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Abstract
This thesis addresses the critical issue of underestimated wake effects between neighboring wind
parks by developing efficient long-distance wind farm flow models using Convolutional Neural
Networks (CNNs). The study compares three wake deficit models (Jensen, Bastankhah, and
TurbOPark) and four neural network architectures (Convolutional Autoencoder (CAE), U-Net,
CAE/MLP, and U-Net/MLP) to improve long-distance wake predictions.

A novel method for random wind park layout generation was developed, simulating diverse
scenarios up to 768 rotor diameters downstream. Each wake model dataset comprised 1000
simulations, split 80/20 for training and testing. Results demonstrate that all neural net-
works effectively simulate wake datasets, with U-Net and U-Net/MLP consistently outperform-
ing CAE approaches. Mean Absolute Errors (MAE) range from 4.75 × 10−4 m/s (Jensen) to
1.44 × 10−2 m/s (TurbOPark). The U-Net/MLP model also successfully predicted turbulence
intensity, achieving MAEs between 1.30 × 10−4 (Frandsen model) and 2.21 × 10−4 (Crespo-
Hernández model).

Crucially, neural networks significantly outperform traditional engineering models in compu-
tational efficiency. While engineering models’ computational time scales linearly with turbine
count, neural networks maintain a constant execution time of approximately 3 ms, regardless
of wind park size. This breakthrough enables rapid assessment of large-scale wind farm layouts
and performance optimization.
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1 Introduction
Wind energy has become a cornerstone of the global transition to sustainable power genera-
tion. As the industry expands rapidly, particularly in offshore environments, understanding
and modeling wind farm dynamics have become increasingly crucial. This section explores the
background, motivation, and objectives of a study aimed at improving wind farm flow modeling
using advanced machine learning techniques.

The background subsection provides an overview of wind energy’s growing importance and the
challenges posed by wake effects in wind farms. It discusses the limitations of current mod-
eling approaches and introduces the potential of machine learning, specifically Convolutional
Neural Network (CNN), in addressing these challenges. The motivation subsection highlights
the pressing need for accurate and computationally efficient wake models, particularly in the
context of dense offshore wind farm development. It uses the North Sea as a prime example of
the industry’s rapid growth and the complex planning required for future expansions.

Finally, the objectives subsection outlines the specific goals of the research. These include
developing and evaluating CNN-based models for long-distance wind farm flow prediction,
assessing various neural network architectures, and exploring the models’ potential applications
in wind farm design and operation.

1.1 Background
Wind energy has emerged as a crucial renewable resource in the global shift towards sustainable
power generation. As the world seeks to reduce its reliance on fossil fuels and combat climate
change, wind farms have become a significant contributor to electricity grids worldwide (see
Figure 1.1). This growth is not limited to any specific region; both onshore and offshore
installations are expanding rapidly, driven by technological advancements, cost reductions, and
supportive environmental policies [45, 37]. Wind energy’s role in the modern energy landscape
underscores its importance in achieving a sustainable and resilient energy future.
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Wind energy has emerged as a crucial renewable resource in the global transition towards sus-
tainable power generation. However, the efficient design and operation of wind farms present
significant challenges, particularly in understanding and mitigating wake effects. When wind
turbines extract energy from the air, they create zones of reduced wind speed and increased
turbulence downstream, known as wakes. These wakes can extend for several kilometers, im-
pacting the performance of downwind turbines and neighboring wind farms [60, 62]. Wake
effects occur both internally within wind farms [90, 15] and between neighboring installations,
leading to substantial power losses and increased fatigue loads on turbine components. The
accurate modeling of wake effects, both within individual wind farms and between neighboring
installations, is paramount for optimizing wind farm layouts, predicting power output, and
managing turbine operations. Traditional approaches have relied on analytical wake models,
which offer simplicity but often lack accuracy over large distances. As wind farms are increas-
ingly built in larger clusters, it has become important to understand and accurately model
inter-farm wakes, also known as cluster wakes [31].

Recent studies have shown that cluster wakes can persist over remarkable distances, being ob-
served 55 km downstream using Synthetic Aperture Radar (SAR) and single lidar scans [79].
These long-distance wakes have been observed through various methods, including satellite-
based SAR [44], aircraft measurements [71], high-fidelity Large Eddy Simulation (LES) simu-
lations [19], dual-Doppler radar [63], and analysis of wind farm production data [64]. There is
growing consensus within the scientific community that the impact of neighboring wind farms
has been historically underestimated, leading to an overprediction bias in wind energy pro-
duction estimates [69]. For instance, Fischereit et al. [31] investigated the wake impact of the
Nysted wind farm on the Rødsand II wind farm at wind speeds around 10m/s. Their study
revealed that engineering wake models designed for wind farm production estimates and layout
optimization predicted power reductions between 0.1% and 4.5%. In contrast, high-fidelity
computational fluid dynamics models showed significantly higher reductions between 8.9% and
12.2%.

This discrepancy highlights the need for advanced modeling techniques that can accurately
capture the complex dynamics of long-distance wake effects. Such models are essential for
optimizing wind farm layouts, predicting power output with greater precision, and developing
effective strategies for wake mitigation. Computational Fluid Dynamics (CFD) simulations are
powerful tools for modeling wind farm flows, offering high-fidelity results that capture intricate
wake interactions and atmospheric boundary layer effects. These simulations employ various
numerical methods to approximate solutions to the Navier-Stokes equations, typically using
either Reynolds-averaged Navier-Stokes (RANS) models or LES techniques. RANS models are
based on time-averaged equations and assume that turbulent fluctuations can be modeled as
separate terms, while LES directly simulates larger turbulent structures and models smaller
scales. For instance, Stieren and Stevens [84] used LES to calculate wake effects between two
aligned wind farms. These approaches provide valuable insights into wake behavior, turbulence
characteristics, and energy transfer processes within wind farms, balancing computational cost
with the level of detail required.

CFD models can account for complex terrain, atmospheric stability, and turbine-specific fea-
tures, making them valuable for both research and industry applications. However, the compu-
tational intensity of CFD simulations poses significant challenges for their widespread adoption
in operational settings. High-resolution CFD models often require substantial computing re-
sources and long run times, making them impractical for real-time applications or rapid iterative
design processes [80], for example by wind farm layout optimization. This limitation has spurred
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the search for alternative approaches that can balance accuracy with computational efficiency.
Recent advances in machine learning, particularly in the field of CNN, offer new possibilities
for modeling complex fluid dynamics problems [40, 76, 35]. These data-driven approaches have
shown promise in capturing the non-linear behavior of fluid flows, potentially bridging the gap
between simple analytical models and resource-intensive CFD simulations.

This research aims to explore the application of machine learning techniques, specifically CNNs,
to improve long-distance wind farm flow modeling. By leveraging data from existing wake
models (see subsection 2.2), the goal is to develop accurate and computationally efficient models
to predict wake effects on large spatial scales. As the accuracy of these models depends on their
training data, future improvements could be achieved by incorporating higher fidelity datasets.

1.2 Motivation
The increasing density of offshore wind parks presents an important challenge in optimizing lay-
outs to minimize wake effects. Turbine wakes significantly reduce energy output and increase
mechanical stress on downstream turbines, leading to higher maintenance costs and shorter
lifespans. This situation necessitates the development of accurate and computationally efficient
wake deficit models for effective wind farm layout optimization.

Conventional wake models often struggle to provide the accuracy needed for complex, densely
arranged wind farms [6, 31]. While CFD models have the potential for greater precision, their
computational demands make them impractical for assessing numerous inflow conditions and
layouts [19]. This study aims to bridge this gap by developing a reliable and computationally
efficient wake deficit model. The proposed model is designed to handle wake deficit propagation
calculations for multiple large-scale offshore wind farms, potentially enabling more comprehen-
sive wind park layout optimization and sensitivity analyses. This would allow for a better
understanding of how various design parameters impact overall performance.
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Figure 1.2: Overview of the constructed and planned wind designation areas in the eastern
North Sea (Data Source: European Marine Observation and Data Network [30]).

The North Sea exemplifies the rapid growth and future potential of offshore wind energy.
It already hosts some of the world’s largest offshore wind parks. Notable examples include
Hornsea One and Two, with a combined nameplate capacity of 2.6 GW [67]. Another significant
development is the Dogger Bank wind farm cluster (A, B, C) and Sofia Offshore Wind Farm,
projected to reach a total capacity of 5.1 GW upon completion [25, 82]. These massive wind
farms are located off the coasts of the United Kingdom, Belgium, the Netherlands, Germany,
and Denmark. As shown in Figure 1.2, a significant portion of the eastern North Sea is already
occupied by operational wind parks. Even more striking is the vast area designated in the
Marine Spatial Planning (MSP) for future wind energy development.
The competitive nature of the offshore wind industry further underscores the importance of
efficient wake modeling. For instance, in the German Exclusive Economic Zone (EEZ), the
designation area N-9 has been reserved for wind energy development and subdivided into sites
N-9.1, N-9.2, and N-9.3 (see Figure 1.3). These sites, covering approximately 421 km² with an
expected capacity of 5500 MW, were put out for tender on March 1, 2024 Memija [56]. For
such large-scale tenders, energy companies must submit comprehensive proposals based on ex-
tensive simulations, emphasizing the need for efficient modeling tools that can rapidly evaluate
different layouts and turbine selections.
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Figure 1.3: Overview of wind development designation area N-9 in the German EEZ (Source
Bundesamt für Seeschifffahrt und Hydrographie [17]).

Recent advancements in machine learning, particularly in CNNs, offer a promising solution to
wind wake modeling challenges. CNNs can learn complex spatial patterns from large datasets,
making them well-suited for this task. This research aims to develop a neural network-based
wake model that combines the accuracy of higher-fidelity models with the computational effi-
ciency required for practical, large-scale use. In collaboration with Ørsted, this study focuses
on applying CNNs and other advanced neural network architectures to predict wind farm wake
effects. The goal is to create a robust wake model that demonstrates good accuracy compared
to its training data. To achieve this, the research employs multiple engineering wake models and
various neural network architectures to determine the most effective approach for long-distance
wind farm flow modeling. This comparative study aims to identify whether combining tradi-
tional wake models with machine learning techniques can lead to accurate and efficient wake
prediction. The study also considers the potential for future research to train these models on
higher-fidelity wake models, potentially enhancing their predictive capabilities.

1.3 Objectives
The main objectives of this thesis are to develop and evaluate CNN-based models for predicting
wind farm flow over long distances. The research focuses on designing and implementing neural
network architectures that can process wind farm layout and inflow conditions to predict wake
effects up to 768 rotor diameters downstream. This large distance is chosen based on observed
wind farm wake effects at comparable scales, as discussed in subsection 1.1.

A key aspect of the study is evaluating how neural networks perform when trained on various
datasets. The research utilizes three engineering wake models: the Jensen wake deficit model,
Bastankhah model, and TurbOPark model, which are detailed in subsection 2.2. The study
assesses several neural network architectures for wake modeling, including a Convolutional
Autoencoder (CAE), U-Net, and hybrid designs combining CAE or U-Net with a Multilayer
Perceptron (MLP) layer. These neural network architectures are covered in subsection 3.4. By
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analyzing the strengths and weaknesses of each architecture in capturing wake dynamics, the
research aims to identify the most effective approach for this application.

Another crucial objective is to evaluate the accuracy and computational efficiency of the de-
veloped models. This involves comparing CNN predictions against test datasets for each of
the analytical models. The study also assesses the computational requirements and inference
speed of the trained models. The research explores the potential applications of these models
in improving wind farm design and operation. Specifically, it investigates their use in wind
farm layout optimization and yield assessment analysis.

The study also aims to quantify model uncertainty and assess generalization capabilities. This
is achieved by evaluating model performance across various wind farm configurations and inflow
conditions. Through these objectives, this research seeks to advance wind farm flow modeling.
The goal is to provide tools that balance accuracy, computational efficiency, and practical
applicability for the wind energy industry.
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2 Literature Review
This section presents a comprehensive review of the current literature on wind farm wake
effects and the application of machine learning in wind energy. The review begins with an
in-depth analysis of the complex aerodynamic phenomena associated with wind turbine wake
effects, emphasizing their critical influence on wind farm performance and efficiency. A detailed
examination follows of the engineering wake deficit models currently employed in the industry
for predicting wake effects within wind farms and between neighboring wind farms. The section
highlights the equations underlying three key wake deficit models: Jensen, Bastankhah, and
Turbulence Optimized Park (TurbOPark). Each model’s complexity and accuracy in typical
use cases are discussed, providing insight into their strengths and limitations.
The review then explores the integration of advanced machine learning techniques in wake effect
modeling and prediction. Particular attention is given to Convolutional Autoencoders (CAEs)
and U-Net architectures, discussing their potential to enhance the accuracy and efficiency of
wake effect analysis. This exploration extends to the broader applications of machine learning
in wind energy, encompassing wind farm wake prediction, airfoil aerodynamic performance
prediction, and wind farm power forecasting. By examining current knowledge and identifying
gaps in existing research, this literature review establishes a solid foundation for the subsequent
research and analysis presented in this study. It aims to contextualize the importance of both
traditional engineering models and emerging machine learning approaches in advancing our
understanding and prediction of wind farm wake effects.

2.1 Wind Farm Wake Effects
Wind turbine wake effects refer to the complex aerodynamic phenomena that occur when wind
flows through a turbine, causing a wake area of reduced wind speed and increased turbulence
downstream. Understanding these wake effects is crucial for optimizing wind farm performance,
as they significantly influence the efficiency [60] and lifespan [85] of turbines within the farm
and neighbouring wind farms. When wind passes through a wind turbine, the kinetic energy of
the wind is transferred to the rotor blades, which convert this kinetic energy into mechanical
energy. The rotor blades, connected to a generator, then convert the mechanical energy into
electrical energy. This process of energy extraction reduces the kinetic energy in the wind flow,
resulting in a wake region of slower-moving, turbulent air immediately downstream of the tur-
bine. For wind farms, this effect is amplified, as the individual turbine wakes are mixed leading
to a large scale wind farm wake deficit effect downwind, which consists of the superposition
(see subsubsection 2.2.5) of the individual turbine wakes.

This phenomenon has been famously observed at the Horns Rev Offshore Wind Park, as shown
in Figure 2.1. The image clearly demonstrates how the air behind wind turbines becomes
turbulent, creating expanding wakes that are visible as clouds downwind from the turbines. As
covered by Hasager et al. [43], wind turbine wakes are typically invisible, but became visible
in this instance due to a unique atmospheric phenomenon. A temperature inversion occurred
when a layer of cold humid air resided above a warmer sea surface. The wind passing through
the turbines generated a counter-rotating swirl, causing warm, humid air from the sea surface to
be up-drafted. This warm air mixed with the cold air layer above, resulting in fog condensation
within the turbine wakes. The condensation was particularly prominent in wake areas with high
axial velocities and turbulent kinetic energy. Consequently, the usually imperceptible turbine
wakes became clearly visible as spiraling bands, revealing the large-scale structure of the wake.
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Figure 2.1: Wakes in the wind farm Horns Rev 1 [February 12th 2008]. (Owned by: Vattenfall.
Photographer: Christian Steiness)

The primary characteristic of a wake is a reduction in wind speed. As the wind energy is
harnessed by the turbine blades, the wind exiting the rotor has significantly less kinetic energy.
This reduction in speed is most pronounced directly behind the turbine and gradually recov-
ers to ambient wind speeds as the air mass moves further downstream. The extent of these
wake regions can span several kilometres, with their length influenced by factors such as wind
speed, atmospheric conditions, and turbine operating parameters. Studies have observed wake
effects at scales beyond 50 kilometres [44]. Wake regions are characterized not only by reduced
wind speed but also by increased turbulence. The interaction between rotor blades and wind
flow generates turbulent eddies and vortices, resulting in higher turbulence intensity within the
wake. This increased turbulence amplifies the mechanical loads on downstream turbines, po-
tentially leading to accelerated wear and tear on turbine components. Thomsen and Sørensen
[85] demonstrated this effect, finding a 5% to 15% increase in fatigue loads for wind turbines
operating in wakes compared to those in freestream air.

As seen from Figure 2.2, the wake region behind a wind turbine can be divided into two
distinct zones: the near wake and the far wake. The near wake begins immediately behind the
turbine and extends approximately 2–4 rotor diameters (D) downstream [32, 55]. This region is
strongly influenced by the rotor geometry, characterized by the formation of blade tip vortices,
steep pressure and axial velocity gradients, and wake expansion. In contrast, the far wake is
primarily defined by reduced wind speeds and increased turbulence intensities, with limited
influence from the specific rotor geometry [38]. Turbulence becomes the dominant physical
property in this region [23]. The far wake is affected not only by rotor-induced turbulence
but also by large-scale (or atmospheric) turbulence further downstream. This turbulent mixing
accelerates wake recovery in terms of both velocity deficit and turbulence intensity. As the
wake develops, the velocity deficit in the far wake approaches a Gaussian profile, which is
axisymmetric and self-similar [8].
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Figure 2.2: Wind turbine wakes in the Atmospheric Boundary Layer (ABL). Mixing of the
ABL with turbine wakes above the turbine region leads to wake recovery further downstream
(Reprinted from Sanderse [78]).

The wake effects described are not limited to interactions between individual turbines within
a single wind farm. As wind farms grow larger and more numerous, the collective impact of
multiple turbines creates a wind farm scale wake that can affect neighboring wind farms. This
large-scale wake is the result of the superposition of individual turbine wakes, leading to a more
extensive area of reduced wind speeds and increased turbulence. Recent studies have shown
that these wind farm wake effects can extend far beyond the immediate vicinity of a wind
farm, potentially impacting the performance of other wind farms located tens of kilometers
downstream. For instance, Nygaard et al. [64] observed wake effects between offshore wind
farms separated by distances of up to 15 km. These inter-farm wake interactions can result
in noticeable power losses for downstream wind farms, though the exact magnitude can vary
significantly depending on factors such as farm layout, atmospheric conditions, and distance
between farms.

Understanding and mitigating these large-scale wake effects has become increasingly important
as the density of wind farms continues to grow, particularly in offshore environments where
space is at a premium. Accurate modeling and prediction of wind farm wakes are crucial for
optimizing the layout and operation of wind farms, as well as for assessing the potential impacts
on existing and planned wind energy projects in the vicinity.

