soybeans and alfalfa fields, MAPS was used to99

demonstrate that soil moisture could be detected through vegetation cover. They demonstrated100

that small incidence angles (5-15 degrees from nadir) and horizontal polarization were best101

suited for monitoring soil moisture, while higher frequencies and larger incidence angles were102

more sensitive to vegetation and therefore more suited to crop identification/classfication [7].103

Similar results were also found with the University of Kansas MAS 8-18GHz scatterometer [8].104

Measurements of using this system were used for the development and first validation of the105

Water Cloud Model [52], discussed in Section III.A. A lower frequency scatterometer, the MAS106

1-8GHz, was used to show that frequencies below 6GHz and incidence angles less than 20◦107

from nadir are best suited to minimize the influence of vegetation attenuation on the relationship108

between soil moisture and backscatter. They also showed that row direction has no impact on109

cross-polarized backscatter from 1-8GHz, but it does influence co-polarized backscatter below110
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4GHz. Finally, they showed that a linear relationship could be established between soil moisture111

and horizontally co-polarized backscatter at 4.25GHz and an incidence angle of 10 degrees. Even112

without fitting the data for individual vegetation types, a correlation coefficient as high as 0.80113

has been reported. Ulaby et al. [53] showed that for extremely dry soils, the contribution of the114

vegetation was very significant but that for the dynamic range of soil moisture of interest in115

hydrological and agricultural applications, the influence of vegetation was ”secondary” to that of116

soil moisture. Data from the MAS 1-8GHz and the MAS 8-18GHz were combined to produce117

a clutter model for agricultural crops [54]. Later experiments explored the complexity of the118

canopy. Ulaby and Wilson [55] used a truck mounted L-, C- and X-band FMCW scatterometer to119

show that agricultural canopies are highly non-uniform and anisotropic at microwave frequencies120

resulting in polarization dependent attenuation and soil contribution to backscatter. The relative121

contribution of leaves and stalks to total backscatter was also shown to depend on frequency with122

leaves accounting for 50% of the canopy loss factor at L-band and 70% at X-band. Tavokoli et123

al. used an L-band radar to measure the attenuation and phase shift patterns of horizontally and124

vertically polarized waves transmitted through a fully grown corn canopy in order to develop125

and evaluate a model for radar interaction with agricultural canopies, explicitly accounting for126

the regular plant spacing and row geometry [56].127

Meanwhile, the Radar Observation of VEgetation (ROVE) experiments in the Netherlands [57]128

were focused on the potential of using radar observations in agricultural mapping, monitoring129

and yield forecasting. An X-band FMCW scatterometer was mounted on a carriage that could be130

moved along fields with a rail system and used to measure at a range of incidence angles from131

15 to 80 degrees. This system was used to measure multiple crops, each growing season from132

1974 to 1980. Limited airborne observations were also made using a side-looking airborne radar133

(SLAR). One of the primary aims was the identification and classification of crops from SLAR134

images. Krul [58] used the ROVE data to show that during the growing season, the dynamic135

range of X-band backscatter of several crops varied between 3dB and 15dB, underscoring the136

importance of accurate calibration. In particular, combining incidence angles was mooted as one137

solution to separate the influences of soil moisture and vegetation. Bouman et al. [59] highlighted138

the importance of geometry, showing that changes in canopy architecture due to strong winds139

could lead to differences of 1-2dB. In sugar beets, the architectural changes in the plants in140

the transition from saplings to fully grown plants made it possible to monitor their growth up141

to a fractional cover of about 80% and a biomass of 2-3 ton/ha. A thinning experiment, in142
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which some of the plants were removed, suggested that changes in cover due to pest/disease143

during the season would be difficult to detect. In barley, wheat and oats, Bouman [60] showed144

that the interannual variability in backscatter could be as much as the range due to growth.145

Nonetheless, X-band backscatter could be useful for the classification and detection of some,146

though not all, developmental phases. In particular, soil moisture variations confounded the147

detection of emergence and harvest. Bouman [61] suggested that multi-frequency observations148

might be useful to separate the backscatter contributions from potato, barley and wheat thereby149

improving the estimation of dry canopy biomass, canopy water content, fractional cover, and150

crop height.151

Ground-based scatterometer experiments have been used extensitvely, especially in early SAR152

research, to gain an understanding of responses as targets change and SAR configurations are153

modified. They allowed scientists to develop and test methodologies prior to the engineering of154

SAR satellite systems, and before space-based data became available. In addition to collecting155

data for model development and testing, scatterometers can also be used in novel ways to study156

phenomenon not easily implemented using air- or space-borne systems. Inoue et al [62] used a157

multi-frequency polarimetric scatterometer to measure backscatter over a rice field once per day158

for an entire growing season in order to relate the microwave backscatter signature to rice canopy159

growth variables. They investigated the influence of rice growth cycle on backscatter at L-, C-,160

X-, Ku- and Ka- bands for a range of incident and azimuth angles and their relationship to LAI,161

stem density, crop height and fresh biomass. The Canada Centre for Remote Sensing (CCRS)162

acquired a ground-based scatterometer in 1985 which was dedicated primarily to agriculture163

research. This was a 3-band system mounted on a hydraulic boom supported on the flat bed164

of a 5-ton truck. The scatterometer acquired data at L, C and Ku bands (1.5 GHz, 5.2 GHz,165

12.8 GHz) and at four polarizations: HH, VV, HV, VH. The boom allowed a change in incident166

angle, with operations typically at 20 to 50◦.167

Some of the earliest research using the CCRS scatterometer looked at crop separability. Brisco168

et al. [63] reported the best configurations for this purpose, i.e. higher frequencies (Ku-band as169

opposed to C- or L-bands), the cross polarization, shallower incident angles and observations170

during crop seed development. These conclusions have been reinforced by many subsequent171

studies, whether using airborne or satellite based SAR observations. The diurnal effects of172

backscatter were tracked by Brisco et al. [64]. Backscatter was sensitive to daily movement of173

water, mostly due to the diurnal pattern of water in plants during active growth, and due to the174
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diurnal pattern of soil moisture during periods of crop senescence. Toure et al. [65] modified the175

MIMICS model to accommodate agricultural parameters and used the scatterometer to validate176

the accuracy of this modified model to estimate soil moisture as well as stem heights and leaf177

diameters.178

Investigations into the sensitivity of backscatter to soil moisture, crop residue and tillage were179

a focus of a number of scatterometer investigations. Major et al. [66] found that backscatter was180

sensitive to soil moisture even in the presence of a short-grass prairie conditions. Meanwhile181

Boisvert et al. [67] modelled the effective penetration depth for L-, C-, and Ku-bands, an im-182

portant consideration in validation of soil moisture retrievals even with current satellite systems.183

Data from the scatterometer allowed Boisvert et al. [67] to forward model soil moisture for184

various models (Oh, Dubois and the IEM) and to evaluate the performance of these models185

against field data. Assessment of model approaches was also a focus of scatterometer research,186

with McNairn et al. [68] using a dual incident angle approach to estimate both soil moisture187

and roughness.188

Canadian researchers also imposed tillage and residue treatments on field plots, irrigating189

these plots to simulate various wetness conditions. These studies confirmed that residue is not190

transparent to microwaves when sufficiently wet, and that in fact cross polarizations can be very191

sensitive to the amount of residue present [69], [70]. Airborne and satellite data often detect192

”bow-tie” effects on agricultural fields due to tillage, planting and harvesting direction. This193

was also reported by Brisco et al. [71] but this study was one of the first to reveal that the194

cross-polarization is much less affected by look direction. This is an important consideration195

for agriculture given that significant errors in soil moisture retrievals can be introduced by this196

effect [67].197

The development of a retrieval algorithm for NASA’s SMAP mission spurred several ground-198

based radar experiments [72]. NASA’s ComRAD system is an truck-based SMAP simulator199

that includes a dual-pol 1.4GHz radiometer and a 1.24-1.34GHz radar [73]. The instrument is200

mounted on a 19m hydraulic boom and is typically configured to measure at a 40◦ incidence201

angle similar to that of SMAP, though it can sweep in both azimuth and incidence angle. Early202

deployments focussed on forest attenuation of the soil moisture signal ( [74], [75]). O’Neill et al.203

[76] collected active and passive L-band observations over a full growing season in adjacent corn204

and soybean fields to refine the SMAP retrieval algorithms. In particular, these data yield insight205

into the influence of changing vegetation conditions and the relationship between contempora-206
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neous active and passive observations. Svirastava et al. [77] used this data to compare different207

approaches to estimate vegetation water content (VWC). The combined active/passive ComRAD208

system meant that they could compare backscatter in different polarizations, polarization ratios,209

Radar Vegetation Index (RVI) and Microwave Polarization Difference Index (MPDI). They found210

that at L-band, HV backscatter was the best estimator for vegetation water content (VWC). This211

is a valuable result as it obviates the need for ancillary data, like NDVI and a parameterization212

to provide VWC for the retrieval algorithm.213

The University of Florida L-band Automated Radar System (UF-LARS) [78] operates at214

1.25 GHz and can be used to observe VV, HH, HV, and VH backscatter every 15 minutes for215

several weeks. Measurements are typically made from a height of about 16 m above the ground216

with an incidence angle of 40◦. The ability of UF-LARS to measure with such high temporal217

resolution and over long periods offers a unique insight into the backscatter signature of near-218

surface soil moisture dynamics in response to precipitation, irrigation and other environmental219

conditions. The density and accuracy of data also renders it ideal for developing and validating220

backscattering models. The UF-LARS has been used to investigate the dominant backscattering221

mechanisms from bare sandy soils, to evaluate the sensitivity of backscatter to volumetric soil222

moisture [79] and growing vegetation [78], to investigate the benefit of combining active and223

passive microwave observations for soil moisture estimation [80] and to evaluate uncertainty224

in the SMAP downscaling algorithm for sweet corn [81]. Data from UF-LARS were used by225

