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This paper presents a survey of maximal inequalities
for stochastic convolutions in 2-smooth Banach
spaces and their applications to stochastic evolution
equations.

This article is part of the theme issue ‘Semigroup
applications everywhere’.

1. Introduction
This paper presents an overview of maximal inequalities
for Banach space-valued stochastic processes (ut)t∈[0,T] of
the form

ut =
∫ t

0
S(t, s)gs dWs, t ∈ [0, T], (1.1)

where (S(t, s))0≤s≤t≤T is a strongly continuous evolution
family acting on a Banach space X, (Wt)t∈[0,T] is a
(cylindrical) Brownian motion defined on a probability
space Ω , and (gt)t∈[0,T] is a stochastic process taking
values in X (in the case of a Brownian motion (Wt)t∈[0,T])
or in a space of operators acting from H to X (in the
case of a cylindrical Brownian motion whose covariance
is given by the inner product of a Hilbert space
H), defined on the same probability space Ω . The
stochastic integral in (1.1) is the Banach space-valued
extension of the classical Itô stochastic integral. In the
important special case S(t, s) = S(t − s) arising from a one-
parameter semigroup of operators (S(t))t≥0, the stochastic
integral (1.1) takes the form of a stochastic convolution.
This justifies our slight abuse of terminology to also
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refer to (1.1) as a stochastic convolution. In addition to reviewing the literature on this topic, some
new contributions are included as well.

Under a maximal inequality for (ut)t∈[0,T], we understand a bound on the random variable

u�(ω) = sup
t∈[0,T]

‖ut(ω)‖, ω ∈Ω .

Maximal inequalities are important in the theory of stochastic evolution equations, where the
mild solution of the time-dependent inhomogeneous stochastic evolution equation{

dut = A(t)ut dt + gt dWt, t ∈ [0, T],

u0 = 0,

is of the form (1.1) provided one assumes that the operator family (A(t))t∈[0,T] generates the
evolution family (S(t, s))0≤s≤t≤T in a suitable sense. The availability of a maximal inequality in
this setting typically implies that the solution process (ut)t∈[0,T] has a continuous version.

In the present paper, we limit ourselves to maximal estimates of the Burkholder type, where
u� is estimated in terms of a square function norm analogous to the one occurring in the classical
Burkholder maximal inequality for continuous-time martingales. Different techniques to obtain
pathwise continuous solutions, such as developed in [1,2], will not be discussed here.

At present, two theories of Itô stochastic calculus in Banach spaces are available: for 2-smooth
Banach spaces [3] and for UMD Banach spaces [4,5]. Both approaches are surveyed in [6]. Each
of the two approaches has its advantages and disadvantages. The construction of the stochastic
integral in 2-smooth Banach spaces is fairly elementary and its use in the theory of stochastic
evolution equations is straightforward, but its applicability covers only half of the Lp-scale
(namely the exponents 2 ≤ p<∞) [7,8]. It replaces the basic Itô isometry with a one-sided estimate
which necessarily entails some loss in precision. This manifests itself in questions relating to
maximal regularity, which cannot be fully treated with this theory. The stochastic integral in UMD
Banach spaces covers the full reflexive Lp-scale (exponents 1< p<∞) and leads to two-sided
estimates for the stochastic integrals, but due to the more subtle form of the expressions involved
it requires some constraints on the properties of the stochastic processes under consideration.
In practice, this entails that the theory can be applied effectively to evolution equations in the
parabolic setting only, but in that setting a full-fledged maximal regularity theory is available
[9–12]. The 2-smooth theory is applicable beyond the parabolic setting and covers the case of
arbitrary C0-evolution families.

In order to keep this paper at a reasonable length, we will exclusively deal with maximal
estimates in the 2-smooth setting. Maximal estimates for stochastic convolutions in 2-smooth
Banach spaces are useful in applications to stochastic partial differential equations. Typically, one
takes X to be Lp, the Bessel potential space Hs,p, or the Besov space Bs

p,q; as will be explained in
example 2.1 these spaces are 2-smooth if 2 ≤ p, q<∞. Maximal estimates in the setting of UMD
spaces are covered in [13] and the follow-up works [10,11]. Maximal inequalities for stochastic
convolutions in 2-smooth Banach spaces with respect to other noise processes than (cylindrical)
Brownian motions, such as Poissonian noise, are discussed in [14–16] and the references therein;
see also survey [17] for the Hilbertian case.

An important motivation to study stochastic partial differential equations in the setting of
2-smooth Banach spaces comes from the fact that estimates in Sobolev and Besov spaces with
high integrability exponent p (which are 2-smooth) can be combined with Sobolev embedding
results to obtain further integrability and regularity properties of solutions. This plays a key role
in many papers (see [8,9] and references therein).

2. Preliminaries
We assume familiarity with the basic notions of probability theory and stochastic analysis.
This preliminary section fixes notation following the references [6,18,19] where unexplained
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terminology can be found. All random variables and stochastic processes are assumed to be
defined on a probability space (Ω , F , P) which we fix once and for all. We work over the real
scalar field.

(a) Stochastic preliminaries
When X is a Banach space, an X-valued random variable is a strongly measurable function φ :
Ω → X, i.e. a function that can be approximated P-almost surely by a sequence of F -measurable
simple functions with values in X. The adjective ‘X-valued’ will usually be omitted; depending on
the context, random variables can be real- or vector-valued. The expected value of an integrable
random variable φ is denoted by Eφ = ∫

Ω φ dP. For 0< p ≤ ∞, we denote by Lp(Ω ; X) the (quasi-)
Banach space of strongly measurable functions φ :Ω → X such that E‖φ‖p <∞, with the usual
adjustment for p = ∞, and by L0(Ω ; X) the space of all strongly measurable functions φ :Ω → X
endowed with the metric topology induced by convergence in measure. In dealing with elements
of these spaces, it is always understood that we identify random variables that equal almost
surely. When 0 ≤ p ≤ ∞ and G is a sub-σ -algebra of F , we denote by Lp(Ω , G ; X) the closed
subspace of Lp(Ω ; X) of all elements that are strongly measurable as random variables defined
on (Ω , G , P|G ). The conditional expectation of a random variable φ given G is denoted by EG (φ)
or E(φ|G ).

A filtration is a family (Ft)t∈[0,T] of sub-σ -algebras of F such that Fs ⊆ Ft whenever s ≤ t.
A process is a family of X-valued random variables (φt)t∈[0,T]. It is called adapted if for every t ∈
[0, T] the random variable φt is strongly measurable as a random variable on (Ω , Ft, P|Ft ). A
process φ is called a martingale if E(φt|Fs) = φs almost surely whenever s ≤ t. Discrete filtrations
and martingales are defined similarly, replacing the index set [0, T] by a finite set {0, 1, . . . , N}.

The progressive σ -algebra on [0, T] ×Ω is the σ -algebra P generated by sets of the form B × F
with B ∈ B([0, t]) and F ∈ Ft, where t ranges over [0, T]. A process φ is said to be progressively
measurable if it is strongly measurable with respect to P . Two processes φ,ψ are called versions
of each other if for every t ∈ [0, T] we have φt =ψt almost surely; the exceptional set is allowed
to depend on t. A process φ is said to have a continuous version if it has a pathwise continuous
version ψ , i.e. a version such that for all ω ∈Ω the path t 	→ψt(ω) is continuous.

Next, we extend the notion of a Hilbert–Schmidt operator to the Banach space setting. The
reader is referred to [19, ch. 9] and [20] for systematic treatments. Let H be a Hilbert space and X
be a Banach space. The space of finite rank operators from H into X is denoted by H ⊗ X. For a
finite rank operator R ∈ H ⊗ X, say R =∑N

n=1 hn ⊗ xn with (hn)N
n=1 orthonormal in H and (xn)N

n=1
a sequence in X (we can always represent R in this way by a Gram–Schmidt orthogonalization
argument), we define

‖R‖2
γ (H ,X) = E

∥∥∥∥∥
N∑

n=1

γnxn

∥∥∥∥∥
2

,

where (γn)N
n=1 is a sequence of independent standard Gaussian random variables. The norm

‖ · ‖γ (H ,X) is well defined, and the completion of H ⊗ X with respect to this norm is denoted
by γ (H , X). The natural inclusion mapping H ⊗ X ⊆ L (H , X) extends to an injective and
contractive inclusion mapping γ (H , X) ⊆ L (H , X). A linear operator in L (H , X) is said to be γ -
radonifying if it belongs to γ (H , X). For Hilbert spaces X, the identity mapping on H ⊗ X extends
to an isometrical isomorphism

γ (H , X) � L2(H , X),

where L2(H , X) is the space of Hilbert–Schmidt operators from H to X. Another important
instance where an explicit identification is available is the case X = Lp(S; Y) with (S, A ,μ) a
measure space, 1 ≤ p<∞, and Y a Banach space; the mapping h ⊗ (f ⊗ y) 	→ f ⊗ (h ⊗ y) sets up
an isomorphism of Banach spaces

γ (H , Lp(S; Y)) � Lp(S; γ (H , Y)).
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(b) 2-Smooth Banach spaces
A Banach space X is called (p, D)-smooth, where p ∈ [1, 2] and D ≥ 0 is a constant, if for all x, y ∈ X,
we have

‖x + y‖p + ‖x − y‖p ≤ 2‖x‖p + 2Dp‖y‖p. (2.1)

A Banach space is called p-smooth if it is (p, D)-smooth for some D ≥ 0. The case x = 0 demonstrates
that the constant in (2.1) necessarily satisfies D ≥ 1. For p = 2, the defining condition is a
generalized parallelogram identity.

