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1. Introduction 

Optimization, in general, is the procedure of finding a system (defined by its 

parameters) within the specified ranges, which is best at satisfying the defined 

optimization goal based on its particular criteria. In this thesis, the aim is to perform 

optimization for electrostatic lens system design using evolutionary algorithms. To 

explain the work,  the main concepts from the title of the thesis should first be 

outlined: “What are the electrostatic lenses?”, “What does the design/optimization of 

an electrostatic lens system mean?” ,” How does the charged particle optical lens 

designer perform the design optimization problems?”  

The lens systems are categorized into two main groups, namely optical lenses and 

charged particle optical lenses. The optical lenses are mainly made from glasses ,that 

we are all familiar with, are used to bend or focus the light beam according to light 

optics principles [1]. The other group is the charged particle optical lenses, which are 

categorized into two groups: electrostatic lenses and magnetic lenses. These lenses 

are used to control the charged particle passing through them using electric fields ( 

electrostatic lenses) or magnetic fields (magnetic lenses) based on the charged 

particle optics principles [2]. Here, in our case-study we only consider the electrostatic 

charged particle optical lenses. Hence, hereafter by charged particle optical lenses or 

electron lenses we mean the electrostatic lenses. 

Figure 1.a shows optical lenses where light rays are passing through and Figure 1.b 

illustrates this schematically. This illustration is similarly presented for the 

electrostatic lenses while charged particle rays pass through in Figure 2 (a) and (b). 

 

Figure1. Optical lenses (a), with the schematic illustration of the light rays passing through the 

lens (b).  
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Figure2. A multi-electrode electrostatic lens (a), with the schematic illustration of charged 

particle rays passing through the lens (b). 

The main application of the lenses are in imaging systems. Rays coming from an object 

point intersect the image plane at the points which can be derived using ray tracing 

methods. In reality, the image of this point is not a single point, but a spread spot. The 

size formed from the collection of the intersection points of the traced rays from an 

object point with the image plane is called ‘spot size’ [3]. A better qualified lens system 

is the one where its image suffers less from the aberrations to have a smaller spot size. 

The aim of the design of electrostatic lens systems is generally to focus the Primary 

Beam (PB) [4] at a specific point while having the least aberration induced by the lens. 

In some situations more functions are aimed to be optimized such as, to have the 

highest detection efficiency of Secondary Electrons (SEs) [5] at the image place. There 

are also typical constraints involved in the design problem such as the maximum 

allowable electric field between sequential electrodes to prevent discharges. It should 

be mentioned that in our case-studies, the lens systems are considered to be 

influenced by only the spherical and chromatic aberrations. To find a lens system 

which is optimized regarding the defined performance, while simultaneously taking 

constraints into account, the lens parameters (geometries and voltages) can all be 

varied.  

To optimize a lens system, the objective function (the function which the designer has 

defined to evaluate the performance of the system) should be calculated and 

evaluated for each system. The objective function depends on the electric potential 

distribution in the space along the axis created by the lenses. To obtain the electric 

potential, the existing methods are generally based on meshing either the entire space 

of the lens system or the electrode surfaces using Finite Element Method (FEM) [6], 

Finite Difference Method (FDM) [7] or charge density method [8]. Hence, calculation 

of the objective function for such systems are computationally expensive.  
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Designing electrostatic lens systems manually is therefore quite a challenge and a 

laborious work for the optical designers when a large number of lens parameters is 

involved, such as the electrode thicknesses, the aperture sizes of the electrodes, the 

distances between the electrodes, and the electrode voltages. This becomes even 

more challenging once the number of electrodes increases.  

Currently it is not difficult to find electron-optical software to conduct accurate field 

calculations such as EOD [9], GPT [10], CPO [11], etc., however, they only change one 

lens geometry parameter or the voltages to influence the aberrations or to auto-focus, 

but are not capable of changing the whole shapes of the lenses. Assuming these 

software tools can be also used in an optimization loop by changing all lens geometries 

and voltages as the free parameters, it can take months to get the results [12, 13]. For 

instance,  the design of even a simple system using COMSOL [14] takes such a long 

computational time that the designer might not have the patience to wait for the 

result (assuming the computational memory allows them to do so).  

