
Master Thesis Applied Mathematics

Optimizing the transport
scheduling of an online
grocer

Franka van Dijken

Optimizing the transport
scheduling of an online grocer

by

Franka van Dijken
to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on 10th of June 2021.

Committee

Prof.dr. K.I. Aardal
Dr. C. Kraaikamp
Ir. A. Braemer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Cover illustration ©Mila Mochèl

http://repository.tudelft.nl/

Abstract

In this thesis, we consider the Multi Depot Vehicle Scheduling Problem with Time Windows

with driver day duration restrictions that addresses the task of assigning a given set of time

window shipments to trucks with consideration of practical requirements. The goal of this

thesis is to design an algorithm that finds a good solution for the problem within 15 min-

utes. In the literature, the problem is usually applied to public transport cases. We consider

the freight transport application of an online grocer.

We introduce a Multi-Commodity Minimum Network Flow ILP implementation for MD-

VSPTW with short computation time. Also, based on the Concurrent Scheduler algorithm

for MDVSP from the literature, we introduce the Greedy Scheduler algorithm that is able

to find a feasible solution within short computation time for our problem. These two im-

plementations form building blocks for the three main algorithms we introduce, that find

good feasible solutions for our problem within 15 minutes: the ILP + Greedy algorithm, the

Random Search algorithm and the Random Search and Fix algorithm. We incorporate the

driver day duration restriction in the three algorithms by either allowing a driver change,

that is two drivers executing one truck day, or not, and compare the results. We show that

the ILP + Greedy algorithm performs the best. In the case an algorithm that does not in-

volve an ILP is preferred, e.g., for robustness reasons, the Random Search and Fix algorithm

performs better than the Random Search algorithm.

iii

Acknowledgements

In September 2021, I embarked on the journey of writing a thesis to obtain the Master of

Science in Applied Mathematics at the Delft University of Technology. Its conclusion also

marks the end of the student period of my life. I look back on a time that taught me so much

and of which most came together in this project: The discipline it takes to execute such a

big project; The work-life balance in which you have to cut yourself some slack (work in

progress); Taking ownership, initiative and responsibility for your own success; Checking

your privileges; Showing resilience in the face of things that do not go down as planned and

that you do not control; Being determined to make things exactly right; Finding balance be-

tween everything. But perhaps the most important lesson I learned in the past seven years:

The work is awesome, but what really matters are the people. That is why I want to thank

my committee for their involvement and enthusiasm in a project that we made be. In gen-

eral, I am thankful that I have been guided by people that have consistently trusted me and

have given me the freedom to add my own spices to the project. I thank you for your relent-

less enthusiasm regarding my work and your motivation to guide me to your best ability.

Karen, without your conscientious feedback, my thesis would have looked completely dif-

ferently. You taught me that in Mathematics, I do not have to feel guilty for the excessive

perfectionism that is often punished in other areas. In addition, your work ethic motivated

me to really get everything out of the project that was there to be had.

Arjan, your involvement in the project has far exceeded my expectations. Our weekly meet-

ings were my mind’s anchors throughout this process. And your enthusiasm on the subject

combined with the power to distil its essence enabled me to take big steps content-wise

and come to better final result.

Cor, of course we have not spoken much during the project, but I would like to take the

opportunity to dwell on the fact that this thesis would have never been here were it not

for you. Your help in my first year of studies made my find my way in Mathematics, which

guided my development through the past seven years and now results in me obtaining a

Master of Science. Despite it being unsure whether I will continue to pursue Mathematics

in an academic sense, it will always be of great importance in my life.

v

vi

The help and guidance I received from Picnic employees and their willingness to answer

my every question have also been a great support during this process.

Finally, I would like to thank my family and friends. Without the unconditional support

of my family during my entire education, I would have never been able to put as much fo-

cus on Mathematics. I am also thankful for my friends who were always there for me to

listen to my mathematical stories or support me in the process. And of course Joris, thank

you for all the support, help and understanding. I hereby promise to never again drag you

to the office on a Sunday to program together!

Franka van Dijken,

Amsterdam, June 3, 2021

Contents

1 Introduction 5
1.1 Picnic’s case . 5

1.2 The Vehicle Scheduling Problem and its variants 11

1.3 Research question . 13

1.4 Contributions . 13

1.5 Outline of the report . 15

2 Theoretical background optimization 17
2.1 Integer Linear Programming . 17

2.2 Heuristics . 21

2.3 Assess the performance of an optimization algorithm 24

3 Modelling our problem as an ILP 27
3.1 Literature review. 27

3.2 An ILP to solve SDVSP . 30

3.3 An ILP to solve MDVSP . 36

3.4 An ILP to solve MDVSPTW . 37

3.5 The driver day duration restriction. 41

4 A Greedy heuristic for MDVSP 47
4.1 Literature review: heuristics to solve our problem 47

4.2 The Concurrent Scheduler algorithm for MDVSP 48

5 Two building blocks 51
5.1 Finding a solution for the ILP of MDVSPTW . 51

5.2 The Greedy Scheduler algorithm . 54

5.3 Additional post-processing steps . 60

6 Three main algorithms 63
6.1 ILP + Greedy algorithm . 63

6.2 Random Search algorithm . 67

6.3 Random Search and Fix algorithm . 71

vii

viii Contents

7 Algorithm configurations 75
7.1 Test days . 76

7.2 Objective function parameters . 76

7.3 ILP algorithm configuration . 77

7.4 Greedy Scheduler configuration . 81

7.5 Configuration of main algorithms without a Fixing Phase 85

7.6 Configuration of main algorithms with a Fixing Phase 87

8 Results 93
8.1 Comparison of the algorithms without driver change 93

8.2 Comparison of the algorithms with driver change 94

8.3 Impact of driver change . 96

9 Conclusions and recommendations 97
9.1 Conclusions . 97

9.2 Recommendations for future research . 98

A Implementation 105
A.1 Code setup . 105

A.2 Our choices for parameter values. 107

B Additional experiments 109
B.1 Tie analysis for the Greedy Scheduler algorithm 109

B.2 Splittable trucks analysis for the Random Search with driver change algo-

rithm. 110

C Additional algorithms 111
C.1 List Search algorithm . 111

C.2 Random Search and Fix dynamic algorithm . 111

Abbreviations and notations

Table 1: List of abbreviations in alphabetical order.

Abbreviation Meaning
CSP Crew Scheduling Problem
DC Distribution Center
ePV electric Picnic Vehicle
FC Fulfillment Center
ILP Integer Linear Program
IVCSP Integrated Crew and Vehicle Scheduling Problem
LP Linear Program
MDVSP Multi Depot Vehicle Scheduling Problem
MDVSPTW Multi Depot Vehicle Scheduling Problem with Time Windows
SDVSP Single Depot Vehicle Scheduling Problem
TMS Transport Management System
TSN Time-Space Network
TU Totally Unimodular
VSP Vehicle Scheduling Problem
VSPLPR Vehicle Scheduling Problem with Length of Path Restriction
VSPRTC Vehicle Scheduling Problem with Route and Time Constraints
VSPTW Vehicle Scheduling Problem with Time Windows

1

2 Contents

Table 2: List of mathematical notation in order of appearance.

Notation Meaning
dmax Maximal driver day duration
dmi n Minimal driver day duration
S = {s1, . . . , sn} Set of n discrete shipments
d Depot d
si Discrete shipment
STi Start time of shipment si

ETi End time of shipment si

SLi Start location of shipment si

ELi End location of shipment si

d(L1,L2) Driving time between location L1 and L2

c : p 7→ c(p) Cost function for truck planning p
A Left hand side m×n coefficients matrix coefficients in

standard form ILP
b Right hand side vector in standard form ILP
x Primal variable vector in standard form ILP
X Solution space
c Objective vector in standard form ILP
x∗ Optimal solution vector or optimum
z∗ Value of optimal solution
zLP Lower bound obtained by LP relaxation
z Lower bound of optimal value z∗

z Upper bound of optimal value z∗

τmax Time limit for ILP implementation
δg ap Bound on optimality gap
P(X) Powerset of the set X
N : X →P(X) Neighborhood function
N (x) Neighborhood of x
x′ ∈N (x) Neighbor of x
z ′ Objective value of neighbor
T Temperature in Simulated Annealing
G = (V , A) Graph with vertices V and arcs A
c : A →R≥0 Cost function on arcs
ci j Cost of arc (i , j)
wd t Weight of the empty driving time
ww t Weight of the waiting time
w f c Fixed costs of adding a new truck to the planning
fi j Amount of flow through arc (i , j)
ui j Upper bound on the flow through arc (i , j)
I Identity matrix
D = {d1, . . . ,dm} Set of m depots
κd Capacity (number of trucks available) of depot d ∈ D
Gm = (V m , Am) Graph consisting of m layers of G = (V , A)

Contents 3

S̄ = {s̄1, . . . , s̄n} Set of n time window shipments
s̄i Time window shipment
ESTi Earliest start time of time window shipment s̄i

LSTi Latest start time of time window shipment s̄i

EETi Earliest end time of time window shipment s̄i

LSTi Latest end time of time window shipment s̄i

δs Step size parameter in time window discretization
δm Maximum number of discrete shipments generated by

a single time window shipment parameter in time win-
dow discretization

nδs
i Number of discrete shipments generated by s̄i with

step size δs

S̄ Set of all possible time window shipments
S Set of all possible discrete shipments
p : S̄ →P(S) Shipment discretization mapping
ni Number of discrete shipments generated by s̄i

t ∈ T Task, i.e., sequence of activities
h ∈ H Duty, i.e., sequence of tasks
yh Decision variable in CSP ILP formulation
Ac Set of compatibility arcs
Ab Set of backwards arcs
bi j Amount of flow through backwards arc (i , j)
[S] Ordered list of shipments
t max

w t Maximal waiting time

s j
i Cheapest feasible shipment from s̄i assigned after s j

le Last shipment indicator: end time
ld Last shipment indicator: duration of truck day with

shipment
es First shipment indicator: start time
ed First shipment indicator: duration of truck day with

shipment
cmax Low-cost truck indicator: maximal costs
δmi n Low-cost truck indicator: minimal duration
I Number of iterations for Random Search
φmi n Minimal number of shipment not fixed after fixing

phase
I1 Number of iterations in Fixing Phase
I2 Number of iterations in Searching Phase

1
Introduction

The online market for supermarkets is growing. In contrast to physical stores, each individ-

ual customer expects to receive their order on a chosen time and location. As a result, it is

vital to optimize the complex logistics of the supply chain for the enormous number of de-

liveries per day. In this thesis, we report on research done on the optimization of transport

planning for Picnic Technologies (referred to as Picnic from here on), an online grocer that

was founded in 2015, and has grown exponentially ever since. Conducting research on this

subject is relevant from two perspectives: an industry one and an academic one. For the

industry, the impact of improving the efficiency of the supply chain is financially and en-

vironmentally interesting. Even though in this thesis the industry perspective comes from

Picnic, we expect that similar distribution problems occur in related companies, and that

our research is therefore relevant in a broader setting as well. From an academic perspec-

tive, the practical restrictions of the problem are of such high complexity that optimizing

touches upon the academic literature on mathematical optimization problems and chal-

lenges state-of-the-art algorithms to find solutions for these problems. This chapter gives

an introduction to the problem and presents the goals of this thesis.

1.1. Picnic’s case
The problem we consider is based on Picnic’s transport planning and called Picnic’s case

from here on. In order to completely understand this case, it is important to know the rel-

evant aspects from Picnic’s supply chain, the occurring problems and the goals to achieve

from a business perspective. This section explains all three.

5

6 1. Introduction

Figure 1.1: Current Picnic locations in the Netherlands.

Figure 1.2: Transport in the supply chain of Picnic.

1.1.1. Picnic’s supply chain
Picnic is an online grocer that delivers groceries to approximately 300.000 customers in

the Netherlands on a daily basis. In order to make sure that the right groceries end up at

the right customer in an efficient way, Picnic organizes a complex supply chain. First, the

groceries are transported from suppliers to either a Distribution Center (DC) or directly to

a Fulfillment Center (FC). In the FCs, the groceries are placed in crates, and sorted into

frames. These frames are then shipped from the FC to the Hubs, smaller distribution cen-

ters, located near more densely populated places. From there, the frames are loaded into

the electric Picnic Vehicles (ePVs), which execute the final part of the supply chain by deliv-

ering the groceries to the customers. Figure 1.1 shows an overview of all current DCs, FCs

and Hubs that play a part in Picnic’s supply chain.

This thesis considers the transport part of the supply chain, that is, all shipments be-

1.1. Picnic’s case 7

tween the DCs, FCs, Hubs and suppliers. Put differently, that is the whole supply chain,

except for the part executed by ePVs between Hubs and customers. Figure 1.2 shows that

the transport can be divided into two stages: the inbound (IB) refers to all shipments exe-

cuted before the FCs, the outbound (OB) refers to all shipments executed after the FCs. All

transport is currently executed by transport company St vd Brink (referred to as vdBrink

from here on), that currently has around 60 trucks driving on the road for Picnic every day.

A truck planning is a schedule that assigns shipments to trucks. The truck plannings are

constructed partly by Picnic and partly by vdBrink. Currently, Picnic uses an algorithm

to find a good solution for the scheduling of the OB shipments, and the IB shipments are

manually processed into the final truck planning by vdBrink.

1.1.2. Motivation
Picnic has grown exponentially over the last 6 years (Rintoul, 2019). As a result, the com-

plexity of the transport flows and the quantity of shipments that are to be planned is in-

creasing, causing transport planning to be an increasingly difficult task. Another factor

that complicates the transport planning is the introduction of morning shifts in addition to

the three regular shifts in the afternoon. Before this introduction, customers were only able

to place their order until 22:00 and receive it the next day during one of the regular shifts.

With the introduction of morning shifts, customers are also able to receive their delivery

in the morning, if they placed the order before 15:00 the day before. Figure 1.3 shows the

conceptual timelines corresponding to one order and delivery cycle from the perspective

of the customer, before and after the introduction of the morning shifts. The introduction

Figure 1.3: One order and delivery cycle before and after the introduction of morning shifts.

8 1. Introduction

of morning shifts has two important consequences for the transport:

• Morning shifts cause the working days of the drivers in transport to become longer

than legally permissible, hence a new constraint is required.

• Morning shifts create the need for more than one planning moment per day, as the

deadline of the demand for the morning shifts differs from that of the regular shifts.

Preferably, it is also possible to plan new shipments on an existing planning, instead

of planning all shipments for one day at once.

The current way of transport planning is reaching its limits with respect to the points above.

Therefore, Picnic would like to investigate how to design a better system to efficiently plan

the transport.

1.1.3. The business goal
The business goal of this thesis is to contribute to a Transport Management System (TMS)

for Picnic that is able to plan the transport in a cost-efficient manner. In particular, this

thesis focuses on developing an algorithm that efficiently schedules one day of shipments

using fewest possible trucks, resulting in a feasible truck planning for that day. The scope

is to consider one day at a time. Picnic’s shipments are defined by a start location, end lo-

cation, start time window, end time window and shipment type. The last property is only

considered when Picnic-specific details are mentioned. The question for every shipment

is: at what time and by which truck should the shipment be executed, such that the total

costs of the feasible truck planning are minimized?

Picnic’s cost function is very specific because a part of the trucks, also called the fixed trucks,

is situated at Picnic’s depots and the rest is situated at vdBrink in Ermelo. The hourly tariff

is decreases if the fixed trucks have a lower average utilization rate. Therefore, a new fixed

truck is only placed at a depot if the high utilization rate of this truck can be guaranteed.

As a result, the number of fixed trucks are lower than it would have been without this setup

of the hourly tariff. In this thesis, we choose not to take this specific cost function into ac-

count, because we want the research to be applicable to other use cases as well. Therefore,

we assume a more general cost function that is similar to the ones we encountered in the

literature and takes into account the following factors:

• The number of trucks.

• The relative empty driving time, that is, the percentage of time in the truck planning

that is spent on driving empty, either from or to the depot, or between two consecu-

tive shipments.

1.1. Picnic’s case 9

• The relative waiting time, that is, the percentage of time in the truck planning that is

spent on waiting.

The inefficiency of a truck planning, a performance indicator we often refer to, is the sum

of the relative empty driving time and the relative waiting time. The total costs of a truck

planning are defined by the weighted sum of the three components.

The following requirements for TMS should be taken into account when developing the

algorithm:

• Flexible

Picnic’s exponential growth causes substantial and continuous changes in the trans-

port planning problem definition on a yearly basis. The system is supposed to be

flexible enough to incorporate these changes easily.

• Robust

Picnic’s supply chain operation can be chaotic, because of last minute changes. As

a result, abnormalities in the transport planning input are plausible. The system

should be able to deal with this by guaranteeing a feasible solution as output for each

input instance.

• Fast

The total computation time used by the algorithm to generate an output is bounded

by 15 minutes on Picnic’s server. Running the algorithm on the single laptop on which

the research is executed is not representative. However, as the computation time only

decreases when running on Picnic’s server, resulting in an even better computation

time, this difference is negligible.

The feasibility of a truck planning depends on several restrictions. In addition to the trivial

restrictions, such as a truck not being able to be at two locations at the same time, the

following restrictions follow from Picnic’s supply chain in particular:

• The multi-depot restriction.

The available trucks are distributed over various depots: DCs, FCs and Ermelo (where

vdBrink is situated). Each truck has to start and end the day at the same location, to

make sure that the drivers can park their car at that location and turn home at the

end of the day.

• The driver day duration restriction.

The drivers are legally allowed to work for 15 hours and drive for 9 hours on a single

day. When starting their day before 5:00, the maximal driver day duration is 12 hours.

10 1. Introduction

In order to make sure that these bounds are always respected in practice, Picnic cur-

rently plans driver days with a maximal duration of 11 hours if the driver starts the

day before 5:15, and 13.5 hours otherwise. Depending on the amount of waiting time

on a truck day, the maximal duration can be extended, as shown below. The 9-hour

drive bound is never reached in practice, but should be kept in mind when develop-

ing the algorithm.

The driver day duration is also bounded from below by the contracts between vd-

Brink and each driver, who are payed for a minimal number of hours of work per

week. Because the scope of this thesis is to take into account one day at a time, this

restriction is incorporated by defining a minimal driver day duration of 7 hours.

For ease of notation, we introduce the following variables for the maximal and mini-

mal duration of a driver day.

dmax =

13.5, if driver day starts after 5:15 and has < 1 hour of waiting time

14, if driver day starts after 5:15 and has ≥ 1 hour of waiting time

11, if driver day starts before or at 5:15 and has < 1 hour of waiting time

11.25, if driver day starts before or at 5:15 and has ≥ 1 hour of waiting time

dmi n = 7

• The time window restriction.

Every defined shipment includes start and end time windows. The start and end

times assigned to a shipment should be in the start and end time windows, respec-

tively.

• The docking restriction.

Every location has a fixed number of trucks that is able to load and unload, i.e.,docking,

at the same time. For Hubs, this number is often one, but for some of the FCs it can

be up to twenty. The total number of trucks docking at the same time at a specific lo-

cation should not exceed this bound. Since the drivers typically can resolve possible

docking conflicts on site, we ignore this restriction in our model.

1.1.4. Driver change
One of the goals of this thesis is to quantify the impact of allowing a driver change. In or-

der to respect the driver day duration restriction, but also make maximal use of trucks, the

possibility of one driver executing the first part of a truck day and another driver executing

the second part, i.e., a driver change, is allowed. Yet, each driver should start and end her or

1.2. The Vehicle Scheduling Problem and its variants 11

Figure 1.4: Example of a splittable truck day.

his day at the same location, and have a work day duration between dmi n and dmax hours.

Therefore, we define the moments in time when a truck returns to the depot where it also

started its day to be relief points. A truck is able to facilitate a driver change if and only if

there is a relief point that splits the truck day into two feasible driver days. A relief point of

this type is called a split relief point. If a truck day contains at least one split relief point, it

is called splittable. Figure 1.4 shows an example of a truck day that is splittable. The driver

days have durations 7 and 7.5 hours and start and end at the same location, hence they are

feasible.

A driver change may decrease the costs of a truck planning, by using fewer trucks in total.

Even so, it may also be the case that introducing the use of a driver change decreases the

efficiency of the planning, because in the process of finding splittable truck days efficiency

is lost. Therefore, we investigate whether we should allow for a driver change or not, in

order to find the best solutions.

The concept of a driver change could be generalized to more than two drivers executing

the same truck day. Within the scope of this thesis, however, this does not occur, because

all shipments are executed between 04:00 and 01:00 and the minimal driving time (dmi n)

is equal to seven, making it very unlikely that a truck day can be splitted into three driver

days. Therefore, we assume, that a truck day is always executed by at most two drivers.

1.2. The Vehicle Scheduling Problem and its variants
A well-known mathematical optimization problem that resembles Picnic’s case is the Ve-

hicle Scheduling Problem (VSP) (Daduna et al., 1995). The input of this problem takes a

list of n ∈ N shipments S = {s1, . . . , sn} that are to be executed by trucks. These shipments

have a set of properties: a start time STi , an end time ETi , a start location SLi and an end

12 1. Introduction

location ELi , for all i ∈ [n]. Between every possible location, L1 and L2, the driving time is

given by d(L1,L2) ≥ 0. The goal is to find an assignment from shipments to trucks such that

the following three conditions hold (Bunte et al., 2009):

• Each shipment is assigned to exactly one truck,

• Each truck performs a feasible sequence of shipments,

• The overall costs are minimized.

A solution of VSP defines a truck planning that is unique up to the order of waiting and

empty driving in between executing shipments. The cost function that is minimized, as-

signs a cost c(p) ∈ R≥0 to any truck planning p. The cost function represents the objective

and thus takes into account the total number of trucks, the relative empty driving time and

the relative waiting time, by taking the weighted sum.