Example 2.1. Here are some examples of 2-smooth Banach spaces:

— Every Hilbert space is 2-smooth (with D = 1, by the parallelogram identity).
— The space Lp(μ) is 2-smooth if and only if 2 ≤ p<∞ (and in that case we may take D =√

p − 1, see [21, Proposition 2.1]). More generally, the space Lp(μ; X) is 2-smooth if and
only if X is 2-smooth and 2 ≤ p<∞ (in that case, if X is (2, D)-smooth, then Lp(μ; X) is(
2, D

√
p − 1

)
-smooth [22]; for an earlier result in this direction, see [23]).

— For any s ∈ R, the Bessel potential space Hs,p(Rd) is 2-smooth if and only if 2 ≤
p<∞ (

and in that case we may take D =√
p − 1

)
. Indeed, this space is isometrically

isomorphic to Lp(Rd), the isometry being given by the Fourier multiplier (1 + |ξ |2)s/2.
— For any s ∈ R, the Besov space Bs

p,q(Rd) (equipped with its Littlewood–Paley norm) is
2-smooth if and only if 2 ≤ p, q<∞ (

and in that case we may take D =√
(p − 1)(q − 1)

)
.

Indeed, with this norm, Littlewood–Paley theory identifies Bs
p,q(Rd) isometrically with a

closed subspace of 
p(Lq(Rd)). Analogous considerations apply to the Triebel–Lizorkin
spaces Fs

p,q(Rd), and for both scales the results extend to more general open domains O ⊆
R

d (with the same constant D if one uses the quotient norm of [24, Section 4.2.1]).
— For any k ∈ N, the Sobolev space Wk,p(O) is 2-smooth if and only if 2 ≤ p<∞ (and in that

case we may take D =√
p − 1 if we use the norm ‖f‖p

Wk,p(O) =∑
|α|≤k ‖∂α f‖p

p).
— The Schatten trace ideal Cp is 2-smooth if and only if 2 ≤ p<∞ (and in that case we may

take D =√
p − 1, see [25]).

A Banach space X is said to have martingale type p ∈ [1, 2] if there exists a constant C ≥ 0 such
that

E‖fN‖p ≤ Cp

(
E‖f0‖p +

N∑
n=1

‖fn − fn−1‖p

)
, (2.2)

for all X-valued Lp-martingales (fn)N
n=0. The case N = 0 demonstrates that the constant in (2.2)

necessarily satisfies C ≥ 1. It is a fundamental result due to Pisier [26] (see also [27–29]) that,
for any p ∈ [1, 2], up to equivalence of norms, a Banach space is p-smooth if and only if it has
martingale type p. The advantage of p-smoothness over martingale type p is that the former is
an isometric condition, whereas the latter is isomorphic. We will encounter various maximal
inequalities for semigroups or evolution families of contractions acting on 2-smooth Banach
spaces. Such results cannot be expected to have a counterpart in martingale type 2-spaces,
unless they hold more generally for uniformly bounded C0-semigroups, the point being that
contractivity is typically not preserved under passing to equivalent norms.

3. Maximal inequalities for indefinite stochastic integrals
Let H be a Hilbert space with inner product (·|·). An H -isonormal process is a mapping W : H →
L2(Ω) with the following two properties:

(i) for all h ∈ H the random variable Wh is Gaussian;
(ii) for all h1, h2 ∈ H we have E(Wh1 · Wh2) = (h1|h2).
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For h = 0, we interpret W0 as the Dirac measure concentrated at 0. From (ii), it easily follows that
H -isonormal processes are linear, and this in turn implies that for all h1, . . . , hN ∈ H the R

N-
valued random variable (Wh1, . . . , WhN) is jointly Gaussian, i.e., (Wh)h∈H is a Gaussian process;
see [30] for the details.

If W is an L2(0, T)-isonormal process, the process (W1(0,t))t∈[0,T] is a standard Brownian motion.
This prompts us to define, for a Hilbert space H, a cylindrical H-Brownian motion as an L2(0, T; H)-
isonormal process. In what follows the Hilbert space H will be considered to be fixed and we will
consider a fixed cylindrical H-Brownian motion W. Following standard usage in the literature we
will write

Wth := W(1(0,t) ⊗ h), t ∈ [0, T], h ∈ H.

For each h ∈ H, (Wth)t∈[0,T] is a Brownian motion, which is standard if and only if h has norm one;
two such Brownian motions corresponding to h1, h2 ∈ H are independent if and only if h1 and h2
are orthogonal. A cylindrical H-Brownian motion W is said to be adapted to a given filtration
(Ft)t∈[0,T] on (Ω , F , P) if Wth ∈ L2(Ω , Ft) for all t ∈ [0, T] and h ∈ H. In what follows, we will
always assume that a filtration has been fixed and that W is adapted to it.

A stochastic process Φ : [0, T] ×Ω → γ (H, X) is called an adapted finite rank step process if there
exist 0 = s0 < s1 < · · ·< sn = T, random variables ξij ∈ L∞(Ω , Fsj−1 ) ⊗ X (the subspace of L∞(Ω ; X)
of strongly Fsj−1 -measurable random variables taking values in a finite-dimensional subspace of
X) for i = 1, . . . , m and j = 1, . . . , n, and an orthonormal system h1, . . . , hm in H such that

Φ =
n∑

j=1

1(sj−1,sj] ⊗
m∑

i=1

hi ⊗ ξij.

The stochastic integral process associated with Φ is then defined by
∫ t

0
Φs dWs :=

n∑
j=1

m∑
i=1

(Wsj∧t − Wsj−1∧t)hi ⊗ ξij, t ∈ [0, T].

Since s 	→ Wsh, being a Brownian motion, has a continuous version, it follows that the process
t 	→ ∫t

0Φs dWs has a continuous version. Such versions will always be used in the sequel.
The following elementary upper bound for the stochastic integral of X-valued elementary

adapted processes with respect to the cylindrical Brownian motion W, due to Neidhardt [3],
extends the Itô isometry to 2-smooth Banach spaces. It is important to note that the proposition
only provides an upper bound. It can be shown that this upper bound is an equivalence of norms
if and only if X is isomorphic to a Hilbert space [6]. Indeed, it is this one-sidedness of the bound
which constitutes the main limitation of the Itô stochastic integral in 2-smooth Banach spaces
compared to its competitor for UMD Banach spaces.

Proposition 3.1 (Neidhardt). Let X be a (2, D)-smooth Banach space. Then, for all adapted finite rank
step processes Φ : [0, T] ×Ω → γ (H, X),

E

∥∥∥∥∥
∫T

0
Φt dWt

∥∥∥∥∥
2

≤ D2‖Φ‖2
L2(Ω ;L2(0,T;γ (H,X))).

Since the adapted finite rank step processes are dense in the closed subspace
L2

P (Ω ; L2(0, T; γ (H, X))) of all progressively measurable processes in L2(Ω ; L2(0, T; γ (H, X))), the
estimate of Proposition 3.1 permits the extension of the stochastic integral to processes Φ ∈
L2

P (Ω ; L2(0, T; γ (H, X))). By Doob’s maximal inequality the resulting stochastic integral process
t 	→ ∫t

0Φs dWs has a continuous version which satisfies the maximal estimate

E sup
t∈[0,T]

∥∥∥∥∫ t

0
Φs dWs

∥∥∥∥2

≤ 4D2‖Φ‖2
L2(Ω ;L2(0,T;γ (H,X))). (3.1)

By a standard localization argument the mapping Φ 	→ ∫·
0Φs dWs can be further extended to

a continuous mapping from L0
P (Ω ; L2(0, T; γ (H, X))) into L0(Ω ; C[0, T]; X)). Here, and in other
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instances below, the subscript P designates the closed subspace of all progressively measurable
process in a given space of processes.