Therefore, although optimization routines are very powerful techniques for finding 

optima of complex functions, they have not been used extensively to optimize charged 

particle optical lens designs, and  applying a fully-automated optimization routine has 

not yet been feasible. So far, such optimizations are mostly carried out manually in a 

trial and error fashion.  

To reduce the computation time of field calculations and to make an automated 

optimization process feasible, we were searching for a method which enabled us to 

perform the field calculation more quickly. Adriaanse et al. (1989) presented a fast 

method to calculate the electric field by means of approximation of the axial potential 

with a cubic splice and solving a set of linear equations [15-17]. In their method, the 

terms of the Laplace equation with higher order than the second derivative are 

truncated and the method is named the Second-Order Electrode Method (SOEM). At 

that time (1989) when SOEM was presented, it worked with local optimization, for 

simple systems with only one minimum in the parameter space. However, nowadays 

after the technological revolution resulting in high speed computers, we wanted to 

once again consider SOEM but in a more broad category as an aid in the process of 

electron lens optimisation. Since the field calculated by this method is based on 

approximation of Laplace equation, an inaccuracy in the results was expected. We 

hence first performed a study on calculation of the accuracy of the field calculated 

using SOEM compared to the existing accurate field calculation methods such as FEM. 

In addition, the computational time of these two methods are evaluated and 
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compared. The results are presented in section 2.4, after a brief explanation on the 

theory of SOEM (section 2.2) and FEM (section 2.3) with their numerical 

implementations in our case studies in MATLAB. 

The comparisons of SOEM with FEM showed promising results for SOEM, having some 

inaccuracy in the calculation but compromising with its very fast field calculation. The 

method of SOEM hence is considered to be implemented in addition of FEM in a 

surrogate model [18] to aid our optimization problem. Surrogate models, also known 

as surrogates, are computationally inexpensive approximation models, employed to 

assist in evaluation of computationally expensive functions to reduce the 

computational time spent on the problem. Studies on surrogate-assisted evolutionary 

algorithms such as Genetic Algorithm (GA) [19, 20] began a decade ago. In subsequent 

years this method has been implemented in many different applications to optimize 

single and multi-objective optimization problems and found to be very efficient [21-

23]. The surrogates (called the “Low Fidelity model”) can be implemented through 

different strategies combined with the accurate function calculation (known as the 

“High Fidelity model”) to assist the optimization process. 

A recent work [24] has been published on the design of an ion optical device with 

many possible free parameters, involving multi-objective functions (up to two). There, 

an adjoint variable method is implemented. However, the optimization based on the 

adjoint method is suitable only for a few objective functions, while evolutionary 

optimization techniques such as GA are capable of optimizing multiple objective 

functions. Another difference is that the adjoint based optimization is a local 

optimization technique, whereas the evolutionary algorithms are considered as global 

optimization techniques due to their metaheuristic characteristics that can 

automatically search more spaces through the objective function landscape and 

prohibit trapping in local optima. In the design of electrostatic lens systems, such as in 

our case study, the objective function landscape (even in the case of a single objective 

function) seems to have many local minima. In addition, multiple objective functions 

are usually aimed to be optimized, while the number of free parameters is not huge 

(in the order of tens). In such circumstances, EA/GA appears to be a better fit to the 

problem.  

In our work, we therefore propose a method in which a surrogate-assisted EA (mainly 

GA) is used. The procedure is such that a surrogate-assisted GA is used by first running 

a GA optimization using field calculation by SOEM (Low Fidelity), resulting in a number 
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of approximately good systems that are then inserted into a subsequent GA 

optimization using field calculation by COMSOL (High Fidelity).  

The reason GA has been selected as the optimization technique was its good 

performance in optical lens system optimization and similar complex optimization 

problems. The implementation of surrogate models for a single objective function 

problem is proposed and presented in chapter 4 (published as [12]). Since in this 

model, both SOEM and COMSOL are implemented for the field calculation in an 

optimization aided by GA, it is called “SOEM-COMSOL-GA”. The “SOEM-COMSOL-GA” 

is applied on typical lens systems of 6 electrode lenses. the results of this optimization 

are presented together with the comparison with “SOEM-GA” and “COMSOL-GA”.  