Monsivais-Huertero et al. to compare bias correction approaches used in the assimilation of226

active/passive microwave observations to estimate soil moisture [82].227

Finally, the Hongik Polarimetric Scatterometer (HPS) is a quad-pol L-, C- and X-band scat-228

terometer that operates on a tower [83]. It has been used for model development and cross-229

comparisons with satellite data over a number of crops [84]–[86], and to develop a modified230

form of the Water Cloud Model in which the leaf size distribution is parameterized [87]. Inclusion231

of an additional antenna and modifications to the mechanical system also allow it to be configured232

as a rotational SAR system [88]233

B. Airborne radar instruments234

One drawback of ground-based investigations is the rapid change of the imaging geometry in235

range and cross-range across a relatively small scene. Near-field effects (i.e. the curved wavefront236

interacting with tall crops) also need to be taken into account. The main limitation of using237
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ground-based scatterometers is that they measure a single field or, at best, can be moved with238

a mechanical system to observe multiple fields. This greatly limits the diversity of fields and239

conditions that can be observed in a single campaign. Aircraft-mounted sensors allow measure-240

ments along flight lines spanning many fields which may include different crops, roughness241

characteristics, growth stages and moisture content. However, an aircraft campaign is typically242

limited to a few flights. Airborne radar instruments therefore offer a complementary perspective243

to that from tower-based instruments. In Europe, the 1-18GHz DUT SCATterometer (DUTSCAT)244

[89] and the C-/X-band ERASME helicopter-borne scatterometer [90] were deployed over five245

test sites during the AGRISCATT88 campaigns that built on the knowledge and expertise gained246

from the ROVE experiments [91]. Bouman et al. [92] used the DUTSCAT data to investigate247

the potential of multi-frequency radar for crop monitoring and soil moisture. Their analysis248

confirmed findings from their earlier ground-based study [61] that the sensitivity of backscatter249

to canopy structure complicates the retrieval of biomass, soil cover, LAI and crop height. They250

also confirmed that higher frequencies (X- to K-band) were best suited to crop separability,251

while L-band yielded the most information on soil moisture in bare soils. Similar conclusions252

were drawn by Ferrazzoli et al. [93] from an analysis of the DUTSCAT and ERASME datasets.253

They used the same datasets to demonstrate that leaf dimensions had a significant influence on254

backscatter from agricultural canopies, particularly at S- and C-band [94]. Schoups et al. [95]255

used the DUTSCAT data to investigate the sensitivity of backscatter from a sugar beet field to256

soil moisture and roughness, leaf angle distribution and moisture content, canopy height, and257

incidence angle and frequency. Prevot et al [96] used the ERASME data to develop a modified258

version of the Water Cloud Model in which multi-angle data is used to account for roughness259

effects, and presented an inversion approach capable of retrieving vegetation water content where260

LAI is less than 3. Benallegue et al. [97] analyzed the ERASME data collected over the Orgeval261

basin (France) to evaluate the use of multi-frequency, multi-incidence angle radar observations for262

soil moisture retrieval. Their results were consistent with early results of Ulaby et al. in that low263

frequency (C-band in this case) observations 20◦ from nadir contained most information on soil264

moisture while the higher frequency (X-band) observations at larger incidence angles were used265

to quantify the vegetation attenuation. Benellegue et al. [98] subsequently used the ERASME data266

to argue that variability in soil dielectric constant (moisture content) and roughness precludes267

the use of SAR (e.g. ERS-1 SAR) to estimate soil moisture at a single field level, but that268

larger scale trends in the basin could be detected if the measurements were on a scale of about269



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

1km. These early airborne experiments demonstrated the robustness of the theories and models270

developed from ground-based scatterometry over larger areas and for a wider range of land271

cover and crop types. The international community involved in collecting both airborne data and272

ground data is indicative of the growing interest in using radar for crop classification and crop273

and soil monitoring at that time.274

In the 1980s the Canadian CV-580 SAR was developed as a multi-frequency (L-, C- and275

X-band) airborne system. The CV-580 was flown in support of many early agricultural experi-276

ments, demonstrating the value of SAR for crop classification, whether by integrating SAR with277

optical data [99] or simply using its multiple frequency capability [100]. Later the system was278

modified to incorporate full polarimetry on C-band [101]. This mode was instrumental for the279

scientific community, providing data to develop polarimetric applications in advance of access280

to such data from satellites systems. These airborne data led to many early discoveries regarding281

the value of polarimetry. McNairn et al. [102] used these data to investigate polarization for282

crop classification, discovering that three C-band polarizations (whether linear or circular) were283

sufficient to accurately classify crops. In fact the best 3-polarization combination included the284

LL circular polarization (HH-HV-LL). Data collected by the airborne CV-580 also assessed the285

value of polarimetry for crop condition assessment. McNairn et al. [103] used several linear286

polarizations at orientation angles of 45◦ and 135◦ and circular (RR and RL) polarizations to287

classify fields of wheat, canola and peas into productivity zones, indicative of variations in crop288

height and density. C-band polarimetric data from the CV-580 also demonstrated that linear and289

circular polarizations could classify wheat fields into zones of productivity weeks before harvest290

[104]. These zones were well correlated with zones defined by yield monitor data.291

The CV-580 was instrumental in efforts to ready the international community to exploit data292

from Canada’s first satellite, RADARSAT-1. The GlobeSAR-1 program was initiated in 1993, two293

years prior to the launch of RADARSAT-1, with objectives to acquaint users with the application294

of this new data source and to facilitate use of imagery from the ERS-1 satellite [105]. The295

CV-580 travelled approximately 100,000 km, acquiring more than 125,000 km2 of multi-mode296

SAR data over 30 sites in twelve countries including France, the UK, Taiwan, China, Vietnam,297

Thailand, Malaysia, Kenya, Uganda, Jordan, Tunisia and Morocco [106]. C- and X-band multiple298

polarization as well as fully polarimetric data from this campaign fuelled early research into a299

diversity of applications including rice identification and monitoring, soil moisture estimation300

and land cover mapping [107]. In China, these data were used to develop multi-polarization and301
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multi-frequency based land cover maps with accuracies close to 90%; in Thailand CV-580 data302

were combined with TM and SPOT data to improve land cover discrimination. The data collected303

by this airborne platform and the SAR training delivered during the GlobeSAR-1 program had304

a lasting impact for RADARSAT applications in these regions.305

By the late 1990s, its high resolution capabilities meant that SAR had been identified as the306

way forward in terms of crop classification and monitoring. Several airborne campaigns using307

Experimental-SAR (E-SAR) system from the German Aerospace Center (DLR) were conducted308

in Europe to prepare for the availability of spaceborne radar data from Sentinel-1 and TerraSAR-309

X. During the TerraSAR-SIM campaign (Barrax, Spain in 2003), DLR’s airborne E-SAR system310

was used during five flights to quantify the impact of time lag between satellite acquisitions at311

different wavelengths on agricultural applications, particularly classification and crop monitoring312

[108]. The data collected were used again recently to test retrievals of above ground biomass in a313

wheat canopy using CosmoSky-Med and Sentinel-1 SAR data [109]. The Bacchus campaign and314

follow-up activities also employed DLR’s E-SAR system to evaluate the potential for using C-315

and L-band SAR in viticulture [110]. In addition to gaining insight into the scattering mechanisms316

in vineyards [111], the synergy of combining radar and optical imagery for classification purposes317

was considered [112]. E-SAR was also combined with spectral data during the AQUIFEREx318

campaign to produce high-resolution land maps for water resources management in Tunisia319

[113]. During the Eagle2006 campaign ( [114]), L-, C- and X-band data were acquired over320

three sites in the Netherlands. C-band images were used to simulate Sentinel-1 data, to facilitate321

the development and testing of retrieval algorithms. Optical and thermal imagery, as well as322

extensive ground measurements were also collected over grass and forest sites. E-SAR was also323

flown during the AgriSAR2006 campaign during which in-situ data, and satellite imagery were324

combined with airborne SAR and optical imagery to support decisions regarding the instrument325

configurations for the first Sentinel Missions [115], [116]. The data were used to investigate326

the impact of polarization on crop classification [37], to develop algorithms for soil moisture327

retrieval from SAR [10], [117], [118].328

In preparation for NASA’s Soil Moisture Active Passive (SMAP) mission, NASA’s Jet Propul-329

sion Laboratory developed the Passive Active L- and S-band System (PALS) instrument to330

investigate the benefit of combining passive and active observations. It has been deployed331

during several experiments in the last two decades [119], [120]. Earlier experiments such as332

measurements conducted in the Little Washita Watershed, OK, during Southern Great Plaints333
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experiment 1999 (SGP99), and in the Walnut Creek, IA, during Soil Moisture Experiment 2002334

(SMEX02) were primarily to understand the sensitivities of the multi-frequency and -polarized335

active and passive observations. Although the studies found great sensitivities of both active336

and passive observations to the soil moisture, the active observations were more sensitive to337

the variation of vegetation conditions [121], [122]. In agreement with the earliest ground-based338

experiments, the L-band observations were more sensitive to the soil moisture changes due to339

better penetration in the agricultural region, while those from the S-band were more sensitive340

the vegetation water content.341

PALS still plays a significant role in NASA-SMAP pre- and post-launch calibration and342

validation activities through the so-called SMAP Validation Experiments (SMAPVEX) [123],343

