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SUMMARY

Efforts to realize a sufficiently large controllable quantum processor are actively being
pursued globally. These quantum devices are programmed by specifying the manip-
ulation of quantum information via quantum algorithms. This doctoral research pro-
vides an application perspective to the design requirements of a quantum accelerator
architecture. Early quantum algorithms focused specifically on the theoretical study
of the benefits in computational resource cost by harnessing quantum phenomena.
With small-scale quantum processors being available, the focus is now towards apply-
ing quantum algorithms to develop applications with high impact in societal, industrial,
and scientific fields. No quantum devices exist that can execute quantum algorithms
that can demonstrate a provable advantage for a real world use case. However, a proof
of concept application pipeline can be demonstrated on a simulator framework. The re-
search question of this dissertation is to identify high-impact long-term applications of
quantum computation and formulate the corresponding logic. Three specific use cases
are studied.

Use case 1 involves ‘quantum-accelerated genome sequence reconstruction’. Faster
sequencing pipeline would enable novel downstream applications like personalized
medical treatment. Two different reconstruction methods, ab initio reference alignment,
and de novo read assembly, are studied to identify the computational bottleneck. Corre-
sponding quantum techniques are formulated, based on quantum search and heuristic
quantum optimization, respectively. A new algorithm, quantum indexed bidirectional
associative memory (QiBAM), is explicitly designed to address the requirements for ap-
proximate alignment of DNA sequences. We also proposed the quantum accelerated
sequence reconstruction (QuASeR) strategy to perform de novo assembly. This is for-
mulated as a QUBO and solved using QAOA on a gate-model simulator, as well as, on a
quantum annealer.

Use case 2 involves ‘quantum automata for algorithmic information’. A framework
for causal inference based on algorithmic generative models is developed. This tech-
nique of quantum-accelerated experimental algorithmic information theory (QEAIT)
can be ubiquitously applied to diverse domains. Specifically for genome analysis, the
problem of identifying bit strings capable of self-replication is presented. We devel-
oped a new quantum circuit design of a quantum parallel universal linear bounded au-
tomata (QPULBA) model. This enables a superposition of classical models/programs
to be executed, and their properties can be explored. The automaton prepares the uni-
versal distribution as a quantum superposition state which can be queried to estimate
algorithmic properties of the causal model.

Use case 3 involves ‘universal reinforcement learning in quantum environments’.
This theoretical framework can be applied for automated scientific modeling. A univer-
sal artificial general intelligence formalism is presented that can model quantum pro-

xi
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cesses. The developed quantum knowledge seeking agent (QKSA) is an evolutionary
general reinforcement learning model for recursive self-improvement. It uses resource-
bounded algorithmic complexity of quantum process tomography algorithms. The cost
function determining the optimal strategy is implemented as a mutating gene within a
quine. The utility function for an individual agent is based on a selected quantum dis-
tance measure between the predicted and perceived environment.

This dissertation researches foundational techniques and develops innovative ap-
plications of quantum computation and algorithmic information. These were applied
specifically for causal modeling in genomics and reinforcement learning. Further ex-
ploration of the synergies among these interdisciplinary concepts would improve our
understanding of various scientific disciplines like computation, intelligence, life, and
cosmology.



SAMENVATTING

Over de hele wereld wordt er hard gewerkt aan het realiseren van een voldoende grote
bestuurbare quantumprocessor. Deze quantum apparaten worden geprogrammeerd
door het specificeren van de manipulatie van quantum informatie met quantum al-
goritmes. Dit promotieonderzoek biedt een perspectief op de ontwerpeisen voor een
quantum acceleratie architectuur vanuit toepassingen voor zulke quantumprocessoren.
Onderzoek naar quantum algoritmes legde in het begin voornamelijk de focus op het
theoretische voordeel in rekenkracht, als quantumverschijnselen gebruikt werden. Nu
er kleinschalige quantumprocessoren beschikbaar zijn, is de focus verschoven naar het
toepassen van quantum algoritmes om applicaties te ontwikkelen met een grote impact
op maatschappelijk, industrieel en wetenschappelijk vlak. Er bestaan nog geen quan-
tum apparaten die een quantum algoritme kunnen uitvoeren dat een bewijsbaar voor-
deel heeft in de echte wereld. Maar een bewijs van concept voor een applicatie pijplijn
kan gedemonstreerd worden met een simulatie framework. De onderzoeksvraag van dit
proefschrift is het identificeren van toepassingen voor quantum computers die een hoge
impact kunnen bieden op de lange termijn, en het formulieren van de bijbehorende lo-
gica. Drie specifieke toepassingen zijn uiteengezet.

De eerste toepassing betreft ‘quantum versnelde reconstructie van genoomsequen-
ties’. Een snellere sequentie-pijplijn kan tot gevolg hebben dat andere toepassingen
mogelijk worden, zoals gepersonaliseerde persoonlijke behandelingen. Twee verschil-
lende reconstructie methodes zijn bestudeerd om de knelpunten te vinden: ab ini-
tio referentie uitlijning en de novo leesmontage. Voor elk wordt een quantum tech-
niek geformuleerd, gebaseerd op respectievelijk quantum zoeken en heuristische quan-
tum optimalisatie. Een nieuw algoritme, quantumgeïndexeerd bidirectioneel associa-
tief geheugen (QiBAM), is ontworpen om aan de eisen voor benaderende uitlijning van
DNA-sequenties te kunnen voldoen. Ook stellen we een strategie voor om de novo-
assemblage uit te voeren: quantum versnelde sequentiereconstructie (QuASeR). De stra-
tegie is geformuleerd als een QUBO en wordt opgelost met behulp van QAOA op een
gate-model simulator, evenals op een quantum annealer.

De tweede toepassing betreft ‘quantum automaten voor algoritmische informatie’. Er
is een raamwerk ontwikkeld voor causale interferentie gebaseerd op algoritmische gene-
ratieve modellen. Deze techniek voor quantum versnelde experimentele algoritmische
informatietheorie (QEAIT) kan alom worden toegepast in diverse domeinen. Specifiek
voor genoomanalyse wordt het probleem gepresenteerd van het identificeren van bit-
strings die in staat zijn zichzelf te repliceren. We hebben een nieuw quantum circuit ont-
werp ontwikkeld voor modellen van quantum parallel universeel lineair begrensde au-
tomaten (QPULBA). Hierdoor wordt superpositie van klassieke modellen/programma’s
mogelijk, en kunnen hun eigenschappen worden onderzocht. De automaat maakt van
de universele distributie een quantum superpositietoestand, die kan worden gebruikt
om een schatting te maken van de algoritmische eigenschappen van het causale model.

xiii



xiv SAMENVATTING

De derde toepassing betreft ‘universeel versterkend leren in quantum omgevingen’.
Dit theoretische framework kan worden toegepast voor geautomatiseerd wetenschap-
pelijke modellering. Er wordt een formalisme gepresenteerd voor een universele kunst-
matige algemene intelligentie, die quantum processen kan modelleren. De ontwikkelde
quantum kenniszoekend agent (QKSA) is een evolutionair algemeen bekrachtigend leer-
model voor recursieve zelfverbetering. De agent gebruikt de middelgebonden algorit-
mische complexiteit van quantum proces tomografie algoritmes. De kostfunctie die de
optimale strategie bepaald is geïmplementeerd als een muterend gen in een quine. De
utiliteitsfunctie voor een individuele agent is gebaseerd op een geselecteerde quantum
afstandsmeeting tussen de verwachte en de waargenomen omgeving.

Dit proefschrift onderzoekt de fundementele technieken van quantum computatie
en algoritmische informatie, en ontwikkeld daarvoor innovatieve toepassingen. Deze
werden specifiek toegepast op causale modellering van genomen en bekrachtigend le-
ren. Verdere verkenning van de synergie tussen deze interdisciplinaire concepten zou
ons begrip verbeteren van verschiedene wetenschappelijke disciplines zoals compuatie,
intelligente, leven en cosmologie.
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Quantum computing uses the laws of quantum mechanics to achieve an informa-
tion processing advantage. Efforts to realize a sufficiently large controllable, and pro-
grammable quantum computer are actively being pursued globally. The specific goal
of this research pertains to various applications and algorithm designs that target these
computers. At the time of this research (2018-2022), no quantum devices exist that can
execute quantum algorithms that demonstrate a provable advantage for a real world use
case. However, quantum computing simulators running on classical computers can
be used to validate the implementation and the impact on the application. The re-
search question of this dissertation is to identify high-impact long-term applications
of quantum computation and formulate corresponding quantum algorithms to com-
pute them.

While the specific research goal of this dissertation pertains to the algorithm layer
of the quantum computing stack, the doctoral research was carried out within a close-
knit team. In such early days of this field, it is crucial to define a viable and promis-
ing research roadmap. Thus, an integral part of the doctoral research was to provide
an application perspective to the design of a quantum accelerator. This chapter pro-
vides the background of quantum computation in general, and explains how the differ-
ent research motivations and current signs of progress are used in defining the research
methodology for the work presented in the later chapters.
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1.1. COMPUTATION: A HISTORIC PERSPECTIVE
Marveling on the pervasive and magnificent civilization that human beings have estab-
lished, much of its incredible engineering genius has been made possible by precise
computations. But even before the advent of the space age, the computer age, or even
the industrial age, humanity had firmly seated itself at the epitome of evolutionary suc-
cess. Use of tools to aid in various activities is arguably an essential aspect of intelligent
behavior, which very few animals exhibit. While tools, in general, can mean anything
from fire to wheels, we shall, in this section, have a brief replay of the evolution of com-
puting methods over the ages - ultimately converging on the current challenges that mo-
tivate us for further research in this domain.

The widely used decimal system of counting is mostly attributed to our ten fingers.
While this method of computation is limited to junior schools and might not seem a
cognitive spectacle, monkeys sharing ∼ 99% of our genetic codes cannot do any of those
simple multiplication tables. Counting on fingers requires some amount of memoriza-
tion. An easier method for early humans have been marks on cave walls or counting
with stones. The abacus and such a pebble heap are not much different in concept. As
civilization progressed, analog and mechanical computing devices like the Antikythera
mechanism or the astrolabe were invented as special-purpose tools to aid calculation.
A more general-purpose calculator was invented in the 17th century as the slide rule.
Eventually, more autonomy was added as the machinery became more complex, like
Pascal’s calculator or Jacquard’s loom. The loom wove pattern controlled by a paper
tape constructed from punched cards. The cards could be changed without altering the
mechanical design of the loom - a landmark achievement in programmability. Charles
Babbage conceptualized and invented the first mechanical computer, the difference en-
gine, in the early 19th century, to aid in navigational calculations. Thereafter, he real-
ized a much more general design called the analytical engine. The input programs and
data were provided via punched cards, while output devices included a printer, a curve
plotter, and a bell. It incorporated a decimal arithmetic logic unit (ALU), control flow
in the form of conditional branching and loops, and integrated memory; making it the
first design for a general-purpose computer that could be described in modern terms as
Turing-complete. Though the machine was not realized, Ada Lovelace, often regarded
as the first computer programmer, recognized its applications and published the first
algorithms for it. Currently, we are in a similar early stage for quantum computation.

The era of modern computing began with a flurry of developments concerning World
War II. These devices were electro-mechanical, having low operating speeds. They were
eventually superseded by much faster all-electric computers, initially using vacuum
tubes. In 1941, Konrad Zuse built Z3, the world’s first working electro-mechanical pro-
grammable, fully automatic digital computer. Replacement of the hard-to-implement
decimal system by the simpler binary system added to the reliability. Purely electronic
circuit elements gradually replaced their electromechanical equivalents in the early
computers like Colossus, ENIAC, and EDVAC. As further innovation progressed, some
of the architectural concepts seen in today’s computers became established. These in-
cluded the pervasive Boolean algebra for the ALU, instruction-sets for the microcode,
and the concept of firmware (for device drivers) and the operating system. Another sig-
nificant milestone is the concept of stored program architecture introduced in 1945 by
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John von Neumann. This architecture evolved to be associated with a common bus to
the random-access memory (RAM), preventing instruction fetch and a data operation
simultaneously. The alternate more complex Harvard architecture has a dedicated ad-
dress bus and memory, for data and instructions. The next generation of devices fea-
tured silicon-based junction (later, field-effect) transistors in the 1950s. These were
smaller and more reliable while requiring less power than vacuum tubes, therefore dissi-
pated less heat. What followed was an unprecedented boom in the electronics industry,
bringing with it new applications and dependence on computation-heavy insights.

It is observed [1] that the single-thread performance, operating frequency, and power
stagnated around 2005, shifting the trend to multi-core processors. The power con-
sumption of a transistor is attributed to either the leakage current, the switching current
or the static power. Thus, an exponential increase in frequency (the main driver for per-
formance increase before 2005) also gave an exponential increase in power, limiting the
number of transistors that can be kept powered on per unit chip area. At the architec-
tural level, pipelining by instruction-level parallelism and speculative execution reached
saturation, resulting in the adoption of explicit parallelism. However, the speedup a pro-
gram can harness in a multi-core environment is limited by the parallel fraction of a
program, given by Amdahl’s law. Not all programs have a structure that can be benefi-
cially parallelized, taking into account the communication and synchronizing overheads
among the parts. Thus, the transition to specialized architectures for specific algorithmic
structures becomes necessary. Finally, the advances in memory and processor-memory
interconnect technology did not reach the same level of performance as the processors,
increasing the access stalls between each level of cached memory hardware.

The shift to multi-core alleviated the computing industry, but only for a few years.
The drawbacks of effectively utilizing multiple cores kept diminishing the performance
returns for the engineering investment. The next generation of processors included var-
ious trade-offs, like dim-silicon (slowing down cores) and dark-silicon (keeping a major-
ity of the transistors off or utilizing them for routing) [2].

It is evident that further performance gains would need to bind the application
and hardware closer using application-specific integrated circuits (ASIC). A move to-
wards this, while preserving the general-purpose programmable hardware, is the grow-
ing dependence on specialized [3] on-chip hardware in the form of graphics processing
units (GPU), field programmable gate arrays (FPGA), and digital signal processors (DSP).
The host CPU would offload suitable computational tasks to connected accelerators
based on the application and structure of the program. Different accelerators, as shown
in Figure 1.1, are chosen based on their strengths that enable better execution of a par-
ticular type of logical manipulation. This is an active research area with more special-
ized accelerators being developed, like neuromorphic chips (mixed-signal architecture
reflecting neural structure), ASIC miners (for cryptocurrency mining using blockchain)
and tensor processing units (for neural network based machine learning), among others.

Alternate forms of computations are being explored as well. Memristors refer to two-
terminal non-volatile memory devices based on resistance switching effects [4]. These
are useful for nano-electronic memories, computer logic, and neuromorphic architec-
tures. Another example is DNA computers which use DNA biochemistry instead of
silicon-based hardware [5]. It is characterized by slow processing speeds but has po-
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FPGA GPU NPU Gate-based QC Q Annealer
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Figure 1.1: The accelerator model, where specialized processors provide high-performance computing power
bridging general-purpose processors to application-specific processors. Quantum accelerators (based on
quantum logic gates or quantum annealing) are the most viable models of quantum computation towards

general-purpose universal quantum computers.

tentially high parallelism. An alternate computing paradigm that is receiving a lot of
attention lately in computer architecture is quantum computing - which uses the fun-
damental properties of quantum mechanics to achieve a computational advantage over
classical computation. Within the next decade, it is likely that applications will be a hy-
brid combination of a classical computer and a quantum accelerator, with multiple com-
putational kernels, instead of a universal quantum processing unit. As a holistic view,
we consider two classes of quantum accelerator [6] as additional co-processors. One is
based on quantum gates, and the second is based on quantum annealing. The classical
host processor arbitrates the control over the total system and delegates the execution
of certain parts to the available accelerators.

1.2. QUANTUM COMPUTERS
At the turn of the twentieth century, the fundamental laws of physics were consolidated
under just two (albeit not fully compatible) pillars: general relativity and quantum me-
chanics. Over the course of the following decades, these theoretical principles of the first
quantum revolution were applied in various technologies like lasers, satellite-based po-
sitioning, magnetic resonance imaging, and transistors. The core of these advancements
relied on phenomena that manifest in the microscopic scale of atomic and sub-atomic
particles and thus have remained counter-intuitive to natural human experience.

These quantum phenomena, specifically superposition, entanglement, interference,
and tunneling, are best formulated by extending probability theory to the complex num-
ber domain. This led to the development of the field of quantum information theory. The
idea of using these fundamental physical building blocks of nature for computation [7]
laid the foundation for the second quantum revolution, focusing on controlling quan-
tum systems and engineering them for arbitrary computation instead of a passive un-
derstanding and harnessing of quantum phenomena. While quantum mechanics deals
with examining properties of matter, quantum information science focuses on extract-
ing information from those properties, and quantum computation (QC) manipulates
and processes this information via logical operations.
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The developments in quantum computation are inspired by both theoretical and en-
gineering perspectives. These primary motivations are presented here.

1.2.1. THEORETICAL MOTIVATION

The earliest venture to explore the domain of QC was purely a theoretical pursuit to un-
derstand the computational model and what class of problems are computable and ef-
ficiently solved by it. The origin of this idea is in the intrinsic parallelism offered by the
superposition of quantum states. This allows manipulating the superposed quantum
wave function by a single logical quantum operator. However, the retrieval of the output
of the computation involves a measurement process that irreversibly destroys the super-
position and probabilistically generates a single quantum state as the observable. Thus,
the quantum algorithm cleverly guides the interaction among the superposition states
via constructive and destructive interference to increase the probabilities of the states
that encode the answer from the intended logical manipulation.

Computability theory studies the problems that are solvable for a specific computing
model. Surprisingly, quantum computation does not propose a computing model more
powerful than classical computers (Turing machines). Thus, in principle, all mathemat-
ical functions that are computable using a QC are also computable classically. This is
very advantageous in these initial days of QC research as it allows simulating quantum
computation on classical hardware, i.e., quantum computing simulators.

The promising advantage of QC is rather manifested in the computational resources
needed to complete the task. The most studied of these are runtime (time) and mem-
ory (space). Complexity theory bridges the gap between practical algorithms running
on computing hardware made out of simpler grammar of programming languages and
the hierarchy of recursive languages in computability theory. The complexity of algo-
rithms has been classified into a multitude of classes. The boundaries and relationships
between these classes are sometimes not proven but are based on current knowledge
and popular beliefs in the scientific community. The complexity classes of P and NP,
and their relation to quantum complexity classes are of immediate interest for efficient
algorithm development.

To compare the efficiency of quantum algorithms, it is crucial to compare their com-
plexity with the current best algorithm on classical computers. Bounded-error quantum
polynomial (BQP) time is the class of decision problems solvable by a quantum circuit
whose length and the number of qubits scale polynomially with respect to the instance
size. Like the classical complexity class of BPP (bounded-error probabilistic polynomial)
time, the error probability is bounded by at most 1/3 for all instances; BPP being the class
considered to be practical on a classical computer. Using Chernoff bound, the constant
1/3rd can be reduced arbitrarily on repetition. As P is a subset of BQP, it is interesting
to study algorithms that fall outside P but in BQP. Such algorithms include integer fac-
torization (Shor’s algorithm), discrete logarithm, Jones polynomial approximations for
certain roots of unity, etc. Thus, though quantum computers might not be able to make
NP-complete problems efficient [8], there are problems of interest in BQP as well that
quantum computers can solve efficiently.

It is interesting to note that for many problems in NP, quantum algorithms offer poly-
nomial speedup, which can boost these problems into the domain of practicality (like
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DNA sequence reconstruction, as explored in this dissertation). Another recent direction
in quantum algorithms is to design novel heuristics without rigorous complexity theo-
retic proofs of optimality. These heuristics might be promising candidates for a quantum
computational advantage as it is not immediately clear how to translate these to corre-
sponding efficient classical computation. Based on current physical theory, quantum
computers are the most general kind of computers physically allowed [9]. More exotic
computers would require some refinement of the laws of physics (like non-linearity al-
lowing faster than light travel, violating the uncertainty principle, or using closed time-
like curves).

1.2.2. ENGINEERING MOTIVATION

Gordon Moore observed [10] in 1965 that the number of components per integrated
circuit doubles approximately every two years. Moore’s law has proved accurate for
more than four decades and has been instrumental in guiding the research plans
and targets for the semiconductor industry. However, it is an observation or projec-
tion based on human ingenuity, not a physical or natural law. This trend has en-
dured the test of time through several enabling factors like complementary metal-
oxide-semiconductor (CMOS), dynamic random-access memory (DRAM), chemically-
amplified photoresist, deep UV excimer laser photolithography, etc. Chip manufactur-
ers like TSMC, Intel, and IMEC [11] expect to shift from GAA FinFET to nanosheet and
CFET to push the limit to 0.7 nm process around 2030. Nature being inherently quan-
tized, classical computation adheres to the laws of quantum mechanics as well. The
quantum-computing-specific phenomena however act in the atomic/sub-atomic realm.
Moore’s transistor scaling law is fast approaching this size where quantum effects will be
unavoidable. In quantum computers, these phenomena are harnessed for useful com-
putation.

One of the first explorations towards harnessing quantum effects for computation
was aimed at reducing the energy consumption of processors. Landauer’s principle pro-
vides the theoretical lower limit of energy consumption of computation. It holds that
any logically irreversible manipulation of information, such as the erasure of a bit or the
merging of two computation paths, must be accompanied by a corresponding entropy
increase in non-information-bearing degrees of freedom of the information-processing
apparatus or its environment, i.e., by heat generation. Quantum logical manipulations
are reversible unitary transformations; thus, theoretically can work without spending
energy (except during the last step of measurement). However, in practice, running cur-
rent QC requires a lot of energy for dilution refrigerators used for cooling the processors
to near absolute zero Kelvin, to reduce thermodynamic noise. This connects to research
in room-temperature superconductors which might allow quantum computers to break
the frontiers of green computing.

Current QC efforts are focused on a paradigm shift in high-performance computing
instead of energy consumption. Today’s efforts in building large-scale qubit processors
are targeted toward executing quantum algorithms that can demonstrate the theoretical
complexity benefits in runtime, memory, or heuristics. Thus, instead of energy-efficient
universal quantum computers, most research is targeted toward quantum accelerators
as specialized computing devices in addition to the classical host CPU.



1.2. QUANTUM COMPUTERS

1

7

1.2.3. COMPUTING MODELS

Quantum computing is an entire class of computing, and thus, there are a multitude
of models corresponding to their classical counterparts. The theoretical models, like
the quantum circuit model, adiabatic quantum computing, measurement-based (clus-
ter state) quantum computation, and topological quantum computing are equivalent to
each other within polynomial time reductions.

The first proposed model is the quantum Turing machine (QTM) by David
Deutsch [12], corresponding to the classical theoretical model of the Turing machine.
While the QTM model is theoretically simple, it gets complex and clumsy for practical
purposes compared to other equivalent models. QTM is typically reserved for studies on
computability and quantum automata theory.

One of the most popular and by far the most extensively developed computation
models is the circuit model for gate-based quantum computation [13]. This is the con-
ceptual generalization of Boolean logic gates (e.g., AND, OR, NOT, NAND, etc.) used for
classical computation. The gate set for the quantum counterpart allows a richer diver-
sity of states on the complex vector space (Hilbert space) formed by qubit registers. The
quantum gates, by their unitary property, preserve the 2-norm of the amplitude of the
states thereby undergoing a deterministic transformation of the probability distribution
over bit strings. The power of quantum computation stems from this exponential state
space evolving in superposition while interacting by the interference of the amplitudes.
Gate-based quantum algorithms are designed such that the solution states interfere con-
structively, while the non-solutions interfere destructively, biasing the final probability
distribution in favor of reading out the solution(s).

Adiabatic quantum computation (AQC) was conceived specifically to solve satisfia-
bility problems of the NP-complete class. This paradigm is based on the adiabatic the-
orem, i.e., the possibility of encoding a specific instance of a given decision problem
in a particular Hamiltonian. The system is initialized in a ground state of an easy-to-
construct Hamiltonian, and slowly (adiabatically), the system is deformed to the desired
Hamiltonian where measurement of the final ground state reveals the desired optimal
value. The speedup of the algorithm depends crucially on the scaling of the energy gap
as the number of degrees of freedom in the system increases. It was shown to be polyno-
mially equivalent to the circuit model, which implies that its application to an intractable
computational problem might not be feasible (having intractably many possibilities of
getting stuck in eigenvalues of local minima) and remains an open empirical question.

Another common type of quantum system is a quantum annealer. Quantum anneal-
ing is connected to the AQC paradigm [14], although there are subtle differences. Unlike
AQC, quantum annealers need not be universal for quantum computing, making it rel-
atively easy to engineer a large-scale system. While the circuit model was inspired by
Boolean logic circuits, quantum annealing was inspired by the metallurgical process of
annealing where by virtue of thermal fluctuations, the material is able to explore more fa-
vorable parameters (e.g. crystal size) by thermally jumping over barriers in the parame-
ter space. By imparting heat, the solution parameters can climb local minima. Quantum
annealing uses quantum fluctuations instead to tunnel through high but thin barriers
in the target function. If the parameter landscape has these specific kind of barriers, it
can translate to a computational speedup in finding the minimum (ground state) of the
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function.

There are many other QC models beyond these most researched ones that were dis-
cussed above. Topological quantum field theory (TQFT) model are based on exotic phys-
ical systems (topological states of matter). More examples of QC models are Boson sam-
pling and measurement-based quantum computation (one-way computing).

Most QC models use a two-level system, qubit (a quantum binary digit), as the token
for quantum information. Like Boolean algebra, this is universal for representing an
arbitrary number of levels. Qubits can be generalized to d-level systems, called qudits,
and are beneficial for specific algorithms and models of physical implementation.

1.2.4. PHYSICAL IMPLEMENTATIONS

There are various potential candidates for the hardware back-end being pursued as
well. Superconducting integrated circuits are Josephson junction based harmonic oscil-
lators, coherently controllable and measurable by magnetic flux pulses and microwaves.
Quantum dot architectures are based on individual electrons confined in quantum dots
(quantum well potential), controllable using magnetic flux pulses and inter-dot gate
voltage, and measurable using tunneling current measurements. Ion traps are based
on alkali metal ions confined in a trap using electric fields and controllable/measurable
by laser pulses. Other candidates like NMR-type spin qubits, Nitrogen-vacancy center
based, photonic qubits, and Majorana Fermion based topological qubits are actively be-
ing researched as well.

In summary, there are many different models and design choices that are currently
being actively pursued. The theory of universal quantum computation provides the
guarantee that an algorithm would preserve its complexity-theoretic efficiency over
these hardware choices, allowing quantum algorithm designers to remain agnostic to
these developments. However, this guarantee is not applicable for quantum algorithms
with polynomial speedup (e.g., Grover search and QAOA), as the polynomial overhead
of translation between computing models can negate the speedup with respect to the
classical algorithm. Also, many quantum algorithms are oracular, i.e., consider a spe-
cific part of the entire algorithm pipeline assuming the remaining can be performed effi-
ciently. The full pipeline of such algorithms might involve steps to implement the oracle
that dissolve the speedup of the quantum kernel. Thus, quantum algorithm designers
need to be sufficiently aware of the various constraints of the computing hardware and
the holistic view of the system pipeline.

1.2.5. QUANTUM INFORMATION AND COMPUTATION

Quantum computation utilizes the laws of quantum mechanics to a computational re-
source or quality advantage. It is the only realizable model of computation that violates
the extended Church-Turing thesis, as classical models (like Turing machines) require
a worst-case exponential resource of space or time to simulate quantum computation.
Information processing via quantum postulates [15] can be described by:

1. The superposition principle defines the possible states ∣ψ⟩ of a quantum system.
An isolated system is represented as a linear combination of a chosen orthonormal

basis states {∣i⟩} with complex coefficients αi ∈ C, as ∣ψ⟩ = ∑d n−1
i=0 αi ∣i⟩. The
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complex amplitudes are normalized ∑ ∣αi ∣2
= 1, such that ∣ψ⟩ is a unit vector in

an n-dimensional complex vector space or Hilbert space.
2. The evolution of a closed quantum system is described by an operator U typically

associated with the Hamiltonian, i.e., ∣ψ′⟩ = U ∣ψ⟩. It governs how the state of a
quantum system evolves with time. The operator is unitary and thus reversible,

U †U =UU †
= I .

3. The measurement principle governs the collapse of the superposition and bounds
the amount of accessible information in a quantum state. The Born rule states that
the superposition evolves irreversibly to a specific basis state ∣i⟩ with the proba-

bility ∣αi ∣2. Quantum measurements are described by a collection {Mm} of mea-
surement operators, where m refers to the measurement outcomes and the prob-

ability that result m occurs is given Pr (m)= ⟨ψ∣M †
m Mm ∣ψ⟩. The state of the sys-

tem after measurement is Mm ∣ψ⟩/Pr (m). While measurements in the physical
world are qubit interactions (entanglement) between the system and the environ-
ment/detector in the joint Hilbert space, it is yet not possible [16] to derive this
postulate from the others.

4. The state space of a composite physical system ∣ψ⟩ is the Kronecker tensor prod-
uct of the state spaces of the s-component physical systems, i.e. ∣ψ⟩ = ∣ψ1⟩⊗
∣ψ2⟩⊗ ⋅⋅⋅⊗ ∣ψs⟩. Thus the number of parameters needed to describe the state
grows exponentially with the number of qubits. This is the primary resource in
quantum computation to achieve superior computational capability over classi-
cal systems by selectively interfering these states by the algorithm.

The logical abstraction of the basis states is typically associated with a physical
meaning. For example, the simplest quantum states are described as a two-level sys-
tem, i.e. d = 2 called qubits, and can be represented by the spin-up/down of an electron.

1.2.6. ACCELERATOR STACK LAYERS
Moving towards a broader view of constructing a functional quantum computer, the re-
quirements from the models must be quantifiable. This is given by the DiVincenzo’s
criteria [17] for quantum computation and communication (last 2):

1. A scalable physical system with well characterized qubits
2. The ability to initialize the state of the qubits to a simple fiducial state
3. Long relevant decoherence times
4. A universal set of quantum gates
5. A qubit-specific measurement capability
6. The ability to inter-convert stationary and flying qubits
7. The ability to faithfully transmit flying qubits between specified locations
A quantum accelerator is the computation model where a classical processor uses

the power of a quantum processor for specific tasks [18]. In the initial days of quantum
computers (what is called as the pre-universal quantum computing era), we are most
likely to use quantum computers for very specialized applications, where we can use the
power of superposition and entanglement for a computational advantage. Thus, even
though a quantum algorithm can do everything a classical algorithm can (within poly-
nomial factors), it is not likely that quantum computers will be standalone systems. In
our research, we follow the circuit model for gate-based quantum computing on qubits.
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The classical processor interacts with the quantum processor via commands that spec-
ify a sequence of unitary gate operators and receives the collapsed state of the two-level
qubit system on measurement.
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Figure 1.2: The quantum accelerator architectural stack.

The quantum accelerator is architecturally layered; this is called the quantum com-
puting stack [6]. The stack, as shown in Figure 1.2, is inspired by the currently existing
classical computers. The major stack layers from the application layer to the physical
substrate are:

• The application can be described in hybrid quantum-classical logic as mathemat-
ical state evolution designed to perform the desired task. They need to be decom-
posed into programming constructs as input to the compiler. The logic is based
on developed algorithms with associated computational complexities;

• Compilers and programming languages (e.g., OpenQL, Qiskit) are the interfaces
for the algorithm designer to precisely define the quantum operators and state in
abstracted high-level constructs. To ease the development of algorithms, many
compilers now offer libraries that consist of an arsenal of primitives that help a
quantum algorithm developer;

• The operating system on the host CPU orchestrates the compiler. The compila-
tion process generates an assembly-level code (e.g., common-QASM, OpenQASM)
specifying the gate operations. Hardware agnostics application development (as
discussed in this dissertation) directly interfaces the QASM with the simulator
(which in turn runs on the classical CPU or a high-performance compute system).
The simulated qubits are perfect in nature for testing the functionality of the algo-
rithm.

• Alternatively, a cloud application programming interface connect to a quantum
accelerator. Hardware specific optimizations are carried out based on the QPU
specifications. The quantum runtime unit is responsible for scheduling the oper-
ations. This includes quantum error correction (QEC) and qubit logical to physical
mapping. An executable-QASM is generated via this process;
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• Quantum Instruction Set Architecture (ISA) defines the runtime operations of both
classical control and quantum parts of the algorithm. It encapsulates the hard-
ware dependence. Micro-architecture takes into account the precise timing con-
trols and the instruction pipelines. Quantum-classical interface comprises of ADC
and DAC and their controls for interacting with the physical qubits (and cryogenic
interface electronics). Finally, the quantum processing unit houses the physical
qubits. This can be superconductors, semiconductors, or other types of compet-
ing qubit technologies.

1.3. RESEARCH METHODOLOGY
The level of abstraction used for this doctoral research considers the functional algo-
rithm design, demonstrated as a proof of concept (PoC) on a quantum computing sim-
ulator. This careful balance between the mathematical description of quantum algo-
rithms and a implementation on available noisy intermediate-scale quantum (NISQ)
processors is chosen based on the technology readiness level of various stack layers of
the quantum accelerators.

The applications studied in this dissertation start by analyzing the computational
bottlenecks and accessing the applicability of a quantum accelerator or quantum infor-
mation formulation. Thereby, a scalable mathematical model of the quantum solution
is formulated. The resource complexity in terms of qubits and gates is then studied to
determine at which problem size the application can be demonstrated on both a QC sim-
ulator and available NISQ processors. If the problem size is found to preserve the value
as a PoC, i.e., it is possible to demonstrate the quantum advantage, a quantum program
is coded. The results from this entire application pipeline are tested and analyzed.

Most applications discussed in this research are not targeted to be the first demon-
stration of a quantum advantage experimentally. Instead, the focus is on high-impact
applications that possibly would need much larger quantum processors for implemen-
tation, but have stronger guarantees to be suitable for formulations based on quantum
information.

1.3.1. FUNCTIONAL ALGORITHM DESIGN

Quantum algorithm design translates the requirements of the application on quantum
programming languages. Thus, it interfaces with various target applications and the tar-
get quantum compilers.

For a holistic quantum accelerated application pipeline, implementing a PoC of the
quantum kernel is not sufficient. The developed PoC should take into account any clas-
sical pre-processing and post-processing steps, as well as the complexity of compilation
and real-time control during the algorithm execution. Though a quantum algorithm de-
signer might not address improvements on the entire pipeline, the assumptions on the
auxiliary parts should be clearly understood to assess the overall impact of the research.
In principle, most of these parts are assumed to be offloaded to the underlying stack lay-
ers like compiler code optimizer and runtime micro-architecture. An isolated discussion
of a specific quantum algorithm is insufficient for near-term implementation.

The quantum algorithm would have interfaces with other software modules running
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Figure 1.3: Quantum Algorithm (block with solid outline) and interfacing blocks within a quantum
accelerator that influence the overall speedup.

in parallel, as shown in Figure 1.3. The application logic is described as a hybrid algo-
rithm (green block in the figure), i.e., a classical program with quantum kernels. The
hybrid compilation identifies the parts that are executed on the quantum accelerator.
During the execution of the quantum algorithm, the quantum algorithm interfaces with
other blocks within and outside the accelerator. These can be functionally grouped un-
der three factors that contribute to the overall runtime of a general quantum algorithm:

• Application logic (red blocks in the figure): This pertains to the core algorithm run-
ning on a simulator, where the internal state vector can be accessed. It refers to the
inherent gate complexity of the algorithm and other classical pre/post-processing
involved;

• No-cloning (violet blocks in the figure): If the internal state vector cannot be ac-
cessed (like in real quantum processors), the experiment needs to be repeated
multiple times, and the measurement is aggregated. Most algorithms demand a
statistical estimate of the state’s probability distribution. The central tendency of
these measurements is the resultant output from the quantum algorithm. Quan-
tum state tomography is an active area of research. Similar constraints are present
in the classical data input in the absence of a QRAM.

• Experimental (blue blocks in the figure): For algorithm development (using per-
fect qubits) and PoC testing, a simulator platform is preferable, such as the QX
Simulator used for this research. After sufficient confidence in the logic is estab-
lished, it needs to be ported to an experimental quantum processing unit [19]. This
adds complexity overhead for topological mapping and routing [20], quantum er-
ror correction cycles [21] and runtime control latencies.

Thus, every quantum algorithm that depends on a probabilistic result in a noisy en-
vironment needs to be repeated, adding a multiplicative factor to the inherent gate com-
plexity.

There are conceptual differences between quantum accelerators and parallelization
provided by other accelerators like GPUs. The data input-output bottleneck between
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classical and quantum makes quantum suitable for ‘small data, big compute’ instead
of big data. Our research on quantum accelerated algorithms focuses on finding niche
applications that can benefit from this software model.

1.3.2. PROGRAMMING FRAMEWORKS

In this doctoral research, multiple quantum programming frameworks were used -
OpenQL, QX Simulator, Qiskit and Ocean. These choices were initially based on ease
of access to tools developed within the research group that allowed easy debugging and
feature requests. Eventually, the implementation platform was shifted to emerging de
facto standards in the quantum computing community.

The OpenQL framework allows hybrid quantum-classical coding in Python or C++,
compiling and optimizing quantum code to produce the intermediate Common QASM
(cQASM) [22] and the compiled Executable QASM (eQASM) for various target platforms
(superconducting qubits, spin-qubits, NV-centers, etc.) The Qxelarator library allows the
execution of the compiled QASM on the QX binary and receives the measurement out-
comes in the high-level OpenQL code encapsulating the quantum architecture (in this
case, a simulator), allowing interleaving classical and quantum code blocks in a single
program. QX is a universal quantum computer simulator that takes as input a cQASM
file and provides thorough aggressive optimization, high simulation speeds for qubit
state evolution. The experimental setup used (with 28 HT cores at 2.00 GHz and 384
GB memory) can simulate ≈35 qubits if the states and operations are non-sparse. Qiskit
is the open-sourced quantum programming framework from IBM. It allows easy integra-
tion with the IBM qubit processors. Over the course of the research, Qiskit has become
popular in the quantum education and development community, which prompted its
adoption for the later implementations in this work. The application of de novo DNA
sequence assembly were also implemented on a quantum annealer. The Ocean frame-
work from D-Wave was used for executing it on the annealing simulator and the D-Wave
quantum annealer.

While libraries (like OpenQL and Qiskit) in high-level languages allow integrating
quantum programming with classical logic, the description of the quantum logic is ex-
plicitly specified at the circuit level. Most of these programming models use function
calls to modify the quantum program object by appending specific unitary gates at the
specific qubits. Thus, conceptually the level of abstraction is the same as a quantum
assembly (QASM) language. However, the high-level language features like variables,
loops, and conditional statements allow for a more compact representation compared
to QASM.

1.3.3. PERFECT SIMULATION

The period of this doctoral research has been witness to various landmark events in the
quantum computing timeline. These include demonstrations of quantum supremacy,
a shift to NISQ algorithms, and various record-breaking funding and research efforts.
Despite these, the justification behind the chosen research methodology has remained
valid.

The shift in focus from large-scale error-corrected fault-tolerant quantum proces-
sors to NISQ era has been triggered by John Preskill’s talk [23]. The enabling factor of
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this is the availability of cloud-based quantum processors on a few qubits from vendors
like IBM, Rigetti, IonQ, Quantum Inspire, etc. However, there remain considerable chal-
lenges in various factors like qubit multiplicity, gate error rates, coherence time, connec-
tivity, and high-level programming features for these devices to be applicable as PoC for
the applications discussed in this research. Thus, we remain agnostic to the availabil-
ity of these hardware platforms as they do not meet the technology readiness level re-
quired for practical applications. The algorithms are developed on perfect intermediate-
scale quantum (PISQ) computing simulators as an algorithmic level abstraction of future
FTQC (fault-tolerant quantum computing), as shown in Figure 1.4. Taking into account
the layers of quantum error correction, mapping and routing, even within quantum sim-
ulators, shifts the application from being demonstrable to intractable. Moreover, these
do not add to the quantum logic for the algorithm, as future quantum compilers are ex-
pected to abstract these from the quantum programmer. Thus, these are not considered
in this research.

2020+ 2025+ 2030+ 2035+

Q Hardware 
Research

PISQ
approach

Quantum Technology Readiness Maturity

Q Software 
Research

NISQ
regime

FTQC

Figure 1.4: Technology readiness gap between quantum hardware and quantum software readiness. It is
currently not favorable to develop proof of concept demonstrations via hardware-software co-design. For this

research, we follow a Perfect Intermediate-Scale Quantum (PISQ) computing simulation approach.

A breakthrough has been various demonstrations of quantum supremacy [24], where
a quantum processor is made to execute a specific circuit that is provably inefficient
(often requires intractable amounts of runtime, in multiple years) on supercomputers.
However, these algorithms cleverly exploit the strengths of quantum computation and
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are, in principle, not usable for any real world application. In this research, we focus on
quantum advantage, where the quantum formulation provides computational benefit to
an application that has a societal, industrial, or scientific impact.

The algorithms developed in this research are tested on noise-free, fully connected
quantum computing simulators. Simulation limits based on the exponential state space
scaling are around 35-50 qubits (between personal computers and supercomputers).
Yet, this paradigm of perfect intermediate-scale quantum computing simulation has
been beneficial for demonstrating the proof-of-concept of the quantum approach at the
current technology readiness level.

1.4. DISSERTATION ORGANIZATION
The remaining chapters of the dissertation describe three specific use cases studied in
this doctoral research:

• In § 2, we study the use case of DNA sequence reconstruction. Quantum formula-
tions for two different applications for this use case, ab initio reference alignment
and de novo read assembly, are discussed.

• In § 3, we focus on the circuit formulation of quantum automata models and their
encoding for studying mathematical objects in algorithmic information theory.
This framework is applied for genome analysis and causal modeling use cases.

• In § 4, we formulate a universal reinforcement learning agent framework that can
model quantum environments, test foundational principles, and can be used for
optimizing quantum algorithms.

In § 5, we conclude the dissertation with suggestions on future directions.
The use cases discussed in the various chapters are fairly independent of each other,

such that these chapters can be read separately. Each application requires a different
set of backgrounds based on their domain of applicability, which is introduced indepen-
dently. The gradual development of the reasoning behind the consideration for each use
case and how it connects to the research methodology presented in this chapter can be
appreciated from the concluding remarks in each chapter.