In chapter 4, the optimization with a single objective function is proposed which is 

hence called SOGA (Single Objective optimization using GA). As mentioned above, 

there are situations in which we have to use a multi-objective optimization problem, 

that we have called MOGA (multi-objective function optimization using GA). Study on 

MOGA while using SOEM and COMSOL as the field calculation for optimization of 

multi-electrode lens systems is successfully performed (published as [13]) and 

represented in chapter 5. A 5 electrode lens system is taken as another typical 

example of this study. 

The ray-tracing for the situation where we only deal with a primary beam can be 

performed within paraxial approximation. However, for the situations where 

optimization of SEs is also aimed, real ray-tracing is needed. The details of how the 

ray-tracings are performed in different situations are explained in chapters 4 and 5. 

From chapters 4 and 5, we will see that GA could perform efficiently in our 

optimization problems, both for SOGA and MOGA situations.  

However, although GA shows a high performance in our case-study (presented in 

chapters 4 and 5), we were curious to know first whether a local optimization 

technique could also handle the problem and replace a global optimization such as GA 

to result in a short computational run time for the optimization process. A study to 

compare local versus global optimization for multi-electrostatic lens systems is 

performed with a typical 6 electrode lens system. The results are presented in chapter 

6 (published as [25]).  

So far the results presented were performed by a GA with its tuning parameters set as 

the default of MATLAB. A further analysis used different tuning parameters of GA to 
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find those with which the GA performs with the highest efficiency. This analysis is 

presented in chapter 7 (published as [26]). 

Another study is done to discover if other well-known optimization techniques can 

outperform GA. This study is presented in chapter 8 (published as [27].  

Since calculation of the electric field plays a major role in all computations and 

simulations,  another important study performed in this thesis aims to find another 

fast method of field calculation which has a higher accuracy. We succeed in this goal 

by proposing a novel fast method of field calculation, with reasonably high accuracy.  

Chapter 9 presents this method (submitted for publication as [28]). The method is 

performed by solving the Laplace equation near the optical axis by keeping the terms 

in the off-axis potential expansion up to the fourth order derivatives of the axial 

potential with respect to the optical axis coordinate. This method is hence named the 

Fourth-Order Electrode Method (FOEM) by the authors. To derive the equations, a 

quintic spline approximation [29] of the axial potential is calculated by solving three 

sets of linear equations simultaneously. The sets of equations are extracted from the 

Laplace equation and the fundamental equations that describe a quintic spline. The 

accuracy and speed of this method is compared with other field calculation methods, 

such as the Finite Element Method (FEM) and Second Order Electrode Method 

(SOEM). Using the previously developed Genetic Algorithm (GA) based optimisation 

program for electrostatic lens systems the effectiveness of this new potential 

calculation method in calculating and optimising optical parameters of electrostatic 

lens systems is compared with FEM and SOEM based optimisations and the results are 

presented. 

A user-friendly software is developed using all presented methods in MATLAB [30]. 

The software and related flowcharts are presented in chapter 10.  
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2. Field Calculation  

2.1 Introduction  
As already stated in chapter 1, the common techniques to accurately calculate the lens 

field, are computationally expensive. The so-called SOEM method, is mentioned as a 

method for fast, but rough, field calculation. However, the theory behind SOEM, is not 

explained there. Moreover, questions as “how much faster can SOEM make the 

calculation?” and “How much is the in-accuracy introduced in the results by SOEM, 

compared to the accurate method of FEM?” are yet left un-answered. This chapter is 

devoted to resolving these questions. 

In section 2.2., the theory of field calculation by SOEM is explained. In the next section, 

2.3., field calculation by COMSOL using FEM is briefly introduced. Then, in section 2.4., 

the two methods are implemented for a number of case-studies. The comparison of 

the results taken from both methods, regarding their computational time and their 

accuracy, are presented at the end of the section. 

2.2 Field Calculation by Second Order Electrode 

Method (SOEM) 
Adriaanse et al. [1, 2], in 1989, proposed a technique for a fast axial field calculation 

which only needs to mesh the optical axis, rather than the whole space. This method 

is explained in detail below. 