As with many optimization problems, there are multiple variants of VSP. The ones most

relevant for this thesis are the following (Bodin, 1983):

1. Single Depot Vehicle Scheduling Problem (SDVSP): all trucks have to start and finish

at the same single depot.

2. Multi Depot Vehicle Scheduling Problem (MDVSP): all trucks are assigned to one of

the multiple depots available, from which they have to start and finish.

3. Vehicle Scheduling Problem with Time Windows (VSPTW): all shipments are allowed

to start and end in a given time window instead of at a specific start and end time.

4. Integrated Vehicle and Crew Scheduling Problem (IVCSP): in addition to assigning

every shipment to a truck, every task, i.e., executing a shipment or driving empty

from one location to another, is assigned to a driver.

5. Vehicle Scheduling Problem with Length of Path Restrictions (VSPLPR): each truck

day has a maximal day duration.

The problem most similar to Picnic’s case depends on whether a driver change is allowed or

not. When allowing a driver change, the Multi Depot Integrated Vehicle and Crew Schedul-

ing Problem with Time windows (MDIVCSPTW) represents Picnic’s case the best. Without

allowing a driver change, the Multi Depot Vehicle Scheduling Problem with Length of Path

Restrictions and Time Windows (MDVSPLPRTW) resembles Picnic’s case the most. How-

ever, when modelling both problems, the problem sizes become too large to be able to find

a solution within reasonable time. Therefore, the definition of the main problem we are

1.3. Research question 13

trying to find a solution to is the Multi Depot Vehicle Scheduling Problem with Time Win-

dows (MDVSPTW) in combination with the driver day duration restriction either with or

without allowing a driver change. When referring to our problem or Picnic’s case, we mean

finding a solution to this problem within limited computation time.

The VSP variants above are related to our problem as subproblems. In describing the ex-

isting literature and explaining the algorithms for our problem, we build up the theory by

considering several of the subproblems from the list above. The simplest subproblem, SD-

VSP, comes with the advantage of being solvable in polynomial time. All other variants be-

long to the complexity class NP-hard, meaning these problems are unlikely to be solvable

in polynomial time (Bunte et al., 2009).

1.3. Research question
The main goal of this thesis is to answer the following question:

Which algorithm is the most suitable for solving Picnic’s case by finding a good solution

for MDVSPTW and taking into account the driver day duration restriction within limited

computation time?

The following subquestions are considered:

• Which ILP models exist to solve MDVSPTW with the driver day duration restriction?

• Which heuristics exist to find good solutions to MDVSPTW with the driver day dura-

tion restriction?

• How can we design algorithms based on the existing ILP models and heuristics that

find good solutions to MDVSPTW with the driver day duration restriction and satis-

fies Picnic’s requirements for TMS?

• What is the best algorithm when allowing a driver change?

• What is the best algorithm when not a driver change?

• What is the impact of allowing a driver change?

1.4. Contributions
As stated above, VSP is a well-studied problem. But in the literature, the problem is often

applied to public transport bus scheduling problems, not to freight transport. The general

14 1. Introduction

concepts are similar. Instead of assigning trips to buses available at depots, we assign ship-

ments to trucks available at distribution centers (which we call depots). However, there are

some specific differences between the two real-world applications.

• In transport, there is more flexibility time-wise. A truck is supposed to arrive at a

certain distribution center before a certain deadline, since the freight has to be pro-

cessed operationally within the distribution center. The shipment should not arrive

too early, as the freight will occupy valuable ground space in the distribution center.

But the deadlines are not as tight as in public transport. A couple of minutes early

or late can always be corrected in other phases of the operational processes, while 5

minutes early or late in public transport is already a substantial delay.

• In transport, waiting at a location is less costly. At distribution centers, there is often a

small parking space for trucks to wait. In public transport, on the other hand, waiting

at a stop is not desirable, as there is seldom parking space. As a result, in public trans-

port driving back to the depot to wait there, may be a cost efficient option, whereas

in freight transport this never is the case.

• In transport, vehicles and drivers are more bound to each other. A truck driver gen-

erally drives the same truck and prefers not to switch trucks too often, whereas a bus

driver is used to switching vehicles and driving several buses in one working day. Bus

drivers can also join a trip as a passenger to turn back to the place where they started,

while in transport this is unconventional.

• In transport, there is less certainty that all trucks will drive as planned. Each shipment

is dependent on other processes in the supply chain, that are in their turn dependent

on other processes. If one of the hundreds of employees that work in the distribution

centers calls in sick, this might affect the speed at which the freight is prepared, which

might cause a shipment delay. In public transport, however, less factors determine

the accuracy of the actual start and end times of the trips.

Furthermore, there is also a specific property to Picnic’s Case that distinguish it from a gen-

eral transport shipment scheduling problem:

• Since customers are able to order their groceries until 22:00 and receive them the fol-

lowing day (or 15:00 and receive them the following morning), the truck schedules

are constructed based on a forecast. Because the forecast is not always a perfect pre-

diction of reality, shipments are cancelled or added last minute. This uncertainty de-

creases the need to optimize up to detail, as some parts of the solution will probably

change anyway.

1.5. Outline of the report 15

To the best of our knowledge, there is no algorithm that solves MDVSPTW with the driver

day duration restriction and takes into account the specific properties mentioned above.

The goal of this thesis is to investigate the existing solutions for MDVSPTW with the driver

day duration restriction and leverage the properties that distinguish transport from public

transport to write an algorithm that works specifically well for Picnic’s Case.

1.5. Outline of the report
Figure 1.5 provides an overview of the chapters. The first three chapters provide theoreti-

cal background from the literature. Chapter 2 provides general theoretical background on

mathematical optimization. Chapter 3 and Chapter 4 provide more specific background re-

garding our problem. These contain a short literature review and explanation of the partic-

ular existing algorithms, based on integer linear programming and heuristics respectively.

The next two chapters regard the implementation and contain algorithms that are inspired

on the theoretical background chapters, but a better fit for our problem specifically com-

pared to the algorithms encountered in the literature. Chapter 5 presents two algorithms,

that are directly derived from algorithms encountered in the literature. These function as

important building blocks for the three main algorithms that find good feasible solutions

to our problem, and are introduced in Chapter 6. Chapter 7 considers the algorithm con-

figurations of the building blocks and the main algorithms, that is, the choice of specific

performing values. Chapter 8 shows the experimental results of the three main algorithms.

Finally, Chapter 9 draws conclusions and recommends topics for future research.

16 1. Introduction

Figure 1.5: An overview of the chapters.

2
Theoretical background optimization

This chapter introduces the general mathematical optimization theory on which the work

in this thesis in based. Section 2.1 and Section 2.2 explain the relevant theoretical topics

regarding integer linear programming and heuristics respectively. Section 2.3 explains the

theoretical background of assessing the performance of an optimization algorithm.

2.1. Integer Linear Programming
This section briefly introduces Integer Linear Programs (ILPs) and well-known methods to

solve them. For a more extensive explanation of Integer Linear Programming and related

subjects, the reader is advised to read Wolsey (1998).

2.1.1. The definition of an ILP
In optimization problems, the goal is to find an optimal solution with regard to an objective

from a set of implicitly available alternatives. The set of possible solutions, often called the

solution space or feasible region, is defined by a set of constraints. In linear programming,

these constraints are represented by linear inequalities. Given A ∈ Rm×n and b ∈ Rm , the

solution space X ⊆Rn is defined by the set of constraints

Ax ≤ b with x ≥ 0,

The vector x ∈ Rn is called the variable vector. Each vector x represents an element of the

solution space and therefore a solution. The objective is represented by a vector c ∈Rn that

yields the objective value by taking the inner product with the variable vector

cT x.

17

18 2. Theoretical background optimization

The above standard form of a linear program shows that solving the optimization prob-

lem equals finding the element of a polyhedron X that optimizes the inner product with c,

also called the optimum, denoted by x∗. The objective value of the optimum is called the

optimal value and denoted by z∗
LP = cT x∗. The geometric interpretation of linear program-

ming is to ‘push’ a hyperplane given by c as far as possible in the right direction over the

polyhedron X . If the problem is feasible and has a bounded optimum, the convexity of the

polyhedron ensures that an optimal solution x∗ is in an extreme point of the polyhedron

X . Using the Simplex algorithm of Dantzig, linear programs can be solved efficiently in

practice (Dantzig, 1951). Every linear program is polynomially solvable by the ellipsoid al-

gorithm, however, this is not a fast algorithm in practice (Khachiyan, 1979). Integer Linear

(a): Linear Programming. (b): Integer Linear Programming.

Figure 2.1: Geometric interpretation two-dimensional Linear Programming and Integer Linear
Programming.

Programming requires the solution to have integer values, i.e., each element of the vector

x should be integral. From here on, the assumption is made that the optimality goal is to

minimize. The standard form of an integer linear optimization problem is the following:

minimize cT x

subject to A x ≤ b,

x ≥ 0,

x ∈Zn ,

where A ∈Qm×n and b ∈Qm , and the optimal value is denoted by z∗
I P . The geometrical in-

terpretation remains similar, but instead of the solution space being a polyhedron, the in-

teger points intersected with the polyhedron defines the solution space. Integer linear pro-

gramming is NP-hard, as in particular, the decision version of {0,1}-integer programming,

where all elements of x are restricted to values from {0,1}, is one of Karp’s 21 NP-complete

problems (Karp, 1975).

2.1. Integer Linear Programming 19

2.1.2. Methods to solve ILPs
Even though solving ILPs is NP-hard in general, there are several approaches towards ILPs

that enable us to extract useful information about the optimum and sometimes even find

the optimum within a reasonable computation time. This subsection briefly explains some

of these approaches.

A straightforward approach is to compute the LP relaxation, that ignores the integrality

constraint and solves the associated Linear Program (LP). This approach is only able to

find the optimum for the specific subclass of ILPs for which the extreme point of the poly-

hedron corresponding to the optimum is an integer point. In general, rounding the LP

solution guarantees integrality, but not feasibility and is therefore also not an effective ap-

proach. Lemma 2.1 states a necessary and sufficient condition under which the solution of

the LP relaxation is integral, but first we need a definition.

Definition 2.1. A matrix A is Totally Unimodular (TU) if every square submatrix of A has

determinant equal to 1, −1 or 0.

Lemma 2.1. Let A ∈Rm×n , b ∈Rn and c ∈Rn define the LP

min
{

cT x : Ax ≤ b, x ∈Rn
≥0

}
.

This LP has an integral optimal solution for all integer vectors b for which it has a finite

optimal value if and only if A is TU.

Even though the LP relaxation is generally not able to solve the ILP, it is able to provide

a lower bound of the optimal value for every ILP, as z∗
LP ≤ z∗

I P . This is very useful when

assessing the performance of an optimization algorithm, which is further explained in Sec-

tion 2.3.

One method to approach an ILP that guarantees to find the optimum is to apply a Cut-

ting Plane algorithm. This class of algorithms adds linear constraints, i.e., cutting planes,

to the program with the goal of cutting off part of the polyhedron, that does not contain

integer solutions, such that the ILP solution eventually becomes an extreme point. Cutting

Plane algorithms are not practical as a stand-alone, because, even though it can be proven

that after a finite number of steps these algorithms find the optimum (Gomory, 1958) (see

also Wolsey (1998)), the convergence is often slow.

2.1.3. The Branch and Bound algorithm
A method for solving ILPs that is often used in practice is the Branch and Bound algorithm,

in particular when combined with cutting planes. The method was first proposed by Land

20 2. Theoretical background optimization

et al. (1960), but the name was coined by Little et al. (1963). Branch and Bound systemat-

ically searches the solution space, by branching the main problem into smaller subprob-

lems. This can be intuitively visualized by a binary tree, from here on referred to as the

search tree, with the root node representing the main problem and each other node repre-

senting a subproblem. The method aims to solve the main problem without having to visit

the complete search tree. By keeping track of the bounds on the optimal value, generated

by feasible solutions and LP relaxations, we are able to prune subtrees from the search tree

without actually visiting every node in the particular subtrees. In practice, we hope that

pruning yields a much smaller search tree than the complete tree.

Branching often takes place by detecting the ‘most fractional’ variable in the LP relaxation,

i.e., the variable xi closest to the decimal number n.5 with n any integer number, and split-

ting the problem into two subproblems. One subproblem assumes that xi ≥ dxi e and the

other subproblem assumes that xi ≤ bxi c.

At the start of the search, the upper bound is set to the value of a feasible solution, and

if no fesaible solution is known we set it to +∞. At each node, a lower bound is determined

for the tree rooted in that node. The lower bound is calculated by solving the LP relaxation.

If the LP solution is integral, the objective value of that solution gives an upper bound. If

this upper bound is smaller than the currently best known feasible solution, we update the

value of the currently best know upper bound.

The choice to not examine any further nodes in the tree rooted in a certain node, i.e., prun-

ing, happens in the following cases:

• Pruning by optimality: the LP relaxation of the subproblem represented by the node

has an integral solution and the subproblem is therefore solved to optimality. Branch-

ing is not necessary anymore and a feasible solution is found. The upper bound of

the main problem is updated if the feasible solution has a smaller upper bound than

the upper bound that was stored.

• Pruning by bound: The LP relaxation of the subproblem generates a lower bound that

is greater or equal to the current upper bound of the solution of the main problem.

Branching is not necessary, because it does not lead to a better solution than the

solution already known.

• Pruning by infeasibility: the LP relaxation of the subproblem is infeasible. Trivially,

no integer solution to this subproblem exists either.

2.2. Heuristics 21

Once all leaves of the search tree are pruned, the main problem has been solved.

An important advantage of Branch and Bound is that even if the algorithm is not able to

finish completely within a pre-set time bound, it is typically possible to find good feasible

solutions. That is because, during the searching process, we can store all feasible solutions

found so far, from here on referred to as the solution pool. When terminating the algorithm

before finding the optimal solution, the algorithm returns the best solution from the so-

lution pool. There are different types of termination criteria for Branch and Bound. The

algorithm could simply be terminated after a fixed number of seconds τmax has passed, or

we could set a fixed number of nodes in the search tree to visit, before returning the best

feasible solution found so far. Another option is to terminate the algorithm if a feasible so-

lution found is ‘good enough’. This can be determined by setting a bound on the relative

difference of the lower and upper bound, that we update during the search process. Recall

that while searching the tree, we have a least upper bound z, defined by the best feasible

solution found so far, and a lower bound z, defined by the LP relaxation. The relative dif-

ference of the lower and upper bound is defined to be the optimality gap. By bounding the

optimality gap, we define a feasible solution to be good enough if the following holds:

optimality gap = |z − z|
|z| ≤ δg ap , (2.1)

where 0 < δg ap < 1.

This property of Branch and Bound is useful because in practice, good feasible solution

may already be of great value. However, the algorithm does not guarantee to always return

a feasible solution. This motivates the consideration of another type of algorithms that

does guarantee the return of a feasible solution.

2.2. Heuristics
In this section, we consider a type of algorithms that focuses on finding feasible solutions:

heuristics. We explain what the definition of a heuristic is, which different classes exists and

how to assess the performance of a heuristic. For a more extensive explanation on various

types of heuristics, the reader is advised to read Aarts et al. (2003).

2.2.1. The definition of a heuristic
Every optimization algorithm has a trade-off between the quality of the solution and the

computation time of the algorithm. A heuristic prioritizes a shorter computation time over

finding the provably optimal solution. There is no guarantee for the solution to be optimal

22 2. Theoretical background optimization

and there is no guarantee for the computation time to be polynomial, but the user can con-

trol the computation time by including various stopping criteria. The goal of a heuristic is

to find (εὑρίσκωmeans to find in ancient Greek) a good feasible solution within reasonable

computation time. What the precise definitions of good and reasonable are depend on the

user-defined requirements.

Heuristics often have the general strategy to efficiently search the feasible solution space.

Based on this strategy, we usually distinguish between two classes of heuristics: construc-

tion heuristics and improvement heuristics (Blum et al., 2003).

2.2.2. Construction heuristics
Construction heuristics generate a feasible solution from scratch. The first priority is to

find a feasible solution within a short computation time, the second priority is to guaran-

tee quality of this feasible solution. This class of heuristics often defines the first step in

a search algorithm. There are many possible methods that define construction heuristics.

We introduce one method that is relevant in particular for our implementation.

Apply an intuitive algorithm with short computation time.

Depending on the specifics of the problem, one can define intuitive, often greedy, rules that

together construct an initial solution. This approach can be difficult to use if the problem is

highly capacitated. That is, for example, if we only have a small number of available trucks

to assign the shipments to. If there is always a new truck available that can be added to

the truck planning, however, designing an intuitive algorithm to construct an initial solu-

tion is easier. The performance of an intuitive algorithm as a construction heuristic solely

depends on the effectiveness of the rules. The intuitiveness of this method has two main

advantages: transparency, robustness. The transparency of the algorithm creates under-

standing of the characteristics of the solution and therefore allows us to improve the solu-

tion further and communicate the workings of the algorithm easier to all people concerned

with the algorithm in practice. The robustness result from the fact that construction heuris-

tics generally run in polynomial time and and therefore able to guarantee an output. This is

an important property when dealing with algorithms running in operational systems, such

as in Picnic’s case, where no output is not acceptable.

Another method to construct a good feasible solution is to combine the two methods above.

This can be done by defining an easier ILP corresponding to a subproblem of the complex

ILP one is trying to solve. After solving the easier ILP (multiple times, if necessary), one

constructs a solution to the complex ILP by applying intuitive rules. In finding an initial

2.2. Heuristics 23

solution for MDVSP, Pepin et al. (2009) uses this method by leveraging the fact that SDVSP

is solvable in polynomial time. The performance of this method depends on the existence

of an easier ILP for a subproblem and the possibility to define good intuitive rules.

2.2.3. Improvement heuristics
Improvement heuristics start from an initial solution and iteratively improve the solution

by searching the solution space close to the current solution. This method is also called

Local Search. In explaining Local Search in more detail, we return to the mathematical no-

tation regarding optimization problems as introduced in Section 2.1.

The solution space is denoted by X , and a particular solution by x ∈ X . Local Search is

a search strategy, that iteratively explores the neighborhood of solutions ‘close’ to a given

solution. Therefore, a Local Search algorithm is induced by the definition of a neighbor-

hood for every feasible solution x and a neighborhood exploration method. Formally, the

neighborhood of a solution is defined by a neighborhood function, as follows:

Definition 2.2. A neighborhood function is a mapping N : X →P(X) that defines for every

solution x ∈ X a set N (x) ⊆ X of solutions that are in some sense close to x. The set N (x) is

called the neighborhood of x, and each element x′ ∈N (x) is a neighbor of x.

Given a truck planning, an example of a neighborhood could be all truck plannings that

are generated by assigning one shipment to a different truck. This would generate a neigh-

borhood that consists of n × t neighbor truck plannings, where n is the number of ship-

ments and t is the number of trucks. In order to effectively explore this neighborhood, we

need to define a neighborhood exploration method. A neighborhood exploration method

considers N (x) and replaces x by neighbor x′ with the goal of improving the final solu-

tion. An example of a neighborhood exploration method is first improvement, that replaces

the current solution by an improved solution, as soon as one if found. Another method,

called best improvement, is to first explore (a part of) the neighborhood, before replacing

the current solution with the best solution found so far (Aarts et al., 2003). A straightforward

approach would be to stop, when no improvement seems probable anymore. Therefore a

possible termination criterion is to quit when no improving solution is found in the neigh-

borhood of the current solution. The disadvantage of a simple improvement heuristic is

that, depending on the properties of the objective function, the risk of getting stuck in a

poor-quality local optimum is plausible.

There are several methods to escape local optima. Again, it depends on the specific char-

acteristics of the optimization problem which method is preferable. We introduce two of

the most common used methods in practice.

24 2. Theoretical background optimization

• Tabu Search

Tabu Search was introduced by Glover (1986) and formalized three years later (Glover,

1989). The method is based on the idea that we might be able to escape a local opti-

mum with an Local Search heuristic, if we are also allowed to accept worse solutions

and move away from the local optimum, without being drawn back to its relative

good objective value. When moving away, at some point improving solutions to ac-

cept appear again, that lead towards another, hopefully better, (local) optimum. In

order to achieve this, a list of recently visited solutions that are not allowed to be vis-

ited again, i.e., a tabu list, is kept. When a better solution is found, it is accepted if it

is not on the tabu list, and, when no better solution is found, we are allowed to visit

worse solutions.

• Simulated Annealing

Simulated Annealing was first coined by Kirkpatrick et al. (1983). The method decides

whether to accept a neighbor as the new solution based on a probabilistic process.

The probability of accepting a solution depends on the difference between the ob-

jective value of the current solution x and the candidate solution x′ and the temper-

ature T . The temperature is time-dependent: starting at a positive value, the more

time passes, the closer the temperature gets to zero. When an improving solution is

found, it is always accepted. However, when a worse solution is found, the solution is

accepted with a probability that is higher when the solution is better and the temper-

ature is higher. The probability of accepting a solution was introduced by Kirkpatrick

et al. (1983) to be

P (z, z ′,T) =
1, if z ′ < z

e
−(z′−z)

T , otherwise
(2.2)

where z is the objective value of the current solution, z ′ is the objective value of the

candidate solution and T is the temperature.

There are various other methods to escape local optima, such as Variable Depth Search,

Genetic Algorithms and Ant Colony optimization. However, these are out of the scope of

this thesis. The reader is again advised to read Aarts et al. (2003) for more theory regarding

methods to escape local optima.

