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Summary

The first part of the thesis explores the process of homogenization, particularly for the permeability
properties of rock samples. The Hill-Mandel postulate of energy consistency throughout the transition-
ing of scales is revisited since traditional homogenization methods rely on applying specific boundary
conditions to enforce energy consistency. However, it is shown that the applied boundary conditions
influence the effective physical parameter and provide upper or lower bound estimations. Recently, it
is shown that these boundary conditions influence a layer near the boundary of the sample and that
homogenization applied on the subsample away from this boundary layer is not affected by the bound-
ary conditions.

The research focuses on energy consistency by studying the evolution of the energy within the intrin-
sic subsample, away from the boundaries. With the help of Finite Element simulations of Stokes-flow
through idealized structures, the energy of the fluid is traced without the influences of grain properties
on the energy dissipation. By plotting the ratio of the energy dissipation of the macro- and micro-scale,
it is shown that the energy consistency is not found within small subsamples. Yet, with a growing sub-
sample, energy consistency is achieved naturally, without the enforcement of boundary conditions. As
a result, it is concluded that the energy consistency is found at the Representative Elementary Volume
(REV), which is a similar requirement as for traditional homogenization methods. The study of the nat-
ural energy consistency in idealized microstructures is extended to real microstructures, which include
more natural heterogeneities, such as grain properties. It is shown that energy consistency is also
found with the natural heterogeneities included, albeit with a slower convergence.

For the homogenization of the permeability of a sample, the energy ratio is now known to be unitary,
which can be used as an accurate indicator to determine the size of the REV.

The second part of the thesis explores the process of determining the size of the REV, which is a
common, yet essential practice in Digital Rock Physics. Currently, this is an extensive exercise, involv-
ing many and large-size simulations to trace the convergence of the physical property and requires
a lot of computational resources and time. Numerical-statistical studies have shown that the conver-
gence of the REV visualizes in a cone-like shape. By plotting the convergence for both the permeability
and the energy dissipation ratio for idealized microstructures, this study analyses the shape and evolu-
tion of the cone of convergence. From this, the generic evolution law of the convergence is determined.

It is shown that the asymmetrical convergence cone is described with a log-normal distribution, with a
stable mean throughout the evolution of the cone and a variance for each sample size. The evolution
of the variance is described with the law of large numbers, taking into account a reference value. This
makes it possible to determine the size of the REV. Since the statistical method applies, information
about the error of the fit, the error of the determined homogenized property, and the error of the size of
the REV is provided.

The study is extended to real microstructures to validate whether the determined evolution law applies
when natural heterogeneities are included. It is shown that the evolution law still accurately describes
the REV’s convergence. Therefore, the REV’s size of real rock samples can also be determined. Even
when the REV is not included within the sample, the evolution law can provide an estimate of the size
of the REV or the homogenized property.

By using the cone of convergence, it is not necessary to run simulations on the full sample to find
the REV, which is computationally expensive, instead running a number of simulations on small sub-
samples is sufficient, which saves both time and computational resources. It also unlocks the possibility
to find the REV for high-resolution samples, as splitting the sample into subsamples allows for smaller
simulations.
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1
Introduction

1.1. Research context
Digital rock physics is a field of study that involves the digital analysis of rock samples. As the computa-
tional power and modelling capabilities improved, researchers have developed digital models to study
rock behaviour under different conditions, such as the flow of fluids through rocks or the deformation
under stress.

Digital rock physics usually follows a couple of steps to study the behaviour of the rock. It starts with
image acquisition. A three-dimensional rock image is created with the use of X-ray computed tomog-
raphy on a real rock sample. The next step is to translate the images into phases, such as the pores
and grains. Once the phases are segmented, the rock can be reconstructed into a three-dimensional
computational model, which usually involves creating a mesh of the voxels or pixels. In the next step
the behaviour of the rock to any type of physical process, such as fluid flow, stress or heat transfer, can
be analysed with simulations on the computational models. With the results of the simulation, homoge-
nization of the properties can be applied to larger scales. The properties need to be translated to larger
scales, since the complex microstructure of the rock, containing the segmented voids and grains, is
heterogeneous and modelling large-scale structures with the microstructure is impractical, as the com-
plexity of the microstructure requires high computational power. In order to model larger structures for
larger applications, a homogeneous equivalent of the material is created through homogenization of
the microstructure.

Homogenization is a mathematical process which analyses the properties and the physical response
of the microstructure to a physical process and computes the effective properties on the macroscale.
To connect the two different scales, homogenization falls back on the thermodynamic law of energy
consistency throughout the scale transition, also known as the Hill-Mandel principle. The average en-
ergy of a volume on the microstructure is processed and matched with the energy of a volume on the
macroscale. The volume in which this energy consistency is found is called the Representative Ele-
mentary Volume (REV).

To apply valid homogenization, the characterisation of the REV is a critical step in digital rock physics,
as this is the volume of the medium which on average accurately represents the behaviour of the rock
on the macroscale. The effective property oscillates considerably when small volumes are homog-
enized but stabilizes with growing subsamples which on average contain enough complexity of the
microstructure to represent the medium. Thus, by running simulations on growing subsamples and
postprocessing the properties, the oscillation of the effective properties will dampen out and the size
of the REV can be determined. In some cases, such as with material softening and crack evolution,
the existence of the REV is questioned (Gitman, Askes, and Sluys [15]; Lacy, McDowell, and Talreja
[22]). Although, it is shown that the REV for linear problems and material hardening can be determined.

Another benefit of the REV is the applicability of multiscale modelling. The homogenized property

1



1.2. Problem definition 2

is used to model the macroscopic scale, which in its turn provides input for the boundary value problem
of the microscale. This circular system enables the possibility to model complex problems, such as non-
linear physical responses in the material behaviour without making any assumptions in the constitutive
law.

1.2. Problem definition
In homogenization schemes, the energy is divided into an average field and a fluctuation field. Since
the REV is the volume that contains stabilized energy ratio throughout the transition of scales, the
fluctuation field has to become zero and the average energy field is used to compute the effective
properties. Currently, the homogenization schemes enforce the fluctuation of the energy to be zero
with specific boundary conditions. However, it turns out that these boundary conditions influence the
effective property of the medium (Andrae et al. [2]; Guibert et al. [18]; Gerke, Karsanina, and Katsman
[12]; Shi et al. [47]; Zakirov and Khramchenkov [51]). The kinematic or dynamic boundary conditions
provide an upper and lower bound estimation of the property. Thovert and Mourzenko [48] showed
that homogenization applied on a subvolume, away from the boundaries, will not be affected by the
boundary conditions, as the computed permeability of the samples converges towards the same value.
Therefore, it is natural to question if energy consistency throughout the transition of scales can be found
within the subsample away from the boundary layer. This would make the boundary conditions to en-
force the energy consistency otiose and could provide a REV for which the homogenized properties
are stabilized and not influenced by upper or lower bound estimations.

Another problem in the process of finding effective properties lies within the process of finding the
size of the REV. As described, the process of finding the REV involves running multiple simulations
on growing subsamples, sometimes including large or high-resolution samples. This is a computa-
tionally expensive process, as many simulations can take a long time to complete and simulations on
large samples require a lot of computational resources and time on itself. Furthermore, it is unknown
to which value the effective property converges, which makes it complicated to know when the REV
has been found. Many studies have been done to optimize the process and define the REV through
different methods. Some researchers have shown that the REV for a specific material and its physical
properties can be related to the size of the material or the number of grains in the volume. These
indicators for the size of the REV, however, change when other materials or properties are considered.
Other researchers took a numerical-statistical approach, which shows the convergence through the
variance of the property. It is shown in these studies that plotting the REV convergence results in a
cone of convergence, starting with a large base considering small samples and converging towards a
certain value when larger volumes are considered. The evolution law of the convergence would make
it possible to predict the size of the REV without the need for large-scale simulations and unlock the
possibility to work with high-resolution samples. On top of that, the description of the cone provides an
estimation of how accurate the determination of the size of the REV and the homogenized property is,
due to the decreasing width of the cone.

1.3. Goals and objectives
1.3.1. Goals
The first goal of this research is to perform a study with an intrinsic subvolume and analyse the be-
haviour of the energy within the subvolume away from the boundary. By plotting the energy ratio from
micro- to macro-scale, it is possible to determine if the energy consistency can be found naturally. The
result provides a method to apply homogenization without enforcing energy consistency and therefore
apply upscaling in a natural way, without upper- or lower-bound estimations.

The second goal of this research is to plot and analyze the REV convergence. From this, the evolution
law of the convergence for the REV can be determined and described mathematically. The determined
evolution law can be applied and verified on increasingly heterogeneous samples. The result of this
study provides a new method to determine the size of the REV and the homogenized property quickly
and efficiently.
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1.3.2. Research questions
This leads to the following research questions:

1. Can homogenization be done inside a subsample, with energy consistency though-out the tran-
sition of scales, without the influence of the boundary conditions?

2. Is it possible to determine the generic evolution law of the REV convergence and extrapolate it
to real microstructures to predict the REV of a real structure?

1.3.3. Objectives
To achieve the goals of this thesis, the following objectives are set:

1. Set up a model to determine both the permeability and the energy dissipation of the fluids in a
subsample away from the boundary, using idealized microstructures to remove influences of the
grain properties.

2. Determine the evolution of both the permeability and the energy dissipation of the fluids and
analyse the evolution to confirm if natural energy consistency can be found within the subsample
and analyse the convergence towards REV.

3. Define a method to apply homogenization with the natural energy consistency ratio and define
the evolution law of the convergence to REV.

4. Apply the methods on real microstructures and analyse the influence of the grain heterogeneous
properties on the methods.

1.4. Research outline
The outline of this thesis differs from a standard Master Thesis, as both research questions are an-
swered in paper form. Therefore, this thesis is a merge of the two articles, together with an introduction
to the thesis, a conclusion, and a summary.

The outline of the thesis looks as follows:

• The second chapter is the article ‘Finding the Representative Elementary Volume using the con-
servation of energy across scales’.

In this article, the first research question is answered. The Stokes-flow model and the
method to trace the convergence of the energy dissipation and permeability are described
in this paper.

• The third chapter is the article ‘Predicting the Representative Elementary Volume by determining
the evolution law of the cone of convergence’ article.

This article answers the second research question. The convergence for REV is plotted and
analysed. An evolution law for convergence is determined and applied to both idealized
microstructures and real rock samples.

• In chapter 4 the conclusions of both articles are combined and listed.
• In Appendix A a more in-depth explanation of the model setup is provided.
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1.5. Research scope
To successfully answer the research questions in the time provided for the Master Thesis, the following
scope is defined for this research:

Since the first part of this study focuses on energy consistency throughout the transitions of scales,
it is necessary to define which energy. Permeability is arguably one of the most important properties
of Digital Rock Physics, therefore this study will limit itself to the energy dissipation of the fluids. For
the convergence of the REV, the same data is taken into account, and therefore the analysis of the
evolution of the REV is limited to the permeability and energy dissipation ratio.

The results of this research may apply to multiple fields of interest, yet the starting point of the re-
search is Digital Rock Physics, and therefore only idealized or real rock structures will be taken into
account.

This research does look at the energy consistency within a subvolume. The size of this subvolume
is determined for each model, but a relationship with the morphological parameters or the boundary
conditions is outside the scope of this research.



2
Finding the REV using the

conservation of energy across scales

Abstract
The foundation of homogenisation methods rests on the postulate of Hill-Mandel, describing energy
consistency throughout the transition of scales. The consideration of this principle is therefore crucial
in the discipline of Digital Rock Physics which focuses on the upscaling of rock properties.