[124]. Airborne PALS data been used to test and modify soil moisture retrieval algorithms344

in agricultural regions [120], [124], and to develop downscaling algorithms for high spatial345

resolution soil moisture under different levels of vegetation water content by integrating the active346

and passive observations for SMAP [125], [126]. Similar to PALS, an airborne Polarimetric L-347

band Imaging SAR (PLIS) was designed and combined with the Polarimetric L-band Multibeam348

Radiometer (PLMR) to support the development of soil moisture algorithms for the SMAP349

mission in Australia [127]–[129]. Five field campaigns, called SMAP Experiments (SMAPExs),350

have been conducted using PLIS from 2010-2015 in agricultural and forest regions in south-351

eastern Australia. Wu et al. [130], [131] used the observations from SMAPEx1-3 to validate352

and calibrate the SMAP simulator and to evaluate the feasibility and uncertainty of the SMAP353

baseline downscaling algorithms.354

III. ACCOUNTING FOR BACKSCATTER FROM VEGETATION355

Data collected in the experimental campaigns discussed in the previous section have been356

used to develop, test and validate models to simulate the influence of the soil and vegetation357

on backscatter. In this section, the most common ways in which backscatter from a vegetated358

surface is simulated/interpreted are reviewed. The Water Cloud Model, and Energy and Wave359

approaches are used for both forward modeling and inversion to obtain soil moisture, vegetation360

water content or biomass and/or Leaf Area Index. SAR decompositions quantify the contributions361

of surface, volume and double-bounce backscatter to the total power and are particularly useful362

for classification and growth stage identification.363
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For vegetated terrain, the effects of canopy constituents, geometry, and moisture distribution364

are typically modeled as a scattering phase function, extinction coefficient, and scattering albedo,365

as described by Ulaby et al. [132]. The canopy can be modeled either as a continuous media366

with statistical dielectric variations within the canopy or as a discrete layered medium [133].367

A. The Water Cloud Model368

In 1978, Attema and Ulaby published the Water Cloud Model (WCM), an approach to369

characterize a vegetation canopy as a collection of uniformly distributed water droplets [132].370

The WCM is a zeroth-order radiative transfer solution in which the power backscattered by371

the entire canopy is modeled as the incoherent sum of the contributions from the canopy (as372

a whole) as well as the underlying soil In this model, multiple scattering (between soil-canopy373

and within the canopy) is ignored [52]. [96]. The canopy can be represented with one or two374

vegetation parameters. The WCM has been adapted to model scattering from a range of crop375

canopies. Prevot et al. [96] review these approaches, which have considered canopy (or leaf)376

water content and Leaf Area Index (LAI) as descriptors of the vegetation canopy. In the WCM,377

total backscatter σ0 is modeled according to incoherent scattering from vegetation σ0
veg and σ0

soil.378

Two-way transmission-backscatter through the canopy attenuates the signal and is modeled using379

an attenuation factor τ 2:380

σ0 = σ0
veg + τ 2σ0

soil (1)

σ0
veg = AV1 cos θ(1− exp(−2BV2/ cos θ)) (2)

τ 2 = exp(−2BV2/ cos θ) (3)

where A and B are the parameters of the model and θ is the incidence angle. V1 and V2 are381

canopy descriptors. One vegetation parameter can be used for both V1 and V2, or alternatively382

different parameters can be assigned to each of V1 and V2. Direct scattering from the soil must383

be modeled within the WCM. Typically, a simple linear model has been used as Ulaby et al.384

(1978) demonstrated that scattering from the soil can be expressed as a simple linear function385

between backscatter and soil moisture, Mv:386

σ0
soil = CMv +D (4)

where C and D are the slope and intercept of the relationship between backscatter and soil387

moisture. Some attempt has been made to use more physically based approaches to model388
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scattering from the soil, including integration of the physically-based Integral Equation Model389

(IEM) with the WCM [134].390

The attraction of the WCM is that this is a relatively simple model whereby given a sufficient391

number of radar measurements (in multiple angles, polarizations and/or frequencies), both the392

vegetation canopy parameters and soil moisture can be simultaneously estimated. However, the393

WCM is a semi-empirical model whereby parameterization of the vegetation and soil variables394

is accomplished using experimental data. As such, performance of the model is affected by the395

quality and robustness of these data. The WCM has typically been parameterized on a crop-396

specific basis given that the vegetation structure varies significantly among different species. If397

multiple radar measurements are used, inversion of the WCM allows estimates of vegetation398

parameter(s), for example LAI and/or vegetation water content, as well as underlying soil399

moisture [96], [135], [136]. Alternatively, soil moisture data can be supplied to estimate the400

vegetation parameters [137], or vegetation data can be provided to estimate the soil moisture401

[138].402

The simplicity of the WCM means that it is easy to parameterize and use for forward modeling403

and retrieval. However, its assumption regarding the uniform distribution of moisture in the404

canopy is a huge simplification of reality. Figure 1 illustrates the dynamics of the vertical moisture405

content distribution in corn during a growing season from destructive data collected in the406

Netherlands in 2013. Figure 1(a) shows the vegetation leaf water content in kgm−2. Each dot407

corresponds to the total VWC of leaves at a certain height (indicated on the y-axis), in one square408

meter. Figure 1(b) shows the water content of the stems in kgm−2. Each dot corresponds to the409

total water content in all stems in the 10cm stems centered at that height (indicated on the y-axis),410

in one square meter. Figure 1(a) and (b) demonstrate that, in contrast to the assumption of the411

WCM, the moisture in the canopy is far from evenly distributed. Most of the water stored as leaf412

water is concentrated in the mid-section where the largest leaves occur. During the vegetative413

stages (up to 27 July), the moisture distribution in the stem is relatively uniform, decreasing414

only slightly with height. When the ears start to form and separate from the stem, the stem415

VWC at and above the ears becomes relatively dry. The gradient in stem VWC as a function416

of height becomes clearer and it changes as the season progresses. The contributions of leaf,417

stem and ear moisture to the total is shown in Figure 1 (c). This illustrates that the distribution418

of canopy water content among the different scatterers also varies during the growing season.419

The influence this has on backscatter depends on frequency and polarization. It is clear that the420
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Fig. 1. Vertical distribution of leaf (a) and stem (b) moisture content, and the contributions of leaf, stems and ears to total

Vegetation Water Content (kgm2)(c) in an unstressed corn canopy.

assumptions of the WCM are very simplistic compared to the actual distribution and dynamics421

of water content during the growing season.422

B. Energy and Wave approaches423

Equation 1 can be formulated as424

σ0 = σ0
soil + σ0

veg + σ0
sv (5)

so that the total backscatter from the vegetated surface σ0 includes scattering contributions from425

the soil surface (σ0
soil), direct scattering from the vegetation (σ0

veg), and from interactions between426

soil and vegetation (σ0
sv) [4]. The σ0

soil is a function of the reflectivity of the soil and is highly427

sensitive to surface roughness. The σ0
veg is a function of canopy opacity and geometry. For a428

mature crop, σ0
veg could comprise a significant portion of σ0 [139].429
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Scatterers within the layered medium are characterized by canonical geometric shapes such430

as ellipsoids or discs for leaves and cylinders for trunks, branches, and stems [17]. Typically,431

the vegetation consists of a canopy layer within which these objects are randomly arranged, a432

stem layer with randomly located nearly vertical cylinders that may or may not extend into the433

branch layer, if present, and an underlying rough ground. Several backscattering models exist434

for vegetated terrain, e.g. [140]–[143]. The σ0 for the vegetated terrain can be estimated either435

through the energy or intensity approach or the wave approach [144].436

Both the energy and the wave approaches are based on physical interactions of electromagnetic437

waves with vegetation. In the energy approach, only amplitudes of the electromagnetic fields438

are estimated. The backscattering is described either through radiative transfer (RT) equations439

[145], Matrix Doubling theory [146], or Monte Carlo simulations [147]. The RT models (e.g.440

Michigan Microwave Canopy Scattering (MIMICS), [143] and the Tor-Vergata Model [148]) are441

energy-based equations that govern the transmission of energy through the scattering medium.442

According to the radiative transfer theory, the propagating energy interacts with the medium443

through extinction and emission. Extinction causes a decrease in energy, while emission accounts444

for the scattering by the medium along the propagation path. For a medium with random particles,445

the RT theory assumes that the waves scattered from the particles are random in phase and the446

total scattering can be estimated by incoherent summation over all particles. Thus, the extinction447

and emission processes can be represented by the average extinction and source matrices within448

each layer. The RT models represent a first-order solution and use Foldy’s approximation to449

estimate a mean field as a function of height within the vegetation. This mean field is then450

scattered from each of the vegetation constituents. Soil surface scattering and specular reflection451

are denoted by scattering and reflectivity matrices. The intensities across interfaces are continuous452

under the assumption of a diffuse boundary condition.453

The MIMICS model represents the vegetation as divided in three regions: the crown region, the454

trunk region, and the underlying ground region [133].The Radiative Transfer equations are solved455

iteratively in a two-equation system; one represents the intensity vector into upward direction456

and the second equation represents the intensity into the downward direction. The Tor Vergata457

model divides the vegetation into N layers over a dielectric rough surface. Each layer is described458

by the upper half-space intensity scattering matrix and the lower half space intensity scattering459

matrix. To compute the total scattered field from the scene, the matrix doubling algorithm is460

used, under the assumption of azimuthal symmetry. The first-order solution of both RT models461
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(1) (2) (3) (4) (5)

Fig. 2. Scattering mechanisms considered in the first-order models for both energy and wave based approaches: (1) direct

ground (2) direct vegetation (3) ground-vegetation (4) vegetation-ground (5) ground-vegetation-ground

accounts for five scattering mechanisms, as shown in Figure 2 (1) direct scattering from soil462