In the scalar-valued setting, it is a classical result of Burkholder, with later refinements by
Davis and Gundy, that the maximal inequality (3.1) admits an extension with L2-norms over Ω
replaced by Lp-norms with constants of order O(

√
p) as p → ∞. The problem of extending the

Burkholder–Davis–Gundy inequality to 2-smooth Banach spaces has been considered by many
authors [7,8,31–34]. The optimal asymptotic dependence of the constant in these inequalities for
p → ∞ was first obtained by Seidler [35], who proved the following result.

Theorem 3.2 (Seidler). Let X be a (2, D)-smooth Banach space and let 0< p<∞. For all Φ ∈
Lp

P (Ω ; L2(0, T; γ (H, X))), the process (
∫t

0Φs dWs)t∈[0,T] has a continuous version which satisfies

E sup
t∈[0,T]

∥∥∥∥∫ t

0
Φs dWs

∥∥∥∥p

≤ Cp
p,D‖Φ‖p

Lp(Ω ;L2(0,T;γ (H,X))),

where Cp,D is a constant only depending on p and D. For 2 ≤ p<∞, one may take Cp,D = CD
√

p, where
CD is a constant only depending on D.

The proof is based on an extension to 2-smooth Banach spaces of the classical Burkholder–
Rosenthal inequality due to Pinelis [21]. Tracking and optimizing constants in this reference one
finds that the choice CD = 10D will do (see [22] for the details).

4. Maximal inequalities for stochastic convolutions
A family (S(t, s))0≤s≤t≤T of bounded linear operators on a Banach space X is called a C0-evolution
family indexed by [0, T] if the following conditions are satisfied:

(1) S(t, t) = I for all t ∈ [0, T];
(2) S(t, r) = S(t, s)S(s, r) for all 0 ≤ r ≤ s ≤ t ≤ T;
(3) the mapping (t, s) → S(t, s) is strongly continuous on the set {0 ≤ s ≤ t ≤ T}.

Under the assumption that X is (2, D)-smooth, for processes g ∈ L0
P (Ω ; L2(0, T; γ (H, X))), we

consider the stochastic convolution process (ut)t∈[0,T] defined by

ut :=
∫ t

0
S(t, s)gs dWs, t ∈ [0, T].

As explained in the Introduction, the nomenclature ‘stochastic convolution’ is justified by the
important special case where the evolution family arises from a semigroup of operators.

The remainder of this paper is dedicated to surveying the following two problems:

— to find conditions guaranteeing that u has a continuous version which satisfies the
Burkholder type Lp-maximal inequality

E sup
t∈[0,T]

‖ut‖p ≤ Cp
p,X‖g‖p

Lp(Ω ;L2(0,T;γ (H,X))); (4.1)

— if this is the case, to determine whether the constant Cp,X is of order O(
√

p) as p → ∞.

In (4.1) and in the rest of the paper, we do not distinguish notationally between u and its
continuous version. The right-hand side of (4.1) is motivated by Theorem 3.2, which gives (4.1) in
the special case of the trivial family S(t, s) ≡ I with O(

√
p) dependence of the constant as p → ∞.

A number of general remarks can be made at this point.

Remark 4.1. In many applications, the evolution family is generated by a family (A(t))t∈[0,T]
of closed operators on X, in the sense made precise in §5b. In this case, the process u can be
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interpreted as the mild solution to the stochastic differential equation

dut = A(t)ut dt + gt dWt, u(0) = 0. (4.2)

If u is a strong solution of (4.2), i.e. if for all t ∈ [0, T] one has that t 	→ A(t)ut belongs to L1(0, t; X)
almost surely and

ut =
∫ t

0
A(s)us ds +

∫ t

0
gs dWs almost surely, (4.3)

(by the stochastic Fubini theorem this happens, e.g. when ut is D(A(t))-valued and both u and Au
belong to L0

P (Ω ; L1(0, T; X))), then it is easy to see that u has a continuous version, namely the
process defined by the right-hand side of (4.3) once a continuous version of the stochastic integral∫t

0 gs dWs has been selected.

Remark 4.2. If u has a version satisfying (4.1) for all g ∈ Lp
P (Ω ; Lq(0, T; γ (H, X))), for certain

fixed 0< p<∞ and 1 ≤ q ≤ ∞, a standard localization argument shows that for all g ∈
L0

P (Ω ; Lq(0, T; γ (H, X))) the process u has a continuous version. Moreover, an application of
Lenglart’s inequality [36, Proposition IV.4.7] implies that (4.1) (with p replaced by r) extends to
all exponents 0< r ≤ p.

For general C0-evolution families, and even for C0-semigroups, the problem of proving the
existence of a continuous version is open even when X is a Hilbert space. In §4a and 4b, we will
discuss two techniques to approach this problem: the factorization method of Da Prato, Kwapień
and Zabczyk, and the dilation method of Hausenblas and Seidler. Both methods also lead to
maximal inequalities. In the case of the factorization method, this inequality is weaker than (4.1);
the dilation method gives (4.1) with optimal asymptotic dependence of the constant. In §5, we
will see that for C0-evolution families of contractions, a continuous version always exists and (4.1)
holds with optimal asymptotic dependence of the constant.

One of the reasons for insisting on asymptotic O(
√

p)-dependence of the constant is that it
implies Gaussian tail estimates. This is an immediate consequence of the special case α= 2 of the
following elementary lemma.

Lemma 4.3. Let ξ be a non-negative random variable and suppose there exist α > 0 and C ≥ 1 such that
Eξp ≤ Cppp/α for all p ≥ α. Then setting σ 2 = eCα one has

P(ξ ≥ r) ≤ 3 exp(−rα/(ασ 2)), r> 0.

Proof. By Markov’s inequality, P(ξ ≥ r) ≤ r−p
Eξp ≤ (C/r)ppp/α . If e−1(r/C)α ≥ α, we can set p =

e−1(r/C)α to obtain P(ξ ≥ r) ≤ e−p/α = exp(−rα/(ασ 2)). If e−1(r/C)α < α, then P(ξ ≥ r) ≤ 1 ≤ 3 e−1 ≤
3 exp(−rα/(ασ 2)). �

Indeed, applying the lemma to ξ = supt∈[0,T] ‖ ∫t
0 S(t, s)gs dWs‖ and α = 2, we obtain the

following general result:

Corollary 4.4. Let (S(t, s))0≤s≤t≤T be a C0-evolution family of contractions on a (2, D)-smooth Banach
space X and let g ∈ L∞

P (Ω ; Lq(0, T; γ (H, X))) with 1 ≤ q ≤ ∞. If the maximal inequality

E sup
t∈[0,T]

∥∥∥∥∫ t

0
S(t, s)gs dWs

∥∥∥∥p

≤ Cp (√p
)p ‖g‖p

L∞(Ω ;Lq(0,T;γ (H,X))),

holds for all 2 ≤ p<∞, where C is a constant independent of p, then the process (
∫t

0 S(t, s)gs dWs)t∈[0,T]
has a continuous version which satisfies the Gaussian tail estimate

P

(
sup

t∈[0,T]

∥∥∥∥∫ t

0
S(t, s)gs dWs

∥∥∥∥≥ r

)
≤ 2 exp

(
− r2

2σ 2

)
, r> 0,

where σ 2 = eC2‖g‖2
L∞(Ω ;Lq(0,T;γ (H,X))).

This method of getting Gaussian tail estimates gives rather poor bounds on the variance. In §5,
we will discuss another method which, when applied to Theorem 5.2, gives a bound that is close
to being optimal.
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(a) The factorization method
The so-called factorization method was introduced by Da Prato, Kwapień and Zabczyk [37]
to prove the existence of a continuous version for stochastic convolutions with C0-semigroups
defined on a Hilbert space and was extended to C0-evolution families by Seidler [38]. It is based
on the formula ∫ t

r
(t − s)α−1(s − r)−α ds = π

sin(πα)
,

from which one deduces the following identity, valid for 0<α < 1/2:

π

sinπα

∫ t

0
S(t, s)gs dWs =

∫ t

0
(t − s)α−1S(t, s)

(∫ s

0
(s − r)−αS(s, r)gr dWr

)
dr.