2
QUANTUM-ACCELERATED GENOME

SEQUENCE RECONSTRUCTION

The research question formulated at the inception of this doctoral research is to un-
derstand use cases of the quantum computing stack being developed by the Quantum
Computing Architecture team in collaboration with QuTech. This involved investigating
candidates for long-term high-impact applications of quantum computing. The require-
ments for the stack layers, like compilers, micro-architecture, and QC simulator, are typ-
ically driven by the requirements for qualifying quantum processing units, e.g., random-
ized benchmarking and surface-code QEC cycle. The aim of this research is to create an
alternative, top-down, application-driven vision of the requirements for the quantum
accelerator stack. Thus, being synchronized with the current state (size and quality) of
quantum computing hardware is not the primary focus. Instead, the algorithm design
and theoretical study of the resource scaling would inform the tipping point of quantum
advantage for the target application.

The supervisory team of this doctoral research have considerable experience in the
domain of high-performance genomics accelerators. This is in the context of the startup
company, Bluebee (acquired by Illumina in 2020) that offers cloud-based genome an-
alytics on FPGAs. Thus, the first task undertaken was to investigate possible quantum
acceleration candidates within the genomics HPC pipeline to further empower this ap-
plication of high societal benefit. Given the high demand for processing power, quan-
tum acceleration for the specific step of genome sequence reconstruction is explored

This chapter is based on the following:
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in this chapter. The two solutions developed as part of this investigation of quantum-
accelerated DNA sequence reconstruction are presented.

2.1. USE CASE MOTIVATION
Understanding the genome of an organism reveals insights [25] with scientific and clin-
ical significance, like causes that drive cancer progression, intra-genomic processes
influencing evolution, enhancing food quality and quantity from plants and animals.
Genomics data is projected to become the largest producer of big data within the
decade [26], eclipsing all other sources of information generation, including astronomi-
cal as well as social data. At the same time, genomics is expected to become an integral
part of our daily lives, providing insight and control over many of the processes within
our bodies and in our environment. An exciting prospect is personalized medicine [27],
in which accurate diagnostics can identify patients who can benefit from precisely tar-
geted therapies.

Despite the continual development of tools to process genomic data, current ap-
proaches are yet to meet the requirements for large-scale clinical genomics. In this case,
patient turnaround time, ease of use, robustness, and running costs are critical. As the
cost of whole-genome sequencing (WGS) continues to drop [28], more and more data
is churned out, creating a staggering computational demand. Therefore, efficient and
cost-effective computational solutions are necessary to allow society to benefit from the
potential positive impact of genomics. This research provides efficient solutions based
on the quantum computing paradigm to the high computational demands in the field of
genomics, specifically for genome sequence reconstruction.

2.2. GENOME SEQUENCE RECONSTRUCTION
Nucleic acids like DNA and RNA are very long, thread-like polymers made up of a lin-
ear array of monomers called nucleotides. These carry the genetic instructions used
in the growth, development, functioning, and reproduction of biological organisms.
These genetic instructions are primarily encoded in the sequence using the four nucleic
molecules, adenine (A), cytosine (C), guanine (G), and thymine (T). Adenine pairs with
thymine, and guanine pairs with cytosine, represented by A—T and G—C, which are re-
ferred to as base pairs (bp) in the DNA. The information in the two strands of the DNA is
thus complementary. This allows simplifying the representation of both DNA and RNA
as a single string with four distinct symbols while processing it as digital data.

The length of genomes varies greatly among organisms, for example, the human

genome is approximately 3.289 × 109 bp long. Owing to this length, it is not possible
to obtain the entire sequence in a single readout from the sequencing machines.

In order to sequence the organism, multiple copies of the DNA/RNA are broken
down into fragments as sequencing machines are not capable of reading the entire
genome at once. Then, these fragments are sequenced using modern sequencing tech-
nologies (such as Illumina), which produces reads of approximately 50 to 150 bp at a
time, with some known error rate. Then these short strings are stitched back together - a
process called sequence reconstruction.

Genome sequence reconstruction is primarily done using two techniques:
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1. de novo assembly of reads
2. ab initio alignment of reads on reference

De novo assembly is applied while sequencing a new organism, where the short reads
are stitched back together based on the overlap between each pair. This is computation-
ally very intensive and is impractical for classical high-performance computing except
for small micro-organisms. For organisms with longer genomes, for example, humans,
the alignment method is preferred. Once the DNA/RNA is constructed for a species, for
example, via the Human Genome Project, this is used as a reference for further individ-
uals of the same species. The whole genome is reconstructed by aligning the short reads
on the reference genome. Thereafter, the variation from the reference genome can be
inferred to understand specific traits or abnormalities in the individual.

Since the principles of quantum computation are fundamentally different, we inves-
tigate the most basic algorithmic primitive for which the quantum kernel can be con-
structed. § 2.3 presents quantum-accelerated read alignment, while in § 2.4 quantum-
accelerated read assembly is presented.

2.3. QUANTUM-ACCELERATED READ ALIGNMENT
Some of the most promising applications for quantum acceleration are physical system
simulation, cryptography, optimization, and machine learning. QiBAM (quantum in-
dexed bidirectional associative memory), the technique developed for this application,
falls under the umbrella of quantum search-based algorithms, where a high dimensional
state space of qubits is harnessed to explore/search an optimization landscape faster
and better. While these generic algorithms are ubiquitous in computer science and data
structures, in this research, an exemplary case of DNA sequencing application is consid-
ered in depth. This is motivated by the immense application of this area in the upcoming
years and its reliance on a high volume and speed of data processing. Faster DNA se-
quence reconstruction will assist the adoption of precision medication by accelerating
the diagnostics pipeline.

Bioinformatics algorithms in use today (especially the focus here, that is, DNA se-
quence alignment) rely on heuristic methods to cope with the huge volume of data. Even
these heuristic approaches take days to run on supercomputing clusters, limiting their
applicability to wider use. The advantage of quantum algorithms discussed in this work
is twofold: (a) they have a lower runtime than corresponding classical algorithms; and
(b) a global optima is guaranteed to be sampled with the highest probability instead of
a sub-optima as in current classical heuristics. Application areas like cryptography and
physical simulations are highly susceptible to noisy input/computation, which makes
them highly improbable to achieve good results in the low coherence quantum systems
that will be available in the near-term. The application for DNA alignment searches for
a sub-optima within an acceptable threshold, so an approximate solution is more per-
missive for this use case.

Quantum approaches to DNA sequencing have not been explored in much depth
before. The master’s thesis research as part of this doctoral research’s scoping is the first
time [29] a gate-based quantum algorithm has been presented where the DNA index
of the best matching sub-string is retrieved with high probability. While previous work
on associative memory and phone directories provide the tools for this application, in
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this research, a holistic gate-level description of the entire algorithm and the oracle is
provided. The specific design in the context of genome sequence reconstruction takes
into account the following requirements:

• in genomic sequences, since reads can contain errors, an approximate matching
query is required;

• a constant oracle is useful as compiling the oracle differently for every read at run-
time is tedious;

• the associated index in the reference needs to be retrieved instead of the corrected
query.

The proposed approach, which takes into account these requirements, is tested and
verified on a quantum simulator with small artificial sequences as a proof of concept.

2.3.1. SEQUENCE RECONSTRUCTION USING READ ALIGNMENT

Starting as an abstract algorithm, the problem is gradually formulated towards the in-
tended application in genomics. A database is defined with indices and an associated
data element for each index, as illustrated with a simple example in Figure 2.1. A search
query on this database is provided. It is possible that the exact match for the element is
not present in the database. The objective of an approximate index search is to return
the index of the element that is closest to the search query. In this example, by visual
inspection, it can easily be inferred that the closest match is the element at index 1. In
fact, the key cut pattern on both the search query and the nearest matching keys are the
same, a metaphor for the usefulness of the nearest association being of functional use.

3

2

1

0

Database

Search Query

Figure 2.1: Simple example of associative search.

The model of associative memory is closely related to how learning occurs in the
brain, thus finding its use in computational neuroscience. It is useful when we have
noisy or incomplete knowledge of the data. An indexed memory variant is useful when
we not only want to recover the nearest matching data from the database but also the
index of its occurrence that has associated semantic meaning. For example, an object
detection algorithm tries to find the nearest match to objects (e.g., humans, cars, traffic
lights) in a scene. After the nearest match is detected, the index of the match location
can help in positioning the object in the scene, for example, if a human is on the left or
right of the road. The scene here is the database, and the output is the pixel coordinate
of the detected object, based on which important decisions might be automated in a
self-driving car.
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Here we focus on one such application of approximate index search, where the data
are one dimensional (thus, a sub-string search). These data are DNA sequences where
finding the index of the nearest match to a query is of immense computational value in
bioinformatics.

The Broad Institute’s GATK DNA processing pipeline [30] is a widely used toolset for
this purpose, which includes several processing stages like map-to-reference, duplicate
marking, and variant calling. One of the most compute-intensive processing stages is
the map-to-reference stage used for aligning the reads for reference-based DNA recon-
struction [31]. Due to the huge data volume of over-sampled reads, whole-genome se-
quencing (WGS) of a single human take days on computing clusters, limiting the appli-
cability of WGS in personalized medicine. This motivates the demand for acceleration
using quantum computation, as even a polynomial speedup can provide huge benefits
on a production environment.

Techniques currently used in the genomics industry depend heavily on heuristics
to tackle the volume of data that needs to be processed. However, the heuristics used
in industrial alignment algorithms, for example, BWA-MEM, are trade-offs between the
quality of the solution and the tractability on the computing platform. Given access
to a superior computing paradigm, the sequence reconstruction algorithm is thus built
bottom-up to achieve the best possible quality. In this research, a heuristic-free quan-
tum algorithm primitive is constructed to achieve a high-performance global alignment
algorithm. The quantum algorithm corresponding to a naive sub-sequence alignment
is presented, which can currently be implemented as a proof of concept using quan-
tum computing simulators. The presented algorithm can further be refined in the future
by adding a gap penalty and dataset-specific heuristics when quantum processing plat-
forms mature to the stage where these algorithms can be implemented in a quantum
accelerator.

In order to map a sub-sequence of characters (or short read) to a reference sequence,
the Levenshtein edit distance is commonly used as a metric for approximate matching
of the sub-sequence, spanning the comparison length. The Levenshtein edit distance
is upper bounded by the Hamming distance between the two sequences. In this work,
the Hamming distance is used as the cost function for matching, owing to its simplic-
ity for the quantum implementation. Given the reference sequence T and a short read
P of length N and M , respectively, the sub-sequence alignment problem is defined as
the index i ∈ N of T , where the alignment of P starts, which gives the minimum edit
distance. The short read is matched for each of the N −M +1 starting indices in the ref-
erence genome. The alignment algorithm outputs the index of the minimum Hamming
distance and optionally, the nearest match in the reference. Note that this concerns the
typical problem setting of linear nuclear DNA instead of circular organellar DNA like in
mitochondria or chloroplasts.

An example of this naive alignment approach is illustrated in Figure 2.2. The four
colors represent the four bases in the DNA, which can be encoded as a four-level system
(radix-4 number) or with 2 bits (or qubits) each. The short read, in this case, can be
aligned at 32− 5+ 1 = 28 locations on the reference genome, resulting in a Hamming
distance for each match. For example, at alignment index 0, only the green (second base
of the short read) matches with the reference, thus, resulting in a Hamming distance of
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• RG: Reference Genome (N = 32 𝑏𝑎𝑠𝑒𝑠)

• SR: Short Read (M = 5 𝑏𝑎𝑠𝑒𝑠)

• Hamming Distance

• Expected Output: Index / Corrected Query
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Figure 2.2: DNA sub-sequence alignment problem.

4. By running a classical linear search, it can be inferred that the minimum Hamming
distance (of 1) occurs at the index 21. It is important to note that, although the reference
genome and short read are of the same species (e.g., humans), an exact match might not
be found. This variation can be from two sources, read errors in the sequencing machine,
as well as, genetic variation from individual traits or abnormalities with respect to the
reference. Thus, it is important to account for approximate matching in the quantum
algorithm design.

The core idea behind classical algorithms that improve on the naive approach is de-
veloping a strategy such that, after a mismatch, shifts more than one place in the pattern
comparison position. The performances of exact string matching algorithms like Boyer-
Moore and Knuth-Pratt-Morris [32] degrades quickly as they are not suitable for an ap-
proximate match which is very common in DNA sequences due to read errors. The min-
imum alignment cost for Global Sequence Alignment can be found by the Needleman-
Wunsch algorithm, or the Local Sequence Alignment maximized over all possible sub-
strings by the Smith-Waterman algorithm. The industrial approaches (like BWA-MEM)
are heuristics built on these basic algorithms to reduce cost in terms of memory and
processing while trading off accuracy.

There are many different algorithms for alignment with no single universal preferred
method, as different heuristics work for different sequences and applications. Current
techniques trade speed and memory for accuracy. These heuristics make the problem
tractable for higher-sized genomes like that of a human. However, the approximations
and errors introduced prevent further progress in critical application domains like per-
sonalized medicine. Thus, in this research, we explore quantum acceleration of the
heuristic-free naive approach.

2.3.2. QUANTUM SEARCH

This research modifies the quantum search algorithm [33, 34] on an unstructured
database, as proposed by Lov Grover. Grover’s search offers a quadratic speedup over
a classical linear search. A quadratic speedup may seem less lucrative with respect to
exemplary quantum algorithms (such as Shor’s factorization); however, it is the only
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search method possible for unstructured data and is provably optimal [35] in query com-
plexity. Thus, under reasonable assumptions of computational complexity classes (e.g.,
P ! = N P ), Grover’s search based approach is the best algorithm in both classical and
quantum domains. Near-term approaches based on Quantum Approximate Optimiza-
tion Algorithm (QAOA) are now being developed to bridge the gap between Grover’s
search and current hardware limitations. The speedup from such quantum heuristics
are yet to be theoretically proven and are heavily dependent on the hardware specifica-
tions (noise characteristics, connectivity, ansatz, gate-set, etc.). Since DNA sequence
reconstruction requires more advanced quantum hardware, a hardware agnostic ap-
proach is employed, focusing on a coherent protocol that preserves the speedup from
quantum search. It is unlikely that DNA sequence reconstruction will lead to a higher
speedup with our current understanding of the encoding structure in the data. How-
ever, a polynomial speedup can prove to be path-breaking in industrial pipelines, where
improvements by state-of-the-art alignment heuristics mostly progress by constant fac-
tor speedups for specific datasets.

Grover’s search consists of three main steps between state initialization and mea-
surement, as shown as the quantum circuit blocks in Figure 2.3. The algorithm creates a
uniform superposition of all basis states by applying the Hadamard gate on all qubits in
the all-zero state. The black box oracle marks the solution state. Then the amplitude of
the solution state is amplified by an inversion-about-mean operation by the Grover dif-
fusion gate. Repeating the last two steps a quadratic number of iterations with respect
to the number of qubits, leads to a high probability of measuring the marked solution
state. Thus, the search reduces the query complexity to the oracle by a quadratic factor
compared to a classical linear search.

H⊗N Oracle
Inversion 

about Mean|0⟩⊗N answer

repeat 𝑂 2𝑁 times

… … … …

mark
solution

amplitude
amplification

sample
with high 

probability

Figure 2.3: Grover’s search steps.

Grover’s search was enhanced by subsequent research that will allow us to apply this
algorithm in our context. These improvements are:

• multiple known number of solutions [36];
• arbitrary distribution of initial amplitude [37];
• multiple unknown number of solutions by randomizing iterations over multiple

runs [38];
• multiple unknown number of solutions by a priori counting the number of solu-

tions [39].
The encoding of an application [40, 41] to the oracle is not explicitly described in

these papers, and Grover’s original paper assumes the execution of the oracle in con-
stant time, for an overall polynomial speedup. However, a complete description of an
algorithm in the circuit model needs an explicit representation of the construction of
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the oracle with quantum gates as described in this work.

2.3.3. RELATED ALGORITHMS
Associative memory, also called content-addressable memory (CAM), is a type of mem-
ory organization where instead of the index of the element to be retrieved (similar to a
random-access memory, RAM), a partial description of an element is passed as the input
query. The element in the memory with the nearest match to the query is retrieved. The
differences and application of these approaches are reviewed here, without the detailed
proofs of the quantum circuit construction from the original articles.

QUANTUM ASSOCIATIVE MEMORY

The idea of quantum associative memory (QuAM) [42–46] was developed under the um-
brella of quantum neural networks (QNN). Intuitively, the entire parallel search opera-
tion is reduced to operations on a superposition of states (memories). This results in
either an exponential increase in the capacity of the memory, or a reduction in the num-
ber of comparisons to constant time.

The algorithm consists of two major blocks, a pattern store and a pattern recall. The
pattern store starts from an all-zero initial state as is standard in all gate-based quan-
tum algorithms. The information of the reference text string or DNA, T , is encoded as a
superposition database of smaller sub-strings. This set TM of length M has sub-strings
TM(i) (where i ∈ {0 . . .(N −M +1)}) made from T , each starting from a consecutive in-
dex. This is compared with a recall pattern, P representing the query. If an exact match
in the stored database is found, it is retrieved as the measurement output. However, if a
partial or approximate version of P is queried, that is, some characters of the string are
not known exactly, the algorithm returns a random output (not correlated with the de-
gree of closeness). Since in practice, P can be inaccurate, our algorithm should be able
to retrieve the most similar string from the stored database.

QUANTUM ASSOCIATIVE SEARCH

A major improvement for the quantum associative memory is the use of distributed
queries [47]. Using this concept, the associative memory solves the pattern comple-
tion problem; that is, it can restore the full pattern when initially presented with a partial
pattern such that the known parts exactly coincide with some part of a valid full pattern.
This allows the associative memory to also retrieve valid memory items when presented
with noisy versions of a partial pattern. This improvement solves the problem of asso-
ciative search for which no part of the input stimulus is guaranteed to be noise-free. It is
desirable to retrieve the memory state, which is most similar to the given stimulus. This
kind of memory is called a pattern correcting associative memory.

For strings containing only 0 s and 1 s (binary alphabet), this corresponds to finding
the minimum Hamming distance between the query and the memory states. Ampli-
tudes are distributed in the distributed query such that the maximal value occurs for
some definite state p (the provided search query pattern) and the amplitudes of the
other states x decrease monotonically with Hamming distance h(p, x). The binomial
distribution matches the required query model. p is the query center of the binomial
distribution. Let d = ∣x∣ be the number of qubits required to store the memory states.
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For all x ∈ {0 . . .(2d −1)}, let

∣bx
p⟩=

√
γh(p,x)(1−γ)d−h(p,x)

where γ incorporates a metric into the model, which tunes the width of the distribution
permitting the comparison of the similarity of the stimulus and the retrieved memory at
a variable scale. The unitary oracle transformation can be formed as

O = I2d×2d −2 ∣bp⟩⟨bp∣
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Figure 2.4: Quantum associative search algorithm with distributed query.

Further modification [48] to the model of a distributed query is carried out by merg-
ing the concept of the memory state oracle with the binomial function based oracle. This
is depicted in Figure 2.4. After the pattern is marked by the binomial oracle, the entire
superposition for stored memories are marked and amplified. Thereafter, the standard
Grover iteration is carried out. The reconstructed pattern from among the stored mem-
ories (entries in the database) is retrieved with high probability once the qubits are mea-
sured. While the search function is similar to our use-case, the oracle in this case needs
to change for each short read and the reads needs to be indexed with respect to the ref-
erence.

QUANTUM INDEXED MEMORY

The location in the reference database of an exact or closest match to a query pattern is
the alignment index with the minimum Hamming distance between the sequences. This
method [49] was developed for a similar problem of amino-acid sequence matching. A
block diagram of the algorithm is shown in Figure 2.5.

The initial state is composed of two quantum registers of N−M and M qubits; the in-
dex and the pattern forming the quantum phone directory (QPD), similar in architecture
to a phone directory with name and number. Initially, the index is set to a full superposi-
tion. Then, based on the index, the data is stored in the database. For each tagged index,
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Figure 2.5: Quantum phone directory algorithm.

a sub-sequence of the reference DNA is stored as a basis state of the quantum superpo-
sition. Essentially, the set of patterns are sorted into an ordered list due to the second
register of the database that tags the data. The initial state is described as:

∣ψ0⟩=
1√

N −M +1

N−M

∑
i=0

(∣TM(i)⟩⊗ ∣i⟩),

where TM(i) represents a sub-sequence of the reference T of length M starting at the
position i .

The next step in the algorithm evolves the data qubits to their Hamming distances
with respect to the search pattern P , which in the case of DNA reconstruction is the
short read from the sequencing machines. This operation can be done on the entire
superposed state highlighting the parallel transformation power of quantum operators.
A set of CNOT gates with the query pattern P as the control on the data qubits results
in the data register evolving to the superposition of Hamming distances between each
original data and the query pattern. The black-box nature of the oracle function is thus
simplified. For a perfect match, the oracle now needs to mark the states with the value
of 0, thus making it a fixed function with no dependence on either the reference or the
search pattern. Once the state is amplified according to the modified Grover’s algorithm
(for an unknown number of solutions), the location of the sequence in the database can
be determined by making a measurement on the second part of the entangled register,
that is, the tag qubits. Note that both the index and data qubits need to be part of the
Grover iterations as the two quantum registers are entangled.

For approximate matching, the oracle needs to be modified such that it finds the
minimum value of the Hamming distance, instead of an exact 0. We propose an algo-
rithm that merges the improved distributed query approach on the indexed quantum
data structure, to retrieve the index of the closest match.

2.3.4. THE PROPOSED QIBAM ALGORITHM
The algorithm presented here inherits some of the features from the approaches high-
lighted in the algorithms presented in the previous sections. It is a novel quantum pat-
tern matching algorithm specifically designed for the context of genome sequence re-
construction. These requirements for the quantum algorithm are:

• approximate query matching to handle read errors;
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• a constant oracle to prevent run-time quantum circuit compilation;
• retrieval of the associated index in the reference along with the corrected query.
The proposed algorithm meets these three requirements. Thus, it can be applied in

an implementation for the example illustrated earlier in Figure 2.2. The quantum circuit
blocks for the proposed quantum indexed bidirectional associative memory (QiBAM)
algorithm is depicted in Figure 2.6.
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Figure 2.6: Quantum circuit blocks of the proposed QiBAM algorithm.

The initialization of the algorithm follows the design as described in § 2.3.3. The
tag qubits encode the pattern index, while the data qubits form the associative mem-
ory. Thus, the pattern store step in the associative memory algorithm (refer § 2.3.3) is
modeled as a quantum phone directory encoding - which allows the recall of the tagged
index corresponding to the query pattern completion/correction. Once the data are en-
coded, the Hamming distance evolution is carried out. This solves the black-box nature
of Grover’s marking oracle.

A distributed query is then defined over the associative memory with the query cen-
ter at zero Hamming distance. This is based on the quantum associative search, now
modified with p = 0, such that,

∣bx
0⟩=

√
γh(0,x)(1−γ)d−h(0,x)

The value of γ is empirically set to 0.25 based on the quantum simulation results. In
principle, this free parameter for the application of DNA sequence reconstruction needs
to be tuned based on the error rate of the sequencing machine which generates the short
read patterns that need to be aligned to the reference DNA.

Thereafter, the minimum Hamming distance (the evolved data string with the largest
number of zeros in the basis string in the superposition) is amplified by the process of
distributed quantum associative search. Finally, the index qubits are read out to sample
with high probability the index where the search pattern best matches the reference.
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While the societal relevance of the application presented in this research is enor-
mous, it is important to restate that currently available state of the art quantum proces-
sors are not yet capable to implement a proof of concept of this algorithm due to the
limitations in the qubit multiplicity, error rates and connectivity. Additionally, since the
reference DNA needs to be accessed for each run, as with most quantum algorithms, we
assume the availability of a QRAM. Efficient realizations of QRAM is a separate research
topic. Additionally, we propose that, if an efficient QRAM implementation is not pos-
sible, multiple copies of the QiBAM algorithm can be executed in parallel based on the
multiplicity of the qubit, since the result for each search pattern is independent of an-
other. In this context of parallelism, we envisage a multi-core quantum processor where
each subset of qubits would be executing the QiBAM on a specific DNA search string sim-
ilar to how single-instruction-multiple-data (SIMD) is implemented within the cores on
a GPUs. Based on an initial version of this research, an extension to Multiple Sequence
Alignment has been carried out by [50].

In further sections, a proof-of-concept on classical simulation of quantum compu-
tation is shown instead of experimenting with NISQ hardware. It is hard to predict the
timeline of quantum processors that will be able to implement this algorithm; how-
ever, given the current research thrust and development, a 5–10 years estimate is rea-
sonable [51]. A quantum computer architectural stack aids in developing a quantum
algorithm while being agnostic to the underlying hardware, such that, the programs im-
plementing the QiBAM algorithm can readily be ported to any quantum processor once
the technological maturity is reached.

QUANTUM INDEXED MULTI-ASSOCIATIVE MEMORY

If both the quantum registers are accessible for gate operations, the associative memory
can be operated (searched) based on either of the registers, thus allowing a bidirectional
associative search and retrieval. We can search with the index (in a RAM mode), or by
the data (in a CAM mode).

This idea of associative memory can be generalized to multiple quantum registers
holding different attributes of the data that needs to be analyzed. This generalization
of QiBAM is called quantum indexed multi-associative memory (QiMAM). For example,
the quality value of the reads can be stored in register 2, and the chromosome number
of the read in register 3, in addition to the index and the pattern. More complex search
queries can be formed based on this entangled quantum database, for example, a search
for the index of a specific noisy query pattern among high quality reads in a particular
chromosome. Such a database is particularly useful for applications like Gene Ontology,
Sequence Ontology and Genome Wide Association Studies.

QUBIT AND GATE COMPLEXITY

Three important parameters are used as metrics for a quantum algorithm. The space and
time complexity of classical algorithms, correspond respectively, to the scaling behavior
of the number of required qubits and the number of required gates for our quantum
computation model. The detailed derivations of the complexity are presented in [29]
and here we present the final results. The probability of reading out the desired solution
is another important metric though it is dependent on the specific data. Currently, how-



2.3. QUANTUM-ACCELERATED READ ALIGNMENT

2

29

ever, it is not possible to use real DNA sequence ensembles in the implementation due
to limitations in simulation and available hardware.

The qubit (space) complexity is the aggregate of the qubits used for encoding the
data register, tag register and ancilla. We do not consider overheads for error-correction,
mapping, routing or other factors besides the algorithm logic. For QiBAM, the qubit
complexity is the same as the algorithm in § 2.3.3.

Let the number of qubits required for the data and tag registers be qd = ⌈log2(A)⌉M
and qt = ⌈log2(N −M)⌉, respectively. The total number of qubits is thus Q = qd +qt +1,
yielding a typical estimate for the DNA alphabet, the human genome and read length

(e.g., from Illumina sequencers) A = 4, N = 3× 109 and M = 50, as 133 fully-connected
logical qubits. While this is beyond the reach of current NISQ era hardware, we note
that the number of required qubits to achieve quantum advantage is considerably less
than the exemplary Shor’s algorithm for factorization for the RSA coding in the cryptog-
raphy context.

The gate complexity depends on the choice of the universal gate set. Here, the gate
set used consists of {H , R y, Rz,Cc X }, where c = 0 is the X-gate, c = 1 is the CNOT gate,
c = 2 is the Toffoli gate, and so on. Higher-order controls can be decomposed with ancilla
qubits [52]. The translation of the gate complexity to the run-time for a specific quan-
tum processor platform would depend on the native gate set available on the hardware.
Most modern quantum compilers can convert between universal gate sets in linear com-
pile time and polynomial gate overhead. Thus, the universal gate set considered here is
without reference to any specific quantum processor platform. The initialization ker-
nel is first decomposed. First, qt Hadamard gates are used on the tag qubits to create
a superposition of solution states. Then, conditioned on each tag, the corresponding
shifted sub-string of the reference is encoded. The binary encoding of the tag requires
half the controls as inverted on average, requiring X-gate dressing totaling qt 2qt . We
can use results from the statistical distribution of the nucleotide frequencies to estimate
the typical case complexity of the quantum circuits. The Chargaff’s rules [53] state that
the DNA nucleotides are distributed approximately 1/4 in each sub-string. This requires
qd/2 targets for each tag encoded sub-string. Thus, the total initialization and Hamming
evolution require qt H + qt 2qt C0X + qt qd/2Cqt

X gates.

The distributed query step depends entirely on the chosen decomposition method
for the unitary and the native gate set. The unitary decomposition method using Quan-

tum Shannon Decomposition (QSD) [54] has a complexity of 3(4n−1 −2n−1), where n is
the dimension of the unitary. The mark memory operation would evolve the states in the
initial quantum database. This requires the controlled-Z (also called, CPhase) quantum
logic gate over the tag and data qubits for each of the 2qt memories of which N −M + 1
are memories from the reference genome. The data qubits, following Chargaff’s rule,
would have half the bits of 1, thus using a total of M qubits in average for the compute
and uncompute. The tag qubits would follow the same behavior as the initialization
phase, with average X-dressing of qt 2qt C0X gates. Thus, the total for the marking mem-
ory is (2qt ){2H + (M + qt)C0X +Cqd+qt−1X }. Note that this is the oracle complexity of
the quantum search, which for all practical implementations, always needs to be con-
sidered in addition to the polynomial speedup of query complexity. Finally, the Grover
diffusion operator is decomposed to {2(qd + qt)+ 2}H + 2(qd + qt)C0X +Cqd+qt−1X
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gates. The details of our implementation of the unitary decomposition algorithm can be
found in [55].

While the exponential reduction in space (qubit) complexity is easy to visualize as
proposed in the quantum associative memory architecture, the polynomial speedup is
not so pronounced. This is due to the exponential terms in the worst-case analysis for
the QSD and binary encoding. Many of these gates can be scheduled in parallel in a
quantum processor flattening the complexity. The focus of this research is on the cor-
rectness of the algorithm for the presented application, while retaining the oracle query
complexity of the Grover search. However, since the oracles are deterministically com-
putable, they can be aggressively optimized by the compiler before run-time.

Figure 2.7: Quantum database for search pattern CA and reference string AATTGTCTAGGCGACC.

2.3.5. QIBAM RESULTS ON DNA SEQUENCES
The implementation of this algorithm is carried out in OpenQL [56] and the QX Simula-
tor [57]. In the following example, the results of implementing the QiBAM algorithm on
an actual DNA sequence is shown. The details of how to search for a pattern of length 2
over the DNA alphabet (A, C, G, T) is demonstrated. A minimum-length super-string that
includes all possible length-2 DNA substrings is AATTGTCTAGGCGACCA. This minimal-
length super-string helps with verifying the correctness of the quantum algorithm ex-
haustively. To test the distributed query capabilities of the algorithm for mismatches
in the reference sequence, the last memory, CA is not encoded, making the reference
genome as AATTGTCTAGGCGACC. This is encoded as the input database shown in Fig-
ure 2.7. The radix-4 symbols of the DNA alphabet are encoded in binary as 00, 01, 10, 11,
while the tag is encoded as a 4 bit binary coded decimal value. Thus, the database (of the
first two columns in Figure 2.7) is encoded in a quantum superposition as: ∣tag_data⟩ =
a(∣0000_0000⟩+∣0001_0011⟩+∣0010_1111⟩+∣0011_1110⟩+∣0100_1011⟩+∣0101_1101⟩+
∣0110_0111⟩+∣0111_1100⟩+∣1000_0010⟩+∣1001_1010⟩+∣1010_1001⟩+∣1011_0110⟩+
∣1100_1000⟩+ ∣1101_0001⟩+ ∣1110_0101⟩+ ∣1111_xxxx⟩), where the amplitude a =

1√
16
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Since the tag qubits are in a full superposition, the extra tags (e.g., 1111 in this case) are
allocated any arbitrary value (xxxx) and measurements of index beyond the valid range
can be ignored.

Now the search query is chosen as CA. The search pattern conditionally toggles the
database to evolve it to the Hamming distance. Since CA is not present in memory, we
expect the nearest patterns (approximate matches) to have a higher probability of detec-
tion, which are {AA, TA, CG, CC} (with a Hamming distance of 1 in the encoding). This re-
sults in the superposition: ∣tag_distHam⟩= a(∣0000_0100⟩+∣0001_0111⟩+∣0010_1011⟩+
∣0011_1010⟩+∣0100_1111⟩+∣0101_1001⟩+∣0110_0011⟩+∣0111_1000⟩+∣1000_0110⟩+
∣1001_1110⟩+∣1010_1101⟩+∣1011_0010⟩+∣1100_1100⟩+∣1101_0101⟩+∣1110_0001⟩+
∣1111_xxxx⟩). It can be verified for this case that, at indices 0000, 0111, 1011, 1110, the
distHam quantum register has the minimum number of 1 s and thus will be amplified by
a distributed query around 0000 followed by Grover diffusion for the required number
of iteration. The estimated trend for a higher solution probability should be in line with
decreasing Hamming distance, as plotted in Figure 2.8, with the tag on the X-axis and
the Estimate Amplification on the Y -axis.

Figure 2.8: Solution probability as a numerical estimate of expected results of a sample run.

The OpenQL algorithm is executed with the Qxelarator library, returning the in-
ternal state vector. The reference sequence and the search query is hardcoded in the
Python program for this test but can be streamlined to be directly read from an industry-
standard file like the FASTQ format from commercial DNA sequencers. The result from
the run is plotted in Figure 2.9. The left vertical axis shows the staircase state curve for
the tag qubits, while the right vertical axis shows the measurement probability of each
individual state. There are four tag qubits and four data qubits (2 radix-4 numbers for

a DNA search pattern of length 2). Thus, the total state space is 28
= 256. The double-

precision floating point naive state vector simulation of this algorithm requires 32 Kb to
store the state space, while each of the ≈230 gates requires a matrix of 8Mb. The states
with prominent probabilities are the memory states. The envelope of these states (ignor-
ing the spurious memories) gives the same trend as our estimate in Figure 2.8, verifying
the correctness of our implementation.
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Figure 2.9: Results of a sample execution of QiBAM on QX Simulator. The trend line (in orange) of the
probability distribution (after filtering the spurious states), matches the results derived analytically in

Figure 2.8.

2.4. QUANTUM-ACCELERATED READ ASSEMBLY

In this research, we explore the alternative reference-free DNA sequence reconstruction
implementation via de novo assembly, as an implementation on a quantum computing
platform. De novo assembly using the overlap-layout-consensus method has many ad-
vantages over other simpler methods, but suffers from large computational complexity,
which motivates targeting a quantum accelerator. Both gate-based quantum system as
well as quantum annealers are targeted. Each step of the formulation is explained with
simple examples [58] to target both the genomics research community and quantum
application developers. The implementation is evaluated on the D-Wave simulator, the
D-Wave annealer in the cloud and the QX Simulator. The current limitations in solving
real problem sizes to achieve a quantum advantage are discussed thereafter. It is the
first time this important computational problem of de novo assembly in bioinformatics
is targeted on a quantum accelerator with the full description of the pipeline.

Recently, [59] also discussed de novo sequencing on quantum annealing and
quantum-inspired annealing, citing a preprint of our research as presented in here. We
appreciate this research done independently to ours echoing a similar motivation to
explore the applicability of quantum computing to DNA sequence reconstruction and
reaching similar results. In contrast to their work, we additionally target the gate based
quantum computing model, which is considered to be the future standard of quantum
acceleration. Furthermore, our focus is from the perspective of a quantum application
developer, with details from genomics, quantum and computer science formulated in
a self-contained matter. In addition, an example is implemented via the various steps
of the algorithm and the execution results are demonstrated as a proof of concept to
evaluate the quality, scalability and limitations.
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2.4.1. DE NOVO REFERENCE-FREE ASSEMBLY

During sequencing, multiple copies of the DNA are made before fragmenting it. Thus,
a portion of the data is preserved in multiple copies which are chopped off at different
places resulting in data overlaps which facilitate stitching. This method is called de novo
assembly, as no other data than the sequenced read is used for reconstruction. It is com-
putationally expensive and done normally for the first time a new species is sequenced.
Given enough computing power, de novo sequencing is highly desirable as it is free of
reference bias. Since quantum computing presents itself as an ultimate computing ma-
chine, it is worth exploring the problem of de novo sequencing.

There are different methods [60] for de novo assembly used by the available tools:
Overlap-Layout-Consensus (OLC) methods, de Bruijn graph (DBG) methods, string
graphs, greedy and hybrid algorithm, etc. Real-world WGS data induces various prob-
lems in all these methods. Examples are spurs (short, dead-end divergences from the
main path), bubbles (paths that diverge then converge), frayed rope pattern (paths that
converge then diverge) and cycles (paths that converge on themselves) [61]. Common
causes of these complexities are attributed to repeats in the target and sequencing error
in the reads. Most optimal graph reductions belong to the NP-hard class of problems,
thus assemblers (like Euler, Velvet, ABySS, AllPaths, SOAPdenovo) rely on heuristics to
remove redundancy, repair errors or otherwise simplify the graph. The choice of algo-
rithms is based on the quality, quantity and structure of the genome data. Current short-
read sequencing technologies produce very large numbers of reads favoring DBG meth-
ods. However, single molecule sequencing from third generation sequencing machines
produces high-quality long reads, which could favor OLC methods.

In DBG, the nodes represent all possible fixed-length strings of length K (K-mer
graph). The edges represent fixed-length suffix-to-prefix perfect overlaps between sub-
sequences that were consecutive in the larger sequence. In WGS assembly, the K-mer
graph represents the input reads. Each read induces a path and those with perfect over-
laps induce a common path as an advantage, however, compared to overlap graphs, K-
mer graphs are more sensitive to repeats and sequencing errors as K is much less than
read size. In an ideal construction, the Eulerian path corresponds to the original se-
quence, though graphs built from real sequencing data are more complicated.

ALGORITHM

Figure 2.10: Overlap-Layout-Consensus genome assembly algorithm.
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In the OLC method [62], as shown in Figure 2.10, an overlap graph represents the se-
quencing reads as nodes and their overlaps (pre-computed by pair-wise sequence align-
ments) as edges. Paths through the graph are the potential assembled DNA pieces and
can be converted to sequence. Formally, this represents a Hamiltonian cycle, a path that
travels to every node of the graph exactly once and ends at the starting node, includ-
ing each read once in the assembly. There is no known efficient algorithm for finding a
Hamiltonian cycle as it is in the NP-complete class. Though it was feasible for microbial
genome (in 1995) and the human genome (in 2001), NGS projects have abandoned it
due to the high computational burden to be commercially viable. This is the target for
quantum acceleration in this research.

2.4.2. QUANTUM-ACCELERATED OPTIMIZATION
The OLC method of de novo assembly requires solving the minimum Hamiltonian cycle
problem. This is also famously known as the Traveling Salesman Problem (TSP), which
belongs to the NP-hard class of computational complexity. Thus, we need to formulate
it as an approximate optimization problem as even quantum computers cannot solve
NP-hard problems in polynomial time.

…
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Figure 2.11: Workflow (red arrows) of quantum accelerated read assembly.

Mapping an NP-hard problem to quantum involves 2 steps as shown in Figure 2.11.
The first step is to reduce the given application to a Quadratic Unconstrained Binary Op-
timization (QUBO). The second step is to embed the QUBO to the connectivity structure
of the hardware. Worst-case run-time for NP-Hard problems are exponential even on a
quantum computer. The aim of the physical implementations (like QAOA and quantum
annealers from D-Wave systems) is to try to find a good approximation to the solution in
polynomial running time. The technique to formulate a problem and program the cor-
responding quantum computing model of gate-based and annealers are considerably
different. This is presented in the next sections.



2.4. QUANTUM-ACCELERATED READ ASSEMBLY

2

35

QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

A binary quadratic model (BQM) comprises a collection of binary-valued variables that
can be assigned two chosen values (based on the model) with associated linear and
quadratic biases. Two isomorphic BQM are:

• QUBO models: xi ∈ {0, 1} Boolean values

H(x)=∑
i

Qi i xi +∑
i , j

Qi j xi x j +k

• Ising models: σi ∈ {−1,+1} spin states

H(σ)=−µ∑
i

hiσi −∑
i , j

Ji jσiσ j

The choice of model depends on the problem. Using QUBO, it might be easier to write
numbers in standard binary notation (e.g. 1012 = 510) in the optimization problem; or it
might be required to destructively interfere two variable (e.g. two battling Pokemons) us-
ing the Ising model. Quantum processors like annealers use the Ising model, thus QUBO
equations need to be converted into Ising under the hood. QUBOs can always be fully
expressed in both expanded and matrix forms, while Ising can be fully expressed in the
expanded form, but not completely in the matrix form. However, the being isomorphic,
they are equivalent in principle, and the choice depends on the underlying hardware
implementation or ease of expressing the logic.

QUBO model [63, 64] unifies a rich variety of combinatorial optimization problems
as an alternative to traditional modeling and solution methodologies. These problems
are concerned with making wise choices in settings where a large number of yes/no deci-
sions must be made and each set of decisions yields a corresponding objective function
value - like a cost or profit value. The QUBO model is expressed by the optimization
problem:

minimize y = x
t
Qx = H(x)

where x is a vector of binary decision variables and Q is a (symmetric or in upper trian-
gular) square matrix of constants.

Different types of constraining relationships arising in practice can be embodied
within the unconstrained QUBO formulation using penalty functions. The penalties
introduced are chosen so that the influence of the original constraints on the solution
process can alternatively be achieved by the natural functioning of the optimizer as it
looks for solutions that avoid incurring the penalties. Penalties are not unique, mean-
ing that many different values can be successfully employed. For a particular problem,
a workable value is typically set, based on domain knowledge and on what needs to be
accomplished. If a constraint must be satisfied, i.e., a hard constraint, then the penalty
must be large enough to preclude a violation. More moderate penalties are set for soft
constraints, meaning that it is desirable to satisfy them but slight violations can be tol-
erated. Casting the QUBO model as a minimization problem permits a maximization
problem to be solved by minimizing the negative of its objective function.