To derive the field along the optical axis, the only information at hand are the voltages 

on each electrode and the Laplace equations which correlate those voltages with the 

axial potentials on their corresponding points along the axis. This relation for the 

potential, in a rotationally symmetrical system, can be written as: 

𝜑(𝑟, 𝑧) =  𝜑(0, 𝑧) − 𝑟2𝜑(2)(0, 𝑧)/4 + 𝑟4𝜑(4)(0, 𝑧)/64 − ⋯  (2.1)                                                                         

 
In which, 𝜑(0, 𝑧) is the potential along the axis. Denotations  𝑧 and 𝑟 stand for the 

axial and radial coordinate, respectively. 𝜑(𝑛)(0, 𝑧) expresses the 𝑛th derivative of 𝜑 

with respect to 𝑧. To make the equations more easily solvable, Adriaanse et al. omitted 

third and higher order terms in the Laplace equation:  
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𝜑(𝑟, 𝑧) =  𝜑(0, 𝑧) − 𝑟2𝜑(2)(0, 𝑧)/4  (2.2)                                                                         

For that reason, this method is called Second Order Electrode Method, abbreviated to 

SOEM. 

To numerically solve this problem, the surface of each electrode is divided into a few 

finite number of points. To each of these points a point on the optical axis is assigned. 

The meshing of the optical axis is therefore determined by the pre-defined divisions 

at the surface of each electrode. The voltages at each meshed point along the optical 

axis, are correlated to the voltages of their corresponding points at each electrode, 

using Eq. 2.2. This is schematically shown in Figure 2.1, where a system of multi-

electrode lenses (here four), are sketched with their voltages defined as V1, V2, V3 

and V4, respectively.  

 

Figure 2.1. A schematic representation of a four-electrode lens system, with the meshed 

points on the electrodes and their corresponding points along the optical axis. 

Considering the meshed points along the axis defined as 𝑧𝑖, for 𝑖 = 1, . . , 𝑁, equation 
2.2 can be numerically written as: 

𝜑𝑖(𝑟𝑖 , 𝑧𝑖) = 𝜑𝑖(0, 𝑧𝑖) −
𝑟𝑖
2𝜑𝑖(0,𝑧𝑖)

(2)

4
, i = 1,⋯ , N  (2.3)                                                                         
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Where, 𝜑𝑖(𝑟𝑖 , 𝑧𝑖) is equal to the voltages 𝑉𝑖 of the electrodes at their corresponding 

point i. 

For simplicity, the axial potential 𝜑𝑖(0, 𝑧𝑖) can be represented by 𝜑𝑖. The equation 2.3 

can be re-written as: 

𝑉𝑖 =  𝜑𝑖 −
𝑟𝑖
2𝜑𝑖

(2)

4
, i = 1,⋯ , N   (2.4)                                                                         

 

Equation 2.4 involves a set of N equations, with 2N un-known variables,  𝜑𝑖 and 𝜑𝑖
(2). 

To solve these equations and find axial potential 𝜑𝑖, another set of N equations is 

needed. 

However, the potential of these points in a lens system are not independent from each 

other, which means, N equations of Eq. 2.4 have extra relations with each other. The 

simplest way to establish these relations is to use polynomial functions.  

Since in the simplified Laplace equations (Eq. 2.2-2.4), the second derivative exists, the 

minimum polynomial order that can properly show those relations is the third order.  

Therefore, Adriaanse et al. have used cubic splines (i.e. piece wise built-function from 

polynomials of the third-order) to achieve these extra relations [1], from which 

another set of equations in addition to Eq.2.4 are found, that makes the problem 

uniquely solvable.  

To apply cubic splines in our field calculation problem, 𝜑(𝑥) should be represented as 

a  cubic spline. The theory of the cubic splines and its formulation are presented in 

Appendix A. There, a cubic spline function is denoted by 𝑆(𝑥). The formulation of cubic 

splines which correlates the spline function with its second derivatives is expressed in 

equation A.9. To represent the axial potential in a format of cubic splines, 𝑆𝑖(𝑥) and 

𝑆𝑖
(2)(𝑥) in equation A.9 should be replaced by 𝜑𝑖(𝑥) and 𝜑𝑖

′′(𝑥) , to represent the axial 

potential in a format of discrete cubic splines. This results in: 