For 2< p<∞ and 1
p <α <

1
2 , the process Rα(s) := ∫s

0(s − r)−αS(s, r)gr dWr belongs to
Lp(0, T; Lp(Ω ; X)), which we identify with Lp(Ω ; Lp(0, T; X)), and then use the fact that the mapping
Rα 	→ ∫t

0(t − s)α−1S(t, s)Rα(s) ds maps the latter space into Lp(Ω ; C([0, T]; X)). Mutatis mutandis this
method extends to the more general setting of 2-smooth Banach spaces. By bookkeeping the norm
estimates and tracking constants, and performing a standard localization argument, the following
result is obtained.

Theorem 4.5 (Factorization method). Let (S(t, s))0≤s≤t≤T be a C0-evolution family on a
(2, D)-smooth Banach space X and let 2< q<∞. For all g ∈ L0

P (Ω ; Lq(0, T; γ (H, X))), the process
(
∫t

0 S(t, s)gs dWs)t∈[0,T] has a continuous version. For g ∈ Lp
P (Ω ; Lq(0, T; γ (H, X))) with 0< p ≤ q, this

version satisfies

E sup
t∈[0,T]

∥∥∥∥∫ t

0
S(t, s)gs dWs

∥∥∥∥p

≤ Cp
p,q,D,TMp‖g‖p

Lp(Ω ;Lq(0,T;γ (H,X))),

where M = sup0≤s≤t≤T ‖S(t, s)‖. For p = q, one may take Cp,p,D,T = DKp
√

pT
1
2 − 1

p with lim supp→∞
Kp <∞.

It is important to observe that the estimate is phrased in terms of the norm of
Lp(Ω ; Lq(0, T; γ (H, X))), rather than Lp(Ω ; L2(0, T; γ (H, X))) as in the Burkholder type estimate
(4.1). On the other hand, in contrast to the results of §5 where contractivity is required,
Theorem 4.5 is applicable to arbitrary C0-evolution families.

(b) The dilation method
In this subsection, we discuss an abstract version of a dilation technique due to the Hausenblas
and Seidler [14,39]. In their original formulation for C0-contraction semigroups on Hilbert spaces,
the key idea is to use the Sz.-Nagy dilation theorem [40] to dilate the semigroup to a unitary
C0-group (U(t))t∈R on a larger Hilbert space. Extending g to this larger Hilbert space as well and
using the group property to write

∫ t

0
U(t − s)gs dWs = U(t)

∫ t

0
U(−s)gs dWs,

the stochastic integral on right-hand side can be estimated by means of Theorem 3.2, or rather, its
special case for Hilbert spaces X. This then gives the result. Still in the setting of Hilbert spaces
X, the method can be extended mutatis mutandis to the situation where g dW is replaced by dM,
where M is an arbitrary X-valued continuous local martingale.

There is no obvious way to extend the Hausenblas–Seidler argument to general C0-semigroups
or to C0-evolution families. Moreover, the Sz.-Nagy dilation theorem is a Hilbert space theorem.
To overcome both problems, the next definition introduces an abstract dilation framework.
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Definition 4.6. A C0-evolution family (S(t, s))0≤s≤t≤T on a Banach space X is said to:

(1) admit an invertible dilation on the Banach space Y, if there exist strongly continuous functions
J : [0, T] → L (X, Y) and Q : [0, T] → L (Y, X) such that

S(t, s) = Q(t)J(s) for all 0 ≤ s ≤ t ≤ T.

(2) admit an approximate invertible dilation on the sequence of Banach spaces (Yn)n≥1, if there exist
strongly continuous functions Jn : [0, T] → L (X, Yn) and Qn : [0, T] → L (Yn, X) such that
supn≥1 supt∈[0,T] ‖Jn(t)‖<∞, supn≥1 supt∈[0,T] ‖Qn(t)‖<∞, and

S(t, s)x = lim
n→∞ Qn(t)Jn(s)x for all 0 ≤ s ≤ t ≤ T and x ∈ X.

Example 4.7. A sufficient condition for the existence of an invertible dilation is that every
operator S(t, s) be invertible, in which case we can take Y = X, Q(t) = S(t, 0), and J(s) = S(s, 0)−1.

Example 4.8. A C0-semigroup (S(t))t≥0 is said to dilate to a C0-group if there exist a C0-group
(U(t))t∈R on a Banach space Y and bounded operators J ∈ L (X, Y) and Q ∈ L (Y, X) such that S(t) =
QU(t)J for all t ≥ 0. In this case, the operators Q(t) := QU(t) and J(s) := U(−s)J define an invertible
dilation in the sense of definition 4.6. In cases of interest, it is often possible to construct group
dilations which preserve certain features of interest:

— If (S(t))t≥0 is a C0-semigroup of contractions on a Hilbert space X, then a unitary group
dilation exists on a Hilbert space Y. This is the content of the Sz.-Nagy dilation theorem.

— If (S(t))t≥0 is a C0-semigroup of positive contractions on an Lp-space with 1< p<∞, then
a group dilation of positive contractions exists on another Lp-space. This is the content of
Fendler’s theorem [41].

— If the negative generator −A has a bounded H∞-calculus on of angle< 1
2π on any Banach

space X, then a group dilation exists on the Banach space γ (L2(R), X). This result is
essentially due to [42] and stated in its present form in [27]. If X is 2-smooth, then so
is γ (L2(R), X).

Further dilation results can be found in [43–45]. As far as we know, no extensions of these
results are known for evolution families. We also do not know whether every C0-semigroup has
an (approximate) invertible dilation in the sense of definition 4.6, or whether in the cases that such
a dilation exists there also exists a group dilation. Here, it is important that the space Y should
enjoy similar geometric properties to X, such as Hilbertianity, 2-smoothness, or UMD.

Example 4.9. We now give an example where an approximate dilation can be constructed.
Let X and X1 be Hilbert spaces, with X1 continuously and densely embedded in X, and let A ∈
C([0, T]; L (X1, X)) be such that there exist constants c> 0 and C ≥ 0 such that

c‖x‖X1 ≤ ‖x‖X + ‖A(t)x‖X ≤ C‖x‖X1 , t ∈ [0, T], x ∈ X1.

Suppose further that for all t ∈ [0, T] the operator A(t) generates a C0-contraction semigroup
(St(s))s≥0 and that for all s0, s1, , t0, t1 ∈ [0, T] the operators St0 (s0) and St1 (s1) and their adjoints
commute. Then A generates a C0-evolution family (S(t, s))0≤s≤t≤T of contractions on X in the sense
of [46, Theorem 5.3.1] or [47, Theorem 4.4.1].

Setting tn
k = kT/n and In

k = [tn
k , tn

k+1) (with endpoint included if k = n − 1), from the proof of the
theorems just cited one infers S(t, s)x = limn→∞ Sn(t, s)x for all 0 ≤ s ≤ t ≤ T and x ∈ X, where

Sn(t, s) =
{

Stn
k (t − s), if s, t ∈ In

k ;

Stn

 (t − tn


 )
(∏
−1

j=k+1 Stn
j (T/n)

)
Stn

k (s − tn
k ), if s ∈ In

k and t ∈ In

 with k ≤ 
.

It is easy to check that (Sn(t, s))0≤s≤t≤T is a C0-evolution family of contractions. By the assumption
that the contraction semigroups (St(s))s≥0 commute among themselves and with their adjoints, it
follows from [40, Proposition 9.2] that there exist a Hilbert space Y and contractions J ∈ L (X, Y)
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and Q ∈ L (Y, X), as well as commuting isometric C0-groups (Ut(s))s∈R on Y such that for all
s1, . . . , sn and t1, . . . , tn ∈ [0, T] we have

St1 (s1) . . .Stn (sn) = QUt1 (s1) . . .Utn (sn)J. (4.4)

For 0 ≤ s ≤ t ≤ T, we define the operators Un(t, s) by

Un(t, s) :=
{

Utn
k (t − s), if s, t ∈ In

k ;

Utn

 (t − tn


 )
(∏
−1

j=k+1 Utn
j (T/n)

)
Utn

k (s − tn
k ), if s ∈ In

k and t ∈ In

 with k ≤ 
.

Then (Un(t, s)0≤s≤t≤T is C0-evolution family of invertible operators, and by (4.4) we have

Sn(t, s) = QUn(t, s)J, 0 ≤ s ≤ t ≤ T.

It follows that there exists an approximate invertible dilation given by Qn(t) = QUn(t, 0) and
Jn(s) = Un(s, 0)−1J.