QUBO models belong to the NP-hard class of problems. Thus exact solvers (e.g.
CPLEX, Gurobi) work practically only for very small problem instances (around 100
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variables) using mostly branch-and-bound or problem-specific techniques. However,
impressive successes are being achieved by using meta-heuristic methods that are de-
signed to find high quality but not necessarily optimal solutions in a modest amount of
computer time. Among the best meta-heuristic methods for QUBO are those based on
tabu search, path relinking, simulated annealing, genetic/memetic strategies, and their
ensembles. Recently, with the availability of small-scale quantum processors, there is a
huge research thrust in achieving quantum advantage for QUBO models.

TRAVELING SALESMAN PROBLEM

A Hamiltonian path is a graph path between two vertices of a graph that visits each ver-
tex exactly once. If a Hamiltonian path exists whose endpoints are adjacent, then the
resulting graph cycle is called a Hamiltonian cycle. It is a path that starts from one node
and ends at the same node covering all the nodes of that graph.

Given a directed complete graph G = (V , E) with weights wi j on the directed edge
i → j , the directed traveling salesman problem (TSP) aims to find a directed Hamilto-
nian cycle of minimum weight, i.e., a cycle that visits all nodes (cities) of the graph and
such that the sum of the edge weights (travel cost) is minimum. Intuitively, given the or-
dered pair-wise distance between cities, the TSP involves finding the shortest route that
visits every city once. The order of visiting the cities are not constrained.

TSP falls under the NP-hard class (thus outside BQP), so the time to find the exact
solution scales exponentially also on a quantum computer with the problem size. Of-
ten a good sub-optimal solution is admissible, thus heuristic algorithms of much lesser
complexity can be employed. TSP solvers are used in many industrial applications in
the domains of planning, scheduling, logistics, packing, DNA sequencing, network pro-
tocols, telescope control, VLSI testing, and many more.

The first step to specifying a TSP is to create a (weighted) graph specifying the edges
in the format (vertex-from; vertex-to; weight). Next, the TSP graph is transformed into
a QUBO graph. QUBO variables are labeled (n, t) where n is a node (read) in the TSP
graph and t is the time index of visiting it in order. E.g., if (a, 0) = 1 in the solution state,
that means the node a is visited first. Since the total number of visits (time IDs) equals
the total number of nodes (read IDs); the total possible combinations of (n, t) is ∣G∣2.
∣G∣ is the number of nodes in the original TSP graph.

The QUBO graph will have 2∗∣G∣2∗(∣G∣−1) interactions (or edges). The interactions
denote pairs of 2 nodes that can/cannot coexist. The weight of the interaction shows the
reward/penalty of coexisting. A higher positive value denotes more penalty. There are 3
types of penalty, for multi-location (being at 2 places at the same time), repetition (being
at a city twice) and path cost for the tour.

HAMILTONIAN FORMULATION

In physical systems (classical or quantum), a Hamiltonian describes the energy of an
object. More specifically, it describes the time-evolution of a system expressed by the
Schrödinger equation:

i h̵
d

d t
∣ψ(t)⟩= H∣ψ(t)⟩

The unitary operator underlying the Hamiltonian is obtained by solving the equation
for some time duration: U = exp(−i H t/h̵). The time-independent formulation of the
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equation reflects the total energy of the system E = H∣ψ⟩.
The adiabatic theorem dictates that if the change in the time-dependent Hamilto-

nian occurs slowly, the resulting dynamics remain simple, i.e. starting close to an eigen-
state, the system remains close to an eigenstate. For a quantum mechanical system,
some initial Hamiltonian Hi is slowly changed to some other final Hamiltonian H f . This
implies that, if the system is started in the ground state (lowest eigenstate) of the initial
Hamiltonian, the system will evolve to the ground state of the final configuration. The
computational advantage comes from the choice of an easy-to-prepare quantum system
like:

Hi =−∑
i

σ
X
i

(the ground state is the equal superposition state) and evolve the Hamiltonian to a sys-
tem such that the ground state encodes the solution of the optimization problem we are
interested in.

The change needs to be carried out by a defined schedule, for example, linear in the
time scale t ∈ [0, 1] defined as:

H(t)= (1− t)Hi + t H f

The energy difference between the ground state and the first excited state is called the
gap, ∆(t). If H(t) has a finite gap for each t during the transition the system can be

evolved adiabatically with the evolution speed proportional to 1/min(∆(t))2. The gap,
however, is highly problem-dependent, tending to have an exponentially small gap for
hard problems (like those in the NP-hard class), making the time exponentially long.
Thus it is unlikely that an exact solution for these problems can be found in polynomial
time.

In adiabatic quantum computations, universal calculations are performed by map-
ping the problem to a final Hamiltonian defined as:

H f =− ∑
<i , j>

Ji jσ
Z
i σ

Z
j −∑

i

hiσ
Z
i − ∑

<i , j>

gi jσ
X
i σ

X
j

Thus the system Hamiltonian H(t) becomes:

H(t)= (1− t)[−∑
i

σ
X
i ]+ t[− ∑

<i , j>

Ji jσ
Z
i σ

Z
j −∑

i

hiσ
Z
i − ∑

<i , j>

gi jσ
X
i σ

X
j ]

The values of biases and couplings are set by the user/programmer for a quantum
annealer.

The major drawback to implementing an adiabatic quantum computing directly is
calculating the speed limit, which is harder than solving the original problem of find-
ing the ground state of a Hamiltonian. Quantum annealing [65] drops the strict require-
ments of respecting speed limits in favor of repeating the transition multiple times. Sam-
pling from the solutions is likely to find the lowest energy state of the final Hamiltonian
(though there is no theoretical guarantee). Going from ‘nearly correct’ to ‘correct’ is still
NP in general if the original problem is in the NP class of complexity (the parameters
for local optima aren’t necessarily going to be distributed anywhere near the global op-
tima). However, annealing can be useful if a sub-optimal solution is acceptable for the
application.
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VARIATIONAL HYBRID APPROACH

Coherent quantum protocols have promising exponential speedups but assume a fault-
tolerant quantum computing platform, with high quality of qubits, a large number of
gates and circuit width. These popular algorithms like Shor’s factorization, HHL for ma-
trix inversion, though primitives for many quantum algorithms are not of immediate
practical relevance. Wrapping these protocols in state preparation (from classical data
to quantum) and state tomography (from quantum probability amplitudes of final state
to classical statistics) can overrule the entire speedup achieved by the protocol itself.

Currently, we are in the NISQ era. These near-term quantum computers are more
suited for hybrid quantum-classical (HQC) algorithms [66]. These are heuristic proto-
cols based on the variational principle. In an HQC algorithm, the power of the quan-
tum computer is used for preparing a quantum state. The complexity of the algorithm
is traded off for multiple measurements over multiple cycles. The operations that re-
quire lots of gates on a quantum computer are offloaded to the classical computer (e.g.
optimization, addition, division), which controls the quantum computer like an accel-
erator or a co-processor, as shown in Figure 2.12. A quantum circuit is defined as having
a certain format A (or ansatz/stencil) with parameters. There are m parameters form-
ing a parameter vector Λm . These can be initialized randomly or with a classical guess.
For the first cycle, the quantum computer takes the initial guess and evolves it using

the circuit A(Λ0
m). The Hamiltonian (energy) is measured out and sent to the classi-

cal computer. The variational principle updates the parameters in such a way that the
energy of the Hamiltonian is lowered in each successive iteration. The optimization us-

ing Λ1
m ,Λ2

m ,Λ3
m , . . . continues until the acceptable threshold is satisfied, very similar to

training in neural networks.

𝑈𝜃

 0〉

 0〉

... ...

Fitness(𝜃)

𝜃𝑡

𝜃𝑡+1

Update 𝜃

Repeat till fitness/iteration threshold

Classical Parameter OptimizerQuantum Parameterized Circuit

Figure 2.12: Variational hybrid quantum-classical approach for optimization.

The variational principle forms the core theoretical basis behind the working of near-
term quantum heuristic algorithms. It states that, for a trial wave-function (defining the
family of quantum states reachable by varying the m parameters of A),

EΨT
=
⟨ΨT (Λ)∣ ĤQC ∣ΨT (Λ)⟩

⟨ΨT (Λ)∣ΨT (Λ)⟩
≥ E0

The normalization term ⟨ΨT (Λ)∣ΨT (Λ)⟩ = 1 as we assume no leakage errors from the
computational basis. Thus, it is possible to reach the ground-state energy by finding the
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right parameters. The more free the state is to represent quantum states (determined by
the choice of A), the better it will be able to lower the energy.

Since adiabatic and gate systems offer effectively the same potential for achieving the
gains inherent in quantum computing processes, analogous advances associated with
QUBO models may ultimately be realized through quantum circuit systems as well.

An example of HQC algorithms is the Quantum Approximate Optimization Algo-
rithm (QAOA) [67]. It is a hybrid variational algorithm that produces approximate solu-
tions for combinatorial optimization problems. In theory, QAOA methods can be applied
to more types of combinatorial optimization problems than embraced by the QUBO
model [64]. The parameters of the QAOA framework must be modified to produce differ-
ent algorithms to appropriately handle different problem types. QAOA is a polynomial-
time HQC algorithm which can be seen as the Trotterization of an infinite time adiabatic
algorithm. Since the AQC always gives the optimal solution for Hamiltonians with a non-
zero gap, QAOA for infinite cycles also converges to the global optima.

The generalization of QAOA called the Quantum Alternating Operator Ansatz [68],
consists of 2 Hamiltonians: a cost/problem Hamiltonian HC (similar to the transverse
field in AQC) and a driver/mixing Hamiltonian HM (similar to the longitudinal field in
AQC). This is repeated over p cycles with each Hamiltonian parameterized by the γ and
β real values (rotation angles similar to the adiabatic evolution time). After this unitary
evolution, the state is measured for the expectation value with respect to the ground
state of the cost Hamiltonian. The initial state ∣ψ0⟩ depends on the problem (typically
either the all-zero or the equal superposition state).

U(θ)∣ψ0⟩= HM(βp)HC(γp) . . . HM(β2)HC(γ2)HM(β1)HC(γ1)∣ψ0⟩

For an optimization instance, the user specifies the driver Hamiltonian ansatz, cost
Hamiltonian ansatz, and the approximation order (cycles) of the algorithm. If the num-
ber of cycles in QAOA increases, theoretically, the sub-optimal solutions obtained can
only get better, as the sub-optimal solutions defined by fewer cycles (with fewer free pa-
rameters) are always contained in more cycles (if the new rotation parameters are set to
zero). However, practically, having more cycles causes difficulty for the classical opti-
mizer to deal with more free parameters and can affect the convergence.

Since HQC trades off the decoherence issue of a long quantum circuit in the NISQ
era with multiple low-depth, the number of repetitions required is high. To estimate the
expectation of the prepared state in each optimization step, it needs to be (pre-rotated
in the basis and) measured with respect to each Pauli term in the problem Hamiltonian
and aggregated. Each Pauli term measurement in turn requires state tomographic trials.

Moreover, the optimizer might get stuck in local optima or barren plateaus [69] in the
parameter landscape, requiring a few reruns to build confidence in the obtained optima.
The HQC algorithms depend a lot on the choice of the classical optimizer as well. Here
we experiment with the basic Nelder-Mead gradient-free optimizer, but many gradient-
based and gradient-free choices exist (for example in libraries like SciPy in Python and
TOMLAB in MATLAB) which needs to be chosen based on empirical testing of a partic-
ular formulation of the specific problem.

The pseudo-code for our OpenQL implementation of the QAOA algorithm is shown
in Listing 2.1.
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• Invoke QAOA:
⋄ Form parameterized cQasm [Input: reference circuit, ansatz, steps, coefficients, angle ids]
⋄ Form parameters list [Input: gammas, betas]
⋄ Set runtime deparameterized cQasm filename
⋄ For each iteration:
⋆ For each Pauli product term in cost Hamiltonian (wsopp):
◦ Deparameterize cQasm [Input: parameterized QASM, parameter list]
◦ Add measurement basis rotation based on Pauli product term
◦ Invoke Qxelerator to aggregate measurement over shots

⋆ Calculate total Expectation value of trail state in cost Hamiltonian basis
⋆ Return value to optimizer. Save intermediate results via callback.
⋆ Classical optimizer updates parameter list

⋄ Display cost function convergence, final parameters and optimized cost

Listing 2.1: Pseudo-code for OpenQL QAOA.

2.4.3. IMPLEMENTING DE NOVO ASSEMBLY
In this section, first, we present a mapping from DNA to TSP, as common in the OLC
method. Then the TSP is converted to a QUBO. A fully worked out example is presented
as a proof of concept for quantum accelerated sequence reconstruction. The example is
chosen based on the limit of currently available quantum computing hardware and clas-
sical simulators, however, the formulation and implementation is generic and scalable
to industrial level pipelines.

DNA READS TO TSP FORMULATION

Suppose the sequencer produces reads of size 10 nucleotide bases and after removing
duplicates, the reads obtained are:
read 0 : ATGGCGTGCA
read 1 : GCGTGCAATG
read 2 : TGCAATGGCG
read 3 : AATGGCGTGC

The pairwise overlap is calculated for each ordered pair based on how many prefix
characters of the second string match exactly with the suffix of the first string. The edge
weight is set to the negation of the overlap, as the constraints need to be formulated such
that the path that minimizes the overlap is found.

The edge weights are {(0,1):-7 , (1,2):-7 , (2,3):-7 , (3,0):-9 , (1,0):-3 , (2,1):-3 , (3,2):-3 ,
(0,3):-1 , (0,2):-4 , (1,3):-4 , (2,0):-6 , (3,1):-6}

The overlap depends on the ordering of the read pairs and thus this formulation is
a directed graph. There are 6 possible unique tours (choosing a different starting city
in the tour is equivalent in cost). Note that the reads are spliced from an original circu-
lar DNA, so the final stitched DNA solutions for all these tours are repeats of read 0 of
variable length. Such cases occur in practice when arranging the reads in different ways
gives different repeat lengths. The tours are emulated in Figure 2.13. The TSP solution
is expected to find the lowest cost (and shortest assembly) tour, i.e. Type-A. There are 4
acceptable solutions (based on starting node) of Type-A:

• (0 → 1 → 2 → 3 → 0)
• (1 → 2 → 3 → 0 → 1)
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Type A : 0 1 2 3 0

ATGGCGTGCA

___GCGTGCAATG

______TGCAATGGCG

_________AATGGCGTGC

ATGGCGTGCAATGGCGTGC

Cost = -(7+7+7+9) = -30

Length = 19

Type B: 0 3 2 1 0

ATGGCGTGCA

_________AATGGCGTGC

________________TGCAATGGCG

_______________________GCGTGCAATG

ATGGCGTGCAATGGCGTGCAATGGCGTGCAATG

Cost = -(1+3+3+3) = -10

Length = 33

Type C: 0 2 1 3 0

ATGGCGTGCA

______TGCAATGGCG

_____________GCGTGCAATG

___________________AATGGCGTGC

ATGGCGTGCAATGGCGTGCAATGGCGTGC

Cost = -(4+3+4+9) = -20

Length = 29

Type D: 0 3 1 2 0

ATGGCGTGCA

_________AATGGCGTGC

_____________GCGTGCAATG

________________TGCAATGGCG   

ATGGCGTGCAATGGCGTGCAATGGCG

Cost = -(1+6+7+6) = -20

Length = 26

Type E: 0 1 3 2 0

ATGGCGTGCA

___GCGTGCAATG

_________AATGGCGTGC

________________TGCAATGGCG

ATGGCGTGCAATGGCGTGCAATGGCG

Cost = -(7+4+3+6) = -20 

Length = 26

Type F: 0 2 3 1 0

ATGGCGTGCA

______TGCAATGGCG

_________AATGGCGTGC

_____________GCGTGCAATG    

ATGGCGTGCAATGGCGTGCAATG

Cost = -(4+7+6+3) = -20    

Length = 23

0 1

23

0 1

23

0 1

23

0 1

23

0 1

23

0 1

23

Figure 2.13: All possible TSP tours for given example.

• (2 → 3 → 0 → 1 → 2)
• (3 → 0 → 1 → 2 → 3)
This process is automated in the classical pre-processing align and

reads_to_tspAdjM functions in our implementation. It can be invoked as

1 reads = [ ’ATGGCGTGCA’ , ’GCGTGCAATG’ , ’TGCAATGGCG’ , ’AATGGCGTGC’ ]
2 tspAdjM = reads_to_tspAdjM ( reads )

TSP TO QUBO MODEL

Next, the directed TSP is encoded as a QUBO model. Let n = ∣V ∣ = 4 be the number
of nodes. This formulation [70] requires n2

= 16 binary variables as qubits, so it scales
quadratically rather than linearly in the problem size. For i , p ∈ {0 . . .(n−1)}, let xi ,p be
True if node i appears in position p in the cycle, False otherwise.

To derive a Hamiltonian for this problem, we penalize the violation of the constraints
in the objective function inserting terms of the formα(∑n−1

p=0 xi ,p−1)2, where the penalty
term is sufficiently large, e.g., α= n ∗max(i , j)∈E wi j . The TSP can be formulated as:

∀i , p ∈ {0 . . .(n −1)}, xi ,p ∈ {0, 1}

The interactions are shown in Figure 2.14 and are categorized as:

1. Every node must be assigned. Thus self-interactions have large negative weight
(favorable bias). Since there are no preferred order of the route, for each time slot,
the value is the same (top-left blue interactions).

2. Same node assigned to two different time slots incurs a penalty (top-middle violet
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interactions). Thus, for each node, there should be only one assigned time slot:

∀i ∈ {0 . . .(n −1)},
n−1

∑
p=0

xi ,p = 1

3. Same time slot assigned to two different nodes incurs a penalty (top-right violet
interactions). Thus, for each time slot, there should be only one assigned node:

∀p ∈ {0 . . .(n −1)},
n−1

∑
i=0

xi ,p = 1

4. The additional cost of including an edge in the route to two consecutive time slots
is the weight of the edge in the TSP. These 6 graphs show the 4 possible routes for
each of the 6 types (type A in middle-left green, others in red). Each edge (i , j) is
taken and all possible configurations of assigning them next to each other are tried
(the addition being modulo n), with the edge weight being the cost of choosing
from those configurations. Thus, given the above constraints:

minimize:
n−1

∑
i=0

n−1

∑
j=0

wi j

n−1

∑
p=0

xi ,p x j ,p+1

These arrows can be made into an adjacency matrix for the graph, resulting in the Q-
matrix as shown in Figure 2.15 (with the colors of the cells representing the terms from
the corresponding colored arrows). The addition of these 6 matrices gives the Q matrix
for the QUBO. Note that, if we have only the lower 6 matrices (coupling), the all 1’s as-
signment is the most favorable and gives the minimum solution to the QUBO equation

y = xT Qx. Thus, we need to add the reward for assigning a node {a} and penalties {b, c}
for assigning the same node to multiple different time slots, or same time slots to multi-
ple nodes, respectively. Since these are bi-directional arrows, these can be symmetric.

For our experiment, we empirically found that setting a penalty value of b = c ≥ 13 is
sufficient, and the reward a = 0 still finds the 4 favorable minima of Type A. It is easy to

verify that a minimum value of y = xT Qx is obtained for:

• xT
= [1000010000100001]

• xT
= [0100001000011000]

• xT
= [0010000110000100]

• xT
= [0001100001000010]

for the binary encoding

x
T
= [n0t0∣n0t1∣n0t2∣n0t3∣n1t0∣n1t1∣n1t2∣n1t3∣n2t0∣n2t1∣n2t2∣n2t3∣n3t0∣n3t1∣n3t2∣n3t3]

The process of generating the Q matrix is automated in the function
tspAdjM_to_quboAdjM in ../denovo_009.py. It can be invoked with the adjacency
matrix from the reads_to_tspAdjM function as

1 # Parameters : adj matrix , s e l f −bias , multi −location , repetation
2 quboAdjM = tspAdjM_to_quboAdjM ( tspAdjM , 0 , 13 , 13)

https://github.com/QE-Lab/QuASeR/blob/master/QA_DeNovoAsb/denovo_009.py
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Figure 2.14: QUBO interactions.

2.4.4. SOLVING ON A QUANTUM SYSTEM
In this section, we show how to solve the QUBO on both a quantum annealer (D-Wave
Ocean tools) and a gate-based optimizer (QX/OpenQL) using QAOA.

QUBO USING QUANTUM ANNEALING

The QUBO is mapped to a quantum annealer using the biases and couplings in the Ising
model. A bias value is defined for each qubit and a coupling for each pair of qubits. In
the graph view, each node (bias) and each edge (coupling) can have a real-number value
(weight). Since this example requires 16 QUBO variables (qubits), the exact solver is used
to better understand the output.

For the de novo example, the Q matrix from (with a = 0, b = c = 13) is shown in
Figure 2.15.
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0 13 13 13 13 -14 0 0 13 -8 0 0 13 -2 0 0

13 0 13 13 0 13 -14 0 0 13 -8 0 0 13 -2 0

13 13 0 13 0 0 13 -14 0 0 13 -8 0 0 13 -2

13 13 13 0 -14 0 0 13 -8 0 0 13 -2 0 0 13

13 -6 0 0 0 13 13 13 13 -14 0 0 13 -8 0 0

0 13 -6 0 13 0 13 13 0 13 -14 0 0 13 -8 0

0 0 13 -6 13 13 0 13 0 0 13 -14 0 0 13 -8

-6 0 0 13 13 13 13 0 -14 0 0 13 -8 0 0 13

13 0 0 0 13 -6 0 0 0 13 13 13 13 -14 0 0

-12 13 0 0 0 13 -6 0 13 0 13 13 0 13 -14 0

0 -12 13 0 0 0 13 -6 13 13 0 13 0 0 13 -14

-12 0 -12 13 -6 0 0 13 13 13 13 0 -14 0 0 13

13 -18 0 0 13 0 0 0 13 -6 0 0 0 13 13 13

0 13 -18 0 -12 13 0 0 0 13 -6 0 13 0 13 13

0 0 13 -18 0 -12 13 0 0 0 13 -6 13 13 0 13

-18 0 0 13 -12 0 -12 13 -6 0 0 13 13 13 13 0

Figure 2.15: Q-matrix for de novo example.

The Q matrix is converted to a dictionary of node names and reward/penalty
for biases and couplings. Then the QUBO solver is used to solve the Q matrix us-
ing the assignment of {0, 1} (instead of the Ising {−1,+1}). This is coded in the
quboAdjM_to_quboDict and solve_qubo_exact functions in ../denovo_009.py. It
can be invoked with the qubo adjacency matrix from the tspAdjM_to_quboAdjM func-
tion as

1 Q = quboAdjM_to_quboDict ( Q_matrix )
2 solve_qubo_exact (Q)

We find that there are 4 minimum solutions (the 4 Type A solutions). This matches
with the expected analytical results.

Though the QUBO solution now works on D-Wave’s solver, it needs to be converted to
the Ising model for it to run on the D-Wave Quantum Annealer. This can be done using
the qubo_to_ising function in D-Wave’s toolset, which maps the definitions of binary
variables to an Ising model defined on spins (variables with -1, +1 values). The following
script solves the Ising model for our formulation.

Mathematically, the transform is: xT Qx = offset+ sT J s+hT s. For every linear (diag-
onal) bias term in Q, h[i]+ = 0.5∗Q[i][i], while for each couplings, J[(i , j)] = 0.25∗
Q[i][ j], h[i]+= 0.25∗Q[i][ j], h[ j]+= 0.25∗Q[i][i]. The offset value is the weighted
sum of the linear offset (sum of all diagonal terms in Q), and the quadratic offset (sum
of all off-diagonal terms in Q), with the weights as 0.5 and 0.25, respectively. The offset
is not important for our case as we want the qubit state of the minimum energy, not the
exact value of the minimized energy. This is coded in the solve_ising_exact function
in ../denovo_009.py. It can be invoked with the output of dimod.qubo_to_ising
function as

1 hii , J i j , o f f s e t = dimod . qubo_to_ising (Q)
2 solve_is ing_exact ( hi i , J i j )

As expected, we find that there are 4 minimum solutions (the 4 Type A solutions).

https://github.com/QE-Lab/QuASeR/blob/master/QA_DeNovoAsb/denovo_009.py
https://github.com/QE-Lab/QuASeR/blob/master/QA_DeNovoAsb/denovo_009.py
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{ ’ n0t0 ’ : +1 , ’ n0t1 ’ : −1 , ’ n0t2 ’ : −1 , ’ n0t3 ’ : −1 ,
’ n1t0 ’ : −1 , ’ n1t1 ’ : +1 , ’ n1t2 ’ : −1 , ’ n1t3 ’ : −1 ,
’ n2t0 ’ : −1 , ’ n2t1 ’ : −1 , ’ n2t2 ’ : +1 , ’ n2t3 ’ : −1 ,
’ n3t0 ’ : −1 , ’ n3t1 ’ : −1 , ’ n3t2 ’ : −1 , ’ n3t3 ’ : +1}

{ ’ n0t0 ’ : −1 , ’ n0t1 ’ : +1 , ’ n0t2 ’ : −1 , ’ n0t3 ’ : −1 ,
’ n1t0 ’ : −1 , ’ n1t1 ’ : −1 , ’ n1t2 ’ : +1 , ’ n1t3 ’ : −1 ,
’ n2t0 ’ : −1 , ’ n2t1 ’ : −1 , ’ n2t2 ’ : −1 , ’ n2t3 ’ : +1 ,
’ n3t0 ’ : +1 , ’ n3t1 ’ : −1 , ’ n3t2 ’ : −1 , ’ n3t3 ’ : −1}

{ ’ n0t0 ’ : −1 , ’ n0t1 ’ : −1 , ’ n0t2 ’ : +1 , ’ n0t3 ’ : −1 ,
’ n1t0 ’ : −1 , ’ n1t1 ’ : −1 , ’ n1t2 ’ : −1 , ’ n1t3 ’ : +1 ,
’ n2t0 ’ : +1 , ’ n2t1 ’ : −1 , ’ n2t2 ’ : −1 , ’ n2t3 ’ : −1 ,
’ n3t0 ’ : −1 , ’ n3t1 ’ : +1 , ’ n3t2 ’ : −1 , ’ n3t3 ’ : −1}

{ ’ n0t0 ’ : −1 , ’ n0t1 ’ : −1 , ’ n0t2 ’ : −1 , ’ n0t3 ’ : +1 ,
’ n1t0 ’ : +1 , ’ n1t1 ’ : −1 , ’ n1t2 ’ : −1 , ’ n1t3 ’ : −1 ,
’ n2t0 ’ : −1 , ’ n2t1 ’ : +1 , ’ n2t2 ’ : −1 , ’ n2t3 ’ : −1 ,
’ n3t0 ’ : −1 , ’ n3t1 ’ : −1 , ’ n3t2 ’ : +1 , ’ n3t3 ’ : −1}

D-Wave offers a connection to the cloud to solve an Ising model. The problem needs
to be embedded in the connectivity graph of the annealer. It is called a Chimera graph
for the D-Wave 2000Q systems. Each of the 16 logical qubits is embedded over multiple
qubits on the actual hardware so that each qubit shares a coupling based on the required
interaction for the Ising model. The embedding process is a hard problem in itself and
heuristics are employed in the D-Wave’s embedding function. Thus, with each run, the
number of qubits and the longest chain length (i.e. the number of physical qubits en-
coding a single qubit) might vary, and even fail at times. The embedding process can be
separately tested.

This is coded in the embed_qubo_chimera function in ../denovo_009.py. It can
be invoked with the output of dimod.qubo_to_ising function as

1 embed_qubo_chimera (quboAdjM)

After multiple attempts, the best embedding obtained for our example de novo prob-
lem uses 60 qubits with a maximum chain length of 5, as shown in Figure 2.16. Each color
represents one of the 16 logical qubits.

Figure 2.16: Embedding the QUBO in Chimera graph topology for the D-Wave Quantum Annealer. Each color
represents one of the 16 logical qubits.

The following code connects to the D-Wave cloud and solves the de novo exam-

https://github.com/QE-Lab/QuASeR/blob/master/QA_DeNovoAsb/denovo_009.py
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ple. The code to connects to the D-Wave cloud and solve the de novo is in the
solve_ising_dwave function in ../denovo_009.py. It can be invoked with the biases
and coupling output of the dimod.qubo_to_ising function as

1 solve_ising_dwave ( hi i , J i j )

The top 10 (out of 65536) maximum sampled configurations are shown below. It is
important to note that, the highest sampled configuration is not the global minima in
terms of energy, showing the heuristic nature of the annealer.

Maximum Sampled Configurations from D−Wave ===>
([ −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1] , −27.92288250 , 4562)
([ −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1] , −22.70124548 , 611)
([ −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 ,+1 , −1 , −1 , −1] , −26.16476862 , 481)
([ −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1] , −22.70124548 , 474)
([ −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1] , −28.08099638 , 470)
([ −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1] , −27.92288250 , 343)
([+1 , −1 , −1 , −1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1] , −27.81747324 , 295)
([ −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1] , −27.92288250 , 259)
([ −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1 ,+1 , −1 , −1 , −1] , −27.60665473 , 200)
([ −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1 ,+1 , −1 , −1 , −1] , −27.60665473 , 187)

The top 10 (out of 65536) minimum energy configurations are shown below. The list
shows that, though the D-Wave was able to sample two of the four correct solutions, it
has not sampled it with a high probability. Also, we find two other solution configura-
tions are missed. Each run of the sampler would be slightly different varying both on
environmental errors of the physical qubit system as well as the heuristics of embedding
and schedule. Thus, while we were able to find an acceptable solution by the physical
system, it might not be practical for larger problems.

Minimum Energy Configurations from D−Wave ===>
([ −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1] , −30.41886117 , 26)
([ −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1] , −30.41886117 , 2)
([ −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1] , −30.41886117 , 2)
([ −1 , −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1] , −30.41886117 , 29)
([ −1 , −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1] , −30.41886117 , 1)
([ −1 , −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1] , −30.41886117 , 7)
([ −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1] , −30.41886117 , 1)
([ −1 , −1 , −1 ,+1 , −1 ,+1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1] , −29.89181489 , 23)
([+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 ,+1 , −1 ,+1 , −1 , −1] , −29.89181489 , 5)
([ −1 , −1 , −1 ,+1 , −1 ,+1 , −1 , −1 ,+1 , −1 , −1 , −1 , −1 , −1 ,+1 , −1] , −29.89181489 , 3)

A 16 qubit system was required for solving the above problem. When mapping the
16 qubits to a realistic hardware like D-Wave 2000Q, the connectivity of the qubits in
the physical topology is important. The embedding process considerably increases the
number of required qubits and also the quality of the solution. The highest number of
DNA reads that can be solved on a D-Wave 2000Q machine is 9. The amount of qubits
needed to solve the problem grows as N 2 and finding embedding for the case with 10
reads will fail in most (if not all) cases. However, the time to solution is independent
of the problem size and depends on a heuristic annealing schedule while affecting the
quality of the sampled solution.

In classical computation however, the record for exact solutions to the problem, us-
ing branch and bound algorithms is 85900 cities TSP [71]. Heuristics like Monte Carlo

https://github.com/QE-Lab/QuASeR/blob/master/QA_DeNovoAsb/denovo_009.py
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methods are used for larger inputs. This experiment infers the need for a much en-
hanced D-Wave system to do practical de novo assembly. Steps in this direction can be
either in reducing the errors, having a custom anneal schedule, having more qubits and
better connectivity (like the Pegasus architecture of the 5000 qubit model). At the current
state of development, we were able to show a simple proof of concept both on the sim-
ulator and the quantum annealer on the cloud. The implementation is focused on the
correctness of the pipeline design instead of quantifying the time and qubit resource
metrics, that need radical improvements for benchmarking with real world datasets.
De novo sequencing on quantum annealers needs to be evaluated with each release of
improved hardware to reach a quantum advantage in computation over existing high-
performance computing systems.

QUBO USING QAOA
Formulating a problem on QAOA involves specifying the ansatz for the cost and driver
Hamiltonian. Other optimization hyper-parameters involve the initialization circuit, ap-
proximation order (cycles), initial parameters and threshold on classical optimizer iter-
ations/precision. The pseudo-code for the formulation steps in an OpenQL implemen-
tation is shown in Listing 2.2.

• PQC encoding (e.g. Traveling salesman problem, Maximum cut problem):
⋄ Create (weighted) graph with networkx
⋄ Converts graph to weighted−Sum−of−Product−of−Paulis (wsopp). Encoding depends on problem. This is

the problem/cost Hamiltonian for QUBO/Ising model.
⋄ Convert graph to ansatz with cost and mixing Hamiltonian as parameterized QASM (ansatz, coefficients,

angle ids)

• Initialization:
⋄ Classical optimizer object from SciPy:
⋆ name [Default: Nelder−Mead]
⋆ convergence function tolerance [Default: 1.0e−6]
⋆ iteration limit

⋄ Reference/initial state quantum circuit [Default: equal superposition, Hadamard on all qubits]
⋄ Steps (ansatz blocks per iteration) [Default: 1]
⋄ Parameters:
⋆ for cost Hamiltonians (gammas) for each step
⋆ for mixing/driving Hamiltonians (betas) for each step

[Default: random angles in 0 to 2π]
⋄ Shots (for state tomography measurement aggregate) [Default: 0, QX internal state vector is accessed]

• Invoke QAOA

Listing 2.2: Pseudo-code for applying QAOA in OpenQL for optimization.

First, the TSP city-graph is created based on the previous example. The networkx
Python package is used to create a directed weighted complete graph based on the pair-
wise read edge-weights.

The graph is then converted to the problem Hamiltonian. The problem Hamiltonian

is stored as a weighted sum-of-product of Paulis. For n cities (TSP graph nodes), n2

qubits are required representing the city nodes and the time slots, encoded as:

q0 . . . q15 ≡ [n0t0∣n0t1∣n0t2∣n0t3∣n1t0∣n1t1∣ . . . ∣n3t2∣n3t3]
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On each qubit, there can be either of the 4 Pauli operators, {I , X , Y , Z}, thus a maximum

of 4n2

weighted sum-of-product Pauli terms are possible. This amounts to 4294967296
Pauli terms when n = 4 (in our example), thus, we store only the non-zero terms. For
TSP optimization, however, only the {I , Z} operator is required.

Firstly, each city and each time-slot must be assigned, but not all together. Thus, a
term is added with a positive penalty (w = 100000.0) for each qubit (the term being a Z
operator on the specific qubit and I otherwise). We will abbreviate the sum-of-product
of Pauli term notation henceforth by assuming Identity for qubits not mentioned in a
Pauli term. Thus:

w ∗{Z I I I I I I I I I I I I I I I + I Z I I I I I I I I I I I I I I +⋅⋅⋅+ I I I I I I I I I I I I I I I Z}

H
1
C = w ∗{Z0 + Z1 + Z2 +⋅⋅⋅+ Z15}=

n2−1

∑
q=0

w Zq

Then, for each penalty of co-location (two cities, same time slot), a term with 2 Z
operators for the two conflicting qubits is added with a positive penalty weight, and two
separate terms for each penalty qubits with a 1 Z are added with a negative penalty.

H
2
C =

n−1

∑
r=0

n−1

∑
i=1

i−1

∑
j=0

{− w
2

Zi n+r −
w
2

Z j n+r +
w
2

Zi n+r Z j n+r}

Similar terms are added for repetition (two time slots, same city).

H
3
C =

n−1

∑
i=0

n−1

∑
r=1

r−1

∑
s=0

{− w
2

Zi n+r −
w
2

Zi n+s +
w
2

Zi n+r Zi n+s}

For each TSP edge, the edge pair is assigned to consecutive time slots. The edge
weight is added as a penalty for the 2 Z operator terms, while assigning the individual
terms with a negative penalty.

H
4
C =

n−1

∑
i=0

n−1

∑
j=0
j≠i

n−1

∑
r=0

s=(r+1)%n

{−
di j

4
Zi n+r −

di j

4
Z j n+s +

di j

4
Zi n+r Z j n+s}

Thus, these negative penalty terms in the overall equation stand out among the positive

penalty terms for all qubits in H 1
C , so that only a valid path is assigned as a solution. The

final cost Hamiltonian is HC = H 1
C +H 2

C +H 3
C +H 4

C

Now the ansatz needs to be formed. For the cost Hamiltonian ansatz, for each single
Z terms, the Pauli-Z is replaced with a parameterized Z-Rotation gate RZ (γ). The dou-

ble Z terms between qubits (a, b) are replaced with a C NOTabRb
Z (γ)C NOTab (where

b is the target qubit). For the mixing Hamiltonian, a RX (β) is used on all qubit (or
HRZ (β)H).

The reference state is set to an equal superposition (Hadamard over all qubits). The
cost and mixing Hamiltonian ansatz is alternated for the set number of steps (1 in our
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case). This forms the parametric circuit for the quantum computer. Along with this, the
random initial parameters vector (Γ, B) is passed to the classical optimizer wrapper for
the QAOA. The QAOA is run as explained in listing 2.1.

We simulated our algorithm on the QX Simulator to validate the results. To speed
up the simulation, we access the internal state vector from the QX Simulator instead of
applying the state tomographic trials. However, optimizing the parameters on 16 qubits
for single iteration over a single QAOA step proved to be cumbersome, reaching the limit
of the working memory for most runs. While we obtain good results for the Max-Cut

problem (which requires as many qubits as nodes in the graph), the n2 qubit space for
TSP is costly [72] for simulation. Similarly, most online tools only offer examples for the
trivial case of an undirected triangle graph (where only one Hamiltonian cycle is pos-
sible). We used the Nelder-Mead, Powell and BFGS optimizers in SciPy. We found that
the optimizers are able to explore only a small space near the initial guess before settling
at a suboptimal solution. This is shown in Figure 2.17, where the dotted vertical green

lines indicate the 4 optimal type A solution states out of the 216
= 65536 basis states

(represented on the x-axis). The experiment uses a QAOA depth of 1, a random angle ini-
tialization, an equal superposed initial state (Hadamard on all qubits) and 40 reruns for
the QAOA optimizer. When the initial guess is bad, the highest probability states (high
blue circles) are not close to the optimal lines, whereas for good initial conditions case
(red pluses), the optimizer eventually reaches solutions that are quite close to the opti-
mal. The optimal solutions lie in near vicinity of the found solutions (high red pluses)
and can be subsequently explored via an exhaustive search near these sub-optima sug-
gested by QAOA. QAOA is able to improve 2 out of the 4 solutions of Type A. Development
of new classical optimizers [73, 74] and their hyper-parameter settings [75] for HQC al-
gorithms is a research field of its own, which is not the focus of this paper. Thus, while
we were able to formulate a generic de novo assembly problem to QAOA, we were not
able to obtain satisfactory results from the simulation. This motivates the need for both
faster simulation and the access to better NISQ devices where this entire pipeline can be
executed and benchmarked - a common challenge for quantum computing today.

216 states

P
ro

b
ab

ili
ty

Optimal Type A solutions

Best sampled solution

Worst sampled solution

Figure 2.17: Result of simulating QuASeR example using QAOA on the QX Simulator
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QAOA, though promising for exhibiting quantum supremacy does not imply that it
will be able to outperform classical algorithms on important combinatorial optimization
problems such as Constraint Satisfaction Problems. Current implementations of QAOA
are subject to a gate fidelity limitation, where the potential advantages of larger values of
the parameter p in QAOA applications are likely to be countered by a decrease in solution
accuracy.

2.5. CONCLUSIONS AND OUTLOOK
The research presented in this chapter is motivated by the bottleneck of DNA sequence
reconstruction in genomics, and explores how quantum acceleration can be applied in
this domain. Quantum-accelerated genome sequence reconstruction was not studied
before. However, it was found that, this dearth of previous work is not because it is not
suited for quantum acceleration. The field of quantum computing is young and under
rapid development. This research was among the first few to explore the applications of
quantum computing in bioinformatics.

There exists a considerable technological readiness gap between the resource re-
quirements of realistic quantum algorithms and available physical quantum processors.
Thus, most developments in QC algorithms are agnostic to hardware developments and
focus on theoretical proofs of advantages in terms of computational resources. On the
other end of the spectrum, there are trivial algorithms that are used to demonstrate and
benchmark the computing capabilities of quantum hardware platforms and character-
izing the instrumentation. The intent of this research instead was to implement proof
of concept simulation of application driven quantum algorithm, thereby, to decompose
the mathematical formulations and oracles in terms of quantum logic gates that can be
executed on a classical quantum computing simulator.

Genome sequence reconstruction can be done in two ways: reference alignment (ab
initio) or read assembly (de novo). The big data problem in reference alignment can
be readily mapped to an unstructured search problem, while read assembly is based
on graph traversal optimization. Since the Grover search is a well developed quan-
tum algorithm primitive, the reference alignment approach was first explored. In § 2.3
of this chapter, the proposed QiBAM algorithm is discussed. This is the first time a
quantum pattern matching algorithm is specifically designed, keeping in mind genomic
sequences. The idea of associative memory was extended to an indexed directory of
DNA sequences spliced from the reference genome. In addition to taking into account
the DNA alphabet, since reads can contain errors, a distributed query for approximate
matching was designed. This was applied over the superposition of a quantum state,
thereby storing an exponential number of patterns. A constant oracle was designed
based on minimizing the Hamming distances. This eliminates the bottleneck of com-
piling the query differently for every short read at run-time. The associated index in the
reference was retrieved, instead of the corrected query by entangling the index with the
sequence database. The algorithm was implemented and verified in the OpenQL en-
vironment with the QX Simulator as the backend. The algorithm was generalized to a
generic quantum data structure for multi-dimensional search.