2.3. Assess the performance of an optimization algorithm
If all optimization methods would be able to find the optimum, a performance measure

would solely be the computation time. However, as mentioned above, it is often not possi-

ble to solve an optimization algorithm to optimality in practice, because of practical time

restrictions. Therefore, we construct algorithms to find a suboptimal solution within a fixed

2.3. Assess the performance of an optimization algorithm 25

amount of time. The most important performance measure of an optimization algorithm

is therefore the quality of the suboptimal solution. So, when comparing various heuristics

to each other, the heuristic that generates the solution with the minimal objective value

within the fixed amount of time, naturally, performs the best.

Assessing the absolute performance of a heuristic is more difficult, as the optimal value

is typically not known. We are, however, able to find a lower bound for the optimal value

by solving a relaxation of the problem. With this lower bound, we are able to bound the

difference between the best objective value found and the optimum. The quality of this ap-

proximation is determined by the quality of the lower bound, that depends on the problem

characteristics and type of relaxation. This could be an LP relaxation, but we could also

choose to relax another constraint.

3
Modelling our problem as an ILP

The Vehicle Scheduling Problem (VSP) belongs to the class of optimization problems that

can be formulated as an ILP. Therefore, well known Integer Linear Programming techniques,

such as the Branch and Bound algorithm, are suitable for finding a solution. This chapter

considers Integer Linear Programming models and techniques applicable to MDVSPTW

with the driver day duration restriction. Section 3.1 contains a literature review on Integer

Linear Programming techniques applied to VSP. The other sections explain the modelling

of our problem by building it up from relevant subproblems. Section 3.2 considers SDVSP,

Section 3.3 adds the multi-depot property by considering MDVSP, and Section 3.4 adds the

time window property by considering MDVSPTW. Finally, Section 3.5 considers the incor-

poration of the driver day duration restriction in the ILP model for MDVSPTW.

3.1. Literature review
We build up this section the same way up we build up the chapter: by considering SDVSP,

MDVSP, MDVSPTW and finally MDVSPTW with the driver day duration restriction. There

are various ways to model the variants of VSP. We shortly mention models of the relevant

subproblems, but for a more extensive explanation of the models, the reader is referred to

the survey papers on ILP modelling of VSP of Bunte et al. (2009) and Daduna et al. (1995).

3.1.1. SDVSP literature review
As mentioned in Chapter 1, SDVSP is solvable in polynomial time. Saha (1970) introduced

the first ILP modelling method for SDVSP: to formulate the problem as a Minimal Decom-

position model and reformulate it as a Network Flow Problem. Drawbacks are that this

model only solves the minimum fleet size, without taking operational costs into account,

27

28 3. Modelling our problem as an ILP

and no upper bound for the fleet size can be set. To be able to incorporate the operational

costs as well, Orloff (1976) formulated SDVSP as an Assignment Problem. However, the

maximal number of vehicles could still not be taken into account. Gavish et al. (1979) fi-

nally was able to construct a model that could also take into account the maximal number

of vehicles, by formulating the problem as a Transportation Problem. Later, J. P. Paixão et al.

(1987) reformulated this model to the closely related Quasi-Assignment model, on which

the currently best performing algorithm to solve SDVSP is based (Freling et al., 2001). Fi-

nally, Bodin (1983) modelled SDVSP as a Minimum-Cost Network Flow model, motivated

by the work of Dantzig and Fulkerson (1954). We explain this model in more detail in Sec-

tion 3.2, because it naturally extends to MDVSP.

3.1.2. MDVSP literature review
MDVSP was proven to be NP-hard by Bertossi et al. (1987). The main three modelling ap-

proaches are: Single-Commodity models, Multi-Commodity models and Set Partitioning

models. The optimization problem was first modelled as an ILP by Carpaneto et al. (1989)

in a Single-Commodity model with Subtour Breaking Constraints. However, the problem

size of this model is extremely large, therefore Mesquita and J. Paixão (1992) introduced

a similar model, but with a smaller problem size, by modelling the problem as a Single-

Commodity model with Assignment Variables. A more intuitive way to model MDVSP, is

by extending the Minimum-Cost Network Flow model of SDVSP. This results in the Multi-

Commodity Connection-Based Networks model. Because this model, again, naturally ex-

tends to MDVSPTW, we choose to explain it in more detail in Section 3.3. The model is the

basis for several heuristic approaches that find a solution for MDVSP. We do not name them

explicitly, but refer to Bunte et al. (2009) for an overview. Another Multi-Commodity model

is the Time-Space Networks model, introduced by Kliewer, Mellouli, et al. (2006). The ad-

vantage of this model is the decreased problem size compared to the Connection-Based

model. The final modelling approach of MDVSP is Set Partitioning, which was first pre-

sented by Ribeiro et al. (1994). Compared to the Multi-Commodity model, this model has

only few constraints, but a huge number of variables, as it enumerates all possible feasible

sequences of trips. Again, several different heuristic approaches are based on this way of

modelling, and often entail Column Generation, because of the large number of non-basic

variables.

Each modelling approach has the same optimal integer solution, but the lower bounds

generated by the LP relaxations differ per approach. The quality of these bounds is rele-

vant for reasons introduced in Section 2.3. Mesquita and J. Paixão (1999) proved that the

lower bound provided by the Single-Commodity model with Subtour Breaking Constraints

3.1. Literature review 29

is smaller than or equal to the lower bound provided by the Single-Commodity with Assign-

ments Variables, which is weaker than the Multi-Commodity model lower bound. Ribeiro

et al. (1994) presented the proof that the LP bound of the Multi-Commodity model and

the Set Partitioning model have the same value. So, the quality of the LP bounds can be

summarized as follows:

zSubtour Breaking
LP ≤ zAssignment Variables

LP ≤ zConnection Based
LP = zSet Partition

LP . (3.1)

3.1.3. MDVSPTW
In general, two approaches are introduced for modelling the time window extension: dis-

crete and continuous processing of the time windows. Discrete processing adds a number

of extra trips to the model for different possible start times within the time window. This

method was first applied for aircraft fleet routing by Levin (1971) and later adapted to the

Multi-Commodity Connection-Based Networks model by Ferland et al. (1988). Section 3.4

explains this method in more detail. The second approach for modelling the time windows,

is continuous processing, a natural extension of the set partition model and therefore often

combined with Column Generation, see Desaulniers et al. (1998).

3.1.4. MDVSPTW with driver day duration restrictions
When incorporating the driver day duration, we make a distinction in allowing a driver

change and not allowing a driver change. When no driver change is allowed, the optimiza-

tion problem is an extension of MDVSPTW with a maximal day duration. In the literature,

this extention of VSP is referred to as the Vehicle Scheduling Problem with Length of Path

Restrictions (VSPLPR), the Vehicle Scheduling Problem with Route and Time Constraints

(VSPRTC) or VSPRTC with only Route or Time Constraints. In this thesis, we refer to this

algorithm by VSPLPR.

Bodin (1983) first described an extention of the Minimum-Cost Network Flow model of

SDVSP to VSPLPR. Because the natural extension from the Minimum-Cost Network Flow

model is in line with the modelling extentions of the other subproblems, we choose to ex-

plain this model in more detail in Section 3.5. Later, also extensions from MDVSP models

were made that incorporated a maximal day duration. Mingozzi et al. (1995) introduced

a set partitioning formulation for MDVSP, extended with the maximal day duration con-

straint. Finally, Haghani et al. (2002) introduced an exact method to solve the same prob-

lem that naturally extends from the Minimum-Cost Network Flow model. Even though this

model may be relevant to our problem, we did not incorporate it into this chapter because

it is not a single ILP formulation but a dynamic method. Instead of adding constraints for

all possible too long days to the ILP, which would result in an enormous number of con-

30 3. Modelling our problem as an ILP

straints, the method iteratively solves the MDVSP ILP and adds the constraint correspond-

ing to a too long day once it occurs. There is no guarantee that the method terminates

in time, even though it seemed to work well in the experiments by Haghani et al. (2002).

Investigating the application of this method to our problem may be interesting for future

research.

When allowing a driver change, the Integrated Vehicle and Crew Scheduling Problem (IVCSP),

also referred to as the Vehicle and Crew Scheduling Problem, is relevant to our problem.

The optimization problem contains the traditional Vehicle Scheduling Problem and the

Crew Scheduling Problem (CSP) as subproblems, and aims to find minimum cost sets of

vehicle blocks and crew duties such that both vehicle and crew schedules are feasible and

mutually compatible. Section 3.5 explains CSP and the relation to IVCSP in more detail. As

shown by Fischetti et al. (1989), CSP with working time constraints is NP-hard. The problem

is usually modelled as a Set Paritioning or Set Covering Problem. Because the number of

feasible duties (and thus columns) is extensive in real-world problem instances, a Column

Generation is often used, for example by Desrochers et al. (1989). Freling (1997) introduced

the first integrated approach for solving VSP and CSP together. Based on this approach,

Huisman (2004) and Huisman et al. (2005) presented the first general mathematical for-

mulation for MDICVSP. Mesquita and Paias (2008) introduced two similar formulations,

but with less constraints. All solution schemes involve techniques such as Column Genera-

tion and Lagrangian Relaxation in order to deal with the large problem sizes. We were only

able to find one reference that covers all constraints of our problem and allows for a driver

change. Kliewer, Amberg, et al. (2012) suggested an algorithm that solves MDICVSPTW.

3.2. An ILP to solve SDVSP
In a first step to formulate MDVSPTW as an ILP, we consider the subproblem SDVSP. As

described below, SDVSP can be formulated as a Minimum-Cost Network Flow Problem.

This section formally defines SDVSP and then considers the modelling as an ILP.

3.2.1. Defining SDVSP
Bodin (1983) formulated the problem as a Minimum-Cost Network Flow model. In order

to formalize the model, we use the following notation for the various inputs of SDVSP:

• Shipments: S = {s1, . . . , sn}

• Depot: single depot d

• Properties of shipment: start location SLs , end location ELs , start time STs and end

time ETs , ∀s ∈ S

3.2. An ILP to solve SDVSP 31

• Driving time between locations: d(L1,L2) ≥ 0, ∀ locations L1,L2

• A cost function c that assigns costs to a truck planning in a deterministic manner.

All locations relevant to the problem are the start and end locations of the shipment and

the depot. Also, all shipments are required to start and end on time.

Example: SDVSP instance

Table 2.1 and Table 2.2 provide an example instance of SDVSP with depot D,

locations A, B, C, and six shipments to be scheduled.

Table 3.1: Driving Time Matrix (minutes).

D A B C
D 0 45 30 60
A 45 0 45 45
B 30 45 0 30
C 60 45 30 0

Table 3.2: Input list of shipments.

si STi ETi SLi ELi

s1 7:30 9:00 A B
s2 14:00 16:30 A B
s3 10:30 12:00 C A
s4 13:30 15:30 B C
s5 8:30 10:00 B A
s6 12:00 13:00 C B

Now, the goal is to construct a feasible truck planning that covers every shipment

exactly once and minimizes the costs. For this instance, one can intuitively verify

that the truck planning in Figure 3.1 is a good solution, because there is relatively

little waiting time and empty driving time, and few trucks are used. What the optimal

solution is depends on the exact definition of the cost function, which we define in

the next section.

Figure 3.1: Solution for example instance.

32 3. Modelling our problem as an ILP

3.2.2. The Minimum-Cost Network Flow model for SDVSP
Bodin (1983) constructs the Minimum-Cost Network Flow model by defining a directed

graph G = (V , A) and assigning costs and flow capacities to the arcs. Note that we used A

before as matrix in the standard notation of ILP. The A used here is non-related and rep-

resents the arcs of the graph. The set of nodes consists of the source node, the sink node

and the shipments, i.e., V = {s,S, t }. The source and sink nodes both represent the depot.

One flow unit represents a single truck, and each path from s to t represents a potential

schedule for a single truck. The arcs of the graph are assigned costs and capacities based

on four types:

• Pull out arcs: from the source node to every shipment node. The costs are equal to

the operational costs of driving from the depot to the start location of the shipment

plus fixed costs for adding a new truck to the planning. The capacity is equal to one.

• Pull in arcs: from every shipment node to the sink node. The costs are equal to the

operational costs of driving from the end location of the shipment to the depot. The

capacity is equal to one.

• Compatibility arcs: from one shipment node s j to another shipment node sk , if it

is feasible for a truck to execute shipment sk after shipment s j . Formally, there is a

compatibility arc connecting s j to sk if and only if the following holds:

ET j +d(EL j ,SLk) ≤ STk . (3.2)

The costs are equal to the operational costs of executing sk after s j and the capacity

is equal to one.

• Circulation arc: from the sink node to the source node. The costs are equal to zero

and the capacity is equal to n.

Figure 3.2 shows a conceptual example of the graph. Three parameters play a part in as-

signing the costs to the arcs. In general, the operational costs are equal to the weighted

sum of the driving time and the waiting time. Therefore, the parameters wd t (weight of the

driving time) and ww t (weight of the waiting time) are introduced. Also, the fixed costs w f c

of adding a new truck to the planning is introduced. The cost function is defined as the

function c : A →R≥0. For ease of notation, the cost of an arc c((i , j)) is denoted by ci j .

ci j =

operational costs(d , s j)+fixed costs if (i , j) in a pull out arc

operational costs(si ,d) if (i , j) in a pull in arc

operational costs(si , s j) if (i , j) in a compatibility arc

0 if (i , j) in a circulation arc

3.2. An ILP to solve SDVSP 33

Figure 3.2: The directed graph representing SDVSP.

where

fixed costs = w f c (3.3)

operational costs(d , s j) = wd t ×empty driving time(d , s j)

= wd t ×d(d ,SL j) (3.4)

operational costs(si ,d) = wd t ×empty driving time(si , s j)

= wd t ×d(ELi ,d) (3.5)

operational costs(si , s j) = ww t ×waiting time(si , s j)+wd t ×empty driving time(si , s j)

= ww t × (ST j −ETi −d(ELi ,SL j))+wd t ×d(ELi ,SL j) (3.6)

The ILP of the minimum flow cost model is defined as follows.

min
∑

(i , j)∈A
ci j fi j (3.7)

s.t.
∑
i∈V

fi j −
∑

k∈V
f j k = 0 ∀ j ∈V (3.8)∑

i∈V
fi j = 1 ∀ j ∈ S (3.9)

0 ≤ fi j ≤ ui j ∀(i , j) ∈ A (3.10)

fi j ∈Z ∀(i , j) ∈ A (3.11)

The decision variables are fi j ≥ 0 corresponding to the amount of flow through arc (i , j) ∈
A, with each an assigned cost ci j and capacity ui j . The objective function (3.7) minimizes

the sum of the total costs of all arcs in the solution. Constraints (3.8) guarantee flow conser-

vation in every node. Constraints (3.9) require an in-flow (and thus, by (3.8), also out-flow)

of exactly one, for all nodes in S. Constraints (3.10) guarantee that the flow does not exceed

the capacity and constraints (3.11) ensure that it is integral.

This ILP is solvable in polynomial time, because by Lemma 3.1 the extreme points of the

34 3. Modelling our problem as an ILP

polyhedron are integer points, making the integrality constraints redundant. Hence, linear

programming methods are sufficient in finding the optimal solution of the ILP.

Lemma 3.1. The extreme points of the polyhedron defined by (3.8)-(3.10) above are integer

points.

Proof. By Lemma 2.1, it suffices to show that the constraint matrix A and the vector b of

constraints (3.8)-(3.10) are respectively TU and integral. The three types of constraints di-

vide A and b into three parts:

A =

A1

A2

A3

 b =

b1

b2

b3

Here, A1, b1 correspond to the flow conservation constraints (3.8), A2, b2 to the flow

requirement constraints (3.9) and A3, b3 to the flow capacity constraints (3.10). First, we

check the integrality of b. We see that

bi =

0, for bi ∈ b1

1, for bi ∈ b2

ui j , for bi ∈ b3

As the flow capacity ui j is integer by construction, we can conclude that b is also integer.

Now, we need to prove that A is TU. In general, it holds that if matrix B is TU, then matrix(
B
I

)
is TU, where I is the identity matrix (Wolsey, 1998). So, as A3 = I , it is sufficient to show

that
(

A1
A2

)
is TU.

It also holds in general that a matrix B is TU if all entries are in {−1,0,+1} and any collection

of rows of B can be split into two parts so that the sum of the rows in one part minus the

sum of the rows in the other part is a vector with all entries in {−1,0,+1}, see p.269 Theorem

19.3 from Schrijver (1998). We prove that this is true for
(

A1
A2

)
. Note that A1 is the incidence

matrix corresponding to the graph, with a row for each node and a column, containing ex-

actly one +1 and one −1, for each arc. Also note that A2 is a matrix with a row for each

shipments node, and a column containing exactly one +1, for each arc. If we only consider

the 1-entries, the rows of A2 are copies of the rows of A1 corresponding to the same ship-

ment node.

Let ai j denote the elements of
(

A1
A2

)
. Indeed ai j ∈ {+1,−1,0} for all elements ai j of A1 and

ai j ∈ {+1,0} for all elements ai j of A2.

3.2. An ILP to solve SDVSP 35

Now, let R be an arbitrary collection of rows of
(

A1
A2

)
. The columns corresponding to all arcs,

except for the pull in arcs (from all shipment nodes to t) contain exactly two +1’s and one

−1. The columns corresponding to the pull in arcs, i.e., pull in columns contain one +1 and

one −1. So for the pull in columns, we know that difference of the sum of the two parts of

R is a vector with entries in {−1,0,+1}. Now, we only have to prove that for the matrix
(

A1
A2

)
minus the pull in columns, R can be split into two parts R = R1 tR2 for which the sum of

the rows in R1, denoted by σ1, minus the sum of the rows in R2, denoted by σ2, is a vector

with all entries in {−1,0,+1}.

We suggest a method to construct the partition and prove that all entries of σ1 −σ2 are

in {−1,0,+1}. Because each column now contains exactly two +1’s and one −1, we know

that the sum of the rows in R is a vector ψ with entries in {−1,0,+1,+2}. Let all rows in R

that belong to A1 be in R1. For the rows in R that belong to A2, we assign them to R2 if they

contribute to the 2-entries in ψ and assign the remaining rows to R1. In the following para-

graph we prove by contradiction that for this partition all entries ofσ1−σ2 are in {−1,0,+1}.

Assume there is a column c such thatσ1(c)−σ2(c) is not in {−1,0,+1}. Because,σ1(c)−σ2(c)

is not in {−1,0,+1}, we know that σ1(c)−σ2(c) =−2, where σ1(c) =−1 and σ2(c) =+1. Be-

cause σ1(c) = −1, we know that the row corresponding to the 1-entry of column c, say r1,

in A1 is not in R. Let r ∈ R2 be the row that corresponds to the 1-entry at column c. By

construction of the partition, r contributes to a 2-entry in ψ, that is, there is a column c ′

such that r (c ′) = 1 and σ1(c ′) = σ2(c ′) = 1. Because σ1(c ′) = 1, we know that the row corre-

sponding to the 1-entry of column c ′, say r ′
1, in A1 is in R. However, because the rows in A2

are copies of the rows in A1 if we only consider the 1-entries, we know that r1, that was not

in R, is the same row as r ′
1, that is in R. Therefore, we found a contradiction and thus,

(
A1
A2

)
is TU. So, we can conclude that A is also TU, and that the extreme points of the polyhedron

are integer points.

r1→ 1 1 ← r ′
1

1 1 ← r

↑
c

↑
c ′

A2 =

A1 =

36 3. Modelling our problem as an ILP

Figure 3.3: The directed graph representing MDVSP.

Since all extreme points of (3.8)-(3.10) are integral, we can ignore (3.11). Once prob-

lem (3.7)-(3.10) is solved, the optimal solution provides a subgraph of G, consisting of all

arcs (i , j) such that fi j > 0. The solution consists of a collection of cycles, each of which

represents a truck.

3.3. An ILP to solve MDVSP
In this section the possibility that multiple depots are available is added to the problem

described in the previous section. First, Subsection 3.3.1 formally defines MDVSP, then

Subsection 3.3.2 describes the formulation as a minimum flow cost model.

3.3.1. Defining MDVSP
The formal definition of MDVSP is similar to SDVSP. The difference is that the input consists

of multiple depots, with each a number of trucks available at that depot. The requirement

that each truck has to start and end at the same location remains. Additional to the notation

introduced in the SDVSP, the following notations are introduced:

• Depots: D = {d1, . . . ,dm}

• Number of trucks available at each depot: κd ∈N for d ∈ D .

3.3.2. The Minimum-Cost Network Flow model for MDVSP
The optimization problem is again formulated as an ILP by modelling it as a Minimum-

Cost Network Flow model. The difference compared to SDVSP is that the graph consists of

m layers, each representing a depot and consisting of the SDVSP graph. The notation of

the graph is therefore Gm = (V m , Am). Figure 3.3 shows the multi-layered graph. Each copy

Gl = (Vl , Al), with l ∈ [m], gives the flow of trucks starting and ending at dl as output. The

3.4. An ILP to solve MDVSPTW 37

set of nodes per layer consists of Vl = {sl ,Tl , tl }, hence sl and tl represent dl . The costs and

capacities assigned to every arc are determined in the same way as in the SDVSP model.

The only difference is that the circulation arc has a flow capacity of κdl instead of n.

The ILP corresponding to this model is the following:

min
m∑

l=1

∑
(i , j)∈Al

c l
i j f l

i j (3.12)

s.t.
∑

i∈Vl

f l
i j −

∑
k∈Vl

f l
j k = 0 ∀ j ∈Vl , ∀l ∈ [m] (3.13)

m∑
l=1

∑
(i , j)∈Al

f l
i j = 1 ∀ j ∈Vl (3.14)

0 ≤ f l
i j ≤ ui j ∀(i , j) ∈ Al (3.15)

f l
i j ∈Z ∀(i , j) ∈ Al (3.16)

The decision variables are f l
i j ≥ 0, corresponding to the amount of flow through every arc

(i , j) ∈ Al . The objective function (3.12) and constraints (3.13), (3.15), (3.16) are intuitively

extended from the SDVSP model. Constraints (3.14) require a total in-flow of exactly one for

every node corresponding to the same task. Note that these constraints differ from SDVSP

in the sense that not every node representing a shipment in the graph has to have in-flow

one. Intuitively this makes sense, because every shipment needs to be executed by one

truck in total, not one truck per depot. If the latter were the case, the problem would have

been a cumulative set of m SDVSP problems, which would have made the program solvable

in polynomial time. Constraints (3.15) are similar as before.