For this reason, numerous studies have developed numerical schemes for porous media to enforce
the Hill-Mandel condition to be respected. The most common method is to impose specific boundary
conditions, such as periodic ones. However, the recent study of [48] has shown that most boundary
conditions still result in the same intrinsic effective physical property if the averaging is applied outside
the range of the boundary layer.

From this discovery, it becomes logical to question the status of Hill-Mandel postulate in porous media
when homogenising away from the boundary.

In this contribution, we simulated Stokes flow through random packings of spheres and a range of
rock microstructures. For each, we plotted the evolution of the ratio micro- vs macro-scale of the en-
ergy of the fluid transport outside the boundary layer, for a growing subsample size of porous media.
Here, we prove that we naturally find energy consistency across scales when reaching the size of the
Representative Elementary Volume (REV), which is a known condition for rigorous upscaling.

Furthermore, we show that this ratio for the energy consistency is a more accurate indicator of REV
convergence since the mean value is already known to be unitary.

Keywords
Homogenization, Energy Conservation, Representative Elementary Volume

2.1. Introduction
In an attempt to reduce and replace destructive experiments, the goal of Digital Rock Physics (DRP)
is to determine the physical response of the rock at the macro-scale, using simulations on the digitized
microstructure. Indeed, it is widely acknowledged that physical rock properties are mainly determined
by the geometry and arrangement of grains at the microscale, under the concept of structure-property
relationships. For example, rock permeability, which is the focus of this contribution, has been shown to
be influenced by the grain shape (D. C. Beard [9]). The characterization of permeability has later been
extended to more morphological parameters of the rock microstructure (Cox and Budhu [8]; Torskaya
et al. [49]). Given the existence of scale separation between the microscopic level, obtained with CT-
imaging, and the macro-scale, rock properties can be obtained with homogenisation methods (Auriault
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[3]).

The foundation of homogenization methods rests on the Hill-Mandel (Hill [19]; Mandel [27]) principle,
which states that energy cannot be created or destroyed in a closed system and thus remains consistent.
In the context of homogenization schemes, the principle is applied by conserving energy throughout the
transition of scales, which means that the energy of the different scales should be identical to be able to
apply homogenization from the lower scale. As the local energy inside the heterogeneous microstruc-
ture can spatially vary significantly, usual homogenization procedures apply the variation principle and
split the energy into an average and fluctuation term. Only when the fluctuation of the energy becomes
zero does the homogenized energy of the micro-scale have energy consistency across the scales and
can be considered representative of the larger scale. Therefore, this volume can be used to create
a homogeneous equivalent medium for the larger scale and makes it possible to determine effective
properties of the rock sample, such as permeability. To make sure that the fluctuation of the energy is
zero, current homogenization schemes impose specific types of boundary conditions.

For the homogenisation of permeability, which is a hydraulic property, we are looking at the work en-
ergy of the fluid transport. It is shown that this energy consistency is enforced by applying kinematic,
traction or periodic boundary conditions (Boe [5]; Renard and Marsily [43]; Du and Ostoja-Starzewski
[10]; Paéz-Garcı́a, Valdés-Parada, and Lasseux [33]). However, those different boundary conditions
significantly influence the effective homogenized permeability of the rock sample. By imposing either
a pressure gradient or a constant flux boundary condition, the flow path becomes linear, which has a
direct effect on the permeability tensor (Pouya and Fouche [40]). The more the medium enables the
water in the direction of the pressure gradient, the more the permeability in that direction will be, and
vice versa. Similar effects are shown by applying closed walls, periodic flows or slip boundary condi-
tions, as the permeability is influenced in both direction and magnitude (Andrae et al. [2]; Guibert et al.
[18]; Gerke, Karsanina, and Katsman [12]; Shi et al. [47]; Zakirov and Khramchenkov [51]).

To overcome this limitation in homogenization, we refer back to the foundational paper of Hill [19],
who states that ’the fluctuation of the mean becomes insignificant within a few wavelengths of the sur-
face and the contribution of the surface layer becomes negligible by taking the sample large enough’.
This means that upon increasing the sample size, the homogenized property will converge to the ef-
fective property, despite the different boundary conditions. Note that the size where convergence is
reached is called the Representative Elementary Volume (REV). This concept has recently been shown
by Thovert and Mourzenko [48], which studied the influence of the boundary conditions when determin-
ing the transport coefficients of a sample. The study shows that the effective permeability of an intrinsic
sub-volume, away from the boundary, appears to be identical, despite considering different boundary
conditions. However, when the boundary layer is taken into account, the permeability will vary due
to the different boundary conditions implemented. For example, the mean permeability can be up to
ten times higher than the effective property when Dirichlet boundary conditions are applied on all the
boundaries. On the other hand, it is observed that when the boundary conditions are applied on an ex-
tension of the sample, the homogenized permeability is influenced within a boundary layer eight times
smaller than the Dirichlet boundary conditions and the homogenized permeability is only influenced by
half the value of the effective permeability.

It is recommended to compute the effective permeability inside an intrinsic volume, away from the
boundary layer, such that the boundary conditions have no influence on the homogenized parameter.
Therefore, it becomes logical to question the purpose of the boundary conditions currently deemed
necessary for homogenization schemes to enforce energy consistency throughout scales. Indeed, we
expect the energy dissipation of the fluids to be influenced in a similar way to the fluid flow by the bound-
ary conditions. Therefore, we wonder what becomes of the energy consistency across the scales in
the intrinsic volume, away from the boundary. Is the Hill-Mandel principle still respected away from the
boundary layer, unaffected by the boundary conditions?

This article is set up as follows. The second chapter presents how the models are set up and which
methods are used to trace the energy dissipation. The third chapter is dedicated to applying the theory
to real microstructures to verify if the results found are affected by natural heterogeneities.
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2.2. Theoretical study
Since we mentioned in the previous section that the grain shape, grain roughness and other morpho-
logical parameter have a strong influence on the permeability, we also expect them to have a direct
influence on energy dissipation. Therefore, the random packing of spheres is selected as the porous
medium for this study. It represents a granular rock microstructure, with spheres instead of grains. The
advantage we target by using this medium is that the equivalent grains have an idealised shape and
therefore do not have any heterogeneities, preventing as intended any fluctuation of the permeability
(Bijeljic et al. [4]). This would be peripheral to the core objective of this study. Furthermore, the porosity
of the microstructure is controlled by the packing fraction, allowing to create different models.

2.2.1. Modelling porous media
The distribution of the spheres in the packing is generated with the OpenMC Monte Carlo code (Ro-
mano et al. [44]). To reduce the computational resources, we take a single 2D cross-section from each
generated sphere packing as our idealized microstructure. It has been shown that the simulated fluid
behaviour is similar in 2D and 3D, with the exception of the velocity magnitude, which is higher in the
3D simulations (Marafini et al. [28]). Since this study focuses on the conservation of energy across
the scales rather than the exact permeability value, a 2D cross-section of the 3D sphere packing is
sufficient. Gmsh (Geuzaine and Remacle [13]) is used to create the mesh for the cross-section, with
triangular elements and a specified mesh element size.

The simulations on the microstructures are conducted with Navier-Stokes equations. The Navier-
Stokes equations incorporate both the momentum and mass balance of the fluid. Assuming incom-
pressible fluids, the lack of body forces and stationary solutions, which is the most common environ-
ment for fluid transport in the subsurface, one will automatically arrive at Stokes flow:

µ∇2v −∇p = 0

∇ · v = 0

MOOSE (Permann et al. [35]; Peterson, Lindsay, and Kong [36]) is used to implement the Stokes-flow
simulations, following the framework of Lesueur et al. [24]. The flow is imposed through a predeter-
mined pressure gradient across the domain. The classical no-slip condition is applied to the grains
inside the sample. The external boundary conditions do not matter, since the focus of this study is on
the postprocessing of properties away from the boundary layer, unaffected by the boundary conditions.
Thus, a standard no-slip condition is applied to the external boundaries. An example of the flow through
a cross-section of a random packing is shown in Figure 2.1.

2.2.2. Permeability
The permeability of the random packings is post-processed using Darcy’s law, which describes the rela-
tionship of Darcy’s flux (q) with the permeability (k) of a porous media. The law was initially formulated
based on the results of experiments and has later been verified to be a homogenization of the Stokes
formulation (Whitaker [50]).

k =
φvµ

∇p

The flux of Dacry can be related to Stokes velocity of the fluid through the grains by multiplying with
the porosity (φ). As the pressure gradient and dynamic viscosity is imposed in the model and we can
measure the average velocity and permeability, which allows us to find the permeability of the samples.

2.2.3. Energy dissipation
In line with the homogenization scheme described in Section 2.1, the velocity of the fluid and the pres-
sure gradient can be expressed in terms of the average value and the fluctuation (Whitaker [50]; Du
and Ostoja-Starzewski [10]):

p = ∇p+ ∇̃p



2.2. Theoretical study 8

Figure 2.1: Example of flow through a random packing of spheres. The figure visualizes a cross-section, with a packing
fraction of 32% of spheres with a diameter of 0.005 (compared to a total volume of 1). The grains are shown as white disks and

the velocity of the fluid is shown in the coloured range, where blue is a low velocity and red is a high velocity.

v = v + ṽ

The energy dissipation needed to study the evolution of the energy consistency is calculated by taking
the product of the pressure gradient and the velocity of the fluid, which can also be described as an
average value and a fluctuation term (Du and Ostoja-Starzewski [10]; Zhu et al. [52]; Paéz-Garcı́a,
Valdés-Parada, and Lasseux [33]):

Edis = ∇Pv = ∇Pv + ∇̃Pv

The energy dissipation can only be post-processed over a volume when the fluctuation part is equal to
zero, which is assured when the size of the sample is equal to a REV. In other words, once the energy
of the fluid from the microscale becomes stable and matches the energy dissipation on the macroscale,
the fluctuation of the energy is equal to zero. Conveniently, this means that the ratio of the energy is
known to be unitary. We call this the energy ratio index.

∇̃Pv = 0 ⇔ ∇Pv = ∇Pv ⇔ ∇Pv

∇Pv
= 1

By combining the energy dissipation and Darcy’s law, the permeability can be calculated with the en-
ergy.
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k =
−µEdis

∇p2

Thovert and Mourzenko [48] recommends taking an intrinsic volume away from the boundary into ac-
count to compute the effective properties. We, therefore, question whether it is possible to trace the
evolution of the effective properties by gradually increasing the size of a sub-volume away from the
boundaries, rather than simulating on increasingly larger volumes. This would drastically reduce the
necessary computational resources, as the simulation for each random packing only needs to be per-
formed once instead of for each step size. Furthermore, model properties, such as the boundary layer,
only need to be determined once.

Since Thovert and Mourzenko [48] showed that the homogenized value within the intrinsic volume
is the same, we expect the results of the different sample sizes to be the same. To validate this. we
trace the evolution of the permeability of the same random packing, cut into different sizes with a con-
stant step size of 5% in linear length. For each simulation, we calculate and trace the permeability
within a growing subsample, as shown in Figure 2.2 for sizes ranging from 5% to 100%.

Figure 2.2: The mean permeability of a packing fraction of 32%, with a maximum sample size ranging from 5% to 100%. The
permeability is traced by taking an increasing subsample up to the maximum range, starting at the centre of the sample.

We observe that the permeability of the different sample sizes evolves in a nearly identical matter, fol-
lowing the same values and trend. This confirms that it is possible to compute and trace the effective
property, with a single simulation and by homogenizing the property over a growing sub-sample within
the full sample. However, near the full simulation size of each different step size, a declining trend
of the permeability is observed, diverging from the trend shown with bigger subvolumes. This can be
explained by the influence of the boundary conditions.