(σ0
soil), (2) direct scattering from vegetation (σ0

veg); (3) ground reflection followed by vegetation463

specular scattering, (4) vegetation specular followed by ground reflection; and (5) double bounce464

by ground reflection and/or vegetation backscattering and ground reflection. The addition of the465

scattering mechanisms 3, 4 and 5 are represented by σ0
sv in Equation 5.466

Though MIMICS was originally developed for forest canopies [143], [65] modified it for use467

in agricultural (wheat and canola) canopies by removing the distinct trunk layer, expressing the468

constituents of canola and wheat in terms of cylinders, discs and rectangles, and parameterizing469

leaf density as a function of input LAI. A similar approach was employed by Monsivais-Huertero470

and Judge [139] to model a maize canopy. DeRoo et al. [149] adapted the MIMICS to model the471

soybean crop and Liu et al. [150] used MIMICS to assimilate the backscattering coefficient into472

a soybean growth model. The Tor-Vergata model has been used to test classification schemes473

[151], the evaluate the potential of radar configurations for applications [152], [153] and to yield474

insight into radar sensitivity to crop growth [154]–[156].475

In the wave approach, both the phase and amplitude of the electromagnetic fields are computed476

and Maxwell’s equations are used to derive the bistatic scattering coefficient. The mean field in477

the medium can be calculated using the Born approximation (neglects multiple scattering effects)478

and the renormalization bilocal approximation (accounts for both absorption and scattering).479

Similar to the energy approach, the models based upon the wave approach (e.g. [157]–[161])480

consider horizontally-layered random vegetation and the five scattering mechanisms represented481

in Figure 2. Unlike the energy approach, the wave approach adds, in amplitude and phase, the482
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scattered field by each vegetation constituent (branches, stems, leaves, etc.), accounting for the483

orientation and relative position of the constituents. The attenuation and phase shifts within the484

vegetation are calculated using Foldy’s approximation. The total σ0 is obtained by averaging485

several realizations of randomly generated vegetation.486

Several studies have compared the two approaches. Chauhan et al. [162] found σ0 higher by487

3dB when ground-vegetation-ground interaction was considered for estimating backscatter from488

corn in mid season at L-band compared to the case when the interaction was ignored. Including489

the coherent effects produced σ0 estimates that were closer to observations. Recently, Monsivais-490

Huertero and Judge [139] found similar differences between the two approaches during the491

entire growing season of corn, from bare soil to maturity, at L-band. The coherent effects had a492

particularly high impact during the reproductive stage of the corn, due to the ears. When each term493

in Equation (1) was examined closely, it was found that the RT approach predicted σ0
veg as the494

primary contribution, while the wave approach predicted σ0
sv as the dominant contribution. The495

HH polarization showed higher differences between the two approaches than the VV polarization,496

suggesting that the HH polarization is more sensitive to the coherent effects for a corn canopy.497

The study also indicated that ears were the main contributors during the reproductive stage.498

Coherent effects were also found to be significant when Stiles and Sarabandi [159], [160] found499

that the row periodicity of agricultural field had an impact in the azimuth look angle, particularly500

at low frequencies such as the L-band.501

Energy and Wave approaches require moisture content or dielectric properties of the soil and502

vegetation as well as a description of the size, shape,orientation and distribution of scatterers503

in the canopy. This limits their usefulness to the wider, non-expert community. Despite their504

complexity, it is important to note that the representing vegetation as a collection of ellipsoids,505

discs etc., is still a crude simplification of reality. It remains unclear whether such a description is506

better than more simple, physical models. Nonetheless, they are very useful for relating ground507

measurements of the parameters during field campaigns to ground-based, airborne or satellite-508

based observations and interpreting their respective contributions to backscatter.509

C. Polarimetric Decompositions510

Polarimetric radar decomposition methods separate total scattering from a target into elemen-511

tary scattering contributions. This technique can be helpful for establishing vegetation health and512

for classifying land cover as the dominance and strength of surface (single-bounce), multiple513
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Fig. 3. Freeman-Durden decomposition of RADARSAT-2 quad-polarization data from the 2012 SMAPVEX experiment in

Manitoba (Canada). The left image is from April 26, middle from June 13 and right from July 7. Surface scattering is displayed

in blue, volume scattering in green and double bounce in red.

(volume) and double-bounce scattering is largely driven by the roughness and/or structure of the514

target. More specifically the structure of vegetation varies by type, condition and phenology state,515

and as these vegetation states vary so does the mixture and strength of scattering mechanisms.516

Different polarimetric decomposition approaches allow the polarimetric covariance matrix to be517

decomposed into contributions assigned to single or odd bounce scattering (indicative of a direct518

scattering event with the vegetation or ground), double or even bounce scattering (indicative of a519

scattering event between, for example, a vegetation stalk and the ground) and volume scattering520

(indicative of multiple scattering events between the ground and vegetation, or among vegetation521

components) [163], [164]. Yamaguchi [165] added a forth scattering component (helix scattering)522

to account for co-polarization and cross-polarization correlations, as some contributions from523

double bounce and surface scattering were thought to be contributing to volume scattering [166],524

[167].525

Figure 3 shows the Freeman-Durden decomposition of three RADARSAT-2 quad-polarization526

images obtained during SMAPVEX 2012 in Manitoba (Canada). The cropping mix in this region527

is dominated by spring wheat, canola, corn and soybeans. In April, producers have yet to plant528
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their crops for the season, so surface and volume scattering from bare soil dominate. In the July529

image, volume scattering dominates canola (bright green) while wheat fields show considerable530

double bounce (red).531

Cloude and Pottier [168] approached characterization of target scattering by decomposing SAR532

response into a set of eigenvectors (which characterize the scattering mechanism) and eigenvalues533

(which estimate the intensity of each mechanism) [169]. Two parameters, the entropy (H) and534

the anisotropy (A), can be calculated from the eigenvalues . The entropy measures the degree of535

randomness of the scattering (from 0 to 1); values near zero are typical of single scattering536

(consider smooth bare soils) while entropy increases in the presence of multiple scattering537

events (consider a developing crop canopy). Anisotropy estimates the relative importance of the538

secondary scattering mechanisms. Most natural targets will produce a mixture of mechanisms539

although typically, one source of scattering dominates. Zero anisotropy indicates two secondary540

mechanisms of approximately equal proportions; as values approach 1 the second mechanism541

dominates the third [170]. The Cloude-Pottier decomposition also produces the alpha (α) angle542

to indicate the dominant scattering source [169]. Single bounce scatters (smooth soils) have alpha543

angles close to 0◦; as crop canopies develop the angle approaches to 45◦ (volume scattering)544

although some secondary or tertiary double-bounce (nearing 90◦) can be observed when canopies545

include well developed stalks. The Cloud-Pottier decomposition has been employed to retrieve546

the phenological stage of rice [171] and to identify harvested fields [172].547

IV. APPLICATIONS548

The models described in the previous section provide insight into scattering mechanisms, and549

in particular into the separation of the contributions from soil and vegetation. The ambiguity550

between these contributions is one of the main challenges to be addressed in applications of551

radar observations to agricultural landscapes. The WCM is popular in crop monitoring. Energy552

and Wave approaches have proved very valuable for forward modelling the backscatter from553

vegetation for soil moisture retrievals, and SAR decomposition methods are most popular in554

crop classification and monitoring approaches.555

A. Regional vegetation monitoring using spaceborne scatterometry556

Several studies have used the ERS wind scatterometer to determine the fractional cover and557

seasonal cycles of vegetation. Woodhouse and Hoekman [173] used a mixed target modeling558
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approach to retrieve percentage vegetation cover over the Sahel region and the Hapex Sahel test559

area from ERS-1 WS data. A subsequent study in the Iberian Peninsula [174] yielded promising560

results for soil moisture retrieval but revealed that the performance in terms of vegetation cover561

parameters was site-specific. Frison et al. [175] showed that ERS WS data was more effective562

for monitoring the seasonal variation of herbaceous vegetation in the Sahel compared to SSM/I.563

The temporal signature of SSM/I observations were found to depend primarily on air and564

surface temperature, and integrated water vapor content. Biomass retrievals from SSM/I data565

were also poor due to the sensitivity of the employed semi-empirical model to soil moisture566

variations. Jarlan et al. [176] discussed the difficulty of estimating surface soil moisture and567

above-ground herbaceous biomass simultaneously without independent in-situ or remote sensing568

data to constrain one of the variables. In a subsequent study, soil moisture was estimated using569

MeteoSat data and a water balance model [177]. This allowed them to map vegetation water570

content and the herbaceous mass in the Sahelian through the nonlinear inversion of a radiative571

backscattering model yielding results that were consistent with NDVI observations. Grippa and572

Woodhouse [178] demonstrated that the inclusion of SAR data and ground measurements to573

estimate fractional cover in each of four cover classes allowed monthly vegetation properties to574

be retrieved from ERS WS backscatter at four test sites.575

Higher frequency scatterometer data has also been used to monitor vegetation. Frolking et al.576

[40] showed that Ku-band backscatter from the SeaWinds-on-QuikSCAT scatterometer (QSCAT)577

could be used to monitor canopy phenology and growing season vegetation dynamics at 27 sites578

across North America. They found good agreement with MODIS LAI, but noted that the onset of579

growth was often detected earlier in the SeaWinds data than in the MODIS data. Similar results580

were observed by Lu et al. [179] in a similar study conducted at sites across China. Ringelmann581

et al. [180] identified increases in filtered QSCAT backscatter, associated with improved growing582

conditions, to estimate the planting dates in a semi-arid area in Mali. Hardin and Jackson [181]583

found seasonal change in backscatter from a savanna area in South America could be attributed584

due to variations in the dielectric constant of the grass itself accompanied by a strong contribution585

from soil moisture. Backscatter was found to decrease in the latter part of the season due to586

decreasing soil moisture and increased canopy attenuation.587

It is important to note that the coarse resolution (typically around 25km) of the data used in588

these studies means that they are more suited to regional monitoring than field-scale monitoring.589