The simulation capability of QiBAM reaches its limit for very short read lengths. The
current noisy intermediate-scale quantum era is also not favorable in terms of qubits
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multiplicity, topological connectivity, control restrictions and error rates. Thus, real
datasets cannot be integrated in the algorithm pipeline in the near term. Classical state
of the art algorithms rely on many different heuristics to further simplify the alignment,
which are not readily portable on quantum logic. In consultation with some industrial
connections, it was understood that the genomics industry is moving towards reference-
bias free methods. The third generation single molecule sequencer technology with
longer reads over next-generation sequencers might provide better sequence recon-
struction via the de novo methods. Given the receding timeline of fault-tolerant quan-
tum computing and the advent of better single molecule sequencers, alternate genome
sequence reconstruction techniques were targeted. Thus, having developed one of the
world’s first quantum-accelerated genomics algorithms, we decided to explore the alter-
nate approach of de novo assembly in further research. This approach, called QuASeR,
targets the overlap-layout-consensus method for acceleration on a quantum computing
platform. The quantum kernel is formulated for both a gate-based quantum system as
well as a quantum annealer. The main difference between QuASeR and QiBAM is the
shift in focus from FTQC era to the NISQ technology era. QiBAM is based on the prim-
itive of Grover’s search, which, though provably optimal, is costly both in terms of the
quantum circuit depth (time, number of quantum gates) and width (space, number of
qubits). The current trend is to focus on heuristic approaches in quantum algorithms.
These algorithms are hybrid in nature, where the quantum accelerator executes a low-
depth parameterized circuit that prepares and measures a quantum state. A classical
wrapper is an optimizer that selects these parameters (typically angles for rotation gates)
for each trial run of the quantum accelerator, till the quantum circuit is evolved to repli-
cate the behavior of minimizing a cost function. The cost function is designed to encode
the computation required for the target application. These heuristics come under the
umbrella of variational hybrid quantum-classical approach (VHQCA). The corner-stone
of this research was the quantum approximate optimization algorithm (QAOA), an uni-
versal algorithm for approximating the solution for a discrete combinatorial optimiza-
tion problem. Since these pervasive societal/industrial problems are mostly NP-hard
(thus, scales exponentially even on quantum), a fast yet good heuristic solution is often
desirable for pragmatic cases. The problem is typically modeled as a quadratic uncon-
strained binary optimization (QUBO) formulation.

In § 2.4 the formulation of a de novo assembly DNA sequence reconstruction algo-
rithm is presented. The required technical background for formulating the de novo se-
quencing problem (i.e. QUBO, TSP, and Hamiltonians) is introduced with simple exam-
ples to target both the genomics research community and quantum application devel-
opers. A proof of concept de novo sequence assembly is mapped to TSP and then to a
QUBO. This is firstly solved on the D-Wave simulator and D-Wave Quantum Annealer.
All 4 correct results are obtained on the simulator while only 2 of the solutions are sam-
pled on the Quantum Annealer (though with less probability). The connectivity topology
of the D-Wave architecture limits embedding larger problem instances. The variational
algorithm approach for gate-based quantum computing is introduced for solving opti-
mization problems using QAOA. This algorithm performs two optimization steps, one
executed on a quantum circuit and another on a classical computer. The proposed de
novo algorithm is solved using QAOA, and then simulated on the QX simulator. Simu-



2

52 2. QUANTUM-ACCELERATED GENOME SEQUENCE RECONSTRUCTION

lation showed that the results are heavily dependent on the exploratory capabilities of
the classical optimizer, which is an open research question in the community. Also, the
ansatz for the variational circuit is a heuristic which needs to be designed to fit our pur-
pose. In this respect, a learning approach might prove promising. A gate-based quan-
tum computer is not targeted as the coherence time, connectivity topology and number
of qubits prevents any meaningful result at the current state of available quantum hard-
ware. It was found that similar limitations apply for de novo as were for ab initio, where
real datasets are very far away from the simulation capabilities of QX/Ocean and NISQ
hardware. Also, it is not trivial to introduce data-specific heuristics in QUBO. The biggest
limitation however is that both these methods (QAOA and QA) are quantum heuristics,
and to further optimize these algorithms experiments on real hardware are imperative.

Beside the presented research, quantum Hamiltonian complexity (QHC) was briefly
studied. It is the theoretical study of the properties of the Hamiltonian formulation for
finding the energy spectra of a physical system or an optimization landscape. It was
studied in the context of the cost Hamiltonians for QAOA to compare, (i) what can be
efficiently simulated classically, (ii) what is submissive to quantum accelerations and,
(iii) what is tough even for quantum computation. QHC’s mathematical approach deals
mainly with the cases of exact solutions, which is not practical due to our dependence
on heuristics for NP-hard problems. Fujitsu’s digital annealer (DA) as an alternative to
gate-based quantum computing were explored. While the final conclusion was that an-
nealing in general is not expressive enough to formulate the requirements of the logic;
this study gave valuable experience in formulating QUBO and Hamiltonians. Xanadu’s
PennyLane toolset was also explored for hybrid quantum-classical programming. While
this provides an automatic quantum circuit differentiation tool for gradient-based QAOA
optimizer, the rigid structure of the programming currently outweigh its advantage over
OpenQL.

The research presented in this chapter is the first exploration towards a roadmap
project [6] undertaken within the Quantum Computer Architecture team at the Delft
University of Technology, to design a ‘full-stack quantum accelerator architecture,
domain-specific for genomics’. The work from this chapter is currently being refined
as an industrial pipeline in collaboration with the quantum startup QBee B.V. This re-
search was conducted over a period of 2 years (Nov., 2017 to May, 2018, and Nov., 2018
to Oct., 2019). It helped us in revising our understanding of the timeline of quantum
advantage, specifically for bioinformatics applications. With the new projection, our ge-
nomics partners predict that instead of genome reconstruction, genome data analysis
will most likely be the bottleneck beyond a 5+ year timeline when large scale QC will
likely be available. Thus, this informs the direction for further research presented in the
following chapters.
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The research on quantum-accelerated genome sequence reconstruction discerned
the implication of algorithm development based on current quantum processors and
quantum computing simulators. The aim of further research is to look beyond near-
term approaches like variational algorithms that can be applied for genomics. Given
the timeline of the development of large-scale quantum accelerators, genome sequence
analysis is a more promising target application. Inferring algorithmic structure in data
is essential for discovering causal generative models. Such a framework will have signif-
icant advantage for various genomics applications.

We realized that at the current technology readiness level, the quantum approach
should focus on implementing the algorithmic primitive instead of the full application
pipeline. In this chapter, we present the proposed quantum computing framework us-
ing the circuit model for estimating mathematical objects in the context of algorithmic
information. The canonical computation model of the Turing machine is restricted in
time and space resources, to make the target mathematical objects computable under
realistic assumptions. The universal prior distribution for the automata is obtained as a
quantum superposition, which is further conditioned to estimate them. Specific cases
are explored where the quantum implementation offers polynomial advantage, in con-
trast to the exhaustive enumeration needed in the corresponding classical case. The un-
structured output data and the computational irreducibility of Turing machines make
this algorithm impossible to approximate using heuristics. Thus, exploring the space
of program-output relations is one of the most promising problems for demonstrating
quantum supremacy using Grover’s search that cannot be dequantized. Experimental

This chapter is based on the following:
• Sarkar, A., Al-Ars, Z., & Bertels, K. (2020). Quantum circuit design for universal distribution using a

superposition of classical automata. arXiv preprint arXiv:2006.00987.
• Sarkar, A., Al-Ars, Z., & Bertels, K. (2021). Estimating algorithmic information using quantum com-

puting for genomics applications. Applied Sciences, 11(6), 2696.
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use cases for quantum acceleration are developed for self-replicating programs and al-
gorithmic complexity of short strings. This is the first time experimental algorithmic
information theory is implemented using quantum computation.

3.1. USE CASE MOTIVATION
The phenomenal success of data-driven approaches like deep learning has ushered au-
tomation in many spheres of human society over the last decade. However, these ap-
proaches, which are based on black-box optimization, provide limited insights on the
causal generative mechanism underlying the set of observations about the physical pro-
cess under study. These limitations in explainability are increasingly becoming crucial
with automation in mission critical sectors like healthcare.

In contrast, symbolic approaches have been successfully used to model, study and
understand the causal relationships in natural phenomena and datasets. The algorith-
mic information theoretic approach [76] of causal generative mechanism discovery is
more theoretically sound than data-driven approaches such as deep learning, lossless
compression and Shannon entropy-based correlation, allowing it to find causal insights
missed by these approaches.

The set of transformations a computation model can undergo and the resulting
space of outputs are central to understanding the causal structure of the physical phe-
nomena we intend to model. Except for the trivial cases, this remains intractable on clas-
sical computers since the space of all possible transformations grows exponentially with
the number of states and symbols of the automata. The uncomputable nature of these
mathematical objects is approximated in practice by restricting the resources available
to the computational models, such as time/cycles and space/memory. Even with such
restrictions, only relatively simple automata have been explored using supercomputing
clusters [77]. These limited results have already found various applications in genomics,
psychology, network science, image processing, etc. In biological systems, a better un-
derstanding of the algorithmic structures in DNA sequences [78] and cellular dynam-
ics [79] would greatly advance domains such as personalized medicine.

We explore the possibility of accelerating this technique on a (gate-based) circuit
model of quantum computation. In this research, we propose a detailed circuit im-
plementation that allows encoding a superposition of classical programs and evaluat-
ing their evolution after a predetermined number of cycles. Thereafter, we present a
full experimental framework for using this approach for two use cases, i.e. for querying
the subspace of quines, and of estimating the algorithmic complexity of short strings.
Specifically in genomics, it finds applications in meta-biology, phylogenetic tree analy-
sis, protein-protein interaction mapping and synthetic biology.

3.2. ALGORITHMIC MODEL
Defining an algorithmic process via symbolic manipulations requires a computation
model. The Turing machine model of computation is the cornerstone of theoretical
computer science. This simple mechanistic automata has the expressive power to cap-
ture any algorithmic process. Thus, it can be used for generic modeling and hypothesis
comparison across various scientific disciplines. In this research, we follow the algorith-
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mic information theoretic approach of enumerating the distribution of all generating
automata (e.g., Turing machines). The set of transformations a computation model can
undergo and the resulting space of outputs is central to understanding the causal struc-
ture of the physical phenomena we intend to model.

In this research, we develop techniques to accelerate this application on a (gate-
based) circuit model of quantum computation. The quantum computation model pro-
vides distinctive advantages for specific algorithms using the laws of quantum mechan-
ics. Recently, a generic (gate-based) circuit model of quantum Turing machine was pro-
posed [80] based on cellular automata. In this research, we propose an alternative model
from a mechanistic perspective, with a detailed circuit implementation with realistic as-
sumptions on runtime and qubit resources for the tape memory. We do away with the
homogeneous local structure resulting in execution of many inactive unitary transforms,
thereby improving the total number of executed operations. The proposed model intu-
itively allows encoding a superposition of classical programs and evaluating their evolu-
tion after a predetermined number of cycles. We present the exact scalable circuit using
standard quantum gates required to simulate a superposition of this resource-bounded
stored-program automata. With the recent thrust in the realization of quantum comput-
ing hardware, this is a promising direction with multifaceted application that can extend
the applications of approximating algorithmic mathematical objects by enumerating au-
tomata configurations. The availability of better quantum processors would allow this
algorithm to be readily ported on a quantum accelerator with a quantum computing
stack [6]. Although quantum search-based approaches require high qubit multiplicity
and quality as compared to those available in the NISQ era, these search approaches
cannot be dequantized for this use case of the unstructured and computationally ir-
reducible database of program-output relations. That makes this particular algorithm
an ideal candidate for demonstrating quantum supremacy with widespread application.
We propose use cases in genomics of quantum accelerated viral genomics, meta-biology
and synthetic biology.

Our approach is rooted in various automata models, computability, and resource
complexity estimation techniques. The necessary background for these is presented in
this section. In § 3.3, we introduce the quantum circuit implementation for evolving
a superposition of classical automata and discuss cases where conditioning the resul-
tant universal distribution as a quantum superposition state has a computational ad-
vantage. This formalism is applied for specific applications in algorithmic information
theory (AIT). The background for AIT is presented in § 3.4. Experimental use cases
for self-replicating programs and algorithmic complexity, and their applications in ge-
nomics using the developed framework are presented in § 3.5.

3.2.1. TURING MACHINE MODEL

The Turing machine (TM) is the canonical model of computation invented by Alan Tur-
ing for proving the uncomputability of the Entscheidungsproblem. A TM manipulates
symbols on an infinite memory strip of tape divided into discrete cells according to a ta-
ble of transition rules. These user-specified transition rules can be expressed as a finite
state machine (FSM) which can be in one of a finite number of states at any given time
and can transition between states in response to external inputs. The Turing machine,
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as shown in Figure 3.1, positions its head over a cell and reads the symbol there. As per
the read symbol and its present state in the table of instructions, the machine (i) writes
a symbol (e.g. a character from a finite alphabet) in the cell, then (ii) either moves the
tape one cell left or right, and (iii) either proceeds to a subsequent instruction or halts
the computation.

read/write head

10 0 …10 1…

infinite tape cells

1

finite alphabet

finite state 
machine

left/right mover

Figure 3.1: Computational model of a Turing machine.

Each model of computation defines a set of inputs that are accepted by that au-
tomata. For the Turing machine, this subset (of all possible strings over the alphabet
of the language) that can be enumerated (outputs the string) is called recursively enu-
merable. Recursively enumerable languages (also called, Turing recognizable/accept-
able, semi/partially decidable) forms the type-0 in the Chomsky hierarchy of formal lan-
guages, as discussed in the following section.

3.2.2. VARIANTS OF THE TM MODEL
While Turing machines can express arbitrary mechanical computations, their minimal-
ist design makes them unsuitable for algorithm design for computation in practice. Var-
ious modifications of the TM results in equivalent computation power, as captured by
the Church-Turing thesis. Here, equivalent refers to being within polynomial translation
overhead in time or memory resources. Thus, in practice they might compute faster, use
less memory, or have smaller instruction set, but they cannot compute more mathemat-
ical functions. These modified models of computation, like lambda calculus, Post ma-
chine, cyclic-tag system, offers different perspective in development of computer hard-
ware and software. Extending the TM tape to multiple dimensions is also equivalent to
a 1-dimensional tape (or, only 1-way infinite tape).

In this section, we discuss some variants of the Turing machine model, as listed in
Table 3.1, that are relevant for further ideas developed in this chapter. These variants
can also be applied to the corresponding language instead of the automata. Turing com-
pleteness is the ability for a system of instructions to simulate a Turing machine. A Tur-
ing complete programming language is thus theoretically capable of expressing all tasks
that can be accomplished by computers. Nearly all programming languages are Turing
complete if the limitations of finite memory are ignored.

A universal Turing machine (UTM) simulates an arbitrary Turing machine on an arbi-
trary input. Every TM can be assigned a number, called the machine’s description num-
ber, similar to Gödel numbers, encoding the FSM as a list of transitions. The existence of
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read/write head

10 0 …10 1…

infinite tape cells

1

finite alphabet

Universal
Turing 

Machine

left/right mover

00 0 011 10 1

finite state machine

finite tape

Figure 3.2: Computational model of a universal Turing machine.

this direct correspondence between natural numbers and TM implies that the set of all
Turing machines (or programs of a fixed size) is denumerable. A UTM reads the descrip-
tion of the machine to be simulated as well as the input to that machine from its own
tape, as shown in Figure 3.2. This is the idea behind the stored-program von Neumann
architecture. This is the first variation to automata models producing the automata vari-
ants in Table 3.1.

The sequential tape movement in TM/UTM makes them unsuitable for computation
in practice (e.g. a binary search is really slow on a TM). This is alleviated by extending the
capability of the memory to access any indexed tape cell. These variants of TM and UTM
models are called random-access machine (RAM) and random-access stored-program
(RASP) model respectively. This is the second variation to automata models in Table 3.1.

Multiple FSMs can act based on the same tape data, allowing a shared memory for a
multi-core processing model. This modification is called the parallel TM (PTM) model
and equivalently the PUTM, PRAM and PRASP, as the third variation to TM models in
Table 3.1.

3.2.3. CHOMSKY HIERARCHY OF AUTOMATA AND LANGUAGES

For real implementations of an automata an infinite tape is not possible. Thus computa-
tional models restrict the tape features in various ways [81, 82]. These result in a reduced
level in the Chomsky hierarchy of formal languages and the corresponding automata
model that accepts strings from the respective grammar.

• Type-0: Recursively enumerable language; Turing machine (TM)
• Type-1: Context-sensitive language; Linear bounded automata (LBA)
• Type-2: Context-free language; Pushdown automaton (PDA)
• Type-3: Regular languages; Finite state machine (FSM)

Each higher level (the highest being type-0) can always simulate the lower level. Re-
strictions in memory make the other levels computationally less capable than a TM in
terms of the language, (i.e. the set of string patterns called the grammar) it can recog-

nize. For example, an FSM cannot determine if an input string has the structure ai bi ,
like aabb, aaaabbbb. At type-0, universality is reached, thus, everything that is com-
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Table 3.1: Variants of the Turing machine model for deterministic, non-deterministic and quantum automata
classes. Our implementation of QPULBA (in yellow) captures the computing capabilities of 27 (in blue) out of

51 automata models (of type 3, 2, 1) that is realistically implementable on physical hardware.
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4 PDRAA NPDRAA QPDRAA N Y N N N Y

5 PDRASP NPDRASP QPDRASP Y Y N N N Y

6 PPDA NPPDA QPPDA N N Y N N Y

7 PUPDA NPUPDA QPUPDA Y N Y N N Y

8 PDRAA NPDRAA QPDRAA N Y Y N N Y

9 PPDRASP NPPDRASP QPPDRASP Y Y Y N N Y

10

1

LBA NLBA QLBA N N N N Y Y

11 ULBA NULBA QULBA Y N N N Y Y

12 LBRAM NLBRAM QLBRAM N Y N N Y Y

13 LBRASP NLBRASP QLBRASP Y Y N N Y Y

14 PLBA NPLBA QPLBA N N Y N Y Y
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16 PLBRAM NPLBRAM QPLBRAM N Y Y N Y Y
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18

0

TM NTM QTM N N N Y Y Y
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20 RAM NRAM QRAM N Y N Y Y Y
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22 PTM NPTM QPTM N N Y Y Y Y
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24 PRAM NPRAM QPRAM N Y Y Y Y Y

25 PRASP NPRASP QPRASP Y Y Y Y Y Y
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putable can be mapped to an algorithmic process on the TM. This includes quantum
computation as well, as it can be simulated on a classical TM (albeit using worst-case
exponential resources).

A linear bounded automata (LBA) has a finite memory, extending the same modi-
fications as for the TM, as listed as the fourth modification to TM models in Table 3.1
forming the type-1 in the Chomsky hierarchy. Most real-world computers can be best
modeled as the Parallel Linear Bounded Random Access Stored Program (PLBRASP) au-
tomata. This allows multiple concurrent processors with a shared random access finite
sized memory. The program as well as the data are accessed from the memory in the von
Neumann architecture.

In this work, we will consider the Parallel Universal Linear Bounded Automata
(PULBA) model which is the sequential memory access variant of the PLBRASP. Thus,
we consider multiple stored programs running in parallel while sharing a common lim-
ited work memory and output interface.

3.2.4. CELLULAR AUTOMATA MODEL

Often for physical systems, a cellular automata model is preferred as an alternative to
Turing machines, specifically when there is a homogeneous local interaction, e.g. in ge-
ographic spacial planning and ecological systems. Cellular automata is a discrete model
of computation consisting of a regular grid of cells in any finite dimension (or type of
tessellation). Each cell at any step in time is in one of a finite number of states, (such
as on and off). For each cell, a set of cells called its neighborhood is defined relative to
the specified cell. The next step in time is created according to some fixed rule (typically
same over the entire space) that determines the new state of each cell in terms of the
current state of the cell and the states of the cells in its neighborhood. The whole grid
typically updates simultaneously. The model with 1-dimensional tape over 2 symbols
and a neighborhood size of 3 (1 cell in either size along with the current cell), is called el-
ementary cellular automata (ECA). These were studied extensively revealing interesting
features like the Rule 110 (one of the 256 possible rules) capable of universal computa-
tion [83].

Solid-state implementation [84] of cellular automata involves expressing the update
rule in terms of classical logic gates (e.g. AND, OR, NOT, NAND). For each cell, the cell
and its two immediate neighbors are read, their values entered into the transition func-
tion, and the cell updated with the new value for the subsequent generation. The transi-
tion function can be represented as a truth table, a logic function or a logic circuit. The
result from this function is then written to the corresponding cell in a duplicate array.
Transition functions are being calculated and written sequentially to a separate regis-
ter. Once a generation is complete, the original array is cleared, and the results of rule
applications to cells are written to the original register, like a ping-pong buffer.

A cellular automata can simulate a TM by storing a activation bit indicating the po-
sition of the tape head and the current state for each cell. The transition function of the
TM is encoded as the update rule depending only on the current cell. Thus, it is like PTM
with identical FSM, with only one of them active at each cycle. This model is wasteful in
terms of logic gate operations as only one of the cells is active yet all the other logic gates
need to be executed none the less.
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3.2.5. COMPUTATION COMPLEXITY CLASSES

Thus far we discussed computability, i.e. limits on the feasibility of any algorithms based
on the language and automata models that accept strings based on the grammar, and au-
tomata theory, i.e. the formal model of computation required for a problem. Complexity
theory bridges the gap between practical algorithms running on computing hardware
and the hierarchy of languages in computability theory. It grades algorithms for a spe-
cific automata based on the time and space resources. The complexity of algorithms has
been classified into a multitude of classes [85]. The boundaries and relationships be-
tween these classes [86] are sometimes not proven but are based on current knowledge
and popular conjectures in the scientific community. Here we summarize some the-
oretical results of possible advantages in quantum approaches for various complexity
classes, including approximating solutions to uncomputable problems.
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Figure 3.3: Extended Chomsky hierarchy and some computational complexity classes (based on [87]).
Examples are in green.

The most commonly referred complexity classes are of P and NP. Their relation to
computability levels as shown in Figure 3.3 and the quantum complexity classes are im-
portant for efficient algorithm development. Polynomial time (PTIME or P for short)
refers to the class of algorithms that are efficiently solvable (or tractable) by a determin-
istic Turing machine in an amount of time that is polynomial in the size of the input
problem. Non-deterministic polynomial time (NTIME or NP for short) refers to the set
of problems that are tractable by a non-deterministic Turing machine (NTM) in polyno-
mial time. P can easily be reasoned to be a subset of NP (might not be a proper subset).
Non-deterministic variants of the relevant automata are listed in Table 3.1. Whether an
algorithm that can be efficiently checked for correctness can also be efficiently solved is
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an open question [88] (one of the Millennium problems). Another important concept
here is of NP-completeness, which is the set of problems in NP such that every other
problem in NP can be transformed (or reduced) to it in polynomial time.

Often the access to a random-number source widens the class of feasible problems
for a computer using probabilistic computation. It is not well understood why ran-
domness acts as a computational resource and if all algorithms can be derandomized
without significantly increasing their running time or space. Bounded-error probabilis-
tic polynomial-time (BPP) class involves decision problems solvable by an NTM such
that the true answers are achieved with ≥

2
3

of the computation paths, while the false

answers are achieved with ≤
1
3

paths. Using Chernoff bound, the constant 1
3

can be

reduced arbitrarily on repetition. These constants ( 2
3

, 1
3
) for BPP, when modified to

(1,0) gives zero-error probabilistic polynomial-time (ZPP), ( 1
2

, 1
2
) gives the probabilistic

polynomial-time (PP) class and ( 1
2

,0) gives the randomized polynomial-time (RP) class.

Adding post-selection capabilities to these classes gives the class BPPpath.

Bounded-error quantum polynomial-time (BQP) is the class of decision problems
solvable by a quantum circuit whose length and number of qubits scale polynomially
with respect to the instance size. Like its classical counterpart BPP, the error probability
is bounded by at most 1

3
for all instances. Similarly, the quantum equivalent of ZPP and

BPPpath are exact quantum polynomial-time (EQP) and PostBQP (shown equal to PP).
There are also many related classes based on verifiable proof systems (e.g. MA, IP, AM)
and their quantum counterparts (QMA, QIP, QAM).

To compare the efficiency of quantum algorithms, it is crucial to compare them with
the current best algorithm on classical computers and their complexity. The relation-
ships of quantum computation complexity classes with the class hierarchy are not fully
understood and are riddled with many open conjectures. Since P is a subset of BQP, it is
beneficial to study algorithms that fall outside P, but in BQP. Also, it is known that quan-
tum algorithms cannot solve NP-complete problems [8] in polynomial time, but Grover’s
search can offer a quadratic speedup for unstructured problems when good heuristics
are not known. Such polynomial speedup can boost these problems into the domain of
practicality.

Based on the current physical theory, quantum computers are the most general kind
of computers physically allowed [9]. More exotic computers would require some refine-
ment of the laws of physics (like non-linearity, allowing faster than light information
transfer, violating uncertainty principle, or using closed time-like curves). Quantum al-
gorithms however do not allow super-Turing computation (e.g. solving the halting prob-
lem) thus placing them at the same Turing degree in the arithmetic hierarchy.

3.2.6. ASYMPTOTIC COMPLEXITY

In an implementation of an algorithm we need to estimate the scaling of space/qubit and
time/gate resources. The Bachmann–Landau notation (or asymptotic notation) is used
to describe the limiting behavior of a function with the domain tending towards a par-
ticular value (often infinity). The big O notation is used to classify algorithms according
to their running time or space requirements growth rate with input size. A description of
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a function in terms of big O notation provides an upper bound on the growth rate of the
function.

Formally, for real/complex valued functions f and g defined on some unbounded
subset of the real positive numbers, f (x) = O(g(x)) as x →∞ iff ∀ sufficiently large x
∃ M ∈R and x0 ∈R such that ∣ f (x)∣≤ M g(x)∀ x > x0

The O notation for a function f is derived by 2 simplification rules: (i) if f (x) is a sum
of several terms, term with largest growth rate is kept, (ii) if f (x) is a product of several

factors, constants are omitted. For example, f (x) = 4x4 + 2x3 + 100 has order O(x4).
Infinite asymptotic analysis often looks over the lower order terms and constants, which
might be the deciding factor for practical applications. Even for exponential problems in
O(nn) versus constant time O(1), there is a cross-over of applicability, where the pref-
erence shifts. It is important to estimate where the problem of interest lie for stricter
comparison among algorithms.

3.3. QUANTUM AUTOMATA USING QUANTUM CIRCUITS
A quantum mechanical model of Turing machines was described by Paul Benioff us-
ing Hamiltonian models [89, 90]. A computationally equivalent model using quantum
gates (inspired by classical Boolean logic gates) in a quantum circuit was proposed by
David Deutsch [12, 13, 91]. Due to the more intuitive nature of the circuit model it has
become the standard for quantum algorithm development. A generalized quantum Tur-
ing machine (GQTM) [92], (which contains QTM as a special case and includes non-
unitary dynamics e.g. irreversible transition functions as well) allow the representation
of quantum measurements [93]. From a quantum computer architecture perspective,
QTM was compared [94] to quantum random-access machine (QRAM) and quantum
random-access stored-program (QRASP) model, proving their equivalence in bounded-
error polynomial-time formulations using the Solvay-Kitaev theorem. The QRASP con-
siders that a single program is stored in classical registers, and thus treated as classical
data, while the work memory can be in a superposition. A QRASP model of a quan-
tum computer can encode a program as quantum data, consequently generalizing the
QRASP model to parallel quantum random-access stored-program machines (PQRASP)
allowing a superposition of programs [95].

Here we review the circuit implementations of quantum finite automata (QFA) [96,
97], quantum equivalent automata models [98], and more extensively QTM [80] which
inspires our circuit architecture of a quantum parallel universal linear bounded au-
tomata (QPULBA). Like its classical counterpart, a quantum Turing machine (QTM) is
an abstract model capturing the power of quantum mechanical process for computa-
tion. Any quantum algorithm can be expressed formally as a particular QTM. QTM gen-
eralizes the classical Turing machine such that the internal states of a classical TM are
replaced by pure or mixed states in a Hilbert space. The transition function is replaced
by a collection of unitary matrices that map the Hilbert space to itself.

3.3.1. QUANTUM TURING MACHINES

A classical TM is extended to the complex vector space for a QTM. For a three-tape QTM
(one tape holding the input, a second tape holding intermediate calculation results, and
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a third tape holding output):

• The set of states is replaced by a Hilbert space.
• The tape alphabet symbols are replaced by a Hilbert space (usually a different

Hilbert space than the set of states).
• The blank symbol corresponds to the zero-vector.
• The input and output symbols are usually taken as a discrete set, as in the classi-

cal system; thus, neither the input nor output to a quantum machine need be a
quantum system itself.

• The transition function is a generalization of a transition monoid. It is a collection
of unitary matrices that are automorphisms of the Hilbert space.

• The initial state may be either a mixed state or a pure state.
• The set of final or accepting states is a subspace of the Hilbert space.

It is important to realize that this is merely a sketch than a formal definition of a quantum
Turing machine. Some important details like how often a measurement is performed are
not explicitly defined. This is circumvented by formal proofs showing equivalence with
an oblivious QTM, whose running time is a function of the size of the input (independent
of the structure of the input). However, how to practically translate that to a priori knowl-
edge of the number of steps the computation needs to be executed before collapsing the
superposition still needs further exploration [99, 100].

3.3.2. CELLULAR AUTOMATA INSPIRED QTM CIRCUIT

QTM was developed in the 1990s as a formal model to represent quantum computation.
Recently, [80, 98] revived this direction of research by presenting quantum circuit formu-
lations and discussing applications of simulating quantum automata.

The approach taken in [80] resembles a (quantum) cellular automata in its homo-
geneous circuit template and local unitary operations. The no-cloning principle pre-
vents a direct translation of the sequentially updating classical cellular automata archi-
tecture to quantum circuits. This is because, when the state is sequentially updated, we
lose the neighbor information to update the consecutive cell. The circuit architecture
of this QTM is inspired by the solid-state implementation of the computational equiva-
lent model to a TM of a 1-dimensional elementary cellular automata. The local simul-
taneous update is achieved by maintaining a local one-hot marker denoting the pres-
ence/absence of the tape head at the location activates a specific (or superposition of)
computation path in the QTM. It defines a fixed unitary G which encodes the rule, or
the transition function and interleaved in a particular way. For the quantum version,
the inputs are qubits, so they can be in a superposition of states, allowing simultaneous
evolution of various inputs (initial Turing tapes).

By this approach, t ≥ n steps of a QTM on an input of length n can be simulated
by a uniformly generated family of quantum circuits linear in t . However, not all transi-
tion functions describe valid quantum Turing machines as it is imperative that the global
evolution is unitary on the Hilbert space. Any QTM that exhibits a local causal behavior
can be mapped to the transition function G proposed in [80]. Since the model is uni-
versal, there exists a transition function that will in effect read a stored program and the
input from the tape as qubits and perform the computation entirely by local operations.
However, it is not immediately clear how to construct such a unitary for an arbitrary tran-
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sition function. Moreover, modeling the stored-program model on this local interaction
architecture would incur a high cost in the number of operations to affect the tape, as at
each step a TM head moves only by one step.

3.3.3. PROPOSED COMPUTATION MODEL
In this section, we propose the formulation of our computation model that we translate
to the quantum circuit. This complements the research as presented in [80] from a dif-
ferent perspective. The major considerations to make the quantum circuit practically
implementable and tractable in resources are discussed.

A MECHANISTIC PERSPECTIVE

The intricacy in applying the cellular automata based QTM to arbitrary algorithms in-
spires our research to look at more intuitive model with structural similarity to a TM. We
do away with the local transition function applied in parallel based on activation qubits.
Our quantum circuit provides a mechanistic model of a Linear Bounded Automata, while
allowing both the inputs (tape memory) and the program (transition function) to be in
superposition. Thus, in effect it provides a scalable quantum circuit implementation for
the QPULBA model of computation.

The superposition of programs is the key feature allowing the framework to be ap-
plied for estimating algorithmic features [25], like the algorithmic probability and algo-
rithmic complexity. Note that, this parallelism we propose is different from the super-
position of inputs as considered by standard QTM models [80], as the parallelism we
propose allows both the input data as well as the transition function to be in a superpo-
sition. As an analogy, this can be thought of as the distinction between a quantum adder
(which can add a superposition of two inputs), and a quantum calculator (which can ap-
ply all possible binary operations like add, subtract, multiply, divide, power, etc. on the
two inputs). Each classical binary operation need not access the inputs from the tape
in a coordinated fashion, e.g. multiplication can proceed from right to left while divi-
sion can proceed from left to right. Once the quantum algorithm is executed, the output
evolves to a superposition considering all possible programs (with the given states and
symbols) on all possible inputs - commonly referred to as the Solomonoff universal prior
probability distribution in algorithmic information theory.

BOUNDS ON RUNTIME

For any pragmatic (quantum) automata implementation, besides the memory, the run-
time also needs to be restricted to a predetermined cycle count. This is imperative as it
is not possible to estimate the halting time of a Turing machine in advance. Not all ap-
plications however allow a time restricted formulation. Thus, we are interested in these
specific types of algorithms which can be aborted externally (without inspecting the cur-
rent progress). The premature output should yield an acceptable approximate solution
with a bounded error based on the computation time. These come under the purview of
soft-computing and are ubiquitous in optimization, machine learning and evolutionary
algorithms.

Here we consider runtime restriction in the context of a linear-bounded automata.
There are 2 variables in a LBA specification, apart from the alphabet and states. These
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are the length of computation (time) and the length of the tape (space) resources. The
latter is the dependent variable due to the region of influence (time cone). It is possible
for a code to run for infinite time on a limited tape, but it is not possible to cover an infi-
nite tape in a finite time. Thus, time-restricted automata further restrict the set of strings
that are reachable by the computation process. Due to their restricted power, these sub-
universal models are traditionally not preferred in theoretical computer science proofs
where the typical assumption allows sufficient time and memory resource for the algo-
rithm to complete its intended purpose. However, our assumptions on the space and
time resources are motivated from the application perspectives of biological processes
that we intend to model. Physical processes in nature can neither afford infinite time
(cycles), not infinite space (memory), thus, we consider a computational model with re-
alistic bounds on these variables.

There is no definitive metric to compare the power of runtime restricted automata
models without invoking algorithmic information definitions like the speed prior or log-
ical depth. Most landmark research [101] on the universality of TMs has assumed infi-
nite tape length, adding a few points on the pareto curve of universality for the number
of symbols and states. The runtime of our model is thus application and resource driven,
based on the convergence of the model for the specific phenomena, and the coherence
limits of the quantum processor.

Additionally, we do not consider halting states specifically in our model. However,
it is not too difficult to consider the subset of programs with halting states and are by
default realized when a state loops on itself. Recent research [102] has shown that a non-
halting TM is statistically correlated in rank with LBA. Though the Chomsky hierarchy
level of a non-halting LBA has not been explored, we presume that it would also be cor-
related to LBA rather than to PDA or FSM. As discussed later, restricting the automata
based on the number of cycles is an unavoidable technicality in the quantum version as
we need to collapse the superposition.

For restricted TM, instead of universality, more important metrics are expressibil-
ity and reachability. Expressibility is the set of solutions/states that an automaton can
compute given a non-universal set of operations but not restricted by memory/space or
steps/time resources. Reachability is the set of solutions/states that an automaton can
compute by restricting space and/or time resources. For our computational model of a
time-bound LBA, the reachability metric will be more suitable, semantically being the
set of non-zero probability strings in the universal distribution we empirically obtain.

CORRESPONDING CLASSICAL MODEL

Before we present the quantum model of QPULBA, in this section, we define the corre-
sponding classical model where neither the program nor the input can be in a superpo-
sition. Thus, it corresponds to a restricted runtime ULBA, where the program is accepted
from outside the system (e.g. stored in a program memory) and the input tape is finite
in length.

In our computation model, we will restrict a m states, n symbols, 1 dimension tape
Turing machine by limiting the maximum time steps t before a forced halt is imposed.
This automatically bounds the causal cone on the tape to [−t ,+t] from the initial posi-
tion of the tape head, resulting in a LBA.
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The tape is initialized to the blank character as this does not reduce the computa-
tional power of the TM. This can be thought of as, the initial part of the program pre-
pares the input on the tape and then computes on it. The tape length, like the memory
size of CPU, is an application specific hyperparameter chosen such that it is enough for
accommodating the intermediate work-memory scratchpad and the final output. The
range of values for the tape length is c ≤ (2t +1).

The generic model of a restricted ULBA is represented by this 10-tuple.

T = ⟨Q,Γ, b,Σ,δ, q0, F, t , d , c⟩

• Q is a finite, non-empty set of states.
• Γ is a finite, non-empty set of symbols allowed on the tape, called the tape alpha-

bet.
• b ∈ Γ is the blank symbol.
• Σ⊆ Γ\{b} is the set of input symbols, that is, the set of symbols allowed to appear

in the initial tape contents.
• δ is a partial function called the transition function. It defines the next state, tape

movement and write symbol based on the current state and the read symbol.
• q0 ∈Q is the initial state.
• F ⊆Q is the set of final states or accepting states.
• t is the number of steps the machine is executed before a forced halt is imposed.
• d is the dimension of the tape. It also specifies if the tape is circular by a ◦ symbol

for each dimension.
• c is the length of the tape in each dimension.
For our experimental implementation example in this paper, we chose c = t and a

circular tape. This helps us evaluate output diversity considering tape direction equiv-
alence under left-right substitution. This shorter tape however comes as the cost of not
able to map to computational path dependent application where left-right substitution
is not always equivalent (e.g. robotic movement). Our computation model of m = ∣Q∣
states, n = ∣Γ∣ symbols, d = 1◦ dimension (circular) tape restricted Turing machine, can
be formally represented as:

T = ⟨{Q0,Q1, . . . ,Qm−1},{s0, s1, . . . , sn−1}, s0,{},δ,Q0,{}, c, 1
◦

, c⟩

Note that Σ is empty, thus the tape is always initialized to the blank character b = s0.
The set of accepting states F is also empty to prevent the machine from halting before
t steps. This includes machines that have defined halting states, by modifying the tran-
sition function to remain in the same state and write the same symbol that is read (in
effect simulating a no-operation) once these states are reached.

Thus, the transition table exhaustively lists a transition for each combination of (Q−
F)=Q and Γ.

δ ∶Q ×Γ→Q ×Γ×{0, 1}
where, 0 is left shift, 1 is right shift for the 1 dimensional tape. Each entry of the transition
table requires log2(m)+l og2(n)+d bits and there are a total of m∗n entries. Thus, the
number of bits required to specify a single transition function is:

qδ = (m ∗n)∗ (l og2(m)+ log2(n)+d)
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The number of different machines (programs) that can be represented using qδ bits is
represented by:

P = 2
qδ

3.3.4. ENUMERATION OF EXAMPLE CASES
Here, some examples of this computation model are enumerated. These enumerations
are intended to be executed in parallel thereby presenting the PULBA variant of the
ULBA model. The cases are labeled as per the number of states, symbols and tape di-
mension (Case m-n-d). We start with the smallest natural number 1 and explore larger
values of symbols and states (however, we will only consider 1 dimensional Turing tape).

For these experiments, the number of iterations is set equal to the size of the pro-
gram, i.e. t = qδ. This allows us to compare the final tape and program to infer which
programs can self-replicate, which motivates our research [25].

CASE 1-1-1
For this case, the number of states m = 1 with the state set Q ∶ {Q0}. The alphabet is
Γ ∶ {0}, thus, n = 1 (the unary alphabet). This gives the values qδ = 1∗1∗ (0+0+1)= 1

and P = 21
= 2 using the formula discussed before.

The machine is run for t = qδ = 1 iteration. The initial tape is of length c = t = 1. To
distinguish the blank character from a written 0, we will use o. Thus, the initial tape is:
o.

The outputs for each program (description number) are listed in Table 3.2. Rs /Ws

refers to the read/write symbols and Ml/r refers to the tape movement of left/right.

Table 3.2: Exhaustive enumeration of the programs of Case 1-1-1 circular tape ULBA for length 1 cycle 1.

P# Q0R0 Final tape
0 Q0Ml W0 0
1 Q0Mr W0 0

CASE 2-1-1
For this case, the number of states m = 2 with the state set Q ∶ {Q0,Q1}. The alphabet is
again Γ ∶ {0}, with, n = 1 (the unary alphabet). This gives the values qδ = 2∗1∗ (1+0+
1)= 4 and P = 24

= 16.
The machine is run for t = qδ = 4 iteration. The initial tape is of length c = t = 4. The

initial tape is: oooo, where the underline denotes the initial position.
The outputs for each program (description number) are listed in Table 3.3. It is easy

to see all m-1-d cases will result in tapes with the blank/zero characters. The 0000 string
is the only string in this language.

CASE 1-2-1
For this case, the number of states m = 1 with the state set Q ∶ {Q0}. The alphabet is
Γ ∶ {0, 1}, with, n = 2 (the binary alphabet). This gives the values qδ = 1∗2∗(1+1+0)= 4

and P = 24
= 16. The machine is run for t = qδ = 4 iteration. The initial tape is of length

c = t = 4. The initial tape is similar to the last case: oooo.
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Table 3.3: Exhaustive enumeration of the programs of Case 2-1-1 circular tape ULBA for length 4 cycle 4.

P# Q1R0 Q0R0 Final tape
00 Q0Ml W0 Q0Ml W0 0000
01 Q0Ml W0 Q0Mr W0 0000
02 Q0Ml W0 Q1Ml W0 0000
03 Q0Ml W0 Q1Mr W0 00oo
04 Q0Mr W0 Q0Ml W0 0000
05 Q0Mr W0 Q0Mr W0 0000
06 Q0Mr W0 Q1Ml W0 0oo0
07 Q0Mr W0 Q1Mr W0 0000
08 Q1Ml W0 Q0Ml W0 0000
09 Q1Ml W0 Q0Mr W0 0000
10 Q1Ml W0 Q1Ml W0 0000
11 Q1Ml W0 Q1Mr W0 00o0
12 Q1Mr W0 Q0Ml W0 0000
13 Q1Mr W0 Q0Mr W0 0000
14 Q1Mr W0 Q1Ml W0 00o0
15 Q1Mr W0 Q1Mr W0 0000

Table 3.4: Exhaustive enumeration of the programs of Case 1-2-1 circular tape ULBA for length 4 cycle 4.

P# Q0R1 Q0R0 Final tape
00 Q0Ml W0 Q0Ml W0 0000
01 Q0Ml W0 Q0Ml W1 1111
02 Q0Ml W0 Q0Mr W0 0000
03 Q0Ml W0 Q0Mr W1 1111
04 Q0Ml W1 Q0Ml W0 0000
05 Q0Ml W1 Q0Ml W1 1111
06 Q0Ml W1 Q0Mr W0 0000
07 Q0Ml W1 Q0Mr W1 1111
08 Q0Mr W0 Q0Ml W0 0000
09 Q0Mr W0 Q0Ml W1 1111
10 Q0Mr W0 Q0Mr W0 0000
11 Q0Mr W0 Q0Mr W1 1111
12 Q0Mr W1 Q0Ml W0 0000
13 Q0Mr W1 Q0Ml W1 1111
14 Q0Mr W1 Q0Mr W0 0000
15 Q0Mr W1 Q0Mr W1 1111

The outputs for each program (description number) are listed in Table 3.4. If we run
the experiment for more than 4 steps then we will see more variety in the output.
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CASE 2-4-1
Let us consider the case where the number of states m = 2 (with the states set Q ∶
{Q0,Q1}) with the alphabet Γ ∶ {A,C ,G , T }, with, n = 4, inspired by the DNA alphabet.