3.4. An ILP to solve MDVSPTW
In this section the time window property is added; shipments do not have fixed start and

end times, but are allowed to start and end in given time windows. First, Subsection 3.4.1

defines MDVSPTW, then Subsection 3.4.2 describes the formulation as a Minimum-Cost

Network Flow model.

3.4.1. Defining MDVSPTW
The formal definition of MDVSPTW is similar to MDVSP. The difference is that each ship-

ment is equipped with a start window and an end window. A new type of constraints re-

quires that the chosen start (and end) time of a shipment should be in the start (and end)

window. The notation introduced for MDVSP remains the same, only the input shipments

are of a different type. Instead of being defined by fixed start and end times, from here

on referred to as discrete shipments, we now consider shipments defined by start and end

38 3. Modelling our problem as an ILP

time windows, called time window shipments. The input set of n time window shipments is

denoted by S̄ = {s̄1, . . . , s̄n} and each time window shipment s̄i has the following properties:

• Start window: earliest start time ESTi and latest start time LSTi

• End window: earliest end time EETi and latest end time LETi

• Start and SLi end location ELi

Without loss of generality, we assume that the length of the start window is the same as the

length of the end window.

3.4.2. The Minimum-Cost Network Flow model for MDVSPTW
The problem is again formulated as an ILP by modelling it as a Minimum-Cost Network

Flow model. The difference compared to MDVSP is that the time windows are to be taken

into account. In order to achieve this, a time window discretization method is applied. The

method maps each time window shipment to a set of discrete shipments. Instead of one

shipment node per input shipment per layer, we now have (possibly) multiple shipment

nodes per input shipment per layer that represent the same shipment, but with different

start times.

The time window discretization is constructed by setting a minimum step size δs (in min-

utes) and a maximum number of discrete shipments that is to be generated by a single

time window shipment δm ≥ 2. Because the length of a shipment is fixed, we only consider

start times in defining the discrete shipments. For every time window shipment, a discrete

shipment is defined for the earliest start time, every δs minutes later, and the latest start

time. The step size δs results in the generation of nδs discrete shipments. If this number

exceeds δm , we redefine the step size by the minimum step size such that the total number

of discrete shipments is equal to δm . In order to achieve this, the step size is adjusted to

step size =
⌈

LSTi −ESTi

δm −1

⌉
Algorithm 1 provides the pseudocode of the time window discretization procedure for a

single time window shipment and Figure 3.4 shows two conceptual examples of time win-

dow discretization.

To formalize notation, we denote the set of all possible time window shipments and dis-

crete shipments to be S̄ and S. The discretization mapping that applies the discretization

3.4. An ILP to solve MDVSPTW 39

Algorithm 1: Time window discretization procedure.

1 INPUT
2 Time window shipment s̄i

3 Parameters: δs and δm

4

5 RULES
6 Define the of shipments generated with step size δs :

7 nδs
i =

⌈
LSTi−ESTi

δm

⌉
+1

8 if nδs
i ≤ δm then

9 Define a discrete shipment for ESTi , every δs minutes in the time window, and
for LSTi

10

11 else

12 Define a discrete shipment for ESTi , every
⌈

LSTi−ESTi
δm−1

⌉
minutes in the time

window, and for LSTi

13

method as described above, is denoted as follows:

p : S̄ −→P(S)

si 7−→ p(s) = {s̄i
1, . . . , s̄i

ni
}

where ni ≤ δm is the number of discrete shipments generated by time window shipment s̄i .

By defining the discretization mapping this way, we are able to adjust the trade-off between

defining few discretized shipments, and therefore not increasing the problem size or defin-

ing many discretized shipments and therefore allowing for more flexibility which leads to a

better quality solution.

(a): MDVSP graph.
(b): MDVSPTW graph.

Figure 3.5: Schematic view of a single layer of a graph corresponding to the MDVSP and MDVSPTW model.

Figure 3.5 shows the difference between a single layer of the MDVSP graph, where each

shipment is represented by a single shipment node, and the MDVSPTW graph, where time

40 3. Modelling our problem as an ILP

(a): δm is greater or equal to the amount of
shipments generated by the time window with
given step size.

(b): δm is smaller than the amount of shipments
generated by the time window with given step
size.

Figure 3.4: Two conceptual examples of time window discretization.

window shipments are often represented by multiple discrete shipment nodes. The nodes

of the MDVSPTW graph are described by V m = {
s, p(S), t

}m and the arcs are similar as be-

fore. The complexity of the graph increases by applying the time window discretization.

Figure 3.6 shows the graph of the model. The ILP corresponding to the MDVSPTW model

is as follows

min
m∑

l=1

∑
(i , j)∈Al

c l
i j f l

i j (3.17)

s.t.
∑

i∈Vl

f l
i j −

∑
k∈Vl

f l
j k = 0 ∀ j ∈Vl , ∀l ∈ [m] (3.18)

m∑
l=1

∑
j∈p(j)

∑
(i , j)∈Al

f l
i j = 1 ∀ j ∈Vl (3.19)

0 ≤ f l
i j ≤ ui j ∀(i , j) ∈ Al (3.20)

fi j ∈Z ∀(i , j) ∈ Al (3.21)

Note that the only difference compared to the MDVSP ILP is the flow requirement con-

straints (3.19). The inflow of all shipment nodes generated by a single shipment should be

exactly one. In the MDVSPTW model this means that not only the shipment nodes in dif-

ferent layers, but also the shipment nodes with different start times corresponding to the

same original shipment should be summed over, explaining the additional sum compared

3.5. The driver day duration restriction 41

Figure 3.6: The directed graph representing MDVSPTW.

to before.

3.5. The driver day duration restriction
Solving MDVSPTW formulated as an ILP finds an efficient truck planning that uses a mini-

mum number of trucks, while taking into account the depots with their capacities and the

time windows in which the shipments are allowed to start and end. However, the model

does not take into account the driver day duration restriction. As mentioned in Chapter 1,

the driver day duration should be between dmi n and dmax and start and end at the same

location in order to be feasible. When modelling the ILP of MDVSPTW as a Minimum-Cost

Network Flow Problem, no constraint considers the ‘length’ of the path. Hence, it is likely

that too long truck day durations occur, as maximal truck use benefits the objective. And

thus, we cannot guarantee that the truck days are to be executed by one or two drivers while

respecting the driver day duration restriction.

Within of Integer Linear Programming, there are two solutions to this problem. One is

applicable when allowing a driver change and one when not allowing a driver change.

1. When allowing a driver change: combine the Integrated Vehicle and Crew Scheduling

Problem (IVCSP) with MDVSPTW.

2. When not allowing a driver change: combine the Vehicle Scheduling Problem with

Length of Path Restrictions (VSPLPR) with MDVSPTW.

The following subsections elaborate on both VSP variants and explain why they are not

implemented in this thesis.

42 3. Modelling our problem as an ILP

3.5.1. Combine IVCSP with MDVSPTW
Vehicle scheduling and crew scheduling are usually approached in a sequential manner,

by first scheduling the vehicles and then scheduling the crew. However, when integrating

the problems, we are able to find better solutions. The goal is to find minimal-cost feasi-

ble truck days and driver days such that both truck and driver plannings are feasible and

mutually compatible. First we explain CSP from a public bus transport perspective and

then relate the problem to our freight transport case. The Crew Scheduling Problem aims

to cover all trips and driving activities with feasible working days. In order to model this,

we need the following concepts:

• A relief point is, in the context of public bus transport, defined by a location and time

where a driver may change its vehicle.

• A task t ∈ T is a sequence of activities between two consecutive relief points and rep-

resents an elementary portion of work that can be assigned to a driver.

• A sequence of tasks that are assigned to a single driver form a duty h ∈ H.

The goal of CSP is assigning tasks to duties, such that

• Each task is executed.

• Each duty contains a feasible sequence of tasks.

• The total cost of the duties is minimizes.

A duty is feasible if it respects certain constraints, such as a minimal and maximal work-

ing duration. Notice here the similarity to VSP. However, where VSP could be modelled as

a Minimum-Cost Network Flow model, as shown in the previous sections, CSP is usually

modelled as a Set Partitioning or Set Covering Problem, as mentioned in Section 3.1. In

order to define the ILP model of CSP, we need a new type of decision variable. The decision

variable yh ∈ {0,1} is defined for every duty h ∈ H and equal to 1 if and only if the duty be-

longs to the optimal solution. The set of all duties containing task t is denoted by Ht . The

cost function c : h 7→ c(h) = ch ∈R≥0 assigns costs to every duty.

3.5. The driver day duration restriction 43

The ILP formulation of the Set Partitioning model of CSP is

min
∑

h∈H
ch yh (3.22)

s.t.
∑

h∈Ht

yh = 1 ∀t ∈ T (3.23)

yh ∈ {0,1} ∀h ∈ H (3.24)

Objective (3.22) minimizes the total cost of the crew schedule and constraints (3.23) en-

sure that every task is covered by exactly one duty. In order to model constraints (3.23), all

possible feasible duties have to be generated. This results in a huge number of decision

variables, making Column Generation a often used method in solving CSP.

When extending this problem to IVCSP, the number of decision variables increases even

further, as we have decision variables fi j , in addition to decision variables yh . This prob-

lem can finally be extended to the ILP corresponding to our problem MDVCSPTW. For a

detailed explanation on the ILP modelling and solving of MDIVCSPTW, we refer to Kliewer,

Amberg, et al. (2012).

Even though MDIVCSPTW is applicable to our problem, we choose not to implement it,

because of the following reasons:

• Our crew scheduling restrictions differ from the crew scheduling restrictions that we

found in the literature and explained above. In our problem, drivers never change

trucks. So, a relief point is defined by a location and time where a driver may start or

end his or her day. And only at a split relief point, that divides a truck day into two

feasible driver days, a driver day is allowed to end and begin. This difference com-

pared to the bus public transport application, causes a heuristic sequential method,

to be better applicable than in the public transport case.

• The problem size of the ILP is enormous. As a result, it is not likely that we are able

to find a feasible solution within reasonable time. However, for bench-marking pur-

poses, the ILP can still be useful. Therefore, implementing the ILP might be interest-

ing for future research.

• The solution scheme presented by Kliewer, Amberg, et al. (2012) involves, among

other methods, Lagrangian Relaxation, Column Generation, Subgradient Method and

Decomposed Pricing Strategy. Because of the time restrictions of this thesis, we had

to choose between either developing a more advanced ILP algorithm or developing

heuristics for our problem. The ILP algorithms are not able to guarantee an output

44 3. Modelling our problem as an ILP

for every input instance, because of the NP-hardness. As a result, we chose to develop

heuristics. Also, heuristics are preferred by Picnic, because they are easier to involve

on in the ever-changing landscape of the scale-up.

3.5.2. Combine VSPLPR with MDVSPTW
The Vehicle Scheduling Problem with Length of Path Restrictions bounds the length of

truck day durations by adjusting the graph of the SDVSP model, see Figure 3.2. The short-

coming of the SDVSP model is that we are not able to consider, and thus bound, the length

of a flow cycle. In order to change this, we remove the two depot nodes and adjacent arcs,

as representatives of the start and end of the day, and add backward arcs. A backward arc

connects shipment sk to shipment s j if and only if starting the day executing s j and ending

the day executing sk results in a feasible day duration and is thus feasible. Formally, this is

the case if the following holds:

dmi n ≤ d(d ,SL j)+ (ETk −ST j)+d(ELk ,d) ≤ dmax . (3.25)

The new graph is defined by the shipment nodes V = {S} and the arcs A = {Ac , Ab}, where

Ac is the set of compatibility arcs and Ab the set of backward arcs. Instead of all flow cycles

in the solution flowing back to the start depot node through the circulation arc, flow cycles

are constructed by a path from one shipment node to another and a single backward arc,

that represents the finishing of a working day. Figure 3.7 shows a graph corresponding

to VSPLPR and an example of a solution consisting of two truck days. The costs of the

Figure 3.7: The directed graph representing VSPLPR and an example of a solution.

compatibility arcs remain equal to the operational costs. The costs of the backward arcs are

equal to the operational costs of the pull out and pull in trips and the fixed costs of adding a

new truck to the planning. Note that this is equal to the costs that were assigned to the pull

out/in arcs before. The ILP corresponding to this model introduces in addition to variables

fi j , that now only correspond to compatibility arc (i , j), another type of decision variable

3.5. The driver day duration restriction 45

qi j corresponding to backward arc (i , j).

min
∑

(i , j)∈Ac

ci j fi j +
∑

(i , j)∈Ab

ci j qi j (3.26)

s.t.
∑

i :(i , j)∈Ac

fi j +
∑

i :(i , j)∈Ab

qi j −
∑

i :(j ,i)∈Ac

f j i −
∑

i :(j ,i)∈Ab

q j i = 0 ∀ j ∈V (3.27)

∑
i :(i , j)∈Ac

fi j +
∑

i :(i , j)∈Ab

qi j = 1 ∀ j ∈V (3.28)

∑
(i , j)∈Ac∩C

fi j +
∑

(i , j)∈Ab∩C
qi j ≤ |C |−1 ∀ cycles C with

|Ab ∩C | ≥ 2 (3.29)

0 ≤ fi j ≤ ui j ∀(i , j) ∈ Ac (3.30)

0 ≤ fi j ∈Z ∀(i , j) ∈ Ac (3.31)

0 ≤ qi j ≤ 1 ∀(i , j) ∈ Ab (3.32)

qi j ∈Z ∀(i , j) ∈ Ab (3.33)

Apart from the separated arcs in the notation, the ILP has similar constraints as in the

SDVSP case: the costs are minimized by constraints (3.26), the flow is conserved by con-

straints (3.27), the flow requirements through all shipment nodes is guaranteed by con-

straints (3.28) and the amount of flow is restricted by a capacity and integer by constraints

(3.30) and constraints (3.31). The only new type of constraints is (3.29), that guarantees

that each flow cycle in the solution contains exactly one backward arc. As the meaning of a

backward arc is ‘finishing the working day’, visiting two backward arcs within one truck day

is not possible.

Experiments indicate that the problem size of the ILP above is too large to be solved for

instances of the size that occur at Picnic. That is the case, because the number of back-

ward arcs far exceeds the number of stem and circulation arcs that they replaced and the

addition of constraints (3.29). Even when adding assumptions that decrease the number

of backward arcs, such as defining a minimum start time for shipments that are allowed to

be the last shipment of a truck day, the problem size remains too large. And if we would be

able to reduce the problem size of the ILP above, we did not incorporate the multi-depot

and time window restrictions yet, that increase the problem size substantially. Thus, even

though modelling a constraint that bounds the duration of truck days would define an ILP

that represents our problem when allowing no driver change, we do not implement VS-

PLPR in our algorithms because it increases the problem size too much.

46 3. Modelling our problem as an ILP

Because we are not able to implement IVCSP and VSPLPR into our ILP, it remains a

challenge to incorporate the driver day duration restriction. Within Integer Linear Pro-

gramming, it is difficult to find a solution for this problem, because of the time restriction.

And even if we would be able to construct an algorithm that is able to find a feasible so-

lution for the ILP of our problem within reasonable time for our test data, the algorithm

violates the robustness requirement of the algorithm. Because of the NP-hardness, we are

not able to guarantee an output within reasonable time for every input instance.

However, heuristics are able to guarantee the return of a feasible solution within reason-

able time, at the cost of not being able to find an optimal solution. In Chapter 6, an al-

gorithm is introduced that takes a solution to the ILP of MDVSPTW as initial solution and

heuristically applies adjustments in order to create a solution that respects the driver day

duration restriction. But first, we introduce a Greedy algorithm from the literature that is

able to generate a solution for MDVSP in very short time.

4
A Greedy heuristic for MDVSP

In the previous chapter, we noted that Integer Linear Programming can be used to model

MDVSPTW and find an optimal solution. However, as the problem is NP-hard, we are not

able to guarantee a feasible solution within limited computation time. Also, the solution

for MDVSPTW is not a feasible solution for our problem, because the driver day duration

restriction is not incorporated. While in practice, a good feasible solution might already

be of great value. For these reasons, this chapter reports on existing heuristic approaches

from the literature for our problem and relevant subproblems. Section 4.1 considers a short

literature review on heuristics for our problem. Section 4.2 considers a Greedy scheduling

heuristic for MDVSP, the Concurrent Scheduler algorithm. This heuristic lays the foun-

dation for the Greedy Scheduler algorithm for MDVSPTW that is introduced in the next

chapter and plays an important role in the main algorithms.

4.1. Literature review: heuristics to solve our problem
Because every subproblem of our problem is NP-hard, except for SDVSP, often heuristi-

cal approaches are proposed in the literature. The majority of these approaches involve

solving ILPs heuristically. Specifically, Langrangian heuristic in combination with Column

Generation often occurs. We choose to focus on finding heuristical approaches that do not

involve ILP formulations, because these are easier to involve on in the ever-changing land-

scape of Picnic as a scale-up. Therefore, we consider the heuristical approaches from the

literature that do not involve an ILP below. For more details on the Column Generation and

Langrangian heuristic approaches for out problem, we refer the reader to (Kliewer, Amberg,

et al., 2012).

47

48 4. A Greedy heuristic for MDVSP

Only few heuristics for our problem or relevant subproblems that do not involve an ILP,

are introduced in the literature. And all algorithms we found, aim to find a solution for the

subproblem MDVSP. The first Greedy approach in the literature is the Concurrent Sched-

uler algorithm, introduced by Bodin et al. (1978). We explain this algorithm detail in Sec-

tion 4.2, because it lays the foundation for the Greedy Scheduler algorithm we introduce in

Chapter 5. Pepin et al. (2009) compared five heuristics for MDVSP, of which the final two,

Large Neighborhood Search in combination with Column Generation and Tabu Search,

were not introduced before. From all five methods, only the Tabu search algorithm does

not involve an ILP formulation. The Tabu search algorithm defines two types of neighbor-

hoods: based on shifting and swapping. Shifting means that one trip assigned to a truck

is shifted to another truck, i.e., assigned to another truck. Swapping means that two trips

assigned to trucks, swap trucks, i.e., each are assigned to the other truck. The algorithm

does not provide the quality of solution that the other four methods are able to provide. In

other study, Laurent et al. (2009) introduced an Iterated Local Search algorithm for MDVSP,

that defines a neighborhood by allowing block-moves, that is, apply the following scheme

to a truck planning:

1. Randomly select a truck and randomly select a block of consecutive trips assigned to

that truck. Remove the block from the truck.

2. Randomly select a different truck to assign the block to this new truck.

3. If no conflicts occur, we are done. Otherwise, continue.

4. Remove all trips from the truck that are in conflict with the block.

5. Assign all removed trips to the cheapest truck possible.

6. If there is no other truck to assign a trip to, assign the trip to a new truck added to the

planning.

The neighborhood structure based on block moves outperforms the shift and swap neigh-

borhood structures. Finally, Wen et al. (2016) presents an Adaptive Large Neighborhood

Search algorithm for the Electric Vehicle Scheduling Problem, but this problem is too dif-

ferent from our problem to be applicable directly.

4.2. The Concurrent Scheduler algorithm for MDVSP
As mentioned in Chapter 2, one method for finding a feasible solution in short time is to

apply an intuitive, often Greedy, algorithm with short computation time. This section con-

siders the Concurrent Scheduler algorithm, a Greedy algorithm to find a solution for MD-

VSP. The Concurrent Scheduler algorithm was coined by Bodin et al. (1978) and constructs

4.2. The Concurrent Scheduler algorithm for MDVSP 49

a feasible solution for MDVSP by iterating through an ordered list of shipments and greedily

assigning the shipments to the trucks. Algorithm 2 shows the pseudocode of the Concur-

rent Scheduler.

First, Bodin et al. (1978) order the shipments according to increasing start times. Every

Algorithm 2: Concurrent Scheduler for MDVSP.

1 INPUT
2 Ordered list of discrete shipments [S] based on increasing start times
3 Set of depots D with capacities κd for all d ∈ D
4

5 RULES
6 while [S] 6= ; do
7 for si ∈ [S] do
8 if feasible active trucks 6= ; then
9 Assign si to the feasible active truck with last shipment s j that minimizes

the operational costs(i , j)

10

11 else
12 Assign si to non-active truck that minimizes the operational costs(d , si)

without exceeding κd

13

14 Remove s from [S]

15

shipment si is assigned to a truck by first considering the trucks that already have ship-

ments assigned to them, i.e., active trucks. An active truck is feasible for si if for the last

shipment s j assigned to the truck, the following holds:

ET j +d(EL j ,SLi) ≤ STi . (4.1)

If the set of feasible active trucks is non-empty, the costs are determined for executing the

shipment after the currently last shipment on the truck. These costs are equal to the opera-

tional costs of executing potential new shipment si after current last shipment s j , similarly

defined as in (3.6).

operational costs(si , s j) = ww t ×waiting time(si , s j)+wd t ×empty driving time(si , s j)

= ww t × (ST j −ETi −d(ELi ,SL j))+wd t ×d(ELi ,SL j)

(4.2)

Shipment si is assigned to the cheapest feasible active truck. If there is no active truck that

can be at the start location at the start time of the shipment, the shipment is assigned to a

50 4. A Greedy heuristic for MDVSP

truck that has no shipments assigned to it yet, i.e., non-active truck. From the non-active

trucks, the shipment is assigned to a truck from depot d that minimizes the operational

costs defined as follows:

operational costs(d , s j) = wd t ×empty driving time(d , j)

= wd t ×d(d ,SL j)

without exceeding the capacity κd . After assigning all shipments to the trucks, the algo-

rithm returns the obtained truck planning.