Nonetheless, they demonstrate that scatterometer data is suited for inter-annual monitoring of590
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the timing and evolution of the growing season which is useful for regional water resources591

management, food security monitoring, crop yield forecasting etc..592

B. Crop Classification593

The fine resolution of SAR observations make them better suited to field-scale crop classifi-594

cation. The primary advantage cited for integrating SARs with optical data in crop classification595

strategies is because microwave sensors are unaffected by cloud cover, making SARs a reliable596

source of data for scientific and operational needs. While this statement is correct, research has597

proven that optical data are not needed as input to a crop classifier as long as SAR configurations598

are optimized. As with optical approaches, if a SAR-only solution is to be successful multiple599

acquisitions through the growing season are needed [37]. At any single point in time two crops600

(e.g. wheat and oats) can have very similar backscatter. However, as the structure of the crop601

changes (especially during seed and fruit development), the backscatter changes. Classification602

can be performed based on these changes, using the variation in backscatter over time to603

distinguish one crop type from another. The number of images required depends upon the crops604

present and the complexity of the cropping system (for example number of crops, consistency of605

planting practices, presence of inter-cropping and number of cropping seasons per year). Le Toan606

et al. [182] showed that the distinctive backscatter changed between two ERS-1 SAR images607

during a rice growth cycle were enough to identify rice fields. By relating the backscatter to608

canopy height and biomass, they were also able to map rice fields at different growth stage. A609

subsequent study by Ribbes [183] found a lower dynamic range in RADARSAT images over rice610

compared to ERS-1, possibly due to polarization but found that RADARSAT was also potentially611

useful for rice-mapping. More recently, Bouvet et al. [184] used a series of ten X-band images612

from Cosmo SkyMed to map rice fields in the Mekong Delta, Vietnam. McNairn et al. [185]613

used multiple acquisitions of X-band and/or C-band data to deliver classification results with an614

overall accuracy of well over 90%, but in a simple corn-soybean-forage cropping system. In fact615

for this simple system, X-band imagery accurately (90-95%) identified corn only 6 weeks after616

seeding. However cropping systems can be much more complex, and in these circumstances it is617

important to include later images which capture periods of reproduction and seed development618

in the classifier, when crop structure changes are most apparent [186], [187].619

As stated, successful classification requires multi-temporal SAR acquisitions to capture changes620

in crop phenology. When considering the SAR configuration, choice of frequency is very impor-621
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tant. This choice is not straightforward and the canopy (in terms of crop type and development)622

must be considered. Enough penetration is needed for microwaves to scatter into the canopy but623

when frequencies are too low, too much interaction occurs with the soil.624

Inoue et al. [62] showed that, for rice, X- and K-band backscatter were sensitive to thin rice625

seedlings but poorly correlated with biomass and LAI which were better correlated with L- and C-626

band respectively. Data from several spaceborne SARs including ERS 1/2 SAR, Envisat ASAR,627

Radarsat and ALOS PALSAR have been used to map rice growth [182], [183], [188]–[190]. Jia628

et al. [191] favoured longer wavelengths at C-Band over X-Band for separating winter wheat629

from cotton. McNairn et al. [186] found that longer L-Band data was needed to accurately630

identify higher biomass crops (corn, soybean), although C-Band data was most suitable for631

separating lower biomass crops (wheat, hay-pasture). Because cropping systems include wide632

ranges of crops with varying volumes of biomass, researchers have consistently advocated for633

an integration of data at multiple frequencies to ensure high accuracy crop maps. Increases in634

accuracies have been reported when X- and C-Band data were integrated [191], C- and L-Band635

[186], [192], [193], X-, C- and L-Band [35] as well as C- and L- and P-Band [194]–[198]. The636

largest gains in accuracy are often observed for individual crop classes. In McNairn et al. [185],637

accuracies for individual crops increased up to 5% (end of season maps) and 37% (early season638

maps) when both X- and C-band were used together.639

By and large, radar parameters which are responding to multiple or volume scattering within640

the crop canopy are the best choice for crop identification. Many studies have confirmed that the641

cross polarization (HV or VH) is the single most important polarization to identify the majority642

of crops [63], [102], [186], [199]–[201]. The greatest incremental increase in accuracy is then643

observed when a second polarization is added to the classifier [102], [199], [200]. Agriculture644

and Agri-Food Canada for example, integrates C-Band dual-polarization SAR (VV and VH from645

RADARSAT-2) with available optical data for their annual crop inventory [202]. This inventory646

is national in scale and is run operationally, delivering annual crop maps with overall accuracies647

consistently at or about 85%. Although the greatest improvements are observed when adding a648

second polarization when available, a third (such as HH) can increase accuracies for some crops649

[102], [186], [203]650

Limited research has been published on the use of scattering decompositions within the context651

of crop classification. What has been presented has indicated small yet important incremental652

increases in accuracies. At L-Band, McNairn et al. [186] demonstrated that overall accuracies653
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improved up to 7% when decomposition parameters (Cloude-Pottier, Freeman-Durden) were654

used instead of the four linear intensity channels (HH, VV, VH, HV). Differences in the relative655

contributions of scattering mechanisms among the crops were observed leading to improved clas-656

sification. Liu et al. [163] used RADARSAT-2 data and the three Pauli components in a maximum657

likelihood classifier, applying this to a relatively simple cropping mix (corn, wheat, soybeans,658

hay-pasture). Two test years established an overall accuracy of 84-85%, using only these C-band659

data. Compact polarimetric (CP) data (in circular transmit-linear receive configuration) has been660

simulated from RADARSAT-2 C-band data and also assessed for crop classification. Using the661

Stokes vector parameters from synthesized CP data (4 images through the season) classification662

accuracies of 91% were reported with individual crop classification accuracies ranging from663

81-96% (corn, soybeans, wheat and hay-pasture) [204].664

C. Crop Monitoring665

Global, national and regional monitoring of crop production is critical for a host of clients.666

These clients include those concerned with food security where foresight into production esti-667

mates are needed to address potential food shortages, commodity brokers looking for information668

to facilitate financial decision making and agri-businesses which can more effectively deploy669

harvesting and transportation resources if production estimates are known in advance. Forecasting670

production is not a trivial task and as described in Chipanshi et al. [205] methods can be671

categorized as statistical, mechanistic or functional, with Earth observation data increasingly672

being used as data input into crop condition, production and yield forecasting. Agronomists are673

often interested in exploiting Leaf area Index (LAI) or biomass as surrogates, since both are good674

indicators of potential crop yield [206]. The structure of a crop canopy significantly impacts the675

intensity of scattering, type of scattering and phase characteristics. This structure is crop specific676

and varies as crop phenology changes. As such, research as far back as 1984 [207] and 1986 [208]677

has demonstrated a strong correlation between backscatter intensity and LAI. These researchers678

focused on higher frequency K- and Ku-band and noted strong correlations with the LAI of corn;679

weaker correlations being reported for wheat. This early research encouraged additional study680

into the sensitivity of SAR to LAI, leading to findings of strong correlations between C-band681

backscatter and LAI for wheat [209], corn and soybeans [210] and cotton [211]. Prasad [212]682

reported strong correlations between X-band backscatter and soybeans; Kim et al. [213] using683

L-, C- and X-band backscatter for soybeans. Liu et al. [163] examined RADARSAT-2 data to684



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 25

15 20 25 30 35 40 45 50 55 60 65

θ
 (

2
c
m

)

0

0.1

0.2

0.3

Microwex 10
Surface Soil Moisture and Leaf Area Index

L
A

I

0

1

2

3

15 20 25 30 35 40 45 50 55 60 65

σ
0

-40

-30

-20

-10

0
L-band radar backscatter

HH
VV
HV

Days since planting
15 20 25 30 35 40 45 50 55 60 65

R
V

I

0

0.2

0.4

0.6

0.8

1

Radar Vegetation Index and Vegetation Water Content

V
W

C
(k

g
 m

-2

0

0.5

1

1.5

2

2.5

3Fig. 4. Data collected in a corn canopy during Microwex10. Top: Surface (2.5cm) soil moisture, and LAI. Middle: Co- and

cross-polarized backscatter σ0. Bottom: RVI and vegetation water content.

track LAI development of corn and soybeans using Pauli decomposition parameters. Wiseman685

et al. [214] observed strong correlations between C-band responses and the dry biomass of686

corn, soybeans, wheat and canola. Much of the earliest research focused on linear like-polarized687

responses (for example Ulaby et al. [207] and Paris [208] examined HH and VV polarizations).688

Scattering from crop canopies is a result of multiple scattering from within the crop canopy,689

and between the canopy and soil. As such, repeatedly the highest correlations with LAI and690

biomass have been found for SAR parameters indicative of these multiple scattering events. These691

parameters include HV or VH backscatter, pedestal height, volume scattering components from692

decompositions and entropy ( [195], [196], [209], [210], [214]–[216] all using C-band). Although693

SAR parameters responsive to volume scattering have proven most sensitive to crop condition694

indicators such as LAI and biomass, a few researchers have reported success in combining695

polarizations in the form of ratios. This has included a C-band HH/VV ratio for wheat biomass696

[21], wheat LAI [217] and rice LAI [218]. C-HV/HH proved sensitive to the LAI of sugarcane697

[219].698

In 2009, Kim and van Zyl [220] introduced the Radar Vegetation Index (RVI) whereby RVI699

is expected to increase (from 0 to 1) as volume scattering increases due to canopy development.700

RVI is defined as:701

RV I =
8σ0

hv

σ0
hh + 2σ0

hv + σ0
vv

(6)

where σ0 is SAR intensity for each transmit (h or v) and receive (h or v) polarization.702