This gives the values qδ = 2∗ 4∗ (1+ 2+ 1) = 32 and P = 232
= 4294967296. It is clear

that even for the simple case of the DNA alphabet, an exhaustive search by enumera-
tion is not possible on a classical algorithm (and thereby, also on a quantum computer
simulator running on classical hardware). This exponential growth in the number of
cases shows the difficulty of classical enumeration of ULBA motivating quantum accel-
eration [58, 103] for bioinformatics applications.

CASE 2-2-1
This case is both non-trivial as well as within the bounds of our current experimentation.
The number of states m = 2 with the state set Q ∶ {Q0,Q1}. The alphabet is Γ ∶ {0, 1},
thus, n = 2 (the binary alphabet). This gives the values qδ = 2∗ 2∗ (1+ 1+ 1) = 12 and

P = 212
= 4096 using the formula discussed before.

The machine is run for t = qδ = 12 iteration. The initial tape of length c = t = 12 is:
oooooooooooo

The program (description number) is encoded as:

[QMW ]Q1R1[QMW ]Q1R0[QMW ]Q0R1[QMW ]Q0R0

There are too many cases to enumerate by hand, so a Python script (the classical
kernel we intend to accelerate) is written that emulates our restricted model of the lin-
ear bounded automata for all 4096 cases. The program can be found at the following link:
https://github.com/Advanced-Research-Centre/QuBio/blob/master/Project_01/classical/

The tape output (universal distribution) for all the 4096 machines is plotted in Fig-
ure 3.4 while the algorithmic probability is listed in Figure 3.5.

Figure 3.4: Tape output for all programs of Case 2-2-1 circular tape ULBA for length 12 cycle 12. This
corresponds to the universal distribution.

https://github.com/Advanced-Research-Centre/QuBio/blob/master/Project_01/classical/
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0000 : 0.420410 1024 : 0.002197 2045 : 0.001953 2753 : 0.000244 3456 : 0.000244
0001 : 0.002197 1027 : 0.000488 2047 : 0.031250 2944 : 0.000244 3583 : 0.017578
0002 : 0.001953 1028 : 0.000244 2048 : 0.043945 3057 : 0.000244 3584 : 0.000244
0003 : 0.000244 1040 : 0.000488 2049 : 0.001465 3072 : 0.001465 3585 : 0.007080
0004 : 0.000244 1045 : 0.000244 2050 : 0.000732 3073 : 0.001465 3587 : 0.000977
0007 : 0.000732 1048 : 0.000244 2051 : 0.000244 3074 : 0.000244 3589 : 0.000244
0008 : 0.003174 1055 : 0.000244 2055 : 0.004883 3075 : 0.007080 3615 : 0.002197
0015 : 0.000488 1282 : 0.000244 2058 : 0.002441 3077 : 0.000244 3713 : 0.000244
0021 : 0.002441 1344 : 0.002441 2061 : 0.000244 3079 : 0.001221 3840 : 0.004883
0024 : 0.000244 1345 : 0.000244 2062 : 0.000244 3083 : 0.000244 3841 : 0.001221
0027 : 0.000244 1365 : 0.031250 2063 : 0.002686 3087 : 0.000244 3968 : 0.002686
0065 : 0.000488 1535 : 0.001953 2079 : 0.002441 3088 : 0.000244 3969 : 0.000244
0128 : 0.003174 1536 : 0.000244 2113 : 0.000244 3098 : 0.000244 4032 : 0.002441
0192 : 0.000244 1537 : 0.000488 2175 : 0.000244 3103 : 0.000732 4033 : 0.000732
0193 : 0.000244 1539 : 0.000488 2560 : 0.000732 3198 : 0.000244 4035 : 0.002197
0256 : 0.000244 1728 : 0.000244 2561 : 0.000244 3199 : 0.000488 4080 : 0.000244
0257 : 0.000244 1792 : 0.000732 2565 : 0.000244 3329 : 0.000244 4081 : 0.000488
0512 : 0.001953 1920 : 0.000488 2688 : 0.002441 3330 : 0.000244 4093 : 0.017578
0517 : 0.000244 1985 : 0.000244 2730 : 0.031250 3331 : 0.000244 4095 : 0.312500

Figure 3.5: Algorithmic probability (in red) for Case 2-2-1 (for non-zero probabilities).

3.3.5. QUANTUM PARALLEL UNIVERSAL LINEAR BOUNDED AUTOMATA
In this section, we present the detailed design of the quantum circuit to implement the
ULBA computation model of the previous section. This is a mechanistic model of a
QPULBA having the corresponding parts of a classical ULBA as qubits. The acronym ex-
pansion of ‘quantum’, ‘parallel’, ‘universal’, ‘linear bounded’ translates respectively to the
automata features of a superposition in inputs, a superposition of programs, a stored-
program model and a memory restricted implementation. As highlighted in Table 3.1,
QPULBA (in yellow) captures the computing capabilities of 27 (in blue) out of 51 au-
tomata models (of type 3, 2, 1) that is realistically implementable on physical hardware.
The circuit in Figure 3.6 requires some ancilla qubits which will be introduced later. The
automata step needs to be repeated for the number of steps t we intend to execute the
machine before measuring out the qubits.

QUBIT COMPLEXITY

The qubit complexities of the design elements are discussed here. The generic formula
is derived before applying to the specific case of the 2-2-1 QPULBA.

• Alphabet: Alphabet set cardinality n = ∣Γ∣ is the number of symbols in the alpha-
bet. The number of bits/qubits required to represent a symbol, qΓ = ⌈log2(n)⌉

• Head position: The current head position is represented either as binary or one-
hot encoding. The one-hot encoding is more expensive in the number of qubits,
but better in terms of gates. The number of bits/qubits required for one-hot en-
coding [80] is the same as the number of cells c. Since the simulation bottleneck is
the number of qubits instead of the number of gates, we prefer the binary encod-
ing. For binary encoding, qhead = ⌈log2(c)⌉

• Read head: The read head temporarily stores the content of the current head po-
sition, requiring bits/qubits, qr ead = qΓ

• Write head: The write head temporarily stores the content to be written to the
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∣qa⟩

Ini t

Move

∣qch⟩ δ Reset

∣qt ape⟩ Read
W r i te

∣qwr i te⟩
δ Reset

∣qr ead⟩
Read

∣qhead⟩ W r i te
Move

∣qmove⟩

δ Reset∣qst ate⟩
∣qδ⟩

QPULBA step

Figure 3.6: Blocks for the quantum circuit implementation of a QPULBA step.

current head position, requiring bits/qubits, qwr i te = qΓ
• Turing tape: The number of bits/qubits required for the restricted tape size of c is,

qt ape = c ∗ qΓ
• Movement: Specifying the movement of a d dimensional Turing tape requires,

qmove = d
• Current state: The current state in binary encoding requires, qst ate = ⌈log2(m)⌉.

In a one-hot coded format, it would require m qubits.
• Transition table: The transition function is a unitary matrix that transforms the

input and the current state to the output, next state and movement of the tape.
Thus, for each combination of state and read character, we need to store the next
state, write character and movement. The number of qubits required are, qδ =

(m ∗n)∗ (qst ate + qwr i te + qmove)
• Computation history: Since the quantum circuit is reversible, the computation

history for (t − 1) steps needs to be stored in ancilla qubits. The computation
history is specified by the state and read symbol for each step, requiring, qch =

(t − 1)∗ (qst ate + qr ead). However, it is possible to trade-off space (qubits) with
time (operations) by uncomputing.

Thus, the qubit complexity of the implementation (assuming qa ancilla qubits) is:

qQPU LB A = qδ+ qst ate + qmove + qhead + qr ead + qwr i te + qt ape + qch + qa

= (m ∗n ∗ (log(m)+ log(n)+d))+ log(m)+d + log(c)
+ log(n)+ log(n)+ (c ∗ log(n))+ qch + qa

Considering the 2-2-1 QPULBA example, the values of m = 2, n = 2, d = 1, c = 12,
t = 12 are substituted in the above equation (all logarithms are base-2 and rounded up
to be nearest integer) to yield,
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q
221
QPU LB A = (2∗2∗ (l og(2)+ log(2)+1))+ log(2)+1+ log(12)+ log(2)+ l og(2)

+ (12∗ log(2))+ (11∗ (log(2)+ log(2)))+ qa

= 12+1+1+4+1+1+12+22+ qa

= 54+ qa

Simulating in order of 50 qubits is near the quantum supremacy limits. However, the
circuit is not always in full superposition thereby allowing smart simulation techniques
in a quantum simulator and uncomputing away the computation history.

INITIALIZE

The initialization circuit depends on the target application for this framework. For mea-
suring the algorithmic probability or the universal distribution, all possible programs
(represented by the transition table) need to be evolved in a superposition. All other
qubits are kept at the ground or default state of ∣0⟩. The circuit is shown in Figure 3.7.

∣qa⟩ /3 Pr ep Z

∣qch⟩ /22 Pr ep Z

∣qt ape⟩ /12 Pr ep Z

∣qwr i te⟩ /1 Pr ep Z

∣qr ead⟩ /1 Pr ep Z

∣qhead⟩ /4 Pr ep Z

∣qmove⟩ /1 Pr ep Z

∣qst ate⟩ /1 Pr ep Z

∣qδ⟩ /12 Pr ep Z H

Figure 3.7: Initialization quantum circuit for QPULBA 2-2-1.

QPULBA STEP

Each iteration of the QPULBA undergoes the following transforms:
1. Read: {qr ead}←Ur ead({qhead , qt ape})
2. Transition evaluation: {qwr i te , qch , qmove}←Uδ({qr ead , qst ate , qδ})
3. Write: {qt ape}←Uwr i te({qhead , qwr i te})
4. Move: {qhead}←Umove({qhead , qmove})
5. Reset
This corresponds to one step of a classical UTM, with the distinction of the compu-

tation now evolving in a superposition of all possible classical automata. We will now
discuss each of these QPULBA steps in detail.
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READ TAPE

The quantum circuit implements a multiplexer with the tape as the input signals and the
binary coded head position as the selector lines. The read head is the output. The read
circuit for the QPULBA 2-2-1 is shown in Figure 3.8.

∣q11
t ape⟩ ●

∣q10
t ape⟩ ●

∣q9
t ape⟩ ●

∣q8
t ape⟩ ●

∣q7
t ape⟩ ●

∣q6
t ape⟩ ●

∣q5
t ape⟩ ●

∣q4
t ape⟩ ●

∣q3
t ape⟩ ●

∣q2
t ape⟩ ●

∣q1
t ape⟩ ●

∣q0
t ape⟩ ●

∣qr ead⟩
∣q3

head⟩ ● ● ● ●

∣q2
head⟩ ● ● ● ●

∣q1
head⟩ ● ● ● ● ● ●

∣q0
head⟩ ● ● ● ● ● ●

Figure 3.8: Read tape quantum circuit for QPULBA 2-2-1.
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TRANSITION TABLE LOOKUP

The transition table encoding is: [Qt ∣RΓ]→ [Qt+1∣Ml/r ∣WΓ]
Note that we use q−

st ate instead of q+
st ate though we are storing the next state in

the qubit. This is corrected by the reset circuit. The transition function circuit for the
QPULBA 2-2-1 is shown in Figure 3.9.

∣q−
st ate⟩

∣qwr i te⟩
∣qr ead⟩ ● ● ● ● ● ●

∣qmove⟩
∣qst ate⟩ ● ● ● ● ● ●

∣q
Q1R1Q
δ ⟩ ●

∣q
Q1R1M
δ ⟩ ●

∣q
Q1R1W
δ ⟩ ●

∣q
Q1R0Q
δ ⟩ ●

∣q
Q1R0M
δ ⟩ ●

∣q
Q1R0W
δ ⟩ ●

∣q
Q0R1Q
δ ⟩ ●

∣q
Q0R1M
δ ⟩ ●

∣q
Q0R1W
δ ⟩ ●

∣q
Q0R0Q
δ ⟩ ●

∣q
Q0R0M
δ ⟩ ●

∣q
Q0R0W
δ ⟩ ●

Figure 3.9: Transition function quantum circuit for QPULBA 2-2-1.
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WRITE TAPE

The quantum circuit implements a de-multiplexer with the tape as the output signals
and the head position as the selector lines. The write head is the input.

The write circuit for the QPULBA 2-2-1 is shown in Figure 3.10. The qubit elements
not involved are not shown.

∣q11
t ape⟩

∣q10
t ape⟩

∣q9
t ape⟩

∣q8
t ape⟩

∣q7
t ape⟩

∣q6
t ape⟩

∣q5
t ape⟩

∣q4
t ape⟩

∣q3
t ape⟩

∣q2
t ape⟩

∣q1
t ape⟩

∣q0
t ape⟩

∣qwr i te⟩ ● ● ● ● ● ● ● ● ● ● ● ●

∣q3
head⟩ ● ● ● ●

∣q2
head⟩ ● ● ● ●

∣q1
head⟩ ● ● ● ● ● ●

∣q0
head⟩ ● ● ● ● ● ●

Figure 3.10: Write tape quantum circuit for QPULBA 2-2-1.
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MOVE

There are many choices for implementing the move, e.g. a looped tape (overflow/un-
derflow is ignored and trimmed), error flag is raised and halts, overflow/underflow is
ignored, etc. Here, a looped tape is implemented.

The head is incremented/decremented using the move qubit as control.

∣qhead⟩ / Inc Dec

∣qmove⟩ ● X ● X

The increment/decrement circuit is a special case of the quantum full adder [104]
with the first register, a set to 1. For the QPULBA 2-2-1 case, the length of the circular tape
is 12, thus, the increment and decrement needs to be modulo 12. For increment, when
the qhead equals 11, it should increment to (11+ 1) mod 12 = 0, while for decrement,
(0− 1) mod 12 = 11. Thus, for these edge cases, we need to increment/decrement by
5 instead of 1. We set the a2 bit to change the effective value of a from 1 = 00012 to
5 = 01012 for the addition/subtraction. This operation is conditioned on the head value
and move bit, and denoted as the overflow/underflow qubit ∣ov f w⟩/∣ud f w⟩. The a2

bit is uncomputed based on the incremented value being 0 or the decremented value
being 11.

The carry (C ), sum (S) and reverse carry (C †) blocks are defined as follows:

.sum .carry .reverse_carry
cnot A0,S0 toffoli A0,B0,C1 toffoli C0,B0,C1
cnot B0,S0 cnot A0,B0 cnot A0,B0

toffoli C0,B0,C1 toffoli A0,B0,C1
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Increment
In this design, c3c2c1 = 000 are 3 ancilla (c0 is not required), a0 = qmove , a3a2a1 =

000, b3b2b1b0 = q3
head q2

head q1
head q0

head and b4 is ignored. The circuit in Figure 3.11
shows the 4-bit modulo-12 quantum increment circuit using the quantum adder blocks.

∣0⟩= c0

C C † S

∣0⟩
∣qmove⟩= a0 ● ● ∣qmove⟩
∣q0

head⟩= b0 ●
∣0⟩= c1

C C † S

∣0⟩
∣0⟩= a1 ∣0⟩

∣q1
head⟩= b1 ●

∣0⟩= c2

C C † S

∣0⟩
∣ov f w⟩= a2 ∣0⟩
∣q2

head⟩= b2

∣0⟩= c3

C
S

∣0⟩
∣0⟩= a3 ● ∣0⟩

∣q3
head⟩= b3 ●
∣0⟩= b4

Figure 3.11: Modulo-12 quantum adder for implementing move tape head for QPULBA 2-2-1.

The circuit can be simplified considering some of the control qubits are always in the
0 state, so those CNOT/Toffoli gates can be ignored. The optimized increment circuit for
the QPULBA 2-2-1 is shown in Figure 3.12.

∣ov f w⟩ ● ● ● ● ●

∣q2
anci l l a⟩ ●

∣q1
anci l l a⟩ ● ● ●

∣q0
anci l l a⟩ ● ● ●

∣q3
head⟩

∣q2
head⟩ ● ● ● ●

∣q1
head⟩ ● ●

∣q0
head⟩ ● ●

∣qmove⟩ ● ● ● ● ●

Figure 3.12: Modulo-12 increment quantum circuit for QPULBA 2-2-1.



3

78 3. QUANTUM AUTOMATA FOR ALGORITHMIC INFORMATION

Decrement
In this design, c3c2c1 = 000 are 3 ancilla (c0 is not required), a0 = qmove , a3a2a1 =

000, b3b2b1b0 = q3
head q2

head q1
head q0

head and b4 is ignored. The circuit in Figure 3.13
shows the 4-bit modulo-12 quantum decrement circuit using the reverse order of blocks
as the standard quantum adder.

∣0⟩= c0

C C † S

∣0⟩
∣qmove⟩= a0 ● ● ∣qmove⟩
∣q0

head⟩= b0 ●
∣0⟩= c1

C C † S

∣0⟩
∣0⟩= a1 ∣0⟩

∣q1
head⟩= b1 ●

∣0⟩= c2

C C † S

∣0⟩
∣ud f w⟩= a2 ∣0⟩
∣q2

head⟩= b2

∣0⟩= c3

C
S

∣0⟩
∣0⟩= a3 ● ∣0⟩

∣q3
head⟩= b3 ●
∣0⟩= b4

Figure 3.13: Modulo-12 quantum subtractor for implementing move tape head for QPULBA 2-2-1.

The circuit can be simplified considering some of the control qubits are always in the
0 state, so those CNOT/Toffoli gates can be ignored. The optimized increment circuit for
the QPULBA 2-2-1 is shown in Figure 3.14.

∣ud f w⟩ ● ● ● ● ●

∣q2
anci l l a⟩ ●

∣q1
anci l l a⟩ ● ● ●

∣q0
anci l l a⟩ ● ● ●

∣q3
head⟩

∣q2
head⟩ ● ● ● ●

∣q1
head⟩ ● ●

∣q0
head⟩ ● ●

∣qmove⟩ ● ● ● ● ●

Figure 3.14: Modulo-12 decrement quantum circuit for QPULBA 2-2-1.
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RESET

Quantum logic is universal and can implement any classical Boolean logic function us-
ing only the Toffoli (CCNOT) or Fredkin (CSWAP) gate. However, it is not always possible
to uncompute all ancilla qubits. Specifically, if the function to be implemented is irre-
versible, e.g. AND, extra qubits are needed to construct the reversible quantum circuit
that preserves the unitary property. The general strategy to compile a classical function
to quantum logic is shown in Figure 3.15.

x

Uf

x

0

f(x)

0

x Cf

f(x)

Figure 3.15: Reversible circuit compilation strategy.

Other research has focused on the quantum circuit generation of the constrained
subset of reversible automata. However, for the QPULBA case, we intend to evolve a
superposition of all possible classical functions/programs C f that can be represented
by the description number encoding. These functions include both reversible as well as
irreversible functions, thus, we cannot uncompute away the computation history of the
state transition.

Both the state and the read together preserve the evolution history. Thus, we need
ancilla qubits in each step of the computation that would hold the transition history
for the QPULBA. This limits the number of steps of the QPULBA we can implement or
simulate. Besides the state and read, the write and move qubits need to be reset in each
cycle. This is implemented by calling the FSM transition function once again with the
previous state and the read.

3.3.6. IMPLEMENTATION AND SIMULATION RESULTS

In this section, we present the circuit implementation of QPULBA. This was imple-
mented on 2 different programming platforms, OpenQL [105] developed at the Delft
University of Technology and IBM’s Qiskit [106]. Our copy-left AGPLv3 licensed imple-
mentation can be found on: https://github.com/Advanced-Research-Centre/QPULBA

https://github.com/Advanced-Research-Centre/QPULBA
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We implemented 2 cases of QPULBA, with 1 and 2 states: the full circuit and cycle
simulation of QPULBA 1-2-1, and a limited simulation of the units for QPULBA 2-2-1, as
presented below.

QPULBA 1-2-1
Our implementation is scalable to any m-state n-symbol QPULBA. The entire circuit for
the 1-state 2-symbol case requires much less qubits, thus we were able to simulate it
classically. Note that there is no need to store the state anymore thereby reducing the
qubit complexity greatly.

Number of 1-state 2-symbol 1-dimension QPULBA: 16

FSM : [0, 1, 2, 3]
STATE : []
MOVE : [4]
HEAD : [5, 6]
READ : [7]
WRITE : [8]
TAPE : [9, 10, 11, 12]
ANCILLA : [13, 14, 15]

The full circuit was simulated for 4 cycles. The final state vector obtained after 4 cy-
cles is shown in Figure 3.16. The FSM qubits encoding the description/program number
(in green) and the output on the tape (in red) bit strings match with the classical enu-
meration in Table 3.4. Thus, if we measure only the tape in the standard computational
basis, we will obtain an equal statistical distribution of the 0000 and 1111 states.

=============== State Vector ===============

(+0.25000+0.00000j)   |0000000000000000>

(+0.25000+0.00000j)   |0000000000000100>

(+0.25000+0.00000j)   |0000000000001000>

(+0.25000+0.00000j)   |0000000000001100>

(+0.25000+0.00000j)   |0001111000000001>

(+0.25000+0.00000j)   |0001111000000101>

(+0.25000+0.00000j)   |0001111000001001>

(+0.25000+0.00000j)   |0001111000001101>

(+0.25000+0.00000j)   |0100000000000010>

(+0.25000+0.00000j)   |0100000000000110>

(+0.25000+0.00000j)   |0100000000001010>

(+0.25000+0.00000j)   |0100000000001110>

(+0.25000+0.00000j)   |0101111000000011>

(+0.25000+0.00000j)   |0101111000000111>

(+0.25000+0.00000j)   |0101111000001011>

(+0.25000+0.00000j)   |0101111000001111>

===============..............===============

Figure 3.16: Test result for the QPULBA 1-2-1 showing the FSM description/program number (green) and
output tape (red).
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QPULBA 2-2-1
The entire circuit for the 2-state 2-symbol case can be compiled from the parts described
before. This was implemented in a scalable manner on OpenQL and Qiskit.

Full circuit compilation
The qubit allocation for the full circuit, considering 1 cycle is:

Number of 2-state 2-symbol 1-dimension QPULBA: 4096

FSM : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
STATE : [12, 13]
MOVE : [14]
HEAD : [15, 16, 17, 18]
READ : [19]
WRITE : [20]
TAPE : [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]
ANCILLA : [33, 34, 35]

For each further cycles, we need 2 qubits to store the computation history.
The exact gate complexity depends on the considered primitive. We use Hadamard,

Pauli-X, CNOT, Toffoli and SWAP as our gate set. Multi-qubit controlled-NOT gates
are decomposed using the borrowed-ancilla strategy outlined in [52]. One cycle of the
QPULBA uses 627 gates: 476 Toffoli, 126 Pauli-X, 12 CNOT, 12 Hadamard and 1 SWAP
gate. The Qiskit circuit drawing and generated OpenQASM can be found on the reposi-
tory.

░ ┌──────────┐                     ░                                                    ░ ┌───┐                              ┌───┐ ░

q_0: ─░─┤ RY(0.62) ├─────────────────────░───■────■────■─────────────────────────────■────■───░─┤ X ├──■────■────■────■─────────────────────────────■──┤ X ├─░─

░ ├──────────┤                     ░   │  ┌─┴─┐┌─┴─┐                           │  ┌─┴─┐ ░ └───┘┌─┴─┐  │  ┌─┴─┐┌─┴─┐      │  └───┘ ░

q_1: ─░─┤ RY(1.55) ├──■──────────────────░───■──┤ X ├┤ X ├───────────────────────────■──┤ X ├─░──────┤ X ├──■──┤ X ├┤ X ├───────────────────────────■────────░─

░ ├──────────┤  │                  ░   │  └───┘└───┘                    ┌───┐  │  └───┘ ░      └───┘  │  ├───┤└───┘      │        ░

q_2: ─░─┤ RY(1.64) ├──┼────■─────────────░───┼────■────────────────────────■──┤ X ├──┼────────░─────────────┼──┤ X ├──■────────────────────────■────┼────────░─

░ ├──────────┤  │    │             ░   │    │                 ┌───┐  │  └─┬─┘  │        ░             │  └─┬─┘  │  ┌───┐ │    │        ░

q_3: ─░─┤ RY(0.72) ├──┼────┼────■────────░───┼────┼────■─────────■──┤ X ├──┼────┼────┼────────░─────────────┼────┼────┼──┤ X ├──■─────────■────┼────┼────────░─

░ ├──────────┤ │    │    │        ░   │    │    │  ┌───┐ │  └─┬─┘  │    │    │        ░             │    │    │  └─┬─┘  │  ┌───┐ │    │    │        ░

q_4: ─░─┤ RY(2.67) ├──┼────┼────┼────■───░───┼────┼────┼──┤ X ├──┼────┼────┼────┼────┼────────░─────────────┼────┼────┼────┼────┼──┤ X ├──┼────┼────┼────────░─

░ └──────────┘  │    │    │    │   ░ ┌─┴─┐ │    │  └─┬─┘  │    │    │    │  ┌─┴─┐ ░ ┌─┴─┐ │    │    │    │  └─┬─┘  │    │  ┌─┴─┐ ░

q_5: ─░───────────────┼────┼────┼────┼───░─┤ X ├──■────┼────┼────┼────┼────■────■──┤ X ├──────░───────────┤ X ├──■────■────┼────┼────┼────┼────■──┤ X ├──────░─

░               │    │    │    │   ░ └───┘┌─┴─┐  │    │    │    │  ┌─┴─┐     └───┘      ░           └───┘     ┌─┴─┐  │   │    │    │  ┌─┴─┐└───┘      ░

q_6: ─░───────────────┼────┼────┼────┼───░──────┤ X ├──■────┼────■────■──┤ X ├────────────────░─────────────────────┤ X ├──■────■────┼────■──┤ X ├───────────░─

░               │    │    │    │   ░      └───┘┌─┴─┐  │  ┌─┴─┐     └───┘                ░                     └───┘     ┌─┴─┐  │  ┌─┴─┐└───┘           ░

q_7: ─░───────────────┼────┼────┼────┼───░───────────┤ X ├──■──┤ X ├──────────────────────────░───────────────────────────────┤ X ├──■──┤ X ├────────────────░─

░             ┌─┴─┐ │    │    │   ░           └───┘     └───┘                          ░                               └───┘     └───┘           ░

q_8: ─░─────────────┤ X ├──┼────┼────┼───░───────────────────────────────────────────────────────────────────────────────────────────────────────────────────░─

░             └───┘┌─┴─┐  │    │   ░                                                                                     ░

q_9: ─░──────────────────┤ X ├──┼────┼───░───────────────────────────────────────────────────────────────────────────────────────────────────────────────────░─

░                  └───┘┌─┴─┐  │   ░                                                                                     ░

q_10: ─░───────────────────────┤ X ├──┼───░───────────────────────────────────────────────────────────────────────────────────────────────────────────────────░─

░                       └───┘┌─┴─┐ ░                                                                                     ░

q_11: ─░────────────────────────────┤ X ├─░───────────────────────────────────────────────────────────────────────────────────────────────────────────────────░─

░                            └───┘ ░                                                                                     ░

TEST CONFIGURATION

FSM     : []

STATE   : []

MOVE    : [0]

HEAD    : [1, 2, 3, 4]

READ    : []

WRITE   : []

TAPE    : []

ANCILLA : [5, 6, 7]

TEST    : [8, 9, 10, 11]

Figure 3.17: Test circuit for the QPULBA 2-2-1 move block.

Unit tests
While we were able to compile the full circuit, the large number of qubits limits classi-

cally simulating the circuit on our available hardware. The exponential simulation com-
plexity of quantum algorithms on classical hardware in terms of memory resource is
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indeed the driving factor for research on physical implementation of quantum accelera-
tors. To complement our design, we developed unit tests for each part of the mechanistic
perspective.

============= State Vector =============

(+0.03251+0.00000j)   |000000000011>

(+0.10148+0.00000j)   |000000011110>

(+0.09940+0.00000j)   |000100000000>

(+0.03184+0.00000j)   |000100000101>

(+0.10876+0.00000j)   |001000000010>

(+0.03484+0.00000j)   |001000000111>

(+0.10652+0.00000j)   |001100000100>

(+0.03412+0.00000j)   |001100001001>

(+0.03820+0.00000j)   |010000000110>

(+0.01224+0.00000j)   |010000001011>

(+0.03741+0.00000j)   |010100001000>

(+0.01198+0.00000j)   |010100001101>

(+0.04094+0.00000j)   |011000001010>

(+0.01311+0.00000j)   |011000001111>

(+0.04010+0.00000j)   |011100001100>

(+0.01284+0.00000j)   |011100010001>

(+0.42239+0.00000j)   |100000001110>

(+0.13530+0.00000j)   |100000010011>

(+0.41369+0.00000j)   |100100010000>

(+0.13252+0.00000j)   |100100010101>

(+0.45268+0.00000j)   |101000010010>

(+0.14500+0.00000j)   |101000010111>

(+0.44336+0.00000j)   |101100010100>

(+0.14202+0.00000j)   |101100011001>

(+0.15899+0.00000j)   |110000010110>

(+0.05093+0.00000j)   |110000011011>

(+0.15571+0.00000j)   |110100011000>

(+0.04988+0.00000j)   |110100011101>

(+0.17039+0.00000j)   |111000011010>

(+0.05458+0.00000j)   |111000011111>

(+0.05346+0.00000j)   |111100000001>

(+0.16688+0.00000j)   |111100011100>

=============..............=============

Figure 3.18: Test result for the QPULBA 2-2-1 move block showing the move (blue), head (green), ancilla
(yellow) and test (green) qubits.

We successfully tested each of the 6 parts of the QPULBA, i.e. initialize, read, FSM,
write, move and reset. The unit test simulations are tractable as each part concerns only
a subset of the qubits. The inputs are put into an unequal superposition of values using
random rotations about the Y-axis (that maintains the amplitude in the real domain).
This allows us to individually inspect each basis state changes in contrast to an equal
superposition using Hadamard gates. For quantum acceleration of classical algorithms,
the ZX-plane of the Bloch sphere is enough to take advantage of the destructive interfer-
ence of quantum superpositions over classical probabilistic computing, thereby reduc-
ing the cost of classical simulation using complex representations of the amplitude.

To track the output changes, each qubit of the target register is entangled with a test
register using CNOT gates. Thus, the old value and the new value of the basis state’s bit
string can be inspected similar to an associative memory.

Here, as an example, we show the unit test circuit for the move step, which requires 8
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qubits for the circuit and 4 addition qubits for testing. The circuit is shown in Figure 3.17.
The initial part before the first barrier is the test configuration and the second part is of
the move circuit.

For the move circuit, the binary string of the qubits associated with the head state (in
red) increments by 1 if the move qubit (in blue) is 1 and decrements by 1 otherwise. This
is verified by the internal state vector output of the simulation as shown in Figure 3.18.

3.4. ALGORITHMIC INFORMATION
Algorithmic information theory (AIT) [107] allows studying the inherent structure of
objects without reference to a generating distribution (often assumed erroneously as
the uniform prior in statistical machine learning). The theory originated when Ray
Solomonoff [108], Andrey Kolmogorov [109], and Gregory Chaitin [110] looked at infor-
mation, probability, and statistics through the algorithmic lens. The theory has now be-
come a central part of theoretical computer science [111].

While the applicability of mathematical objects defined in the context of AIT are
ubiquitous, most are uncomputable. Estimating these using approximate methods is
often intractable beyond small cases, even on classical supercomputers. Thus, while in
the field of theoretical computer science, these fundamental concepts are valuable for
proofs, their applicability to real-world data and use cases remains very limited. The
definitions and applications of some of these mathematical objects in AIT that are used
in this research, are explained here. While for some of the definitions herein, a generic
non-universal TM is sufficient, based on our use case of AIT, we will consider the forms
based on UTM unless otherwise required.

• Algorithmic complexity: Algorithmic complexity (AC), also called Kolmogorov
complexity, is the length of the shortest program that produces a particular out-
put and halts on a specific TM. Formally, it is defined as:

ACU (s)= min:{l(p),U(p)→ s}

where U is a UTM, p is a program, l(p) is the length of the program, s is a string,
and U(p)→ s denotes the fact that p executed on U outputs s and halts.

AC is not a computable quantity in the general case due to fundamental limits
of computations that arise from the halting problem (i.e., it is impossible to de-
termine whether any given program will ever halt without actually running this
program, possibly for infinite time). However, it has bounded lower-approximate
property, i.e., if we can find a program pL in a language L (e.g., Java, Assembly),
l(pL)≥ l(p).

Since AC depends on the particular model of computation (i.e., the UTM and the
language), it is always possible to design a language where a particular string s will
have a short encoding no matter how random (e.g., MetaGolfScript). However,
the invariance theorem guarantees that, there exists an additive constant cU 1→U 2

independent of s, such that

ACU 2 ≤ ACU 1 + cU 1→U 2
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This constant is the compiler length for translating any arbitrary program pU 1 for
U 1 to pU 2 for U 2.

• Algorithmic probability: Algorithmic probability (AP), also called Solomonoff’s
probability, is the chance that a randomly selected program will output s when ex-
ecuted on U . The probability of choosing such a program is inversely proportional
to the length of the program.

APU (s)= ∑
p∶U(p)→s

2
−l(p)

Thus, the largest contribution to the term comes from the shortest program that
satisfies the condition. It is uncomputable for the same reasons as AC. AP is re-
lated [112] to AC via the following law:

ACU (s)≤−log2(APU (s))+ c

i.e., if there are many programs that generate a dataset, then there has to be also
a shorter one. The arbitrary constant is dependent on the choice of a program-
ming language.

AP can be approximated by enumerating programs p on a TM T of a given type
and counting how many of them produce a given output and then divide by the
total number of machines that halt. When exploring machines with n symbols
and m states algorithmic probability of a string s can be approximated as follows:

D(n, m)(s)= ∣T ∈ (n, m) ∶ T (p) outputs s∣
∣T ∈ (n, m) ∶ T (p) halts ∣

The coding theorem method (CTM) [113] approximates the AC as:

C T M(n, m)(s)=−l og2D(n, m)(s)

Calculating CTM, although theoretically computable, is extremely expensive in
terms of computation time. The space of possible Turing machines may span
thousands of billions of instances.

Block decomposition method (BDM) [77] approximates the CTM value for an ar-
bitrarily large object by decomposing it into smaller slices of appropriate sizes for
which CTM values are known and aggregated back to a global estimate. The algo-
rithmic complexities of these small slices are precomputed and made into a look-
up table using CTM. The BDM aggregates this as:

BDM(s)=∑
si

C T M(si )

where C T M(si ) is the approximate algorithmic complexity of the string si and
s = ∪i si i.e., the si together forms the string s. Small variations in the method of
dividing the string into blocks become negligible [114] in the limit, e.g., to take a
sliding window at the boundary or an overlapping block.
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• Universal distribution: The universal a priori probability distribution (UD) is the
distribution of the algorithmic probability of all strings of a specific size. It can be
calculated for all computable sequences. This mathematically formalizes the no-
tion of Occam’s razor and Epicurus’ principle of multiple explanations using mod-
ern computing theory for the Bayesian prediction framework. It explains observa-
tions of the world by the smallest computer program that outputs those observa-
tions, thus, all computable theories which describe previous observations are used
to calculate the probability of the next observation, with more weight put on the
shorter computable theories. This is known as Solomonoff’s theory of inductive
inference.

• Universal search: Although the UD is uncomputable, universal search (US), also
called Levin search [115], converges to the universal distribution when executed
for longer periods of time. It solves inversion problems by interleaving the execu-
tion of all possible programs on a universal Turing machine, sharing computation
time equally among them until one of the executed programs manages to solve the
given inversion problem.

US has inspired various artificial general intelligence (AGI) approaches that built
upon this to calculate the expected value of an action. The more computing power
that is available, the closer their predictions are to the predictions of inductive
inference. Jürgen Schmidhuber and Marcus Hutter developed many AGI algo-
rithms like Adaptive Levin Search, Probabilistic Incremental Program Evolution,
Self-Modifying Probabilistic Learning Algorithms, Hutter Search, Optimal Ordered
Problem Solver, AIXI-tl, and Gödel Machine. These methods will be explored as an
extension of this research.

• Levin complexity: Levin complexity (LC) is a computable (though often in-
tractable), time-bounded version of AC which penalizes execution time t .

LCU (s, t)= min:{l(p)+ log(t),U(p)→ s}

The standard invariance theorem also holds for this.

• Logical depth: Bennett’s logical depth (LD) [116] is the number of time steps t to
run the shortest program p AC to output s in a specific UTM U . It captures the gen-
eral notion of physical complexity, which implies that neither random nor simple
objects are sophisticated (complex).

LDU (s)= min:{t(p AC) ∶U(p AC)→ s}

The choice of the TM has a multiplicative factor for LD is more crucial.

In general, it is not a semi-computable measure (approximation can be bounded
from a direction) but can be approximated based on the decompression time of
compression algorithms. For a given significance level d , LD can be calculated as:

LDU (s, d)= min:{(t(p) ∶U(p AC)→ s)∧ (l(p)− l(p AC)≤ d)}
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• Speed prior: The universal distribution does not take into account the comput-
ing resource (tape and time) required when assigning the probability of certain
data. This does not match our intuitive notion of simplicity (Occam’s razor). Jür-
gen Schmidhuber proposed [117] the measure speed prior (SP), derived from the
fastest way of computing data.

SPU (s)=
∞

∑
z=1

2
−z ∑

p∶U(p,z)→s

2
−l(p)

where program p generates an output with prefix s after 2z−l(p) instructions. Thus,
it is even more difficult to estimate it as all possible runtimes for all possible pro-
grams need to be taken into account.

• Omega number: The Omega number, also called the Chaitin constant or halting
probability of a prefix-free TM T is a real number that represents the probability
that a randomly constructed program will halt.

ΩT =∑
p

2
−∣p∣

While many of the algorithmic objects discussed here are uncomputable, most of
them are either upper or lower semi-computable, i.e., the value of the metric can be ap-
proached in the limit from above or below by enumerating the Turing machines [77].
These approximations can further be calculated by time-bounding the TMs for a maxi-
mum number of cycles. Though time-bounded algorithmic information was researched
before for various applications, pragmatically, they remain intractable for real-world
problem sizes for classical algorithms, motivating this research to explore alternative
quantum approaches.

It is crucial to highlight that most mathematical objects in AIT are higher in the
computing hierarchy than the more familiar polynomial-time (P) and non-deterministic
polynomial time (NP) complexity classes. Since quantum computers are not expected
to provide exponential speedup for NP-hard problems, we expect, at best, a quantum
(Grover’s) search type polynomial speedup. In this research, we explore the possible
advantages for some specific cases of the quantum model and their associated appli-
cations.

Often polynomial speedup between different computing models of the same power
is heavily influenced by the formulation of a problem and the model itself. For example,
it is highly non-trivial to do a binary search on a Turing machine without a random-
access-memory. In this work, we ensure that the quantum algorithm formulation re-
tains the speedup. Secondly, for real-world data, often a polynomial speedup is enough
to make an application tractable. In the era of small-scale quantum computers, it is
thus important to explore polynomial speedups as well and better understand average
case complexity and other linear and constant factors in the complexity. Thus, an exper-
imental approach using available small-scale quantum processors or quantum simula-
tors aids in appreciating the exact cost involved in implementing the quantum algorithm
in the circuit model. In the field of quantum computing, very few results for algorithmic
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information are developed. Recent research [118] on reinforcement learning shares a
similar motivation; however, does not provide a detailed gate (time) and qubit (space)
level analysis or implementation.

3.5. ALGORITHMIC PROPERTIES USING QUANTUM CIRCUITS
In our computation model, we will restrict a m states, n symbols, d dimension tape LBA
by limiting the maximum time steps t before a forced halt is imposed. This automatically
bounds the causal cone on the tape to [−t ,+t] from the initial position of the tape head.
The tape is initialized to the blank character as this does not reduce the computational
power. This can be thought of as the initial part of the program prepares the input on
the tape and then computes on it. The tape length, like the RAM size of a computer, is an
application specific hyperparameter chosen such that it is enough for accommodating
the intermediate work-memory scratchpad and the final output. The range of values for
the tape length is c ≤ (2t +1).

The detailed design of the quantum circuit to implement the computation model is
presented in § 3.3. Here, we present a summary of our implementation, which has the
uniqueness in:

1. presenting a mechanistic perspective where the quantum circuit has the corre-
sponding functions of a classical universal Turing machine,

2. this allows the user to readily translate a superposition of classical programs for
a Turing machine (e.g., FSMs from assembly language code) as input states, in
contrast to the cellular automata-based construction in [80],

3. Turing machine’s mechanistic model does not preserve locality and homogeneity,
thus reducing both the number of qubits and gate operations required to execute
the automata compared to [80]

4. the core value of our construction stems from the feature that, in our model, the
program can also be in a superposition along with the input data, thus allowing
a superposition of classical functions to be evolved in parallel (this feature is de-
noted by the ‘P’ in QPULBA) and is generally not true for a description of a QTM.

5. a complete and scalable circuit description of the full construction in two popular
quantum programming languages are provided with simulation results taking into
account realistic resource assumptions on the runtime and qubits

6. thus, besides being a theoretical computation model, our implementation has
practical applicability in the field of experimental algorithmic information theory,
where the space of program-output behaviors needs to be explored exhaustively
in a classical supercomputer. Thus, it forms the framework for the application pre-
sented in this article.

Thus, the QPULBA acronym expansion of ‘quantum’, ‘parallel’, ‘universal’, ‘linear
bounded’ translates respectively to the automata features of a superposition in inputs,
a superposition of programs, a stored-program model, and a memory restricted im-
plementation. The t cycle and tape length c restricted version of QPULBA is termed
QPULBAtc . This is illustrated in Figure 3.19. The yin-yang symbol and its rotated forms
denote qubits in superposition states.