2.2 Analytical Wake Models
Analytical wake models are mathematical frameworks designed to predict the behavior of wakes
generated by wind turbines. These models are essential for understanding and optimizing the
performance of wind farms, as they provide insights into the wind speed deficits and turbu-
lence characteristics that affect downstream turbines. By simplifying the complex aerodynamic
interactions into manageable equations, analytical wake models offer a balance between compu-
tational efficiency and accuracy, making them widely used in wind farm design and operational
planning. The primary purpose of analytical wake models is to estimate the impact of a wind
turbine’s wake on the wind flow and subsequently on the performance of other turbines within
the same wind farm and between neighbouring wind farms.

There are several well-known analytical wake models, each with its own approach and assump-
tions. Some of the earlier models, like the Jensen model [46] and the Larsen model [51], assume
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a top-hat shaped velocity deficit profile with linear and non-linear wake expansion, respectively.
These models are relatively simple and computationally efficient, making them popular for ini-
tial wind farm design stages. The Frandsen model [33] takes a different approach, using an area
overlap method to assess wake interactions at the wind farm scale. This model is particularly
useful for layout optimization in large wind farms.

More recent models have introduced more sophisticated wake profiles. The Bastankhah and
Porté-Agel [9] model proposes a Gaussian wake profile, providing a more realistic representa-
tion of the wake velocity deficit distribution. This self-similar solution offers improved accuracy
while maintaining computational efficiency. The Ainslie model [2] employs an eddy-viscosity
approach, solving simplified Navier-Stokes equations. While more computationally intensive,
it offers a more physics-based representation of wake development from the near to far wake
regions. Building upon the Gaussian wake concept, Blondel and Cathelain [14] introduced a
super-Gaussian profile that accounts for wake rotation effects. This model provides a flexible
framework that can capture various wake shapes observed in different atmospheric conditions.
Each of these models represents a different trade-off between simplicity, computational effi-
ciency, and physical accuracy. The TurbOPark model was developed in response to Ørsted’s
discovery in 2019 that industry-standard wake models were underestimating the effects of wakes
from neighboring wind farms [66]. This finding, based on analysis of production data from
Ørsted’s offshore wind farm portfolio, led to Ørsted’s development of a more accurate model
capable of predicting wake effects over longer distances. TurbOPark was designed to accurately
capture both internal wind farm wakes and cluster wakes from neighboring wind farms, ad-
dressing the gap in the industry’s ability to forecast wind farm performance, particularly in
scenarios where multiple offshore wind farms are in close proximity [69].

The choice of wind farm wake deficit model depends on the specific application, available
computational resources, and required level of detail in wake representation. For this study,
the Jensen, Bastankhah and TurbOPark wake deficit models are used, which can been seen
compared in Figure 2.3.
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Figure 2.3: Comparison of wake deficit downwind from a single Vestas V80 wind turbine at
wind speed U0 = 10m/s and ambient turbulence intensity of I0 = 0.1. The models used are
the Jensen, Bastankhah and TurbOPark wake deficit models.

2.2.1 Jensen Wake Deficit Model

The Jensen wake deficit model, formulated by Jensen [46] in 1983, presents a simplified approach
to understanding the wake effects behind a wind turbine. The core assumption of the Jensen
model is that the wake behind a wind turbine expands linearly with distance downstream from
the turbine. The wake radius r is proportional to the downwind distance x:

r = r0 + kwx (1)

where r0 is the rotor radius and kw is the wake decay constant.
The velocity deficit in the wake can be expressed as:

δ(x) =
U0 − Uw

U0

= 2a

(
r0

r0 + kwx

)2

(2)

where Uw is the velocity in the wake at distance x from the turbine, U0 is the ambient wind
velocity, and a is the axial induction factor. Assuming ideal conditions of axial symmetry,
without rotation, turbulence, and with a conic-shaped wake profile, the axial induction factor
can be expressed as:

a =
1−
√
1− CT

2
(3)

Katic et al. [47] extended this model to calculate wake effects from multiple turbines. Their
approach propagates the wake downwind and uses the Sum of Squares (SOS) of individual wake
deficits. The model accounts for partial wake-rotor overlap by considering the incident wind
speed. This modified Jensen model, later adopted by Wind Atlas Analysis and Application
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Program (WAsP), became known as the original Park model. Due to its simplicity and low
computational cost, the Jensen wake deficit model is widely used for preliminary wind farm
design and optimization.

2.2.2 Bastankhah Wake Deficit Model

The Bastankhah wake deficit model [9] is an analytical model proposed to predict the wind
velocity distribution downwind of a wind turbine. This model is derived using the principles of
mass and momentum conservation and assumes a Gaussian distribution for the velocity deficit
in the wake. The normalized velocity deficit δ is defined with a Gaussian distribution:

δ(x) = C(x) exp
(
− r2

2σ2

)
(4)

Here σ is the standard deviation of the Gaussian profile. The function for C represents the
maximum normalized velocity deficit at the center of the wake for each downwind location and
is given by:

C(x) = 1−

√
1− CT

8(σ/D0)2
(5)

If we assume a linear expansion for the wake region similar to Jensen [46], σ/D0 can be written
as σ/D0 = k∗(x/D0)+ ε, where k∗ = ∂σ/∂x is the wake growth rate and ε is the value of σ/D0

as x approaches zero. The final equation for the normalized velocity deficit is:

δ(x) =

(
1−

√
1− CT

8(k∗x/D0 + ε)2

)
exp

(
− 1

2(k∗x/D0 + ε)2

((
z − zH
D0

)2

+

(
y

D0

)2
))

(6)

This equation describes the normalized velocity deficit in the wake as a function of the downwind
distance, spanwise and vertical coordinates, thrust coefficient, and wake growth rate. While the
Bastankhah model offers a straightforward approach to estimating wind turbine wakes, recent
research has provided mixed results regarding its performance. Krutova et al. [50] found it to
perform comparably to similar engineering wake deficit models. However, a more recent study
by Binsbergen et al. [12] suggests that its performance may be inferior to other comparable
models.

2.2.3 TurbOPark Wake Deficit Model

The TurbOPark model is an advanced wake model developed by Ørsted [64, 69, 61] to accurately
predict wake effects within wind farms and between neighboring wind farms. It improves upon
the classic Park model (see subsubsection 2.2.1) by incorporating both ambient atmospheric
turbulence and wake-generated turbulence, resulting in a more realistic description of wake
recovery dynamics. The key innovation of the TurbOPark model is its turbulence-dependent
wake expansion rate, expressed as:

dσw

dx
= AI(x) (7)

where σw is the characteristic wake width, x is the distance downstream of the turbine, A
is a wake expansion calibration parameter, and I is the local turbulence intensity. The local
turbulence intensity combines ambient and wake-generated turbulence:

I(x) =
√
I02 + Iadd(x)2 (8)
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where I0 is the ambient turbulence intensity and Iadd is the additional wake-generated turbu-
lence. The wake-generated turbulence is modeled using the Frandsen wake turbulence model
[34]:

Iadd(x) =
1

c1 + c2
x/D0√
CT (Vin)

(9)

where c1 = 1.5 and c2 = 0.8 are empirical constants, D0 is the rotor diameter, and CT (Vin) is
the thrust coefficient at the inflow wind speed Vin. The wind speed deficit is described using
the Gaussian wake profile proposed by Bastankhah and Porté-Agel [9] in Equation 4, but using
the characteristic wake width σw(x). The maximum normalized velocity deficit C, derived from
conservation of momentum, is formulated similar to Bastankhah and Porté-Agel [9] and can be
seen in Equation 5. The unique feature of TurbOPark is its non-linear wake expansion, which
evolves according to:

σw(x)

D0

= ε+
AI0
β

(√
(α + βx/D0)2 + 1−

√
1 + α2 − ln

[
(
√

(α + βx/D0)2 + 1 + 1)α

(
√
1 + α2 + 1)(α + βx/D0)

])
(10)

where ε is the initial normalized characteristic wake width, α = c1I0 and β =
c2I0√
CT (Vin)

. Based

on tuning and validation using data from 19 offshore wind farms, the recommended value for
the wake expansion calibration parameter is A = 0.04 for all offshore applications [61]. For
turbines affected by multiple wakes, the deficits from overlapping wakes are combined using
the SOS method.

The TurbOPark model offers several key advantages. It significantly improves predictions for
cluster wakes and long-distance wake interactions, addressing limitations of the Park model at
larger distances [69]. The integration of turbulence effects results in a more accurate represen-
tation of wake recovery dynamics. The TurbOPark model is open-source and available online
[61]. For this study, TurbOPark, along with the other engineering wake deficit models, was
implemented using PyWake [74].

2.2.4 Wake‐generated Turbulence Model

Crespo-Hernández turbulence model: The Crespo-Hernández model, developed by Cre-
spo and Hernández [23] in 1996, provides a set of analytical expressions to estimate turbulence
characteristics in wind turbine wakes. This model distinguishes between near wake (1-3 rotor
diameters downstream) and far wake (5-15 rotor diameters downstream) regions, offering sep-
arate correlations for each. For the near wake, the model proposes a simple expression for the
turbulence intensity added in the wake:

Iadd = 0.362[1− (1− CT )
1/2] (11)

where CT is the thrust coefficient. This equation is derived from a simplified analysis of the
annular shear layer formed immediately behind the turbine, where maximum turbulence pro-
duction occurs in the upper part of the wake. In the far wake region, the model suggests a
more complex correlation based on numerical simulations:

Iadd = 0.73a0.8325I0
−0.0325(x/D0)

−0.32 (12)
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where a is the induction factor, I0 is the ambient turbulence intensity, x is the downstream
distance, and D0 is the rotor diameter. This expression accounts for the gradual decay of added
turbulence with distance from the turbine. It’s worth noting that in the PyWake implemen-
tation [70], Equation 12 is applied to model turbulence intensity throughout the entire wake,
including the near wake region, despite the original model’s distinction between near and far
wake correlations.

The Crespo-Hernández model has been widely adopted in the wind energy community due to
its relative simplicity and reasonable accuracy, making it a valuable tool for initial assessments
of wake turbulence in wind farm design and optimization.
In the Crespo-Hernández model, the turbulence intensity I at a distance x downstream of a
wind turbine is calculated by combining the ambient atmospheric turbulence intensity I0 with
the additional wake-induced turbulence Iadd. These two sources of turbulence are added in
quadrature, as seen in Equation 8.

Frandsen turbulence model: The Frandsen turbulence model, developed by Frandsen [34],
offers an empirical approach to estimating turbulence intensity in wind turbine wakes. This
model is particularly useful for wind farm layout design and analysis due to its straightfor-
ward methodology. The wake turbulence intensity is calculated by combining the added wake
turbulence and the ambient turbulence intensity, similar to the Crespo-Hernández model, by
taking the square root of the sum of their squared values as seen in Equation 8. This approach
assumes that the ambient and wake-induced turbulence are uncorrelated, which is a reasonable
approximation for most practical purposes. The additional turbulence in the wake, Iadd, is
described empirically as [34]:

Iadd =
1

1.5 + 0.3 x
D0

√
Vin

(13)

where x is the downstream distance from the turbine, D0 is the rotor diameter, and Vin is the
hub height wind speed. The model has been implemented by the International Electrotechnical
Commission (IEC) in different iterations. In 2005 [88], the added turbulence intensity was
defined as:

Iadd =
0.9

1.5 + 0.3 x
D0

√
Vin

(14)

Later, in 2019 [89], the formulation was changed to the same formula found in Equation 9.
In Frandsen’s original thesis, a bell-shaped turbulence wake profile was formulated to reflect
the smoothed-out distribution of turbulence intensity due to rotor-averaging. The turbulence
intensity I experienced at the center of the wake-affected rotor is given by:

I(θ) = I0

[
1 + α exp

(
−
(

θ

θw

)2
)]

(15)

Here, I0 is the ambient turbulence intensity, α is a constant related to the maximum added
wake turbulence intensity, θ is the angle between the connection line of the two wind turbine
units and the wind direction, and θw is the characteristic view-angle of the wake-generating
unit and s is the separation distance between the turbines. The formulations in Equation 14
and Equation 9 are implemented in PyWake as STF2005TurbulenceModel and STF2017Tur-
bulenceModel respectively. These versions of the Frandsen model, along with the bell-shaped
wake distribution defined in Equation 15, have been used in later sections to estimate the added
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turbulence intensity downwind from wind farms.

As illustrated in Figure 2.4, the Crespo-Hernández model exhibits a simpler top-hat shape
and a slower dissipation rate compared to the two Frandsen model formulations, which show
a bell-shaped wake profile. The differences between the Frandsen (2005) and Frandsen (2017)
models for a single turbine are relatively minor.
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Figure 2.4: Comparison of wake deficit downwind from a single Vestas V80 wind turbine at a
wind speed U0 = 10m/s and ambient turbulence intensity of I0 = 0.1. The models used are
the Crespo-Hernández, Frandsen (2005) and Frandsen (2017) wake turbulence models.

2.2.5 Wake Superposition Methods

Wake superposition is a important component of wake modeling in wind farm analysis. When
calculating the total velocity deficit from multiple upstream turbines, two primary approaches
are commonly employed in the literature, as noted by Bastankhah et al. [10]:

Linear sum: δ(x) =
n∑

i=1

∆Ui (16)

SOS: δ(x)2 =
n∑

i=1

(∆Ui)
2 (17)

where n represents the total number of upstream turbines and ∆Ui denotes the velocity deficit
caused by the ith wind turbine. While these two approaches are prevalent, other superposition
models have also been developed and applied in the field. These include the energy balance
method, the geometric sum method, and the maximum deficit method [16]. The development
of various wake superposition methods stems from the challenge of combining multiple wake
effects, given the inherently non-linear nature of the Navier-Stokes equations that govern fluid
dynamics.
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2.3 Neural Networks
Artificial Neural Network (ANN) are computational processing systems that draw inspira-
tion from the functioning of biological nervous systems, particularly the human brain. These
networks consist of numerous interconnected computational nodes, known as neurons, which
operate collaboratively in a distributed manner. The collective goal of these neurons is to learn
from the input data and optimize the network’s final output.

The fundamental structure of an ANN typically includes an input layer, one or more hidden
layers, and an output layer, as illustrated in Figure 2.5. This figure depicts a basic feedforward
neural network with one hidden layer. The process begins with the input layer receiving data,
often in the form of a multidimensional vector, which it then distributes to the hidden layers.
Within these hidden layers, complex decision-making occurs as each layer processes information
from the previous one. The neurons in these layers assess how stochastic changes within them-
selves affect the final output, either improving or detracting from it. This iterative process of
adjustment and evaluation constitutes the learning mechanism of the network. When multiple
hidden layers are stacked upon each other, the resulting architecture is commonly referred to as
deep learning, allowing for more intricate pattern recognition and data processing capabilities.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Output

Figure 2.5: Basic structure of a feedforward neural network with one hidden layer.

To understand the functioning of individual neurons within the network, we can examine the
perceptron model shown in Figure 2.6. This model represents the basic computational unit of
a neural network. It receives multiple inputs (x1, x2, x3), each associated with a weight (w1,
w2, w3). These weighted inputs are summed along with a bias term (b). The result is then
passed through an activation function (f) to produce the neuron’s output (y). This process
mimics the way biological neurons process and transmit signals, forming the foundation for the
network’s ability to learn and make decisions.
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Figure 2.6: Diagram of a perceptron model showing inputs, weights, bias, summation, activation
function, and output.

Mathematically, we can express the operation of a perceptron as follows:

y = f

(
n∑

i=1

wixi + b

)
(18)

Here, n is the number of inputs, wi are the weights, xi are the inputs, b is the bias, and f is the
activation function. The choice of activation function is further discussed in subsubsection 2.3.1.

The learning process in neural networks involves adjusting the weights and bias to minimize a
loss function. The subject of loss functions and how they can be minimized using a gradient
descent method is further explored in subsubsection 3.5.1 and subsubsection 2.3.2
The two primary learning paradigms in image processing tasks are supervised and unsupervised
learning. Supervised learning involves training with pre-labelled inputs that serve as targets.
Each training example in this paradigm consists of a set of input values (vectors) and one or
more associated designated output values. The main objective of supervised training is to min-
imize the model’s overall classification error by correctly calculating the output value of each
training example through the training process. In contrast, unsupervised learning operates
without labelled training data. The success of unsupervised learning is typically evaluated by
the network’s ability to either reduce or increase an associated cost function. It is noteworthy
that the majority of image-focused pattern-recognition tasks generally rely on classification us-
ing supervised learning techniques. This approach allows for more direct and precise training
in tasks where specific output categories or values are known and desired.

In both learning paradigms, the network adjusts the weights and biases of its neurons (as shown
in Figure 2.6) to optimize its performance on the given task. This adjustment process, known
as backpropagation in many learning scenarios, allows the network to learn from its mistakes
and improve its accuracy over time. The flexibility of neural network architectures, combined
with their ability to learn complex patterns, makes them powerful tools for a wide range of
applications, including image recognition, natural language processing, and decision-making
systems.

2.3.1 Activation Functions

Activation functions, also known as non-linearities, are essential for the functionality of individ-
ual neurons within a neural network. Without these non-linear functions, the network would
collapse into a linear model, effectively reducing its capabilities. In such a scenario, no matter
how many layers the network has, it can be simplified to y = W · x. This limitation means the
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model can only solve problems where the data is linearly separable. Several activation functions
are commonly used in neural networks, each with its characteristics and benefits:

Sigmoid: This was one of the first activation functions utilized in neural networks. The
Sigmoid function maps input values to the range (0, 1). However, it is prone to the vanishing
gradient problem, where input values significantly above or below zero lead to gradients that
are close to zero. This sensitivity makes it challenging for the network to learn effectively.

f(x) =
1

1 + e−x
(19)

tanh: The hyperbolic tangent function is another early activation function. It is similar to the
Sigmoid function but outputs values in the range (-1, 1), allowing for negative values. Despite
this advantage, it also suffers from the vanishing gradient problem at extreme input values.

f(x) = tanh(x) = sinh(x)
cosh(x)

(20)

ReLU: The Rectified Linear Unit (ReLU) has become the standard activation function in
modern deep learning, particularly in computer vision. ReLU outputs the input directly if it is
positive; otherwise, it outputs zero. While effective, it can lead to dying ReLUs where neurons
become inactive for all inputs.

f(x) = max(0, x) (21)

Leaky ReLU: To address the dying ReLU problem, Leaky ReLU was introduced. This
function allows a small, non-zero gradient when the input is negative, thus keeping the neuron
active and improving learning.

f(x) =

{
αx if x < 0

x otherwise
(22)
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Figure 2.7: Comparison of the input-output relationships of various activation functions: Sig-
moid, tanh, ReLU, and Leaky ReLU.