Figure 4 shows a time series of RVI calculated from data collected during Microwex 10 with703

the UF-LARS. Though HV is typically lower than co-polarized backscatter, it is clearly most704

sensitive to the increasing biomass, indicated by increasing LAI. RVI is less than 0.2 up to 30705
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days from planting because the magnitude of HV is much lower than the co-polarized backscatter.706

After this date, RVI increases steadily until the plant reaches full growth. Fluctuations in RVI707

reflect changes in soil moisture (influencing co-pol backscatter), and vegetation water content708

(influencing cross-pol backscatter). RVI has been statistically correlated with the plant area and709

biomass of some crops [214], [221], [222]. It has also been used to estimate VWC for soil710

moisture studies e.g. [223], [224].711

Radar response from crop canopies can saturate at higher LAI or biomass. This means that as712

the crop continues to accumulate plant matter, the radar backscatter is no longer responsive to713

these increases. The exact point of saturation is crop and frequency specific. For corn, McNairn et714

al. [102] found that C-HH saturated at a height of one meter. When considering LAI, saturation715

has been reported at LAI of 2-3 (Ulaby et al., [207], using K-band), LAI of 3 for corn and716

soybeans [210] and LAI of 3 for rice [135]. Not all research has reported saturation; for winter717

wheat backscatter continued to be sensitive to crop development throughout the season [96].718

Although saturation is problematic when monitoring some crops during the entire season, a719

critical window for crop yield forecasting is during the period of rapid crop development up720

until peak biomass accumulation. Wiseman et al. [214] reported exponential increases in C-band721

responses in the early season when biomass accumulation accelerated, especially for parameters722

such as entropy (corn and canola) and HV backscatter (soybeans). Thus SAR-based estimates723

of LAI, even if restricted to periods prior to peak biomass accumulation, will be useful in724

monitoring crop productivity. These studies which reported a sensitivity of SAR to LAI and725

biomass gave rise to efforts to model and eventually estimate biophysical parameters indicative726

of crop condition. The Water Cloud Model (WCM) has been a choice approach to estimate crop727

parameters given its relative simplicity to model and invert. The influence of soil moisture on SAR728

response dissipates as the canopy develops. Prevot et al. [96] reported that at X-band once the729

LAI of wheat reached four, soil contributions were negligible. At C-band, once the LAI of corn730

and soybeans reached three, 90% of scattering originates from the canopy [210]. Nevertheless,731

considering the requirement to model the entire growth cycle, it remains important to consider732

soil moisture contributions within the WCM. Ulaby et al. [207] demonstrated that when LAI733

is less than 0.5, backscatter is dominated by soil moisture contributions. One approach to LAI734

retrieval with the WCM is to provide ancillary sources of soil moisture. This is particularly735

effective when the number of available SAR parameters is not sufficient to retrieve multiple736

unknown variables modeled by the WCM. This approach was demonstrated by Beriaux et al.737
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[137]. Here VV backscatter was used to estimate the LAI of corn, using ancillary sources of soil738

moisture. LAI errors (RMSE in m2/m2) were reported as 0.69 (using soil moisture from ground739

penetrating radar), 0.88 (using field measurements) and 0.9-0.97 (using moisture modeled by740

SWAP). If multiple SAR parameters are available, LAI can be retrieved without provision of741

ancillary soil moisture data. Prevot et al. [96] did so using two frequencies (X-band and C-band)742

and reported a RSME for retrieval of LAI for winter wheat as 0.64 m2/m2. Soil moisture was743

also retrieved (RSME of 0.065 cm3/cm3). In a slightly modified approach, Hosseini et al. [136]744

used multiple polarizations from RADARSAT-2 and an airborne L-band sensor to invert the745

WCM without the need for ancillary moisture data. In this case, LAI was accurately estimated746

using C-VV and C-VH backscatter for corn (RMSE of 0.75 m2/m2) and soybeans (RMSE of747

0.63 m2/m2). Errors using L-band were at or above RMSE of 1, perhaps indicating too much748

penetration for accurate LAI retrieval for these canopies. Research continues in this domain, yet749

it is evident that SAR can provide estimates on LAI to support the monitoring of crop condition.750

In fact, error statistics for retrieval of LAI for corn and soybeans using RADARSAT-2 [136]751

were slightly lower than those achieved using optical RapidEye data [225], both experiments752

occuring in Canadian cropping systems.753

Beyond LAI, Polarimetric SAR (PolSAR) has proved very valuable for monitoring phenolog-754

ical stages of rice [226]–[231] and other crops [221], [232]–[234]. Recently, Vicente-Guijalba755

et al [235] presented a dynamic approach for agricultural crop monitoring. First, a dynamical756

model for crop phenological change is extracted from a reference dataset (e.g. a stack of SAR757

images). Then, this model is constrained by input data using an extended Kalman filter (EKF)758

to estimate the crop phenological stage on a continuous scale in real time. They demonstrated759

using Radarsat data from AgriSAR2009 that the approach worked well for wheat and barley.760

For oats, the sensitivity was only sufficient in the first and last stages. In related studies, data761

fusion [236] and data assimilation [237], [238] techniques were also successfully used to extract762

key dates or phenological stages from stacks of SAR images. Mascolo et al. [239] presented763

a novel methodology that uses distances among covariance matrices derived from series of764

PolSAR images to identify both the phenological intervals to be estimated. It also determines765

the training sets for each interval and the intervals are then classified by the complex Wishart766

classifier. The advantage is that this method obviates the need to identify specific PolSAR767

features. They demonstrated, using RADARSAT-2 data from the AgriSAR2009 campaign, that768

this methodology can be used to retrieve the phenological stages of four different crop types769
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namely oat, barley, wheat, and corn. Finally, Polarimetric SAR interferometry, in which the770

strengths of interferometry are combined with those of polarimetric SAR, has been put forward771

to address some of the shortcomings of polarimetric SAR in agricultural monitoring [240].772

PolInSAR yields information about the localization of the scattering centers, and hence the773

vertical structure of the plant. Lopez-Sanchez and Ballester-Berman [240] argue that this may774

be used to overcome the saturation effects observed in PolSAR and to monitor plant phenological775

stage.776

D. Soil Moisture777

Soil moisture is important in its own right for agricultural scheduling and water resources778

management [241] and drought monitoring [242]. Furthermore, soil moisture observations can779

be used to account for the influence of drought conditions on crop yield forecasts [243]–[245].780

The soil moisture dataset derived from the ERS 1/2 wind scatterometers and the Advanced781

Scatterometer (ASCAT), provides one of the longest-duration global records of soil moisture782

and is the only operational global soil moisture product derived from radar observations [246].783

It is based on an empirical soil moisture retrieval algorithm that accounts for seasonality in784

the influence of vegetation on the sensitivity of backscatter to soil moisture [247]. First, the785

entire record of backscatter coefficients from the ERS Wind Scatterometer is extrapolated to a786

reference angle of 40◦, yielding a time series σ0(40, t). The highest and lowest values of σ0(40, t)787

for each grid cell, σ0
wet(40, t) and σ0

dry(40, t), are identified. The first is generally independent of788

vegetation status, while σ0
dry(40, t) varies seasonally with vegetation phenology. Assuming that789

σ0(40) and the surface soil moisture are linearly related, the relative moisture content of the790

surface (0.5-2cm thick) layer is given by:791

ms(t) =
σ0(40, t)− σ0

dry(40, t)

σ0
wet(40, t)− σ0

dry(40, t)
(7)

This approach was developed for a study in the Iberian peninsula [247]. In a subsequent study,792

the approach was validated using an extensive in-situ dataset from Ukraine [248] and a soil water793

index (SWI) was introduced to provide a measure of profile soil moisture. SWI is obtained as794

a convolution of the time series of surface moisture content with an exponential filter function795

such that796

SWI(t) =

∑
i

ms(ti)e
−(t−ti)/T∑

i

e−(t−ti)/T
(8)
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for ti ≤ t, where ms is the surface soil moisture from the ERS WS at time ti, T is some797

characteristic time length between 15 and 30 days. Wagner et al. [249] evaluated both products798

over West Africa. They demonstrated that the temporal and spatial distributions of the estimated799

ms and SWI captured the influence of the wet and dry seasons and that the estimated slope800

parameters were consistent with the distribution of land cover. Wagner et al. [250] presented first801

global, multiannual soil moisture data set (1992–2000) from satellite remote sensing. Due to the802

lack of a global network of in-situ validation data, the estimated soil moisture was compared803

with observed monthly precipitation data, and monthly soil moisture obtained from a dynamic804

global vegetation model. A comparison of anomalies in SWI and precipitation anomalies yielded805

correlations up to 0.9 in tropical and temperature regions. Though spurious effects were observed806

in steppe and desert climates, this study illustrated the potential value of spaceborne scatterometer807

data for soil moisture estimation. Following the launch of the first of three METOP satellites808

in October 2006, Bartalis et al. [251] used the parameters derived from eight years of ERS809

scatterometer data, to produce first global soil moisture maps from the METOP-A Advanced810

Scatterometer (ASCAT) commissioning data. Comparison of the ASCAT-derived surface soil811

moisture to rainfall and NDVI data suggested that the approach developed for the ERS scat-812

terometer could be applied to ASCAT data with minimal adaptations required to the processing813

chain and configuration.814

Naemi et al. [252] made several improvements to address shortcomings in the original algo-815

rithm to yield the so-called WARP5 model.816

Soil moisture estimates derived from both the ERS WS and MetOp ASCAT, using a newer817

WARP5.2 are key components of the European Space Agency Climate Change Initiative (ESA818