5
Two building blocks

This chapter introduces two algorithms that build upon the existing approaches for our

problem and relevant subproblems from the literature, presented in the previous two chap-

ters. Section 5.1 introduces assumptions to decrease the problem size of the implementa-

tion of the ILP from Section 3.4. As a result, we are able to find a good solution for the ILP

within reasonable computation time. Section 5.2 introduces the Greedy Scheduler algo-

rithm, inspired by the Concurrent Scheduler algorithm from Section 4.2, but specifically

applied to our problem. Both algorithms are important building blocks in defining the

main algorithms for our problem in the next chapter.

5.1. Finding a solution for the ILP of MDVSPTW
The commercial optimization solver Gurobi Optimization (2020) enables us to implement

an ILP and applies built-in optimization techniques, such as Branch and Bound and Cut-

ting Plane algorithms, to find a solution. Section 3.4 introduced the ILP that represents

MDVSPTW, a relaxation of our problem without the driver day duration restriction incor-

porated. We aim to find a good solution for this relaxation of our problem and then adjust

the solution in order to be feasible for our problem. These adjustments are applied heuris-

tically in the algorithm introduced in Section 6.1. Experiments indicate that the compu-

tation time required to solve the MDVSPTW ILP for instances of the size existing at Picnic

far exceed the acceptable computation time. Therefore we consider methods that decrease

the problem size of MDVSPTW in order to be able to define an ILP implementation that

finds a feasible solution within reasonable time.

51

52 5. Two building blocks

5.1.1. Methods to decrease the problem size of the MDVSPTW ILP
The number of nodes and arcs of the MDVSPTW graph determines the problem size of the

ILP, as the decision variables correspond to the arcs and the constraints are based on the

in- and outflow of the nodes. Recall that the input consists of m depots and n time window

shipments, where realistically m ¿ n. Each time window shipment generates a maximal

number of dm discrete shipments. So, the total number of nodes is of the order O(m∗dm ∗
n), dominantly determined by the number of shipment nodes. The total number of arcs is

of the order O((dm∗n)!), dominantly determined by the number of compatibility arcs. As a

result, we aim to decrease the number of shipment nodes and the number of compatibility

arcs. The following method decrease the number of compatibility arcs:

• Add a maximum waiting time t max
w t .

As given in Section 3.2, the compatibility arc (s j , sk) is added if the following equation

holds:

ET j +d(EL j ,SLk) ≤ STk . (5.1)

Compatibility arcs connect every pair of shipments that can be executed after each

other. But, for a shipment s j that has to be executed in the morning and a shipment

sk that has to be executed in the evening, the constraint above is likely to not be re-

strictive. Therefore, we do not add compatibility arcs between shipments that have

a long waiting time between them, without losing optimality. To formalize this idea,

the equation determining if shipments s j and sk are connected by a compatibility arc

is updated to the following:

ET j +d(EL j ,SLk) ≤ STk ≤ ET j +d(EL j ,SLk)+ t max
w t . (5.2)

In determining the value of t max
w t , we want to find a balance between the effectiveness

in decreasing the number of compatibility arcs and not losing optimality. In order

to decide on what assumptions to make to decrease the problem size, but not lose

quality of solution, we set up an experiment in Chapter 7.

The following methods decrease the number of nodes:

• Minimize the time window discretization parameter dm and maximize the time

window discretization parameter ds .

As explained in Section 3.4, choosing the maximal number of discrete shipments dm

that are allowed to be generated by a single time window shipment and the minimal

step size ds , is a trade-off between problem size and quality of solution. When aim-

ing to decrease the problem size, we can choose dm to be as small as possible, and ds

to be as large as possible, without decreasing the efficiency of the truck planning too

5.1. Finding a solution for the ILP of MDVSPTW 53

much.

• Make assumptions on the depot from which a certain type of the shipments are ex-

ecuted, also called depot assumptions.

The depot from which a shipment is executed in an efficient planning, is not com-

pletely random. In an efficient truck planning, a shipment is likely to be executed

by a truck that starts and finishes at a depot close to the start and end location(s) of

the shipment. This insight gives us the possibility to decrease the problem size, by

making assumptions on the depot from which a truck executes a shipment, with a

small probability of cutting off good solutions. Given a shipment, each depot that

we exclude from the set of depots from which this shipment might be executed, de-

creases the number of nodes by at most dm . That is the case, because excluding the

depot means removing all shipment nodes corresponding to the shipment from the

depot-layer of the graph.

In deciding on what assumptions to make, we distinguish between IB and OB ship-

ments. Because OB shipments contain the trip from the FC to the Hub and back, they

have an FC as the same start and end location. Therefore, it is easier to predict from

what depot the OB shipments are to be executed in an efficient planning: the FC they

start and end, or a location close to that FC. For IB shipments, this is more difficult,

because the driving between the start and end location might be 2 hours. In order

to decide on what depot assumptions to make to decrease the problem size, but not

lose quality of solution, we set up an experiment in Chapter 7.

The methods above enable us to bring the computation time down to our set time limit.

Whenever referring to our ILP implementation, we mean the implementation of the ILP of

MDVSPTW with the problem size decreasing methods above.

There are two methods in the literature to decrease the problem size that we did not imple-

ment in our algorithms. The first method is to rewrite the problem to a Time-Space Net-

work, as introduced by Kliewer, Mellouli, et al. (2006). This method exploits the transitivity

property of partially ordered sets by aggregating possible connections between groups of

compatible shipments. The second method is to remove part of the compatibility arcs that

are most costly, as they are not likely to appear in the optimal solution (Haghani et al.,

2002). This increases the risk of losing optimality, but the proportion of arcs to remove can

be tweaked precisely when bench-marking with the complete ILP. Both methods could be

implemented if considering larger instances in future work.

54 5. Two building blocks

5.1.2. Defining a termination criterion for solving the ILP
In addition to the methods to reduce the problem size of MDVSPTW, we can also control

the computation time by not solving the ILP to optimality, but to return the best solution

from the solution pool when reaching a termination criterion. Of the three termination

criteria mentioned in 2.1, two are relevant for our implementation:

• Time limit τmax .

The time limit is a fixed number of seconds after which the algorithm terminated

and returns the best solution from the solution pool. If the time limit is set too small,

however, the solution pool may be empty and no solution is returned.

• Optimality gap bound δg ap .

The algorithm is terminated if a feasible solution is found for which the optimality

gap smaller is than the set bound.

These termination criteria allow the ILP implementation to return a feasible solution in

time, instead of continuing until the optimum is found.

5.2. The Greedy Scheduler algorithm
Apart from finding good feasible solutions for our problem with Integer Linear Program-

ming techniques, for robustness reasons we also want to find a heuristic approach to solve

our problem, that does not involve an ILP. This section explains the extention from the Con-

current Scheduler algorithm for MDVSP, introduced in Section 4.2, to the Greedy Scheduler

algorithm, specifically designed for our problem.

5.2.1. Finding a feasible solution for our problem
Recall that for our problem the input shipments S̄ = {s̄1, . . . , s̄n} are time window shipments,

and therefore defined by earliest start time ESTi , latest start time LSTi , earliest end time

EETi , latest end time LETi , start location SLi and end location ELi , for all i ∈ [n]. Similar

to the Concurrent Scheduler algorithm, we iterate through an ordered list of shipments

and greedily assign them to an active truck if possible and otherwise to a non-active truck.

However, the following specifics are different than before:

1. The order of the shipments.

As the shipments have different properties compared to MDVSP, and no fixed start

time, we have to define a new property to order them by. We choose to order the

shipments by latest start time LSTi , as this indicates which shipments have their

‘deadlines’ first, and therefore have a higher priority to be scheduled first. Because

it might occur that many shipments have equal latest start time, a second property is

5.2. The Greedy Scheduler algorithm 55

chosen to break ties. This is the length of the time window, scheduling the shipments

that have small time windows, and are therefore less flexible, first.

2. The evaluation of the feasible active trucks.

A truck with shipment discrete s j assigned to it last is now feasible for a time window

shipment s̄i if the following holds:

LSTi ≥ ET j +d(EL j ,SLi). (5.3)

The costs of assigning s̄i to a feasible active truck are equal to the cost of the cheapest

feasible discrete shipment, generated by s̄i , assigned to the truck after s j , this dis-

crete shipment is denoted by s j
i . We only need to define the start time of s j

i , as all

other properties are already determined by s̄i . The start time of the cheapest feasible

shipment s j
i is the earliest start time possible, after s j , that is:

STi = min{ESTi , ET j +d(EL j ,SLi)}. (5.4)

Now, the costs of assigning s̄i are equal to the operational costs, defined by equation

(4.2), of assigning s j
i to the truck with last shipment s j .

3. The evaluation of the non-active trucks.

This procedure is very similar to before, the only difference is that the fixed start time

of s̄i is set to be equal to the earliest start time: STi = ESTi , as this leads to more

possibilities for another shipment to be assigned after si later on.

The algorithm is now able to find a feasible solution for MDVSPTW. But in order to make it

applicable to our problem, we have to include the driver day duration restriction. There-

fore, we first present a method to guarantee that each driver day duration is more than dmi n

and then a method to guarantee the duration is less than dmax .

In order to guarantee that each driver day duration is more than dmi n , we make an ad-

justment to the truck planning obtained after applying the rules above. If all shipments

have been assigned to the trucks, we detect the truck days that have a duration less than

dmi n . We add additional waiting time to the truck day, until the duration is equal to dmi n .

Of course, in practice the driver does not have to wait during these hours. Figure 5.1 shows

an example of a truck day with additional waiting time for dmi n = 7. The truck day duration

was 4.5 hours, and therefore too short. In order to make the truck day feasible, 2.5 hours of

additional waiting time is added.

In order to guarantee that the driver day duration is less than dmax , we add a criterion

56 5. Two building blocks

Figure 5.1: Example of a short truck day with additional waiting time with dmi n = 7.

to equation (5.3) that decides whether an active truck is feasible for a shipment. Instead of

allowing the shipment to be assigned to every truck that is able to execute it after its cur-

rently last shipment, we take the total duration of the truck day into account. An active

truck with depot dt , first shipment sk and last shipment s j is feasible for shipment s̄i , with

cheapest feasible shipment s j
i , if in addition to (5.3), the following holds:

truck day duration with shipment = d(dt ,SLk)+ (ETi −STk)+d(ELi ,dt) ≤ dmax . (5.5)

When executing the Greedy Scheduler algorithm in the main algorithms, we might want

to relax this constraint, in particular if we want to generate splittable truck days. We refer

to the Greedy Scheduler algorithm without the truck day duration constraint as the Greedy

Scheduler algorithm without maximal day duration. We refer to the version of the algo-

rithm with the constraint above incorporated into it as the Greedy Scheduler algorithm with

maximal day duration or simply the Greedy Scheduler.

5.2.2. Improving the algorithm
Taking the adaptations to the Concurrent Scheduler algorithm into account, we can con-

struct a feasible truck planning for our problem from a set of time window shipments.

However, we can improve the quality of the truck planning by adding the following im-

provements to the algorithm:

• The introduction of last shipment indicators.

While greedily assigning the shipments to the trucks, the algorithm does not take

into account that every truck should return to the depot where it started by the end

of the day. Therefore, it is likely that many trucks drive back empty to their start depot

at the end of their day, which increases the inefficiency of the planning. In order to

prevent this from happening, we would like to predict what shipments will be the last

shipments of the truck day. Because then we can give a preference to the shipments

that return at the same depot where the truck started. We do this by first defining last

5.2. The Greedy Scheduler algorithm 57

shipment indicators, to decide which shipment should be taken into account when

giving this preference. A shipment si , assigned to a truck, is classified as a potential

last shipment if the following holds:

ETi > le or duration of truck day with the shipment > ld , (5.6)

where le is a fixed time and ld is a fixed duration. Now, for any shipment si for which

the above is true, the operational costs include the costs of driving back to the depot

d :

operational costs(s j , si) = operational costs(s j , si)+operational costs(si ,d). (5.7)

Again, the operational costs are equal to the operational costs in the ILP algorithm

and defined by equations (3.6) and (3.5). Here, operational costs (si ,d) functions as a

penalty when the distance between d and ELi is large, making it preferable to select

a last shipment on a truck day that ends close to d .

• The introduction of a tie-breaking rule.

Because shipments have no fixed start times, but start time windows, the probability

that a shipment is able to start precisely when the truck arrives at the start location

of the shipment, increases significantly compared to Concurrent Scheduler for MD-

VSP. Therefore, when considering a shipment to assign to a truck, many trucks have

no waiting time and operational costs equal to only the empty driving costs. This is

an advantage to the efficiency of the planning. However, it also causes more ties to

appear: the operational cost of every truck that is able to execute the shipment with-

out waiting time is equal if the truck is currently placed at the same location. When

choosing the truck with minimal costs, our experiments indicate that for 24% of all

shipments multiple trucks have minimal costs, see Appendix B.1.

We choose to leverage the occurrence of ties to prioritize trucks that remain close

to their depot. Considering the set of trucks with minimal costs, we prefer to assign

a shipment to a truck that has a depot not to far away from the end location of the

shipment. This results in less empty driving hours, as the truck stays close the the

depot it returns to at the end of the day. It also leads to more relief points, as the truck

is be more likely to return to execute a shipment at its depot if it stays relatively close

to it, which increases the probability that splittable truck days occur. Moreover, there

are operational advantages to keeping trucks local, as a disturbance in the planning

also stay locally. We formally implement this idea by considering the truck of mini-

mal costs, and assigning the shipment to a truck that minimizes the distance between

58 5. Two building blocks

the depot of the truck and the end location of the shipment. Our experiments indi-

cate that for 18% of the shipments, multiple trucks have minimal costs and minimal

distance. We assign the shipment to a randomly chosen truck from this set, see Ap-

pendix B.1.

• Not only scheduling shipment after a truck day, but also before.

Until now, when assigning a shipment to a truck, we only considered the possibil-

ity to schedule the shipment after the current truck day. However, it may as well be

an efficient option to schedule the shipment before the current truck day. This is in

particular relevant, when we give active trucks to the algorithm as input. In order to

formalize this, we notice that most after arguments and equations used above can

be symmetrically translated to before arguments and equations. For example, a truck

with first shipment sk and last shipment s j is now feasible for shipment s̄i if the fol-

lowing holds:

LSTi ≥ ET j +d(EL j ,SLi) or LETi −d(ELi ,SLk) ≤ STk , (5.8)

and the truck day duration with shipment is smaller than the maximal day duration

dmax . For the evaluation of non-active trucks, we predict whether a shipment is likely

to be a first or last shipment based on the latest end time of the shipment. If the

latest end time is earlier than 16:00, we assign the shipment to a truck close to its

start location, and define the start time to be its earliest start time. For a latest end

time later than or equal to 16:00, naturally, the truck is close to its end location and

the start time is the latest start time. Formally, we define the start time of shipment s̄i

as follows:

STi =
{

ESTi , if LETi is earlier than 16 : 00.

LSTi , otherwise.
(5.9)

The last shipment indicators are slightly adjusted. A shipment is classified as a last

shipment if the following holds:

ETi > le or (duration of truck day with the shipment > ld and STi > 16 : 00).

(5.10)

In general, last shipments start after 16:00. The requirement that the start time is

later than 16:00 is added to distinguish last shipments from first shipments, that start

before 16:00 in general. In addition to the last shipment indicators, we have the first

shipment indicators es and ed , that classify a shipment si as a first shipment if the

5.2. The Greedy Scheduler algorithm 59

following holds:

STi < es or (duration of truck day with the shipment > ed and STi ≤ 16 : 00).

(5.11)

By symmetric argumentation, we assume that ed = ld . The great time window length

of a shipment might allow a shipment to be feasibly executable before and after a

truck day. In order to prevent ties and errors in the argumentation, we choose to give

preference to scheduling the shipment after the truck day, if both is possible.

Algorithm 3: Greedy Scheduler for MDVSPTW.

1 INPUT
2 Ordered list of shipments [S̄] = {s̄1, . . . , s̄n} with start and end time windows
3 Set of depots D = {d1, . . . ,dm} with κd trucks available
4

5 RULES
6 while [S̄] 6= ; do
7 for s̄i ∈ [S] do
8 if feasible active trucks 6= ; then
9 Assign s̄i to the feasible active truck with last shipment s j that minimizes

the operational costs(s j , s j
i), where s j

i is the cheapest feasible shipment.
Define the start time of si to be STi = min{ESTi , ET j +d(EL j ,SLi)}.

10

11 else
12 Assign s̄i to a non-active truck that minimizes the operational costs(d , si)

without exceeding κd . Define the start time of si to be STi = ESTi .

13

14 Remove s from Sl

15

Algorithm 3 provides the pseudocode of the Greedy Scheduler algorithm for MDVSPTW.

The Greedy Scheduler has various advantages:

• The algorithm is able to generate a feasible solution within short computation time,

because of its simplicity.

• The algorithm is able to take an incomplete truck planning as input, by initialising

not all trucks to be empty, but already with shipments assigned to them. Then, we

continue with assigning the set of shipments that were not yet assigned to trucks,

and complete the planning. This is a useful for combining the algorithm with other

algorithms, which we do in main algorithms.

60 5. Two building blocks

• The algorithm is flexible. Adding a new constraint, such as a maximal day duration,

is relatively easy compared to the ILP implementation.

The Greedy Scheduler algorithm is applicable to MDVSPTW. In addition, depending on

the precise definition of the feasible active trucks, the algorithm is also applicable to MD-

VSPTW with a maximal truck day duration, as is further explained in Chapter 6.

5.3. Additional post-processing steps
The two implementations introduced in the previous sections are important building blocks

for the main algorithms that the following chapter presents. In addition, we introduce two

post-processing steps that are not integrated parts of the two algorithms above, but can

be seen as small improvement building blocks. These post-processing steps take a truck

planning as input and are only able to improve its objective value.

1. Depot improvement

The goal of depot improvement is to decrease the total pull out and pull in time, i.e.,

the sum of the driving time between the depot and the start location of the first ship-

ment, and the driving time between the end location of the last shipment and the

depot. Each truck day is essentially defined by a depot and a feasible sequence of

shipments. The algorithms above do not guarantee that each shipment sequence is

assigned to a depot that minimizes this sum. As a result, rearranging the combina-

tions of shipment sequences and depots might decrease the total costs of the truck

planning. The depot improvement procedure is executed by checking for every ship-

ment sequence whether there is a depot other than the current depot, that has not

reached its capacity yet, and that strictly decreases the total pull out and pull in time.

If such a depot exists, the sequences of shipments are removed from the current truck

and assigned to a truck at the improving depot. Figure 5.2 shows a conceptual exam-

ple of depot improvement, where the total pull out/in time is reduced by 0.5 hour,

because we changed the depot from A to B.

Figure 5.2: Conceptual example of depot improvement.

5.3. Additional post-processing steps 61

2. Shipment sliding

The time windows enable us to slide shipments, that is, assign new start times to the

shipments without changing the order of the sequence. Because, neither algorithms

above guarantee minimal waiting time, shipment sliding might decrease the waiting

time of a truck. This can be seen as pressing the ‘air’ out of a truck day, by pushing the

shipments closer to each other. The shipment sliding procedure is executed by con-

sidering two consecutive shipments at a time, and iterating through the sequence.

We can either choose to start at the front of the sequence, and execute forward slid-

ing, or start at the end of the sequence and execute backward sliding. Whenever we

refer to shipment sliding, we mean executing both variants in sequence. Figure 5.3

and Figure 5.4 show conceptual examples of effective forward and backward sliding

respectively.

Figure 5.3: Conceptual example of forward shipment sliding.

Figure 5.4: Conceptual example of backward shipment sliding.

6
Three main algorithms

The previous chapter provided us with two important building blocks: the ILP implemen-

tation and the Greedy Scheduler. Based on the building blocks, we define three main algo-

rithm that find good feasible solutions for our problem. This chapter names and explains

these three main algorithms. Section 6.1 introduces the ILP + Greedy algorithm that com-

bines the ILP implementation and the Greedy Scheduling algorithm. Sections 6.2 and 6.3

introduce two heuristics, Random Search and Random Search and Fix, that only use the

Greedy Scheduler algorithm. For each of the three main algorithms we introduce one ver-

sion that allows a driver change and one version that does not allow a driver change.

6.1. ILP + Greedy algorithm
With our ILP implementation from Section 5.1, we are able to find a good or even optimal

solution for MDVSPTW within reasonable computation time. This truck planning is likely

to be efficient, compared to the truck plannings from the greedy approaches. However it is

not a feasible solution for our problem, as incorporating the driver day duration restriction

in the ILP formulation causes the computation time to exceed our limits. The more flex-

ible character of Greedy algorithms causes the driver day duration restriction to be easily

incorporated in the Greedy Scheduler algorithm. However, the algorithm lacks guarantee

of solution quality. The complementary properties of the two methods suggests a combi-

nation of both.

This section introduces the ILP + Greedy algorithm, that takes the ILP solution as and ad-

justs it to a feasible solution, by applying the Greedy Scheduler algorithm. First, we con-

sider a version of the algorithm in which the driver day duration restriction is incorporated

63

64 6. Three main algorithms

with allowing a driver change. Then we consider a version in which the driver day duration

restriction is incorporated when not allowing a driver change.