2.3.2 Adam Optimization Algorithm

The Adaptive Moment Estimation (Adam) optimization algorithm, introduced by Kingma and
Ba [48] in 2014, is a popular method for stochastic optimization in deep learning. It combines
ideas from two other optimization techniques: Root Mean Square Propagation (RMSProp)
and Momentum with an added bias correction [65]. Adam is designed to be computationally
efficient, have little memory requirements, and be well-suited for problems with large datasets
and many parameters. Adam adapts the learning rates of each parameter individually by
utilizing estimates of the first and second moments of the gradients. The key steps of the
algorithm include: initializing parameters and hyperparameters, computing gradients, updating
biased first and second moment estimates, computing bias-corrected moment estimates, and
updating parameters.
Let θt be the parameters at timestep t, and gt be the gradient of the objective function with
respect to the parameters at timestep t. The Adam update rule is defined as [68]:

mt = β1mt−1 + (1− β1)gt (23)
vt = β2vt−1 + (1− β2)g

2
t (24)

m̂t =
mt

1− βt
1

(25)

v̂t =
vt

1− βt
2

(26)

θt = θt−1 −
γm̂t√
v̂t + ε

(27)

Here, mt is the estimate of the first moment (mean) of the gradients, vt is the estimate of the
second moment (uncentered variance) of the gradients, m̂t and v̂t are bias-corrected estimates
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of the first and second moments, γ is the learning rate, β1 and β2 are exponential decay rates
for moment estimates, and ε is a small constant for numerical stability.

Adam’s key features include adaptive learning rates, which adjust for each parameter based on
estimates of the gradients’ first and second moments. This allows the algorithm to handle pa-
rameters of varying scales effectively. The algorithm employs bias correction to account for the
zero initialization of moment estimates. The first moment estimate (mean) introduces momen-
tum, accelerating convergence in relevant directions and dampening oscillations. The second
moment estimate (uncentered variance) provides per-parameter scaling, similar to RMSProp,
modulating step size to control overshooting. Adam typically uses the following default values
for its hyperparameters [68]: α = 0.001 (learning rate), β1 = 0.9 (exponential decay rate for the
first moment estimate), β2 = 0.999 (exponential decay rate for the second moment estimate),
and ε = 10−8 (small constant for numerical stability). These defaults generally work well for a
wide range of problems, though they may need tuning for specific applications. Adam’s adap-
tive learning rate approach is particularly effective for problems with sparse gradients or noisy
data. It often requires little tuning and can handle non-stationary objectives well.

2.4 Convolutional Neural Networks
CNNs represent a significant leap forward in the field of artificial intelligence, embodying the
longstanding goal of mimicking the human brain’s cognitive processes. Rooted in the study
of biological visual systems, CNNs have revolutionized machine learning, particularly in the
domains of image recognition, object detection, and visual data analysis.
The CNN was first introduced by Fukushima [36] in 1980. However, it was LeCun et al. [52]
who popularised CNNs with the development of LeNet-5, a seven-layer convolutional network
that utilized backpropagation and adaptive weights. This architecture has since become the
blueprint for modern CNN designs, with most current architectures being variations or expan-
sions of LeNet-5’s core principles [3].

At their core, CNNs aim to replicate the functioning of visual sensory organs in living beings.
They achieve this through a structured sequence of operations: convolutional operations, ac-
tivation functions, pooling and more. This process allows CNNs to recognize various types of
objects, from simple digits to complex images or even specific actions within an image. The
key innovation of CNNs lies in their use of convolutional layers, which apply learnable filters
across the input space. This approach enables the network to capture local patterns and spa-
tial relationships within the data, significantly reducing the number of parameters compared
to fully connected networks while maintaining high performance.
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2.4.1 Convolutional Layers
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Figure 2.8: Illustration of a convolutional layer operation. The diagram shows a 5x5 input,
with a 3x3 input patch, being convolved with a 3x3 kernel. The resulting output is a feature
map generated by sliding the kernel over the input.

Convolutional layers form the core of CNNs, serving as the primary mechanism for feature
extraction from input data. These layers are designed to capture local patterns and spatial
hierarchies, making them particularly effective for processing grid-like data such as images.
The key operation in a convolutional layer is the convolution itself. In this process, a small
array of numbers called a kernel or filter slides across the input data, performing element-wise
multiplication and summation at each position, as seen in Figure 2.8. This operation can be
mathematically expressed as:

(f ∗ g)(x, y) =
∑
i

∑
j

f(i, j) ∗ g(x− i, y − j) (28)

where f represents the input, g is the kernel, and (x, y) are the coordinates in the output feature
map. The kernel acts as a feature detector, identifying specific patterns or features in the input.
As the kernel slides, it produces a feature map, highlighting areas where the specific feature
is detected. Multiple kernels are typically used in each convolutional layer, each learning to
detect different features.

Convolutional layers are characterized by local connectivity, parameter sharing, and spatial
hierarchy. Local connectivity means each neuron in the layer connects to only a small region
of the input, known as the receptive field. This reduces the number of parameters compared
to fully connected layers. Parameter sharing involves using the same set of weights (kernel)
across the entire input, further reducing the number of parameters. Spatial hierarchy allows
the network to learn increasingly complex and abstract features as data progresses through
multiple convolutional layers. The output size of a convolutional layer depends on three main
hyperparameters: kernel size (the dimensions of the filter, e.g., 3x3, 5x5), stride (the step size
as the kernel slides across the input), and padding (additional pixels added to the input borders
to control the output size). The output dimensions can be calculated using the formula:

Output size =

(
Input size + 2× Padding−Kernel size

Stride

)
+ 1 (29)

Convolutional layers are typically followed by an activation function, such as ReLU, to introduce
non-linearity into the network. This combination of convolution and activation allows CNNs
to learn complex, non-linear mappings from input to output.
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2.4.2 Max Pooling

Pooling layers are a important component in CNN, typically inserted between successive con-
volutional layers. The primary functions of pooling are to reduce the spatial dimensions of the
feature maps, decrease the computational load, and introduce a degree of translational invari-
ance. By doing so, pooling helps to control overfitting and improve the network’s ability to
generalize. The most common type of pooling operation is max pooling, although other vari-
ants such as average pooling and L2-norm pooling exist. In this section, we will focus primarily
on max pooling due to its widespread use and effectiveness. Max pooling operates by dividing
the input feature map into rectangular subregions and outputting the maximum value for each
subregion, as seen in Figure 2.9.
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Figure 2.9: Max pooling in a CNN. The input matrix is divided into 2x2 regions, and the
maximum value from each region is selected to form the output matrix.

The pooling window size and stride are key parameters in a pooling layer. A typical setup
is a 2x2 window with a stride of 2, which halves the spatial dimensions of the feature map
in both width and height. However, pooling can lead to loss of spatial information. Modern
architectures, especially those needing detailed spatial information, may reduce or eliminate
pooling layers, using strided convolutions or other methods instead.

2.4.3 Dropout Regularization

Dropout is a powerful regularization technique introduced by Srivastava et al. [83]. This method
addresses the challenge of overfitting in Deep Neural Network (DNN), particularly when dealing
with complex models and limited training data. The core concept of dropout is straightforward
yet effective [83]: during training, randomly drop out (i.e., set to zero) a proportion of neurons
in each layer. This process can be conceptualized as training an ensemble of many different
neural networks, each with a subset of the full network’s neurons. During training, dropout
creates a different ”thinned” network for each mini-batch, forcing the network to learn more
robust features that are useful in conjunction with many different random subsets of the other
neurons. At inference time, the full network is used with all neurons, but the weights are scaled
to ensure that the expected output of each neuron at test time is the same as its expected
output during training time.

Dropout offers several key advantages, including reduced overfitting, an ensemble effect, and
encouragement of more robust feature learning [39]. However, it also comes with considerations
such as increased training time and the need for hyperparameter tuning of the dropout rate.
By preventing complex co-adaptations on the training data, dropout helps neural networks to
generalize better to unseen data, making it a valuable tool in the development of more robust
and reliable deep learning models.
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2.4.4 Convolutional Autoencoders

CAE are a special case of convolutional encoder-decoder models, where the model input and
output are the same [57]. This architecture is particularly well-suited for processing image data
and other types of data with spatial or temporal structure. A typical CAE consists of two main
components: an encoder and a decoder. The encoder uses convolutional layers to compress the
input into a lower-dimensional representation, often called the latent space or bottleneck. The
decoder then uses transposed convolutional layers (also known as deconvolutional layers) to
reconstruct the original input from this compressed representation. The key characteristics of
CAEs include parameter sharing through convolutional operations, which reduces the number of
parameters compared to fully connected autoencoders. They also preserve spatial relationships
in the data, making them effective for image-related tasks.
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Figure 2.10: A CAE architecture consists of an encoder and a decoder. The encoder com-
presses the input data into a lower-dimensional latent space using convolutional layers, while
the decoder reconstructs the original input from this compressed representation using trans-
posed convolutional layers.

In the domain of wind farm modeling, CAEs demonstrate significant potential for processing
and reconstructing complex spatial patterns of wind fields. By incorporating additional inflow
conditions and turbine-specific data, these models can capture the intricate dynamics of wind
farm environments. A notable example of this approach is the WakeNet model developed by
Asmuth and Korb [7]. This convolutional encoder-decoder network showcases the capability to
estimate the three-dimensional wake behind a single turbine with remarkable accuracy. The
WakeNet model encodes turbine and inflow data to generate a full 3D representation of the
wake, achieving a mean square root error of just 0.56%. This level of precision underscores the
potential of CAE-based architectures in advancing our understanding and prediction of wind
farm dynamics.

2.4.5 U-Net

U-Net is a Fully Convolutional Neural Network (FCN) architecture designed for image seg-
mentation, introduced in 2015 by Ronneberger et al. [77]. Known for its accuracy, U-Net has
become a standard in medical imaging applications [81]. The architecture features an encoding
path, or contracting path, and a decoding path, or expanding path, forming a U-shape. This
design allows the network to capture both local features and global context, resulting in precise
segmentation.
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Figure 2.11: The U-Net architecture consists of an encoder and a decoder with skip connections
in-between.

Similar to subsubsection 2.4.4, in the contracting path, convolutional layers are followed by
max pooling operations, reducing the spatial dimensions of the input image while capturing
high-resolution, low-level features. The expanding path uses transposed convolutions, also
known as deconvolutions or upsampling layers, to increase the spatial resolution of the feature
maps. This upsampling process helps the network reconstruct a dense segmentation map [73].
Skip connections in U-Net link corresponding layers from the encoding and decoding paths,
allowing the network to combine local and global information. This integration of feature maps
from earlier layers with those in the decoding path preserves essential spatial information and
improves segmentation accuracy. Skip connections are implemented using concatenation, which
merges feature maps from the encoding path with upsampled feature maps from the decoding
path. This combination incorporates multi-scale information, leveraging both high-level context
and low-level features, as seen in Figure 2.11.

2.4.6 Networks with Multilayer Perceptrons

Incorporating a MLP into neural network architectures significantly improves their ability to
model complex relationships in data. MLPs are feedforward neural networks characterized
by fully connected layers and nonlinear activation functions such as ReLU or sigmoid (see
subsubsection 2.3.1). This structure enables MLPs to learn intricate patterns beyond simple
linear relationships, making them valuable in various applications including image recognition,
natural language processing, and time series forecasting [24].
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(c) Schematic representation
of a MLP.

Figure 2.12: Neural network architectures incorporating MLPs: (a) CAE with MLP in latent
space, (b) U-Net with MLP in latent space, and (c) Basic structure of an MLP.

Researchers have successfully integrated MLPs into existing architectures like convolutional au-
toencoders (Figure 2.12a) and U-Net models (Figure 2.12b), as illustrated in Figure 2.12. This
integration enhances the networks’ performance by allowing MLPs to learn complex interactions
among features extracted by the encoder and input conditions, which are typically combined in
the latent space. In the field of wake effect modeling, MLPs have proven particularly effective
at encoding relevant information in the latent space. For example, Xu and Duraisamy [91] used
a CAE with a dense MLP in the latent space to predict transient flow around a cylinder with
99.95% accuracy and airwake behind a ship with 99.7% accuracy. In another study, Donglin
et al. [26] employed a U-Net with an MLP in the latent space, combined with a Conditional
Generative Adversarial Network (cGAN), to estimate flow fields around airfoils.
For these subsections (Wind Farm Wake Effects, Analytical Wake Models, Neural Networks and
Machine Learning in Wind Energy) write an introduction the the section ”Literature Review”
containing these subsections

2.5 Machine Learning in Wind Energy
Machine learning has increasingly been recognized as a transformative technology in the field
of wind energy, offering innovative solutions to enhance the efficiency and performance of wind
farms. As wind energy continues to grow as a key component of renewable energy portfolios
worldwide, the need for sophisticated modeling and prediction techniques becomes ever more
critical. Machine learning algorithms, with their ability to process large datasets and uncover
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complex patterns, are particularly well-suited to tackle the unique challenges presented by
wind energy systems. This section explores the various applications of machine learning in
wind energy, focusing on three primary areas: wind farm wake prediction, prediction of airfoil
aerodynamic performance, and wind farm power predictions.

In the realm of wind farm wake prediction, machine learning models have been developed to
understand and forecast the complex flow behaviors resulting from interactions between wind
turbines. Traditional wake modeling methods, often relying on simplified physical models,
can struggle to accurately capture these interactions, especially under varying operational con-
ditions. Machine learning offers a promising alternative by leveraging diverse datasets and
advanced neural network architectures to predict wake effects more accurately and efficiently.

2.5.1 Wind Farm Wake Prediction

The field of wind turbine wake modeling using machine learning is emerging, with various
approaches explored to predict downstream flow behavior from individual turbines and wind
farms, as shown in Table 2.1. While most studies focus on single turbine wakes, several extend
their neural networks to model entire wind farm wakes. This is typically achieved through
linear or sum of squares (SOS) superposition of individual wake calculations. However, Zhang
and Zhao [93] and Zhang et al. [95] employ a different method, training their models on smaller
turbine arrays. This approach enables the network to model wind turbine responses to non-
uniform inflow from upstream turbines. Currently, this technique has only been demonstrated
for wind farms arranged in perfect grid formations.

Data sources for these models vary widely, including RANS simulations, LES, Light Detection
and Ranging (LiDAR) measurements, and Supervisory Control and Data Acquisition (SCADA)
systems. The modeling techniques employed range from Random Forest (RF) and DNN to more
complex architectures like cGAN and CNN.

Table 2.1: An overview of studies on data-driven modelling of wind-farm flow.

Author(s) Data Method Multiple Turbines
Wilson et al. [87] RANS RF No
Ti et al. [86] RANS DNN SOS and linear superposition
Zhang and Zhao [93] LES cGAN Small arrays
Renganathan et al. [75] LiDAR DNN No
Nai-Zhi et al. [58] SCADA RF SOS superposition
Zhang et al. [95] LES CNN Small arrays
Nakhchi et al. [59] LES XGBoost No
Asmuth and Korb [7] LES CNN No
Anagnostopoulos et al. [5] LES CNN Linear superposition

A related research area focuses on using data-driven models to simulate dynamic wake behavior
using Proper Orthogonal Decomposition (POD) [41, 92, 4]. These models, trained on LES
data, can predict temporal wake patterns for single or multiple turbines based on initial flow
conditions. They’re well-suited for LiDAR-based incoming flow measurement and subsequent
prediction, enabling yaw and pitch adjustments to optimize power output and reduce turbine
loads in changing inflow conditions. However, this approach isn’t designed for static estimation
of long-distance wake deficits given specific upstream wind speed and turbulence intensity
values.
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2.5.2 Prediction of Airfoil Aerodynamic Performance

An emerging research field in the wind energy and aviation industry involves using neural
networks to predict the aerodynamic performance of airfoils. These studies generally fall into
two main categories:

Prediction of Aerodynamic Coefficients: These models aim to predict the lift, drag,
and moment coefficients of a given airfoil shape. This is often achieved through a series of
convolutional layers or fully connected hidden layers, where the input geometry is reduced into
a one-dimensional array containing the coefficients. For instance, Chen et al. [20] developed
models for predicting multiple aerodynamic coefficients using neural networks. Zhang et al. [94]
applied CNNs to predict aerodynamic coefficients, demonstrating improved prediction accuracy.
Similarly, Cai et al. [18] created an efficient model for predicting aerodynamic coefficients with
enhanced computational performance.

Prediction of Airfoil Flow Field: The second category of studies focuses on predicting
the entire flow field around an arbitrary airfoil or shape. This is generally accomplished using
CAE or CNN with a U-Net architecture, where a 2D image of an airfoil is encoded and then
decoded into a velocity and/or pressure map of the flow around the airfoil. Chen et al. [21]
and Leer and Kempf [53] have developed a fast flow field prediction model for arbitrary shapes
using U-Net architecture. Portal-Porras et al. [72] utilized a U-Net architecture to control and
predict flow fields around airfoils. Afshar et al. [1] used an encoder/decoder style network to
predict aerodynamic flow fields, and Donglin et al. [26] implemented a conditional cGAN with
a U-Net like architecture featuring skip connections and a MLP in the latent space for flow
field prediction.

Predicting flow fields is particularly relevant to this report, as techniques used for predicting
the flow around an airfoil can be adapted to model the flow around a wind park. By lever-
aging similar neural network architectures, such as U-Net CNNs, it is possible to encode and
decode the complex flow interactions within a wind park. This approach can significantly aid in
optimizing turbine placement and assessing performance. The cross-application of neural net-
work methodologies highlights the versatility and potential of machine learning in advancing
aerodynamic studies in both aviation and wind energy sectors.

2.5.3 Wind Farm Power Predictions

Graph Neural Network (GNN) have emerged as a promising approach for predicting wind farm
power output. The layout-dependent interactions between wind turbines in a farm, where wake
effects from upstream turbines impact downstream turbines, naturally lend themselves to being
modeled as a graph structure. Several recent studies have explored using GNNs for wind farm
power prediction tasks.