2.2.4. Boundary effects
The extent of the boundary layer is determined, so that the postprocessing of the effective properties
can be made without the influence of the boundary conditions. We determine the size of the layer by
performing simulations with slip and no-slip boundary conditions on three samples. This allows us to
analyse the difference in the properties between the models. To emphasize the boundary effect, the
average of the mean energy inside the three different random packings is also plotted. This enables
us to differentiate between the unique outcome of a single sample and a general trend regarding the
packing fraction models. An example of the evolution of the energy is shown in Figure 2.3 for a packing
fraction of 42%.



2.2. Theoretical study 10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Packing fraction

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Lin
ea

r l
en

gt
h 
of
 d
iv
er
ge

ne

Figure 2.3: The boundary effects on the energy dissipation inside a random packing. An example of the divergence is shown
on the left for a packing fraction of 42%. On the right, the maximum subsample, uninfluenced by the boundary conditions, is

presented for the different Packing Fractions.

Packing Fraction Mesh element size Boundary layer
0.07 - 0.22 0.0004 15%
0.27 - 0.37 0.0004 10%
0.42 - 0.47 0.0001 10%

0.52 0.00009 10%
0.57 - 0.62 0.00008 5%

Table 2.1: The properties of the different models

The figure shows that the energy follows the same trend for all three different random packings, as
a small increase of the energy appears in the last 8% of the full model after a stabilized value in the
previous part of the graph. In the last 2% of the sample, a decrease in the energy is observed. The
difference between the slip and no-slip external boundary conditions is also evident, as the values are
identical up to the last 5% of the model and divergence from there on. The energy dissipation within the
models of no-slip always presents a higher value than the slip conditions, which is because the no-slip
boundary conditions force the fluid away from the external boundary. Therefore, we take the last ten
per cent as the boundary layer which is influenced by the boundary condition. We find similar values
for other packing fractions, with a boundary layer between 4% to 15%. For each packing fraction, the
properties of the model set-up are presented in Table 2.1.

2.2.5. Mesh Convergence
Mesh convergence is a crucial aspect of numerical simulations, as it ensures that the solution obtained
is independent of the discretization used and thus can be considered to be numerically accurate. When
an increasing number of elements is applied in the mesh, we find that the value of the energy and per-
meability converges towards a unique value. We, therefore, normalise with regard to the last calculated
value of the energy, as shown in Figure 2.4 for a random packing with a packing fraction of 32%. As
the calculated result of the properties with half the amount of finite elements is within a 2% error of the
normalised value, we assume the solution to be converged.

We observe that the size of the mesh elements is different for the different porosities. This difference
in mesh elements is due to the mesh transition from representing the boundary of the grains to the void
space within the random packing. The circular grains are challenging to represent using a triangular
mesh configuration, which results in the need for more elements compared to the void space in between
the grains. Consequently, higher packing fractions, which include more circles, require a smaller mesh
element size. Note that the mesh convergence for the permeability is found earlier than for the energy.
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Figure 2.4: The mesh convergence of the normalised homogenized properties inside a 2D cross-section of a random packing.
On the left, an example of the evolution of the mesh convergence is shown, for a packing fraction of 32%. On the right the

values of the size of the mesh element are shown which correspond to the mesh convergence

2.2.6. Model verification
The Kozeny-Carman equation (Kozeny [21]; Carman [7]) is a relation to find the permeability of a bed
with randomly packed spheres. The relationship was originally developed by Kozeny using the simpli-
fied model of parallel capillary tubes of equal length and diameter to describe a packed bed. Carman
later calibrated the equation experimentally on real samples. Themodel assumes that the spheres have
a uniform diameter and do not overlap. The flow of the fluid is assumed to be governed by Darcy’s law,
as the flow is laminar. The pores between the spheres are assumed narrow and any permeability of
the solid grains is neglected. As these assumptions match our model rather well, the Kozeny-Carman
model is used to validate our models.

The Kozeny-Carman model relates the permeability (k) with the sphericity of the particles in the packed
bed (ϕs), the porosity of the sample (ϕ), the average diameter of the grains (Dp) and the Kozeny con-
stant (K), depending on the tortuosity of the sample:

k = ϕ2
s

φ3D2
p

36K(1− φ)2

The results of the numerical method and Kozeny-Carman model are compared and shown in Figure
2.5. We observe that the outcome of the mean permeability is very similar, in both values and trends
with the porosity. At lower packing fractions the assumption of narrow pore spaces is no longer valid
and at higher packing fractions the complexity of geometry, with overlapping grains, and flow path
may not be accurately captured by the Kozeny-Carman model, which is observed by the divergence of
both models near the tail-ends of the considered porosities. Similar results have been found in other
research studies (Cancelliere et al. [6]; Lesueur et al. [24]). Therefore, we conclude the model setup is
correct.

2.2.7. Results
The energy of the fluid is traced, starting from the middle up to the edges of the maximum subsample,
for each sample. Figure 2.6 displays the evolution of the energy ratio, macro to micro scale, for different
porosities. For each porosity, 100 Monte Carlo realizations have been computed, as shown in grey. To
present the overall evolution of the energy ratio, the average of the mean energy is plotted in blue.

We observe that the energy ratio for each microstructure evolves with a unique trajectory, varying and
oscillating in values, especially considering smaller volumes, which indicates that energy consistency
does not exist at this stage. However, the energy ratio of every microstructure eventually converges
towards a stable value of one. All microstructures together show a cone-shaped convergence towards
an energy ratio of one with a decreasing variation of the energy ratio with growing subsamples. The
small variation of the energy ratio, together with the stable value of one, indicates that we have found
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Figure 2.5: The comparison of permeability of packing fractions, computed with the Kozeny-Carman (orange) and the
numerical models (blue)

energy consistency across the scales, and therefore have found the REV. The average value quickly
converges towards one, after a higher value in the beginning, which shows that value is truly converged.
The high value of the mean average energy ratio in the beginning can be explained by the big spread
of the energy ratio, which does not drop below zero but includes higher values.

Higher porosities display a slower convergence than lower porosities. For example, the variance of
the energy ratio for a microstructure with a porosity of 69% is lower than 0.25 around 20 times the
length of the sample diameter of the grain ratio (L/D) and drops below 0.1 around 50 L/D. Whereas a
porosity of 47% has a variance lower than 0.25 near 10 L/D, drops below a variance of 0.1 around 25
L/D and is neglectable after 40 L/D.

As we observe a converged unitary value of the energy ratio for all models, including a clear rapid con-
vergence, we show that the energy consistency is found within the intrinsic sub-sample. This means
that the requisite of the energy conservation prescribed by the Hill-Mandel principle is only met at a
certain volume, which is the REV. Current homogenization schemes already require the REV for valid
homogenization, so eventually, we fall back to the same constraints, albeit with a known converged
value. Therefore, homogenization can be applied utilizing the known unitary effective energy ratio and
unaffected by upper or lower bound estimations.

2.3. Application to real microstructures
Section 2.2 showed the theoretical behaviour of the conservation of the kinematic flow energy in ideal-
ized microstructures. Using random packings with spheres, we showed that we find energy consistency
within an intrinsic subsample, unaffected by the boundary conditions. Therefore, we showed that we
can apply homogenization, without the enforcement of the boundary conditions. We now verify this
outcome by tracing the energy ratio within real microstructures, which include natural heterogeneities,
possibly affecting the results.

The process of digital rock reconstruction follows the framework of Lesueur et al. [24]. Segmented
2D micro CT scans are translated to 3D computational models, in which the rock and void space are
separated. In order to reduce the computational costs of the simulations, we use the Displaced Bound-
ary method Lesueur, Rattez, and Colomés [23] to conform the pore-boundary interface to a coarser
background mesh. It is shown that mesh convergence is still achieved with a coarser mesh, which
results in the reduction of computational costs of the simulations. The mesh structures are used to
apply the flow simulations.

While random packings are generated with an algorithm and an unlimited number of microstructures
can be created, the structures obtained from CT scanning are limited by the sample size and scan reso-
lution. Tracing the energy ratio throughout the full sample will provide a single curve and therefore is not
statistically representative. To provide an overview of the variation of the energy dissipation within the
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Figure 2.6: Energy consistency ratio evolution for different porosities, on a scale of length/ diameter ratio. Each grey line is a
new random packing, and the blue line represents the average energy ratio of all the random packings at the considered length.
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full rock sample, the sample is divided into multiple subsamples. The size of the subsamples is bigger
than the average grain size to ensure they accurately reflect the behaviour of the fluid energy inside
the rock. To achieve this, the sample is divided into 43 equal-sized subsamples. Splitting it into fewer
subsamples would result in a bigger subsample size, yet less statistical representativeness of the en-
ergy ratio. Splitting it into more subsamples would result in a very small maximum size of the samples,
which might not be reflective of the real rock sample. The subsamples do not overlap and therefore
the independence of the energy dissipation is ensured for each subsample, as it is not affected by the
other subsamples. Like the whole rock, the development of the energy ratio inside the sub-volumes
is traced with an intrinsic volume which is independent of the boundary conditions, growing from the
centre up to the edges.

The first microstructure is the LV60A [38] sand pack, shown in Figure 2.7a. Sand packs are monomin-
eralic, which makes them quite homogeneous in both grain size and shape, yet include natural hetero-
geneities such as the grain roughness and non-sphericity of the grains. Sandpacks also show high
permeability, as the voids within the sample are connected throughout. The LV60A is characterized
by a porosity of 68% and a characteristic length of 149 µm. The influence of the occurring natural
heterogeneities on the energy dissipation is expected to be low, considering the fairly homogeneous
characteristics of the sand pack. Therefore, this is deemed to be an excellent start to verify the previ-
ously found results with the random packings. The LV60A sand pack has a full size of just above three
mm and with a scan resolution of 10.008 µm, the result of the rock reconstruction is 3003 voxels.
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Figure 2.7: On the left a reconstruction of the LV60A sand pack pore space is displayed. On the right, the tracing of the energy
ratio index of the sand pack is shown. The mean energy in the 64 sub-volumes is shown with grey lines and the average of the

mean energy in the blue dashed line. The energy in the full sample is shown in orange.

We observe that the sand pack shows a convergence in the shape of a cone towards a value of one,
similar as found while analysing the random packings. The energy ratio index inside the subsamples,
plotted in grey, displays a high variation of the energy index, as the ratio reaches values above five,
considering a linear length up to 0.2 mm. We also observe parts of the sample without any fluid energy
in that region, distinguished with an energy ratio of 0, which were not noticed with regard to the ran-
dom packings. The energy ratio index shows a rather fast convergence, as the variance at 0.7 mm is
equal to 19%. This convergence is emphasized by the average of the energy ratio of the fluids inside
the subsamples, plotted in blue, which shows a stabilizing trend towards one after 0.2 mm. The full
sample, plotted in orange, starts at a high energy ratio above five and follows the rather smooth conver-
gence towards one. As we observe a stabilized trend in the energy ratio index of the full sample and a
low variation of the index within the subsamples, we conclude that we have found energy consistency
throughout the scales. This means it is possible to apply valid homogenization at REV, at one mm in
linear length. A similar trend and size of the REV can be observed in the study of Mostaghimi, Blunt,
and Bijeljic [31], which finds a REV of 1.1 mm in linear length.