The next theorem extends the Hausenblas–Seidler dilation theorem to evolution families
on 2-smooth Banach spaces. By example 4.8, it is applicable to C0-semigroups on 2-smooth
Banach spaces whose negative generator has a bounded H∞-calculus of angle < 1

2π . The
resulting maximal inequality, with O(

√
p) dependence of the constant as p → ∞, was obtained

independently in [13,35]. Some of the maximal estimates in the latter paper are valid for a class of
processes strictly larger than L0

P (Ω ; L2(0, T; γ (H, X))), but with best-known constant of order O(p)
instead of O(

√
p).

Theorem 4.10 (Dilation). Let (S(t, s))0≤s≤t≤T be a C0-evolution family on a (2, D)-smooth Banach
space X which admits an approximate invertible dilation on a sequence of (2, D)-smooth Banach spaces
(Yn)n≥1. For all 0< p<∞ and g ∈ Lp

P (Ω ; L2(0, T; γ (H, X))), the process (
∫t

0 S(t, s)gs dWs)t≥0 has a
continuous version which satisfies

E sup
t∈[0,T]

∥∥∥ ∫ t

0
S(t, s)gs dWs

∥∥∥p ≤ Cp
p,DCp

J Cp
Q‖g‖p

Lp(Ω ;L2(0,T;γ (H,X))),

where CJ = supn≥1 supt∈[0,T] ‖Jn(t)‖ and CQ = supn≥1 supt∈[0,T] ‖Qn(t)‖. For 2 ≤ p<∞, one may take
Cp,D = 10D

√
p.

Proof. By Remark 4.2, it suffices to consider the case 2 ≤ p<∞, and by a limiting argument it
even suffices to consider the case 2< p<∞.

Let us first assume that g ∈ Lp
P (Ω ; Lp(0, T; γ (H, X))). For such processes, Theorem 4.5 implies

the existence of a continuous version. By monotone convergence, it suffices to prove the maximal
estimate with suprema taken over finite sets π ⊆ [0, T]. For t ∈ π , write

ut =
∫ t

0
S(t, s)gs dWs = lim

n→∞

∫ t

0
Qn(t)Jn(s)gs dWs = lim

n→∞ Qn(t)
∫ t

0
Jn(s)gs dWs,

where the limit is taken in Lp(Ω ; X) by dominated convergence. Using that π is finite, by taking
suitable subsequences we may assume the above limit holds pointwise on π ×Ω0, whereΩ0 ⊆Ω

is a measurable set with P(Ω0) = 1. Therefore, for all t ∈ π , pointwise on Ω0, we have

‖ut‖X ≤ CQ lim inf
n→∞

∥∥∥ ∫ t

0
Jn(s)gs dWs

∥∥∥
Yn

.
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Taking the supremum over t ∈ π , upon taking Lp(Ω)-norms, we obtain

E sup
t∈π

‖ut‖p ≤ Cp
QE sup

t∈π
lim inf
n→∞

∥∥∥ ∫ t

0
Jn(s)gs dWs

∥∥∥p

Yn

≤ Cp
QE lim inf

n→∞ sup
t∈π

∥∥∥ ∫ t

0
Jn(s)gs dWs

∥∥∥p

Yn

≤ Cp
Q lim inf

n→∞ E sup
t∈π

∥∥∥ ∫ t

0
Jn(s)gs dWs

∥∥∥p

Yn
by Fatou’s Lemma

≤ (10D
√

pCQ)p lim inf
n→∞ ‖Jng‖p

Lp(Ω ;L2(0,T;γ (H,Yn))) by Theorem 3.2

≤ (10D
√

pCJCQ)p‖g‖Lp(Ω ;L2(0,T;γ (H,X))).

This gives the result for processes g ∈ Lp
P (Ω ; Lp(0, T; γ (H, X))). The general case of processes g ∈

Lp
P (Ω ; L2(0, T; γ (H, X))) follows from it by approximation. �

Remarkably, the method of dilations has been used [48,49] to derive maximal inequalities also
for the case of stochastic Volterra equations on Hilbert spaces.

5. The contractive case
Up to this point, we have considered general C0-evolution families. In the present section, we take
a closer look at the special case of C0-evolution families of contractions. By a standard rescaling
argument, the results of this section extend to the situation where, for some λ≥ 0, one has

‖S(t, s)‖ ≤ eλ(t−s), 0 ≤ s ≤ t ≤ T.

An additional term eλT has then to be added on the right-hand side of the estimates.

(a) The main result
We begin with a general result on the existence of continuous versions. It extends a result
stated in [50] for Hilbert spaces and continuous square integrable martingales, to (2, D)-smooth
Banach spaces and Brownian motion. Replacing Hilbertian L2-estimates by [22, Lemma 2.2] and
Proposition 3.1, the original argument can be generalized and leads to the following result with
D4 instead of D2; an additional approximation argument permits the passage to D2.

Proposition 5.1. Let (S(t, s))0≤s≤t≤T be a C0-evolution family of contractions on a (2, D)-smooth
Banach space X. For all g ∈ L0

P (Ω ; L2(0, T; γ (H, X))), the process (
∫t

0 S(t, s)gs dWs)t∈[0,T] has a
continuous version. If g ∈ L2

P (Ω ; L2(0, T; γ (H, X))), then it satisfies the following tail estimate for all r> 0:

P

(
sup

t∈[0,T]

∥∥∥ ∫ t

0
S(t, s)gs dWs

∥∥∥≥ r

)
≤ D2

r2 ‖g‖2
L2(Ω ;L2(0,T;γ (H,X))).

By combining the discretization technique used in the proof of this proposition with a version
of a theorem of Pinelis [21] used in the proof of Theorem 3.2, the following Lp-maximal inequality
has been recently obtained in [22].

Theorem 5.2. Let (S(t, s))0≤s≤t≤T be a C0-evolution family of contractions on a (2, D)-smooth Banach
space X and let 0< p<∞. For all g ∈ Lp

P (Ω ; L2(0, T; γ (H, X))), the process (
∫t

0 S(t, s)gs dWs)t∈[0,T] has
a continuous version which satisfies

E sup
t∈[0,T]

∥∥∥ ∫ t

0
S(t, s)gs dWs

∥∥∥p ≤ Cp
p,D‖g‖p

Lp(Ω ;L2(0,T;γ (H,X))).

For 2 ≤ p<∞, one may take Cp,D = 10D
√

p.
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Theorem 5.2 is in some sense definitive, in that it applies to arbitrary C0-evolution families of
contractions and gives the correct order O(

√
p) of the constant; as such it is new even for Hilbert

spaces X. It is also new for C0-semigroups of contractions in 2-smooth Banach spaces.
Theorem 5.2 has a long history with contributions by many authors. Here, we will only review

the semigroup approach; L2-maximal inequalities for monotone stochastic evolution equations
with random coefficients in Hilbert spaces are older and go back to [51] and [52]. For an
exposition and further references to the literature the reader is referred to [53]. The first author
to use semigroup methods to derive L2-maximal inequalities is Kotelenez [50] who obtained
path continuity in the more general situation where term g dW is replaced by an arbitrary
continuous square integrable X-valued martingale. This paper also contains a weak type estimate
similar to the one of Proposition 5.1. Still for Hilbert spaces and p = 2, (4.1) was first proved in
[54,55] using Itô’s formula applied to the C2-function x 	→ ‖x‖2 under further assumptions on
the evolution family. For C0-contraction semigroups, these results were extended to exponents
2 ≤ p<∞ by Tubaro [56], who applied Itô’s formula to the mapping x 	→ ‖x‖p which for Hilbert is
twice continuously Fréchet differentiable. The extension to exponents 0< p< 2 was subsequently
obtained by Ichikawa [57]. Tubaro’s method of proof was revisited by Brzeźniak & Peszat [58],
who extended it to Banach spaces X with the property that for some 2 ≤ p<∞ the mapping x 	→
‖x‖p is twice continuously Fréchet differentiable and the first and second Fréchet derivatives are
bounded by constant multiples of ‖x‖p−1 and ‖x‖p−2, respectively. Spaces with this property are
2-smooth and include Lq(μ) for 2 ≤ q ≤ p<∞ and the Besov spaces Bs

q,r(R
d) for 2 ≤ q ≤ r ≤ p<∞.