CCI) soil moisture product [253]. A recent study by Vreugdenhil et al. [254] highlighted the819

need to develop to better account for the influence of vegetation dynamics on soil moisture820

retrieval, particularly in areas where there is significant interannual variability in vegetation.821

NASA’s Soil Moisture Active Passive (SMAP) mission was launched on January 31, 2015822

with an L-band radiometer and L-band SAR on board. The SMAP baseline algorithm for the823

radar-only soil moisture product was to use a multi-channel datacube retrieval approach outlined824

by Kim et al. [255], [256]. Forward backscatter models for 16 vegetation classes and bare soil825

are used to simulate backscatter as a function of the real part of the soil dielectric constant (εr),826

roughness (s), and vegetation water content (VWC). Scattering from each of the vegetation827

types is simulated using the methods described in Section III.B, and based on data collected828
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from field campaigns. For retrieval σHV or ancillary data is used to determine VWC and a time829

series of co-polarized backscatter is used to determine a single value for s and a time series of830

εr by minimizing the difference between simulated and observed backscatter [6]. In addition to831

this baseline algorithm, the change detection approaches of van Zyl and Kim [257] and Wagner832

et al. [247] are considered as optional algorithms. Unfortunately, the failure of the radar in July833

2015 means that SMAP products are currently limited to those from the radiometer alone.834

V. CHALLENGES AND OPPORTUNITIES835

A. Resolution of spaceborne scatterometry data836

The coarse resolution of spaceborne scatterometer observations remains a challenge. However,837

resolution enhancement [258], [259], data assimilation [260]–[262] and downscaling approaches838

[263] offer new possibilities in terms of extracting field-scale or, at least, finer-scale information839

from coarse scatterometer observations for agricultural applications.840

B. Limitations of operational SAR applications841

Spatial and temporal coverage remains a huge challenge for operational SAR applications842

in agriculture. The results discussed here illustrate that theoretically, radar data is an excellent843

option for crop type monitoring to support production estimates, and to monitor crop condition.844

The quality of multi-frequency radar data retrievals in these applications is sufficiently high to845

obviate the need for optical data. The recent launches of Cosmo Sky-Med (4 day revisit time) and846

Sentinel 1a and 1b (6 day revisit time) have greatly improved temporal coverage. Nonetheless,847

spatial and temporal availability of data remains a barrier to operational global, regional or even848

national monitoring. For example, the current state-of-the-art operational monitoring performed849

by Agriculture and AgriFood Canada still relies on the integration of radar and optical data.850

Furthermore, to transition from scientific applications to operational monitoring, the current851

model (i.e. WCM) needs to be adapted so that it can be applied for a wider range of cropping852

systems. Finally, the extensive history of using optical data in agriculture means that users853

are familiar with the processing and interpretation of optical imagery. The complexity of SAR854

scattering means that applications specialists in agricultural monitoring generally consider in-855

terpretation of radar images more difficult than optical images. This is a major barrier to the856

widespread adoption of radar for operational monitoring, most of which is carried out by national857
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institutions. User community participation and capacity-building activities are needed to ensure858

that radar products are provided to users in a format that they can readily use.859

C. Water stress monitoring using spaceborne radar860

An emerging topic of research is the potential use of diurnal variations in backscatter to identify861

the onset of water stress. Friesen [264] identified statistically significant diurnal differences in862

backscatter from the ERS 1/2 wind scatterometer over West Africa. A hydrological model, and863

a degree-day model were used to demonstrate that the largest differences coincided spatially and864

temporally with the onset of water stress [264]. A sensitivity study using the MIMICS model865

showed that the variations may be attributed to variations in the water content (and hence relative866

permittivity) of the leaves and trunks [265]. The challenge remains to disentangle the artefacts of867

WS pre-processing from the influence of variations in dielectric properties and geometric changes868

in the canopy due to the forest’s physiological response to water stress. Diurnal variations have869

been detected in higher-frequency spaceborne observations too [3], [266]–[268]. Frolking et al.870

[2] identified a decrease in backscatter over the southwestern Amazon forest during the 2005871

drought. The most significant anomalies, with respect to interannual variability, were in the872

morning backscatter anomalies. Strong spatial correlation with water deficit anomalies suggested873

that these anomalies were due to drought - hypothesizing, similarly to Friesen [264], that the874

changes were due to changes in water relations within the tree in response to stress.875

In the agricultural context, diurnal differences in backscatter were also observed in agricultural876

canopies in tower-based measurements as early as the 1970s [64], [269], and were attributed877

to loss of canopy moisture during the day due to transpiration. A more recent study in an878

agricultural maize canopy found diurnal changes in bulk VWC up to 30 % and leaf VWC up to879

40% during a period of water stress [28]. Water cloud model simulations were used to illustrate880

that the variations in leaf VWC had a significant impact on total backscatter, particularly at881

C-band and higher frequencies. Schroeder et al. [270] normalized ASCAT backscatter to 54◦882

to maximize sensitivity to the slope factor. Recall from Wagner [247] that the slope factor883

reflects variations in vegetation water content or phenology. Schroeder et al. found that negative884

anomalies in σ0(54), particularly during the morning overpasses, were spatially and temporally885

consistent with the drought patterns observed in 2011 and 2012 by the U.S. Drought Monitor.886

Additional research is needed to relate the observed backscatter variations with the underlying887
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plant response to drought, and hence to explore the potential of scatterometer and SAR data at888

different frequencies to identify water stress at regional and field scales respectively.889

D. New opportunities with ASCAT890

Twenty five years since the launch of the Active Microwave Instrument (AMI) on ERS-891

1, sensors that were primarily launched for ocean applications are at the core of operational892

remote sensing for land surface monitoring. The continuation of ASCAT on MetOp will provide893

essential operational soil moisture data for the meteorological, hydrological and land monitoring894

communities [271]. Recent research by Vreugdenhil [254] demonstrates that there is valuable895

information about vegetation dynamics in the ASCAT observations. The ability to quantitatively896

exploit this information could lead to improved soil moisture retrieval and vegetation phenology897

monitoring.898

E. Vegetation dynamics from RapidScat on ISS899

Paget and Long [3] recently mapped diurnal variations in Ku-band backscatter observations900

from RapidScat. Significant variations were observed across several vegetation biomes. Though901

previous studies have indicated that diurnal variations at several frequencies could be due to902

variations in water dynamics [264], [272], [273], uncertainty still surrounds the relationship903

between plant water relations, variations in dielectric properties, and the observed backscatter [2],904

[3], [265], [274]. Understanding what drives these diurnal backscatter variations is the first step905

to exploiting RapidScat for agricultural applications. Furthermore, their exploitation would also906

yield valuable insight into the potential value of the ISS as a platform for vegetation monitoring907

using radar.908

F. New C-band SAR missions909

Two new C-band SAR constellations offer global high-resolution imagery at an unprecedented910

spatial and temporal resolution thereby offering the potential to more accurately pinpoint growth911

stages and monitor biomass accumulation, vegetation water content etc.. The two satellites of912

ESA’s C-band Sentinel-1 Mission were launched in 2014 and 2015 respectively. The are the first913

in a series of operational satellites in the frame of ESA’s Global Monitoring for Environment914

and Security Space Component programme. The two satellites are in the same orbital plane915

providing an average revisit time of two days above 45◦ N/S and global exact repeat coverage916
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every two weeks. It has four imagine modes: the Interferometric Wide-swath model (IW), Wave917

Mode (WM), Strip Map mode (SM) or Extra-Wide (EW) swath model. Apart from the single-918

polarization WM, all modes have dual polarization with VV and VH as the default [275].919

Canada’s three-satellite RADARSAT Constellation Mission (RCM) is scheduled for launch in920

2018. It will support the operational requirements of the Government of Canada and to provide921

data continuity for existing users of RADARSAT-1 and RADARSAT-2 [276]. RCM will have a922

range of modes from wide area surveillance modes (500 km swath) to spotlight modes (5 km923

swath). Single or dual polarization acquisitions (HH + HV or VV + VH or HH + VV) are possible924

for each mode. The constellation also provides access to both quad-polarization and compact925

polarization (CP) modes. RCM will have a 12-day repeat cycle and with three satellites, 4-day926

coherent change detection will be possible. From Section IV, it is clear that the exploitation927

of SAR data, particularly Radarsat1 and Radarsat 2 data, has signfiicantly contributed to our928

understanding of scattering mechanisms in vegetation. Similarly, knowledge generated from the929

use of Sentinel-1 and RCM can be transferred to improve our understanding of scatterometry and930

facilitate increase exploitation of the data collected by ASCAT on MetOp and other spaceborne931

scatterometry missions.932

G. Combined SMAP/Sentinel-1 soil moisture933

One of the objectives of NASA’s SMAP mission was to combine the radiometer and radar934

observations to produce a merged soil moisture product at 9km resolution. Sentinel-1 observations935

have been proposed as a potential substitute for SMAP radar observations in this combined936

product since the radar failure in July 2015 [277]. However, there are several differences between937

the SMAP radar data and the Sentinel-1 SAR data that will need to be addressed. In addition to938

the difference in frequency between the two radars, and the incidence angle diversity of Sentinel-939

1, the main challenge is that the two instruments are not in the same orbit. Any downscaling940

approach must therefore be robust enough to merge acquisitions from the SMAP radiometer and941

Sentinel-1 radar that are separated by hours of even days. Combined multi-angle, C- and L-band942

radar observations from tower-based scatterometers could play an important role in developing943

and validating proposed downscaling approaches to take these differences into account.944
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H. Scattering models for vegetation945

The persistent dilemma in terms of radar applications for vegetation is choosing an appropriate946

model. The Water Cloud Model remains widely used despite, if not because, of its simplicity.947