The second sample is the S1 sandstone Pore-scale Imaging and Modelling [39], shown in Figure 2.8a.
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Whereas sand packs are typically made of individual grains, sandstone is a rock with a much more
cohesive structure where the grains are cemented together by minerals. Sandstones often have lower
permeability, as the voids show a lower connectivity and flow paths are more tortuous than sand packs.
The S1 sandstone is characterized by a porosity of 20% and a characteristic length of 311 µm. All of
this results in slightly more heterogeneous properties overall. With a scan resolution of 8.7 µm and a
total sample length of 2.6 mm, the S1 sandstone image contains 3003 voxels.
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Figure 2.8: On the left a reconstruction of the S1 sandstone pore space is displayed. On the right, the tracing of the energy
ratio index of the sandstone is shown. The mean energy in the 64 sub-volumes is shown with grey lines and the average of the

mean energy in the blue dashed line. The energy in the full sample is shown in orange.

The results of the S1 sandstone are plotted in Figure 2.8b. As expected, the energy ratio index is more
scattered within the subsamples of the sandstone, as shown in grey. The energy ratio shows values
of zero up to five within a region of 0.4 mm. To put it into contrast, this region was only half as big
when the sand pack was analysed. From 0.25 mm, the energy index inside the sandstone also shows
a cone-shaped convergence towards a value of one, like the sand pack and the random packings. Al-
though, at the maximum size of the subsamples (0.54 mm), the maximum variation of the index still has
a value of 0.6. Tracing the energy ratio index of the full sandstone sample, plotted in orange, presents
a similar trend. The values of the energy ratio oscillate quite heavily at the beginning of the figure but
stabilize around a value of one at a linear length of 0.6 mm. A completely stable line, which was ob-
served with the sand pack, is not found, since the value of the energy ratio still slightly decreases. This
means REV has not fully been reached yet. Although, with an energy ratio value near one (0.93) and
the decreasing variance of the index, it is logical to assume we are close to the REV. Similar trends are
shown in Mostaghimi, Blunt, and Bijeljic [31], tracing the permeability of the sandstone. The variance
of the permeability dampens out, but the traced average permeability of the full sample still presents a
decreasing trend when the full sample of the sandstone is considered.

The third sample is the Ketton limestone [30], shown in figure 2.9a. Limestone is mainly composed
of calcium carbonate and therefore usually quite heterogeneous. The grain shape and sizes vary
substantially and the pore spaces may not always be connected. This Ketton sample is rather homoge-
neous for a limestone and has voids reasonably well connected. The Ketton limestone is characterized
by a porosity of 13% and a characteristic length of 331 µm. Where many similar rocks do not reach
the REV when the full sample is considered, we expect this to be different with the Ketton rock sample.
The sample with a size just over three mm has a much higher CT-scan image resolution compared to
the others, of three µm, resulting in a digitised microstructure with 10003 voxels.

The results for the Ketton are plotted in Figure 2.9b. As we observe the variation of the energy ratio of
the Limestone, we find very similar trends as shown in the results of the S1 Sandstone. The energy
ratio of the subsamples of the Ketton Limestone, plotted in grey, include values from zero and over
five of the energy ratio up to a linear length of 0.4 mm, which matches the results of the sandstone.
The range of the energy ratio value decreases in the region above 0.4 mm, as we find a variance of
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Figure 2.9: On the left a reconstruction of the Ketton limestone pore space is displayed. On the right, the tracing of the energy
ratio index of the limestone is shown. The mean energy in the 64 sub-volumes is shown with grey lines and the average of the

mean energy in the blue dashed line. The energy in the full sample is shown in orange.

the energy ratio of 0.5 around 0.7, which is also similar to the sandstone. The average energy ratio
of subsamples, plotted in blue, oscillates noticeably until the maximum values of the energy ratio drop
below five, which is also similar to previously found results. Above 0.4 mm, we observe a stabilizing
trend of the average energy ratio, convergence towards a value close to one. The full sample reaches
a stable value of the energy ratio around one after two mm in length, after an osculating up to 0.5 mm.
Together with the low variance of the subsamples near 0.6 mm, the flow energy can be considered to
be converged at a value of one at two mm, and therefore energy consistency is found naturally.

The last sample is the C2 carbonate Pore-scale Imaging and Modelling [37], shown in Figure 2.10a.
The C2 carbonate exhibits a high heterogeneity in grain properties and low connectivity of the voids,
which results in a low permeability overall. The C2 carbonate is characterized by a porosity of 14%
and a characteristic length of 220 µm. [31] has shown that the size of the REV is not found for the
permeability, even when the full sample is taken into account. The sample has an image resolution of
5.7 µm and with the total size of the sample of 2.3 mm, the result is 4003 voxels.
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Figure 2.10: On the left a reconstruction of the C2 carbonate pore space is displayed. On the right, the tracing of energy ratio
index of the carbonate is shown. The mean energy in the 64 sub-volumes is shown with grey lines and the average of the

mean energy in the blue dashed line. The energy in the full sample is shown in orange.

The results for the C2 carbonate are shown in Figure 2.10b. The subsamples show a huge variance in
the energy ratio index, compared to the previously assessed rock samples. Whereas we find values of
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the index from zero and above five until 0.4 mm in the Ketton and S1, the C2 exhibits these values up
to 0.5 mm, which is the maximum size of the subsamples. The average value of the energy ratio of the
subsamples, shown in blue, oscillates as well and does not necessarily seem to go to one. However,
tracing the energy ratio index of the full sample, plotted in orange, appears to be more stable. The
values vary considerably within the region of the subsamples but seem to stabilize towards a value
of 0.85 afterwards. The varying values of the index in the subsamples and the not fully converged
value of the full sample indicate that we have not reached REV yet, or might not even be close. The
previously assessed rock samples show a clear trend of convergence after the percolation threshold
has been reached, whereas this C2 carbonate lacks this convergence and still contains values below
the percolation threshold at the full length of the subsamples. This makes it impossible to conclude
whether or not the energy ratio will converge towards a value of one. Thus we cannot utilize the energy
consistency and apply valid homogenization for the C2 carbonate.

2.4. Conclusion
In this contribution, the Hill-Mandel principle of energy conservation throughout the transition of scales
is revisited. This requirement for rigorous homogenization is usually enforced by applying specific
boundary conditions, which however influences the resulting effective properties, in both magnitude
and rotation.

Using results of simulations of Stokes-flow through digitised microstructures, this study assesses the
consistency of the energy of fluid inside idealized microstructures, random packings of spheres, inside
an intrinsic volume, away from the boundary layer and therefore uninfluenced by the boundary condi-
tions. This energy consistency is found inside the intrinsic volume when the energy ratio of the micro-
and macro-scale goes to one. In that case, the requisite of energy conservation of the Hill-Mandel prin-
ciple is met and homogenization can be applied. This intrinsic value will capture the true value of the
effective property instead of an upper or lower bound estimation, obtained due to boundary conditions.

The energy ratio index of the increasing idealized microstructure follows a cone of convergence, which
always reaches one, despite the consideration of different porosities. Whereas traditional homoge-
nization schemes use an iterative process to determine the stabilized property value, which is usually
unknown, the energy ratio index converges to one and therefore provides a more accurate indicator of
REV convergence.

We extend the results of the random packings to real rock microstructures, which include natural het-
erogeneities. We show that those heterogeneities mainly influence the width of the base of the cone
of convergence, as the variance at the base is a lot higher than for the random packings. Still, the
cone converges towards an energy ratio of one, which means the Hill-Mandel principle is eventually
respected. Despite a slower convergence, the heterogeneities of natural rocks do not influence the
principle of energy conservation and it remains possible to apply valid homogenization at REV, even
when are heterogeneities present.

We note that the size of the convergence of the energy ratio inside real microstructures seems to di-
rectly depend on the percolation threshold. The energy ratio fluctuates considerably when sub-samples
are not percolating. This is observed with highly heterogeneous samples and this behaviour prevents
an accurate approximation of the REV. In comparison, when the percolation threshold is reached, the
mean value of the energy ratio stabilizes and reaches convergence quickly.



3
Predicting the REV by determining

the evolution law of the cone of
convergence

Abstract
To find the effective physical property of a rock, it is required to find a volume for which the homogenised
property does not fluctuate when the size of the sample is increased; the Representative Elementary
Volume (REV). Its determination usually comes at the cost of a large number of simulations, making it
overall a computationally expensive process. Therefore, many scientific studies have been dedicated
to optimize the process of finding REV. Using statistical numerical methods, it is shown that the fluc-
tuation of the effective property corresponds overall to a cone-like shape convergence. We suggest
determining the generic evolution law of the cone of convergence, which can be used to predict the
size of the REV and the effective physical property.

This study is based on simulations of Stokes flow through idealised microstructures from which the
permeability is upscaled. By tracing and plotting the convergence of permeability for multiple samples,
the full cone of convergence appears. The cone shows exponential growth and decay, converging
towards the effective permeability of the microstructure. By fitting the log-normal distribution on the
collected data points, we can describe the generic evolution law of the cone of convergence. This
accurately describes the base of the cone, despite the different porosities. The evolution of the cone
is described with an exponential function, using the reference variance and mean of a log-normal dis-
tribution as input.

We show that the determined law of the cone also applies to real microstructures, despite the pres-
ence of natural heterogeneities. The importance of this contribution is that we eventually show that it
is not necessary to simulate the full sample to find the REV, which is computationally expensive, but
instead, a number of small subsamples, depended on a predetermined accuracy, is sufficient to predict
the size of the REV and the effective property when the convergence law is known.

Keywords
Representative Elementary Volume, Convergence Cone, Permeability

3.1. Introduction
To understand the behaviour of rock media and their properties, it is essential to study the microscopic
scale. For example, the porosity, connectivity of the voids and other morphologic parameters of rock
media will determine the overall permeability of the material (D. C. Beard [9]; Cox and Budhu [8];
Torskaya et al. [49]). However, modelling larger structures using microstructures is not practical, as it

18
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requires high computational power to capture the microscopic complexity. Digital Rock Physics (DRP)
provide a scheme to upscale the physical of the heterogeneous porous media to the macroscopic scale.

The upscaling of the physical properties from the microstructures to the macroscale requires the de-
termination of Representative Elementary Volumes (REV). These are the smallest volumes of a het-
erogeneous sample that can accurately represent the mean constitutive response at the macroscopic
scale. In DRP defining the REV is crucial as the physical properties of the porous media can vary sig-
nificantly when microscopic scales are taken into account. This makes it difficult to model and predict
the behaviour of the rock sample on a larger scale, based on microscopic samples. By identifying and
characterizing the REV, the physical quantities can be upscaled from the microstructure and used for
macroscale applications. Another benefit of REVs is the ability to apply multiscale modelling. The ho-
mogenized macroscopic response is used as input to the microscopic boundary value problem, which
in turn provides the material response at the macroscale. This circular system allows for the determi-
nation of non-physical responses in the overall material behaviour without making any assumptions.

The determination is a fundamental exercise in DRP, yet it remains a challenging task due to the
complex nature of these porous media. The physical properties of the microscopic samples are mea-
sured and homogenized on a growing subsample. As smaller volumes of the porous medium can
exhibit significant variances in the properties, larger volumes are needed to achieve convergence to a
stable value. However, tracing this convergence is computationally expensive as multiple simulations
are needed with a growing sample size to obtain an accurate measurement of the physical property.
Especially the larger volumes can be computationally demanding, in both resources and time.