6.1.1. ILP + Greedy without driver change
The algorithm consists of four steps:

1. Find a feasible solution for MDVSPTW by using our ILP implementation.

2. Remove the infeasible trucks from the planning.

3. Split the splittable truck days into two separate truck days.

4. Reassign all removed shipments to the truck planning using the Greedy Scheduler

algorithm.

Figure 6.1 provides an overview of the algorithm. When a driver change is not allowed, all

truck days have to be feasible driver days. The ILP solution contains three types of truck

days: truck days that are feasible driver days, truck days that exceed the maximal driver

day duration, but are splittable and truck days that exceed the maximal driver day duration

and are not splittable. The first type is feasible for our problem, so we keep them. The

second type is infeasible, so we remove them from the truck planning. The third type is

also infeasible, but we can make the truck days into feasible driver days by splitting them

into two truck days. After splitting the splittable truck days, the final step is to add the

removed shipments, that were assigned to the removed trucks, to the planning again. We

do this by taking the feasible trucks as input trucks for the Greedy Scheduler and assign the

removed shipments in a Greedy manner.

6.1. ILP + Greedy algorithm 65

Figure 6.1: An overview of ILP + Greedy without algorithm driver change.

66 6. Three main algorithms

6.1.2. ILP + Greedy with driver change
This algorithm is very similar to the algorithm when no allowing a driver change. The only

difference is that we skip the third step. So, the algorithm consists of three steps:

1. Find a feasible solution for MDVSPTW by using our ILP implementation.

2. Remove the infeasible trucks from the planning.

3. Reassign all removed shipments to the truck planning using the Greedy Scheduler

algorithm.

Figure 6.2 provides an overview of the algorithm. The ILP solution contains of the same

three types of truck. But, because we allow a driver change, not only the first type, but

also the second type is already feasible for our problem. That is, not only the truck days

that are feasible driver days, but also the truck days that exceed the maximal driver day

duration and are splittable. Therefore, we only have to remove the truck days that exceed

the maximal driver day duration and are splittable, and add the removed shipments again

to the planning, using the Greedy Scheduler algorithm.

Figure 6.2: An overview of ILP + Greedy algorithm with driver change.

6.2. Random Search algorithm 67

6.2. Random Search algorithm
The Greedy Scheduler algorithm is not deterministic, because ties are broken by choosing

a random truck for 18% of the shipments, as mentioned in 5.2. Therefore, executing the

algorithm multiple times and selecting the best solution found is a method to hopefully

improve the solution compared to executing the algorithm once. We call this method Ran-

dom Search. Again, we first consider a version of the algorithm in which the driver day

duration restriction is incorporated with allowing a driver change. Then we consider a ver-

sion in which the driver day duration restriction is incorporated when not allowing a driver

change.

6.2.1. Random Search without driver change
The Greedy Scheduler algorithm takes into account minimal and maximal driver day du-

ration for truck days. Therefore, every solution generated by the algorithm is already feasi-

ble for our problem. We aim to optimize the quality of this solution by applying Random

Search. The Random Search algorithm without driver change, therefore simply executes

the Greedy Scheduler algorithm I times and returns the best truck planning found. Fig-

ure 6.3 shows an overview and Algorithm 4 shows the pseudocode of the Random Search

algorithm without driver change.

Figure 6.3: An overview of the Random Search algorithm without driver change.

68 6. Three main algorithms

Algorithm 4: Random Search without driver change.

1 INPUT

2 Set of time window shipments S

3 Set of depots D with truck capacity κd for every d ∈ D

4 Number of iterations I ∈N
5

6 RULES

7 best solution = GreedyScheduling(S,D)

8 best costs = cost(best solution)

9 i = 0

10 while i < I do

11 solution = GreedyScheduling(S,D)

12 costs = cost(solution)

13 if costs < best costs then

14 best solution = solution

15 best costs = cost(best solution)

16 i = i +1

6.2. Random Search algorithm 69

6.2.2. Random Search with driver change
In order to find trucks that enable a driver change, a straightforward approach would be to

apply the Greedy Scheduler algorithm without the maximal truck day duration restriction

and reschedule the shipments assigned to infeasible trucks, similarly as in the ILP + Greedy

algorithm with driver change. However, experiments indicate that on average 4 splittable

truck days occur when applying this approach, see Appendix B.2 for the exact results of this

experiment. Almost all trucks turn out to be infeasible, because they are too long for one

driver to execute the truck day, but not splittable. This results in a truck planning with very

little driver changes. In order to leverage the possible advantage of a driver split, we want

to define a method that results in more splittable truck days and less infeasible truck days

in the solution of the Greedy Scheduler algorithm.

A method to find more splittable truck days, is to apply the Greedy Scheduler algorithm

without maximal truck duration multiple times, and fix all splittable truck days that we en-

counter. When applying this method, our experiments indicate that the average number

of splittable truck days in the solution increases from 4 to 13, see Appendix B.2. Figure

6.4 shows an overview of the Random Search algorithm with driver change. The Random

Search with driver change algorithm is divided into two phases:

1. The Fixing Phase

In the Fixing Phase, we iteratively generate truck plannings by executing the Greedy

Scheduler without maximal truck duration and fix all splittable truck days that we

encounter. The Fixing Phase terminates if a either the minimal number of shipments

φmi n that are not fixed is reached, or a fixed number of iterations I1 have been exe-

cuted. The parameter φmi n is introduced to ensure that the shipments that still need

to be assigned to trucks in the second phase have enough scheduling possibilities to

generate efficient trucks. The Fixing Phase provides a number of splittable truck days

that is presumably higher than before.

2. The Searching Phase

In the Searching Phase, we aim to assign all shipments, that were not assigned to a

splittable truck day in the first phase, to feasible driver days. We do this by executing

Random Search with no driver change. The Searching Phase terminates after execut-

ing a fixed number I2 of iterations. Finally, we merge the splittable truck days with

the feasible driver days into one truck planning, that is our final solution.

70 6. Three main algorithms

Figure 6.4: An overview of the Random Search change algorithm with driver change.

6.3. Random Search and Fix algorithm 71

6.3. Random Search and Fix algorithm
When executing Random Search with driver change, we fix certain parts of solutions that

we encounter in the Fixing Phase. Instead of fixing splittable truck days, we could also fix

other types of truck that we prefer to keep in our truck planning. This section introduces

Random Search and Fix, an algorithm that works similarly to Random Search with driver

change, but fixes low-cost trucks in the Fixing Phase. We formally define low-cost truck

days to be truck days for which the following holds:

costs of the truck < cmax and δmi n < truck day duration < dmax . (6.1)

The first criterion ensures that we fix truck days with relative short waiting and empty driv-

ing time. The second criterion ensures that we fix trucks with a relative long duration, in

order to create an optimal use of trucks. Based on the truck plannings we have available,

we choose cmax to be equal to the costs of a truck day that has one hour of empty driving

time or two hours of waiting time, and δmi n to be equal to ten hours.

6.3.1. Random Search and Fix without driver change
The Random Search and Fix algorithm without driver change consists of two phases:

1. The Fixing Phase

There are two differences compared to the Random Search algorithm with driver

change. First, because we do not want the low-cost truck days to exceed dmax , we

apply the Greedy Scheduler algorithm with maximal truck day duration instead of

without. Second, as mentioned before, we fix the low-cost truck days instead of the

splittable truck days. Again, the Fixing Phase terminates if either the minimal num-

ber φmi n of shipments that are not fixed is reached, or a fixed number I1 of iterations

has been executed.

2. The Searching Phase

The Searching Phase is exactly the same as in the Random Search algorithm with

driver change. The Random Search algorithm is executed to schedule the shipments

that were not fixed, by executing the Greedy Scheduler algorithm I2 times. Finally, we

merge the splittable truck days with the feasible driver days into one truck planning,

that is our final solution.

Figure 6.5 shows an overview of the algorithm.

72 6. Three main algorithms

Figure 6.5: An overview of the Random Search and Fix algorithm without driver change.

6.3. Random Search and Fix algorithm 73

6.3.2. Random Search and Fix with driver change
When a driver change is allowed, we essentially combine the Random Search with driver

change algorithm and the Random Search and Fix algorithm.

1. The Fixing Phase

In the Fixing Phase, all splittable truck days and low-cost truck days are fixed. We

apply the Greedy Scheduler algorithm without maximal truck day duration. Again,

the Fixing Phase terminates if either the minimal number φmi n of shipments that are

not fixed is reached, or a fixed number I1 of iterations has been executed.

2. The Searching Phase

The Searching Phase is exactly the same as before. The Random Search algorithm

is executed to schedule the shipments that were not fixed, by executing the Greedy

Scheduler algorithm I2 times. Finally, we merge the splittable truck days with the

feasible driver days into one truck planning, that is our final solution.

Figure 6.6 shows an overview of the algorithm.

Figure 6.6: An overview of the Random Search and Fix algorithm with driver change.

7
Algorithm configurations

This chapter considers the algorithm configurations of the main algorithms introduced in

the previous chapter. If the reader is mainly interested in the results, we suggest to skip

this chapter, and continue reading at page 93. Appendix A.2 provides an overview of all

choices of parameter values, as explained in this chapter. Section 7.1 introduces the test

instances on which the configurations are based. Section 7.2 introduces our choices for the

objective function parameters. Section 7.3 considers the configuration of the first building

block: the ILP algorithm. Section 7.4 considers the configuration of the second building

block: the Greedy Scheduler algorithm. The final two sections regard the configuration

of the main algorithms. We divided the main algorithms into two types that have similar

parameters:

1. Main algorithms that do not contain a Fixing Phase. The algorithms of this type are:

ILP + Greedy (with and without driver change) and Random Search without driver

change.

2. Main algorithms that contain a Fixing Phase. The algorithms of this type are: Ran-

dom Search with driver change and Random Search and Fix (with and without driver

change).

Section 7.5 considers the configuration of the first type of main algorithms and Section 7.6

considers the configuration of the second type of main algorithms.

Finding values for parameters that result in the best performance of an algorithm is of-

ten a trade-off between more than two elements. Because of the complex dependencies

between all elements, there is not always one final perfect answer. However, we aim to be

75

76 7. Algorithm configurations

transparent in our decision process, not only to justify our final configuration, but also to

create more understanding in the working of the algorithms.

7.1. Test days
As test instances, we take the actual shipments executed by vdBrink on

• Wednesday March 31, 2021,

• Thursday April 15, 2021,

• Friday April 16, 2021 and

• Saturday April 17, 2021.

We assume every FC and DC to be a depot with a truck capacity of 15 trucks. From now on,

the instances are denoted by their day and month, e.g., 31_03, and from here on referred to

as test days. Table 7.1 shows the number of shipments of every instance.

Instance (day_month) Total number of shipments
31_03 190
15_04 195
16_04 188
17_04 194

Table 7.1: The four test instances with their size.

7.2. Objective function parameters
As mentioned before the objective function is the weighted sum of the number of trucks,

the empty driving time and the waiting time. These elements have the weights w f c , wd t

and ww t . Because our first priority is to minimize the number of trucks, we choose to set

w f c = 100000. Our second priority is to minimize the waiting time and the empty driving

time. Empty driving is more costly compared to waiting because we pay not only for the

working hours of the driver, but also for the gasoline of the truck. We choose to set wd t = 60

and ww t = 30. The large difference with the fixed costs of the truck, enables us to extract

the number of trucks and the approximate inefficiency from the costs of a truck planning,

which is useful for implementation purposes.

In choosing the parameter values for all algorithms, we often measure the impact of small

changes in parameter values on the objective value. Therefore, it is important to under-

stand that the first two digits of the objective value in general represents the number of

7.3. ILP algorithm configuration 77

trucks. For some parameters, we want to focus on the inefficiency instead of the number

of trucks. In that case, we do not consider the objective value, but the inefficiency, i.e., the

percentage of time in a truck planning spend on waiting or empty driving.

7.3. ILP algorithm configuration
In this section, we explain our choice for the parameters and assumptions in the ILP im-

plementation. As the main challenge in finding a good solution for the ILP is the limited

computation time, we aim to find parameter values and assumptions that decrease the

computation time, without decreasing the quality of the solution too much. Recall that

the goal of the final algorithm is to generate a good feasible solution within 15 minutes

and that the ILP is only able to provide an initial solution that is in general not feasible

for our problem. We therefore assume that the ILP should terminate within 7.5 minutes,

leaving 7.5 minutes for other phases of the main algorithms. We consider the time window

discretization parameters, the maximal waiting time between consecutive shipments, the

depot assumptions, the termination criterion and the post-processing steps. We refer to

Section 5.1 and Section 5.3 for the exact definitions and explanations of the parameters.

7.3.1. The time window discretization parameters
In order to decide on the the values of the maximal number of discrete shipments that is

allowed to be generated by a single time window shipment dm and the minimal step size

ds , we take into account the operational meaning of the parameters. In consultation with

the operational managers at Picnic, we came to the conclusion that ds ≥ 0.25 hours, as

smaller intervals are too detailed considering the uncertainty of truck plannings. We also

decide that in general the intervals should not exceed 0.5 hours too far, as more than that

makes a significant difference in the truck planning. Figure 7.1 shows the distribution of

the time window lengths of the input shipments from our test data set. The majority of

the shipments (74%) has a time window length smaller of equal to 3 hours. Therefore as-

suming ds = 0.25, we choose dm = 7, to guarantee that for the majority of the time window

shipments are discretized with an interval between 0.25 hours and 0.5 hours.

7.3.2. The maximal waiting time
When setting no maximal waiting time between consecutive shipments, the ILP has an av-

erage number of 1.75 million variables and constraints. Experiments indicate that the ILP

algorithm takes far more than 15 minutes before finding a feasible solution. Therefore,

we want to set a maximal waiting time t max
w t that decreases the problem size. We decide

what values to test for t max
w t based on the following considerations. From an intuitive point

78 7. Algorithm configurations

Figure 7.1: The distribution of the time window lengths of the input shipments from our test data set.

of view, a long waiting time in between executing shipments is undesirable, because it is

inefficient. As derived from the many truck plannings we have available, we assume that

waiting 3 hours in between shipments classifies as a very long waiting time. Also, if the

maximal waiting time is restricted to be less than one hour, we know that many good solu-

tions are excluded from our feasible region, because one hour of waiting time often occurs

in efficient truck plannings. Therefore, we test the values t max
w t ∈ {1,1.5,2,2.5,3}. We assume

that, the solver should at least be able to find a feasible solution within 7.5 minutes. Table

7.2 shows the average number of second that the solver requires to find a feasible solution

for the ILP, for different values of t max
w t . Figure 7.2 shows the average objective value of the

four test days for the different values of t max
w t . In order to decide on the best value for the

Figure 7.2: Average objective value over the four test
days for different maximal waiting times.

Time to find feasible
solution (in seconds)

t max
w t Average Maximum
1 253 446

1.5 290 410
2 422 713

2.5 576 849
3 505 781

Table 7.2: Time to find feasible solution for
different maximal waiting times.

maximal waiting time, we first consider the computation times to find a feasible solution.

If the ILP is terminated before finding a feasible solution, we have no output. As this sce-

nario is highly unfavorable, we choose to exclude values of t max
w t that do not find a feasible

7.3. ILP algorithm configuration 79

solution within 7.5 minutes. From the table we see that this is the case for the maximal

waiting times of 2 hours or more. Therefore, we choose t max
w t < 2. Considering the average

objective values for t max
w t ∈ {1,1.5} in Figure 7.2, we decide t max

w t = 1.5.

7.3.3. The depot assumptions
In deciding what assumptions to make on the depot from which a truck that executes a

certain shipment is likely to start, we state five potential assumptions and test the impact

on the computation time and the solution quality. As explained in Section 5.1, the depot

of the truck that executes an OB shipment is easier to predict than the depot that executes

a IB shipment. Therefore, we distinguish between IB an OB shipments in the potential

assumptions. Assumption 0 is equal to implementing no assumption.

0. All IB and OB shipments can be executed by trucks that start from any depot.

1. An OB shipment can only be executed by a truck that starts from a depot that is at

most 1 hour driving from the end location of the shipment.

2. In addition to the assumption above, an IB shipment can only be executed by a truck

that starts from a depot that is at most 1.5 hour driving away from the end location of

the shipment.

3. In addition to the assumption above, an OB shipment can only be executed by a truck

that starts from a depot that is at most 0.5 hour driving away from the end location of

the shipment.

4. In addition to the assumption above, an IB shipment can only be executed by a truck

that starts from a depot that is at most 1 hour driving away from the end location of

the shipment.

We define the assumptions such that the average percentage of IB and OB shipments in

the optimal ILP solution that respects the assumptions, varies between 100% and approxi-

mately 60%. Here, we assume that if the percentage would be lower, the assumption would

rule out too many truck-shipment possibilities that might lead to a good solution. Table

7.3 shows the percentage of shipments that respects the assumptions in the final solution

when running the algorithm without any assumptions taken into account. In order to de-

cide on which assumption finds the right balance between decreasing the computation

time, and maintaining quality of solution, we run the ILP algorithm with the different as-

sumptions for 10 minutes for the four test days and conclude which assumption minimizes

the objective function. Figure 7.3 shows the average objective values corresponding to the

80 7. Algorithm configurations

Average percentage of shipments
that respects assumptions

Assumption IB shipments OB shipments
0 100 100
1 100 76
2 92 76
3 92 69
4 59 69

Table 7.3: The average percentage of IB and OB shipments that respect the assumptions, as defined above,
in an optimal ILP solution.

different assumptions. Table 7.4 shows the average and maximum number of minutes be-

fore finding a feasible solution corresponding to the ILP algorithms with the different as-

sumptions. From the figure we can conclude that for assumption 2, 3 and 4, the average

Figure 7.3: Average objective value over the four test
days for different depot assumptions.

Time to find feasible
solution (in seconds)

Assumption Average Maximum
0 290 410
1 75 92
2 74 85
3 17 22
4 5 7

Table 7.4: Time to find feasible solution for
different assumptions.

objective value increases (by costs approximated by adding 0.5 truck to the planning) com-

pared to the average objective value of assumptions 0 and 1. Considering the computation

time to find a feasible solution, we see that all computation times are less than 7.5 minutes.

However, the computation time with assumption 1 has a substantially decreased compu-

tation time compared to assumption 0, while the average objective value remained more

or less the same. Therefore, we choose to incorporate assumption 1 in the ILP algorithm.

7.3.4. The termination criterion
As mentioned in Section 5.1, we set two parameters that define the termination of the ILP

algorithm: the optimality gap δg ap and the time limit τmax . The algorithm stops when the

solution is ‘good enough’, because of the optimality gap, or when the maximal time has

passed, by the time limit. The value for τmax is equal to 450 seconds, because we assumed

that after 7.5 minutes, we want to have a feasible solution for our ILP.

7.4. Greedy Scheduler configuration 81

For the value of δg ap , we recall that the optimality gap is the relative difference of the lower

bound and upper bound. Assume that we have a truck planning with 50 trucks. We want

the algorithm to continue searching within the time limit, until the optimality gap is less

than 1 hour of waiting in costs. However, one hour of waiting, increases the costs by 30 in

our cost function. Therefore, we want the gap to be of the order 30
50×100000 = 6 ·10−6, so we

set δg ap = 1·10−5. We understand that this is a relative small gap bound, that is not likely to

be restrictive within the set time limit. For our experiments, the implementation of δg ap is

therefore not required. However, when running the algorithm with other instances or other

cost function parameters, the parameter might be useful, so we do not remove it from the

algorithm.

7.3.5. Post-processing steps
The post-processing steps introduced in Section 5.3 are depot improvement and shipment

sliding. When applying depot improvement step, the average inefficiency of the ILP solu-

tion decreases from 12.42% to 12.34%. Even though this effect is not substantial, we choose

to implement the post-processing step, because the additional computation time is negli-

gible (< 0.01 seconds).

Shipment sliding has more effect on the inefficiency of the ILP solution. Because the ILP

algorithm works with time window discretization, it is likely that in between many consec-

utive shipments, waiting time occurs. By applying shipment sliding after finding a solution

for the ILP, we expect to be able to remove some of the waiting time from the truck planning.

Our experiments indicate that, without applying shipment sliding, the average inefficiency

of the ILP solution is 12.42%. After adding shipment sliding to the algorithm, the average

inefficiency is 9.37%. Because we only apply the rule once, the additional computation

time is negligible (< 0.01 seconds). Thus, we choose to implement shipment sliding as a

post-processing step after applying the ILP algorithm.

When decreasing the waiting time or the empty driving time, splittable truck days might not

be splittable anymore, because the truck day duration is decreased. Therefore, we choose

to only apply the post-processing steps to truck days that are not splittable.

7.4. Greedy Scheduler configuration
In this section, we explain our choice for parameter values in the Greedy Scheduler algo-

rithm. In contrast to the ILP implementation, the Greedy Scheduler has a short compu-

tation time. Therefore, when setting the parameter values, we mainly aim to decrease the

82 7. Algorithm configurations

objective value of the final solution instead of decreasing the computation time. We con-

sider the last and first shipment indicators and the implementation of the post-processing

steps. We refer to Section 5.2 and Section 5.3 for the exact definitions and explanations of

the parameters. Because the Greedy Scheduler algorithm in not deterministic, we have to

run the algorithm multiple times and take the average result, when measuring the effect of

different parameter values. For the experiments below, we run the Greedy Scheduler algo-

rithm 100 times for the four test days in order to monitor the impact of changing parameter

values. After 100 times for the four test days, we assume that, based on our experience with

the algorithm, we have a representative average output of the algorithm.

7.4.1. The last and first shipment indicators
In order to decide on the last shipment indicators, we analyse the solutions without the

indicators. The goal is to predict if a shipment is going to be the last shipment of a truck

day. We choose two properties, that we expect to be good indicators, based on implicit

reasoning:

• The end time of the shipment.

If the end time is later than le , the shipment is expected to be a last shipment.