However, its key assumptions regarding the distribution of moisture in the canopy are generally948

not valid. The more theoretical energy and wave-based approaches remain primarily in the949

research domain due to the large number of input parameters required (e.g. dielectric properties950

of soil and vegetation, geometry etc.. This data collection requirement may be possible during951

intensive field campaigns, but it is too time consuming and expensive to be performed regularly952

and for all possible vegetation cover types. Furthermore, the representations of the canopy in953

energy and wave-based models are still simplifications of reality. For emerging applications, it954

is significant that the relationship between these parameters and vegetation (particularly water)955

dynamics is currently not well understood. A new approach to modeling is needed that reflects the956

known non-uniformity and dynamic profile in moisture content, and the importance of multiple-957

bounce between the soil surface and overlying vegetation. However, to ensure that the model is958

universally applicable, it needs to be as simple to parameterize and use as the WCM.959

I. Radar tomography960

From the discussions in the previous sections becomes clear that the main limitation of961

conventional single- or quad-polarimetric acquisitions, arises from the fact that they do not962

provide the required dimensionality to resolve unambiguously the multiple and/or complex963

scattering processes ongoing at different polarisations and frequencies. A potential solution964

to this are multi-angular acquisitions that allow the reconstruction of the 3D reflectivity of965

volume scatterers by means of tomographic techniques.In the context of agricultural crops the966

first experiments and demonstrations where performed by means of ground based scatterometers967

in indoor and outdoor set-ups [278]. More recently, the developments in SAR technology and968

data processing allowed first tomographic airborne SAR experiments over agricultural fields even969

at higher frequencies [279], [280].970

Airborne tomographic SAR experiments are mostly carried out by displacing the multiple971

acquisitions on a linear configuration such that the variation of the radar look angle amounts972

to a small fraction of a degree between consecutive acquisitions [281]. In conventional linear973

tomography the 3D reflectivity is inverted from the multi-acquisition data vector by means of a974

Fourier-based approach [281], [282]. In this case, the spatial resolution in the elevation direction975
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(also referred to as cross-range direction i.e. the direction perpendicular to the radar LoS) is976

defined by the length of the formed synthetic aperture LX , that corresponds to the maximum977

separation (in elevation) between the acquisitions:978

δ =
λ

2LX

r0 (9)

where λ is the radar wavelength and r0 the distance between radar and scatterer. For example, in979

order to achieve, with an X-band radar, a resolution in elevation of 1m at a distance r0 = 5km an980

aperture of 150m is required. While the maximum separation between the acquisitions is defined981

by the resolution requirement, the number of acquisitions needed for tomographic imaging is982

given by the distance between the acquisitions required to fulfil Nyquist sampling. For a scatterer983

(e.g. agricultural field) with height HX in elevation, the minimum required distance between the984

acquisitions is given by [281]:985

dX =
λ

2HX

r0 (10)

Equations 9 and 10 make it clear that the lower heights of agricultural vegetation require high986

vertical resolutions and demand a larger number of acquisitions. In the example used above for987

mapping a HX = 3m tall agriculture field, a minimum distance of 25m between the acquisitions988

is required so that in total 7 acquisitions are at least required assuming a uniform spacing among989

them.990

For each SAR image pixel, the reflectivity profile can be inverted from the related multi-991

acquisition data vector by means of a Fourier-based approach [281], [282]. However, the re-992

constructed profile will in general be affected by the presence of sidelobes that can lead to993

misinterpretations of the reflectivity distribution. On the other hand, a resolution better than the994

one provided by the tomographic aperture [see 9] is desired, especially for small vegetation vol-995

umes like crops. In order to improve the reconstruction performance and to relax the acquisition996

requirements, adaptive reconstruction algorithms have been proposed. One interesting and pop-997

ular example is the Capon spectral estimator, a widely employed low-complexity solution [282].998

More recently, Compressive Sensing reconstruction techniques that allow a high-performance999

reconstruction even with a very low number of acquisitions (that may even not fulfil the Nyquist1000

sampling condition) have been proposed [283]. Both algorithms have been demonstrated to1001

greatly improve the reconstruction of the reflectivity profile in terms of side-lobe cancellation1002

and resolution enhancement, at the cost of some (generally acceptable) radiometric non-linearity.1003
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Fig. 5. Normalised tomographic reflectivity profile across three fields (corn, wheat and barley) at X-band with a vertical

resolution of δZ = 0.5m at HH (top) and VV (bottom).

Figure 5 shows a Capon tomographic reflectivity profile across three fields (corn with a1004

physical height of 1.8 m at the time of the acquisition, wheat with a height of 0.8m, and barley1005

with a height of 0.8m) at X-band with a vertical resolution of 0.5 m formed by 9 airborne SAR1006

acquisitions performed on the 3rd of July 2014 over the Wallerfing test site (South Germany).1007

Looking at the profile, one can clearly distinguish the different scattering processes. The corn1008

field, which is still in its early development stage, is dominated by dihedral scattering (by HH1009

dominated scattering located on the ground). Over the wheat field, surface scattering on the top1010

layer is ongoing and the row spacing is clearly visible. Over the dry barley field, the vegetation1011

at HH is almost ”invisible” and only appears weakly in VV [280].1012

Figure 5 illustrates that tomographic imaging has the potential to make a critical and unique1013

contribution to our understanding of scattering from agricultural scenes as it allows us to identify1014

the dominant scattering processes as well as their change in time at different polarisations and1015

frequencies. This is essential for understanding propagation and scattering within agriculture1016

vegetation and interpreting correctly conventional back-scattering signatures. The availability1017

of multi-temporal tomographic acquisitions is especially critical when it comes to determine1018

processes that effect the dielectric and/or geometric characteristics of the scatterers.1019

However, the large number of acquisitions, combined with the fast temporal evolution of1020
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agricultural plants, limits the application of radar tomography to rather small-scale ground-based1021

and/or airborne experiments. Spaceborne repeat-pass implementations are limited by temporal1022

decorrelation that has more of an effect on the higher frequency range preferred for agricultural1023

vegetation applications. An interesting alternative - proposed and used for forest tomography -1024

are single pass spaceborne configurations that are able to provide tomographic imaging based1025

on (single pass) interferograms acquired at consecutive repeat-pass cycles [282]. However the1026

fast development of agriculture plants requires very short repeat-pass cycles in order to avoid1027

changes in the 3D-reflectivity due to the plant evolution. Accordingly, until the next generation1028

of multi-static spaceborne SAR configurations becomes operational, the availability and coverage1029

of tomographic data will be limited but significant for the development of simplified inversion1030

approaches invertible with a ”slimmer” in terms acquisitions observation space [240], [284]–1031

[287] .1032

J. Innovative ground measurements1033

Several innovative ground measurement techniques offer new insight into vegetation dynamics,1034

specifically biomass accumulation and vegetation water content variations, i.e. GPS-IR [288]–1035

[290], wireless networks [291], and COSMOS [292], [293]. These ground-based sensors yield1036

indirect, though continuous estimates of VWC and biomass which could fill the gaps between1037

less frequent destructive sampling. Data from these new sensors with conventional measurements1038

of plant architecture and moisture profile could be combined with continuous tower-based1039

scatterometry to study sub-daily variations in backscatter and to develop new models that account1040

for variations at scales not considered in the current formulation of the Water Cloud Model.1041

VI. CONCLUSIONS1042

Ground-based and aircraft-based experiments have been central to our understanding of backscat-1043

ter from vegetation and how it depends on system parameters (frequency, polarization, incidence1044

and azimuth angle) and surface characteristics (soil moisture and roughness, vegetation moisture1045

and geometry). They have also played a crucial role in the development and validation of1046

models and decomposition methods. This has enabled the development of radar as a tool1047

for agricultural applications, particularly crop classification, crop growth monitoring and soil1048

moisture monitoring.1049
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Though spaceborne scatterometry has been used to monitor vegetation phenology at regional1050

scales, field scale classification and crop monitoring has primarily exploited spaceborne SAR due1051

to its fine resolution. Limited coverage, until now, has hindered widespread operational use. The1052

rather long revisit time of SAR missions to date has limited their use for soil moisture monitoring.1053

Despite their coarse resolution, soil moisture products from the ERS 1/2 wind scatterometer1054

and ASCAT on MetOp have become a data cornerstone in hydrological and climate studies.1055

Recent advances in both SAR and scatterometry demand improved representation of vegetation1056

dynamics.1057

The recent launch of the Sentinel-1 satellites and the upcoming Radarsat Constellation mean1058

that C-band SAR observations will be available with unprecedented revisit time opening the1059

possibility of observing vegetation dynamics at a finer temporal scale than ever before. At1060

the same time, several studies using spaceborne scatterometry data (C-band and K-band) have1061

revealed that backscatter is sensitive to vegetation water content variations and in particular to1062

water stress. These developments demand the ability to understand and simulate scattering from1063

vegetation at finer temporal scales than ever before.1064

To ensure that we can exploit both SAR and scatterometry data to its full potential, we need to1065

develop models that consider vegetation as a dynamic scattering medium rather than a medium1066

that changes slowly over the growing season. Being able to quantify the influence of water1067

dynamics on backscatter could lead to improved soil moisture retrievals, and reduce uncertainty1068

in crop classification and monitoring applications. It would also stimulate the development of1069

regional scale water stress monitoring based on spaceborne scatterometry. Innovative methods1070

like GPS-IR and radar tomography can play a vital role in characterizing the dynamics of1071

the moisture distribution. Coupling these with ground-based scatterometry experiments would1072

provide a detailed and rich dataset with which to revisit the modeling of backscatter of vegetation.1073

Improvements in current applications and the development of emerging applications will facilitate1074

the exploitation of the new generation of SAR satellites, and the continued exploitation of the1075

historic and operational data record from spaceborne scatterometry.1076
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