𝜑𝑖+1 (
1

∆𝑖
+

1

∆𝑖+1
) =

𝜑𝑖+2
∆𝑖+1

+
𝜑𝑖
∆𝑖
−
1

6
(𝜑𝑖
′′∆𝑖 + 2𝜑𝑖+1

′′ (∆𝑖 + ∆𝑖+1) + 𝜑𝑖+2
′′ ∆𝑖+1) 

 
𝑖 = 1,… , N − 2    

 
(2.5) 
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This equation correlates 𝜑𝑖 with its two neighbouring points and their second 

derivatives. To obtain a similar form of notation as used in Adriaanse et al. [1], we 

change variable 𝑖 to 𝑖 − 1 in Eq. 2.5:  

𝜑𝑖 (
1

∆𝑖−1
+
1

∆𝑖
) =

𝜑𝑖+1
∆𝑖

+
𝜑𝑖−1
∆𝑖−1

−
1

6
(𝜑𝑖−1
′′ ∆𝑖−1 + 2𝜑𝑖

′′(∆𝑖−1 + ∆𝑖) + 𝜑𝑖+1
′′ ∆𝑖) 

 
𝑖 = 2,… ,𝑁 − 1  (2.6) 

It should be noted that, this change does not influence the equation, but is applied 

only for the sake of consistency with Adriaanse et al.’s notations. 

To solve the cubic spline in the normal way, 𝑁 data points (𝑥𝑖 , 𝑦𝑖) are needed to fit 

𝑁 − 1 cubic splines to those data. Here, instead of data points, we have Eq. 2.6 which 

produces 𝑁 − 2 equations. We therefore need to have two extra equations to create 

N equations in total.  

To add two more required equations, it is assumed that the boundary conditions are 

to have the spline and its second derivative be zero at the borders (A.10 in Appendix 

A). This physically means to have zero field and derivative at the first and last 

electrodes: 

𝜑𝑖 = 𝜑𝑖
′′ = 0 , 𝑖 = 1, 𝑁 (2.7) 

Equations  2.6 and 2.7, together with equation 2.4, produce 2𝑁 equations. By solving 

them together, 𝜑𝑖 can be derived as: 

𝜑𝑖−1 (
2∆𝑖
3𝑟𝑖−1

2
−

1

∆𝑖−1
) + 𝜑𝑖 (

1

∆𝑖−1
+
1

∆𝑖
+
4

3

∆𝑖−1 + ∆𝑖
𝑟𝑖
2

) + 𝜑𝑖+1 (
2∆𝑖
3𝑟𝑖+1

2
−
1

∆𝑖
)

=
2𝑉𝑖−1
3𝑟𝑖−1

2
∆𝑖−1 +

4𝑉𝑖
3𝑟𝑖

2
(∆𝑖−1 + ∆𝑖) +

2𝑉𝑖+1
3𝑟𝑖+1

2
∆𝑖+1 

𝑖 = 2,… ,𝑁 − 1                                                                                                                  (2.8) 

Denoting the coefficients of 𝜑𝑖−1 , 𝜑𝑖 and 𝜑𝑖+1 by 𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 , and the right-side of 

the equation by 𝑑𝑖 , Eq. 2.8 is written as: 
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𝑎𝑖 =
2∆𝑖
3𝑟𝑖−1

2
−

1

∆𝑖−1
, 𝑏𝑖 =

1

∆𝑖−1
+
1

∆𝑖
+
4

3

∆𝑖−1 + ∆𝑖
𝑟𝑖
2

 

𝑐𝑖 =
2∆𝑖
3𝑟𝑖+1

2
−
1

∆𝑖
, 𝑑𝑖 =

2𝑉𝑖−1
3𝑟𝑖−1

2
∆𝑖−1 +

4𝑉𝑖
3𝑟𝑖

2
(∆𝑖−1 + ∆𝑖) +

2𝑉𝑖+1
3𝑟𝑖+1

2
∆𝑖+1 

 

𝑖 = 2,… ,𝑁 − 1                                                                                             (2.9) 

 

𝑎𝑖𝜑𝑖−1 + 𝑏𝑖  𝜑𝑖 + 𝑐𝑖  𝜑𝑖+1 = 𝑑𝑖 (2.10) 

Equation 2.10, correlates the axial potential at each point to the axial potential at its 

two neighbouring points. This equation can be written as a matrix representation, as 

in the following: 

(

 
 
 
 

𝑏1 𝑐1
𝑎2 𝑏2

0 0
𝑐2 0

0 0 0
0 0 0

0 𝑎3
0 0
0 0

𝑏3 𝑐3
. .
0 .