In the converse direction, it is not true that all 2-smooth spaces satisfy the twice differentiability
condition; an abstract counterexample follows from [59, Theorem 3.9] (see also [60, Example 1.1]).
In the Besov scale, the twice differentiability condition is unclear if 2 ≤ r< q<∞, even though
the space Bs

q,r(R
d) is 2-smooth in that case, too. The approach based on Itô’s formula extends to

evolution families, but has the general drawback that it does not seem to give the optimal growth
rate O(

√
p) of the constant as expected from the Burkholder–Davis–Gundy inequalities as p → ∞.

As discussed in §4b, for C0-contraction semigroups on Hilbert spaces a new proof of the maximal
inequality for exponents 0< p<∞ giving growth of order O(

√
p) was obtained by Hausenblas &

Seidler [39].
The approach via Itô’s formula was once more revisited in [60], where it was finally extended

to arbitrary 2-smooth Banach spaces by exploiting the fact that, in such spaces, for 2 ≤ p<∞
the mapping x 	→ ‖x‖p is once continuously Fréchet differentiable with a Lipschitz continuous
derivative. As it turns out, this already suffices to prove a version of the Itô formula with the
help of which the argument can be completed. This approach, however, does not seem to give the
optimal p-dependence of the constant as p → ∞.

(b) The Itô formula approach revisited
The aim of the present subsection is to present the Itô formula approach to maximal estimates
for stochastic convolutions. In comparison with Theorem 5.2, it does not lead to new results (in
fact we need stronger assumptions on the evolution family and obtain non-optimal asymptotic
dependence of the constant), but this approach has the merit that it can be extended to
random C0-evolution families of contractions. To the best of our knowledge, for this setting no
maximal Lp-estimates of the form (4.1) in 2-smooth spaces are available in the literature. For
stochastic evolution equations with random coefficients in Hilbert spaces subject to monotonicity
conditions, L2-maximal inequalities go back to [51,52]; for an exposition and further reference see
[53]. Some extensions to the case p �= 2 have been obtained recently in [61].

In order to avoid technicalities that would obscure the line of argument we present our main
results for non-random evolution families and indicate the changes that have to be made in theΩ-
dependent case in Remark 5.8. Rather than discussing the maximal Lp-inequality in [60] in detail,
we will provide a detailed proof of a Gaussian tail estimate. The rationale of this choice is that
this estimate cannot be deduced (e.g. via Lemma 4.3) from the result of [60] due to the fact that it
does not provide the correct order O(

√
p) of the constant. The result presented here is new, in that
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it generalizes [58, Theorem 1.2] to arbitrary 2-smooth Banach spaces. A further novel feature of
our result is that it gives an improved bound on the variance.

As in [16,58] the idea is to apply Itô’s formula to hλ : X → [0, ∞) given by

hλ(x) := (1 + λ‖x‖2)1/2, x ∈ X.

The function hλ is Fréchet differentiable and

h′
λ(x) = λq′(x)

(1 + λ‖x‖2)1/2 ,

where q(x) := ‖x‖2 is known to be Fréchet differentiable (see [60]) with q′(0) = 0 and

q′(x) = 2‖x‖nx, x �= 0, (5.1)

where nx is the Fréchet derivative of ‖ · ‖ at x �= 0 and satisfies ‖nx‖ = 1. Although hλ is generally
not C2, the following ‘Itô inequality’ holds:

Theorem 5.3. Let X be a 2-smooth Banach space and let (at)t∈[0,T] and (gt)t∈[0,T] be processes in
L0

P (Ω ; L1(0, T; X)) and L0
P (Ω ; L2(0, T; γ (H, X))), respectively. Fix x ∈ X and let the process (ξt)t∈[0,T]

be given by

ξt := x +
∫ t

0
as ds +

∫ t

0
gs dWs.

Then, almost surely, for all t ∈ [0, T], we have

hλ(ξt) ≤ hλ(x) +
∫ t

0
〈as, h′

λ(ξs)〉 ds +
∫ t

0
h′
λ(ξs) ◦ gs dWs + 1

2
D2λ‖g‖2

L2(0,t;γ (H,X)). (5.2)

Proof. We proceed in three steps.
Step 1. First suppose that a and the operators in the range of g take values in a fixed finite-

dimensional subspace Y of X. Then ξ also takes its values in Y. Now, we regularize the norm as
in [21, Lemma 2.2]. Let μ be a centred Gaussian measure with support supp(μ) = Y. Fix ε > 0 and
let qε : Y → R be given by

qε(x) :=
∫

Y
‖x − εy‖2 dμ(y).

Then by [21, Lemma 2.2], the function qε has Fréchet derivatives of all orders, and∣∣qε(x)1/2 − ‖x‖∣∣≤ ε, ‖(q1/2
ε )′(x)‖ ≤ 1, q′′

ε (x)(v, v) ≤ 2D2‖v‖2. (5.3)

Moreover, q′
ε(x) = ∫

Y q′(x − εy) dμ(y) and from (5.1) and the dominated convergence theorem we

obtain q′
ε(x) → q′(x) as ε ↓ 0. Writing qε = q1/2

ε q1/2
ε , differentiation by the product rule gives

‖q′
ε(x)‖ = 2‖(q1/2

ε )′(x)‖q1/2
ε (x) ≤ 2q1/2

ε (x). (5.4)

It follows that the function hλ,ε : Y → R given by

hλ,ε(x) := (1 + λqε(x))1/2, x ∈ Y,

has Fréchet derivatives of all orders, and

h′
λ,ε(x) = λq′

ε(x)
2(1 + λqε(x))1/2 , h′′

λ,ε(x)(y, y) = λq′′
ε (x)(y, y)

2(1 + λqε(x))1/2 − λ2〈y, q′
ε(x)〉2

4(1 + λqε(x))3/2 .

Therefore, by (5.3) and (5.4), for all x ∈ Y, one has hλ,ε(x) → hλ(x), h′
λ,ε(x) → h′

λ(x) as ε ↓ 0, and

‖h′
λ,ε(x)‖ ≤

√
λ, h′′

λ,ε(x)(y, y) ≤ D2λ‖y‖2. (5.5)

Step 2. By the Itô formula,

hλ,ε(ξt) = hλ,ε(x) +
∫ t

0
〈as, h′

λ,ε(ξs)〉 ds +
∫ t

0
h′
λ,ε(ξs) ◦ gs dWs + 1

2

∫ t

0
h′′
λ,ε(ξs)(gs, gs) ds. (5.6)
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Since
1
2

∫ t

0
h′′
λ,ε(ξs)(gs, gs) ds ≤ 1

2
D2λ‖g‖2

L2(0,t;γ (H,X)) almost surely, (5.7)

this proves (5.2) with hλ,ε instead of hλ.
It remains to let ε ↓ 0 in each of the terms in (5.6), except the last one which is estimated using

(5.7). By path-continuity of the integrals it suffices to prove convergence for every fixed t ∈ [0, T]).
Convergence of the first two terms in (5.6) is clear from the preliminaries in Step 1. For

the third and fourth terms, we can apply the pointwise convergence and the dominated
convergence theorem (using the bound (5.5)) to obtain 〈as, h′

λ,ε(ξ )〉 → 〈as, h′
λ(ξ )〉 in L1(0, t) almost

surely and h′
λ,ε(ξ ) ◦ g → h′

λ(ξ ) ◦ g in L2(0, t; H) almost surely to obtain the required convergence.
This completes the proof in the finite-dimensional case.

Step 3. In the general case, let (an)n≥1 be a sequence of simple functions and (gn)n≥1
be a sequence of finite rank adapted step processes such that an → a in L1(0, t; X) and
bn → b in L2(0, t; γ (H, X)) almost surely. Let ξn(t) := x + ∫t

0 an,s ds + ∫t
0 gn dW. Then ξn → ξ in

L0(Ω ; C([0, t]; X)), and by passing to a subsequence we may suppose that ξn → ξ in C([0, t]; X)
almost surely. By Step 1, (5.2) holds with (a, g, ξ ) replaced by (an, gn, ξn). Since h′

λ is uniformly
bounded and Lipschitz with constant D2λ (this follows from the second estimate in (5.5) and
letting ε ↓ 0), by dominated convergence we obtain 〈an, h′

λ(ξn)〉 → 〈a, h′
λ(ξ )〉 in L1(0, t; X) almost

surely and h′
λ(ξn,s) ◦ gn,s → h′

λ(ξs) ◦ gs. Letting n → ∞, we obtain (5.2) for (a, g, ξ ). �

For the remainder of the paper, we assume that the following hypothesis is satisfied.