Bleeg [13] demonstrated the use of a GNNs as a surrogate model to predict turbine interac-
tion losses in wind farms. Their approach modeled individual turbines as nodes in a graph,
with edges representing wake interactions between turbines. By training on data from higher-
fidelity simulations, the GNNs was able to learn to predict power losses due to wake effects
for arbitrary farm layouts.Expanding on this concept, Duthé et al. [27] developed a more com-
prehensive GNN framework for predicting not just power, but also local flow conditions and
turbine loads throughout a wind farm. Their Encode-Process-Decode GNNs architecture takes
arbitrary farm layouts and inflow conditions as input, and outputs predictions of rotor-averaged
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wind speed, turbulence intensity, power production, and damage equivalent loads for each in-
dividual turbine. By training on data generated from the PyWake wind farm simulator, their
GNNs model was able to generalize to unseen farm layouts and inflow conditions.

A key advantage of the GNN approach highlighted by both studies is its ability to handle
arbitrary farm layouts in a layout-agnostic manner. Once trained, the same GNNs model
can be applied to predict power output for any farm configuration without needing to be
retrained. This flexibility, combined with the fast inference time of GNNs, makes them well-
suited as computationally efficient surrogates for more expensive physics-based simulations in
applications like wind farm design optimization and real-time control. The results from these
studies demonstrate the potential of GNNs to capture the complex wake interactions in wind
farms and provide accurate power predictions. However, further work is still needed to improve
prediction accuracy for challenging cases and to validate GNNs models against real-world wind
farm data. Nonetheless, GNNs represent a promising direction for developing fast and flexible
wind farm power prediction tools.
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3 Methodology
The methodology section outlines the comprehensive approach used in this study to model and
analyze long-distance wake effects in offshore wind farms. This section is divided into four main
subsystems. Data Collection and Preprocessing details the novel wind park layout generation
algorithm developed to create diverse and realistic offshore wind farm configurations. It also
describes the rasterisation process used to transform continuous turbine position data into a for-
mat suitable for CNNs. The Analytical Wake Models subsection discusses the use of PyWake,
an open-source wind farm simulation tool, and the specific wake models (Jensen, Bastankhah,
and TurbOPark) employed in this study. This part also covers the simulation domain param-
eters and the wind turbine model used. The Neural Network Architectures section introduces
the four main neural network architectures explored in the study: CAE, CAE with CAE/MLP,
U-Net, and U-Net with MLP. Each architecture’s structure and key components are detailed.
Finally, the Training and Validation subsection covers critical aspects of the model training
process, including loss function selection and weighting, data transformation techniques, and
the hyperparameters used in training the neural networks. Together, these methodological com-
ponents form a robust framework for investigating and predicting long-distance wake effects
in offshore wind farms, balancing computational efficiency with spatial accuracy and model
complexity.

3.1 General Workflow
Figure 3.1 shows the overall process used in this work. The pipeline starts with data generation,
explained in subsection 3.2. Since real-world wake prediction data is scarce, PyWake is used to
make synthetic data that mimics real wind turbine wakes using the engineering models defined
in subsection 2.2. This step is important as it affects the ground accuracy of how the data-
driven surrogate model performs. PyWake uses specific inflow parameters like the wind speed
of wind farm layout to create wake fields, which serve as the ground truth for the experiments.
The next part of the pipeline deals with data processing and data splitting.

The model training part is covered in subsection 3.4, exploring the architectures and hyperpa-
rameters of the most promising data-driven models. Each model is designed to capture complex
relationships downwind from the wind farms using the generated wake data. The final part of
the figure shows the evaluation, discussed in section 4.
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Figure 3.1: Schematic representation of the general pipeline used in this work, showing the flow
from data generation to model evaluation.

3.2 Data Collection and Preprocessing
The accuracy and effectiveness of machine learning model predictions heavily depend on the
quality and representativeness of the input data. This section outlines the comprehensive ap-
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proach to data collection and preprocessing employed in this study, focusing on two critical
aspects: wind park layout generation and data rasterisation. The wind park layout generation
process aims to create diverse and realistic wind farm configurations that capture the complex-
ity of modern offshore wind parks. By developing a novel algorithm that combines random
polygon generation with strategic turbine placement, we ensure a wide range of scenarios for
model training and evaluation.

Following layout generation, the rasterisation process transforms the continuous turbine posi-
tion data into a format suitable for CNNs. This step is crucial in preserving spatial information
while enabling efficient processing by the neural network architecture. Together, these pre-
processing steps form the foundation of our data pipeline, enabling the subsequent machine
learning models to learn from a rich and varied dataset that reflects real-world wind park
layouts.

3.2.1 Wind Park Layout Generation

Existing open-source models for random wind farm layout generation include PLayGen by
Harrison-Atlas et al. [42], which is capable of generating random turbine clusters and strings,
and the model by Duthé et al. [27], which uses randomly distributed points in various regular
polygons and ovals to generate its wind park layouts. While effective, these models don’t fully
capture current offshore wind park layout characteristics. A more comprehensive model is
needed to simulate diverse scenarios. Current offshore wind park layouts often feature irregular
polygon boundaries with varying edge numbers. Turbine positioning typically falls into two
categories:

1. Regular grid layouts (e.g., Horns Rev 1, Figure 3.2)

2. Irregular layouts from optimization algorithms (e.g., Horns Rev 3, Figure 3.2)

Some layouts, like Horns Rev 2 or Anholt Offshore Wind Farm with regular, curved grids,
aren’t addressed by this algorithm. Neural networks trained solely on irregular polygon layouts
might not accurately predict wake deficits for these parks.
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Figure 3.2: Horns Rev Offshore Wind Farm, Denmark, showing various layout strategies.

Future work should focus on incorporating algorithms for curved grid layouts and other real-
world wind farm patterns. This would enhance the model’s versatility, enabling accurate rep-
resentation of a wider range of wind park configurations. As a result, wake deficit predictions
would become more reliable and applicable across diverse offshore wind scenarios.

The wind park layout generation algorithm consists of three main steps. First, a random
polygon is generated to outline the wind park boundaries. Next, individual wind turbine
positions are created from a transformed regular grid within the polygon boundaries. Finally,
PyWake[70] calculates the wind farm wake deficit using the given flow conditions. A detailed
breakdown of the generation process follows:

1. Receive input parameters from Table 3.1.

2. Generate random angles for polygon edges using normal distribution, with irregularity
controlling standard deviation. Normalize angles to sum to 360 degrees.

3. Create random radii using normal distribution, with average radius as mean and spikiness
controlling standard deviation. Clip radii between 0.2 and 2 times average radius.

4. Calculate vertex coordinates using angles and radii. Create Polygon object.

5. Generate grid points within polygon bounds using specified spacing.

6. Apply boolean mask to keep only points inside polygon.

7. Rotate filtered points by random angle.
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8. Add random noise to rotated points, scaled by spacing and noise parameter.

9. Adjust x-coordinates to move wind park to negative coordinates, accommodating weighted
loss function in subsubsection 3.5.1 and ensuring consistent spatial reference for easier
model training.

10. Use wind park layout to initiate PyWake simulation with set domain, resolution, and
inflow conditions.

Table 3.1: Input variable ranges for wind park layout training data generation.

Parameter Description Lower Upper
num_vertices Polygon vertex count 3 10
irregularity Variance in angle spacing (0-1) 0.1 0.4
spikiness Variance in vertex distance from center (0-1) 0.1 0.4
avg_radius Average center-to-vertex distance 10 150
spacing Distance between initial turbine grid points 7 12
noise Random displacement added to turbine positions 0 0.5
wind_speed Wind speed at hub height 3 25
turbulence Turbulence intensity at hub height 0 0.3
turbine_amount Number of turbines in the wind farm 3 1000

Variables in Table 3.1 utilize uniform distributions, assigning equal probability to all values
within their specified lower and upper bounds. This approach contrasts with models like those
of Duthé et al. [27], which employ typical real-world distributions (e.g., Weibull for wind speed,
log-normal for turbulence intensity). The uniform distribution ensures equal model confidence
across the entire training domain, including boundary conditions such as high wind speeds or
low turbulence intensity.

However, a training dataset reflecting actual inflow conditions might be preferable when access
to training data is limited (e.g., CFD-generated) or if the model is expected to be used primar-
ily under the most likely inflow conditions.

Exceptions to this uniform distribution approach are the turbine_amount and avg_radius pa-
rameters. The turbine_amount parameter serves as a cap for the wind farm size, ensuring that
it is neither too small nor too large, which could lead to calculation failures due to limited
system memory resources. The avg_radius parameter is defined as:

U
[
r3min, r

3
max

] 1
3 (30)

This formulation ensures that the wind park areas and wind turbine amounts in the training
data follow a relatively uniform distribution. While the relationship between a circle’s area and
its radius is A = πr2, the radius needs to be raised to a higher power to account for the jagged
shape of the wind farm polygons. Empirically, it was found that raising the radius to the third
power produces a relatively uniform area distribution.

To quantify wind farm shape, this study employs the isoperimetric quotient (Polygon Round-
ness). This metric provides a measure of how closely a wind farm’s layout approximates a
circular configuration, offering insights into the geometric characteristics that can impact wake
effects and overall farm performance. The shape characterization factor S for a wind farm is
calculated as:
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S =
A

Ac

=
4πA

P 2
(31)

Where A represents the wind farm’s area, P denotes its perimeter, and Ac is the area of a circle
with a perimeter equal to that of the wind farm. This calculation yields a dimensionless value
ranging from 0 to 1, with 1 representing a perfect circle. Higher values indicate a more circular
wind farm layout, while lower values suggest more irregular or elongated configurations.
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Figure 3.3: Examples of roundness for different wind park layouts.

A comprehensive overview of the parameter distributions used for training data generation can
be found in Figure 3.4 and Figure B.1.
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Figure 3.4: Distribution of input parameters for wind park generation algorithm.

An overview and example of the wind park layout algorithm process is illustrated in Figure 3.5.
The figure demonstrates the sequential steps of the algorithm. First, a wind park border is
defined using the random polygon algorithm. Next, a regular grid with spacing determined by
the turbine_spacing parameter is overlaid on the area. All turbines falling within the polygon
boundary are then identified. Finally, these turbines are rotated around the origin, given a
random offset, and shifted into the negative x-coordinate domain. This process ensures a
realistic yet randomized layout for each generated wind park.
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Figure 3.5: Example of wind park layout generation algorithm.

3.2.2 Wind Park Rasterisation

To prepare wind turbine positional data for input into CNNs, a rasterisation process is necessary.
This process converts the continuous float values representing turbine positions into a discrete
2D tensor within a predefined domain. The evolution of this rasterisation method reflects a
balance between computational efficiency and spatial accuracy. Initially, a boolean rasterisation
approach was employed. In this method, each element in the input tensor to the CNN is
assigned a binary value: 1 if a wind turbine’s position falls within the bounds of the element’s
grid domain, and 0 otherwise. While computationally efficient, this method suffers from loss of
precise positional information, with a potential positional error of:

errormax =
√

x2
res + y2res (32)

Where xres and yres represent the resolution of the grid in the x and y directions, respectively. To
address this limitation, the boolean approach was replaced with a Supersampling Anti-Aliasing
(SSAA) rasterisation method, inspired by the work of Zhang et al. [94]. In this approach, the
value of each element in the tensor reflects the proximity of a wind turbine to the center of the
element. This method, illustrated in Figure 3.6, allows for the reconstruction of exact wind
turbine positions from the grid tensor, enabling the neural network to differentiate between
very similar wind parks.
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Figure 3.6: Comparison between boolean rasterisation (left) and SSAA rasterisation (right),
showing improved spatial representation with SSAA.

The SSAA method was chosen over other alternatives due to its balance between accuracy
and computational feasibility. While more complex methods exist, SSAA provides sufficient
spatial precision without excessive computational overhead, making it suitable for the large-
scale data processing required in this study. Both approaches are susceptible to errors when
multiple turbines are in close proximity. To ensure no overlapping, turbines must be spaced
at least one spatial resolution apart for the boolean method, and two grid spatial resolutions
apart for the SSAA method. The algorithm for generating the SSAA grid is more complex and
computationally intensive than the boolean approach. It involves a binary search for the wind
turbine index position and requires looping over all wind turbines individually, as detailed
in Algorithm 1. This enhanced method allows for more accurate spatial representation and
differentiation of wind parks, albeit at the cost of increased computational complexity and
resolution requirements.

Algorithm 1 Position to Grid using SSAA
Input: xrange, yrange, wtpos
Output: grid

1: xnum ← length of xrange

2: ynum ← length of yrange
3: grid← zeros(xnum, ynum)
4: for each (x, y) in wtpos do
5: xidx ← binarysearch(xrange, x) −1
6: yidx ← binarysearch(yrange, y) −1
7: xdist ← x−xrange[xidx]

xrange[1]−xrange[0]

8: ydist ← y−yrange[yidx]

yrange[1]−yrange[0]

9: weights←
[
(1− xdist) · (1− ydist) xdist · (1− ydist) (1− xdist) · ydist xdist · ydist

]
10: grid[yidx : yidx + 2, xidx : xidx + 2] += weights
11: end for

This revised approach to rasterisation ensures a more accurate representation of wind turbine
positions, which is important for the subsequent neural network analysis of wind farm layouts
and their effects on wake patterns.
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3.3 Analytical Wake Models
PyWake, an open-source Python-based wind farm simulation tool developed at the Technical
University of Denmark (DTU) [70], is employed in this study. It efficiently computes flow fields,
individual turbine power production, and Annual Energy Production (AEP) for entire wind
farms. PyWake interfaces with various engineering models and CFD RANS (PyWakeEllipSys),
enabling accurate calculations of wake propagation and quantification of turbine interactions
within wind farms. The primary function of PyWake is to calculate wake interactions in wind
farms for a range of steady-state conditions efficiently. This capability is crucial for assessing
power production while accounting for wake losses in specific wind farm layouts. PyWake sup-
ports multiple engineering wake models, including Jensen, Bastankhah, and TurbOPark, which
are utilized in this study.

3.3.1 PyWake Model Settings

This study employs three different wake models: Jensen, Bastankhah, and TurbOPark. Each
model utilizes specific settings within the PyWake framework to simulate wake effects. To
maximise the variety in the different wind park layout used throughout the studies, all the
simulations are done at a wind direction of 270◦, instead of running multiple simulations on the
same wind park layout for different wind directions. This means, it the trained neural networks
are to be used to estimate the wake deficit of wind parks, the wind park layouts needs to be
rotated around the wind park centroid (mean turbine position). This should achieve the same
effect are varying the wind direction.

All three models use the PyWake PropagateDownwind method for wake propagation. The Prop-
agateDownwind model calculates wind farm effects by iterating over turbines in downstream
order. For each turbine, it computes the effective wind speed by subtracting upstream deficits
from the free stream speed. This effective speed then determines the turbine’s impact on down-
stream locations. This method, while fast, excludes upstream blockage effects. The specific
settings for each model are detailed in Table 3.2.These models provide different approaches to
calculating wake deficits, allowing for a comprehensive analysis of wake effects under various
conditions. By employing multiple models, this study aims to capture a range of potential wake
behaviors, enhancing the robustness of the neural network training data.

Table 3.2: Overview of PyWake Engineering Wind Farm Models used for simulations.

Setting Jensen Bastankhah TurbOPark
Wake Deficit NOJensen BastankhahGaussianDeficit TurboGaussianDeficit
Superposition SquareSum SquareSum SquareSum
Blockage None None None
Turbulence CrespoHernandez STF2005TurbulenceModel STF2017TurbulenceModel
Propagation Method PropagateDownwind PropagateDownwind PropagateDownwind

The simulations were conducted with a grid resolution set as high as computationally reasonable
to capture detailed wake behavior. The computational domain was discretized into 512 elements
along the wind direction (x-axis) and 256 elements perpendicular to the wind direction (y-
axis). The spatial extent of the simulations was defined in terms of rotor diameters (D) for
comparability across different turbine sizes. The domain ranges from −256D to 768D in the
wind direction and from −256D to 256D perpendicular to the wind direction. This large
domain allows for the observation of wake effects far downwind, which is the main interest of
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this thesis. Given the number of elements and the range of the domain, each grid cell represents
an area of 2D × 2D. This resolution ensures that two turbines are almost never placed in the
same element. As seen from Table 3.1, the minimum turbine spacing used is 7 diameters in
the grid. Thus, even when considering the random position noise and rasterization method
discussed in subsubsection 3.2.2, turbine overlap should be minimal. The key parameters of
the simulation domain are summarized in Table 3.3.

Table 3.3: Simulation Domain Characteristics

Domain Attribute Streamwise (x) Spanwise (y)
Grid Resolution 512 cells 256 cells
Domain Extent 1024D 512D
Lower Boundary -256D -256D
Upper Boundary 768D 256D
Cell Size 2D × 2D 2D × 2D

3.3.2 Wind Turbine Model

The power curve of a typical pitch-regulated wind turbine can be divided into distinct regions,
as illustrated in Figure 3.7a. Region 1 represents wind speeds below the cut-in speed, where
the turbine does not produce power. Region 2 is characterized by a steep, approximately cubic
increase in power output as wind speed rises. In this region, small changes in wind speed
lead to significant changes in power output, making accurate wake modeling crucial for power
prediction. Region 3 begins at the rated wind speed, where the turbine reaches its maximum
power output. In this region, the power output remains constant despite increasing wind
speed, typically maintained through pitch control. Finally, at the cut-out speed, the turbine
stops operating for safety reasons. For this study, the Vestas V80 model has been used in all
simulations, with its specific power and thrust curves shown in Figure 3.7b.
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(b) Vestas V80 2MW Wind Turbine Power Curve
and Thrust Coefficient

Figure 3.7: Power curves illustrating (a) general regions of wind turbine operation and (b)
specific characteristics of the Vestas V80 model used in this study.