• The duration of the truck day with the shipment.

If the duration is more than ld , the shipment is expected to be a last shipment.

We run the Greedy Scheduler without the last shipment indicators 100 times for the four

test days in order to generate a test set of truck plannings that we can analyze. Figure 7.4

shows the distribution of the last shipments and not-last shipments over the two indica-

tor properties. Based on these distributions, we choose the values of le and ld . Identifying

a not-last shipment as a last shipment results in overestimating the costs of a shipment,

while the other way around results in underestimating the costs of a shipment. We choose

to prevent underestimation of the costs, because that might lead to unexpected high empty

driving costs, while we expect the effect of overestimating the costs to be less bad. There-

fore, we choose the values of le and ld such that a relatively high percentage of the last

shipments is identified, even though this also causes a relatively high percentage of the

not-last shipments to be identified as last shipments. Based on the results given in Figure

7.4, we set le to be 18 : 00 and ld = 11, and identify a last shipment if either the end time

is at least 18 : 00, or the truck day duration with shipment is at least 11 hours and the start

time is later than 16 : 00. The start time being later than 16 : 00 is required, because we

want to distinguish last shipments from first shipments. Figure 7.5 shows a plot of the in-

dicator properties of all shipments. The red dotted lines represent the values of le and ld .

With the given values, 90% of the last shipments is correctly identified as last shipment.

7.4. Greedy Scheduler configuration 83

(a): The end time of the shipment. (b): The duration of the truck day with the shipment.

Figure 7.4: Distribution of last shipment indicator properties.

On the other hand, 13% of the not-last shipments is falsely identified as last shipments.

These percentages are relatively high compared to the percentages corresponding to other

parameter values. Adding the last shipment indicator parameters to the algorithm mainly

has an impact on the inefficiency of the truck planning, as the goal is to prevent long pull in

trips. When running the algorithm without the parameters 100 times for the four test days,

the average inefficiency of the truck planning is 22.47 percent, while with the parameters,

the average inefficiency is 20.48 percent.

Figure 7.5: Last shipment indicator properties.

84 7. Algorithm configurations

By symmetric argumentation, we already assumed that ed = ld . In order to decide on

the value of es , we again consider the distribution of the start times of the first and not-first

shipments after running the Greedy Scheduler algorithm 100 times for the four test days,

see Figure 7.6. Based on the distribution, we choose es to be 12:00. This results in 75% of

the first shipments to be correctly identified and 26% of the not-first shipments to be falsely

identified as first shipments. We do not measure the impact on the objective function,

as the first shipment indicators are only useful when active trucks are given as input to

the Greedy Scheduler and the impact highly depends on the specific characteristics of the

active trucks.

Figure 7.6: Distribution of start times of first shipments and not-first shipments.

7.5. Configuration of main algorithms without a Fixing Phase 85

7.4.2. Post-processing steps
In order to decide on the implementation of the post-processing steps, as introduced in

Section 5.3, we compare the results of the algorithm with and without the implementation

of the post-processing steps, depot improvement and shipment sliding. As both steps do

not impact the number of trucks of a truck planning, but decrease the amount of empty

driving and waiting time, we only consider the inefficiency of the truck plannings. Again,

we run the Greedy Scheduler algorithm 100 times for the four test days and compare the av-

erage inefficiency percentages. Table 7.5 shows the average inefficiency percentage when

implementing Greedy Scheduler with and without the post-processing steps. The impact

of depot improvement is less compared to the impact of shipment sliding. However, both

post-processing steps decrease the average inefficiency of the truck planning, without in-

creasing the time per iteration too much. Therefore, we choose to add both post-processing

steps to the Greedy Scheduler algorithm.

Average Average time
Post-processing steps inefficiency (%) per iteration (s)
No post-processing step 20.48 0.23809
Depot improvement 20.43 0.24129
Shipment sliding 19.49 0.24333
Depot improvement and shipment sliding 19.37 0.24651

Table 7.5: The impact of implementing post-processing steps in the Greedy Scheduler algorithm.

7.5. Configuration of main algorithms without a Fixing Phase
This section considers choosing the parameter values for the main algorithms that do not

contain a Fixing Phase, that is, algorithms that run the Random Search algorithm once. The

algorithms that do not contain a Fixing Phase are the ILP + Greedy algorithms and the Ran-

dom Search algorithm without driver change. These algorithms have only the number of

iterations I for the Random Search algorithm, which has to be determined. In future re-

search, it also might be useful to add a termination criterion that stops the algorithm after

running for a fixed amount of time, similar as the ILP termination criterion τmax . Because

our computation times are far below the time limit, this is not necessary. In order to decide

which value of I allows for enough opportunity to find better solutions, but does not take

unnecessary long, we run the algorithms with I = 1000 for the four test days. We make a

distinction between significant and non-significant improvements. An improving solution

is called significant if the decrease in objective function value in comparison to the previ-

ous best solution value is more than the costs that represent one hour of waiting.

86 7. Algorithm configurations

The average time per iteration per test day ranges between 0.09 and 0.15 seconds for the ILP

+ Greedy algorithms and between 0.22 and 0.25 seconds for the Random Search algorithm

without driver change. As a result of this short computation time, we can overestimate the

number of iterations required, without substantial consequences for the total computa-

tion time. For example, an overestimation of 100 iterations results in only 9 to 25 seconds

redundant running time.

7.5.1. ILP + Greedy without driver change
Figure 7.9 shows the development of the objective value after running the Random Search

algorithm with I = 1000 for the four test days. Table 7.6 contains the final improvement

iterations for a significant improvement and an improvement in general. Because all sig-

nificant improvements are made within the first 100 iterations, and overestimation of 100

iterations results in 25 extra seconds at most, we choose I = 200 for the Random Search

algorithm without driver change.

Figure 7.7: The objective value while executing the
Random Search algorithm on the ILP solution without
driver change for I = 1000.

Final improvement iterations
Date Significant General
31_03 2 309
15_04 78 78
16_04 40 40
17_04 7 7

Table 7.6: The final improvement iterations of
the test days.

7.5.2. ILP + Greedy with driver change
Figure 7.9 shows the development of the objective value after running the Random Search

algorithm with I = 1000 for the four test days. Table 7.7 contains the final improvement it-

erations for a significant improvement and an improvement in general. Based on these re-

sults, we choose the number of iterations required for the Random Search algorithm with-

out driver change to be I = 200.

7.6. Configuration of main algorithms with a Fixing Phase 87

Figure 7.8: The objective value while executing the
Random Search algorithm on the ILP solution with
driver change for I = 1000.

Final improvement iteration
Date Significant General
31_03 40 134
15_04 46 369
16_04 29 57
17_04 3 3

Table 7.7: The final improvement iterations of
the test days.

7.5.3. Random Search without driver change
Figure 7.9 shows the development of the objective value after running the Random Search

algorithm with I = 1000 for the four test days. Table 7.8 contains the final improvement

iterations for a significant improvement and an improvement in general. Based on 189

being the overall final iteration that generates a significant improvement, we choose the

number of iterations required for the Random Search algorithm without driver change to

be I = 250.

Figure 7.9: The objective value while executing the
Random Search algorithm for I = 1000.

Final improvement iteration
Date Significant General
31_03 69 69
15_04 61 182
16_04 189 334
17_04 69 354

Table 7.8: The final improvement iterations of
the test days.

7.6. Configuration of main algorithms with a Fixing Phase
The main algorithms that contain a Fixing Phase are Random Search with driver change

and the Random Search and Fix algorithms. For these algorithms, we do not only have to

decide on the termination criterion for the Searching Phase, but also for the Fixing Phase.

88 7. Algorithm configurations

As introduced in Chapter 6, the Fixing Phase is terminated if a fixed number I1 of itera-

tions is executed, or less than a minimal number φmi n of shipments is left to be scheduled.

The Searching Phase is terminated after executing I2 iterations. We first analyse the ter-

mination criterion of the Fixing Phase, by assuming I2 = 1000. We run the algorithm for

I1 ∈ {1,20,50,100,200} and monitor the number of fixed truck days found per iteration, the

number of shipments to be scheduled and objective value of the solution, after executing

the Searching Phase with I2 = 1000. Based on the results we choose values for I1 and φmi n .

Finally, we decide on the value for I2, by detecting the improvement iterations, similar as

in the previous section.

7.6.1. Random Search with driver change
Figure 7.10 shows the linear regression of the number of fixed splittable truck days after

the first iteration and the costs of the final solution. This indicates a negative correlation,

implying that the higher the number of splittable truck days fixed in the Fixing Phase, the

better the final solution. This is expected, as splittable truck days decrease the total number

of trucks in use. As a result of this relation, our goal is to maximize the number of splittable

truck days in the Fixing Phase. When running the Fixing Phase, we notice that all splittable

truck days are detected early in the iteration process. Table 7.9 shows the final iteration in

which a new splittable truck day was detected, when running the Fixing Phase for I2 = 1000,

for the four test days. From these results, we can conclude that all splittable truck days are

likely to be found within 150 iterations. Therefore, we choose to set I1 = 150.

Figure 7.10: The objective value of Random Search
with driver change for a different number of iterations
in the Fixing Phase.

Final iteration
Date new splittable truck day
31_03 10
15_04 13
16_04 40
17_04 76

Table 7.9: The final iteration that finds new
splittable truck day.

The average number of shipments left to schedule decreases from 173 to 135, whenever

I1 increases. We assume that this results in enough freedom for scheduling the remaining

shipments in an efficient way. We set φmi n = 80, but based on our experiments, we expect

7.6. Configuration of main algorithms with a Fixing Phase 89

not to reach this bound.

In order to decide on the value of I2, we run the algorithm with the determined values

for I1 and φmi n and I2 = 1000. Figure 7.11 shows the objective value improvements while

executing the algorithm, and Table 7.10 shows the final improvement iterations. Based on

these results, we choose the number of iterations in the Searching Phase to be I2 = 500.

Figure 7.11: The objective value while executing the
ILP + Greedy algorithm without driver change and
I1 = 150, φmi n = 50 and I2 = 1000.

Final improvement iteration
Date Significant General
31_03 179 254
15_04 316 408
16_04 219 219
17_04 174 174

Table 7.10: The final improvement iterations of
the test days.

7.6.2. Random Search and Fix without driver change
In Random Search and Fix, we fix the low-cost truck days that we find in each iteration.

Our experiments indicate that this method does not have a significant effect on the total

number of trucks. However, there is a negative correlation between the number of low-cost

truck days fixed in the Fixing Phase, and the inefficiency score of the final solution. Figure

7.12 shows this correlation, by showing the trend line from the linear regression. Therefore,

we aim to maximize the number of low-cost truck days fixed in the Fixing Phase. Again,

Table 7.11 shows the final iterations in which new low-cost truck days are detected. From

these results, we can conclude that all low-cost truck days are likely to be found within 150

iterations. Therefore, we choose to set I1 = 150.

90 7. Algorithm configurations

Figure 7.12: The inefficiency percentage of Random
Search and Fix without driver change solution for a
different number of iterations in the Fixing Phase.

Final iteration
Date new low-cost truck day
31_03 24
15_04 13
16_04 7
17_04 65

Table 7.11: The final iteration that finds new
low-cost truck day.

The average number of shipments left to schedule decreases from 148 to 105, whenever I1

increases. We assume that this ensures enough freedom in scheduling the remaining ship-

ments. We setφmi n = 80, but based on our experiments, we expect not to reach this bound.

In order to decide on the value of I2, we run the algorithm with the determined values for I1

and φmi n and I2 = 1000. Figure 7.13 shows the objective value improvements while execut-

ing the algorithm, and Table 7.12 shows the final improvement iterations. Based on these

results, we choose the number of iterations in the Searching Phase to be I2 = 600.

Figure 7.13: The objective value while executing the
Random Search algorithm with driver change and
I1 = 150, φmi n = 50 and I2 = 1000.

Final improvement iteration
Date Significant General
31_03 398 429
15_04 484 484
16_04 5 5
17_04 245 245

Table 7.12: The final improvement iterations of
the test days.

7.6.3. Random Search and Fix with driver change
In the Random Search and Fix algorithm with driver change, both splittable and low-cost

truck days are fixed in the Fixing Phase. As we expect, splittable truck days decrease the

total number of trucks and low-cost trucks decrease the inefficiency. Figure 7.14 shows the

7.6. Configuration of main algorithms with a Fixing Phase 91

linear regression of the number of fixed truck days in the Fixing Phase and the objective

value of the final solution. However, we can also see that the relation is less linear, com-

pared to Figure 7.10 and Figure 7.12. Unlike before, we are able to see an increase in costs

when running the Fixing Phase for too long. We expected that this could be explained by

the little freedom in the Searching Phase, because too many shipments are fixed. When we

examine the number of shipments left to be scheduled, however, the average over the test

days, varies between 103 and 138 shipments. This does not seem to be too little to create

an efficient truck planning.

We set I1 = 50, based on the minimum in Figure 7.15. Also we set φmi n = 80, but we again

do not expect this bound to be reached based on our experiments.

Figure 7.14: Correlation between the number of
fixed truck days after the first phase and the
objective value of the final solution.

Figure 7.15: The relation between the number of
iterations in the Fixing Phase and the objective
value of the final solution.

In order to decide on the value of I2, we run the algorithm with the determined values

for I1 = 50 and φmi n = 80 and I2 = 1000. Figure 7.16 shows the objective value improve-

ments while executing the algorithm, and Table 7.13 shows the final improvement itera-

tions. Based on these results, we choose the number of iterations in the Searching Phase to

be I2 = 400.

Notice, that the parameter φmi n is not likely to be restrictive in any of our implementa-

tions. However, we choose to not remove the parameter, because for other instances, it

might be restrictive.

92 7. Algorithm configurations

Figure 7.16: The objective value while executing the
ILP + Greedy algorithm without driver change and
I1 = 150, φmi n = 50 and I2 = 1000.

Final improvement iteration
Date Significant General
31_03 334 334
15_04 146 146
16_04 306 423
17_04 39 39

Table 7.13: The final improvement iterations of
the test days.

8
Results

This chapter reports on the results of the computational experiments with the main al-

gorithms, with parameter values chosen as in Chapter 7, and are summarized in Appendix

A.2. Section 8.1 shows the results of the main algorithms when not allowing a driver change

and Section 8.2 shows the results of the algorithms when allowing a driver change. Section

8.3 considers the impact of the driver change given the results.

8.1. Comparison of the algorithms without driver change
In order to provide a complete assessment of the quality of the truck plannings that are

generated by the algorithms, we monitored various performance indicators of the truck

plannings, in addition to the objective value. Recall that the inefficiency of a truck plan-

ning is the sum of the relative waiting time and the relative empty driving time. The short

driver days are defined as the the driver days that have a duration less than 7 hours, and

therefore were supplemented by additional waiting time in order to guarantee the feasibil-

ity. Table 8.1 shows the results, with the best performing metrics in bold.

The ILP + Greedy algorithm performs best on most of the metrics, while the Random Search

algorithm does not outperform the other algorithms on any of the metrics. The inefficiency

of the ILP + Greedy solutions is with 13.54% on average particularly low compared to the

16.98% and 16.63% of the Random Search and Random Search and Fix truck plannings re-

spectively. This is in line with the total planned hours being 580 on average for the ILP +

Greedy truck plannings compared to approximately 600 for the two heuristics. The compu-

tation time of the ILP + Greedy algorithm is also lower than the computation time of other

two algorithms, but as all computation times of all test days are far below our set time limit

93

94 8. Results

15 minutes, we conclude that the computation times of all algorithms are feasible. The

waiting time percentage is slightly lower for the Random Search and Fix algorithm with

3.46%, than for the ILP + Greedy algorithm with 3.58%, this is, however, compensated by

the empty driver percentage on which the ILP + Greedy algorithm scores 9.95%, while the

Random Search and Fix algorithm scored 13.18%. The driver days of the Random Search

and Fix algorithm are slightly more efficient with only 4 short days and 11.2 hours duration

on average, compared to 6 short days and 10.8 hours duration on average. And the number

of trucks is minimal for both the ILP + Greedy algorithm and the Random Search and Fix

algorithm with both 54.0 trucks on average.

Random Search
Metric ILP + Greedy Random Search and Fix
Objective value 5,404,656 5,606,340 5,406,183
Number of trucks 54.0 56.0 54.0
Number of drivers 54.0 56.0 54.0
Waiting (%) 3.58 3.89 3.46
Empty driving (%) 9.95 13.09 13.18
Inefficiency (%) 13.54 16.98 16.63
Total planned hours 580 602 603
Short days (<7 hours) 6 5 4
Average driver day duration (hours) 10.8 10.8 11.2
Computation time (seconds) 104 132 332

Table 8.1: Average results over the four test days of the main algorithms without driver change.

8.2. Comparison of the algorithms with driver change
We now consider the results of the main algorithms when driver change is allowed. We

measured the same performance indicator metrics as in the previous section. Table 8.2

shows the results, with the best performing metrics in bold.

Again, the ILP + Greedy algorithm performs the best on most of the metrics, while the Ran-

dom Search algorithm does not outperform the other two algorithms on any of the metrics.

The inefficiency of the ILP + Greedy solutions is with 15.03% on average lower than the

17.36% and 16.99% of Random Search and Random Search and Fix. Also, the total planned

hours is minimal for the ILP + Greedy algorithm with 587 hours in total compared to 609

for both other algorithms. Again, the computation time of the ILP + Greedy algorithm is

minimal, however, all computation times of all test days are far below our set time limit of

15 minutes, are therefore feasible. The waiting time of the Random Search and Fix algo-

rithm is minimal with 2.97% compared to 5.03% for the ILP + Greedy algorithm. But the

empty driving time compensates with 10.00% for the ILP + Greedy algorithm compared to

8.2. Comparison of the algorithms with driver change 95

14.02% for the Random Search and Fix algorithm. The average number of trucks of the ILP

+ Greedy algorithm is slightly less with 49.8 compared to the 50.5 of Random Search and

Fix. However, the average number of drivers is slightly more for the ILP + Greedy algorithm

with 59.8 compared to the average number of drivers 58.5 of the Random Search and Fix

solutions. The driver days of the Random Search and Fix algorithm are more efficient on

average than the ILP + Greedy driver days: 2 short days compared to 6 short days and a

duration of 10.4 on average compared to 9.8.

Random Search
Metric ILP + Greedy Random Search and Fix
Objective value 4,980,343 5,156,485 5,056,303
Number of trucks 49.8 51.5 50.5
Number of drivers 59.8 63.8 58.5
Waiting (%) 5.03 3.05 2.97
Empty driving (%) 10.00 14.31 14.02
Inefficiency (%) 15.03 17.36 16.99
Total planned hours 587 609 609
Short days (<7 hours) 6 4 2
Average driver day duration (hours) 9.8 9.6 10.4
Computation time (seconds) 109 203 165

Table 8.2: Average results over the four test days of the main algorithms with driver change.

96 8. Results

8.3. Impact of driver change
Table 8.3 shows the average difference of the metrics when allowing a driver change, com-

pared to not allowing a driver change. We see that the average number of trucks decreases

by 4, 5 and 3.5 trucks, that is a decrease of approximately 8%. This results in an increase

in drivers of 6, 8 and 4.5, that is approximately 10%. In general, the impact of allowing a

driver change on the efficiency of the truck plannings is relatively small. Except for the

number of trucks and drivers, average driver day duration decreases with approximately

1 hour on average and the total planned hours increases with 6 hours on average, that is

approximately 1%. The other changes in performance metrics are negligible. The actual

cost impact in euros of allowing a driver change are now a small calculation involving the

number of trucks, number of drivers, total planned hours and average driver day duration

and the specific cost function. A detailed cost savings calculation for the specific case of

Picnic has not been included, since we set up this thesis not taking into account Picnic’s

specific cost function, but a more general cost function for other use cases as well.

Random Search
Metric ILP + Greedy Random Search and Fix
Number of trucks -4 -5 -3.5
Number of drivers 6 8 4.5
Waiting (%) 1 -1 -0.5
Empty driving (%) 0 1 0.8
Inefficiency (%) 1 0 0.4
Total planned hours 7 7 5.4
Short days (<7 hours) 0 -1 -1.8
Average driver day duration (hours) -1 -1 -0.8

Table 8.3: Average difference of performance metrics when allowing a driver change compared to not
allowing a driver change.

9
Conclusions and recommendations

This chapter presents the most important conclusions of the research in Section 9.1 and

the recommendations for future research in Section 9.2.

9.1. Conclusions
The growing market for online supermarkets gives rise to challenges when planning the

increasingly complex supply chain for online grocers, such as Picnic. This motivated us to

research the optimization problems that model to the planning of the transport. To tackle

this problem, we took a rigorous mathematical approach to design and evaluate suitable

algorithms. The goal of this research was to answer our main question.

Which algorithm is the most suitable for solving Picnic’s case by finding a good solution for

MDVSPTW and taking into account the driver day duration restriction within limited com-

putation time?

We investigated existing ILP approaches for our problem and relevant subproblems. The

problem size of the ILP formulations of our problem is far too large to find a feasible so-

lution within reasonable computation time. However, we did find an ILP formulation that

finds a solution to MDVSPTW, and for which the ILP implementation can be adjusted to

find a feasible solution within our set time limit. By incorporating additional assumptions

on the final truck planning, we were able to decrease the problem size, and find a feasible

solution for the new ILP formulation of MDVSPTW within our time constraints.

However, this ILP does not provide a feasible solution for our problem, as the driver day

97

98 9. Conclusions and recommendations

duration restriction is not incorporated. Also, ILP approaches are not able to guarantee

an output, because of the NP-hardness. Therefore, we investigated existing heuristic ap-

proaches for our problem and relevant subproblems, in addition to the ILP approaches.