Hypothesis 5.4. (S(t, s))0≤s≤t≤T is a C0-evolution family of contractions and (A(t))t∈[0,T] is a family
of closed operators, acting on the same Banach space X. They enjoy the following properties:

(1) For all t ∈ [0, T], we have (0, ∞) ⊆ �(A(t)) and there exist constant M ≥ 1 such that

‖λ(λ− A(t))−1‖ ≤ M, t ∈ [0, T], λ> 0.

(2) For all t ∈ [0, T] and λ ∈ (0, ∞), we have

sup
0≤s≤t≤T

‖A(t)S(t, s)R(λ, A(s))‖<∞.

(3) For all s ∈ [0, T] and x ∈ D(A(s)), we have S(·, s)x ∈ W1,1(s, T; X) and, for almost all t ∈ [s, T],

d
dt

S(t, s)x = A(t)S(t, s)x.

Remark 5.5. It is folklore in the theory of evolution families that if hypothesis 5.4 holds and
each operator A(t) is the generator of a C0-semigroup, then (1) holds with M = 1.

Condition (1) means that the operators −A(t) are sectorial, uniformly with respect to t ∈ [0, T].
Condition (2) expresses that S(t, s) maps D(A(s)) into D(A(t)) with control on the norms uniformly
with respect to 0 ≤ s ≤ t ≤ T. Condition (3) connects the operators A(t) with S(t, s) in the same way
as a generator is connected to a semigroup of operators. These conditions are satisfied in many
applications (e.g. [46,47,62–65]).

We are now ready to state the main result of this section. Under the additional assumption
of hypothesis 5.4, it provides another proof of the Gaussian tail estimate that can be obtained
by combining Theorem 5.2 with Corollary 4.4. The bound on the variance σ 2 obtained from that
argument, namely 100eD2‖g‖2∞, is improved here to 2D2M2‖g‖2∞, where M is the constant in
hypothesis 5.4(1). By Remark 5.5 have M = 1 in the case of a C0-evolution family of contractions.

Theorem 5.6 (Gaussian tail estimate). Let X be a (2, D)-smooth Banach space and suppose
that (S(t, s))0≤s≤t≤T is a C0-evolution family of contractions satisfying hypothesis 5.4. For all g ∈
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L∞
P (Ω ; L2(0, T; γ (H, X))), the process (

∫t
0 S(t, s)gs dWs)t∈[0,T] has a continuous version which satisfies

P

(
sup

t∈[0,T]

∥∥∥ ∫ t

0
S(t, s)gs dWs

∥∥∥≥ r

)
≤ 3 exp

(
− r2

2σ 2

)
,

for all r> 0, where σ 2 = 2D2M2‖g‖2
L∞(Ω ;L2(0,T;γ (H,X))).

Proof. The main idea is that Theorem 5.3 provides the right estimate to generalize the proof of
Brzeźniak & Peszat’s [58, Theorem 1.2]. The proof will use some additional facts from stochastic
analysis which are all standard and can be found in [36,66].

Step 1. Let us first assume that g ∈ L∞(Ω ; L2(0, T; γ (H, X))) is such that for every t ∈ [0, T], we
have gt ∈ D(A(t)) and t 	→ A(t)gt belongs to L2(0, T; γ (H, X)) almost surely. Under this assumption,
we claim that u is a strong solution, i.e. almost surely we have

ut =
∫ t

0
A(s)us ds +

∫ t

0
gs dWs, t ∈ [0, T]. (5.8)

This means that the assumptions of Theorem 5.3 are satisfied with at = A(t)ut. In order to prove
(5.8), we set ut := ∫t

0 S(t, s)gs dWs. Then

A(t)ut =
∫ t

0
A(t)S(t, s)gs dWs,

almost surely, since A(t)S(t, s)R(1, A(s)) is uniformly bounded by part (2) of the hypothesis. A
standard argument involving the stochastic Fubini theorem and the formula

∫ t

r
A(s)S(s, r)x ds = S(t, r)x − x, x ∈ D(A(r)),

(which follows from part (3) of the hypothesis) implies that for all t ∈ [0, T] the identity (5.8) holds
almost surely. By path continuity, almost surely the identity holds for all t ∈ [0, T]. This concludes
the proof of the claim.

Step 2. Since t 	→ hλ(S(t, s)x) = (1 + λ‖S(t, s)x‖2)1/2 is non-increasing by the contractivity of
S(t, s), for all x ∈ D(A(t)), we have

〈A(t)S(t, s)x, h′
λ(S(t, s)x)〉 = d

dt
hλ(S(t, s)x) ≤ 0.

Therefore, setting t = s, we obtain 〈A(s)x, h′
λ(x)〉 ≤ 0 for almost all s ∈ [0, T). Hence, by Theorem 5.3

applied with as = A(s)us and x = 0, and noting that hλ(0) = 1,

hλ(ut) ≤ 1 +
∫ t

0
h′
λ(us) ◦ gs dWs + 1

2
λD2‖g‖2

L2(0,t;γ (H,X)). (5.9)

Below we will several times use that ‖h′
λ(x)‖ ≤ λ1/2 (see (5.5)).

The quadratic variation of the process defined by Nt := ∫t
0 h′

λ(us) ◦ gs dWs is given by [N]t =∫t
0 ‖h′

λ(us) ◦ gs‖2
H ds. Therefore, the process defined by Zt := eNt− 1

2 [N]t is a local martingale by Itô’s
formula and

Zt = 1 +
∫ t

0
Zsh′

λ(us) ◦ gs dWs.

Since Z is non-negative, it is a supermartingale and therefore E(Zt) ≤ 1. Since [N]t ≤
λ‖g‖2

L∞(Ω ;L2(0,T;γ (H,X))) almost surely, it is standard to check Z is actually a martingale with
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E(Zt) = E(Z0) = 1 for all t ∈ [0, T] (this follows for instance from Novikov’s condition). We can
rewrite (5.9) in the form (using that D ≥ 1)

hλ(ut) ≤ 1 + log Zt + 1
2

∫ t

0
‖h′
λ(us) ◦ gs‖2

H ds + 1
2
λD2‖g‖2

L2(0,t;γ (H,X)) ≤ 1 + log Zt + λCg,

where Cg := D2‖g‖2
L∞(Ω ;L2(0,T;γ (H,X))). Setting φλ(r) = (1 + λr2)1/2, Doob’s inequality gives

P

(
sup

t∈[0,T]
‖ut‖ ≥ r

)
= P

(
sup

t∈[0,T]
hλ(ut) ≥ φλ(r)

)

= P

(
sup

t∈[0,T]
log Zt ≥ φλ(r) − 1 − λCg

)

= P

(
sup

t∈[0,T]
Zt ≥ exp(φλ(r) − 1 − λCg)

)
≤ exp(1 + λCg − φλ(r))EZT = exp(1 + λCg − φλ(r)).

If r2 ≥ 2Cg, choose λ> 0 so that 1 + λr2 = r4/(4C2
g). Then φλ(t) = r2/(2Cg) and

P

(
sup

t∈[0,T]
‖ut‖ ≥ r

)
≤ exp

(
1 + r2

4C2
g

Cg − r2

2Cg

)
= exp

(
1 − r2

4Cg

)
≤ 3 exp

(
− r2

4Cg

)
.

If 0< r2 < 2Cg, we have the trivial inequality

P

(
sup

t∈[0,T]
‖ut‖ ≥ r

)
≤ 1 ≤ 3 e−1/2 ≤ 3 exp

(
− r2

4Cg

)
.

This proves the result under the additional assumption on g made at the beginning of Step 1.
Step 3. In the general case set g(n)

t := nR(n, A(t))gt for n ≥ 1. For all t ∈ [0, T] and ω ∈Ω , we

have ‖g(n)
t (ω)‖ ≤ M‖gt(ω)‖ and consequently Cg(n) ≤ M2Cg by sectoriality. It follows that g(n) → g

in L2(Ω ; L2(0, T; γ (H, X))). Therefore, using any of the known maximal tail or Lp-estimates (e.g.
Proposition 5.1), we infer that the corresponding stochastic convolutions satisfy u(n) → u in
L0(Ω ; C([0, T]; X)). This implies the tail estimate in the general case. �

Remark 5.7 (Lp-bounds). A variant of the Itô inequality of Theorem 5.3 can be proven for ‖x‖p

with p ≥ 2. Then, in the same way as [60, Theorem 1.2] (due to the time dependence in A some
modifications are required in the approximation argument which are similar to the ones in the
proof of Theorem 5.6), it is possible to recover the conclusion of Theorem 5.2. Tracking the constant
Cp,D, this proof does not seem to give the correct order O(

√
p) as p → ∞, however.