3.4 Neural Network Architectures
This section presents the various neural network architectures employed in our study. We ex-
plore four main architectures: Convolutional Autoencoder (CAE), Convolutional Autoencoder
with Multi-Layer Perceptron (CAE-MLP), U-Net, and U-Net with Multi-Layer Perceptron (U-
Net-MLP). These architectures represent different approaches to processing and learning from
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spatial data, each with its own strengths and characteristics. The following subsections detail
the structure and key components of each architecture.
In all architectures, ReLU activation functions are utilized following each encoding and decoding
step, except for the final decoding layer. This activation function introduces non-linearity into
the models, enabling them to capture more complex patterns and representations, as explained
in subsubsection 2.3.1. Additionally, a dropout layer is implemented after the Fully Connected
(FC) layer in the latent space of each model, with a 30% probability of zeroing elements. This
technique helps prevent overfitting, as detailed in subsubsection 2.4.3.

3.4.1 Convolutional Autoencoder

The Convolutional Autoencoder (CAE) serves as our baseline architecture. It consists of an
encoder and a decoder, both utilizing convolutional layers. The encoder compresses the input
data into a lower-dimensional latent space, while the decoder reconstructs the original input
from this compressed representation.

Table 3.4: Convolutional Autoencoder Architecture

Layer Group Layers In
Channels

Out
Channels Kernel Stride Padding Out

Padding
Encoder Block 1 Encode 1-3, MaxPool inchannels 8 5×5, 2×2 1,2,1,2 2,2,2,– –
Encoder Block 2 Encode 4-5, MaxPool 8 16 5×5, 2×2 2,1,2 2,2,– –
Encoder Block 3 Encode 6-7, MaxPool 16 32 5×5, 2×2 2,1,2 2,2,– –
Encoder Block 4 Encode 8-9, MaxPool 32 64 3×3, 2×2 1,1,2 1,1,– –
Encoder Block 5 Encode 10-11, MaxPool 64 128 3×3, 2×2 1,1,2 1,1,– –

FC Encode – 256 + [WS, TI] 256 – – – –

Decoder Block 1 Decode 1-2, Unpool 128 64 3×3, 2×2 1,1,2 1,1,– –
Decoder Block 2 Decode 3-4, Unpool 64 32 3×3, 2×2 1,1,2 1,1,– –
Decoder Block 3 Decode 5-6, Unpool 32 16 5×5, 2×2 1,2,2 2,2,– –,1,–
Decoder Block 4 Decode 7-8, Unpool 16 8 5×5, 2×2 1,2,2 2,2,– –,1,–
Decoder Block 5 Decode 9-10, Unpool 8 4 5×5, 2×2 1,2,2 2,2,– –,1,–
Final Decode Decode 11 4 outchannels 5×5 1 2 –

As shown in Table 3.4, the CAE architecture comprises five encoder blocks and five decoder
blocks, with a fully connected layer in between. Each encoder block consists of multiple con-
volutional layers followed by max pooling, progressively reducing the spatial dimensions while
increasing the number of channels. The decoder mirrors this structure, using unpooling opera-
tions to upsample the feature maps. The encoder starts with inchannels and gradually increases
to 128 channels, while the decoder reverses this process, ending with outchannels. The fully con-
nected layer in the middle (FC Encode) takes the flattened output of the last encoder block and
additional inputs (WS and TI, representing wind speed and turbulence intensity, respectively)
to produce a 256-dimensional latent vector.

3.4.2 Convolutional Autoencoder with MLP

The CAE with Multi-Layer Perceptron (CAE-MLP) builds upon the basic CAE architecture
by introducing a more complex fully connected layer structure in the latent space.
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Table 3.5: Convolutional Autoencoder Architecture

Layer Group Layers In
Channels

Out
Channels Kernel Stride Padding Out

Padding
Encoder Block 1 Encode 1-3, MaxPool inchannels 8 5×5, 2×2 1,2,1,2 2,2,2,– –
Encoder Block 2 Encode 4-5, MaxPool 8 16 5×5, 2×2 2,1,2 2,2,– –
Encoder Block 3 Encode 6-7, MaxPool 16 32 5×5, 2×2 2,1,2 2,2,– –
Encoder Block 4 Encode 8-9, MaxPool 32 64 3×3, 2×2 1,1,2 1,1,– –
Encoder Block 5 Encode 10-11, MaxPool 64 128 3×3, 2×2 1,1,2 1,1,– –

Linear 1 256 + [WS, TI] 1024 – – – –
FC Encode Linear 2 1024 1024 – – – –

Linear 3 1024 256 – – – –

Decoder Block 1 Decode 1-2, Unpool 128 64 3×3, 2×2 1,1,2 1,1,– –
Decoder Block 2 Decode 3-4, Unpool 64 32 3×3, 2×2 1,1,2 1,1,– –
Decoder Block 3 Decode 5-6, Unpool 32 16 5×5, 2×2 1,2,2 2,2,– –,1,–
Decoder Block 4 Decode 7-8, Unpool 16 8 5×5, 2×2 1,2,2 2,2,– –,1,–
Decoder Block 5 Decode 9-10, Unpool 8 4 5×5, 2×2 1,2,2 2,2,– –,1,–
Final Decode Decode 11 4 outchannels 5×5 1 2 –

As illustrated in Table 3.5, the CAE-MLP maintains the same convolutional structure as the
basic CAE in both the encoder and decoder. However, the fully connected layer in the middle is
replaced by a three-layer MLP. This MLP expands the latent representation to 1024 dimensions
before compressing it back to 256 dimensions. This additional complexity in the latent space
allows for more nuanced feature extraction and potentially improved reconstruction capabilities.
As with the CAE, the MLP also incorporates wind speed (WS) and turbulence intensity (TI)
information in its input.

3.4.3 U-Net

The U-Net architecture introduces skip connections between the encoder and decoder, allowing
for direct information flow from earlier layers to later layers.

Table 3.6: U-Net Architecture with Skip Connections

Layer Group Layers In
Channels

Out
Channels Kernel Stride Padding Out

Padding
Skip

Connection
Encoder Block 1 Encode1-3, MaxPool inchannels 8 5×5, 2×2 1,2,1,2 2,2,2,– – To Decode 10
Encoder Block 2 Encode 4-5, MaxPool 8 16 5×5, 2×2 2,1,2 2,2,– – To Decode 8
Encoder Block 3 Encode 6-7, MaxPool 16 32 5×5, 2×2 2,1,2 2,2,– – To Decode 6
Encoder Block 4 Encode 8-9, MaxPool 32 64 3×3, 2×2 1,1,2 1,1,– – To Decode 4
Encoder Block 5 Encode 10-11, MaxPool 64 128 3×3, 2×2 1,1,2 1,1,– – To Decode 2

FC Encode – 256 + [WS, TI] 256 – – – – –

Decoder Block 1 Decode 1-2, Unpool 128, 64+128 64 3×3, 2×2 1,1,2 1,1,– – From Encode 11
Decoder Block 2 Decode 3-4, Unpool 64, 32+64 32 3×3, 2×2 1,1,2 1,1,– – From Encode 9
Decoder Block 3 Decode 5-6, Unpool 32, 16+32 16 5×5, 2×2 1,2,2 2,2,– –,1,– From Encode 7
Decoder Block 4 Decode 7-8, Unpool 16, 8+16 8 5×5, 2×2 1,2,2 2,2,– –,1,– From Encode 5
Decoder Block 5 Decode 9-10, Unpool 8, 4+8 4 5×5, 2×2 1,2,2 2,2,– –,1,– From Encode 3
Final Decode Decode 11 4 outchannels 5×5 1 2 – –

Table 3.6 details the U-Net architecture. The encoder and decoder structures remain similar to
the CAE, but with the addition of skip connections. These connections concatenate the output
of each encoder block with the input of the corresponding decoder block, effectively doubling
the number of channels in the decoder inputs. This design helps preserve fine-grained spatial
information that might otherwise be lost during the encoding process, potentially leading to
more accurate reconstructions. The fully connected layer in the middle also incorporates wind
speed and turbulence intensity data.
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3.4.4 U-Net with MLP

The U-Net with Multi-Layer Perceptron (U-Net-MLP) combines the skip connection concept
of U-Net with the enhanced latent space representation of the CAE-MLP.

Table 3.7: UNet/MLP Architecture with Skip Connections

Layer Group Layers In
Channels

Out
Channels Kernel Stride Padding Out

Padding
Skip

Connection
Encoder Block 1 Encode1-3, MaxPool inchannels 8 5×5, 2×2 1,2,1,2 2,2,2,– – To Decode 10
Encoder Block 2 Encode 4-5, MaxPool 8 16 5×5, 2×2 2,1,2 2,2,– – To Decode 8
Encoder Block 3 Encode 6-7, MaxPool 16 32 5×5, 2×2 2,1,2 2,2,– – To Decode 6
Encoder Block 4 Encode 8-9, MaxPool 32 64 3×3, 2×2 1,1,2 1,1,– – To Decode 4
Encoder Block 5 Encode 10-11, MaxPool 64 128 3×3, 2×2 1,1,2 1,1,– – To Decode 2

Linear 1 256 + [WS, TI] 1024 – – – – –
FC Encode Linear 2 1024 1024 – – – – –

Linear 3 1024 256 – – – – –

Decoder Block 1 Decode 1-2, Unpool 128, 64+128 64 3×3, 2×2 1,1,2 1,1,– – From Encode 11
Decoder Block 2 Decode 3-4, Unpool 64, 32+64 32 3×3, 2×2 1,1,2 1,1,– – From Encode 9
Decoder Block 3 Decode 5-6, Unpool 32, 16+32 16 5×5, 2×2 1,2,2 2,2,– –,1,– From Encode 7
Decoder Block 4 Decode 7-8, Unpool 16, 8+16 8 5×5, 2×2 1,2,2 2,2,– –,1,– From Encode 5
Decoder Block 5 Decode 9-10, Unpool 8, 4+8 4 5×5, 2×2 1,2,2 2,2,– –,1,– From Encode 3
Final Decode Decode 11 4 outchannels 5×5 1 2 – –

As shown in Table 3.7, this architecture maintains the skip connections of the U-Net while
incorporating the three-layer MLP in the latent space, similar to the CAE-MLP. This hybrid
approach aims to leverage the benefits of both the U-Net’s ability to preserve spatial information
and the MLP’s capacity for complex feature extraction in the latent space. The MLP in this
architecture also takes into account the wind speed and turbulence intensity data.

3.5 Training and Validation
This subsection explores the most important aspects of training and validating the neural net-
work models used in this study for long-distance wake modeling in wind farms. It covers three
key areas fundamental to the model’s performance and reliability. The first area addressed is
loss function selection and weighting. This includes an exploration of the choice between Mean
Absolute Error (MAE) and MAE as loss functions, explaining the rationale for selecting Mean
Squared Error (MSE) in this study. Additionally, a novel weighted loss function designed to
emphasize long-distance wake effects is introduced. The second area focuses on data transfor-
mation. This section describes the data preprocessing techniques applied to wind speed and
turbulence intensity data. The rationale behind these transformations and their impact on the
model’s ability to capture subtle wake effects at greater distances from the wind farm are ex-
plained. The final area covers the hyperparameters used in training the neural network models.
This includes details on learning rate, batch size, number of epochs, and other critical settings
that influence the training process.

3.5.1 Loss Function Selection and Weighting

Loss functions are a crucial component in training neural networks, as they measure how well
the model’s predictions match the actual data. The goal of training is to minimize this loss,
thereby improving the accuracy of the model. In regression tasks, where continuous values are
predicted, two commonly used loss functions are MAE and MSE. MAE calculates the average
of the absolute differences between the predicted values and the actual values. It is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (33)
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where n is the number of observations, yi represents the actual value, and ŷi denotes the pre-
dicted value. MAE provides a straightforward measure of average error magnitude, treating all
errors equally regardless of their size.

MSE, on the other hand, calculates the average of the squares of the differences between the
predicted values and the actual values. It is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (34)

MSE places a higher penalty on larger errors due to the squaring of differences, which can be
beneficial for certain applications where larger errors are particularly undesirable.
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Figure 3.8: Comparison between MAE loss (blue) and MSE loss (red).

For this thesis, MSE has been chosen over MAE for several reasons:

• Error Penalization: MSE penalizes larger errors more heavily by squaring the differ-
ences. In wind farm flow modeling, large deviations can significantly impact the accuracy
of flow predictions. MSE ensures that these large errors are minimized more effectively
than MAE.

• Gradient Properties: MSE provides a smooth gradient, which is beneficial for opti-
mization algorithms using gradient descent. This smooth gradient helps in efficiently
converging to the minimum loss during the training process. In contrast, MAE has a
constant gradient, which can lead to slower convergence. While MAE is technically non-
differentiable at zero, this is not an issue in practice due to the extremely low probability
of exact zero errors and the use of numerical optimization techniques.

• Suitability for Data Characteristics: The training data in this study is synthetically
generated with well-behaving engineering models and is thus not expected to contain
significant outliers. If the model were trained on SCADA data, which can be affected by
sensor errors, or trained by results from mesh-based CFD, where singularities can produce
non-physical results, a loss function less affected by outliers might be considered.

• Computational Efficiency: While MSE is generally slightly more computationally
expensive due to the squaring operations, it is expected to converge faster due to its
variable gradient (proportional to the error), whereas MAE has a constant gradient.
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To further refine the model’s focus on long-distance wake predictions, a weighted loss function
was implemented. This function assigns different weights to losses within and beyond the wind
farm:

Weighted MSE =
1

n

n∑
i=1

wi(yi − ŷi)
2 (35)

where wi is the weight assigned to each prediction, defined as:

wi =

{
0.1, if xi is within the wind farm
0.9, if xi is downstream of the wind farm

(36)
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Figure 3.9: Weighted loss function distribution across the wind farm domain. The function
assigns 10% weight to losses within the wind farm (left of the dashed line) and 90% weight to
losses in the downstream wake region (right of the dashed line).

This weighting encourages the model to focus on accurately modeling long-distance wakes while
still considering the flow within the wind farm. It’s worth noting that alternative weighting
schemes have been explored in similar studies. For instance, Bertolani [11] experimented with
mathematically more complex loss functions in his Master’s thesis, including weighting that
increases inversely proportional to the distance from the wind farm center and functions that
dampen the value of y using the hyperbolic tangent function. However, it was found that a
simple linear weighting, similar to the approach used in this thesis, produced better models
(smaller loss) than these more complex alternatives. By combining MSE with this weighted ap-
proach, the loss function is tailored to the specific requirements of long-distance wake modeling
in wind farms, balancing the need for overall accuracy with a focus on downstream effects.
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3.5.2 Data Transformation

To improve the model’s ability to capture long-distance wake effects, a data transformation
was applied to the wind speed and turbulence intensity data. The original dataset showed a
heavily skewed distribution, with large variations near the wind farm and diminishing wake
effects farther downwind.
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Figure 3.10: Overview over different data scaling functions considered for the transformation
of wind speed and turbulence intensity.

This study focuses on modeling wake effects at greater distances from the wind farm, making
it crucial to transform the data for a more uniform distribution. The transformation aims to
increase the model’s sensitivity to subtle changes in wind speed and turbulence intensity far
downwind, where wake effects are less pronounced but still important for accurate long-distance
modeling. Multiple different transformations have been considered (see Figure 3.10), however,
the root method used for the transformation in this study is defined as:

yroot =
(
1− x

ws

)1/5
(37)

This method stretches the data in regions with smaller wake effects, making the model more
responsive to minor variations in these areas. It enhances the loss function’s sensitivity to
errors in the far-wake region, encouraging the model to capture and predict these subtle effects
more accurately. The transformed dataset provides a more balanced representation of wake
effects across the entire downwind distance. This approach ensures that the machine learning
models can learn and predict long-distance wake characteristics more effectively, aligning with
the study’s primary goal of improving long-distance wind farm flow modeling. In Figure 3.11
and Figure 3.12 the effect of the data transformation can be seen for a wind farm of 200 wind
turbines with a U0 of 10 m/s and a Turbulence Intensity (TI) of 0.1. It should be noted that the
TI transformation uses a root transformation exponent of 1/2 instead of the 1/5 used for the
wind speed transformation. These exponents were chosen based on empirical testing, as they
seemed to provide a favorable data transformation for model training, balancing the stretching
of small variations in the far wake while maintaining the overall structure of the data.
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Figure 3.11: Comparison of original and transformed wind speed data. Left: Normalized wake
deficit before and after transformation. Right: Histograms showing the distribution of normal-
ized wake deficit before and after transformation. The transformation with an exponent of 1/5
stretches the data in regions with smaller wake effects, providing a more uniform distribution.
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Figure 3.12: Comparison of original and transformed turbulence intensity data. Left: Added
turbulence intensity before and after transformation. Right: Histograms showing the distribu-
tion of added turbulence intensity before and after transformation. The transformation with
an exponent of 1/2 provides a more balanced representation of turbulence intensity variations
across the domain.

The different exponents for wind speed (1/5) and turbulence intensity (1/2) were chosen based
on the different characteristics of these parameters. Wind speed tends to have a more gradual
decay in the far wake, requiring a stronger transformation (smaller exponent) to highlight these
subtle changes. Turbulence intensity, on the other hand, typically shows more pronounced
variations even in the far wake, so a less aggressive transformation (larger exponent) was found
to be sufficient. These choices were made through small scale iterative testing to achieve the
most favorable data distribution for model training, balancing the need to highlight far-wake
effects while preserving the overall structure of the data.
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3.5.3 Hyperparameters

The training process used the same hyperparameters for all models. Table 3.8 shows the key
settings used. These hyperparameters were initially set using standard values commonly found
in similar deep learning tasks and were then experimentally tested on a small scale. It’s worth
noting that advanced hyperparameter tuning techniques were not employed in this study, so
there may be potential for slightly better results through more comprehensive optimization. A
learning rate of 1× 10−4 was chosen to balance speed and stability. The batch size was set to
4, limited by memory constraints. Training ran for 1000 epochs to ensure convergence. Adam
optimizer was used for its adaptive capabilities (see subsubsection 2.3.2). The loss function
used MSE with a 1:9 weighting (see subsubsection 3.5.1), focusing more on the wake region.
A 30% dropout rate was applied to combat overfitting. The CosineAnnealingLR scheduler was
used to gradually decrease the learning rate during training. This scheduler is typically used
for fine-tuning, as it steadily reduces the learning rate, helping the model to settle into optimal
parameter values [22].

Hyperparameter Value
Learning Rate 1× 10−4

Batch Size 4
Number of Epochs 1000
Optimizer Adam
Loss Function MSE (1:9 Weighting)
Dropout Rate 30%
Learning Rate Scheduler CosineAnnealingLR

Table 3.8: Training Hyperparameters used for all neural network models.