0 0 0
. 0 0
. . 0

0 0
0 0

0 0
0 0

𝑎𝑁−1 𝑏𝑁−1 𝑐𝑁−1
0 𝑎𝑁 𝑏𝑁 )

 
 
 
 

(

 
 
 

𝜑1
.
.
.
.
.
𝜑𝑁)

 
 
 

=

(

 
 
 
 

𝑑1
.
.
.
.
.
𝑑𝑁)

 
 
 
 

 

(2.11) 

 

Or, in a close format: 

[𝐸]𝑁×𝑁 . [𝛷]𝑁×1 = [𝐷]1×𝑁 

[𝐸] =

(

 
 
 
 

𝑏1 𝑐1
𝑎2 𝑏2

0 0
𝑐2 0

0 0 0
0 0 0

0 𝑎3
0 0
0 0

𝑏3 𝑐3
. .
0 .

0 0 0
. 0 0
. . 0

0 0
0 0

0 0
0 0

𝑎𝑁−1 𝑏𝑁−1 𝑐𝑁−1
0 𝑎𝑁 𝑏𝑁 )

 
 
 
 

, [𝛷] =

(

 
 
 

𝜑1
.
.
.
.
.
𝜑𝑁)

 
 
 

 ,  

and  [𝐷] =

(

 
 
 
 

𝑑1
.
.
.
.
.
𝑑𝑁)

 
 
 
 

 

(2.12) 
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The multiplier matrix of the axial potentials’ vector, [𝐸], forms a tridiagonal matrix. 

This matrix-vector equation, can be quickly solved by numerical methods, and matrix-

solvers software such as MATLAB. 

However, to solve this equation, all elements of matrix [𝐸] should be known. Elements 

𝑎𝑖, 𝑏𝑖 , 𝑐𝑖  and 𝑑𝑖 , for 𝑖 = 2,… , 𝑁 − 1 are known parameters that can be calculated 

from the geometry of the lenses and electrode voltages using equation 2.9, while the 

first and last row of this matrix, the elements 𝑏1, 𝑐1 and 𝑎𝑁, 𝑏𝑁 , are un-known and 

cannot be derived from equation 2.9. To calculate these values, the boundary 

conditions should be implemented, which matches the two degrees of freedom of 

equation 2.12. 

These boundary conditions can be derived from the fact that, for a lens defined in a 

region of a non-zero field, the axial electric field has to vanish at the two end points of 

the lens. As the electric field equals zero in the region outside the lens, its derivative 

is also zero in that region. Due to the continuity of the field and its derivative, it is 

concluded that 𝜑1
′′ and  𝜑𝑁

′′ are equal to zero. 

𝜑1
′′ = 𝜑𝑁

′′ = 0                                                                                                                                             (2.13) 

Another constraint is that the axial potentials at the two end points, should be equal 

to the potentials of the outer electrodes. Therefore, the boundary conditions at the 

two end points 𝑖 = 1 and 𝑖 = 𝑁 are:   

𝜑1 = 𝑉1 and  𝜑𝑁 = 𝑉𝑁 (2.14) 

Where, 𝑉1 and 𝑉𝑁, are the voltages at the first and last electrodes, respectively.  

These constraints are schematically shown in Figure 2.2 for the points 𝑖 = 1 and 𝑖 =

𝑁.   



Chapter 2 

15 
 

 

Figure 2.2. A schematic representation of a four-electrode lens system, with the meshed points 

on the electrodes and their correspondent points along the optical axis. The two end points 

( 𝑖 = 1, 𝑁), at which the field becomes zero and the voltage is equal to the voltage of the last 

correspondent electrode, marked in red. 