Remark 5.8 (Random evolution families). We now indicate how Theorem 5.6 and the result
pointed at in Remark 5.7 can be generalized to random evolution families. To make this notion
precise, we assume that for all ω ∈Ω a family (A(t,ω))t∈[0,T] of closed operators on X is given, as
well as a C0-evolution family (S(t, s,ω)0≤s≤t≤T satisfying hypothesis 5.4, with estimates uniform in
ω ∈Ω . We furthermore assume that for all 0 ≤ s ≤ t ≤ T and x ∈ X, the random variable S(t, s, ·)x is
strongly Ft-measurable. In what follows, we will suppress the ω-dependence from our notation
whenever it is convenient.

Under these assumptions, it is not even clear how the problem should be stated to begin
with, because the stochastic convolution integral

∫t
0 S(t, s)gs dWs is not well defined in general.

The reason is that the random variables S(t, s)x are assumed to be Ft-measurable rather than
Fs-measurable, and therefore the integrand will not be progressively measurable in general.
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To overcome this problem one notes that in the Ω-independent case, for sufficiently regular g
one has the almost sure identity

ut :=
∫ t

0
S(t, s)gs dWs = S(t, 0)

∫ t

0
gr dWr −

∫ t

0
S(t, s)A(s)

(∫ t

s
gr dWr

)
ds, t ∈ [0, T]. (5.10)

Following [67], in the Ω-dependent case, we define the process (ut)t∈[0,T] to be given by the
expression on the right-hand side of (5.10) and refer to it as the pathwise mild solution of the
problem dut = A(t)ut dt + gt dWt. This formula has the merit of avoiding adaptedness issues and
(ut)t∈[0,T] can be shown to be progressively measurable. Pathwise mild solutions were extensively
studied in the parabolic setting in [67]; under the assumptions spelled out below the general case
can be treated along similar lines. The problem of extending Theorem 5.2 and the result mentioned
in Remark 5.7 can now be formulated as proving suitable Gaussian tail estimates and Lp-bounds
for the random variable

u� := sup
t∈[0,T]

‖ut‖,

with ut given by the right-hand side of (5.10).
The proof of Theorem 5.6 can be repeated as soon as a suitable analogue of (5.8) is available.

This is the case under the following additional technical assumptions. We assume that there exist
continuous and dense embeddings of Banach spaces Y2 ↪→ Y1 ↪→ Y0 = X such that pointwise on
Ω the following conditions are satisfied almost surely:

(1) for all 0 ≤ s ≤ t ≤ T, we have S(t, s)Y1 ⊆ Y1;
(2) for all t ∈ [0, T], we have Y1 ⊆ D(A(t)) and, for i ∈ {0, 1}, we have A(t)Yi+1 ⊆ Yi boundedly

and the process A|Yi+1 : [0, T] ×Ω → L (Yi+1, Yi) is uniformly bounded and progressively
measurable;

(3) for all 0 ≤ s ≤ t ≤ T and y ∈ Y1, we have S(t, ·)y ∈ W1,1(0, t; X) and

d
ds

S(t, s)y = −S(t, s)A(s)y.

Examples where this holds are discussed in [46,47,62–65] cited earlier.
Suppose first that g is an adapted finite rank step process g with values in Y2. The process

u defined by the right-hand side of (5.10) then satisfies ut ∈ D(A(t)) and the process (t,ω) 	→
A(t,ω)ut(ω) is uniformly bounded. Moreover, as in [67, Proposition 4.2 and Theorem 4.7] and
[68, Appendix] one checks that the analogue of (5.8) holds, i.e. almost surely we have

ut =
∫ t

0
A(s)us ds +

∫ t

0
gs dWs, t ∈ [0, T].

By following the proof of Theorem 5.6, a Gaussian tail estimate for u� is obtained under the
assumption that g is an adapted finite rank step process with values in Y2.

One would like to derive the general case by means of an approximation argument, but this
is not straightforward due to the L∞-norm in the expression for the variance. Rather, we will
first extend the Lp-estimate of Remark 5.7 to random evolution families first for adapted finite
rank step processes g. In the Lp-case, the density argument can be carried out which, for arbitrary
g ∈ Lp

P (Ω ; L2(0, T; γ (H, X))), gives a limiting process (ut)t∈[0,T] satisfying the Lp-maximal estimate.
To identify the limiting process as a solution in a weak sense to the evolution equation at hand,
we make the additional assumption that there exists a dense linear subspace F ⊆ X∗ satisfying
F ⊆ D((A(s))∗) for all s ∈ [0, T] and ω ∈Ω and that for all x∗ ∈ F the mapping (s,ω) 	→ (A(s,ω))∗x∗
is strongly measurable and uniformly bounded. Under this assumption, it is straightforward to
check that the limiting process u is a weak solution in the following sense: for all x∗ ∈ F∗, almost
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surely we have

〈ut, x∗〉 =
∫ t

0
〈us, A(s)∗x∗〉 ds +

∫ t

0
x∗ ◦ g∗

s dWs, t ∈ [0, T].

Finally, to prove the Gaussian tail estimate for general g ∈ L∞
P (Ω ; L2(0, T; γ (H, X))) one checks that

there exists adapted finite rank step processes (g(n)) with values in Y2 such that ‖g(n)‖L2(0,T;γ (H,X)) ≤
‖g‖L2(0,T;γ (H,X)) almost surely and g(n) → g in L2(Ω ; L2(0, T; γ (H, X))). Then the previously
mentioned Lp-estimate for p = 2 implies that the corresponding solutions satisfy u(n) → u in
L2(Ω ; C([0, T]; X)). Therefore, the Gaussian tail estimate for the pair (g, u) follows from the one
for (g(n), u(n)) with constant σ 2 = 2D2‖g‖2

L∞(Ω ;L2(0,T;γ (H,X))).

6. Open questions
Question 6.1. Let (S(t))t≥0 be a C0-semigroup on a 2-smooth Banach space X and let W be a standard

real-valued Brownian motion with values. Does the process (
∫t

0 S(t − s)gs dWs)t≥0 have a continuous
version for every progressively measurable g ∈ L2(Ω ; L2(0, T; X))?

This question is open even in the case of Hilbert spaces X. More generally, one could pose the
above question for H-cylindrical Brownian motions and processes g ∈ L0(Ω ; L2(0, T; γ (H, X))). A
possible approach could be to prove that whenever a Banach space X is 2-smooth and (S(t))t≥0 is
a given C0-semigroup on X, then there exists an equivalent 2-smooth norm with respect to which
the semigroup is contractive.

Question 6.2. Which C0-semigroups and C0-evolution families admit an (approximate) invertible
dilation?

As explained in Theorem 4.10, one can deduce maximal inequalities for stochastic convolutions
in case C0-semigroups/evolution families admit an approximate invertible dilation.

Question 6.3. Is there a ‘supertheory’ containing both the theories of stochastic integration in 2-smooth
spaces and UMD spaces as special cases?

Presumably, such a theory would be based on some decoupling principle, in which case one
expects it to apply to the class of Banach spaces satisfying a suitable decoupling inequality. For
more details on decoupling and its use in the theory of stochastic integration the reader is referred
to [69] and references therein. A possible approach could be to answer the next open question:

Question 6.4. Does 2-smoothness of X imply the existence of a finite constant C ≥ 0 such that for all
n ≥ 1 and all functions fj : {−1, 1}j−1 → X for 1 ≤ j ≤ n one has the decoupling inequality

E

∥∥∥∥∥∥
n∑

j=1

rjfj(r1, . . . , rj−1)

∥∥∥∥∥∥
2

≤ C2
E

∥∥∥∥∥∥
n∑

j=1

r̃jfj(r1, . . . , rj−1)

∥∥∥∥∥∥
2

?

Here, (rj)j≥1 is a sequence of independent Rademacher random variables (a Rademacher random
variable is a random variable taking the values +1 and −1 with equal probability 1

2 ) and (̃rj)j≥1 is
an independent copy of (rj)j≥1. This decoupling inequality is satisfied in UMD spaces.

For the class of Banach spaces with type 2, which contains the class of all 2-smooth Banach
spaces as a proper subclass, question 6.4 has a negative answer. Indeed, James [70] constructed
a non-reflexive space X with type 2. If the decoupling inequality would hold in this space, then
[18, Propositions 4.3.5 and 4.3.13] imply that X has martingale type 2 and hence is reflexive, a
contradiction.
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