Our implementation provides a scalable quantum circuit implementation of the
QPULBA model based on the 5 parameters: {m, n, d , t , c}. The copyleft implementation
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read/write
heads

finite tape qubits finite alphabet

QPULBAtc

left/right
movers

finite state machines finite tape

Figure 3.19: QPULBAtc : Quantum Parallel Universal Linear Bounded Automata restricted by t cycles and tape
length c.

on the Qiskit quantum programming language can be found at https://github.com/
Advanced-Research-Centre/QPULBA. The blocks of the quantum circuit for a single
QPULBA step is shown in Figure 3.6. The blocks need to be repeated for t cycles. The
unitary blocks are purposefully named, corresponding to the functions of the unitary to
the classical Turing machine (read, fsm, write, move). We note that this, however, does
not imply the qubits are copied, violating the no-cloning principle, such as in the read
unitary, but are rather entangled. In this research, we focus on using the QPULBA quan-
tum circuit for various applications.

3.5.1. QUANTUM ADVANTAGE

Our quantum implementation of the QPULBA generates the unitary U in the standard
circuit formulation in OpenQASM for Qiskit, based on the provided parameters. This is
shown in Figure 3.20. In this section, we will present the method to use U to estimate
algorithmic information.

{ m, n, d, t, c }
Qiskit

OpenQASM circuit U

Figure 3.20: QPULBA circuit implementation, as detailed in [119].

The unitary U typically takes in a set of qubits representing the description num-
ber (alternatively, programs, transition table, or finite state machines). For estimating
algorithmic information, we want to enumerate over all possible programs, thus, these
qubits are put into an equal superposition as part of the initialization process. The tape

https://github.com/Advanced-Research-Centre/QPULBA
https://github.com/Advanced-Research-Centre/QPULBA
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qubit register is initialized to the all-zero (blank) state. The initial state qubit register is
initialized to state 0 of the automata. The other qubits required for the QPULBA mecha-
nism are not required for further discussion. These include read, write, move, tape head,
computation history, and ancilla qubits.

Five cases of applying U for experimental algorithmic information theory (EAIT) are
discussed here. The Wolfram Physics Project [120] correlates causal invariance with the
action principle in physics and algorithmic probability in information theory. It stresses
that knowing the rules (programs) of an automata does not mean it is possible to jump
ahead in time without equal amount of computation. This is called computational irre-
ducibility. However, there are some pockets of reducible computation which allow us to
predict the mechanics based on the laws of physics. Akin to this concept, the quantum
advantage of using QPULBA for EAIT cannot be in the time complexity of a single exe-
cution as it takes the same scaling of resources of quantum and classical gates to run an
automata for a specified number of cycles. The quantum advantage must be extracted
by losing information about the full quantum state vector such that some global statisti-
cal property is extracted efficiently via the quantum method. This provides an advantage
with respect to classical exhaustive enumeration. Thus, the space of program-output re-
lations is one of the best candidate problems for demonstrating speedup using quantum
search.

RECONSTRUCTING THE UNIVERSAL DISTRIBUTION

The universal distribution is obtained as a quantum superposition of the tape qubits
at the end of the computation. However, it needs to be sampled by measurement. To
reconstruct the distribution of Figure 3.4, the experiment needs to be repeated at least
the same number of times as the number of data points. Thus, in general, there can be no
quantum advantage if we aim to construct the universal distribution in full resolution.

FINDING OUTPUT WITH HIGHEST ALGORITHMIC PROBABILITY

The mapping between programs and output can be represented as a bipartite directed
graph with a many-to-one relation. The output with the highest algorithmic probability
is thus the node in the output set of nodes with the largest in-degree. This node can be
estimated as the statistical modal value on sampling the superposition of output. This is
equivalent to reconstructing a sub-sampled approximation of the universal distribution.
Similar approximation (in terms of statistical distance such as KL divergence) can be
achieved by sampling from the initial superposition of program and enumerating them
classically. In terms of the graph theoretical perspective, the degree distribution of an
Erdős–Rényi random graph stays similar with change in the edge probability. Thus, in
this case, there is no quantum advantage as well.

FINDING SPECIFIC PROGRAM-OUTPUT CHARACTERISTICS

The quantum implementation is useful when we intend to understand a specific prop-
erty of the space of programs or outputs. Such information are not possible to infer
in classical computing without enumerating every possible machine. In the QPULBA
model, the final tape distribution can be modified further based on the required appli-
cation.
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For example, if we intend to investigate the space of machines that self-replicate, i.e.,
the tape output is same as the corresponding program, the tape qubits can be evolved
to the Hamming distance with respect to the FSM (program) qubits using the CNOT
gate [49]. Thereafter, the zero Hamming distance can be sampled to evolve the entan-
gled FSM qubits to a superposition of only self-replicating programs. Since the univer-
sal distribution is unstructured, a classical heuristic approach that encodes a quantum
superposition of self-replicating programs is not possible without exhaustively enumer-
ating all automata configurations. We will present an implementation of this case in the
following sections.

FINDING ALGORITHMIC PROBABILITY OF A SPECIFIC OUTPUT

Another useful application of the above case is to simply count the number of cases
which generate a specific output using the quantum counting algorithm. This is equiv-
alent to finding the algorithmic probability of a specific output. For this case, the out-
put qubits can be evolved to the Hamming distance with respect to the required output
with a series of X gates. Thereafter, we can increasingly approximate the algorithmic
probability based on the measurement statistics of the zero Hamming distance state. Al-
ternatively, we can use sampling to evolve the state to a distribution of programs that
generates the specific output for further downstream quantum algorithm for analysis.

FINDING PROGRAMS WITH SPECIFIC END STATE

The qubit register storing the final state after running the QPULBA circuit can be used to
condition the universal distribution. For example, this framework can be used to count
the number of cases that reach a particular state (e.g., a state denoted as the halting state,
or an accepting state for the automata). Thus, it is possible to estimate the Omega num-
ber, or the halting probability for this limited case of a runtime restricted LBA model.
The results from finding the probability of a specific output and the probability of the
programs reaching a specific end state can be used together to estimate the Kolmogorov
complexity using the coding theorem method.

3.5.2. EXPERIMENTAL USE CASES
We explore two use cases of quantum-accelerated experimental algorithmic informa-
tion theory (QEAIT) in this section. One is to find self-replicating programs, and the
second is to estimate the algorithmic (Kolmogorov) complexity using the block decom-
position method.

DISTRIBUTION OF QUINES

Universal constructor is a self-replicating machine foundational in automata theory,
complex systems and artificial life. John von Neumann was motivated to study abstract
machines which are complex enough such that they could grow or evolve like biological
organisms. The simplest such machine, when executed, should at least replicate itself.

As shown in Figure 3.21, the design of a self-replicating machine consists of:
• a program or description of itself
• a universal constructor mechanism that can read any description and construct

the machine or description encoded in that description
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• a universal copier machine that can make copies of any description (if this allows
mutating the description it is possible to evolve to a higher complexity)

Additionally, the machine might have an overall operating system (which can be part
of the world rule or compiler) and extra functions as payloads. The payload can be very
complex like a learning agent, such as AIXI [121] or an instance of an evolving neural
network [122].

Universal
Constructor

Universal
Copier

Extra
Functions

Operating
System

Universal
Constructor

Universal
Copier

Extra
Functions

Operating
System

Figure 3.21: John von Neumann’s system of self-replicating automata.

The constructor mechanism has two steps: first the universal constructor is used to
construct a new machine encoded in the description (thereby interpreting the descrip-
tion as program), then the universal copier is used to create a copy of that description
in the new machine (thereby interpreting the description as data). This is analogous to
the cellular processes of DNA translation and DNA replication, respectively. The cell’s
dynamics is the operating system which also performs the metabolism as the extra func-
tions when it is not reproducing.

A quine is a program which takes no input and produces a copy of its own source
code as its output. Thus, it is akin to the software embodiment of constructors. Quine
may not have other useful outputs. In computability theory, such self-replicating (self-
reproducing or self-copying) programs are fixed points of an execution environment, as
a function transforming programs into their outputs. Quines are also a limiting case of
algorithmic randomness as their length is same as their output.

The idea of using the fixed-point, called the Y-combinator in lambda calculus
λ f .(λx. f (xx))(λx. f (xx)) to describe the genetic code [123] is pioneered by Gregory
Chaitin [78] as the field meta-biology. This is in line with the constructor theory [124]
approach for understanding physical transformations in biology. In the field of tran-
scendental/recreational programming, the DNA structure was used to code the Gödel
number (similar to the description number) of any Ruby script [125]. In our future re-
search [126], we intend to explore the significance of these results for artificial life appli-
cations [127] in synthetic biology. The space and probability of constructors [128] can
inform the subset of DNA encoding for in vitro experimentation and understanding of
causal mechanisms in cells [79, 129].

Implementation using the QEAIT framework
As an experimental demonstration of this use case we intend to create an equal su-

perposition of quines for a specific automata. In the corresponding classical case, every
description number encoding needs to be enumerated. Then, each output needs to be
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evaluated to find self-replicating behavior. The quines are then selected and put into a
quantum superposition by encoding the states in equal superposition.

Our implementation of QPULBA is scalable to any m-state n-symbol QPULBA. The
entire circuit for the 1-state 2-symbol case requires much less qubits, thus we were able
to simulate it classically. Please note that there is no need to store the state anymore
(only 1 state) thereby reducing the qubit complexity greatly.

The full circuit was simulated for four cycles on Qiskit. The code can be found
at https://github.com/Advanced-Research-Centre/QPULBA. The final state vector ob-
tained after four cycles is shown on the left side of Figure 3.22. The FSM qubits encod-
ing the description/program number (in green) and the output on the tape (in red) bit
strings is the universal distribution for this automata. Thus, if we measure only the tape
in the standard computational basis, we will obtain an equal statistical distribution of
the 0000 and 1111 states. The tape is then evolved to the Hamming distance with respect
to the FSM. This results in the quantum state as shown on the right side of Figure 3.22.

=============== State Vector ===============

(+0.25000+0.00000j)   |0000000000000000>

(+0.25000+0.00000j)   |0001111000000001>

(+0.25000+0.00000j)   |0100000000000010>

(+0.25000+0.00000j)   |0101111000000011>

(+0.25000+0.00000j)   |0000000000000100>

(+0.25000+0.00000j)   |0001111000000101>

(+0.25000+0.00000j)   |0100000000000110>

(+0.25000+0.00000j)   |0101111000000111>

(+0.25000+0.00000j)   |0000000000001000>

(+0.25000+0.00000j)   |0001111000001001>

(+0.25000+0.00000j)   |0100000000001010>

(+0.25000+0.00000j)   |0101111000001011>

(+0.25000+0.00000j)   |0000000000001100>

(+0.25000+0.00000j)   |0001111000001101>

(+0.25000+0.00000j)   |0100000000001110>

(+0.25000+0.00000j)   |0101111000001111>

===============..............===============

=============== State Vector ===============

(+0.25000+0.00000j)   |0000000000000000>

(+0.25000+0.00000j)   |0001110000000001>

(+0.25000+0.00000j)   |0100010000000010>

(+0.25000+0.00000j)   |0101100000000011>

(+0.25000+0.00000j)   |0000100000000100>

(+0.25000+0.00000j)   |0001010000000101>

(+0.25000+0.00000j)   |0100110000000110>

(+0.25000+0.00000j)   |0101000000000111>

(+0.25000+0.00000j)   |0001000000001000>

(+0.25000+0.00000j)   |0000110000001001>

(+0.25000+0.00000j)   |0101010000001010>

(+0.25000+0.00000j)   |0100100000001011>

(+0.25000+0.00000j)   |0001100000001100>

(+0.25000+0.00000j)   |0000010000001101>

(+0.25000+0.00000j)   |0101110000001110>

(+0.25000+0.00000j)   |0100000000001111>

===============..............===============

Figure 3.22: QPULBA 1-2-1 showing the FSM description/program number (green) and output tape (red): on
left the universal distribution and on right the Hamming distance between tape and FSM.

The 0000 tape state is then marked on the MSQ (in blue), as shown on the left size of
Figure 3.23. On sampling the 1 state of this qubit evolves the quantum state to an equal
distribution of quines.

If the total number of quines to the total number of programs is
pq

p
and the time to

run the automata is t , the classical approach takes time in the order of O(t ∗ (pq + p)),
as, first we need to run all the programs to evaluate its self-replicating behavior and then
create a quantum superposition of the quines. In contrast, since all the programs are
executed in superposition, the quantum sampling approach takes time proportional to
O(t ∗ (p/pq)).

ESTIMATION OF ALGORITHMIC COMPLEXITY

In [77], the coding theorem method is used to estimate the algorithmic complexity of
short strings. This forms the classical kernel that we accelerate with our quantum for-
mulation. Estimation of the algorithmic complexity of sequences is actively researched
by Hector Zenil and been applied to diverse fields such as evaluations of structures in ge-
nomics [130], psychometrics [131], cellular automata [132, 133], graph theory, economic

https://github.com/Advanced-Research-Centre/QPULBA
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=============== State Vector ===============

(+0.25000+0.00000j)   |10000000000000000>

(+0.25000+0.00000j)   |00001110000000001>

(+0.25000+0.00000j)   |00100010000000010>

(+0.25000+0.00000j)   |00101100000000011>

(+0.25000+0.00000j)   |00000100000000100>

(+0.25000+0.00000j)   |00001010000000101>

(+0.25000+0.00000j)   |00100110000000110>

(+0.25000+0.00000j)   |00101000000000111>

(+0.25000+0.00000j)   |00001000000001000>

(+0.25000+0.00000j)   |00000110000001001>

(+0.25000+0.00000j)   |00101010000001010>

(+0.25000+0.00000j)   |00100100000001011>

(+0.25000+0.00000j)   |00001100000001100>

(+0.25000+0.00000j)   |00000010000001101>

(+0.25000+0.00000j)   |00101110000001110>

(+0.25000+0.00000j)   |10100000000001111>

===============..............===============

=============== State Vector ===============

(+0.70711+0.00000j)   |10000000000000000>

(+0.70711+0.00000j)   |10100000000001111>

===============..............===============

Figure 3.23: Sampled distribution of quines.

time series [134, 135], and complex networks [131]. It is thus promising to develop a
quantum computing approach, as any benefit will be magnified by the wide applicabil-
ity of this technique.

In this use case, we explore the possibility to accelerate the estimation of algorithmic
(Kolmogorov) complexity. As defined formally in previous sections, this is an absolute
measure of the information content of a string. A seminal result in estimating AC [136]
via Experimental Algorithmic Information Theory (EAIT)-based approach considers the
property that many of the algorithmic mathematical objects are semi-computable and
converges in the limit. This is crucial, as otherwise, any hope of approximating these
quantities with computing models would not be possible. An important distinction can
be made with ‘quantum Kolmogorov complexity’ which deals with defining the com-
plexity of a specific quantum state and its preparation process using quantum gate. Our
focus in this research is on ‘quantum computing approaches for estimation of the algo-
rithmic complexity of classical sequences’.

Estimating the complexity of real-world data needs a scalable approach for long data
streams or graphs. The complexity of long strings can be estimated using the block
decomposition method as discussed. The estimation of complexity by BDM is com-
patible with lossless compression algorithms but can go beyond the scope of Shannon
entropy-based methods, which are widely used to estimate AC. Entropy-based tech-
niques can capture simple statistical patterns (repetitions), while algorithmic patterns
(such as 12345... or 246810...), are characterized as having maximum randomness and
the highest degree of incompressibility by these methods. These methods are not in-
variant to language choice and are therefore not robust enough to measure complexity
or randomness as for AIT-based methods. In contrast, techniques based on algorithmic
information can detect causal gaps in entropy-based methods (e.g., Shannon entropy
or compression algorithms). BDM is a smooth transition between the Kolmogorov en-
tropy and Shannon entropy, depends respective on whether the size of si is same as s or
1. Calculating the CTM value gets exponentially difficult with string size, thus the BDM
is the method of choice for using algorithmic information for causal inferences. How-
ever, for longer data such as real-world use cases, BDM starts getting less effective (for
a fixed block size) and fails to find causal links beyond the block size. To maintain the
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advantage over the simpler data-driven approaches we need to have an application mo-
tivated block size, e.g., how far in a genome can one gene affect the other. This motivates
our research in using quantum-acceleration to extend the lookup table of the Algorith-
mic Complexity of Short Strings (ACSS) [137] built using the CTM technique. The quan-
tum technique is not to supplant the BDM but to power it with the resources from the
quantum-accelerated CTM.

The ACSS database is constructed by approximating the output frequency distribu-
tion for Turing machines with 5 states and 2 symbols generating the algorithmic com-
plexity of strings of size ≤ 12 over ≈ 500 iterations. These numbers of 5, 2, 12 and 500 are
arbitrary from the BDM application perspective and fixed based on the computational
resource. Quoting the paper “The calculation presented herein will remain the best pos-
sible estimation for a measure of a similar nature with the technology available to date,
as an exponential increase of computing resources will improve the length and num-
ber of strings produced only linearly if the same standard formalism of Turing machines
used is followed." This immediately translates to the promise of mapping this exponen-
tially growing states using quantum computation for the Turing machine enumeration.
The symbol set of the binary alphabet is justified as the standard used in data encoding
in current digital computation due to its simplicity. The argument for 5 state is more di-
rectly related to computability restrictions. Being uncomputable, every Turing machine
in-principle needs to be run forever to know if it will halt. However, for small Turing ma-
chines, it is possible to enumerate and classify every Turing machine as either it halts
with a maximum time step of B , called the busy beaver runtime, or goes on forever. This
value can be used to stop the computation and declare the enumeration as non-halting
if the halt state is not reached in B steps. The value of B is known to be 107 for Turing
machines with 4 states and 2 symbols. However, for 5 states the value is still unknown as
there are too many cases to enumerate (26559922791424) and from partial enumerations
so far, we know that the value is ≥ 47, 176, 870 steps. It is intractable to run so many ma-
chines for so long iterations. AC can be estimated using a far lower number of iterations
when the B value is unknown, as the number of halting TM decay exponentially [138]

with steps using the random variable model, P(S = k∣S ≤ Sl i m)= αe−λk . For the 5 state,

2 symbol case with Sl i m = 500 it is 6× 10−173, thus can be safely ignored. The run limit
should capture on the output tape almost all 12 bit strings thus allowing the calculation
of their CTM values. For 13 bits strings, only half of all possible strings were captured in
500 steps, setting the block size limit using this method. The classical technique used
various intelligent optimizations such as symmetries, look ahead and patterns, reduc-
ing the requirement to only 4/11 of all machines to be enumerated for 500 steps (if they
did not halt before). This however still took 18 days on a supercomputer at the Centro
Informático Científico de Andalucía, Spain [77].

Analysis using the QEAIT framework

Estimating the algorithmic probability using the CTM requires counting the number
of Turing machines that generate a particular output and evolves to a specific state. This
requires at the least a 2 symbol 2 state automata to differentiate between fixed-length
strings, and the halting state, respectively. Our estimates for the QPULBA-2-2-1 requires
over 54 qubits, constraining us from demonstrating the full pipeline on a quantum com-
puting simulator. However, the number of logical qubits required is promisingly low
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compared to other representative quantum advantage pursuits, for example in cryptog-
raphy and optimization. We discuss some theoretical results in this application to con-
solidate our use case.

#P is the computational complexity class of all problems which can be computed by
counting Turing machines of polynomial time complexity [139]. Toda’s theorem states

the entire polynomial hierarchy PH is contained in P PP . Since P PP
= P #P [85] as a corol-

lary, the entire polynomial hierarchy PH is also contained in P #P . This signifies, if there
is an efficient classical algorithm which could perform exact counting, then the polyno-
mial hierarchy would collapse. Since we suspect this is not the case, it is unlikely that
there exists a classical algorithm which can compute exact counting.

Approximate counting can be done probabilistically with a polynomial runtime (with
respect to the error and string size) with an NP-complete oracle. Thus, if a quantum algo-
rithm could perform approximate counting in polynomial time, then that would imply
that N P ⊆ BQP , which is implausible. However, quantum computing might provide a
polynomial speedup in solving counting problems with respect to classical computers.
The quantum counting algorithm, boson sampling and post-selection are three ways
that hold promise in this direction. We discuss the later two possibilities before evaluat-
ing the quantum counting approach.

Postselection is the process of ignoring all outcomes of a computation in which an
event did not occur, selecting specific outcomes after (post) the computation. How-
ever, postselection is not considered to be a feature that a realistic computer (classical
or quantum) would possess, but nevertheless are interesting to study from a theoret-
ical perspective. The complexity class PostBQP , is the class BQP with postselection.

It was shown [140] that BQP ⊆ PostBQP = PP , and as a corollary PH ⊆ P PostBQP , as

P PostBQP
= P #P . This means that if there was an efficient way to postselect with a quan-

tum computer, we would be able to solve many of the problems which are intractable
classically, including exact counting. However, it is not clear how to practically design
such an algorithm.

Boson sampling [141] is a proposed (non-universal) model of quantum computa-
tion which involves sampling from a probability distribution of non-interacting bosons.
Sampling from bosonic or fermionic distributions can be done in polynomial time [142]
using a universal quantum computer. For this it is required to calculate the permanent
of a matrix encoding the state probabilities of the bosonic system. Calculating the per-
manent of a matrix, or even approximating it, is a #P-hard problem. The existence of a
classical algorithm which could efficiently compute exact (or approximate) boson sam-
pling would imply that the polynomial hierarchy collapses to the third level, which is
unlikely. Thus, large boson sampling computers would allow us to solve hard problems
such as the exact or approximate counting. Recently, quantum supremacy [143] was
demonstrated using boson sampling; however, feasibility of practical applications are
yet to be explored.

The quantum counting approach is more malleable for concrete circuit design for
gate-based quantum computing. This was proposed [118] for accelerating the speed
prior, another important AIT metric. Efficient approximations of Solomonoff prior
would provide a powerful form of compression and prediction, for example from the
artificial general intelligence agent perspective. The speed prior accounts for the run-
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ning time of each program on a UTM, in contrast to running each program until it halts,
as in the Solomonoff prior. The speed prior, S, is an approximation, yet takes time scal-
ing exponentially in the length of the largest program. Computing S essentially involves
counting the number of programs of given length that runs in polynomial time. Thus,
this is an N P problem, and the counting is #P . It was conjectured that S is #P-hard, such
that if there did exist a quantum algorithm which could solve S in polynomial time, then
the polynomial hierarchy would collapse. However, a fixed length speed prior can yield
a quadratic speedup using quantum computing compared to the classical method.

The speedup of both the CTM and speed prior depends on the quantum counting
algorithm. Here, we present the algorithm for the quantum-accelerated CTM.

Algorithm 1: Quantum counting CTM algorithm

1 Given string s;
2 for i < t do
3 Run QPULBA step;
4 end
5 nums ∶=QCount(t ape = s);
6 for i < t do
7 Run QPULBA step;
8 end
9 numh ∶=QCount(st ate = hal t);

Result: C T M(s) ∶=−log2(nums/numh)

Please note that we need to run the superposition of automata twice, since the quan-
tum state collapses on measurement. The QPULBA is run once to estimate the number
of machines that output the required string, and again to count the number of halting
states. The count subroutine QCount is what entails the quadratic speedup. The quan-
tum counting algorithm [38] is a combination of Grover search and phase estimation.
Given an oracle indicator function fB over a set of size N = 2n , the quantum algorithm

estimates M = ∣B∣ by solving for θ in sin2 (θ
2
) = M

2N
Recently, three new approaches to

quantum counting without quantum Fourier transform were published [144–146]. Im-
plementing these on the Qiskit framework and integrating with the CTM algorithm will
be explored in our future work.

3.5.3. APPLICATION FRAMEWORK
The model of computation discussed in this research can estimate time-bound algo-
rithmic information. Here, we present a framework for empirical experimentation on
a quantum accelerator. This is shown in Figure 3.24. The output of the unitary U im-
plementing the time-bound QPULBA model can be conditioned based on the required
application. The three advantageous cases: conditions the programs with respect to the
outputs; conditions the outputs with respect to a specific output; or conditions the final
state with respect to a specific state. Thereafter, the conditioned register can be ampli-
fied using Grover’s search, or near-term variational quantum optimization approaches
using parametric circuits such as QAOA [67, 147, 148]. Since the programs, outputs, and
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state qubits are entangled in a quantum associative memory, the amplitude of corre-
sponding registers also evolves, such that the probability of measuring out the solutions
increases. The results can then be sampled with high probability.

Estimation of algorithmic properties of a dataset can be very useful as it points to
mechanistic connections between elements of a system, even those that do not yield
any regular statistical patterns that can be captured with more traditional tools based
on probability theory and information theory. Theoretical applications of algorithmic
information such as Kolmogorov complexity is widespread [111], finding various uses
in artificial general intelligence, theoretical physics, psychology, data compression, fi-
nance, linguistics, neuropsychology, psychiatry, genetics, sociology, behavioral sciences,
image processing, among others. However, estimating algorithmic information for prac-
tical datasets is often computationally intractable due to the large number of enumer-
ations that needs to be executed. The exploration in EAIT is growing in popularity due
to its ubiquity in tasks that can be modeled as inductive reasoning. It connects theoret-
ical computer science to the real-world by a quasi-empirical approach to mathematics
(popularized as meta-mathematics by Gregory Chaitin). It involves enumerating and
running programs to understand its statistical mechanics and is similar to Stephen Wol-
fram’s metamathematics approach [149].
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Figure 3.24: Application development framework for quantum experimental algorithmic information theory.

META-BIOLOGY AND ARTIFICIAL LIFE

Quantum EAIT can be used to accelerate meta-biology experiments in open-ended evo-
lution [150] as busy beaver functions originally proposed in [78]. Meta-biology, as in-
troduced by Gregory Chaitin, provides DNA linguistics [151–153] with an algorithmic
information theory perspective, allowing exhaustive enumeration as an experimental
method to understand the DNA as a code. In recent years, the field of algorithmic bioin-
formatics [154] was pioneered by multi-disciplinary research in Hector Zenil’s group,
achieving impressive results [130] using CTM and BDM. Our research will complement
most of the work [155] in this field that uses classical algorithms, by considering a quan-
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tum accelerator extending to the same wide range of applications. Our implementations
are currently executed on quantum computing simulators such as the QX or Qiskit due
to the unavailability of quantum processors that meet the requirements of the multi-
plicity, connectivity and quality of qubits. While this limits our problem size due to the
exponential overhead of simulation platforms, the high-level OpenQL and Qiskit pro-
gramming language is generic and can target real quantum processors once they reach
a better technology readiness level. This is facilitated by the abstraction layers of the
quantum accelerator stack [156] as part of this research.

In our past research, we developed quantum algorithms for accelerating DNA
sequence reconstruction using both alignment [103]- and assembly [58]-based ap-
proaches. This research targets the analysis phase, i.e., after the genome has been se-
quenced. Thus, from pattern matching, this work extends into the domain of pattern
recognition and generation, for example in synthetic biology, xenobiology and minimal
genome.

Here we review some recent developments in classical EAIT that can benefit signifi-
cantly from our quantum approach when large-scale quantum computing reaches tech-
nological maturity.

PHYLOGENETIC TREE ANALYSIS USING EAIT
Recently, AIT techniques were successfully applied [157] in constructing the phyloge-
netic tree of RNA viruses. This research was conducted in the context of understanding
the SARS-CoV-2 coronavirus responsible for the ongoing pandemic. Studying the ge-
netic information by means of these computational tools can shed light on the rapid
spread of SARS-CoV-2 and whether its evolution is driven by mutations, recombination
or genetic variation. This information can then be applied for the development of di-
agnostic tools, effective antiviral therapies and in the understanding of viral diseases in
general.

The diversity of viruses prevents reconstruction of evolutionary histories as they lack
any equivalent set of universally conserved genes on which to construct a phylogeny,
such as eucaryotes. Viruses differ significantly in their genetic material, RNA or DNA,
and configurations (double or single stranded), as well as the orientation of their en-
coded gene. The research analyzed this genetic information by means of the Kolmogorov
complexity and Shannon information theories. In the first case, the normalized informa-
tion distance and the normalized compression distance is estimated using the zlib com-
pressor. In the second, a statistical approach is adopted by constructing histograms for
the relative frequency of base triplets and interpreted using entropy, cumulative residual
entropy and Jensen–Shannon divergence.

The results indicate clearly the superior performance of the approaches based on
the Kolmogorov complexity. The clusters are easily distinguishable and a relation is ob-
served between the new SARS-CoV-2 virus and some CoV found in bats and pangolin,
which are the most likely intermediate host from which the pandemic spread to humans.

This type of methodology may help to study how an animal virus jumped the bound-
aries of species to infect humans, and pinpoint its origin knowledge can help to prevent
future zoonotic events. The statistical and computational techniques allow different per-
spectives over viral diseases that may be used to grasp the dynamics of the diseases.
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These methodologies may help interpreting future viral outbreaks and to provide addi-
tional information concerning these infectious agents and understand the dynamics of
viral diseases.

PROTEIN-PROTEIN INTERACTION ANALYSIS USING EAIT
There have been many successes in EAIT in recent years, especially in the field of bi-
ological sequence analysis. These techniques expand our understanding of the mech-
anisms underlying natural and artificial systems to offer new insights. Algorithmic in-
formation dynamics (AID) is at the intersection of computability, algorithmic informa-
tion, dynamic systems, and algebraic graph theory to tackle some of the challenges of
causation from a model-driven mechanistic perspective, in particular, in application to
behavioral, evolutionary, and molecular reprogramming.

A recent exploration of this is in understanding the protein-protein interaction (PPI)
map [158] between the SARS-CoV-2 proteins in human cells (the coronavirus respon-
sible for the Covid-19 pandemic) and human proteins. 332 high-confidence PPI were
experimentally identified using affinity-purification mass spectrometry. However, the
mechanistic cause behind these specific interactions is not a well understood phenom-
ena yet. A recent work [159] tries to explore the Kolmogorov complexity estimates of
these PPI and found a positive correlation in the BDM values of the interactions. Such
studies will help us predict in silico the biological dynamics, helping us find drug targets
for therapeutics.

The BDM used for the study is based on the ACSS database, limited to the block
length of 13. Extending ACSS to larger block lengths with help bridge the causal gap,
which for longer strings such as proteins can be considerable, limiting its advantage over
traditional entropy-based methods. The quantum framework described in this paper
can potentially extend the ACSS database to empower the BDM more toward the actual
CTM value.

IN-QUANTO SYNTHETIC BIOLOGY

The ability to design new protein or DNA sequences with desired properties would rev-
olutionize drug discovery, healthcare, and agriculture. However, this is challenging as
the space of sequences is exponentially large and evaluating the fitness of proposed se-
quences requires costly wet-lab experiments. Ensemble approaches [160] with various
machine learning methods, mostly generative adversarial networks (GAN), suitable to
guide sequence design are employed in silico, instead of relying on wet-lab processes
during algorithmic development. Since the mechanism for determining the fitness of
the model is known, it can be encoded as a quantum kernel that evaluated in superpo-
sition the population of sequences. This is part of our future exploration in using the
framework developed in this paper for in silico (or in quanto) synthetic biology.

3.6. CONCLUSIONS AND OUTLOOK
The state of current quantum hardware is at a crucial junction of quantum supremacy,
where a problem that has mathematical guarantee of quantum speedup can be demon-
strated on QPU platforms. However, there exists a huge gap between the resource re-
quirements of quantum supremacy and quantum advantage, where a societal/industrial
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use case can be implemented for a problem size that is intractable in classical infrastruc-
tures like supercomputers.

This gap has driven the community towards parametric quantum computing (PQC),
which require much less qubits and are more noise tolerant. However, it comes with its
own set of caveats.

• Variational quantum circuits are similar to approaches like genetic algorithms or
neural networks, where the performance of a proof-of-concept cannot be extrap-
olated when scaled up for a different size or training set. There is also not much
quantum logic design involved from an algorithm perspective, beyond formulat-
ing the problem as an optimization instance, some design choices (like ansatz and
the classical optimizer), and related hyper-parameter tuning.

• Problem driven ansatz are often not error tolerant, leading to problems like the op-
timization process getting stuck at plateaus in the optimization landscape. Also,
the results are heavily dependent on the characteristics and power of the classical
optimizer. Both ansatz design and PQC optimizer design are active yet underde-
veloped research fields for off-the-shelf use in quantum application development.
Digressing into these is beyond the scope of this research.

• The goal of NISQ era is to extract as much computing power as possible by fine
tuning the algorithm to the specific hardware. Since the hardware-driven ansatz
and parameter optimization process depend on the specific QPU, it is counter-
productive to develop a perfect qubit formulation on a simulator (as is the scope
of this research) without demonstrating it on real hardware. Besides, even for
PQC, larger and better QPU are required for demonstrating quantum advantage
in genoinformatics problems.

• Being heuristic, NISQ approaches are not mathematically provable, rather empir-
ically demonstrated. While these approaches have wide applications, there has
also been some negative results (like poor performance for hard instances of SAT).
The complexity of de novo assembly lie (with respect to the clause density of its
TSP formulation of the overlap graph traversal), cannot be inferred without con-
sidering specific read size and real data sets. These make it a difficult choice to
pick the PQC direction without experimental backing.

The two core algorithms explored in the previous chapter, QiBAM and QAOA promise
at best a polynomial speedup for search (for reference-read alignment) and traveling
salesman problem (for read assembly). The brute-force search approach often is the
only approach in many applications where this Grover’s search type speedup can be
provably achieved on quantum and has justifiable benefits in a production scale envi-
ronment. However, many industrial approaches (e.g. BWA-MEM, DBG) employ heuris-
tics to drastically reduce the time complexity while still achieving acceptable approxi-
mations. In this chapter, a stronger guarantee is explored where the search database in
unstructured, thus preventing heuristic or future classical algorithms from depleting the
quantum advantage. Most problems in algorithmic information theory require enumer-
ating the run behavior of Turing machines. These cannot be accelerated via algorithmic
design on quantum or classical as any global behavior is uncomputable (due to Rice’s
theorem [161]). Quantum computing can however offer advantage by enumerating an
exponential number of superposition of Turing machine, if the interest is in some statis-
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tical tendency of the final distribution of runtime behavior.

There is currently a thrust in research towards causal modeling instead of data-
driven approaches. The applications include genomics and artificial intelligence among
many others. The best theoretical method for causal modeling and inference is based
on Solomonoff algorithmic probability and Bayesian probability respectively. Being un-
computable, these mathematical objects are currently approximated using classical su-
percomputers. These approximation algorithms, like the coding theorem method (CTM)
and block decomposition method (BDM) are the classical kernels that motivated the
quantum logic formulation of this chapter.

The mechanistic model of computation as exhibited by a Turing machine defines
an algorithm as an initial input to final output transformation on the tape memory by
a program defined as a finite state machine. The set of transformations a computation
model can undergo and the resulting space of outputs is central to understanding the
causal structure of a physical phenomena for scientific modeling and hypothesis test-
ing. While it has many applications, except for the trivial cases, this remain intractable
on classical computers. This is because the space of all possible transformations grows
exponentially with the number of states and symbols of the automata. In this research,
we explore the distinctive advantages for classical automata simulation offered by the al-
ternate paradigm of quantum computation. We complement the recently proposed [80]
circuit design of a quantum Turing machine from a mechanistic perspective with real-
istic assumptions on runtime and qubit resources. The proposed design presented in
§ 3.3 follows the computation model of a quantum parallel universal linear bounded au-
tomata. The exact scalable circuit is designed using standard quantum gates required to
simulate a superposition of programs of this automata, thereby obtaining the distribu-
tion of their evolution after a predetermined number of cycles. We present our results of
the implementation of two cases of the automata on Qiskit. We simulated and verified 4
cycles of the 1-state 2-symbol quantum parallel universal linear bounded automata with
16 qubits and compiled and unit tested the 2-state variant that requires 36 qubits.

Thereafter, § 3.5 presents a framework for empirically evaluating algorithmic infor-
mation on a quantum accelerator. The estimation of the universal prior distribution
and thereby the algorithmic complexity and algorithmic probability of finite sequences
is theoretically the most optimal technique for inferring algorithmic structure in data for
discovering causal generative models. These mathematical objects are uncomputable
but can be approximated in practice by restricting the time and memory resources avail-
able to the computational model. Nevertheless, due to the exponential scaling of the
number of possible automata that need to be enumerated they are intractable except for
the simplest of the cases on classical computation. Moreover, owing to the unstructured
output and computational irreducibility, it is not possible to dequantized or approximate
the computation using heuristics. In this work, we propose a quantum circuit frame-
work to estimate the universal distribution by simulating a superposition of programs
(or transition functions) for a resource-bounded automata. The quantum resource com-
plexity scales linearly in qubits and gates with respect to the data or automata size, thus
achieving a polynomial speedup over classical exhaustive enumeration. Exploring the
space of program-output relations is one of the most promising problems for demon-
strating speedup using quantum search on the quantum supremacy roadmap. Specific
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properties of the program or output data can be inferred from the universal distribution
represented as a quantum superposition.

As a use case, we presented a full experimental framework for using this approach on
DNA sequences for meta-biology and genome analysis. This is the first time a quantum
computation approach is implemented for approximating algorithmic information. We
implemented our copy-left design on the Qiskit programming language and tested it us-
ing the quantum computing simulator. This algorithm can be readily ported on a quan-
tum accelerator stack [6] with any sufficiently advanced gate-model quantum comput-
ing hardware, in terms of qubits, connection topology and error rates. With quantum-
accelerated genome analysis, a better understanding of the algorithmic structures in
DNA sequences would greatly advance domains such as personalized medication and
artificial life.



4
UNIVERSAL REINFORCEMENT

LEARNING IN QUANTUM

ENVIRONMENTS

The exploration in § 3 revealed close links between the theoretical domains of quan-
tum computation and algorithmic information. Specifically, this can be explored to find
the best algorithm for a particular purpose. Quantum computing guarantees the most
general (and fastest) type of computing, while algorithm information guarantees the
shortest logical route. However, this is a very niche direction which makes it hard to find
past research which studies this from the perspective of computation instead of physi-
cal concepts (like energy and entropy). The primary aim of this chapter is to explore the
reverse relation, i.e., how AIT can be helpful in modeling QC.

The recent work from Marcus Mueller [162] based on John Wheeler’s ‘law without
law’ idea forms the primary motivation for this research. He provides a framework to for-
malize an operational formulation of quantum mechanics (QM) using only Solomonoff
induction (and the assumption that the universe is computable). In this research, we
propose its active version via an agent model. Agent models based on Solomonoff in-
duction are studied under the theoretical discipline of universal artificial general in-
telligence. Here, we generalize the KL-KSA model to a quantum knowledge seeking
agent (QKSA), using a density matrix formalism. Thus, this provides a general reinforce-
ment learning perspective to the scientific modeling of quantum mechanics.

This chapter is based on the following:
• Sarkar, A., Al-Ars, Z., Gandhi, H., & Bertels, K. (2021). QKSA: Quantum Knowledge Seeking Agent

– resource-optimized reinforcement learning using quantum process tomography. arXiv preprint
arXiv:2112.03643.

• Sarkar, A., Al-Ars, Z., & Bertels, K. (2020). Quines are the Fittest Programs - Nesting Algorithmic
Probability Converges to Constructors. Preprints 2020, 2020100584.
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4.1. USE CASE MOTIVATION
Artificial general intelligence (AGI) is often referred to as ‘the last invention humanity
would need’. It aims to build a system that can perform general tasks across diverse dis-
ciplines on par with (or superior to) human abilities. While AGI was the original motiva-
tion within the field of artificial intelligence (AI), even today, AGI research is fragmented
across approaches. Instead, artificial narrow intelligence (ANI) has had massive impact
and success in the past decade, owing to the availability of computing power and novel
neural network based learning models. Motivated by these successes, research on AGI is
currently gaining traction.

The research focus of this dissertation, i.e., quantum computation (QC), and AGI
have two important touch-points. QC’s compute power might allow tractable general
learning models. On the other hand, since AGI models should also be able to accom-
plish tasks that human scientists can perform, it should be capable of understanding
and manipulating quantum information as well. In the previous chapter, we developed
approaches to enable the former. In this chapter, we will focus on the latter aspect.

The application of automated scientific modeling is emphasized in this chapter. The-
oretically rigorous AGI models based on universal computing best suit this application.
Thus, we study these models and propose a generalization that takes into account quan-
tum information. Our model, the quantum knowledge seeking agent (QKSA), also pro-
vides two conceptual improvements besides the quantum generalization. Firstly, it takes
into account computational resource-bounded algorithmic complexity for a small sub-
set of provided strategies. This allows our AGI model to be practically implemented. Sec-
ondly, the utility function of the reinforcement learning based QKSA is embedded within
a self-replicating evolutionary code. This allows open-ended modeling over dynamically
changing environments and computational resource trade-offs. While the primary con-
tribution of this research is the QKSA formalization, a sufficiently large instantiation of
this model can be applied for optimizing quantum computing algorithms.

4.2. ARTIFICIAL GENERAL INTELLIGENCE
The theoretical framework of intelligence helps us understand the capabilities and lim-
itations of natural and artificial intelligence. Computational learning is being increas-
ingly realized in diverse disciplines. This fascinating growth can, however only be sus-
tained by achieving the following three crucial characteristics: (i) scalability - of com-
putational resources allows applying the system to complex situations; (ii) explainability
- focuses on human understanding of the decision from the learned solution; and, (iii)
generality - involves using a single framework to address multiple scenarios. Despite the
immense success of machine learning approaches, data-driven black-box models cur-
rently struggle to address these three aspects in tandem. In this research, we define a
framework that addresses the requirements of these aspects simultaneously.

The holy grail of the field of automation is artificial general intelligence (AGI). While
this was the eventual goal of even the founders of artificial intelligence, AGI has contin-
ually eluded computer scientists as a moving target. Encouraged by the recent achieve-
ments of intelligent systems, research on AGI is being revived and pursued from vari-
ous directions [163], like, evolutionary approaches, neural networks, and symbolic logic.
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The most theoretically advanced among these is universal artificial general intelligence
(UAGI) [121]. It is a descriptive theory that is useful for studying super-intelligent AI
without building one. The agent-environment paradigm of model-based reinforcement
learning (RL) is best suited to mimic the interactive learning behavior of artificial and
biological intelligence. Lately, the surge of interest in adaptive and autonomous de-
vices has increased the prominence of RL methods beyond robotics and AI communi-
ties. UAGI based RL agents are concisely referred to as universal reinforcement learning
(URL) agents. In this research, we examine policies of modeling the dynamics of an un-
known environment by a URL agent.