These hyperparameters were found to provide satisfactory results in the experimental testing.
However, it’s important to acknowledge that more extensive hyperparameter tuning, such as
grid search or random search methods, could potentially yield marginally improved perfor-
mance. The current set of hyperparameters represents a balance between model performance
and computational resources available for this study.
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4 Results and Analysis
This section presents a comprehensive comparison of the neural network models developed to
predict wake deficits behind wind farms. The analysis focuses on prediction accuracy, compu-
tational efficiency, and training costs to assess each model’s practical applicability in real-world
wind farm optimization scenarios.

The examination begins with model accuracy, comparing predictions against ground truth data
generated by established engineering models. This comparison highlights the predictive capa-
bilities of each neural network architecture and their potential to match or surpass traditional
methods. The analysis then addresses computational aspects, including inference time and
resource requirements, which are critical in an industry where rapid decision-making can sig-
nificantly improve energy yield. Training costs associated with each model are also explored,
providing insight into the initial investment required for implementation and long-term viability
in the wind energy sector. The investigation extends to model robustness and generalization
capabilities across various wind farm configurations and environmental conditions, ensuring
reliability in diverse real-world scenarios.

Additionally, a comparative analysis between these neural network approaches and traditional
engineering models offers perspective on potential methodological shifts in wind farm wake
modeling. This comprehensive evaluation aims to provide a clear understanding of each neural
network model’s strengths and limitations, guiding future applications and research directions
in wind farm optimization. The results presented include quantitative performance metrics,
visual representations of predictions versus actual wake deficits, computational efficiency data,
and training cost analyses. Statistical analyses support the findings, offering a rigorous basis
for model comparison. Through this thorough examination, the section seeks to contribute
valuable insights to the field of wind farm modeling and optimization using machine learning
techniques.

4.1 Performance Comparison of Wake Models
To evaluate the performance of different wake models, three representative wind parks were
selected from the test sample group. These wind parks were chosen to showcase the models’ ef-
fectiveness across a diverse range of wind farm characteristics. Table 4.1 presents the simulation
data and parameters for these selected wind parks.The chosen wind parks exhibit significant
variations in key attributes:

• Wind Farm Size: Ranging from smaller installations like Wind Park 987 with 37
turbines to larger facilities such as Wind Park 960 with 465 turbines.

• Wind Speed: Covering a broad spectrum from low wind speeds (Wind Park 987 at
4.70m/s) to high wind speeds (Wind Park 960 at 19.95m/s).

• Turbulence Intensity: Varying from 0.13 to 0.28, representing different atmospheric
stability conditions.

• Layout Complexity: Differing in terms of turbine spacing, polygon irregularities, and
number of vertices.

This diverse selection aims to demonstrate the robustness and versatility of the trained models
across a wide range of wind park configurations and environmental conditions. By testing
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the models on these varied scenarios, we can assess their generalisability and performance
consistency.

Parameter Wind Park 987 Wind Park 954 Wind Park 960

Wind Speed [m/s] 4.70 15.05 19.95
Turbulence Intensity [-] 0.13 0.28 0.19
Wind Direction [◦] 270.0 270.0 270.0
Turbine Spacing [D] 11.50 9.52 7.25
Turbine Position Noise [-] 0.21 0.49 0.37
Polygon Avg Radii [D] 72.32 77.23 89.24
Polygon Irregularities [-] 0.47 0.01 0.16
Polygon Spikinesses [-] 0.47 0.32 0.25
Polygon Num Vertices [-] 5 10 15
Wind Turbine Amount [-] 37 230 465
Polygon Area [D2] 4955.97 20749.96 24693.81
Polygon Roundness [-] 0.43 0.80 0.58

Table 4.1: Simulation data for selected wind farm layouts.

The subsequent analysis will focus on how different wake models perform across these diverse
wind park configurations, providing insights into their applicability and limitations in various
real-world scenarios.
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Figure 4.1: Layout of test wind parks.

A full overview of the layout of all 1000 wind parks used in this study can be found in Ap-
pendix D.

4.2 Neural Network Architecture Evaluation
Figure 4.2 illustrates the training and test MSE losses for four neural network architectures:
CAE, U-Net, and their variants with MLP (CAE/MLP and U-Net/MLP) over 1000 epochs.
Solid lines represent training losses, while dashed lines indicate test losses. All architectures
exhibit a rapid initial decrease in losses, followed by a more gradual decline. The U-Net-based
models achieve the lowest final MSE values, with U-Net/MLP slightly outperforming U-Net
in both training and test scenarios. The CAE-based models show higher final MSE values
compared to their U-Net counterparts. A small, consistent gap between training and test losses
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is observed across all models, which is expected. The continuous decrease in test loss suggests
that none of the models are overfitting to the training data, indicating good generalization
capabilities.
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Figure 4.2: Comparison of training and test MSE losses for different neural network architec-
tures and datasets over 1000 epochs.

The CAE/MLP model displays unusual behavior in its test loss curve between epochs 0 and
150 for the Bastankhah and TurbOPark test datasets, showing significant fluctuations before
stabilizing. This could indicate initial instability in the learning process for this particular ar-
chitecture. By the 1000th epoch, the test losses for all models appear to have largely plateaued.
While the training losses for the U-Net and U-Net/MLP models show a continuing slight down-
ward trend, this is not reflected in their test losses, suggesting that further training may not
lead to improved generalization performance. It is important to note that the losses displayed
in Figure 4.2 are weighted losses (see subsubsection 3.5.1). As such, they do not directly
represent the absolute performance of the models. Instead, these losses serve two primary pur-
poses: firstly, to provide a comparative measure of performance between different models, and
secondly, to offer an overview of how effectively each model has been trained.

Model Jensen Bastankhah TurbOPark
Train MSE Test MSE Train MSE Test MSE Train MSE Test MSE

CAE 5.45× 10−4 7.00× 10−4 5.41× 10−4 6.99× 10−4 8.83× 10−4 1.08× 10−3

U-Net 1.55× 10−4 2.52× 10−4 1.10× 10−4 1.95× 10−4 3.58× 10−4 5.38× 10−4

CAE/MLP 5.16× 10−4 7.37× 10−4 5.84× 10−4 8.41× 10−4 9.45× 10−4 1.27× 10−3

U-Net/MLP 1.51× 10−4 2.46× 10−4 9.39× 10−5 1.94× 10−4 3.46× 10−4 5.29× 10−4

Table 4.2: Comparison of Train MSE and Test MSE for different models and datasets. Boldface
indicates the best (lowest) value for each metric and dataset.
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4.2.1 Error Analysis

To assess the accuracy of the neural networks, we examine the MAE and MSE as described
in subsubsection 3.5.1. During training, a weighted loss function was employed to calculate
losses, which provides insight into the relative performance of individual models but does not
accurately represent their absolute accuracy. Furthermore, after training, the models are placed
in inference mode, disabling the dropout layer, which may alter accuracy performance. Given
these considerations, we recalculate the final MAE and MSE post-training. As the primary
objective of these models is to assess wake deficit downwind of wind farms, we focus our
error calculations on the downwind portion of the ground truth and neural network output
(specifically, the last 3/4 of the array in the downwind direction). Table 4.3 presents the results
of these MAE and MSE calculations for each model across three different test datasets: Jensen,
Bastankhah, and TurbOPark.

Model Jensen Bastankhah TurbOPark
MAE [m/s] MSE [m2/s2] MAE [m/s] MSE [m2/s2] MAE [m/s] MSE [m2/s2]

CAE 7.53× 10−4 1.02× 10−4 1.46× 10−3 3.29× 10−4 1.47× 10−2 4.80× 10−3

U-Net 4.75× 10−4 4.30× 10−5 9.34× 10−4 1.19× 10−4 1.24× 10−2 3.38× 10−3

CAE/MLP 9.05× 10−4 1.15× 10−4 2.02× 10−3 4.07× 10−4 1.64× 10−2 5.59× 10−3

U-Net/MLP 5.46× 10−4 4.20× 10−5 1.00× 10−3 1.24× 10−4 1.44× 10−2 4.01× 10−3

Table 4.3: Comparison of MAE and MSE for different models and test datasets. Boldface
indicates the best (lowest) value for each metric and dataset.

The results in Table 4.3 demonstrate the performance of different models across the three
wake models. U-Net based architectures consistently outperform the CAE models. Minimal
variance is observed between the base models (CAE and U-Net) and their amplified versions
incorporating a MLP in the latent space. U-Net models exhibit particularly strong performance
with the Bastankhah and TurbOPark models. This suggests that the U-Net architecture is
better suited to capturing the intricate details in these more sophisticated wake models. A clear
trend is evident in the error metrics, which increase progressively from Jensen to Bastankhah to
TurbOPark. This progression corresponds to the increasing complexity of these wake models.
The rising errors for more complex wake models indicate that accurate prediction of wake
effects becomes more challenging as the data complexity increases. This pattern of increasing
difficulty with data complexity can be observed in both classification and regression tasks [54].
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Figure 4.3: MAE distribution across wind speed bins (1 m/s) for four neural network models
(CAE, U-Net, CAE/MLP, U-Net/MLP) trained on different datasets.

Figure 4.3 displays the MAE distribution across 1 m/s wind speed bins for the four neural
network models described in subsection 3.4. Each model’s performance is shown for different
neural network models, represented by separate bars within each bin. The plot reveals a
consistent trend across all models and training datasets: The MAE is not constant across wind
speeds but follows a distinct pattern. Starting with relatively low values at 4 m/s, the error
increases, reaching its peak between 9-13 m/s, and then gradually decreases for higher wind
speeds. This trend is visible across all training dataset and neural network models. This pattern
suggests that the models’ prediction accuracy varies significantly with wind speed. The lower
MAE at low wind speeds might be due to more consistent and predictable wake behavior in these
conditions. The peak error in the 9-11 m/s range could indicate more complex wake interactions
and variability at these wind speeds. The gradual decrease in MAE for higher wind speeds
might be attributed to more uniform flow conditions or reduced wake effects at these velocities.
This trend is consistent across all four neural network architectures, indicating a fundamental
characteristic of wind farm wake behavior rather than a model-specific phenomenon.

4.3 Long-Distance Flow Prediction Accuracy
In the following section, wake predictions of the different neural network architectures trained
on the Jensen, Bastankhah, and TurbOPark datasets are compared against the three wind
parks detailed in subsection 4.1.

51



4.3.1 Jensen Dataset
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Figure 4.4: Wake deficit profiles for Wind Park 987 using the Jensen model. Profiles shown at
multiple downstream distances (x/D) behind wind farms for all neural network architectures.
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Figure 4.5: Wake deficit profiles for Wind Park 954 using the Jensen model. Profiles shown at
multiple downstream distances (x/D) behind wind farms for all neural network architectures.
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Figure 4.6: Wake deficit profiles for Wind Park 960 using the Jensen model. Profiles shown at
multiple downstream distances (x/D) behind wind farms for all neural network architectures.

For the Jensen dataset, all neural network architectures show good agreement with the ground
truth. The U-Net and U-Net/MLP models consistently outperform the CAE and CAE/MLP
models across all wind parks. This is especially noticeable for Wind Park 960, where the U-Net
variants capture the wake deficit more accurately at all downstream distances. For smaller
wind parks (987 and 954), the differences between models are less pronounced, but U-Net and
U-Net/MLP still show slightly better performance.
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4.3.2 Bastankhah Dataset
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Figure 4.7: Wake deficit profiles for Wind Park 987 using the Bastankhah model. Profiles shown
at multiple downstream distances (x/D) behind wind farms for all neural network architectures.
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Figure 4.8: Wake deficit profiles for Wind Park 954 using the Bastankhah model. Profiles shown
at multiple downstream distances (x/D) behind wind farms for all neural network architectures.
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Figure 4.9: Wake deficit profiles for Wind Park 960 using the Bastankhah model. Profiles shown
at multiple downstream distances (x/D) behind wind farms for all neural network architectures.

Similar trends are observed for the Bastankhah dataset. The U-Net and U-Net/MLP models
again show superior performance, particularly for Wind Park 987. All models capture the
smoother wake profiles characteristic of the Bastankhah model. For larger wind parks, the
differences between models are less significant, but U-Net variants still maintain a slight edge
in accuracy.
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4.3.3 TurbOPark Dataset
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Figure 4.10: Wake deficit profiles for Wind Park 987 using the TurbOPark model. Profiles
shown at multiple downstream distances (x/D) behind wind farms for all neural network ar-
chitectures.
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Figure 4.11: Wake deficit profiles for Wind Park 954 using the TurbOPark model. Profiles
shown at multiple downstream distances (x/D) behind wind farms for all neural network ar-
chitectures.
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Figure 4.12: Wake deficit profiles for Wind Park 960 using the TurbOPark model. Profiles
shown at multiple downstream distances (x/D) behind wind farms for all neural network ar-
chitectures.
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The TurbOPark dataset presents the greatest challenge for all neural network architectures.
This is evident in the noticeably reduced prediction accuracy compared to the Jensen and Bas-
tankhah datasets. The difficulty is most pronounced for Wind Park 987, where sharp wake
deficit spikes occur directly behind turbines. These spikes are particularly prominent at closer
distances (x/D = 50) and become less defined further downstream (x/D = 650) as individual
wakes mix. U-Net and U-Net/MLP models still outperform their CAE counterparts, but the
gap in performance is less significant. All models struggle to accurately capture the complex
wake interactions predicted by TurbOPark, especially for smaller wind parks. This difficulty
decreases for larger wind parks and at greater downstream distances, where wake profiles be-
come smoother and more uniform. The reduced performance on the TurbOPark dataset likely
stems from its higher complexity and variability compared to the Jensen and Bastankhah mod-
els. This suggests that more advanced neural network architectures or training strategies might
be necessary to fully capture the intricacies of more sophisticated wake models like TurbOPark.

For a comprehensive comparison of 2D flow patterns across various neural network architectures,
training datasets, and wind parks, refer to Appendix C.

4.3.4 Wake-generated Turbulence Prediction

As shown in Table 3.2, the three datasets (Jensen, Bastankhah, and TurbOPark) used for
training the neural network models have also been set up to calculate the turbulence intensity
of the wake using the turbulence models presented in subsubsection 2.2.4. The U-Net/MLP
model presented in subsubsection 3.4.4 has additionally been trained on the Crespo-Hernández
turbulence model, as well as the two versions of the Frandsen turbulence model, to test whether
these CNN approaches to estimating the wake effects can also be applied to added turbulence
estimations. The models are compared using the relative added turbulence intensity, which is
calculated as follows:

Iadd,rel =
I − I0
I0

× 100% (38)

where Iadd,rel is the relative added turbulence intensity (in percentage), I is the total turbulence
intensity at a given point, and I0 is the ambient turbulence intensity.
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Figure 4.13: Comparison of turbulence models for Wind Park 987. The figure shows the
relative added turbulence intensity for the Crespo-Hernández model, Frandsen (2005) model,
and Frandsen (2017) model, alongside predictions from the U-Net/MLP neural network. Solid
lines represent the ground truth data for each model, while dashed or dotted lines indicate the
corresponding neural network predictions. The comparison is made at four different downstream
distances (x/D) from the wind turbine.

0.0 0.3 0.6 0.9
Rel. Added Turbulence [%]

200

100

0

100

200

y/
D 

[-]

x/D = 50

0.00 0.08 0.16 0.24
Rel. Added Turbulence [%]

x/D = 250

0.00 0.05 0.10 0.15
Rel. Added Turbulence [%]

x/D = 450

0.00 0.04 0.08 0.12
Rel. Added Turbulence [%]

x/D = 650

Wind Park 954

Crespo-Hernández (GT, Model) Frandsen (2005) (GT, Model) Frandsen (2017) (GT, Model)

Figure 4.14: Comparison of turbulence models for Wind Park 954. The figure shows the
relative added turbulence intensity for the Crespo-Hernández model, Frandsen (2005) model,
and Frandsen (2017) model, alongside predictions from the U-Net/MLP neural network. Solid
lines represent the ground truth data for each model, while dashed or dotted lines indicate the
corresponding neural network predictions. The comparison is made at four different downstream
distances (x/D) from the wind turbine.
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Figure 4.15: Comparison of turbulence models for Wind Park 960. The figure shows the
relative added turbulence intensity for the Crespo-Hernández model, Frandsen (2005) model,
and Frandsen (2017) model, alongside predictions from the U-Net/MLP neural network. Solid
lines represent the ground truth data for each model, while dashed or dotted lines indicate the
corresponding neural network predictions. The comparison is made at four different downstream
distances (x/D) from the wind turbine.

Figure 4.13, Figure 4.14, and Figure 4.15 present comparisons of turbulence models for Wind
Parks 987, 954, and 960, respectively. These figures illustrate the relative added turbulence
intensity as predicted by the Crespo-Hernández model, Frandsen (2005) model, and Frandsen
(2017) model, alongside predictions from the U-Net/MLP neural network. The solid lines repre-
sent ground truth data for each model, while dashed or dotted lines indicate the corresponding
neural network predictions. These comparisons are made at four different downstream dis-
tances (x/D) from the wind turbine. A notable observation from these figures is the significant
variation in turbulence estimates between the Crespo-Hernández model and the two Frandsen
models. In Wind Park 987, characterized by the lowest ambient turbulence intensity and inflow
wind speed, the Crespo-Hernández model predicts substantially higher relative added turbu-
lence compared to the Frandsen models. Conversely, for the largest wind park (Wind Park 960),
both Frandsen models predict significantly higher turbulence levels than the Crespo-Hernández
model. This divergence highlights the importance of model selection in turbulence estimation
and underscores the need for a versatile approach that can accommodate different models.

The U-Net/MLP model demonstrates promising performance in following the ground truth
data across most scenarios. However, some limitations are evident, particularly in Wind Park
954 (Figure 4.14), where the neural network model trained on Crespo-Hernández data struggles
to accurately replicate the square-shaped curve of the Crespo-Hernández ground truth. This
challenge suggests that while the U-Net/MLP approach is generally effective, it may require
further refinement to capture certain complex turbulence patterns.
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Model Crespo-Hernández Frandsen (2005) Frandsen (2017)
MAE [-] MSE [-] MAE [-] MSE [-] MAE [-] MSE [-]

U-Net/MLP 2.21× 10−4 6.40× 10−7 1.87× 10−4 2.26× 10−6 1.30× 10−4 2.46× 10−6

Table 4.4: Performance evaluation of the U-Net/MLP neural network in predicting turbulence
intensity for different turbulence models. The table shows the MAE and MSE values for the
Crespo-Hernández, Frandsen (2005), and Frandsen (2017) models, indicating the accuracy of
the neural network’s predictions compared to the ground truth data from each model.