Therefore, researchers have tried to simplify and optimize the process of finding REV. Some studies
have shown that the REV can be related to the size of the grain, studying a specific physical property
and the morphology of the microstructure. Elvin [11] showed that the number of grains required for
homogeneous elastic behaviour of polycrystalline should be at least 230. Ren and Zheng [42] tested
over 500 cubic polycrystals in the plane stress problem and showed that the REV size of the polycrys-
tals is roughly 16 times the grain size. Liu [25] determined experimentally that the minimum size to
represent uniaxial compression and thermal expansion of PBS 9501 heterogeneous materials with an
average crystal diameter of around 100 µm is approximately 1.5 mm. Grimal et al. [17] studied bone
biomechanical behaviour and showed that the REV size of the elastic coefficients of the tissue is about
1.5 mm. There are many more examples of studies using different physical properties in combination
with different materials, showing a specific size as a REV. However, if the input parameters, such as
the type of material or physical quantity being assessed, are changed, the size of the REV will change.

In order to find a more generic way of finding REV, not necessarily depending on a specific property
or type of material, other studies have provided methodologies. Shan and Gokhale [46] developed a
methodology involving the use of stereological and image analysis techniques to quantitatively charac-
terize the microstructure of ceramic matrix composites. This is used to create a computer-generated
REV which is statistically representative of the real microstructure, including fibre-rich and -poor re-
gions. Sebsadji and Chouicha [45] used a representative unit cell approach, assuming a unit cell to be
periodic over a specific sample in order to find the REV, which is characterized by a power-law particle
size distribution. While these methodologies provide useful approaches for finding the REV in different
materials and media, they are still time-consuming and require significant computational power.

To get more insight into the evolution of the convergence, numerical-statistical methods have been
applied in the process of finding REV. Graham and Yang [16] studied the geometrical properties of the
microstructure and show that the variance of the particle distribution within the sample converges with
an increasing measured area. Du and Ostoja-Starzewski [10] presented the rate of convergence based
on the number of grains in a length, depending on the porosity, with a decreasing variance of the poros-
ity considering larger samples. Łydżba and Różański [26] studied the heat flow and the linear elasticity
of a random media. They applied a two-point probability and a lineal-path function to find a converged
value of the physical properties. Kanit et al. [20] presented the REV for linear elastic properties and
thermal conductivity including a convergence of the variance considering larger samples. Kanit shows
that the properties can be determined not only using numerical simulations on large volumes but also
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with mean values of multiple small volumes. Pelissou et al. [34] continues the work of Kanit, using a
new stopping criteria to reduce computational costs, which is especially convenient in non-linear cases.
Mirkhalaf, Pires, and Simoes [29] utilizes the statistical-numerical approach to find the REV for poly-
mers subjected to finite deformations with a predefined percentage of the average deformation and a
predefined error as the stopping criteria. Rahman et al. [41] showed the convergence for porosity for
five different rock samples and also demonstrated that the variance of the porosity can be used as a
qualitative indicator for rock heterogeneity.

The numerical-statistical studies clearly show that the process of finding the REV results in a cone-
shaped convergence of the physical property. The property varies sustainably when different smaller
volumes are considered. As the size of the samples is growing, the variance of the property will de-
crease and converge towards a stable value. When the variance of the property is small and the
average value of the property has stabilized, the size of the REV can be determined. Due to the direct
correlation between the geometric properties of the microstructure and the homogenized physical quan-
tity, the convergence is always bounded by the cone shape, starting with a large width and becoming
increasingly narrow with a growing sample size.

In this study, we propose a new method to find REV, utilizing the known shape of the cone of con-
vergence. The shape provides both information on the rate of convergence and the homogenized
property, allowing to find the REV in a more efficient and accurate way. In addition, if the digital rock
sample is not large enough to find REV, which is often the case considering carbonate rock samples,
the cone of convergence can still provide information about the size of the REV and homogenized prop-
erty. With a focus on permeability, a property of significant interest in DRP, we aim to find the evolution
law of the cone of convergence. The energy dissipation will also be considered due to its relevance to
homogenisation schemes Zwarts and Lesueur [53].

This paper is organized as follows: In section 3.2, we introduce and determine the generic evolution law
of the cone of convergence with idealized microstructures. In Section 3.3, the generic evolution law is
applied to real microstructures, to validate whether or not the generic evolution law still holds when nat-
ural heterogeneities interfere. In Section 3.4, the requirements to fit an accurate cone of convergence
are discussed and compared to traditional methods.

3.2. Material and methods
As described in the introduction, the properties of the grains are known the be a big influence on the
permeability of a rock sample. This study aims to find the generic evolution law of the cone of con-
vergence, hence we avoid considering the influence of the grain properties on the permeability and
the energy dissipation by considering an ideal porous medium, random packings of perfectly round
spheres.

The method applied to generate and mesh the random packings, the Stokes-flow model and post-
processing of the permeability and energy dissipation are shown in Zwarts and Lesueur [53]. The
random packings are generated and with Finite Element simulations of Stokes-flow, we can calculate
the energy dissipation and the permeability of the samples. With the recommendations of Thovert and
Mourzenko [48] in mind, the postprocessing of the effective properties will be applied within a subvol-
ume, without the influence of the boundary conditions. We follow the recommendations from Zwarts
and Lesueur [53] and plot the evolution of the energy dissipation ratio index across the scales to deter-
mine the REV of the permeability. At REV, we respect the Hill-Mandel principle and obtain therefore
the energy consistency across scales, which means that the ratio becomes unitary.

3.2.1. Generating the cone of convergence
The cone of convergence appearing on a REV convergence graph, shortened to convergence cone or
cone of convergence in this article, represents the convergence of homogenized properties for samples
with increasing size. The cone consists of a collection of data points, each representing the value of a
homogenized property obtained from different samples that vary in size and geometrical properties of
the microstructure. Due to the substantial variability of the homogenized properties for small samples
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and then the convergence with increasing sample sizes, this cone shape naturally appears.

In this research, the data points are obtained by tracing the permeability and energy dissipation for
a series of random packings with the same characteristics. For each sample, the properties are traced
with the help of a growing subsample, starting from the centre of the random packing, and gradually
growing to the maximum size of the sample. This way, we can trace and plot the evolution of the prop-
erties for a single sample. We repeat the process of tracing the parameters for a series of samples
and plot it all together in the same graph, Figure 3.1, where we can see the cone shape appearing. To
analyse the behaviour of the cone of convergence, we consider 100 samples for each packing fraction,
ranging from 0.07 up to 0.62. This number of models allows us to visually display the cone of conver-
gence and is verified later to be statistically representative of the accurate description of the cone.

3.2.2. Evolution law of the cone of convergence
The shape of the cone of convergence is visualized with a grey colour through the superposition of the
trace of the individual samples, shown in Figure 3.1. We present the convergence for the permeability
in the left column and the energy dissipation ratio on the right. Each row of figures presents the REV
convergence for a different porosity, which was controlled by the packing fraction. The data for the
energy dissipation ratio index is taken from Zwarts and Lesueur [53].

All the cones start with a large base at small sample sizes and converge towards a certain value,
as shown by the decreasing width of the cone. The energy ratio, in particular, converges towards a
value of one. Note that the missing spaces present in the cone would be filled if more statistical rep-
resentativeness is considered. The mean value of all the samples of the homogenized properties is
plotted with a dashed blue line. Compared to the overall convergence of the cone, we observe a faster
convergence of the mean value, which stabilised value is the true effective homogenized property.

From a statistical point of view, the boundary (y) of the cone at each size (s) can be described with
a positive or negative standard deviation (σ) from the mean value (µ), as shown in Equation 3.1.

ys = µs±σ (3.1)

We notice that the cone is not exactly symmetric around the mean value, as the top part of the cone
presents a steeper convergence than the lower part. This means that the standard deviation used in
the description of the cone has to be asymmetrical.

Upon closer inspection of the small sizes, we observe that the energy dissipation ratio index and the
permeability vary with a range between zero and very high values. The range is realistic because at
the microscale the flow can vary between being completely blocked by the grains of the rock or having
a completely unobstructed flow path. This corresponds to respectively zero permeability and a high
value, and similarly for the energy dissipation, as shown in Zwarts and Lesueur [53]. We also observe
that the distribution of the data points is not exactly symmetric around the mean value, shown in Figure
3.2. Most values fall between zero and two, and only a few go up to higher values. The distributions at
bigger sizes, also shown in Figure 3.2, present a smaller range of values, centred around the energy
ratio of one. In addition, the histogram is becoming more symmetric around one.

The general shape of the cone and the shape of the histogram of the small samples seems to follow
the shape of a log-normal distribution. The log-normal distribution has an asymmetrical range between
zero and infinity, which therefore includes the very high values observed at the beginning of the cone.
We note that as the variance of a log-normal distribution becomes small, the difference with a normal
distribution becomes small. This means that the increasingly symmetrical shape with bigger sample
sizes can still be accurately described by a log-normal distribution. Therefore, we fit a log-normal dis-
tribution over the collection of our data points of the REV convergence and describe each distribution
at every size within the log-normal space.

ln ys = ⟨lnµs⟩±σln;s (3.2)



3.2. Material and methods 22

0 20 40 60 80
Length of the sample / Diameter of the grain

0.0

0.5

1.0

1.5

2.0

2.5
No

rm
al

ise
d 

m
ea

n 
pe

rm
ea

bi
lit

y
Porosity = 57%

0 20 40 60 80
Length of the sample / Diameter of the grain

0.0

0.5

1.0

1.5

2.0

2.5

En
er
gy

 d
iss

ip
at
io
n 
ra
tio

Porosity = 57%

0 20 40 60 80
Length of the sample / Diameter of the grain

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ise

d 
m

ea
n 

pe
rm

ea
bi

lit
y

Porosity = 53%

0 20 40 60 80
Length of the sample / Diameter of the grain

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
er

gy
 d

iss
ip

at
io

n 
ra

tio

Porosity = 53%

0 20 40 60 80
Length of the sample / Diameter of the grain

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ise

d 
m

ea
n 

pe
rm

ea
bi

lit
y

Porosity = 47%

0 20 40 60 80
Length of the sample / Diameter of the grain

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
er
gy

 d
iss

ip
at
io
n 
ra
tio

Porosity = 47%

0 20 40 60 80
Length of the sample / Diameter of the grain

0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
ise

d 
m
ea

n 
pe

rm
ea

bi
lit
y

Porosity = 41%

0 20 40 60 80
Length of the sample / Diameter of the grain

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
er
gy

 d
iss

ip
at
io
n 
ra
tio

Porosity = 41%

Figure 3.1: This figure presents the different cones of convergence varying in porosities and physical properties. The left
column displays the evolution of the normalised permeability of various porosities and the right side shows the development of
the energy ratio. The grey lines show the evolution of the individual random packings and the blue dashed line presents the
average value of the mean properties. The red lines are the determined evolution law of the cone of convergence, with the

mean value plotted in a dashed line and the boundaries as the continuous line.
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Figure 3.2: Histograms of the energy dissipation ratio index with a minimum, half and maximum subsample size of the
samples with a packing fraction of 32%.

For simplicity, we will refer to the log-normal standard deviation of the distribution σln;s with σs from
here on. The permeability and the energy dissipation are intrinsic average properties of the rock sam-
ple. Thus, we are looking for a way to describe the distribution in terms of the mean and the variance
of the mean. The geometric mean value of the cone is clearly consistent throughout the evolution of
the cone, except with very small samples. This is because the range of the values is quite large with
small samples, which increases the standard error of the sample (Altman and Bland [1]).

As the corresponding sample size of the observations (n) of the cone grows with the evolution of the
cone of convergence, the bigger samples include the smaller sample sizes. Therefore, we assume that
the mean value of a larger sample with a certain size (Vs) is equivalent to the average of the means
of the amount of smaller samples which fit in the larger sample. We consider this by introducing a
reference sample (Vref ). The size of the reference sample is determined by the user of the cone and
the bigger samples include a number of reference samples.