URL agents have been instrumental in proving asymptotic optimal behavior in
partially observable environments by merging theoretical concepts of decision the-
ory, the notion of universal automata and algorithmic information theory (AIT). How-
ever, the dependence on AIT makes these agents generally uncomputable. While
resource-bounded variants have been proposed, these models still remain intractable
for real world applications. Moreover, the resource bounds introduce arbitrary hyper-
parameters. To address this issue, we propose to use the idea of embedding RL agents
within an evolutionary framework called EVO-RL [164] to guide the hyper-parameter
tuning for a specific application scenario. In this work, we propose for the first time
the idea of a resource-bounded EVO-URL. This is prompted by the suggestion of a
UAGI system to eventually play the role of an autonomous scientist by recursive self-
improvement (RSI) [165]. The RSI characteristics are ensured by embedding the agent’s
code within a mutating quine.

In defining AGI, the choice of a general environment is as crucial as that of a general
learning strategy. Learning about a physical system by information exchange in its most
general form should include classical, quantum, and relativistic scenarios. In this work,
we address the first two cases by defining the environment as an unknown quantum
process. The proposed agent uses quantum process tomography (QPT) as the general
algorithm to learn and model the environment.

The major limitation of UAGI is the exponential scaling of the space of programs,
which limits its applicability to very simple cases. To circumvent this, the agent poli-
cies in QKSA are chosen from a predefined pool of QPT strategies. This makes the agent
policy computationally tractable as well as explainable, allowing a prescriptive theory
of UAGI. The scalability is bounded by the exponential overhead of classical simula-
tion. This computation cost can be considerably frugal for pragmatic approximation
thresholds of classical shadows [166, 167] of quantum information. The proposed Quan-
tum Knowledge Seeking Agent (QKSA), is an AGI framework based on resource-bounded
EVO-URL. It models classical and quantum dynamics by merging ideas from AIT, quan-
tum information, constructor theory, and genetic programming. Following the artificial
life (or, animat) path to intelligence, a population of classical agents undergoes open-
ended evolution (OEE) to explore pareto-optimal ways of modeling the perceptions from
a quantum environment.

Operational effective theories of quantum mechanics have already been recon-
structed based on classical information from measurements. A recent proposal [162]
based on Solomonoff induction with the only assumption of computability from algo-
rithmic information theory has been used to reconstruct predictive strategies for non-
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relativistic classical and quantum environments. This work is inspired by the ‘law with-
out law’ idea from digital physics. Using QKSA, we extend this to allow the agents to de-
velop strategies to choose the input states and measurement basis based on the ‘partic-
ipatory observer’ notion. To complement this free choice of the agent, the learning goal
is set to reward the predictive capability of environmental interaction while optimizing
algorithmic and computational resources. QKSA does not assume quantum computa-
tional capability for the agent in line with the conventional qualia of human intelligence.

4.2.1. QUANTUM ARTIFICIAL INTELLIGENCE

Quantum artificial intelligence (QAI) is an umbrella term exploring the synergy between
these two disciplines. It broadly entails either (i) using principles of quantum informa-
tion and computation within artificial intelligence models or (ii) using artificial intel-
ligence for processing quantum information, thereby advancing research in quantum
technologies. In our past work [168], we have proposed general approaches and appli-
cations for the former, while in this research, we will focus on the latter case.

Quantum machine learning (QML) is a data-driven sub-field of QAI with a similar
bidirectional synergy. Owing to the immense success of classical machine learning (ML),
QML has been growing in popularity in recent years. In one direction, QML generalizes
classical models like neural networks, clustering, regression, optimization, etc., to quan-
tum information. These quantum algorithms running on quantum computers strive for
a benefit in terms of runtime, trainability, solution quality, or memory space with respect
to a classical ML approach. In the other direction, ML techniques are employed for op-
timizing and controlling processes in the development of quantum computers. These
include control of the quantum system, routing and mapping of qubits, quantum error
correction, etc.

Here we note five specific QML solutions which are closely related to QKSA. [169]
uses restricted Boltzmann machines for learning quantum states and processes. The
classical optimizer in quantum variational approaches has also been implemented as
a reinforcement learner [170–173]. Variational quantum algorithms for reinforcement
learning using evolutionary optimization [174] have also recently been proposed. These
three implementations are based on data-driven neural networks. [175] implements a
computer algorithm, Melvin, which finds new experimental implementations for the
creation and manipulation of complex quantum states. However, the framework is not
general for quantum information and is currently designed for optimizing experiments
in quantum optics. Projective simulation (PS) [176–178] is a quantum reinforcement
learning model that is the most similar in aim to QKSA. PS is a bio-inspired RL frame-
work that allows the agent, based on previous experience, to project itself onto poten-
tial future situations using a stochastic network of clips called episodic and composi-
tional memory. It aims to establish a general framework that connects embodied agent
research with fundamental notions of physics. Despite the similarities with these ap-
proaches, these are not based on a universal computing model. They are either data-
driven heuristics making them not easily explainable or applied to a specific context and
is hard to generalize. Thus, they do not meet the definition of an AGI agent in the URL
setting that we study in this research.

The proposed model of QKSA studies quantum information and computation via the
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lens of algorithmic information theory (AIT) [111] using reinforcement learning. QKSA
is a generalization of existing classical URL models and thus allows evaluating the com-
putational trade-offs of agency in the formalism of AIT. Recently, it was shown that it is
possible to formulate any problem in AI as reinforcement learning [179]. Thus, our ap-
proach is inherently general for other QAI learning tasks. The QKSA framework consists
of the classical agent, which performs the learning activity and the quantum environ-
ment, which defines the learning target. In this section, we first discuss the concepts
used in defining a general agent and, thereafter, the concepts used in defining a general
environment.

4.2.2. CLASSICAL AGENT

The design of the classical agent is based on three otherwise independent concepts from
computer science. At the core is a generalization of a knowledge seeking agent. The
hyper-parameters that define the resource constraints of the KSA are encoded as a gene.
A population of agents uses genetic programming (GP) to evolve by mutation, thereby
tuning these parameters. The KSA and GP are encapsulated within a self-replicating
quine that allows recursive self-improvement. The background for these three character-
istics of the proposed learning agent: knowledge seeking agents, genetic programming,
and self-replicating programs, is explained in this section.

KNOWLEDGE SEEKING AGENTS FOR UNIVERSAL REINFORCEMENT LEARNING

Solomonoff’s theory of universal inductive inference forms the theoretical basis of UAGI.
It formalizes the two abductive heuristics that are used in scientific modeling, (i) Occam’s
razor or the principle of parsimony - i.e., when presented with competing hypotheses
about the same prediction, select the model with the fewest assumptions, and (ii) Epi-
curus’ principle of multiple explanations - i.e., retain all theories that are consistent with
the observed data. In this theory, competing predictions are proportionally weighted by
the size of the hypothesis that generates the prediction. This weight is called the algo-
rithmic probability (AP). To estimate the hypothesis size (or algorithmic information),
the environment being modeled is assumed to be computable by a universal Turing
machine (UTM). The algorithmic complexity (AC) thereby defines the hypothesis size.
While the exact values of AP and AC are uncomputable due to the halting problem, up-
per bounds can be estimated using techniques like the block decomposition method
(BDM) [77]. The invariance theorem allows choosing any universal automata or lan-
guage for the estimation. This adds a constant overhead based on the cross-compiler
program length between the selected machine and the UTM.

UAGI is formulated in a general reinforcement learning (GRL) setting where the agent
and environment interact in turns. At every time step, the agent supplies the environ-
ment with an action. The environment then performs some computation and returns
a percept to the agent, and the procedure repeats. The environment is modeled as a
partially observable Markov decision process. The agent cannot observe the underlying
Markovian state directly but receives (incomplete and noisy) percepts through its sen-
sors and thereby must learn and make decisions under uncertainty in order to perform
well. The canonical model of UAGI is the AIXI model [121]. It is the active generalization
of Solomonoff induction using Bellman’s optimality equation.
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Knowledge Seeking Agents [180] generalize the extrinsic reward function in AIXI to
a utility function defined as information gain of the model. Thus, this collapses the
exploration-exploitation trade-off to simply exploration, allowing agents to explore the
environment in a principled approach. The goal of these agents is to entirely explore
their world in an optimal way and form a model, and get reward for reducing the entropy
(uncertainty) in its model from the two components: uncertainty in the agent’s beliefs
and environmental noise. A particularly interesting case is the KL-KSA [181], which is ro-
bust to stochastic noise (inherent in quantum dynamics) as the utility function is given
as the Kullback-Leibler divergence or relative entropy.

Besides, since UAGI models are only asymptotically computable, it is not a pragmatic
algorithmic solution to general RL and must be simplified in any implementation. In
principle, there are an infinite number of programs that can be candidate models of the
environment. Also, while evaluating, the programs can enter infinite loops. Thus, to
circumvent these two issues, a modified (time and length bounded AIXI) agent called
AIXI-tl [182] limits the length of the programs considered for modeling as well as as-
signs a timeout for computing the action. These resource considerations can similarly
be translated to the KL-KSA case.

GENETIC PROGRAMMING FOR RESOURCE OPTIMIZATION

Complementary to the UAGI approach, evolutionary computation uses a different strat-
egy based on biologically inspired models that evolve from a set of simple rules. It em-
ploys a population-based trial and error problem-solving technique for meta-heuristic
or stochastic optimization. An initial set of candidate solutions is generated and iter-
atively updated. Each new generation is produced by selecting more desired solutions
based on a fitness function and introducing small random mutations. The population
mimics the behavior or natural selection and gradually evolves to increase in fitness. Dif-
ferent variants like evolutionary strategies, genetic algorithms, evolutionary program-
ming, and genetic programming were developed to suit specific families of problems and
data structures. There are other metaheuristic optimization algorithms that are also cat-
egorized as evolutionary computation, like agent-based modeling, artificial life, neuro-
evolution, swarm intelligence, memetic algorithms, etc.

Genetic programming [183] is a heuristic search technique of evolving programs,
starting from a population of (usually) random programs, for a particular task. Com-
puter programs in GP are traditionally represented in memory as tree structures (as used
in functional programming languages) which can be easily evaluated in a recursive man-
ner. The fittest programs are selected for reproduction (crossover) and mutation accord-
ing to a predefined fitness measure. Crossover involves swapping random parts of se-
lected pairs (parents) to produce new and different offspring, while mutation involves
the substitution of some random part of a program with some other random part of a
program. GP has been successfully used for automatic programming, hyper-parameter
optimization, machine learning, and automatic problem-solving engines. It is especially
useful in domains where the exact form of the solution is not known in advance, or an
approximate solution is acceptable.
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QUINES FOR RECURSIVE SELF-IMPROVEMENT

The third characteristic that is crucial for the QKSA model is artificial life (alife). Alife
examines systems related to natural life, its processes, and its evolution through the use
of simulations with (soft) computer algorithms, (hard) robotics, and (wet) biochemistry
models. The field of soft-alife was mainly developed using cellular automata [184], while
neuro-evolution is another popular technique in use today. An idea foundational to alife
is of a universal constructor. Universal constructor is a self-replicating automata devel-
oped to study abstract machines which are complex enough such that they could grow
or evolve like biological organisms. The simplest such machine, when executed, should
at least replicate itself. Additionally, the machine might have an overall operating system
and extra functions as payloads. The payload can be very complex, like a learning agent
or an instance of an evolving neural network. A quine is a program that takes no input
and produces a copy of its own source code (and optionally other useful results) as its
output. Thus, it is akin to the software embodiment of constructors. In principle, any
program can be written as a quine, where it (a) replicates its source code, (b) executes an
orthogonal payload that serves the same purpose as the original non-quine version. In
§ 4.5, we present a formal reasoning in support of modeling QKSA as a quine (a special
subset of all programs possible on universal automata like Turing machine).

In summary, the crucial elements that will be used for defining QKSA are as follows.
Firstly, the KSA types of URL are used. These reinforcement learning agents model the
environment as programs on a universal automata. The programs output predictions
of subsequent environmental percept when provided with the sequence of past actions
and percepts. The current action is chosen based on the program which has the highest
weight determined by (i) having a minimal length (and optionally, by other computa-
tional resources constraints like runtime) and (ii) having a high total expected informa-
tion gain over the time horizon by the sequence of the chosen optimal actions and corre-
sponding predicted perceptions. Secondly, GP is used for hyper-parameter tuning. The
resource constraints are free hyper-parameters that evolve using mutation between gen-
erations of QKSAs. Thirdly, this EVO-URL framework is encapsulated within the payload
of a quine. This consideration is independent of the quantization, and the reasoning can
be extended to other models of AGI. It allows the QKSA to be a recursive self-improving
agent.

4.2.3. QUANTUM ENVIRONMENT
The definition of a general environment and learning strategy is crucial for AGI research.
In this section we present a brief overview of quantum information and computation,
which generalizes classical and probabilistic information processing. We present quan-
tum process and tomography as the corresponding general environment and learning
strategy that will be used by QKSA.

DENSITY MATRICES

While pure quantum states can be written in terms of ket vectors ∣ψ⟩, it cannot represent
a mixed state, i.e. a statistical ensemble over a set {∣ψ⟩k} of N pure quantum states. Such
states are described as a density matrix ρ, as the sum of the probabilities 0 < pk ≤ 1 and

∑N
k=1 pk = 1, multiplied by the corresponding projection operators onto certain basis
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states. It is defined as ρ =∑N
k=1 pk ∣ψ⟩⟨ψ∣. The bra vector is the adjoint (complex conju-

gate transpose) of the ket vector, i.e. ⟨ψ∣ = ∣ψ⟩†. Though the global phase of a quantum

state is undetectable, i.e. ∣ψ⟩ = e iθ ∣ψ⟩, a density matrix is unique, as the corresponding
global phases of the bra and ket cancel out ρ = ∣ψ⟩⟨ψ∣. The corresponding evolution

postulate by a unitary transformation U is ρ′ = UρU †. A projective measurement of an
observable Mm is given by the expectation value Pr (m) = Tr (Mmρ). The density ma-
trix formalism deals with observable probabilities, whereas ket states deal with complex
probability amplitudes. Statistics of quantum measurements can only estimate the den-
sity matrix instead of the state. Thus, we would use this within the QKSA formalism.

QUANTUM PROCESSES

A quantum process E that transforms a density matrix need not always be unitary. Given
classical processes are often irreversible and include measurements, a quantum gener-
alization includes unitary transforms (symmetry transformations of isolated systems),
probabilistic logic, as well as measurements and transient interactions with an environ-
ment. Thus, quantum processes formalize the time evolution of open quantum systems.
These are quantum dynamical maps, which are linear and completely positive (CT) map
from the set of density matrices to itself. Typically they are non-trace-increasing maps
and trace-preserving (TP) for quantum channels. For a quantum system with an input
state ρi n of dimension n×n and an output state ρout = E(ρi n) of dimension m×m, we
can view this system E as a linear superoperator mapping between the space of Hermi-
tian matrices E ∶ Mn×n → Mm×m . While ρ is an order 2 tensor (i.e. operator), acting

on Hilbert spaces of dimension D = 2n , E is an order 4 tensor specified by D4 −D2 pa-
rameters. Besides the superoperator, there are other equivalent [185] representations
of quantum processes like Choi-matrix Λ, Kraus operators, Stinespring, Pauli basis Chi-
matrix χ, Pauli Transfer Matrix, Lindbladian, etc.

For instance, the Choi matrix ρC hoi is the density matrix obtained after putting half
of the maximally entangled state ∣Ω⟩ through the channel E , while doing nothing on the
other half.

Λ=∑
i , j

1

2n ∣i⟩⟨ j ∣⊗E(∣i⟩⟨ j ∣)

ρC hoi =Λ(∣Ω⟩⟨Ω∣)

Thus it requires 2n number of qubits, but since the input state is fixed, this effectively
involves performing a quantum state tomography (QST) on this larger space instead of
QPT, reducing the overall number of trials. The evolution of a density matrix with respect
to the Choi-matrix is given by:

ρout = E(ρi n)= Tr1((ρT
i n ⊗ I)ρchoi ))

where Tr1 is the partial trace over subsystem 1. As a result of the Choi-Jamiolkowski
isomorphism, the Choi matrix Λ characterizes the process E completely. This forms the
basis of the channel-state duality between the space of CP maps and the space of density
operators.
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QUANTUM TOMOGRAPHY

Characterization of quantum dynamical systems is a fundamental problem in quan-
tum information science. Several procedures that have been developed that achieve this
goal are called quantum process tomography (QPT). Some examples of QPT techniques
are: standard quantum process tomography [186], entanglement-assisted quantum pro-
cess tomography (EAQPT), direct characterization of quantum dynamics, compressed-
sensing quantum process tomography, permutation-invariant tomography, and self-
guided quantum process tomography [187] Each QPT technique has a different exper-
imental setup and computational resource requirements. An exhaustive survey of all
techniques considering an inclusive figure-of-merit with respect to resources and their
trade-offs has not been undertaken previously. [188] provides a good overview of some of
the most used techniques and comparison in terms of the resources of the Hilbert space,
input state complexity, required measurement, and required interactions. In the proof-
of-concept implementation of QKSA, we will use EAQPT for the experimental results.
EAQPT is based on the Choi-Jamiolkowski isomorphism, as it uses QST to reconstruct
the Choi density matrix of the quantum process.

A more recent development towards the limits of quantum tomography is based on
the classical shadow of states [189, 190] and processes [166, 167]. Shadow tomography
aims to extract essential information about a state/process with only polynomially many
measurements. These form a good set of candidate QPT algorithms that can be used to
explore the resource trade-offs for limiting cases.

As a summary, within the QKSA formalism, QPT reconstruction algorithms form the
space of programs that are evaluated by the agent as candidates for the modeling of the
environment. Given computational resource limitations, QKSA can automatically dis-
cover the optimal strategy in the available pool of QPT algorithms. In canonical UAGI
formalism, the pool of programs is drawn randomly from a prefix-code for a universal
automata. However, the space of programs grows exponentially, limiting their applica-
bility. We restrict this space to a constant number of predefined algorithms. Intuitively, a
QPT algorithm will perform better in predicting a quantum environment than a random
program. Thus, it allows us to apply the tools of AIT in a practical setting where available
expert knowledge can be embedded within the agent, making it tractable.

4.3. QUANTUM KNOWLEDGE SEEKING AGENT
QKSA extends the universal reinforcement learning (URL) agent models of artificial gen-
eral intelligence to quantum environments. Despite its importance, few quantum rein-
forcement learning models exist in contrast to the current thrust in quantum machine
learning. QKSA is the first proposal for a framework that resembles the classical URL
models. Similar to how AIXI-tl is a resource-bounded active version of Solomonoff uni-
versal induction, QKSA is a resource-bounded participatory observer framework for the
recently proposed algorithmic information-based reconstruction of quantum mechan-
ics. The utility function of a classical exploratory stochastic Knowledge Seeking Agent,
KL-KSA, is generalized to distance measures from quantum information theory on den-
sity matrices. Quantum process tomography (QPT) algorithms form the tractable subset
of programs for modeling environmental dynamics. The optimal QPT policy is selected
based on a mutable cost function based on algorithmic complexity as well as compu-
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tational resource complexity. Instead of Turing machines, we estimate the cost metrics
in a high-level language to allow realistic experimentation. The entire agent design is
encapsulated in a self-replicating quine which mutates the cost function based on the
predictive value of the optimal policy choosing scheme. Thus, multiple agents with
pareto-optimal QPT policies evolve using genetic programming, mimicking the devel-
opment of physical theories, each with different resource trade-offs. A proof-of-concept
is implemented and available as an open-sourced software. Besides its theoretical im-
pact, QKSA can be applied for simulating and studying aspects of quantum information
theory like control automation, multiple observers, course-graining, distance measures,
resource complexity trade-offs, etc. Specifically, we demonstrate that it can be used to
accelerate quantum variational algorithms, which include tomographic reconstruction
as its integral subroutine.

In this section, the features and the formal framework of the QKSA is presented by
defining the parameters within an implementation that captures the agent scheme dis-
cussed so far. Thereafter, an execution procedure and the framework are outlined.

4.3.1. CHARACTERISTIC FEATURES OF QKSA
The main distinguishing features of QKSA with respect to other approaches are pre-
sented in this section.

CLASSICAL OBSERVERS IN A QUANTUM WORLD

Similar to UAGI, in digital physics [191], the universe is modeled as a vast (quantum)
computation device or as the output of a deterministic or probabilistic computer pro-
gram. Information is increasingly put into the central stage in physics, especially in
reconstructing theories like quantum mechanics from general principles [192–194] as
well as its physical nature [195]. John Archibald Wheeler [196] popularized this idea as
‘it from bit’. This meant that every item of the physical world has at its bottom an im-
material source and explanations of what we call reality arise from the posing of yes-no
questions and the registering of equipment-evoked responses. Quantum information
theory as a generalization of Boolean logic is used by Seth Lloyd [197] to extend this
principle, with the evolution of the universe as an ongoing quantum computation, with
the fundamental laws of physics constituting the program. Wheeler asked the question
of the possibility of the existence of an ultimate law of physics, from which everything
that is knowable about the material world can be deduced. This idea has been coined
as ‘law without law’ [198]. If such a principle does not exist, it would mean that certain
aspects of the natural world are fundamentally inaccessible to science. Instead, the ex-
istence of such a unified law would have to explain its own origin and preferential bias.
So, paradoxically, the ultimate principle of physics cannot be a ‘law’ (of physics), hence
the expression. Thus epistemological assumptions of how physical theories are formed
and verified become imperative, removing physics as the science of ‘what is’ to that of
‘what we observe’.

The recent work from Markus Müller [162] is central to the ideas developed in this
research. It claims that given a complete description of the current observer state x, it
is possible to predict what state y the observer will subsequently evolve to using P(y∣x)
based on Solomonoff’s algorithmic probability, universal prior, and universal induction.
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This currently encompasses classical (non-relativistic) and quantum physics and can be
used to reconstruct an operational theory based on this assumption of the world being
computable and there are no super-Turing physical processes. Note this is entirely an
epistemic derivation of the laws of physics based on information axioms and focuses on
using the theories to predict the results of future interactions instead of assuming any
ontological interpretations of the model.

In this research, we extend the research from [162] to an implementation of a frame-
work to allow experimentation. While doing so, we narrow down the specifics of the orig-
inal ideas. The primary objective of AGI models like QKSA is to mimic human behavior
to form an explainable hypothesis about the environment. Semantic explanation based
on human qualia is represented in terms of classical information. This does not restrict
representing quantum information, as using the standard formalism, we can represent
quantum information using a worst-case exponential amount of real-valued classical in-
formation. Thus, the QKSA specifically models classical observers in a quantum world
and still recover and learn features that can help us form hypothesis and predict the en-
vironmental dynamics.

QUANTUM PROCESS TOMOGRAPHY AS A GENERAL MODELING TECHNIQUE

Extending Müller’s idea to the Church-Turing-Deutsch thesis, the program (that the
Solomonoff induction uses) is basically an efficient quantum computing simulator,
given a classical computing substrate. This can also be a programmable quantum sim-
ulator [199] given a quantum computing substrate. A model of the environment (uni-
verse) is created from the agent’s (observer’s) perspective, representative of the black-
box input-output behavior of the environment. Given knowledge of the environmental
dynamics, it is possible to create the corresponding classical model (e.g., a Grover search
simulator). However, for unknown environments, the general technique is to perform
process tomography; thus, that is the general modeling algorithm we would focus on.
For the rest of this article, we consider the general case of quantum environments. A
classical environment can be efficiently mapped to a corresponding quantum environ-
ment.

For the general quantum case, what kind of algorithms would execute for predicting
the next observer state using Solomonoff universal induction? Given that it is possible to
simulate quantum physics on a classical simulator (albeit by incurring exponential re-
source cost), the good predictor will be a quantum process tomographic reconstruction
based on the previous observer states. Thus, an agent trying to derive the information-
based operational laws of quantum physics would converge to a QPT algorithm as the
best predictor for subsequent environmental percepts. And thus, to define a tractable
formalism, we can consider the subset of all QPT algorithms instead of the entire space
of programs for the universal automata.

PARTICIPATORY OBSERVER AS A REINFORCEMENT LEARNING AGENT

Consider the phase before the process matrix has been reconstructed to a certain degree
of precision (i.e., before an informationally complete history of observations is regis-
tered). In this phase, the participatory observer can choose an action like a UAGI agent
based on the process matrix. The subsequent perception will be based on both the cho-
sen action and the environment. Thus, this phase is not fully modeled by Solomonoff’s
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induction. In the reinforcement learning setting, the next observer state is based on
both the current observer state (that defines the memory of previous observations and
the current action based on the QPT scheme) as well as the part of the environmental
dynamics that has not yet been learned.

Given a complete description of the environmental dynamics already learned and
encoded within the observer state x, it is still not possible for the agent to perfectly pre-
dict individual measurements. However, the statistical distribution of measurement re-
sults in any chosen basis can be predicted by the agent. Thus instead of predicting in-
dividual perceptions, a quantum UAGI agent can only predict the expected probability
of a measurement. This is inherently dependent on the choice of a measurement basis
from the agent. This is called the participatory observer principle, which states - physi-
cal things are information-theoretic in origin, and this is a participatory universe where
the interactions define the reality we perceive. QKSA, in effect, learns efficient strategies
for observer participancy for modeling quantum environment.

OPEN-ENDED EVOLUTION OF PARETO-OPTIMAL COMPUTATIONAL RESOURCES

The algorithmic probability of the program is used as a weight for the chosen action
and the reward in UAGI. However, this also makes such models impractical due to the
uncomputability of mathematical objects in algorithmic information like algorithmic
probability and algorithmic complexity. Thus, pragmatic implementation of these mod-
els like AIXI-tl, MC-AIXI(FAC-CTW) and UCAI [200] bounds the program length and run-
time per step to explore a subspace of promising hypotheses that models the interactive
behavior registered till the current time step. Three issues arise with this approach:

1. The bounds introduce heuristic hyper-parameters that depend on the available
computational resources. Thus it becomes difficult to select an appropriate value
to apply the model for a given use-case.

2. The bounds sharply cut off models beyond the specification while keeping the
weight for the models within the specification unaffected. So a model that per-
forms well but just lies beyond the defined bound may be unreachable.

3. It is possible to trade off these resource bounds with other computational re-
sources, like additional memory.

Using the QKSA platform, it is possible to investigate these issues. In the framework
we consider five computational resources together called the least metric, as an acronym
for (program/hypothesis) length, (compute) energy, approximation, (work memory)
space and (run) time. Similar algorithmic observables have been suggested in [201]. We
provide estimation techniques of the least metric for each based on state-of-the-art algo-
rithmic information research and general practices in computer engineering. The esti-
mation technique, however can easily be redefined by the user. These estimated metrics
are used in a two-fold way. Firstly, it is used to qualify the hypothesis for consideration
based on an upper bound for each of the five metrics individually. This is dictated by the
available computational resource and is similar to the resource-bounded UAGI models.
These bounds can be included in the list of evolving hyper-parameters to allow QKSA to
mutate and adjust autonomously to the available computational resource. Thereafter,
the metrics for a valid hypothesis are fed to a cost function (a genetic program) that out-
puts a single positive real value which is used as the weight for the hypothesis in the



4.3. QUANTUM KNOWLEDGE SEEKING AGENT

4

115

semi-measure instead of only the length, as in algorithmic probability. We call this the
‘computational action’ as a parameter to optimize the Lagrangian dynamics within com-
putational space-time.

No unifying cost function exist that can serve as a metric to trade-off bounds on re-
sources (like space, time, approximations). This depends closely on the policy of the
agent. For example, a physicist might choose to use simpler Newtonian mechanics in-
stead of complex relativistic mechanics for modeling where the approximations are ac-
ceptable. Thus, instead of a single metric, a pareto-optimal frontier on the least metrics
maps to models and algorithms that can be used to predict the environment dynamics.
Various research has explored this frontier, considering a few of the least metrics. For ex-
ample, Bennett’s logical depth and Schmidhuber’s speed prior trades off time-length;
Wolpert’s research deals with the thermodynamic complexity of Turing machines; or
look-up tables that trades off time-space.

QKSA holistically explores these trade-off via the GP function. The five estimates of
the least metrics are input to a cost function. The cost function itself is a gene repre-
sented as a program tree with the leaf nodes as the metrics or constants, and the internal
nodes are from a set of basic arithmetic functions (addition, multiplication, square root,
logarithm, etc.). Once QKSA learns an environment optimally or completely fails to learn
the environment (i.e., when the learning rate stabilizes), the QKSA self-replicates by in-
voking the quine functionality. The child QKSA has the same source code as the parent,
except for a mutation on the cost function that modifies the weights and structure em-
bedded via the cost function gene. Thus the open-ended evolution of the pareto-optimal
manifold converges on QPT algorithms which fit well with the available computational
resource. The parent QKSA perishes if the prediction of the model fails persistently (i.e.,
when the rate stabilizes as the strategy fails to learn) or continues to correctly predict
environmental interaction and can be inspected to obtain the cost function.

UTILITY FUNCTION AS QUANTUM COMPLEXITY DISTANCE

The learning process in RL is guided by a reward function assigned by the environment
as part of the perception. While this is trivial to define for game environments, it is dif-
ficult to define for modeling environment dynamics without introducing another third-
party evaluating agent. To circumvent this, we consider the generalization of rewards as
utility computed by knowledge seeking agents, instead of an external input. The utility is
a metric estimated internally by the agent, based on a self-defined distance measure in
the space of percepts. As already discussed, due to the inherent randomness of quantum
measurements, it is not possible to predict individual measurements in an arbitrary ba-
sis even with full knowledge of the system. Thus, the metric is evaluated on the stochastic
distribution of percepts. The process matrix reconstructed by the QPT algorithm from
the already known history of action and corresponding percept is called ρ

t
C hoi . An up-

date of this matrix ρ
′
C hoi . is predicted based on the current chosen action at and the

corresponding prediction of the percept e ′t . The actual update ρ
t+1
C hoi is however based

on the actual perception from the environment et . The distance measure between these
two updates is the utility. Once the process matrix is fully learned, this distance will con-
verge. Thus, QKSA is a generalization of KL-KSA for density matrices.

Unlike classical probability distribution, there are many measures of quantum dis-
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tances, each with its own application advantage. The QKSA framework allows the user
to select a distance metric as part of the experimental setup. The current version pro-
vides the following distance metrics, Hamming distance, KL divergence, trace distance,
Hilbert-Schmidt norm, and Bures distance (fidelity). Users can also define their own cus-
tom distance measure. A future extension would provide diamond distance, Hellinger
distance, quantum Kolmogorov complexity, quantum relative entropy, Rényi divergence,
Bhattacharyya distance, and quantum complexity action [202].

4.3.2. DEFINITIONS OF PARAMETERS
The standard formalism of reinforcement learning includes:

• tp is the number of time steps in the past that is considered by the agent at each
point in time. In AIXI, this considers all steps since the inception of the agent. For
pragmatic implementations and in QKSA, it is typically a sliding window of a few
steps in the recent past based on the available total memory of the agent.

• t f ∈ {1,∞} is the number of time steps that the agent predicts in the future or the
remaining duration the agent is run. It is also called the horizon. In the limiting
case, the number of steps for asymptotic convergence to the optimal strategy is in-
finity. For QKSA, we will consider only 1 step in the future, but the implementation
is generic and can be extended to any number of steps.

• at ∈A is the chosen action from the action space at time step t .
• et ∈ E is the perception recorded by the agent at time step t from the percept

space.
• e ′t ∈ E is the prediction of the perception et made at time step t −1.

• λ
e ′t
∈ {0, 1} is the probability of the prediction e ′t made at time step t −1.

• ht is the sequence of the history of actions and perceptions up to time step t − 1.
It implemented as a ring buffer of ht = at−tp

et−tp
. . . at−1et−1

• ρt is the hypothesis or model of the environment generated by processing the his-
tory ht by a candidate QPT reconstruction algorithm. It is typically a Choi matrix
of the learned environmental quantum process.

• pqpt is the QPT program that is executed on the defined computational model C .
It is capable of, (i) generating a tomographic reconstruction ρt of the environment

given the history ht , (ii) provide an expectation value of a prediction e ′t given a ρt

and at .
The least metric defines the bounds on the hypothesis space and the relative weight

assigned to each considered hypothesis. It takes into account the 5 cost metrics of pro-
gram length, thermodynamic cost, approximation, space/memory, and run-time. The
hypothesis-space of QPT is bounded by the 5 leastmax hyper-parameters. All trial hy-
potheses must lie within the bounds of all 5 parameters. Once a trail hypothesis is ad-
mitted based on the leastmax bounds, the estimate of the 5 cost parameters leastest are
combined to form a single indicative metric of the fitness of the hypothesis. Each pa-
rameter has an associated weight or scaling factor wleast. The cost function defines the
equation to combine the leastest and wleast, and is subject to evolution.

• d refers to the data on which the least metric is evaluated. It consists of the history
ht and the QPT algorithm p. The cross-compiler description length between the
chosen automata C (a Python compiler) and the canonical UTM is assumed to be
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constant and ignored for relative evaluation.
• lmax is the maximum length of p that is considered.
• emax is the maximum energy cost of executing p for the functions discussed above.
• amax is the maximum approximation threshold used by p for the functions.
• smax is the maximum space or working memory that p can use during execution.

It typically includes the ht as well.
• tmax is the maximum execution time for p before it generates the output for the

functions.
• lest is an estimate of the length of p that is considered, that outputs d . A rough esti-

mate can be arrived at by the bit length of the QPT program. Lossless compression
or BDM [77] can also be used for a more tight estimate.

• eest is an estimate of the energy cost of executing p. Research into this aspect is
scarce, especially for high-level programs. The recent proposal on the thermody-
namic Kolmogorov complexity [203] needs to be explored further for estimating
the energy cost. It can also be externally estimated by the energy consumption of
the computational automata C .

• aest is an estimate of the deviation arising from approximations made by the pro-
gram p.

• sest is an estimate of the space or working memory that p uses during execution.
• test is an estimate of the execution time for p before it generates the output.
• w = {wl , we , wa , ws , wt} is a set of associated weights for each of the least metrics.
• cleast is the cost function that takes in the 5 least metrics and a weight for each

metric and calculates a cost based on the evolving gene.
• mc is the mutation rate of the cost function cl east .
• F is the set of functions allowed in the cost function cleast and typically includes

standard operations like addition, multiplication, exponentiation, logarithm, etc.
• cest is the estimated cost based on the estimated least metrics and the cost func-

tion. This is the generalization of the program length as used in UAGI.

The parameters for the quine define the learning progress and when the agent self-
replicates. Replication is triggered based on the fitness of the hypothesis based on the
predictive capacity over time.

• ∆ is a distance measure (e.g., Hamming distance, trace distance) defined between
process matrices ρ.

• u′
t is the predicted utility between the predicted update to the process and the

current learned process. It is the relative distance using u′
t =∆(ρ′t+1,ρt).

• γt is the discount that is proportional to the time span t between the predicted
reward/utility step and the current time step. It depends on the dynamic and
episodic nature of the environment. For time steps further in the future, predic-
tion penalties can be scaled down. For episodic environments, the value is 1 for
the next time step and 0 otherwise.

• Rt = ∑e ′t∈E λt ⋅ ⋅ ⋅∑e ′m∈E λm ∑m
k=t γk u′

k is the cumulative discounted return at
time step t . Note that since the QPT algorithms chooses predictions probabilis-
tically, the weighted summation over the sequence of predictions needs to be con-
sidered.

• ut is the actual utility between the interaction steps. It is the relative distance ut =
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∆(ρt ,ρt−1).

• Kt = u′
t −ut knowledge at time step t .

• KR is the knowledge threshold for reproduction. If Kt < KR , the agent self-
replicates with mutation in its hyper-parameters.

• KD is the knowledge threshold for death. If Kt < KD the agent halts (dies).

4.3.3. AGENT FORMALISM
The main advantage of using universal reinforcement learning is that it allows us to de-
fine the learning model mathematically. In this section, we start from the formalism of
the classical KL-KSA and elucidate the changes that lead to the QKSA formalism.

For simplicity, the action and percept spaces are assumed to be stationary (i.e., time-
independent and fixed by the environment) and countable (although most results gen-
eralize to continuous spaces). The agent is formally identified by its policy π, which
in general is a distribution over actions for the current step, conditioned over the his-
tory, denoted by π(at ∣ht). The environment is modeled as a distribution over per-
cepts, ν(et ∣ht at). A rational agent based on Von Neumann-Morgenstern utility theo-
rem strives to maximize the expected return, called the value. The value achieved by a
policy in an environment given a history is defined as: V π

ν (ht) = Eπν[Rt ∣ht]. This can be
expressed recursively, as the Bellman optimality equation,

V
π
ν (ht)= ∑

at∈A
π(at ∣ht) ∑

et∈E
ν(et ∣ht at)[γt rt +γt+1V

π
ν (ht+1)]

AIXI-based models use Solomonoff’s universal prior for mixing over the model class M
of all computable probability measures using the Kolmogorov complexity of the envi-

ronment, wν = 2−l(ν). The environment is usually modeled as programs on a UTM,
denoted as U, typically a monotone TM with 3 tapes, for input (perception), working,
and output (action). Thus, ξ(et ∣ht at) = ∑ν∈M wνν(et ∣ht at) and the optimal policy

maximizes the ξ-expected return, i.e. π
KL-KSA

= arg maxπ wνV π
ξ . Distributing the max

and ∑ in the recursive equation yields the canonical expectimax equation as,

at = arg lim
m→∞

max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

m

∑
k=t

γk uk ∑
q∶U(q ;a<k)=e<k∗

2
−l(q)

In the case of KL-KSA, the reward for AIXI is generalized to the utility given by

u(et ∣ae<t at)= Ent(wν∣ae<t+1)−Ent(wν∣ae<t at)

The first change is to restrict the search space of programs p to quantum process to-
mography algorithms, denoted as pqpt . Strictly there is no need to specialize the search
to this subspace of programs. Searching over the full space of programs would lead to
higher rewards for QPT algorithms owing to their predictive capability and thereby se-
lect actions based on this subspace. However, since we are interested in a pragmatic im-
plementation, searching the full space of programs is intractable even for very modest
cases. It is important that the QPT algorithm reconstructs and outputs a process repre-
sentation ρt instead of the prediction of the next perception. This is imperative due to
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the stochastic nature of individual quantum measurements and the calculation of the
utility.

The second change is to replace the length estimate of the 2−l(p) factor from the algo-
rithmic probability with the estimate of the evolving cost function cest . The cost function
is denoted by cleast , i.e. cest = cleast(pqpt). Thus, the learning part of the equation is:

a
QK S A
t = arg lim

m→∞
max
at∈A

∑
e ′t∈E

λ
e ′t . . . max

am∈A
∑

e ′m∈E
λ

e ′m
m

∑
k=t

γk u
′
k ∑
pqpt ∶U(pqpt ;hk)=ρk

pqpt ∶U(pqpt ;ρk ;ak ;e ′k)=λ
e′k

2
−cleast (pqpt )

The third change is to define the utility function as a quantum distance measure
on the space of quantum processes ρ defined as the density matrix in the Choi process
matrix representation. A higher predicted utility indicates that the current estimate of
the process will be updated more significantly based on the perception, thus, a potential
knowledge gain for choosing that action. These relationships are shown in Figure 4.1.

u
′
t =∆(ρ′t+1,ρt)=∆(U(pqpt ; ht ; at ; e

′
t),U(pqpt ; ht))

ρℎ0
0 ρℎ𝑡−1𝑎𝑡𝑒𝑡

𝑡ρℎ𝑡−1
𝑡−1

ρ
ℎ𝑡−1𝑎𝑡𝑒𝑡

′
𝑡

ρℰ
∞

Δ

Δ′

Δ∞

predicted
environment

perceived
environment

actual
environment

knowledge
gain

predicted
utility

perceived
utility

Figure 4.1: QKSA knowledge gain.

EPISODIC ENVIRONMENT

While the infinite horizon is used for proving asymptotic optimality, a finite horizon is
required for any pragmatic implementation. Since the QPT environment is episodic,
i.e., the environment is reset after each interaction cycle, a horizon of 1 step captures
the highest possible level of temporal dependency. The simplification of the policy for
1-step horizon, i.e. k = m = t is:

a
QK S A
t = arg max

at∈A
∑

e ′t∈E
λ

e ′t∆(ρ′t+1,ρt) ∑
pqpt ∶U(pqpt ;ht )=ρt

pqpt ∶U(pqpt ;ρt ;at ;e ′t )=λe′t

2
−cleast (pqpt )
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Let us understand this simple case in more depth. At each step, the QKSA algorithm
consists of two phases, learning, and evolution:

• In the learning phase:
1. A pool of QPT algorithms is inspected.
2. Each QPT algorithm is used to reconstruct the unknown environment as a

process matrix based on the history of actions and perceptions.
3. This reconstruction process is used to estimate the resource cost of the QPT

algorithm.
4. The process matrix is then used on all possible actions the agent can take at

this step.
5. For each such action, the process matrix predicts a distribution of percep-

tions. Thus, for each action-prediction pair, the process matrix generates a
probability for the prediction using the QPT algorithm.

6. Each predicted perception would lead to a predicted update for the process
matrix.

7. These predicted process matrices are compared with the current process ma-
trix to generate the predicted utility of the corresponding action-prediction
pair.

8. These predicted utilities are weighted by the probability of that specific pre-
diction that led to the predicted utility.

9. These utilities for a specific action are accumulated as the utility for the ac-
tion for all possible predictions of perceptions.

10. This sum of utility for an action is weighed by the resource cost of the QPT
algorithm used for modeling and prediction.

11. The action that maximizes this weighted value is chosen as the action for the
current step.

• In the evolutionary phase:
1. The utility is used to calculate the return over the number of prediction steps

based on the weights for each prediction used to calculate the utility.
2. The total return is the learning gradient.
3. If this return is below a threshold, the agent reproduces by mutating the cost

function and self-replicating.
4. Alternatively, if the return is above a threshold, the agent dies. There is also

a maximum limit on the number of interaction steps and the number of re-
productions, after which the agent halts.