Table 4.4 provides a quantitative assessment of the U-Net/MLP neural network’s performance
across the three turbulence models. MAE and MSE values indicate that the neural network’s
predictions for the Crespo-Hernández model are slightly less accurate compared to those for
the Frandsen models. However, the differences in MAE and MSE across all three models
are relatively small, suggesting that the U-Net/MLP can model different turbulence patterns
with comparable levels of accuracy. These results demonstrate the potential of CNN-based
approaches in estimating wake-generated turbulence across various turbulence models. The
ability to adapt to different models with similar levels of accuracy is a significant advantage,
offering flexibility in wind farm modeling and analysis.

For a comprehensive comparison of 2D flow patterns across various neural network architectures,
training datasets, and wind parks, refer to subsection C.5.

4.4 Computational Efficiency
To assess the computational efficiency of the Jensen, Bastankhah, and TurbOpark models as
implemented in PyWake, a comprehensive benchmark study was conducted. The evaluation
was conducted on a system featuring an AMD Ryzen 7 5800H CPU with 16 cores clocked at
4.463 GHz. The system includes 16 GB of DDR4 memory running at 3200 MT/s. For dedicated
graphics processing, it is equipped with an NVIDIA GeForce RTX 3060 Max-Q GPU. All sim-
ulations utilized PyWake’s engineering wind farm model, specifically the PropagateDownwind
implementation. The benchmark tests were carried out on square wind farm layouts, ranging
from a minimal 1x1 configuration (single turbine) to a maximum of 14x14 (196 turbines) with
a resolution of 512 x 256. This upper limit was imposed due to memory constraints of the test
system, which became unstable for larger layouts.

The models were evaluated under uniform inflow conditions, with a constant wind speed of
U0 = 10m/s and a turbulence intensity of I0 = 0.1. To ensure statistical reliability and
mitigate the impact of computational variability, each simulation was repeated 10 times for
every wind farm configuration. This methodical approach allows for a robust comparison of
the models’ performance across a range of farm sizes, providing insights into their scalability
and computational demands. The repeated trials for each configuration enhance the reliability
of the results by accounting for potential variations in execution time.
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Figure 4.16: Comparison of execution time required for different engineering models and various
wind farm sizes. The points represent mean execution times, with error bars indicating standard
deviation.

The results of the computational efficiency simulations are presented in Figure 4.16. A clear
linear relationship is observed between the execution time and the number of turbines in the
wind farm for all three models. This linear trend aligns with expectations, given that the
PropagateDownwind model iterates over all turbines in downstream order exactly once. The
strong linearity of this relationship allows for the calculation of a slope, which can be used to
estimate computational time for larger wind farms beyond the capabilities of the current test
system. Table 4.5 presents the calculated slope for each engineering model, along with the
coefficient of determination (R2).

Model Slope [sec/turbine] R2

Jensen 1.00× 10−2 0.9973
Bastankhah 1.61× 10−2 0.9995
TurbOPark 3.53× 10−2 0.9992

Table 4.5: Linear fit results for execution time per number of turbines.

The high R2 values (all > 0.997) confirm the strong linear relationship between execution time
and turbine count. Among the three models, Jensen exhibits the lowest slope, indicating it
is the most computationally efficient. Bastankhah shows moderate computational demands,
while TurbOPark, with the highest slope, is the most computationally intensive. These differ-
ences in computational efficiency likely reflect the varying complexities of the wake modeling
approaches employed by each model.

Neural network models present a stark contrast to traditional engineering models in terms of
performance. After initial training, these networks can estimate wake deficits several orders
of magnitude faster than their engineering counterparts. A key advantage of neural networks
is their invariant calculation time regardless of wind park size; estimating the wake deficit
behind a single turbine takes the same time as for a 200-turbine wind farm. Figure 4.17
illustrates the execution times of various neural networks, using the same wind park layouts as
in Figure 4.16. A notable difference is observed between CPU and GPU performance, with GPU
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implementations generally 3-5 times faster. This performance gap is attributed to the GPU’s
architecture, which features thousands of cores designed for parallel computation, making it
ideal for the matrix operations prevalent in neural networks. GPUs are optimized for deep
learning calculations, particularly floating-point operations and matrix multiplication.
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Figure 4.17: Execution time comparison for different neural network models across various
wind farm sizes. Points represent mean execution times, with error bars indicating standard
deviation.

As evident from Figure 4.17 and Table 4.6, GPU evaluations typically require 2.6-2.8 ms, while
CPU evaluations take 8.4-12.2 ms. The CAE/MLP model performs fastest on CPU, while the
CAE and UNet models tie for GPU execution speed. Notably, even for a single turbine, neural
networks outpace PyWake models (see Table 4.5).

Model CPU Mean Time [ms] GPU Mean Time [ms]
CAE 12.24 2.62
U-Net 8.76 2.62
CAE/MLP 8.42 2.74
U-Net/MLP 10.32 2.81

Table 4.6: Mean execution times for different neural network models on CPU and GPU.

When comparing Figure 4.16 and Figure 4.17, it is evident that the execution time for the
engineering models increases linearly (O(n)), whereas the neural networks model maintains a
constant execution time regardless of wind park size (O(1)). This indicates that as the wind
park size grows, the performance advantage of using neural networks will increase linearly.
Consequently, larger wind farms, which significantly influence downwind wind speeds, would
benefit most from neural network approaches for estimating wake deficits. Therefore, assessing
the wake velocity impact of these larger wind parks becomes increasingly crucial.
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4.4.1 Training Time

When evaluating the overall efficiency of machine learning models compared to standard en-
gineering models, it is important to consider the initial computational cost associated with
training. While machine learning models can be computationally efficient once trained (as
discussed in subsection 4.4), they require a significant upfront investment in processing time
and resources. GPU acceleration plays a vital role in reducing this initial overhead. GPUs
excel at performing numerous simple calculations in parallel, which is particularly beneficial
for the matrix operations that form the core of many machine learning algorithms. For this
study, we utilized the DTU High Performance Computing (HPC) cluster, specifically leveraging
Tesla V100 GPUs. Each of these GPUs boasts 5120 CUDA cores, 640 tensor cores, and a peak
single-precision performance of 14.13 TFLOPS.

Table 4.7 presents a comparison of the total training time for the four neural network models
examined in this study. The reported training times represent an average across the three
training datasets: Jensen, Bastankhah, and TurbOPark.

Table 4.7: Comparison of training time for the neural network models.

Model Training Time [hr] Total Epochs
CAE 14.81 1000
U-Net 15.46 1000
CAE/MLP 16.00 1000
U-Net/MLP 15.38 1000

As seen from Table 4.7, the basic CAE neural network shows the shortest training time. How-
ever, it’s important to note that, as discussed in subsection 4.1, this model also demonstrates
the poorest performance among all tested models. The differences in training time between the
models are minimal, with variations of 8% between the fastest and slowest models. Such small
differences could be attributed to factors beyond the model architecture itself, such as tempo-
rary fluctuations in GPU performance or other system-level variations. These results suggest
that, for the models and datasets considered in this study, the choice between these architec-
tures should be primarily driven by their performance characteristics rather than differences in
training time. The similar training times across models indicate that the computational cost
of training is not a significant differentiating factor in this comparison.

The computational feasibility of neural network models must also account for the time re-
quired to generate training data. As shown in Table 4.5, engineering wake deficit models have
low computational costs, enabling the generation of a 1000 wind park dataset (like the one
used in this study) within hours, depending on available resources. However, using higher-
fidelity simulations such as RANS or LES for training data could significantly increase upfront
computational costs. Conversely, if suitable data already exists from previous simulations or
large-scale wind farm measurements, the initial computational investment may be limited to
data preprocessing.
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5 Discussion
This section examines the implications, limitations, and future directions of the neural network-
based wake deficit models presented in this study. The discussion is structured into three main
subsections:

The first subsection explores the implications of the findings for wind farm design. It analyzes
the potential impact of these models on large-scale wind farm planning, using the N-09 devel-
opment area in Germany as a case study. The computational efficiency gains offered by the
neural network models compared to traditional engineering approaches are evaluated, and the
accuracy of power predictions based on the wake deficit estimations is assessed. The second
subsection addresses the limitations of the study. It critically examines the constraints of the
current model, including its reliance on a single wind turbine type, the 2D nature of the wake
predictions, and the architectural limitations of the neural networks. The challenges posed by
the training data generation process and the assumption of uniform inflow conditions are also
discussed.

The final subsection outlines potential future research directions. Several avenues for enhancing
the versatility and accuracy of the models are proposed, including the incorporation of turbine-
specific information, expansion to 3D wake calculations, and exploration of alternative neural
network architectures such as GNNs. Novel approaches to wind farm representation that could
potentially improve computational efficiency and model generalization are also considered. This
discussion aims to place the findings in the context of the broader field of wind farm wake
modeling, highlight the study’s potential impact, and suggest directions for future research in
this important area of renewable energy.

5.1 Implications for Wind Farm Design
The results presented in section 4 demonstrate that all models exhibit a relatively high level of
accuracy compared to the training data. In its current state, such models can be valuable for
estimating wake deficit downwind when planning new wind parks. This is particularly crucial
for large tenders like the one depicted in Figure 1.3, which is estimated to have a total name-
plate capacity of 5.5GW with an area of 421 km2 [17]. The performance of existing wind parks,
such as Deutsche Bucht, Veja Mate, and BARD Offshore 1, located south of the N-9 wind
development area, is expected to decrease once the new wind farms are commissioned. This
underscores the importance of incorporating future neighboring wind parks into economic yield
analyses during the planning phase. EnBW He Dreiht, one of Germany’s largest offshore wind
farms [29], provides a useful reference for estimating the scale of the N-09 development. Using
its specifications, we can estimate that approximately 367 turbines (5500MW/15MW ≈ 367)
would be needed in the N-09 area, assuming similar turbine models are suitable.

As discussed in subsection 4.4, the trained neural network models significantly outperform
traditional engineering models in terms of computational efficiency, especially as wind farm
size increases. Using data from Table 4.5, we can estimate that a single 256 × 512 resolution
TurbOPark simulation for the N-09 area should take:

367 turbines× 3.53× 10−2 s/turbine
= 12.96 s

(39)

While this timeframe is reasonable for a single simulation, real-world wind farm development
often requires multiple simulations. Considering 100 different layouts, 36 inflow wind directions,
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and 100 inflow conditions, the total calculation time becomes:

367 turbines · 3.53× 10−2 s/turbine · 100 layouts · 36 sectors · 100 inflows
= 1295.5 hours
≈ 54 days

(40)

This comprehensive calculation reveals a much more time-consuming process. However, by
utilizing a pre-trained neural network, this computational time can be greatly reduced. As
seen from Table 4.6, the mean time per simulation when using the Graphics Processing Unit
(GPU) is around 3ms. Applying this timeframe to the previous simulation scenario yields:

3× 10−3 s/simulation · 100 layouts · 36 sectors · 100 inflows
= 0.3 hours

(41)

While this is a rough calculation, it highlights the potential of using neural network-based flow
prediction methods. Implementing a well-trained and documented model into the industry
could allow for a scale of wake deficit calculations that is simply not feasible with current meth-
ods, significantly enhancing the efficiency and accuracy of wind farm design and optimization
processes.

As shown in Table 4.3, the MAE of the U-Net based models ranges from 4.75×10−4 m/s to 1.44×
10−2 m/s, depending on the training dataset used. The power curve for the Vestas V80 wind
turbine employed in this study is illustrated in Figure 3.7b. As discussed in subsubsection 3.3.2,
in region 2 between the cut-in wind speed and the rated power wind speed, the power curve’s
slope is steep, indicating significant power changes with small variations in wind speed. For
the Vestas V80 data used in this study, the steepest slope occurs at 9.5m/s with a gradient of
345 kW

m/s . Consequently, if one of the U-Net architecture models were used to estimate the wake
deficit from an upstream wind farm approaching a Vestas V80 wind turbine, the mean error in
power prediction for a single turbine would range between:

4.75× 10−4 m/s · 345 kW
m/s

= 0.16 kW

and

1.44× 10−2 m/s · 345 kW
m/s

= 4.97 kW

(42)

It’s important to note that this value depends on the individual wind turbine’s position relative
to the wake. As observed in subsection 4.3, predictions at the edge of the wake-affected area
show higher accuracy. The models generally perform well in applying the ambient wind speed
outside the wake. However, within the wake, the discrepancy between the engineering model
and the neural network model appears to be greatest. This suggests that if a turbine is located
within the wake-affected area, the error in estimated inflow wind speed is likely higher than the
overall MAE.

The plots in Appendix C suggest that the neural network models are unbiased, with an equal
likelihood of over- and under-predicting the wake deficit, resulting in an average error close to
0m/s. However, further investigation is needed to conclusively determine whether the models
are truly unbiased or if this appearance is coincidental.
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5.2 Limitations of the Study
This study’s neural network model exhibits several limitations that restrict its immediate appli-
cability in the wind energy industry. Primarily, the model’s training is confined to a single wind
turbine model, the Vestas V80, which limits its predictive capabilities to wind farms containing
this specific turbine or those with very similar thrust curves. While the model’s framework
could potentially accommodate training on various wind turbines, each would require its own
unique training dataset and individual model training, significantly increasing the overall com-
putational demand. The current model’s scope is further constrained by its ability to estimate
only the 2D wake deficit at the hub height of the Vestas V80 used for training. This limita-
tion poses challenges when predicting wind speeds for downwind turbines with different hub
heights or when a more comprehensive understanding of the wind speed variance across the
entire rotor disk is required. The model’s assumption of extending the hub height wind speed
laterally across the rotor disk may introduce errors compared to a more nuanced representation
of lateral wind speed variations.

Another technical constraint stems from the neural network architecture, specifically the MLP
in the latent space, which currently supports only a 256x512 input and output dimension.
While FCNs typically accommodate variable input sizes, the MLP’s presence in the latent
space imposes this restriction. A potential solution involving input scaling before neural net-
work processing has been identified but remains untested. The wind farm layouts used in the
training data generation process, while providing a solid foundation, require further diversifi-
cation. Future iterations should incorporate a wider array of configurations, including string
formations, curved layouts (as observed in Figure 3.2), and randomized grid-based designs with
strategically removed turbines to create structural gaps. These enhancements would improve
the model’s ability to handle more complex and realistic wind farm scenarios.

Lastly, the uniform inflow assumption in the training datasets limits the model’s applicability
to scenarios with non-uniform inflow conditions. This restriction limits the model from ac-
curately calculating wake deficits in cascading wind park arrangements, where the inflow to
subsequent parks in the chain would be inherently non-uniform due to upstream wake effects.
Addressing these limitations in future research will significantly enhance the model’s versatility
and practical applicability in the wind energy sector, paving the way for more comprehensive
and accurate wind farm wake deficit predictions.

5.3 Future Research Directions
The accuracy of neural networks depends on multiple factors, including network architecture,
proper convergence during training, and the quality and quantity of training data. In this
study, where engineering wake deficit models are used to generate training data, the neural
networks’ accuracy is inherently linked to the accuracy of these underlying models. To surpass
the performance of current industry-standard engineering models, future iterations of these
neural networks should be trained on higher-fidelity data. This approach could potentially
offer both computational efficiency and improved accuracy compared to analytical wake deficit
models. However, it’s important to note that the immediate implementation of higher-fidelity
data is not crucial while the models are still in the development phase. The current approach of
comparing neural network outputs with test datasets, as demonstrated in this study, provides a
sufficient overview of the models’ relative accuracy. This allows for continued refinement of the
neural network architectures and training processes before investing in more computationally
expensive, high-fidelity training data.
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The neural network models presented in subsection 3.4 are designed with the potential to incor-
porate wind turbine-specific information, such as thrust curves, into the latent space representa-
tion. This feature could significantly enhance the model’s versatility and industry applicability.
However, the effectiveness of this approach in accurately adjusting wake predictions based on
individual thrust curves remains to be validated. Implementing such a feature would likely
require more extensive training data, potentially increasing the initial computational cost. A
logical progression for these models would be to expand from 2D to 3D wake calculations,
similar to the approach taken by Asmuth and Korb [7], but on a wind farm scale. This ad-
vancement would eliminate the current limitation of single hub height predictions. However,
this transition would exponentially increase the complexity of both the training data and the
neural network architecture. While this would significantly enhance the model’s utility, it would
also substantially increase computational demands for training and operation.

The application of Graph Neural Networks (GNNs) in wind farm power output estimation,
as demonstrated by Bleeg [13] and Duthé et al. [27], presents an interesting avenue for fur-
ther research. Extending these models to account for variable thrust curves and non-uniform
inflow conditions could potentially enable the prediction of wake effects between neighboring
wind parks, expanding beyond their current focus on intra-park effects. Additionally, exploring
whether GNNs or similar flexible data structures can be encoded for decoding by CNN-based
decoders (like those used in this study) could significantly improve computational efficiency. If
flexible data structures prove challenging to encode effectively, an alternative approach could
involve representing wind farms as polygons rather than as collections of individual turbines.
While this method might sacrifice some fine-grained detail, especially in areas close to the wind
parks where individual turbine wakes are most distinct, it could potentially reduce the volume
of training data required for long-distance wake field predictions. This approach would model
the overall shape of the wind farm and incorporate factors such as average turbine spacing and
thrust curves to determine a ”denseness” score, offering a more generalized representation of
wind farm effects.

These proposed research directions aim to enhance the model’s versatility, accuracy, and com-
putational efficiency, addressing current limitations and expanding its potential applications in
wind farm wake modeling.
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6 Conclusion
This thesis aimed to explore long-distance wind farm flow modeling using Convolutional Neu-
ral Networks (CNNs), with a specific focus on the often underestimated wake effects between
neighboring wind parks. By utilizing three distinct wake deficit models (Jensen, Bastankhah,
and TurbOPark) to generate training datasets for various neural network architectures, the
study has demonstrated that CNNs can closely match the accuracy of these models while sig-
nificantly improving the computational efficiency of wake modeling.