Figure 3.3: The principle of the mean value of a larger volume, which is equal to the mean of the means of smaller (reference)
volumes

The value of the geometric mean value (µ) is approximated with a weighted average (⟨x⟩), proportional
to the sample size (Vi), similar to what is shown in Figure 3.3.

lnµ ≈ ⟨lnx⟩ =
∑n

i lnxi · Vi∑n
i Vi

(3.3)

For the determination of the variance, we fall back on the law of large numbers and the variance-of-
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the-sum rule, that describes that the variance of a mean from a number of independent observations
of the same distribution is calculated by taking the average of the variance-of-the-sum. We apply this
principle on the variance of a sample with a certain size (σ2

s ) and add the number (N ) of reference
samples which fit in the bigger sample, as shown in Equation 3.4. The number of reference samples
is equal to the ratio of the sample size with the reference size.

σ2
s =

1

N2

N∑
i=1

σ2
ref =

Nσ2
ref

N2
=

1

N
σ2
ref =

1

Vs/Vref
σ2
ref =

Vref

Vs
σ2
ref (3.4)

To ensure that the observations are independent, we advise to only consider the bigger samples, as
tracing the samples would make the observations of the effective properties dependent on each other
and the bigger samples include the mean values of the smaller samples. With the log-normal distribu-
tion and observations of a certain size (ns) included, the reference variance is calculated with Equation
3.5.

σ2
ref =

Vs

Vref
σ2
s ≈ Vs

Vref

1

ns

ns∑
i=1

(
ln xi

µ

)2

(3.5)

We verify the principle of the means and the applicability to describe the evolution of the variance with a
reference value. Figure 3.4 shows the difference between the variance calculated at each subsample
length and the determined relation of the variance with the reference value, shown in Equation 3.4. We
obtain the same values with both methods and can therefore conclude that the mean values of bigger
samples are indeed correlated to the mean values of smaller samples and can be directly related to a
reference variance.
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Figure 3.4: Evolution of the variance according to the size of the model. The orange line is the standard deviation computed
per sample size and the blue dashed line is the standard deviation in relation to the reference value.

Combining the mean value from Equation 3.3, the reference variance from Equation 3.5 and the evo-
lution of the variance with the size and the reference variance from Equation 3.4, the evolution law of
the cone of convergence, shown in Equation 3.2, is rewritten as shown in Equation 3.6

ln y = ⟨lnµ⟩ ±
√

Vref

Vs
σref ⇔ y = µ · exp

(
±
√

Vref

Vs
σref

)
(3.6)

The Empirical Rule applies, which means that the number of standard deviations taken into account de-
termines the amount of data which is fitted within the boundaries of the cone. One standard deviation is
approximately 68% of the data, two standard deviations are around 95% and three standard deviations
are approximately 99.7%. Since it is statistically possible to obtain outliers which could influence the
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shape of the boundaries of the cone, we use twice the standard deviation in our fit.

y = µ · exp

(
±2

√
Vref

Vs
σref

)
(3.7)

In two dimensions, which is the case with the random packings, the volume is equal to the square of the
length (Vs = L2

s). And since the permeability and REV convergence is usually plotted with respect to the
sample length, the evolution of the cone of the REV convergence is described as shown in Equation 3.8.

y = µ · exp
(
±2

Lref

Ls
σref

)
(3.8)

Note that in three dimensions, which is usual when analysing real samples, the evolution of the cone
is described as shown in Equation 3.9.

y = µ · exp

(
±2

(
Lref

Ls

)3/2

σref

)
(3.9)

Although we recommend that to take the homogenized values of the largest samples to describe the
evolution law of the cone, we note that different sample sizes can be included as well, under the con-
ditions that the samples are independent. The summation is then applied over different sample sizes
(s) and observations within that sample size (nj). This is rewritten so that the ratio of the size to the
reference size is correlated to the observation.

σ2
ref ≈ 1

n

s∑
j=1

Vj

Vref

nj∑
i=1

ln
(

xi

⟨x⟩

)2

=
1

n

n∑
i=1

Vi

Vref
ln
(
xi

µ

)2

(3.10)

3.2.3. Fit of the determined evolution law
We calculate the variance and the mean value with the data points of the permeability and energy dis-
sipation, and plot the evolution of the log-normal distributions, as described in Equation 3.8, in Figure
3.1. The boundaries of the distribution at two times the standard deviation are shown with a red line
and the mean value with a red dashed line.

We observe that the mean value of the log-normal distribution aligns with the average mean value
of the homogenized values. The boundaries of the log-normal distribution also align accurately with
the boundaries of the cones of convergence. This confirms that fitting a log-normal distribution on the
data points accurately describes the shape of the cone and can therefore be utilized to describe the
convergence itself.

The fit of the convergence cones of the energy dissipation appears to exclude more outliers, com-
pared to the cones of the permeability. Despite having similar proportions of data points fitting within
the mathematical model with twice the standard deviation, the outliers of the convergence cone of the
energy ratio are more visible as they appear near the start of the cone. We also observe that the cones
of the energy show a steeper convergence, compared to the cones of permeability, from which we can
conclude that the convergence of the energy ratio is slightly faster.

Although the general shape and evolution law of the cone of convergence is the same for each of
the cones, we observe that the convergence depends on the porosity of the sample. Lower porosities
present a wider base of the cone than higher porosities. For example, the width of the convergence
cone of the energy ratio with a porosity of 53% is almost double the width of the cone with a porosity
of 41%. The correlation between the reference variance and the porosity is shown in Figure 3.5.
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Figure 3.5: The evolution of the standard deviation compared to the porosities of the random packings. On the left the
standard deviations of the energy ratio is shown, and the standard deviation of the permeability on the right.

The trend observed with the porosity confirms that the convergence for the permeability or energy dis-
sipation ratio depends on the microstructural properties of the sample.

Since the evolution of the cone of convergence is accurately described by fitting a statistical model,
in the form of a log-normal distribution, on the cones of convergence, we can utilize the properties of
the statistical model and provide information about the error of the fit. On top of the number of data
points taken into account and the decreasing variance, which provides information about the accuracy
of the determined REV and homogenized property, the model also presents the error of the standard
deviation (O’neill [32]), which on its turn is directly related to the width and convergence of the cone.

ϵ

σ
=

1√
2N − 2

(3.11)

The evolution of the accuracy is shown in Figure 3.6, which presents the reference standard deviation
of the permeability for three different porosities and the number of models taken into account. The
figure clearly shows the convergence towards a certain value and that the fluctuation around that value
becomes smaller with the increase in the number of samples. Interestingly, we note from Equation 3.11
that the relative error does not depend on the actual size of standard deviation, but on the number of
models taken into account. This means that the size of the sample is not influenced by the relative error
and that the evolution law of the convergence, as described with the log-normal distribution, can be
fitted with data from any sample size. The relative error also allows to calculate the number of models
required to meet a predetermined accuracy.

3.3. Application to real microstructure
The previous section confirms the concept of the cone of convergence for the REV and shows that
the generic evolution law of the convergence cone can be described by fitting the data points in a log-
normal distribution. As the generic evolution law has been determined with idealized microstructures,
we now verify if the evolution law also applies to real microstructures. Real microstructures contain
natural heterogeneities which may affect the evolution of the cone of convergence. This section will
analyse samples with increasing heterogeneity.

The process for reconstructing digital rocks follows the method proposed by [24]. 2D micro CT scans
are segmented and translated into 3D computational models, where the rock and void space are dis-
tinguished. To minimize the computational expenses required for simulations, the Displaced Boundary
method introduced by Lesueur, Rattez, and Colomés [23] is employed. This approach allows the pore-
boundary interface to be conformed to a coarser background mesh, resulting in smaller mesh files.
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Figure 3.6: Three examples of the evolution of the reference standard deviation of the permeability with respect to the number
of samples taken into account.

Whereas the random packings are virtually created and can therefore generate an unlimited amount of
samples with the same characteristics, the CT-scanned microstructures provide limited data due to the
maximum size of the sample and the scan resolution. To overcome this limitation in plotting the cone
of convergence, the rock sample is split into multiple subsamples. To enforce that the subsamples still
reflect the behaviour of the rock, the samples can-not be infinitely small. Therefore, each rock sample
is cut into four equally sized parts in each direction, resulting in 64 subsamples. Bigger samples would
result in a lower accuracy of the cone of convergence and smaller samples may not have reached the
percolation threshold. The relative error of the base of the cone is 9%, which is calculated with Equa-
tion 3.11. The subsamples do not overlap to ensure that the post-processed permeability and energy
dissipation are independent within each subsample.

The first rock sample in this study is the LV60A sand pack Pore-scale Imaging and Modelling [38], which
is displayed in Figure 3.7a. While the sand pack is relatively homogeneous for a real rock sample, it still
contains natural heterogeneities in the grain properties, such as grain roughness and non-sphericity.
The sand pack has high permeability owing to the good connectivity of its voids, shown with a porosity
of 38% and a characteristic length of 149 µm. These properties make it a good starting point for verify-
ing the identified evolution law of the cone of convergence. The LV60A sand pack sample has a size
of just over three mm and is scanned using a resolution of 10.008 µm, resulting in 3003 voxels. The
cones of convergence for both the permeability and energy dissipation of the sand pack are shown in
Figure 3.7 b and c.

The results show that the determined evolution law of the cone fits the convergence of both the energy
ratio and the permeability to a satisfying degree. The energy ratio cone is especially accurate near the
bottom half and the permeability shows excellent representation overall. Again, the lack of population
inside the cone can be explained by the lack of data points. The fit of the cone improves with larger
samples, which can be explained by the decreased variance of the physical properties.

Compared to the random packings, we find that the general shape of the cone and the corresponding
evolution law of the convergence cone is not affected by the grain heterogeneities. We do, however,
observe a higher variance in both the energy dissipation and the permeability, compared to the random
packings.

We utilize the evolution law of the cone of convergence to determine the permeability and the size
of the REV and obtain values that align with those reported by Mostaghimi, Blunt, and Bijeljic [31]. The
permeability is found to be 37 Darcy, which is around a five per cent margin of 39 Darcy noted by
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Figure 3.7: The results for the LV60A sandpack. On the left, the pore space of the sand pack is shown. The middle graph
shows the convergence cone of the energy consistency. The right graph shows the convergence cone of the permeability of
the rock sample. The grain lines in the graph show the variance of the property, the red lines show the cone of convergence

and the blue line is a single tracing of the full sample.

Mostaghimi. Mostaghimi has shown that the REV is found at a length of 1.1 mm for the permeability, at
which wemeasure an error of five per cent using the cone of convergence of the energy dissipation ratio.

The second sample in this study is the S1 sandstone Pore-scale Imaging and Modelling [39], shown
in Figure 3.8a. Unlike sand packs, which consist of individual grains, sandstone is a type of rock with
a cohesive structure in which the grains are cemented together by minerals. Sandstones tend to have
lower permeability due to the lower connectivity of their voids and the more tortuous flow paths. As
a result, the S1 Sandstone exhibits slightly more heterogeneous properties, shown with a porosity of
20% and a characteristic length of 311 µm, making it harder to find REV. The S1 sandstone is scanned
with a resolution of 8.7 µm over a total length of just over 2.6 mm, resulting in 3003 voxels. The cones
of convergence for both the permeability and energy dissipation of the sandstone are shown in Figure
3.8 b and c.