4.3.4. EXECUTION PROCEDURE

The QKSA framework, as shown in Figure 4.2, consists of 5 major blocks: environment,
a pool of QPT algorithms, LEAST metrics cost estimators, choice of distance measure,
and the QKSA hypervisor. The execution procedure and the interaction between these
blocks are explained in this section.

The environment is defined by the user as a Qiskit quantum circuit. The QKSA
also allows probabilistic mixtures of quantum circuits and partially observable environ-
ments. Currently, only episodic environments are considered. Thus, each cycle of agent
interaction resets the environment based on the focus of QPT. In non-episodic environ-
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Figure 4.2: The QKSA framework.

ments, the Holevo bound restricts the total classical bits of information that can be ex-
tracted, limiting the applicability in model-based reinforcement learning. The environ-
ment is shared between the agents. Each agent can choose to measure only a part of
the shared environment, and thus can be used for studying non-local strategies. The
environment also defines the set of actions A and perceptions E that can be used by the
agent for interaction. This set is defined automatically from the number of qubits used to
define the environment. The user can, however modify and restrict the set based on the
intended purpose, e.g., only Z-basis measurements are required for studying quantum
versions of classical logic like a quantum adder.

The second block consists of a pool of QPT algorithms. Each algorithm is capable
of taking as input the history ht and output the environment model ρt . Any new QPT
strategy can be coded and added to the pool as a black-box algorithm as long as this
criteria is met. Note that initially, the history is an empty sequence. This corresponds to
a maximally mixed density matrix.

Each QPT algorithm can also be evaluated for the LEAST metrics based on the cost
estimators. The cost estimators use both online and offline methods to estimate the
cost. For example, the length and approximation estimate of the QPT algorithm can
be directly inferred from inspecting the program code, while the run-time is estimated
while the optimal action is being evaluated.

The framework also offers a pool of distance metrics ∆ between quantum density
matrices ρ. The goal of QKSA is different from QPT for device characterization as the
environment is unknown. Thus, the distance between the current model and the actual
model cannot be calculated. Instead, the metric measure between the predicted model
update and the actual update is used to infer the learning gradient. From our experi-
ments, we provide a set of metrics that have a monotone behavior and are a distance
measure for quantum processes. However, there are many distance measures, and the
user can choose a specific default measure or let each agent randomly choose one during
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Figure 4.3: The QKSA policy.

the initialization.

The last module is the hypervisor that encapsulates the QKSAs. The seed QKSA con-
stitutes the minimal implementation of the QKSA. This agent is instantiated by the QKSA
hypervisor and added to the active pool of agents. Thereafter, the hypervisor executes
each active agent, either in parallel or by dovetailing. Each agent learns the environment
based on its own policy. When the learning converges, the agents reproduce by mutating
their policy. The new agents are added to the waitlist and are automatically instantiated
by the hypervisor when computational resources are available. Eventually, the agents
completely learn the environment (or the maximum lifetime limit is reached). Then the
agent is terminated. The user can also manually terminate all active agents. Thereafter,
the learning results of each active/terminated agent are displayed for analysis.

In the following, the QKSA policy is explained in further depth. This is depicted
in Figure 4.3. Each QKSA has its own Cost Function, which is its part of the mutable
genome. Other parameters are passed to the QKSA from the hypervisor (for the seed
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QKSA) or the parent via immutable genes in the remaining part of the genome. These
parameters are used to initialize the agent. At this stage, the quantum circuit for each
available QPT algorithm is also created. This might involve additional initialization cir-
cuits for the QPT strategy (e.g., entangling ancilla for EAQPT).

Then for each QPT algorithm, the best action is evaluated based on the correspond-
ing predicted utility. This utility is based on the distance between the current envi-
ronment model and the predicted environment model based on the chosen action and
probabilistic perception. The LEAST cost for the QPT is also evaluated while the recon-
struction is done. After this is done for all QPT algorithms, the weighted (by the cost)
maximum utility is used to pick a QPT strategy.

The action of the corresponding chosen QPT is performed, and the perception is
received from the modified environment of the specific QPT algorithm. This is used to
calculate the actual utility as well as update the current model of the environment and
the history.

The difference between the predicted and the actual utility is the return. This value
is used to determine the learning progress and trigger the reproduction or termination
of the agent.

The learning routine first evaluates the cost of each QPT strategy based on the cost
estimators for choosing the current optimal action. QPT strategies that are beyond the
allowed threshold are filtered out. A weighted selection is made for a specific QPT algo-
rithm based on the cost of the remaining strategies. This defines the actual action to the
environment and the prediction from the chosen QPT algorithm. The actual perception
from the environment is used to update the model and calculate the utility for the cur-
rent prediction based on the distance metric for the agent. The utility over the past steps
is evaluated to assess the return. When the utility falls below a threshold, the return is
used to determine the fitness of the agent. If the agent is fit, it replicates with a mutation
on the cost function, otherwise it halts. In the standard default setup, the only differ-
ence between agents is the cost function. The replication is carried out by invoking the
mutating quine subroutine. The new program file for the child QKSA is automatically in-
stantiated by the hypervisor. The parent quine after reproduction continues predicting
the environment and reproducing. An upper bound on the number of replications is set
after which the agent is archived by the hypervisor.

4.3.5. EXPERIMENTAL RESULTS

A full proof-of-concept of the discussed QKSA framework is implemented on Python
and Qiskit. It is available as an open-sourced software on GitHub at the following link:
https://github.com/Advanced-Research-Centre/QKSA. In this section, we present an
initial experiment that demonstrates the features of QKSA as presented in the previous
sections.

In this experiment, we consider the choice between two QPT strategies, both EAQPT.
QPT-0 has an approximation of 5 decimal places while using 16384 steps of history. QPT-
1 has an approximation of 8 decimal places however uses only 8192 steps. Since they are
the same algorithm, the program length variance is negligible. The time to reconstruct
for QPT-0 is more because of the history (though the coarser approximation reduces it
slightly). Given such a description, it is not immediately clear which QPT would work

https://github.com/Advanced-Research-Centre/QKSA


4

124 4. UNIVERSAL REINFORCEMENT LEARNING IN QUANTUM ENVIRONMENTS

best to reconstruct and model a given quantum environment. It also depends on how
simple/complex the environment is (e.g., if the additional decimal places have useful
information). In such situations, QKSA can be readily applied.
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Figure 4.4: Trace distance EAQPT 1-qubit environment random unitary average of 20 experiments.

We defined a random 1-qubit unitary as the environment. Results of averaging over
20 random circuits are shown in Figure 4.4. The chosen distance measure chosen is trace
distance. We found that Bures distance and Hilbert-Schmidt distance do not perform
well. This is because the distance between the initial complete mixed state and the Choi
matrix for the unitary in EAQPT is close to zero. The perceived and predicted utility
are plotted on top-left and bottom-left, respectively. The perceived utility is the actual
information gained by the agent on performing the action-perception interaction for the
step. The predicted utility is the quantum generalization of the utility of KL-KSA. In this
context, the quantum process represented as the Choi density matrix is the compressed
representation of the environment. The difference between the predicted and perceived
utility is the knowledge that reflect how well the current model agrees with the actual
environment. In the top-right subplot, we show the remaining utility with the time step.
It is only possible to know this when the target environment is known. While this is not
the case for QKSA, we plot this to show the convergence of the learning behavior.

We show in the results that the perceived utility converges to zero. The striking ad-
vantage of this approach is that, without knowing the actual environment, this trend can
be used to optimize a quantum algorithm. This can have a significant impact in algo-
rithms like VQE, where quantum tomography is an integral part. Current tomography
routines set a constant value of trial runs on the quantum computer, which is signif-
icantly more than the needed trials for typical statistical approximation threshold re-
quirements. Via this online evaluation of the environment, it is possible to predict when
the environment has been sufficiently modeled and abort the learning process. This can
also be useful when the noise characteristic varies during the execution of the algorithm.
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4.4. CONCLUSIONS AND OUTLOOK
In this work, we extend the formalism of universal artificial general intelligence (UAGI)
to quantum environments. We generalized the KL-KSA to a quantum knowledge seeking
agent (QKSA). The environment within the reinforcement learning setup is defined by an
unknown quantum circuit in Qiskit. The agent models the environment using quantum
process tomography algorithms. A quantum environment prevents the exact prediction
of perceptions (as used by AIXI), as well as a single probability distribution of perception
based on the set of actions (as used by KL-KSA). The probability distribution is condi-
tioned on the chosen action and is thus represented by the more general density matrix
formalism. Any quantum process can be represented as a Choi density matrix, which
forms a model of the environmental dynamics.

Despite their theoretical significance, UAGI models are uncomputable, and thus are
not useful for practical learning tasks. A typical solution is to restrict the runtime and
length of the programs. Such solutions have been shown to learn simple games like Pac-
Man. However, the space of programs grows exponentially, and thus a simple cutoff is
not a scalable solution. To circumvent this, we propose to evaluate the algorithmic cost
within a set of user provided Python codes instead of enumerating Turing machines.
This considerably makes the framework more tractable.

Finally, the resource restrictions used in computable UAGI models (like UCAI and
AIXI-tl) are arbitrary. In our model, these resource bounds are interdependent hyper-
parameters whose value and trade-off relations are optimized using genetic program-
ming. Thus, this allows open-ended evolution of the agents for changing environments.
Each agent can self-replicate as a quine and thus is a recursive self-improving model of
intelligence.

QKSA provides a framework to evaluate a swarm of UAGI agents that discover the
resource tradeoffs in modeling a quantum environment. Besides the theoretical impor-
tance, the QKSA framework can be used to study the applicability of various distance
measures of quantum information. It also has near term applicability in optimizing
NISQ era variational quantum algorithms like QAOA, which rely on multiple runs of
quantum tomography. We show as a proof-of-concept that it can be used in quantum
process tomography where the QKSA knowledge gain reflects the trace distance with the
unknown environment.

The entire OEE-URL framework of QKSA was highly interdisciplinary and theoretical
compared to the previous chapters. Though a proof-of-concept using Qiskit was imple-
mented and demonstrated, the eventual aim was to inform future directions of exploring
the synergy between AIT and QC, specifically for causal modeling.
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4.5. APPENDIX: ALGORITHMIC PROBABILITY AND QUINES
A dichotomy exist in algorithmic information theory, where, the length of the data string
is considered a false indication of its complexity, while it does use the length of programs
to calculate the likelihood of the occurrence of the data string. While short programs are
considered more likely to produce a data string, the theory does not consider how likely
it is for short programs to be generated by another higher level (meta-)program.

RESOURCE-BOUNDED ALGORITHMIC PROBABILITY

We consider a fixed length model (i.e. an universal linear bounded automata), where the
data, the program, and all higher level programs have the same length, and are input
programs or outputs of the same automata. This automata is denoted by A. The length
is a resource limitation from any realistic automata implementation. For naturally oc-
curring computing hardware like DNA or the brain, it is imperative to have a fixed re-
source for storing the program, e.g. the number of base-pairs or the number of neurons.
We explore the properties of the final distribution of the data string provided we con-
sider multiple levels of meta-programs. The distribution converges to self-replicating
programs or quines, which survive over generations of program-data hierarchy.

The universal Solomonoff algorithmic probability [108] of a program p on a (prefix-
free) universal Turing machine (UTM) U for an output x is proportional to the sum of
inverse of the description lengths of all programs that generate the output.

ξU (x)= ∑
p∶U(p)→x

2
−l(p)

This naturally formalizes Occam’s razor (law of parsimony) and Epicurus’s principle
of multiple explanations by assigning larger prior credence to theories that require a
shorter algorithmic description while considering all valid hypotheses.

Consider a Turing machine T with n symbols and m states, which can be enumerated
by running a finite number of programs p. The algorithmic probability of a string x can
be approximated as:

ξ(x)≈ Dn,m(x)= ∣T ∈ (n, m) ∶ T (p) halts with output x∣
∣T ∈ (n, m) ∶ T (p) halts∣

i.e. counting how many programs produce the given output divided by the total number
of programs that halt. The ∣.∣ is used to denote set carnality throughout this section. This
approximation is called the Coding Theorem Method (CTM) [113].

We are interested in the distribution of the computing output generated by a set of
fixed size programs. We do not consider a special halt state, thus allowing us to explore
the complete state space of programs [119] (i.e. the powerset of the full language of fixed
length). This can encode programs that demonstrate a halting behavior (i.e. the tape
output does not change after a certain time) by encoding the halting TM state as states
of another TM that loop on themselves, moves the tape head arbitrarily and writes back
the read character. For quantum processes and automata (that are generalizations of
classical TM), the halting state cannot be defined explicitly. Only the output behavior
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can be observed on measurement at a user-defined time step since the start of the com-
putation. Since we quantize the results of this formalism to a quantum case in QKSA,
this consideration is crucial.

Let the description number of n symbols and m states be encoded as binary strings

of length l . Thus, all 2l possible programs have, and when run for t time steps (of course
preferably larger than the Busy Beaver number), produces the following approximation
of algorithmic probability:

D
t l
n,m(x)= ∣At(p)→ x∣

2l

We reach the same result plugging in the constant size of programs in the original
equation of ξ(x). Note that, in the fixed length and time case, the automata is no longer
guaranteed to be universal.

ξ(x)A ≈ D
t l
n,m(x)= ∑

p∶A(p)→x

2
−l

= 2
−l ∣A(p)→ x∣

NESTING ALGORITHMIC PROBABILITY
Let’s denote the resource-bounded algorithmic probability derived in the last section as:

ξ
01(x

0)= 2
−l ∣A(x

1)→ x
0∣

ξ
01 denotes the algorithmic probability of the set of output strings x0 and is based on

considering a uniform distribution of the set of programs x1. We drop the subscript A
for brevity, but all results should be interpreted as having a dependence on the automata.
This scalable notation considers fixed length programs and output data, no inputs and a

specific automata A. Thus, the set cardinalities are ∣X 1∣ = ∣X 0∣ = 2l . Individual lengths

of the strings, x1
∈ X 1 and x0

∈ X 0 are l(x1)= l(x0)= l .

In general, this is a many-to-one mapping, thus not all strings in X 0 are generated
by running programs of the same size. The strings which are algorithmically random are

not part of the set X 0 and are shown as the striped annulus in Figure 4.5.

The set of algorithmic probabilities ξ01 for all X is the resource-bounded approxima-
tion of the Solomonoff’s universal (prior probability) distribution. The core motivation
of algorithmic information theory to define the universal distribution from a uniform
distribution is based on the idea that simpler shorter theories are more probable. Our
fixed-length program (model/hypothesis) formulation seem to not allow shorter pro-
grams to have more weight. Yet, there will be more programs nevertheless to generate a
simple data, e.g. 0101010101010101 can be either generated by looping 01 for 8 times, or
0101 for 4 times or 01010101 twice. Whichever is the most efficient of these 3 programs
would print the output and reach a halting state early. What matters is the frequency of
programs (as in the CTM), not at what stage in the computation of our t steps it reached
a stable attractor state. So even within same length programs we expect a non-uniform
distribution as we do for the data.

Now we can pose the question: ‘why should all programs be considered equiproba-
bly?’ Considering a higher hierarchy of meta-programming, there is some physical pro-
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𝑋2

𝑃 𝑥1 = 𝜉12 𝑥1 𝑃 𝑥0 = 𝜉02 𝑥0𝐴

𝑥1: ξ 𝑥1 ≠ 0

𝑃 𝑥2 = 2−𝑙 𝐴

Figure 4.5: The space of programs typically map to a smaller set of output strings. The algorithm probability

P(x0) of the output strings x0 is based on a uniform probability 2−l of the programs in the highest meta-level
(left circle).

cess that generates that program on the program part of the tape of the automata. Nor-
mally, for the standard definition of algorithmic probability, it is considered an unbiased
coin flip, or the infinite programming monkey theorem. Since the universal distribution
is not known apriori, there is no other preference than a uniform distribution to start
with.

Thus, the generalized form of the previous equation would be:

ξ
02(x

0)= 2
−l ∑

x1∶A(x1)→x0

[ξ12(x
1).2

l]= ∑
x1∶A(x1)→x0

ξ
12(x

1)

If, ξ12(x1) = 2−l for all x1
∈ X 1, the definition would converge to the previous case,

where the summation is simply counting the number of programs with the property

A(x1)→ x0.
However, we can feedback the universal distribution on the programs and under-

stand what effect it has on the data. Thus introducing a hierarchy of automata levels,
where the output data of one automata is the input program for the next levels. Weight-
ing the contribution of each program based on the probability that they themselves
physically occur on the program part of the tape.

Due to the invariance theorem, we can assume that the automata for the two lev-
els are not same, with only constant overheads of translating (cross-compiling) the pro-
gram of one machine to another, however, for our case, we use the same automata A, i.e.

ξ
01
A0

(x0)= ξ
01
A(x0) and ξ

12
A1

(x1)= ξ
12
A(x1).

We used the superscript 02 to distinguish it from the standard definition presented
earlier (with the superscript 01). This denotes that, the final output is at level 0, while
there are 2 levels of execution on the automata A that leads to this distribution, or 2
meta-levels. Note that now, ξ23(x2) = 2−l , thus, while the programs (or, level 1 meta-

programs) x1
∈ X 1 are no longer equiprobable, the level 2 meta-programs x2

∈ X 2 are
drawn uniformly random.
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Continuing this analogy, adding another meta-level would be of the form:

ξ
03(x

0)= ∑
x1∶A(x1)→x0

ξ
13(x

1)= ∑
x1∶A(x1)→x0

[ ∑
x2∶A(x2)→x1

ξ
23(x

2)]

Indeed it is possible to extend this argument to arbitrary many levels w , with no par-

ticular reason to choose ξ01 over ξ0w for the expected distribution of the data occurring
physically. This generalized recursive form is:

ξ
ab(x

a)= ∑
xa+1∶A(xa+1)→xa

ξ
(a+1)b(x

a+1)

where, ξ(w−1)w(xw−1)= 2−l

Let the number of strings N 0w
≤ 2l with non-zero probability for a particular meta-

level w be defined as:

N
0w

= ∣ξ0w(x
0)> 0∣= ∑

x0
∈X 0

⌈ξ0w(x
0)⌉

It can be easily seen that, since the programs are deterministic (i.e. has only 1

output), the program-data input-output map of the automata on the space of 2l bit
strings is a non-injective non-surjective function in the general case. Thus, for r1 > r2,

N 0r1
≤ N 0r2 . We are interested in the properties as w approaches a large number.

• What are the properties of the strings that ‘survive’ over these generations (meta-
levels)?

• Since each added hierarchy reduces the set size, at some threshold value of r1 >

r2 > wt the inequality will become an equality N 0r1
= N 0r2 . Is N 0r1

= N 0r2
≠ 0 in

that threshold?

FITNESS OF QUINES
A quine is a program which takes no input and produces a copy of its own source code
as its output. It may not have other useful outputs. In computability theory, such self-
replicating (self-reproducing or self-copying) programs are fixed points of an execu-
tion environment, as a function transforming programs into their outputs. The quine
concept can be extended to multiple meta-levels, called ouroboros programs or quine-
relays. Quines are also a limiting case of algorithmic randomness as their length is same
as their output. If we consider the Turing machine automata, this translates to printing
out the description on the tape which can be executed as a program by another Turing
machine. Note that the rest of the Turing machine mechanism like the tape head and
movement are akin to the underlying cellular automata rules that automatically apply to
the new cells where the replicated machine manifests. The very design of the 3 parts of
a constructor suggests that it cannot be algorithmically random as it should be possible
to compress parts of its description. We are interested in the complexity and probabil-
ity of constructors, which forms a subset of all possible configurations an automata can
possess.
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In our model, we consider the entire set of 2l strings. Each string is represented by a
node in Figure 4.6, with the arrows representing the mapping by running the string as a
program on the automata. Thus, while many-to-one arrows are possible, one-to-many
is not. We partition the set of strings (interpreted as program or data) into 2 subsets: at-
tractors and repellers. Attractors are strings which when executed as a program generate
as output a string which is also from the attractor subset. While, a repeller string when
run as a program can generate either an attractor or a repeller string. The entire space
might have multiple connected components. Each connected component consists of an
attractor basin, made of quines or quine-relays, (as the multi-node attractor cycles) in
Figure 4.6. Each node in the attractor basin might have a trail of repeller nodes, which,
over cycles of algorithmic probability converge to the node on the basin.
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1
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Figure 4.6: Attractor (green double-circled nodes) and repeller strings (red nodes).

Over multiple cycles the final set will only include the attractor nodes, with one-to-
one mapping, thus conserving the number of strings in subsequent cycles. We denote
this specific number of cycles with wt , the meta-level at which a uniform distribution
results in only attractors after wt cycles. Each repeller node can be numbered as the
number of hops away from an attractor basin. The highest hops is the wt , i.e. 6 in the
example in the figure. At this stage, each string has a one-to-one mapping. The number
of attractors is given by

Q = N
0wt

= ∣ξ0wt (x
0)> 0∣

The algorithmic probability for these constructor strings depends on the number of
paths leading to these attractor basis over these cycles. wt is dependent on the num-
ber of considered state and symbols, the specification of the automata, the length of the
programs and the time approximation for estimating the algorithmic probability at each
level. Being at least as (semi-) uncomputable as ξ, we can only study it under reasonable
approximations via Experimental Algorithmic Information Theory (EAIT) [136, 204].
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EXPERIMENTS
Here, we consider a particular case to illustrate the developed formalism of nesting al-
gorithmic probability. We take the 2 state 2 symbol Linear Bounded Automata (LBA) as
it is both non-trivial as well as within the bounds of exhaustive enumeration. The details
of this machine can be found in [119]. The program (description number) is encoded as
the list of transition functions for each state and read symbol:

[QMW ]Q1R1[QMW ]Q1R0[QMW ]Q0R1[QMW ]Q0R0

This gives the values qδ = 12, as the length of the description number required to store

a program for this machine. Thus, the space of this encoding allows P = 212
= 4096

possible programs. The tape is also of length c = z = 12 and consists of all zeros with
the tape head on the left most character: oooooooooooo The machine is run for z =

qδ = 12 iteration. A Python script that emulates this automata model for all 4096 cases is
available at [205].

Figure 4.7: Level 3 of nesting algorithmic probability for a 2 state 2 symbol LBA (the high resolution svg is
available at [205]).

At level 3 of nesting algorithm probability, we start with a uniform distribution of
all programs, to produce the standard universal distribution. The mapping is shown in
Figure 4.7 (the high resolution svg is available at [205]).

We observe that, at this level itself, the number of possible programs for the next
generation gets reduced from 4096 to 21, with the following frequency of occurrence.
The top 8 algorithmically probable attractor basins are shown in Figure 4.8.
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P0 : 1886 P2048 : 1147 P4095 : 640 P3072 : 110
P1365 : 64 P2047 : 64 P2730 : 64 P1024 : 41
P3840 : 17 P128 : 11 P3968 : 11 P1344 : 10
P3584 : 10 P4032 : 10 P1792 : 2 P1920 : 2
P2560 : 2 P2688 : 2 P192 : 1 P1728 : 1
P2944 : 1

Also, at this level itself we find that the machines P0 and P4095 are the only self-
replicating programs, thus the limiting behavior can already be predicted.

P0

P2048

P2047

P4096

P1365

P2730

P3072

P1024

Figure 4.8: The 8 largest attractor basin of level 3 of nesting algorithmic probability.

At level 2, these 21 programs get further mapped to just 3 programs, with the follow-
ing frequency.

P0 : 16 P4095 : 3 P2048 : 2

At level 1, the 3 programs finally converge to the quines P0 and P4095.
The frequency is as follows:

P0 : 2 P4095 : 1

At level 0, we reach the attractor states with a uniform one-to-one mapping.
Level 2, 1 and 0 are shown in Figure 4.9,4.10 and 4.11 respectively.
Now, to calculate the overall algorithmic probability of these two fixed points, we cal-

culate the cumulative frequency over these 4 levels. Thus, at level 2, the total frequency
of P4095 consists of adding up the frequency of programs P4095, P2047, P4032 from the
previous step, totaling to 640 + 64 + 10 = 714. For P2048, we add up the frequency of
Programs P1365, P1344, totaling to 64 + 10 = 74. The rest of the 16 programs total to
3308 cases that reach P0. At level 1, P2048 also reaches the P0 attractor, giving the final
algorithmic frequency of the quines as:

P0 : 3382 P4095 : 714
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P0

P2048

P3072

P2047

P4095

P1365

P128
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P1024

P1344

P2730
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P3968

P3840

P1920
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P4032
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P1728

Figure 4.9: Level 2 of nesting algorithmic probability for a 2 state 2 symbol LBA.

P0

P4095

P2048

Figure 4.10: Level 1 of nesting algorithmic probability for a 2 state 2 symbol LBA.

P0

P4095

Figure 4.11: Level 0 of nesting algorithmic probability for a 2 state 2 symbol LBA.

We call this the resource-bounded Universal Constructor distribution.
A similar experimentation on this space of 4096 programs is conducted as part of

the Wolfram Physics Project exploring the rulial space of Turing machines [206]. The 2-
2-1 LBA with 4096 programs does not show much diversity resulting in simple quines.
It remains to be seen what the encodings of quines in larger spaces reveal about the
structure and complexity of constructors.





5
CONCLUSION

The goal of this doctoral research was to identify high-impact long-term applications
of quantum computation and formulate corresponding quantum algorithms to com-
pute them. This forms the algorithm layer of the quantum accelerator stack. In this
dissertation, three specific case studies are presented.

§ 2 studies quantum algorithms to accelerate DNA sequence reconstruction. This
is a crucial step in the genomics data processing pipeline. Two different ways of recon-
struction were targeted, and the corresponding quantum computing approaches were
developed.

In § 3 the quantum versions of classical automata like Turing machines and linear
bounded automata were implemented. This corresponds to executing a superposition
of all classical programs of a particular size with a specified encoding. We show that such
a quantum oracle can be used for approximating mathematical objects in algorithmic
information theory. Understanding these has various applications in causal modeling
use cases like genome analysis.

In § 4 we study reinforcement learning agents based on universal automata. These
models are generalized for learning in a quantum environment, as well as, an open-
ended evolution of the utility based on the resources used in the modeling and predic-
tion process. The proposed agent is a general intelligence formalism that reflects the
mechanism behind the human understanding of quantum mechanics. This can be used
to automate the design and optimization of quantum experiments.

5.1. SCIENTIFIC CONTRIBUTIONS
As a summary, the major scientific contributions of this doctoral research for each use
case are:

1. Quantum-accelerated genome sequence reconstruction
(a) first quantum algorithm to accelerate approximate index search that pre-

serves the quadratic speedup of Grover search
(b) implementation of DNA sequence reconstruction based on reference align-

ment on a quantum computing simulator

135
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(c) implementation of de novo read alignment for DNA sequence reconstruction
using the quantum approximate optimization algorithm

(d) implementation of de novo read alignment for DNA sequence reconstruction
using a QUBO formulation on a quantum annealing hardware

(e) demonstration of proof-of-concept for QiBAM (8 qubits, 16-base reference,
3-base read) on QX and OpenQL, and QuASeR (16 qubits, 4 reads) on QX and
OpenQL and (60 qubits, 4 reads) on Ocean and D-Wave 2000Q

2. Quantum automata for algorithmic information
(a) first gate-level design of a quantum universal linear bounded automata
(b) an application framework for specific algorithmic information mathematical

objects using a quantum superposition of classical automata
(c) implementation and demonstration of proof-of-concept for 1-state 2-

symbol 1-dimension QPULBA (16 qubits) for quines and a unit level simu-
lation for 2-state 2-symbol 1-dimension QPULBA on QX, OpenQL, and Qiskit

3. Universal reinforcement learning in quantum environments
(a) a mathematical description and enumeration of nested algorithmic proba-

bility for program-data duality showing the convergence to constructors
(b) a formulation of a universal reinforcement learning agent with an evolving

utility function based on computational resources that undergoes recursive
self-improvement

(c) first universal reinforcement learning agent model for quantum environ-
ments

(d) implementation and demonstration of proof-of-concept QKSA framework
for 2 EAQPT strategies using trace distance on 1 qubit environment on Qiskit

5.2. MAIN INSIGHTS
Beyond the three specific use cases, this research provides general insights into the ap-
plications of quantum computation. These are summarized in this section.

Interdisciplinary knowledge and research collaborations —
Quantum algorithm design is in many ways orthogonal to classical algorithm design.

While knowledge of classical algorithms and their associated theoretical complexity and
practical application is imperative, it helps very little in developing new quantum al-
gorithms. A good grasp of quantum information theory (and associated subjects like
complex analysis, linear algebra, quantum mechanics, algorithms, and digital logic) is
necessary to design these approaches. Due to this, quantum algorithm design needs an
interdisciplinary collaborative research team. Various focused tracks and graduate pro-
grams that are being initiated by academic institutions would eventually help to upskill
the future quantum computing workforce.

Balancing requirements from quantum hardware and application —
Quantum algorithm design is transitioning from theoretical description to an imple-

mentation focus. This has both advantages and disadvantages. It helps to understand
the full application pipeline and the implementation details of the specific algorithm in
question. This clarifies the stages like data input, oracle calls, and measurement strate-
gies that are typically abstracted in the mathematical descriptions. However, the surge
to experimentally demonstrate these application pipelines on currently available NISQ
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processors to attract research funding is often scientifically futile. These results unequiv-
ocally demonstrate that a quantum advantage for the target applications is beyond the
reach of the state-of-the-art QPUs. Better quantum computing benchmarks [207] with
an application focus can eliminate the need for this exercise by informing the algorithm
designers of the capability of the quantum hardware to prove advantageous in an exper-
imental setting. In our research, we found balancing between these two to be an opti-
mal strategy, where the algorithmic description of the application pipeline is designed
as a quantum program to understand the gate and qubit complexity of the full quantum
logic. This can inform the quality and size of QPUs required to demonstrate application-
motivated problem sizes.

Gate-level logic design for novel quantum algorithms —

The level of quantum algorithm programming is still significantly reliant on logic gate
level design. This level is on par with hardware-description language (like VHDL and Ver-
ilog) and assembly languages (like x86 assembly). Most popular quantum programming
languages are implemented as libraries over classical high-level languages (like C++ or
Python) where the programming constructs like decisions and loops use the native lan-
guage, however, the quantum kernel still needs to be described by appending individ-
ual quantum logic gates onto an object or data structure. Many application-focused
libraries (e.g., for molecular simulation or combinatorial optimization) enable applica-
tion developers to use quantum acceleration in a well-abstracted framework. However,
for the foreseeable future, designing novel quantum algorithms will require reasoning at
the gate level.

High-level quantum programming languages and compiler-level automation —

Vertical integration of a quantum algorithm on the computing stack involves other
optimizations and gate operations. These include, for example, quantum error correc-
tion, mapping, and routing on the QPU topology, compilation to the native gate-set of
the target QPU, etc. In the NISQ era, these are often discussed as part of the quantum
algorithm as a hardware-software co-design strategy. Looking forward, these auxiliary
steps will eventually be entirely automated by the lower layers of program optimization
by the compiler and micro-architecture. Since the proof of concepts of quantum algo-
rithms in the NISQ era are widely removed from the problem size where it would achieve
quantum advantage, we promote encapsulating these features as part of the quantum
accelerator that would be considered for benchmarking. The quantum algorithm de-
signer can then focus on the logical transformations that need to be programmed for
the application use case. We call this approach the perfect intermediate-scale quantum
(PISQ) computing.

‘Small data, big compute’ as the target for quantum-accelerated application —
Lastly, we found that the features of quantum computation provide a computational
benefit when the algorithm can harness a specific form. Each accelerator has a sim-
ilar form, e.g., for GPUs, this form is called embarrassing parallelism. For QPUs, the
form is ‘small data big compute.’ Thus, quantum algorithms would unlikely be the so-
lution for big data problems and data-driven machine learning. The exponentially large
state space in quantum should be harnessed without negating the promising speedup
in the data encoding and measurement complexity. Restricting the exploration to the
sub-space where no efficient classical algorithms and heuristics exist is beneficial till
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large-scale universal QCs are built. However, these quantum algorithms might find so-
lutions to the computational bottleneck by using very different kernels. Such kernels
might be more suited for quantum than classical computation and thus typically not
popular in current algorithm research. This research focused on such promising quan-
tum algorithms by exploring quantum formulations that use causal models, symbolic
manipulations, and algorithmic information.

5.3. FUTURE DIRECTIONS
As with most doctoral research, the various research decisions were undertaken based
on what was perceived as the most promising direction at that moment. Nonetheless,
each use case suggests future directions which can be pursued further. Some of these
are listed here.

• Demonstration on a quantum processor — The overarching goal of all quantum
circuits and algorithms is to execute and demonstrate the application on a quan-
tum processor. This was only possible for the de novo read assembly, where the
simulated results were verified on the D-Wave quantum annealer. The other al-
gorithms, being gate-based, are currently beyond [208] the capability of available
quantum processors. While all the algorithms were verified using PISQ simula-
tion, the real speedup cannot be demonstrated without executing on a quantum
processor.

• Grover’s adaptive search for optimization — Techniques based on Grover search
(like QiBAM) have a provable speedup, while those based on variational hybrid
heuristic optimization (like QuASeR) are more promising in the NISQ era. Some
recent techniques represent a trade off between these approaches. Grover’s adap-
tive search [209] and accelerated variational quantum eigensolver [210] are two
such examples that trade off between the near-term and fault-tolerant regimes
of quantum algorithm design for optimization and simulation problems, respec-
tively.

• Quantum accelerated causal inference — We developed the primitives for explor-
ing the space of programs on an automata model. Unlike quantum/classical data-
driven machine learning, this preserves the explanatory power of the model the
learning converges to. This can be used for machine learning tasks [211]. Specif-
ically to bioinformatics, this can be applied for quantum accelerated causal hy-
pothesis testing [212] on gene regulatory networks.

• Multi-agent modeling of quantum environment — Quantum mechanics is in-
herently a two-party relational theory. Thus it is interesting to understand how
multiple classical agents can agree on the dynamics of a quantum environment
while having different action-perception capabilities. This is studied within quan-
tum communication protocols. Specifically, coarse-grained quantum descrip-
tions [213] in multiple observers is a viable extension of the QKSA framework when
the pool of QKSA agents that are part of the population can interact. In a simi-
lar fashion, crossover operators can also be added to the mutating reinforcement
learning agents.

• Uncomplexity as a computational resource — The QKSA framework proposes
five computational resources to define the utility function for the agent. While the
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program length, memory, time, and approximation have been studied in many
contexts, energy (or the thermodynamic cost of algorithms) is much less devel-
oped theoretically. Practically these are assessed by the power consumption on
a specific computer. Very recently, this is being studied for classical Turing ma-
chines [203], but the work is still at an early stage to predict the energy cost
of a high-level language program. The uncomplexity metric [214] ties together
these resources in the many-body physics and cosmology setting. Understand-
ing the impact of uncomplexity for a generic quantum algorithm would be ben-
eficial not only for understanding the limits of quantum speedup [202] but also
for the convergence of the QKSA to a certain form of the utility function. In the
agent-environment scenario, generalizing this to ‘relative uncomplexity’ might
more formally explain scientific model discovery in the light of no free lunch the-
orems [215].

• Entanglement as a computational resource — Entanglement (between the agent
and the environment) is also another interesting computational resource that we
did not consider due to our assumption that the agent, like human reasoning, is
classical. Thus, a future generalization could involve studying QKSA with quantum
communication and computing capabilities. The entanglement can be used as a
world-making relation [216] instead of space-time locality. The agent in such a
case should be modeled as an embedded AI [217], governed by the same laws of
physics as that of the environment. An embedded QKSA can be studied in a unified
toy universe like AdS-CFT [218] using tensor networks [219].

The contributions of this research bring into the spotlight various synergies among
the fields of ‘quantum information and computation’, ‘algorithmic information theory’,
‘genomics’ and ‘reinforcement learning’. Further research on these interdisciplinary
links would prove beneficial in many other scientific and societal applications.





EPILOGUE

My interactions with the world of knowledge - the inputs of education and the outputs of
research have already been presented. Here, I intend to highlight aspects of the program,
that internally weaves together these threads.

Prior to my research career in quantum computing, I was a scientist at Indian Space
Research Organisation (ISRO), the national space agency of India. This childhood dream
of being a space scientist was fueled by the curiosity that the mysterious night sky
infused in me. It translated into me choosing an undergraduate program at the In-
dian Institute of Space Science and Technology, focused on aviation electronics, com-
puter science and space robotics. Thereafter, at ISRO, I was the lead software archi-
tect for mission-critical firmware on board 10 successful remote-sensing satellite mis-
sions. These encompass cartography, resource mapping, space observatory, and lunar
missions. It was overwhelmingly gratifying to play an active role in these engineering
frontiers, and partake in the joy of my codes helping in the discovery of one of the earli-
est galaxies (via AstroSat), and affirm the detection of water while orbiting the moon (via
Chandrayaan-2).

In days where computers are being strapped to spectacles and voyages of landing
on asteroids making news, I realized both had their limitations. Space exploration is
strangled by the speed of spacecrafts and more fundamentally by light speed. Computer
technology is limited by transistor miniaturization limits and computational complexity
alike. My search for a concrete inkling, to relinquish my job for an academic research
career, converged to quantum computing (QC). I realized, to make concrete progress in
QC, an interdisciplinary perspective is indispensable. Fortunately, over the last century
the boundaries between the various branches of science is noticeably fading. These ad-
vances allow applying theories and techniques from one discipline to reinforce conjec-
tures in another. It allows exploring fundamental ideas (like emergence and universality)
at the intersection of mathematics, computer science, physics and biology. My doctoral
research is a small step towards this larger quest.

Computer science developed into a fundamental discipline, when the incomplete-
ness of logical systems was complemented with the definition of universal computation.
While its link with physics via information theory and thermodynamics were already
proposed, this was concretely established with the formalization of a quantum mechan-
ical computational automata model. Two catch-phrases summarize this connection: ‘it
from bit’ - meaning that everything in the universe can be modeled as a digital compu-
tation, and, ‘bit from it’ - meaning every computational process is physically embodied,
thus respects physical laws. Digital physics, as this field is called, was my main impetus
to study quantum computing. Research on similar ideas are now increasingly being pur-
sued. Some such examples include, generalized holographic principle, tensor networks,
informational axioms of quantum mechanics, principle of computational equivalence, a
code-theoretic approach to physics, causal sets, quantum cellular automata, and multi-
way computation.
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Another intriguing notion that has always charmed me is the principle of emer-
gence. Besides the possibility that the universe itself is emergent, two more accessi-
ble, yet equally obscure examples are, life and intelligence. Biochemical processes like
metabolism and reproduction, orchestrates the spectacle of life via inanimate molecules
encoding the genome. This can be studied purely as a digital computation unfolding
within the cells. It is a program, which depending on environmental inputs act out these
processes - eventually evolving the next generation with a compressed memory of the
most eventful of these stimuli by natural selection. This notion was the major drive be-
hind half of the use cases presented in this dissertation. Connecting this view of biology
to computer science and physics has led to various seminal concepts like, evolutionary
algorithms, meta-biology, cellular automata, self-replication, free energy principle, arti-
ficial life and constructor theory.

Artificial intelligence (AI) is the third aspect that influenced my research. The tri-
umph of data-driven machine learning increasingly impact aspects of our daily life. Au-
tomating more critical applications needs trustable decisions based on causal insight,
what is pursued as understandable/explainable/interpretable AI. The confidence in the
current capabilities now also permits technical discussions of the original motivation
of AI, general intelligence. I explored how quantum computational benefits can be ap-
plied to models like neuro-evolution, AutoML, BDM and AIXI. This led to an in-depth ex-
ploration of practical applications of algorithmic information, in QC, genomics and AI.
Given the powers of computational universality and algorithmic information, I wanted
to understand how general intelligence can encompass the counter-intuitive aspects of
quantum information, like entanglement and measurement. The QKSA framework ele-
gantly melds various concepts like, genetic programming, self-replication (quines) and
constructors, reinforcement learning, swarm intelligence and emergence, program-data
duality, computational universality, and algorithmic probability.

When I started this doctoral research, I championed the ‘pancomputationalist’ ide-
ology, i.e., the evolving cosmos is best expressed as a coherence of toggling (qu)bits, on
a gigantic (quantum) computer; a simulation unfolding itself. By the end of my doc-
toral research, I identify myself as an ‘algorithmic absurdist’. Algorithmic absurdism
maintains that the universe as a whole has no information in accordance to the no free
lunch theorems, though that ontic view is not physically observable and thus this unifi-
cation would remain inaccessible and unprovable. Splitting the universe into an agent
and an environment however permits a general technique for building relational epis-
temic models. This optimal inductive modeling technique by computationally bounded
participators is based on resource-aware algorithmic information that adjusts its utility
via open-ended evolution. I believe this will be the guiding philosophy of science in the
days to come.
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Propositions

accompanying the dissertation

APPLICATIONS OF
QUANTUM COMPUTATION AND ALGORITHMIC INFORMATION
FOR CAUSAL MODELING IN GENOMICS AND REINFORCEMENT LEARNING

by

Aritra SARKAR

1. Philosophical aspects of interdisciplinary research lead to many valuable scientific
insights.

2. Variational quantum heuristics share the ‘correlation versus causation’ problem
with current machine learning models.
* This proposition pertains to Chapter 2 of this dissertation

3. We need to understand the thermodynamic properties of mutating universal con-
structors to transcend to an intergalactic civilization.
* This proposition pertains to Chapter 3 of this dissertation

4. The interference patterns we observe as shadows on Plato’s classical cave help us
to tell mathematical stories about Hilbert space.
* This proposition pertains to Chapter 4 of this dissertation

5. Shadow libraries that provide open access to knowledge over intellectual property
rights are best morally personified as Robin Hood rather than pirates.

6. All models require some axioms/assumptions/faith that define their limits.

7. Knowing everything is equivalent to knowing nothing.

8. Sisyphus (in the Absurd metaphor from Albert Camus) derives his happiness from
discovering paths that are easier to remember and climb.

9. A proposition on self-referential proofs will always be opposed during the doctoral
defense if a committee member thinks it is wrong.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotor Prof. Dr. Koen L. M. Bertels and Dr. ir. Zaid Al-Ars.
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