The novel method for random wind park layout generation, coupled with extensive simulations
using the Vestas V80 wind turbine model, has provided a robust framework for evaluating the
performance of different neural networks across a range of wind park configurations. Among the
tested architectures, U-Net and U-Net/MLP consistently outperformed the CAE approaches,
delivering the lowest Mean Absolute Errors (MAE) and proving particularly effective in cap-
turing the complex wake interactions modeled by the Jensen and Bastankhah methods. The
TurbOPark model, while more challenging due to its slower wake mixing and greater span-
wise velocity variations, also benefited from these CNN approaches, albeit with notably higher
MAEs.

A key finding of this research is the computational advantage offered by neural networks over
traditional engineering models. Unlike conventional methods, where computational time in-
creases linearly with the number of turbines, the CNN-based models maintain a constant exe-
cution time of approximately 3 ms, regardless of the wind park size. This efficiency positions
CNNs as a promising tool for large-scale wind farm modeling and optimization.

This thesis has laid the groundwork for more accurate and efficient wind farm flow modeling
using advanced neural network architectures. The CNN-based approaches developed here have
the potential to enhance wind farm design and operation by enabling rapid assessments of
different layouts. Moving forward, further refinement of these models—along with the incor-
poration of additional environmental factors and validation against real-world data—will be
crucial in ensuring their practical applicability in the wind energy industry.
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Nomenclature

Acronyms

Notation Description Page
List

ABL Atmospheric Boundary Layer 9
Adam Adaptive Moment Estimation 19, 20
AEP Annual Energy Production 37
ANN Artificial Neural Network 16

CAE Convolutional Autoencoder 5, 23,
25, 27,
29, 39,
48–51,
64,
88–90,
94–96

CFD Computational Fluid Dynamics 2, 3, 32,
37, 42

cGAN Conditional Generative Adversarial Network 25–27
CNN Convolutional Neural Network 1, 3, 5,

6, 20–22,
26, 27,
29, 30,
35, 58,
61, 68

DNN Deep Neural Network 22, 26

EEZ Exclusive Economic Zone 4, 5

FC Fully Connected 39
FCN Fully Convolutional Neural Network 23, 67

GNN Graph Neural Network 27, 28,
65, 68

GPU Graphics Processing Unit 66

HPC High Performance Computing 64

IEC International Electrotechnical Commission 14

LES Large Eddy Simulation 2, 26, 64
LiDAR Light Detection and Ranging 26
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Notation Description Page
List

MAE Mean Absolute Error 41, 42,
50, 51,
61, 66

MLP Multilayer Perceptron 5, 24, 25,
27, 29,
48–51,
58, 60,
61, 67,
94–102

MSE Mean Squared Error 41–43,
46,
48–50, 61

MSP Marine Spatial Planning 4

RANS Reynolds-averaged Navier-Stokes 2, 26, 37,
64

ReLU Rectified Linear Unit 18, 19,
21, 39

RF Random Forest 26
RMSProp Root Mean Square Propagation 19, 20

SAR Synthetic Aperture Radar 2
SCADA Supervisory Control and Data Acquisition 26, 42
SOS Sum of Squares 11, 13,

15, 26
SSAA Supersampling Anti-Aliasing 35, 36

TI Turbulence Intensity 44
TurbOPark Turbulence Optimized Park 7, 10, 11,

13, 29, 65

WAsP Wind Atlas Analysis and Application Program 11

XGBoost eXtreme Gradient Boosting 26

Symbols

Symbol Description Unit Page
List

A Wake Expansion Calibration Parameter - 12, 13
CT Thrust Coefficient - 11–13
C Maximum Normalized Velocity Deficit - 12, 13
D0 Rotor Diameter m 12–14
I0 Ambient Turbulence Intensity - 11–15,

58, 61
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Symbol Description Unit Page
List

Iadd Added Turbulence Intensity - 12–14
I Turbulence Intensity - 12, 14, 58
U0 Initial Wake Velocity m s−1 11, 15,

44, 61
Uw Wake Velocity m s−1 11
Vin Inflow Wind Speed m s−1 13, 14
α Parameter for Non-linear Wake Expansion - 13
β Parameter for Non-linear Wake Expansion - 13
δ Normalized Wind Speed Deficit - 11, 12, 15
ε Initial Normalized Characteristic Wake Width - 13
O Big O Notation - 63
U Continuous Uniform Distribution - 32
σw Characteristic Wake Width m 12, 13
σ Gaussian Velocity Deficit Profile Std. Dev. m 12
a Axial Induction Factor - 11, 13, 14
c1 Empirical Constant - 13
c2 Empirical Constant - 13
k∗ Wake Growth Rate - 12
kw Wake Decay Constant - 11
r0 Rotor Radius m 11
r Wake Radius m 11, 12
x Downwind Distance m 11–15
y Spanwise Distance m 12
zH Turbine Hub Height m 12
z Vertical Distance m 12
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A Graph Neural Networks: Foundations and Applica-
tions

Throughout this thesis, I experimented with various neural network architectures. Among
them, Graph Neural Networks (GNNs) stood out for their effectiveness in capturing the struc-
ture and interactions between wind turbines in wind farms. This is primarily due to their
ability to operate on graph-structured data, unlike traditional neural networks that process
data in Euclidean space (e.g., grids for images or sequences for text). GNNs are a class of
deep learning models specifically designed to process data represented as graphs. A graph
G = (V,E) consists of a set of nodes (or vertices) V and a set of edges E. Each node v ∈ V
can have associated feature vectors, and each edge (u, v) ∈ E can carry information about the
relationship between nodes u and v. In the context of the neural network presented in this the-
sis, the input data is represented as a graph, where each node is associated with specific features.

A fundamental component of many GNN architectures is the Graph Convolutional Network
(GCN). GCNs extend the concept of convolution from grid-like data structures, as seen in
Convolutional Neural Networks (CNNs), to graph-structured data. The core idea behind GCNs
is to update node representations by aggregating information from neighboring nodes. This
process can be mathematically formulated as follows [49]:

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
(43)

In this equation, H(l) is the node feature matrix at layer l, Ã = A+ I represents the adjacency
matrix of the graph with added self-loops (where A is the original adjacency matrix and I is the
identity matrix), D̃ is the diagonal degree matrix of Ã with D̃ii =

∑
j Ãij, W (l) is the learnable

weight matrix for layer l, and σ is a non-linear activation function, such as ReLU. The core
operation in GNNs is often referred to as ”message passing.” This process typically involves
three steps: message generation, where each source node generates a message to be sent to its
neighboring target nodes; message aggregation, where each node aggregates the messages it
receives from its neighbors; and node update, where node representations are updated based
on the aggregated messages.

In the architecture presented in Table A.1, the GCNConv layers in the encoder implement
this message-passing mechanism, learning node embeddings that capture both local and global
graph structures. For graph-level tasks, it is necessary to obtain a fixed-size representation of
the entire graph. In this architecture, a global mean pooling (GMP) operation is employed:

x = global_mean_pool(x, batch) (44)
This operation averages the node features across each graph in the batch, resulting in a graph-
level representation. A significant property of GNNs, including the architecture presented here,
is their ability to perform inductive learning. This allows the model to generalize to unseen
graphs, provided they have the same node feature dimensions. The GCN layers learn to operate
on local graph structures, making the model adaptable to graphs of varying sizes and structures.

A.1 Graph Convolutional Network / Convolutional Neural Network
Architecture

As an experiment, I combined a Graph Neural Network (GNN) with a Convolutional Neural
Network (CNN) decoder, similar to those used in Convolutional Autoencoder (CAE) and U-Net
architectures. The GNN is used to extract features for all nodes in the graph. After applying
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a global mean pooling operation to the node features, the resulting latent space feature map
is fed into a CNN, which then decodes this feature map into a tensor representing the wake
deficit of the wind farm. Table A.1 provides an overview of the neural network structure used
to achieve this:

Table A.1: GCN-CNN Architecture.

Layer Group Layers In Channels Out Channels Kernel Stride Padding Out Padding
Encoder GCNConv 1 inchannels 16 – – – –

GCNConv 2 16 16 – – – –
GCNConv 3, GMP 16 256 – – – –

MLP FC 1 256 + [WS, TI] 1024 – – – –
FC 2 1024 256 – – – –

Decoder Decode 1-2, Lerp 128 64 3×3 1 1 –
Decode 3-4, Lerp 64 32 3×3 1 1 –
Decode 5-6, Lerp 32 16 5×5 1,2 2 –,1
Decode 7-8, Lerp 16 8 5×5 1,2 2 –,1
Decode 9-10, Lerp 8 4 5×5 1,2 2 –,1

Decode 11 4 outchannels 5×5 1 2 –

A.2 Preliminary Results of the GCN-CNN Architecture
A single GCN-CNN model was trained using the TurbOPark dataset, as described in subsec-
tion 3.2. The training process, which followed the system setup outlined in subsection 4.4, ran
for 1000 epochs. One notable advantage of the GCN-CNN architecture is its relatively low
training cost. Completing all 1000 epochs took just over 1.5 hours, making the training process
approximately ten times faster than the other models discussed in this thesis. However, despite
its efficiency, the GCN-CNN model underperforms compared to the CAE and CAE/MLP net-
works, as shown in Table 4.3. The GCN-CNN model achieved a Mean Absolute Error (MAE)
of 1.81 × 10−2 m/s and a Mean Squared Error (MSE) of 6.92 × 10−3 m2/s2. The 1D and 2D
results for the GCN-CNN architecture are illustrated in Figure A.1, Figure A.2, Figure A.3,
and Figure A.4.

83



0 3 6 9
Velociy Deficit [%]

200

100

0

100

200

y/
D 

[-]
x/D = 50

0.0 0.8 1.6 2.4
Velociy Deficit [%]

x/D = 250

0.0 0.4 0.8 1.2
Velociy Deficit [%]

x/D = 450

0.00 0.25 0.50 0.75
Velociy Deficit [%]

x/D = 650

TurbOPark - Wind Park 987

Ground Truth GCN/CNN

Figure A.1: Wake deficit profiles for Wind Park 987 using the TurbOPark model. Profiles
shown at multiple downstream distances (x/D) behind wind farms for the GCN/CNN.
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Figure A.2: Wake deficit profiles for Wind Park 954 using the TurbOPark model. Profiles
shown at multiple downstream distances (x/D) behind wind farms for the GCN/CNN
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Figure A.3: Wake deficit profiles for Wind Park 960 using the TurbOPark model. Profiles
shown at multiple downstream distances (x/D) behind wind farms for the GCN/CNN.
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Figure A.4: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left column:
TurbOPark Wake Deficit Model outputs. Middle column: Predictions from a GCN/CNN
trained on the TurbOPark model. Right column: Percentage Point Error [pp] between the
TurbOPark model and the GCN/CNN predictions.

B Wind Park Generation
Figure B.1 illustrates the distribution and relationships between key input parameters used in
the wind park generation algorithm. This pairplot combines scatter plots and histograms to
visualize the distributions of turbulence intensity, turbine position noise, polygon irregularities,
and polygon spikiness. These parameters were crucial in creating diverse and realistic wind
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park layouts for both the training and test datasets used throughout this thesis. The diagonal
of the plot shows histograms for each parameter, providing insight into their individual distri-
butions. The off-diagonal scatter plots reveal potential correlations or patterns between pairs
of parameters. This visualization helps to ensure a wide range of wind park configurations were
considered, enhancing the robustness and applicability of the neural network models developed
in this study.
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Figure B.1: Distribution of input parameters for wind park generation algorithm.

For the remain wind park generation parameters, see Figure 3.4.
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C Wake Deficit Prediction in 2D

C.1 Convolutional Autoencoder
C.1.1 Jensen Wake Deficit Model
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Figure C.1: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: Jensen Wake Deficit Model outputs. Middle column: Predictions from a CAE trained
on the Jensen model. Right column: Percentage Point Error [pp] between the Jensen model
and the CAE predictions.
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C.1.2 Bastankhah Wake Deficit Model
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Figure C.2: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: Bastankhah Wake Deficit Model outputs. Middle column: Predictions from a CAE
trained on the Bastankhah model. Right column: Percentage Point Error [pp] between the
Bastankhah model and the CAE predictions.
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C.1.3 TurbOPark Wake Deficit Model
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Figure C.3: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: TurbOPark Wake Deficit Model outputs. Middle column: Predictions from a CAE
trained on the TurbOPark model. Right column: Percentage Point Error [pp] between the
TurbOPark model and the CAE predictions.
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C.2 U-Net
C.2.1 Jensen Wake Deficit Model
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Figure C.4: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left column:
Jensen Wake Deficit Model outputs. Middle column: Predictions from a U-Net trained on the
Jensen model. Right column: Percentage Point Error [pp] between the Jensen model and the
U-Net predictions.
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C.2.2 Bastankhah Wake Deficit Model
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Figure C.5: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: Bastankhah Wake Deficit Model outputs. Middle column: Predictions from a U-Net
trained on the Bastankhah model. Right column: Percentage Point Error [pp] between the
Bastankhah model and the U-Net predictions.
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C.2.3 TurbOPark Wake Deficit Model
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Figure C.6: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: TurbOPark Wake Deficit Model outputs. Middle column: Predictions from a U-Net
trained on the TurbOPark model. Right column: Percentage Point Error [pp] between the
TurbOPark model and the U-Net predictions.
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C.3 Convolutional Autoencoder with Multilayer Perceptron
C.3.1 Jensen Wake Deficit Model
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Figure C.7: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: Jensen Wake Deficit Model outputs. Middle column: Predictions from a CAE/MLP
trained on the Jensen model. Right column: Percentage Point Error [pp] between the Jensen
model and the CAE/MLP predictions.
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C.3.2 Bastankhah Wake Deficit Model
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CAE/MLP - Bastankhah

Figure C.8: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left column:
Bastankhah Wake Deficit Model outputs. Middle column: Predictions from a CAE/MLP
trained on the Bastankhah model. Right column: Percentage Point Error [pp] between the
Bastankhah model and the CAE/MLP predictions.
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C.3.3 TurbOPark Wake Deficit Model
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CAE/MLP - TurbOPark

Figure C.9: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left col-
umn: TurbOPark Wake Deficit Model outputs. Middle column: Predictions from a CAE/MLP
trained on the TurbOPark model. Right column: Percentage Point Error [pp] between the
TurbOPark model and the CAE/MLP predictions.
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C.4 U-Net with Multilayer Perceptron
C.4.1 Jensen Wake Deficit Model
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U-Net/MLP - Jensen

Figure C.10: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: Jensen Wake Deficit Model outputs. Middle column: Predictions from a U-Net/MLP
trained on the Jensen model. Right column: Percentage Point Error [pp] between the Jensen
model and the U-Net/MLP predictions.
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C.4.2 Bastankhah Wake Deficit Model
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U-Net/MLP - Bastankhah

Figure C.11: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left
column: Bastankhah Wake Deficit Model outputs. Middle column: Predictions from a U-
Net/MLP trained on the Bastankhah model. Right column: Percentage Point Error [pp] be-
tween the Bastankhah model and the U-Net/MLP predictions.
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C.4.3 TurbOPark Wake Deficit Model
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U-Net/MLP - TurbOPark

Figure C.12: Velocity deficit [%] comparison for test wind parks (987, 954, and 960). Left col-
umn: TurbOPark Wake Deficit Model outputs. Middle column: Predictions from a U-Net/MLP
trained on the TurbOPark model. Right column: Percentage Point Error [pp] between the Tur-
bOPark model and the U-Net/MLP predictions.
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C.5 Wake-generated Turbulence Prediction
C.5.1 Crespo-Hernández Model
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U-Net/MLP - Crespo-Hernández

Figure C.13: Rel. Added Turbulence [%] comparison for test wind parks (987, 954, and 960).
Left column: Crespo-Hernández Turbulence Model outputs. Middle column: Predictions from
a U-Net/MLP trained on the Crespo-Hernández model. Right column: Percentage Point Error
[pp] between the Crespo-Hernández model and the U-Net/MLP predictions.
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C.5.2 Frandsen Model (2005)
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U-Net/MLP - Frandsen (2005)

Figure C.14: Rel. Added Turbulence [%] comparison for test wind parks (987, 954, and 960).
Left column: Frandsen (2005) Turbulence Model outputs. Middle column: Predictions from
a U-Net/MLP trained on the Frandsen (2005) model. Right column: Percentage Point Error
[pp] between the Frandsen (2005) model and the U-Net/MLP predictions.
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C.5.3 Frandsen Model (2017)
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U-Net/MLP - Frandsen (2017)

Figure C.15: Rel. Added Turbulence [%] comparison for test wind parks (987, 954, and 960).
Left column: Frandsen (2005) Turbulence Model outputs. Middle column: Predictions from
a U-Net/MLP trained on the Frandsen (2017) model. Right column: Percentage Point Error
[pp] between the Frandsen (2017) model and the U-Net/MLP predictions.

D Wind Park Layouts
In the following section there is an overview over the 1000 wind park layouts used to generate
the Jensen, Bastankhah and TurbOPark training data. The wind parks are split into a training
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and test dataset, where 80% corresponding to 800 wind parks of the wind parks are used
for training the models and 20% corresponding to 200 wind parks are used to validate the
performance of the models.
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D.1 Training Dataset Wind Parks
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Figure D.1: 10x10 grid of wind park layouts (WP0-WP99) used for training. Wind speed (WS)
and turbulence intensity (TI) are indicated for each park.
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Figure D.2: 10x10 grid of wind park layouts (WP100-WP199) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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Figure D.3: 10x10 grid of wind park layouts (WP200-WP299) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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Figure D.4: 10x10 grid of wind park layouts (WP300-WP399) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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Figure D.5: 10x10 grid of wind park layouts (WP400-WP499) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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Figure D.6: 10x10 grid of wind park layouts (WP500-WP599) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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Figure D.7: 10x10 grid of wind park layouts (WP600-WP699) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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Figure D.8: 10x10 grid of wind park layouts (WP700-WP799) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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D.2 Test Dataset Wind Parks
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Figure D.9: 10x10 grid of wind park layouts (WP800-WP899) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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Figure D.10: 10x10 grid of wind park layouts (WP900-WP999) used for training. Wind speed
(WS) and turbulence intensity (TI) are indicated for each park.
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