Based on the Concurrent Scheduler heuristic for MDVSP from prior work, we introduced

the Greedy Scheduler algorithm, that finds a feasible solution for our problem within rel-

atively short time. The Greedy Scheduler has the advantage of being able to take active

trucks, i.e., trucks that already have shipments assigned to them, as input and plan re-

maining shipments on the existing truck planning. This property enabled us to combine

the ILP implementation with the Greedy Scheduler into the main algorithm ILP + Greedy

to find a good feasible solution to our problem. For robustness reasons, we also defined

two other main algorithms that solely depend on heuristics: Random Search and Random

Search and Fix. In answering our main question, we compare the performance of the three

main algorithms when allowing a driver change and when not allowing a driver change.

Our results show that ILP + Greedy is the best algorithm both when allowing and not al-

lowing a driver change. This is specifically due to the algorithm generating truck plannings

with a lower inefficiency compared to the other two algorithms. If, however, we would pre-

fer to choose an algorithm that does not involve an ILP, e.g., for robustness reasons, the

Random Search and Fix algorithm performs better compared to the Random Search algo-

rithm.

The impact of allowing a driver change, when executing our main algorithms, is that the

number of trucks decreases by approximately 8%, while the number of drivers increases by

approximately 10%. The total planned hours increases slightly (1%) and the average diver

day duration decreases by approximately one hour. Whether this results in an increase or

decrease of monetary costs depends on the company-specific cost function.

9.2. Recommendations for future research
During this research, we noted multiple fruitful ideas and approaches that could be inter-

esting for future research. In this section, we review these ideas and approaches. We divide

our recommendations into four categories.

The recommendations regarding the general research in general:

• Constraint Programming approach

We solved our problem using ILP and heuristic techniques. However, there is an-

other approach often used on scheduling problems: Constraint Programming. This

approach is based on logic rules that determine whether a solution is feasible and

9.2. Recommendations for future research 99

whether a change in solution is an improvement. Follow-up studies might compare

the results of this approach to our ILP and heuristic results.

• Dataset size

We chose to test our algorithms with data derived from Picnic’s actual planning for

four days. Increasing the size of the dataset would allow an improved empirical eval-

uation of our algorithms. This may shed light on opportunities for further improve-

ments.

The recommendations regarding the ILP models:

• Set Partitioning modelling

We chose to implement the Connection-Based Minimum Cost Network models for

our relevant subproblems. In the literature, however, Set Partitioning models that

might be better extendable when implementing the driver day duration restriction.

Comparing the results of these models to the results of the Connection-Based Mini-

mum Cost Network models may be insightful. Also, this could result in an ILP formu-

lation of our problem that is solvable to optimality, and therefore defines a bench-

mark.

• Implementation of large ILPs

In constructing the ILP models of our problems, we did not implement the final ILP

formulations that represent our problem, because the computation time exceeded

our reasonable limit even for smaller subproblems. However, it may be interesting

to implement these formulations and try to solve them, perhaps with Column Gen-

eration. These ILPs might be able to provide an optimal solution to our problem, or

otherwise allow us to define a lower bound.

The recommendations regarding the heuristics:

• Other types of heuristics

We investigated heuristics that are Greedy or based to an intuitive Local Search al-

gorithm. In the literature, however, we also found algorithms based on less intuitive

heuristics, such as Genetic Algorithms. Implementing these heuristics and compar-

ing the performance to our main algorithms may be insightful.

• Local optima escaping methods

In our main algorithms, we find a good feasible solution for our problem, by making

decisions in a greedy manner. This has the disadvantage that the algorithm might get

stuck in a local optimum. Researchers are encouraged to apply strategies introduced

in Chapter 2, that aim to escape local optima.

100 9. Conclusions and recommendations

A specific idea in this direction, is to not only fix trucks, but also unfix trucks in the

Random Search and Fix algorithm, see Appendix C.2. A Simulated Annealing or Tabu

Search approach might be able to improve the current results of the algorithm.

• Change the order of the shipments

When executing the Greedy Scheduler algorithm, the order in which the shipments

are scheduled is fixed. We ordered the shipments lexicographically on latest start

time and time window length. However, other changing the order might result in

more efficient truck plannings. We encourage future researchers to explore this de-

gree of freedom when examining the Greedy Scheduler algorithm. See Appendix C.1

for a more detailed explanation on this idea.

The recommendations regarding the operational application of the algorithms:

• Time scope

In order to construct a truck planning that is even more realistic for Picnic, we may

want to take into account restrictions that consider a larger time horizon than one

day. For example, every driver should have a fixed number of hours rest at night.

When considering the truck plannings on a week-basis instead of day-basis, we are

able to take this into account.

• Docking restriction

It might be relevant to incorporate the docking restriction. By measuring the num-

ber of times the restriction is violated in the current truck plannings, we can decide

whether it is relevant to include this constraint into our algorithms. The constraint

could be implemented by adding a Location class to the code structure, also see Ap-

pendix A.1.

References

[1] E. Aarts, E. H. Aarts, and J. K. Lenstra. Local search in combinatorial optimization.

Princeton University Press, 2003.

[2] A. A. Bertossi, P. Carraresi, and G. Gallo. On some matching problems arising in vehi-

cle scheduling models. Networks 17.3 (1987), pp. 271–281.

[3] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM computing surveys (CSUR) 35.3 (2003), pp. 268–308.

[4] L. Bodin. Routing and scheduling of vehicles and crews, the state of the art. Comput.

Oper. Res. 10.2 (1983), pp. 63–211.

[5] L. Bodin, D. Rosenfield, and A. Kydes. UCOST: a micro approach to a transportation

planning problem. Journal of Urban Analysis 5.1 (1978).

[6] S. Bunte and N. Kliewer. An overview on vehicle scheduling models. Public Transport

1.4 (2009), pp. 299–317.

[7] G. Carpaneto, M. Dell’Amico, M. Fischetti, and P. Toth. A branch and bound algo-

rithm for the multiple depot vehicle scheduling problem. Networks 19.5 (1989), pp. 531–

548.

[8] J. R. Daduna and J. M. P. Paixão. Vehicle scheduling for public mass transit—an overview.

Computer-aided transit scheduling. Springer, 1995, pp. 76–90.

[9] G. B. Dantzig. Application of the simplex method to a transportation problem. Activ-

ity analysis and production and allocation (1951).

[10] G. B. Dantzig and D. Fulkerson. Minimizing the number of carriers to meet a fixed

schedule. Tech. rep. RAND CORP SANTA MONICA CA, 1954.

[11] G. Desaulniers, J. Lavigne, and F. Soumis. Multi-depot vehicle scheduling problems

with time windows and waiting costs. European Journal of Operational Research 111.3

(1998), pp. 479–494.

[12] M. Desrochers and F. Soumis. A column generation approach to the urban transit

crew scheduling problem. Transportation science 23.1 (1989), pp. 1–13.

[13] J. A. Ferland and P. Michelon. The vehicle scheduling problem with multiple vehicle

types. Journal of the Operational Research Society 39.6 (1988), pp. 577–583.

101

102 References

[14] M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with working-

time constraints. Operations Research 37.3 (1989), pp. 395–403.

[15] R. Freling. Models and techniques for integrating vehicle and crew scheduling. PhD

thesis. Thesis Publishers Amsterdam, 1997.

[16] R. Freling, A. P. Wagelmans, and J. M. P. Paixão. Models and algorithms for single-

depot vehicle scheduling. Transportation Science 35.2 (2001), pp. 165–180.

[17] B. Gavish and E. Shlifer. An approach for solving a class of transportation scheduling

problems. European Journal of Operational Research 3.2 (1979), pp. 122–134.

[18] F. Glover. Future paths for integer programming and links to artificial intelligence.

Computers & operations research 13.5 (1986), pp. 533–549.

[19] F. Glover. Tabu search—part I. ORSA Journal on computing 1.3 (1989), pp. 190–206.

[20] R. Gomory. Essentials of an algorithm for integer solutions to linear programs. Recent

Advances in Mathematical Programming (1958), pp. 269–302.

[21] I. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020. URL: https://

www.gurobi.com/documentation/9.1/refman/index.html.

[22] A. Haghani and M. Banihashemi. Heuristic approaches for solving large-scale bus

transit vehicle scheduling problem with route time constraints. Transportation Re-

search Part A: Policy and Practice 36.4 (2002), pp. 309–333.

[23] D. Huisman. Integrated and Dynamic Vehicle and Crew Scheduling (2004).

[24] D. Huisman, R. Freling, and A. P. Wagelmans. Multiple-depot integrated vehicle and

crew scheduling. Transportation Science 39.4 (2005), pp. 491–502.

[25] R. M. Karp. On the computational complexity of combinatorial problems. Networks

5.1 (1975), pp. 45–68.

[26] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii

Nauk. Vol. 244. 5. Russian Academy of Sciences. 1979, pp. 1093–1096.

[27] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

science 220.4598 (1983), pp. 671–680.

[28] N. Kliewer, B. Amberg, and B. Amberg. Multiple depot vehicle and crew scheduling

with time windows for scheduled trips. Public Transport 3.3 (2012), pp. 213–244.

[29] N. Kliewer, T. Mellouli, and L. Suhl. A time–space network based exact optimiza-

tion model for multi-depot bus scheduling. European journal of operational research

175.3 (2006), pp. 1616–1627.

[30] A. H. Land and A. G. Doig. An Automatic Method of Solving Discrete Programming

Problems. Econometrica 28.3 (1960), pp. 497–520.

https://www.gurobi.com/documentation/9.1/refman/index.html
https://www.gurobi.com/documentation/9.1/refman/index.html

References 103

[31] B. Laurent and J.-K. Hao. Iterated local search for the multiple depot vehicle schedul-

ing problem. Computers & Industrial Engineering 57.1 (2009), pp. 277–286.

[32] A. Levin. Scheduling and fleet routing models for transportation systems. Transporta-

tion Science 5.3 (1971), pp. 232–255.

[33] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the traveling

salesman problem. Operations research 11.6 (1963), pp. 972–989.

[34] M. Mesquita and A. Paias. Set partitioning/covering-based approaches for the inte-

grated vehicle and crew scheduling problem. Computers & Operations Research 35.5

(2008), pp. 1562–1575.

[35] M. Mesquita and J. Paixão. Multiple depot vehicle scheduling problem: A new heuris-

tic based on quasi-assignment algorithms. Computer-aided transit scheduling. Springer,

1992, pp. 167–180.

[36] M. Mesquita and J. Paixão. Exact algorithms for the multi-depot vehicle schedul-

ing problem based on multicommodity network flow type formulations. Computer-

aided transit scheduling. Springer, 1999, pp. 221–243.

[37] A. Mingozzi, L. Bianco, and S. Ricciardelli. An exact algorithm for combining vehicle

trips. Computer-aided transit scheduling. Springer, 1995, pp. 145–172.

[38] C. S. Orloff. Route constrained fleet scheduling. Transportation Science 10.2 (1976),

pp. 149–168.

[39] J. P. Paixão and I. Branco. A quasi-assignment algorithm for bus scheduling. Networks

17.3 (1987), pp. 249–269.

[40] A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman. A comparison of five heuristics

for the multiple depot vehicle scheduling problem. Journal of scheduling 12.1 (2009),

pp. 17–30.

[41] C. C. Ribeiro and F. Soumis. A column generation approach to the multiple-depot

vehicle scheduling problem. Operations research 42.1 (1994), pp. 41–52.

[42] J. Rintoul. Online Supermarket “Picnic” is the Fastest Growing Company in the Nether-

lands. Mar. 2019. URL: https : / / dutchreview . com / news / economy / online -

supermarket-picnic-is-the-fastest-growing-company-in-the-netherlands/.

[43] J. Saha. An algorithm for bus scheduling problems. Journal of the Operational Re-

search Society 21.4 (1970), pp. 463–474.

[44] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

https://dutchreview.com/news/economy/online-supermarket-picnic-is-the-fastest-growing-company-in-the-netherlands/
https://dutchreview.com/news/economy/online-supermarket-picnic-is-the-fastest-growing-company-in-the-netherlands/

104 References

[45] M. Wen, E. Linde, S. Ropke, P. Mirchandani, and A. Larsen. An adaptive large neigh-

borhood search heuristic for the electric vehicle scheduling problem. Computers &

Operations Research 76 (2016), pp. 73–83.

[46] L. A. Wolsey. Integer programming. Wiley Online Library, 1998.

A
Implementation

A.1. Code setup
We introduce the way the code is set up by introducing the most important classes. Figure

A.1 provides an overview of the dependencies of the classes. The figure depicts two types

of classes. The purple classes, Input, Config, ShipmentTW, Shipment, Truck and Schedule,

are fixed classes for every algorithm. The pink classes, BuildingBlock and MainAlgorithm,

differ depending on what algorithm is executed. For example, if executing the Random

Search algorithm without driver change, MainAlgorithm is replaced by the RandomSearch

class and BuildingBlock is replaced by the GreedyScheduler class. The attributes and public

methods listed for every class are examples. In the actual class more attributes and public

methods appear, that could not all be displayed. If one would like to implement the docking

constraint, or other constraints that are location-based, adding a Location class might be

useful. This class could initiate an object for every depot, and monitor the number of trucks

currently at the location.

105

106
A

.Im
p

lem
en

tatio
n

Figure A.1: UML diagram of the main classes in our code.

A.2. Our choices for parameter values 107

A.2. Our choices for parameter values
This section contains a short summary of our configurations for the algorithms. Table A.1

shows a list of all parameters for the objective function, ILP implementation and Greedy

Scheduler, and two parameters from the Random Search and Fix algorithm. Table A.2

shows the number of iterations for the main algorithms that do not contain a Fixing Phase

and Table A.3 show the chosen parameter values for the main algorithms that contain a Fix-

ing Phase. For the exact definitions and explanations of all parameters, we refer to Chapter

5 and 6.

For the ILP implementation we choose to assume that an OB shipment can only be exe-

cuted by a truck that starts from a depot that is at most 1 hour driving from the end lo-

cation of the shipment. Also, we implement depot improvement and shipment sliding as

post-processing steps, but only for truck days that are not splittable. For the Greedy Sched-

uler algorithm we also implement both post-processing steps only for truck days that are

not splittable.

Parameter Value
w f c 100000
wd t 60
ww t 30
cmax w f c +wd t

δmi n 10
δs 15
δm 7
t max

w t 1.5
τmax 450
δg ap 1 ·10−5

le 18:00
ld 11
es 12:00
ed 11

Table A.1: An overview of the parameter values we chose for our algorithms.

Algorithm I
ILP + Greedy no driver change 200
ILP + Greedy with driver change 200
Random Search no driver change 250

Table A.2: The parameter values for the main algorithms that do not contain a Fixing Phase.

108 A. Implementation

Algorithm φmi n I1 I2

Random Search with driver change 80 150 500
Random Search and Fix no driver change 80 150 600
Random Search and Fix with driver change 80 50 400

Table A.3: The parameter values for the main algorithms that contain a Fixing Phase.

B
Additional experiments

B.1. Tie analysis for the Greedy Scheduler algorithm
When executing the Greedy Scheduler algorithm, multiple trucks might have minimal costs

for a given shipment. Providing insight in the number of ties is import for understanding

the degree of randomness of the algorithm, and for making the choice in how to break ties.

In order to analyse the occurrence of ties, we executed the Greedy Scheduler algorithm 1000

times for all dates and counted the average number of ties per execution of the algorithm.

Table B.1 shows the average number of ties in one execution of the Greedy Scheduler al-

gorithm, when only minimizing the costs. We can conclude that for 24% of all shipments,

more than one truck has minimal costs. Table B.2 shows the average number of ties when

minimizing costs and the distance of the depot and the end location of the shipment. From

these results we can conclude that for 18% of the shipments ties occur.

31_03 15_04 16_04 17_04 average
absolute number of ties 17 34 39 37 32
percentage of ties (%) 14 24 30 28 24

Table B.1: Average number of ties within one execution of the Greedy Scheduler algorithm, after executing
the algorithm 1000 times, when only taking the costs into account.

31_03 15_04 16_04 17_04 average
absolute number of ties per iteration 13 22 34 27 24
percentage of ties per iteration 11 16 26 20 18

Table B.2: Average number of ties within one execution of the Greedy Scheduler algorithm, after executing
the algorithm 1000 times, when taking the costs and distance into account.

109

110 B. Additional experiments

B.2. Splittable trucks analysis for the Random Search with driver

change algorithm
When defining an algorithm that allows a driver change, we want to ensure that truck days

appear that enable driver changes. This section analyzes the number of splittable truck

days that appear when executing two strategies:

1. A straightforward approach is to execute Random Search without a maximal day du-

ration restriction.

2. In order to ensure more splittable truck days to appear, we execute Random Search

without a maximal day duration multiple times, and fix all splittable truck days that

occur.

In order to examine the performance of the two strategies, we execute them with I = 200

for all test days five times and compare the average results. Table B.3 shows the number of

splittable truck days that appear, when executing the first strategy. On average, the number

of splittable truck days is 4. Table B.4 shows the number of splittable truck days, when

executing the second strategy. On average, the number of splittable truck days is 13. Hence,

fixing all splittable truck days that occur while executing Random Search without maximal

day duration is an effective strategy, when aiming to increase the number of splittable truck

days.

i 31_03 15_04 16_04 17_04
1 6 5 2 3
2 5 7 2 3
3 4 6 3 1
4 4 5 4 4
5 3 3 4 3
average 4 5 3 3

Table B.3: Number of splittable truck days when applying the first strategy described above.

i 31_03 15_04 16_04 17_04
1 11 13 12 12
2 13 14 13 13
3 13 13 13 14
4 13 14 12 10
5 14 13 13 15
average 13 13 13 13

Table B.4: Number of splittable truck days when applying the second strategy described above.

C
Additional algorithms

C.1. List Search algorithm
In the Greedy Scheduler algorithm the order in which the shipments are considered has

a great influence on the final truck planning. Choosing the order to be based on increas-

ing latest start time and length of time window does not lead to the optimal planning per

se. Therefore, changing the order may result in a better planning. We implemented the

List Search algorithm that exploits this fact by switching a random pair of shipments in the

order and comparing the new solution with the best solution found so far. If the new so-

lution is better than the best solution so far, the switched shipments remain switched. If

not, the two shipments switch back. Table C.1 shows the results when executing this algo-

rithm for I = 500 for the four for test days and taking the average, compared to the Random

Search algorithm. We conclude that the performance of the two algorithms is comparable.

It might be interesting to investigate if more sophisticated order changes result in better

performance of the algorithm.

C.2. Random Search and Fix dynamic algorithm
The Random Search and Fix algorithm defines low-cost trucks in a static way: a truck is ei-

ther low-cost or not, and the requirement remains the same throughout all iterations. The

disadvantage of this approach is that we might reject trucks in the first phase that do not

meet the requirement up to a small difference, but we would have liked to keep in hind-

sight, as we end up with worse when applying Random Search in the second phase. In-

spired by Simulated Annealing, we choose to fix a certain truck from a solution constructed

in a certain iteration with a probability that depends on how good the truck is and how far

we are in the search process. The probability that a truck with cost tc is accepted, which

111

112 C. Additional algorithms

Metric Random Search List Search
Objective value 5,606,340 5,606,268
Number of trucks 56 56
Number of drivers 56 56
Waiting (%) 3.89 3.05
Empty driving (%) 13.09 13.9
Inefficiency (%) 16.98 16.9
Total planned hours 602 607
Short driver days (<7 hours) 5 3
Average driver day duration (hours) 10.8 10.9
Running time (seconds) 132 132

Table C.1: Average results over the four test days of the Random Search algorithm and List Search algorithm.

means that it is fixed, in iteration i ∈N, is:

probability of acceptance(tc , i) = e
tc−w f c

γ·i (C.1)

The probability is 1 if the truck costs are equal to the fixed costs, w f c , and the higher the

truck costs are, the smaller the acceptance probability is. But, the further we are in the

search process, the higher the probability that a truck with certain costs is accepted gets.

We introduce parameter γ> 0 that determines the pace at which the acceptance probabil-

ity increases as we get further into the search process.

Using Simulated Annealing or Tabu Search techniques, we could also unfix trucks after

have fixed them. An example is to unfix the fixed truck with highest costs when the unfixed

shipments have to generate trucks above a certain costs.

	Introduction
	Picnic's case
	The Vehicle Scheduling Problem and its variants
	Research question
	Contributions
	Outline of the report

	Theoretical background optimization
	Integer Linear Programming
	Heuristics
	Assess the performance of an optimization algorithm

	Modelling our problem as an ILP
	Literature review
	An ILP to solve SDVSP
	An ILP to solve MDVSP
	An ILP to solve MDVSPTW
	The driver day duration restriction

	A Greedy heuristic for MDVSP
	Literature review: heuristics to solve our problem
	The Concurrent Scheduler algorithm for MDVSP

	Two building blocks
	Finding a solution for the ILP of MDVSPTW
	The Greedy Scheduler algorithm
	Additional post-processing steps

	Three main algorithms
	ILP + Greedy algorithm
	Random Search algorithm
	Random Search and Fix algorithm

	Algorithm configurations
	Test days
	Objective function parameters
	ILP algorithm configuration
	Greedy Scheduler configuration
	Configuration of main algorithms without a Fixing Phase
	Configuration of main algorithms with a Fixing Phase

	Results
	Comparison of the algorithms without driver change
	Comparison of the algorithms with driver change
	Impact of driver change

	Conclusions and recommendations
	Conclusions
	Recommendations for future research

	Implementation
	Code setup
	Our choices for parameter values

	Additional experiments
	Tie analysis for the Greedy Scheduler algorithm
	Splittable trucks analysis for the Random Search with driver change algorithm

	Additional algorithms
	List Search algorithm
	Random Search and Fix dynamic algorithm