0.0 0.5 1.0 1.5 2.0
Size element [mm]

0

2

4

6

8

10

12

14

En
er
gy

 ra
tio

0.0 0.5 1.0 1.5 2.0
Size element [mm]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n 
Pe

rm
ea

bi
lit
y 
[D

]

Figure 3.8: The results for the S1 sandstone. On the left, the pore space of the sandstone is shown. The middle graph shows
the convergence cone of the energy consistency. The right graph shows the convergence cone of the permeability of the rock

sample.

The results show that the lower connectivity of the voids does not influence the general shape of the
cone of convergence. This means that the evolution of the cone can still be accurately described by the
determined evolution law. The main difference we observe, compared to the sand pack and random
packings, is the higher variance and corresponding slower convergence. The cone of the energy ratio
is rather accurately described with the determined evolution law, as both the bottom and the top part
are well populated. The permeability seems to obtain more values at the lower part, although the fit of
the cone is still satisfying.

[31] has shown the REV to be around 1.3 mm in length size, yet there is still some evolution in the
permeability. If we fit the evolution law of the cone of convergence, we find that at 1.3 millimeters, the
error of the size of the permeability REV is around 11%.

The third sample in this study is the Ketton limestone Modelling [30], which is shown in Figure 3.9a.
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Limestone is typically composed of calcium carbonate and is therefore often quite heterogeneous, with
substantial variance in grain shapes and sizes and non-uniformly connected pore spaces. However,
this particular limestone sample is relatively homogeneous and has reasonably well-connected voids,
shown with a porosity of 13% and a characteristic length of 331 µm. The sample has a high-resolution
CT scan image of three µm and with a total size of just over three mm, the digital reconstruction results
in 10003 voxels. The cones of convergence for both the permeability and energy dissipation of the
limestone are shown in Figure 3.9 b and c.
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Figure 3.9: The results for the Ketton limestone. On the left, the pore space of the limestone is shown. The middle graph
shows the convergence cone of the energy consistency. The right graph shows the convergence cone of the permeability of

the rock sample.

The results of the Ketton simulation show many similarities to the results of the sandstone. The cone
fits nearly perfectly on the convergence of the energy ratio and to satisfaction on the convergence of
the permeability. The convergence of permeability is again mainly fitted using the lower part of the
cone but shows a high variance in the beginning, which is included in the description of the cone.

If we aim for an error of ten per cent of the variance of the cone, we find that the Ketton limestone
has a REV of around 1.2 mm. If a lower error of five per cent is considered, the REV would have a
length of approximately 1.8 mm.

The final sample in this study is the C2 carbonate Pore-scale Imaging and Modelling [37], as shown
in Figure 3.10a. This carbonate exhibits high heterogeneity in grain properties and low connectivity
of voids, shown with a porosity of 14% and a characteristic length of 220 µm, resulting in low perme-
ability overall. [31] showed that the REV size cannot be determined for permeability, even when the
full sample is taken into account. However, by applying the principle of the cone of convergence, an
estimation of the size of the REV is possible. The sample has an image resolution of 5.7 µm and a total
size of just under 2.3 mm, which results in 4003 voxels. The cones of convergence for the carbonate
are presented in Figure 3.10 b and c.
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Figure 3.10: The results for the carbonate C2. On the left, the pore space of the carbonate is shown. The middle graph shows
the convergence cone of the energy consistency. The right graph shows the convergence cone of the permeability of the rock

sample.

The results show a very high variance compared to the other samples. Note that the percolation thresh-
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old has not been fully reached yet within each subsample, and therefore the range of the homogenized
properties is still high. The energy ratio still has a variance of over 18%.

Although the cone of convergence with the energy ratio is particularly well-fitted, we observe that the
description of the convergence of the permeability is less accurate. Since the values of the permeability
still range vary significantly within themaximum subsamples as the percolation threshold is not reached,
the base of the cone is wide and may not accurately describe the convergence. We note that as the
percolation threshold is reached with the other samples and the random packings, the convergence of
the properties is quick and therefore easier to describe.

With the evolution law of the cone of convergence of the energy ratio, we predict that an error of ten
per cent results in a REV size of 3.1 mm and an error of five per cent results in a REV with a length of
4.9 mm.

3.4. Requirements for the convergence cone
In the previous sections, we determined the generic evolution law of the cone of convergence with
Random Packings and applied this law to real rock structures. We verified that the evolution law is
still applicable, with natural heterogeneities included. As the cone of convergence allows to determine
the REV and homogenized property without the need for large simulations, this chapter discusses the
requirements of samples to fit an accurate cone and compares the application with traditional methods,
computational and time-wise, to find REV.

3.4.1. Sample requirements
Section 3.2 presented that the accuracy of the fit is depended on the number of models taken into ac-
count. The variance of the distribution, which is directly related to the boundaries of the cone, and the
mean value are estimated with the number of samples taken into account. We show that the error of
the boundaries can be estimated with a relative error, which only depends on the number of samples.
However, the absolute error depends also on the value of the variance.

This becomes clear in Section 3.3, especially with the C2 carbonate sample. The variance of the
permeability is quite high and only 64 samples can be taken into account. This means that the fit
of the cone became less accurate, compared to the random packings or other rock samples. In the
other rock samples, the percolation threshold is reached, which decreases the range of the values sig-
nificantly. This makes the absolute error of the fit lower and improves the fit of the cone of convergence.

For this reason, we advise fitting the cone of convergence with samples bigger than the percolation
threshold, as these samples somewhat represent the overall behaviour of the flow within the full rock
sample. Using a predetermined accuracy, it is possible to calculate the number of samples needed.
When there is not enough data or amount of samples available, it is still possible to fit the cone of
convergence and predict the size of the REV, albeit with lower accuracy.

When the data is limited, we also observe that the energy ratio index presents a more accurate fit
of the cone of convergence. Not only is the converged value known to be unitary, but the cone itself is
also better filled within the boundaries of the evolution law compared to the cone of REV convergence,
which provides confirmation that the fit is correct. The fitted cone is then easily utilized to predict the
size of the REV.

3.4.2. Computational requirements
To demonstrate the required computational resources to fit the cone of convergence, the LV60A sand
pack is used as an example. The cone is fitted with a similar set-up as previously in Section 3.3,
with the rock being divided into 64 subsamples. To get rid of the boundary effects, a slightly bigger
subsample is taken for the simulation. The post-processing of the effective properties is done within
a subsample, to get away from the boundary effects and to ensure we avoid overlap of the subsamples.



3.5. Conclusion 31

The computational requirements to plot the cone are compared to a traditional method of tracing the
convergence of the REV, where the simulations are run on growing subsamples of the sand pack, up to
the maximum size of 3003 voxels. Both the simulation memory and time are traced throughout, which
is shown in Figure 3.11.
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Figure 3.11: The two figures show the computational resources required to simulate Stokes flow in the LV60A sand pack for an
increasing subsample. On the left, the trend between memory usage and the length of the sample is shown. On the right, the

trend between simulation time and the length of the sample is displayed. The subsample size is shown in orange.

We observe that both the time andmemory required for the simulation increase, following a higher-order
power law. Whereas traditional methods require large simulations to verify whether the fluctuation of
the property has damped out, the cone of convergence suffices simulations. The fourth, orange point
on the graphs is equal to the size of the subsamples and it is clear that both the memory requirement
and simulation time is significantly lower than the full sample.

Because the sample is split into subsamples, the simulation can be tweaked to the available resources.
To put it into perspective, the full sample takes approximately 828 times longer than a single subsample
and the memory requirement is reduced by a factor of 60. Running the simulations of all the subsam-
ples at the same time would almost double the memory requirement, compared to simulating the full
model, yet the process would run 828 times faster. Running all the simulations successive would, on
top of the memory reduction of a factor of 60, still be four times faster. If we match the memory of the
full sample, the subsamples can split into two batches and the simulation time would still be 100 times
faster than the full model.

3.5. Conclusion
In conclusion, this paper has presented a study on finding the Representative Volume Element (REV)
through the analysis of the convergence of both the permeability and the energy ratio index.

With Finite Element simulations of Stokes-flow through idealized microstructures, we present the con-
vergence without the influences of heterogeneities. We show that the convergence follows a cone of
convergence, with exponential growth and decay towards a converged value. The generic evolution
law of the cone, therefore, be described by an exponential function, incorporating the mean value and
variance of a log-normal distribution. We show that the proposed description of the cone accurately
describes the boundaries of the cone and the converged value and can be used to determine the size
of the REV. On top of that, the applied statistical log-normal distribution provides information about the
error of the values, size of the REV and fit.

The evolution law of the convergence is applied to real rock samples, which include real heterogeneities.
We validate that the same formulation can be used for the real samples, as the description matches
the shape of the cone, despite the heterogeneities leading to a wider base of the cone. Moreover, we
show that if the REV can-not be determined at the maximum size of the sample, a prediction for the
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size of the REV and the associated physical properties can still be made by utilizing the evolution law
of the cone of convergence.

Since the cone of convergence can be fitted with both idealized microstructures and real rock sam-
ples, we show that it is possible to speed up the process of finding the REV. With a large number of
small simulations, dependent on a predetermined accuracy and the percolation threshold, it is possible
to adjust the process to the computational resources required and available. The traditional large simu-
lations required to find REV, which costs the most computational resources and time, are not necessary
anymore.



4
Conclusion and recommendations

4.1. Conclusion for the homogenization without the influence of
the boundary conditions

The first part of this thesis has studied the process of upscaling physical properties, specifically the
permeability, from a rock microstructure to a homogenized parameter for the macroscale. This is a
process based on the postulation of the Hill-Mandel principle of energy consistency throughout the
transition of scales. Traditional homogenization methods apply specific boundary conditions to enforce
energy consistency. Yet, it has been found that boundary conditions influence the property of the rock
sample. Although, applied homogenization within a subsample, away from the boundary layer, will
provide the effective property. With the latter in mind, this study has focused on finding the natural
energy consistency in the intrinsic subsample.

With the results of Stokes-flow simulations through idealized microstructures of random packings, the
energy ratio index from micro- to macro-scale is analysed. With a convergence towards a stable value
of one, it is determined that the energy consistency can be found at the size of the Representative
Elementary Volume (REV). Therefore, the homogenization still complies with the Hill-Mandel principle
and the effective property of the rock can be upscaled from the microstructure to the macro-structure in
a valid matter, without the influence of the boundary condition. The results of the idealized microstruc-
ture are extended to real rock microstructures, to validate whether the results are still valid with natural
heterogeneities included. It is shown that the energy consistency is still found at REV, although with a
slower convergence. From this, it is concluded that it is possible to apply homogenization by tracing the
convergence of the energy ratio, without enforcing the energy consistency with boundary conditions.
On top of that, the unitary value for the energy ratio index provides for an accurate indicator of whether
REV has been found.

It is shown that without the REV the energy consistency cannot be established and hence it is not
always possible to apply valid homogenization. Carbonates, for example, tend to be quite heteroge-
neous, which makes it challenging to find the REV and establish energy consistency throughout the
transition of scales.

4.2. Recommendations for the homogenization without the influ-
ence of the boundary conditions

To ensure the wider applicability of this research, we recommend extending the analysis to different
physical properties. For example, if energy consistency can be demonstrated within a subsample con-
sidering different physical phenomena, such as mechanics or electrics, it can be concluded that the
effective properties of a rock sample can be determined for a broad field of interest.

To use the suggested method of homogenization, it is now required to determine the size of the bound-
ary layer for each sample. Future research could characterize the size of the boundary layer with the

33
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morphological properties of the microstructure. For example, when the random packings are assessed,
it is shown that the size of the boundary layer does depend on the porosity of the rock structure. If a
generic relation between the size and the morphological properties can be determined, the boundary
layer does not need to be determined for each sample. The types of boundary conditions can be taken
into account as well.

Another topic of interest for future work is to study the difference between the convergence of the
REV for energy consistency and the REV for permeability. It is shown and confirmed by the second
part of this thesis, that the REV for the permeability is a larger volume than for the energy consistency,
although with a small difference.

4.3. Conclusion for the evolution law of the convergence for REV
The second part of this thesis studied the process of finding the REV. Finding the REV is a crucial aspect
of homogenization and upscaling, as it behaves as a representative medium. Yet, the determination of
the size of the REV is a challenging exercise, which traditionally includes many and large simulations
to trace the convergence towards a certain parameter and takes up a large number of computational
resources and time. As is shown in numerical statistical studies and the previous part of the research,
the convergence towards the REV and physical parameters follows the shape of a cone. This part of
the thesis aimed to find the generic evolution law of the convergence for the REV and utilize it to predict
the size of the REV and the homogenized property.

To find the generic evolution law, the cones of convergence for the REV for both the energy ratio
index and the permeability are presented for idealized microstructures. After analysing the shape of
the convergence, it was shown that the generic evolution law of the convergence is described with the
log-normal distribution for each sample size. The evolution of the REV convergence is described with
the evolution of the variance, which can be described with a reference value, using the law of large
numbers. The determined law is applied to the presented convergence of the permeability and energy
ratio index for the random packings and is found to be an excellent fit, as the boundaries and the mean
values described with the mathematical formulation align with the cone. This enables the determination
of the size of the REV and the effective property with a number of simulations depending on a prede-
termined accuracy, without the need for large simulations.

This study is extended to real rock microstructures to verify whether the determined generic evolu-
tion law is applicable when natural heterogeneities are included. It is shown that the evolution law still
predicts the convergence of the real microstructures. The increasing heterogeneity of the samples
leads to a higher variation of the physical property, which is shown to be accurately captured with the
log-normal distribution. Even when the size of the REV is not reached within the full size of the sample,
a prediction of the size and physical properties can be made, utilizing the evolution law of the cone of
convergence.

It is shown that the cone of convergence is more accurately described when the percolation thresh-
old is reached within a subsample. This also influences the accuracy of the determined evolution law
of the convergence cone, as the variation of the physical quantities is large. As a result, the percolation
threshold provides the minimum size of the subsamples which should be taken into account and the
number of samples influence the accuracy of the fit.

Lastly, it is shown that the computational time and resources follow a higher-order power law, with
respect to the size of the sample. By running a number of simulations of smaller volumes, this power
law will reduce to a linear function. The splitting of the sample into subsamples also unlocks the pos-
sibility to work with high-resolution samples, which were previously too computationally demanding for
simulations.
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4.4. Recommendations for the evolution law of the convergence for
REV

The evolution law is currently determined for an intrinsic, average property in the form of permeability
for the rock sample. Before using it for different physical quantities, it would be useful to validate the
method for those quantities, such as the stiffness, strength or conductivity.

Another interesting topic would be to study the size of the samples which is needed to set up the cone of
convergence in more detail. The conclusions of the research recommend using samples which include
the percolation threshold of the rock sample and taking as many samples as possible to fit the cone of
convergence as well as possible. More insight into the samples might lead to a better recommendation
for the size of the samples needed to find the REV.

The cone of convergence is fitted with just two parameters, namely the variance and the mean value
of the log-normal distribution. It is already shown in previous research that the variation of the conver-
gence is an indicator of the heterogeneity of a rock sample (Rahman et al. [41]). If the variation and
mean value can be described with the morphological parameters of a microstructure, the size of the
REV and the homogenized property becomes superfluous, as these can be predicted with the deter-
mined evolution law of the convergence.

Overall, this thesis presents both a new method to apply valid homogenization and a new method
to determine the size of the REV and the homogenized physical property. These methods combined
present a new method to apply fast and valid homogenization, without influences of the boundaries
and the need for large simulations.
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A
Stokes-flow model set-up

In this appendix, details for the model set-up created in the research for conducting Stokes-flow calcu-
lations are provided.

A.1. Microstructures
For the idealized microstructures random packings containing perfectly round spheres of the same di-
ameter are created with the OpenMC Monte Carlo code (Romano et al. [44]). Using spheres ensures
that the grains are perfectly round and the microstructure does not contain grain heterogeneities. The
porosity of the microstructure is controlled by the packing fraction, which determines the number of
spheres inside the predetermined volume. To save memory, a two-dimensional cross-section is taken
of the random packing as the representation of the microstructure. This is done by cutting the resulting
disk of the two-dimensional representation out of the square volume. As shown in Figure A.1, this
results in the void space on which a flow can be imposed.

Figure A.1: Visualisation of the transition of a three-dimensional random packing, a volume filled with spheres, to a
two-dimensional representation of the void space.

The process for the real rock microstructures follows the traditional steps of Digital Rock Physics.
The three-dimensional computational model of a rock sample is created with a series of images ob-
tained with CT scanning. These images are then processed to filter and segment the images into
the void space and the solid matrix material of the rock. Once the segmentation is complete, the im-
ages are reconstructed together to create a three-dimensional model of the rock sample. Once the
three-dimensional model is created, the void space can be meshed to run finite element simulations of
Stokes-flow. This process of reconstruction is visualised in Figure A.2.

40
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Figure A.2: Visualisation of the reconstruction of micro CT images to a computational microstructure.

A.2. Mesh
To numerically simulate fluid flow through random packings using the Finite Element Method, the void
space is discretized into a mesh grid of smaller elements, specifically triangular first-order elements.

A.2.1. Meshing random packings
GMSH (Geuzaine and Remacle [14]) is used to create the mesh for the random packings, which gen-
erates a mesh grid with the mesh size as input.

During the mesh convergence study with a homogeneous mesh grid, it was observed that the size
of the mesh files increases significantly with higher packing fractions. When the random packing is
made with a high packing fraction, the domain contains more disks. The boundary of the disks is cir-
cular, which is difficult to represent with triangular elements and therefore requires a smaller element
size, which results in a larger mesh file. For example, the mesh file with packing fractions over 52%
exceeds 10 GB. Running simulations on these large mesh files is challenging, as they require a signif-
icant amount of computational resources and time. To reduce the mesh-file size, a study of different
mesh grids is performed.

Figure A.3: Representation of the different mesh fields and mesh structure for GMSH. The green region is the field of the
boundary of the circle, the blue region is the transition field and the orange region is the void field.
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Since the representation of the disks is the most critical factor affecting the mesh size, mesh refinement
around the boundary of the disks is examined using three different mesh fields: the boundary of the
circle, the transition field, and the void field, as shown visually in Figure A.3.

The field of the boundary of the circles contains smaller mesh elements to accurately describe the
circular shape of the grains. The mesh in the void space contains bigger elements since it is assumed
that the size of the element in the void space does not influence the result of the mesh convergence as
much. As the difference between the two different mesh fields can become large, a transition field is
applied to match the two different element sizes together. The proportion of each field is depended on
input parameters, defining how many columns of mesh element are fitted within each field. An example
of how this is implemented is shown in the Python code snippet below and in Figure A.4.

The Python code for setting up the different fields in the mesh configuration for GMSH
1 """
2 Setting up the different fields for the mesh configuration.
3 x is the maximum mesh resolution of the void field
4 y is the number of elements which represent the size of the transition field
5 """
6

7 gmsh.model.mesh.field.add("Distance", 1)
8 gmsh.model.mesh.field.setNumbers(1, "CurvesList", [seq[1] for seq in grains])
9

10 gmsh.model.mesh.field.add("Threshold", 2)
11 gmsh.model.mesh.field.setNumber(2, "InField", 1)
12 gmsh.model.mesh.field.setNumber(2, "SizeMin", resolution)
13 gmsh.model.mesh.field.setNumber(2, "SizeMax", resolution*x)
14 gmsh.model.mesh.field.setNumber(2, "DistMin", 0)
15 gmsh.model.mesh.field.setNumber(2, "DistMax", resolution*y)
16

17 gmsh.model.mesh.field.add("Min", 3)
18 gmsh.model.mesh.field.setNumbers(3, "FieldsList", [2])
19 gmsh.model.mesh.field.setAsBackgroundMesh(3)

Figure A.4: Visualisation from the meshes, with the uniform mesh grid on the left and the heterogeneous mesh on the right.
Both the grids are from the same packing fraction of 27% and use the same mesh element size near the boundary of the circle.

The performance of the different mesh fields was evaluated by comparing the number of mesh elements
needed for mesh convergence with the number of elements in a uniform grid with a homogeneousmesh
element size. The comparison is shown in Figure A.5, where a boundary field with a width of threemesh
elements and a void field with mesh elements five times larger than the boundary field is used.

The results show that the initial convergence towards mesh convergence is steeper with the different
mesh fields. This is especially noticeable with the higher packing fractions, which include more circles
in the mesh configuration. However, it is also observed that the mesh convergence has a trend towards
the same number of elements. Therefore the actual difference in file size between the two methods
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when mesh convergence is reached is neglectable. For the sake of the stability of the simulations, only
homogeneous meshes are applied in the mesh configuration.
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Figure A.5: The comparison between the different mesh structures, with the blue line representing the mesh convergence with
a homogeneous mesh size and the orange line representing the mesh convergence with the different mesh fields included. On
the left, the mesh convergence for a lower packing fraction of 32% is shown, on the right the mesh convergence with a higher

packing fraction of 52% is presented.

A.2.2. Meshing real microstructures
The real microstructures are meshed with the displaced boundary method, as described in Lesueur,
Rattez, and Colomés [23]. The meshes for real microstructures can become large, as some microstruc-
tures require a highly refined mesh. The displaced boundary method obtains a definition of the pore-
grain interface as precise as traditional methods but with coarser meshes. In summary, the method
uses the input of the geometry of the microstructure, to redistribute the nodes of the mesh grid to the
boundary of the geometry and therefore uses fewer elements to accurately describe the complicated
pore-boundary interface.

A.3. Stokes-flow module
To find the permeability and energy dissipation of the fluid, Stokes-flow is simulated on the microstruc-
tures. Stokes flow is a simplification of the Navier-Stokes equations, which are equations describing
the momentum balance and the conservation of mass. By assuming a lack of body forces and an
incompressible fluid, the differential equations are as follows:

µ∇2u−∇p = 0 (A.1)

∇ · u = 0 (A.2)

To impose the flow in the microstructure, the pressure on opposites sides is defined, with values of zero
and one, as shown in Figure A.6. This means we have a constant pressure gradient over the sample.
The top and bottom boundaries have a predetermined boundary of zero velocity in both directions with
no-slip conditions, or only zero velocity in the vertical direction with slip conditions. The boundaries of
the grains have no-slip conditions, implemented by a value of zero velocity in both vertical and horizontal
directions. Both the fluid density (ρ) and the dynamic viscosity (µ) are set to one.

The numerical part and mathematics of the implementation of Stokes-flow in MOOSE are explained in
[35] and Peterson, Lindsay, and Kong [36]. In summary, one of the main sources of instability in Finite
Element simulations of Stokes flow is the so-called pressure-velocity coupling instability. MOOSE uses
a stabilized version of the Petrov-Galarkin Finite Element Method, which adds a stabilization term to
the weak formulation of the flow equations to ensure the stability of the solution of the flow through the
microstructure. An example of how the result looks is presented in Figure A.7.
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Figure A.6: The pressure graphically shown on the microstructure. The blue colour on the left is equal to a pressure of zero
and the red colour on the right represents a pressure of one.

Figure A.7: The result of Stokes-flow inside a microstructure. The example shown is a random packing with a packing fraction
of 27%.
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