The distances from the outer surfaces of the first and last electrodes, up to where the 

electric field vanishes to zero, are defined as the first and last mesh of the lens (∆1 and 

∆𝑁). These parameters are shown in figure 2.2 (marked in red). The values of ∆1 and 

∆𝑁 are unknown and should be also calculated. The Taylor expansion is used to 

achieve this aim. The Taylor expansion for the axial potential at each point, with 

respect to its neighbouring point and its derivatives, can be expressed as: 

𝜑2 = 𝜑1 + 𝜑1 
′ ∆1 +

1

2
𝜑1 
′′∆1

2 +
1

6
𝜑1 
(3)
∆1
3 

(2.15) 

In which, 𝜑1 
(3)

 can be written in terms of 𝜑2 
′′, 𝜑1 

′′ and the first mesh ∆1 as: 

𝜑1 
(3)
= (𝜑2 

′′ − 𝜑1 
′′)/∆1 (2.16) 

As mentioned, there is no field at the points 𝑖 = 1 and 𝑖 = 𝑁 which means,  𝜑1 
′ =

𝜑𝑁 
′ = 0. Due to the continuity of the first and second derivatives, this results in  𝜑1 

′′ =

𝜑𝑁 
′′ = 0. Substituting this into equation 2.16, we obtain:  

𝜑1 
(3)
= 𝜑2 

′′/∆1 (2.17) 

Replacement of equation 2.17 into equation 2.15, and considering 𝜑1 
′  and 𝜑1 

′′ equals 

to zero, leads to: 
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𝜑2  = 𝜑1 +
1

6
𝜑2 
′′∆1

2                                                                          
(2.18) 

Substitution of 𝑖 = 1 in equation 2.4, and replacement of 𝜑1
′′ in terms of 𝑉1 , 𝑟1 and 

𝜑1, results in: 

𝜑1 = 𝜑2(1 − 2∆1/ 3𝑟2
2) + 𝑉1(2 ∆1/ 3𝑟2

2) (2.19) 

To satisfy the constraint that 𝜑1 equals 𝑉1: 

𝑟2 = (2/ 3)
1/2∆1 (2.20) 

The above expressions are written for the first electrode. Similar expressions can be 

written for the last electrode to derive ∆𝑁 in terms of 𝑟𝑁−1 : 

𝑟𝑁−1 = (2/ 3)
1/2∆𝑁 (2.21) 

From equations 2.20 and 2.21, the first and last mesh can be derived. Knowing ∆1 and 

∆𝑁, all elements of matrix E are known and the matrix can be solved. 

2.3 Field Calculation by FEM using COMSOL Multi-

physics 

To calculate electric fields inside an electrostatic lens system, the Laplace equation 

should be solved. Combining equations 2.22, 2.23, and 2.24, in which 𝐸 is electric field 

(in unit of [
𝑉

𝑚
]), 𝑉 is electric potential (in unit of [𝑉]), 𝐷 is electric displacement field 

(in unit of [
𝑉

𝑚2
]), 𝜌 is free electric charge density (in unit of [

𝐶

𝑚3
]) and 𝜀 is permittivity 

of material (in unit of [
𝐶

𝑉𝑚
]), the Poisson equation (represented as equation 2.25) can 

be derived. If space charge is considered to be zero, the Poisson equation is reduced 

to the Laplace equation.  

𝐸 = −∇𝑉 (2.22) 

∇ ∙ 𝐷 = 𝜌 (2.23) 

𝐷 = 𝜀𝐸 (2.24) 

∇2𝑉 =
𝜌

𝜀
 (2.25) 

In COMSOL Multi-physics [3] the module that includes Poisson’s equation is known as 

‘Electrostatic physics’ which can be chosen from AC/DC module. In order to solve 
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equation 2.25, boundary conditions and permittivity values of different regions which 

are present in the simulation should be defined by the user. To create an electrostatic 

model, first the dimension of the study has to be selected. Different possibilities are 

available such as 0D, 1D, 1D-Axisymetric, 2D, 2D-Axisymetric, and 3D (see Figure 2.3). 

If the geometry under study can be realized with lower dimensions, then it is 

recommended to carry out such simplification because the simulation will then be 

lighter, faster and more accurate. Since throughout this thesis the main focus is on 

axisymmetric electrostatic lenses, a 2D axisymmetric dimension is selected for all 

models.   

Step 1 – Select Space Dimension 

 
 

Figure 2.3. A schematic representation of the step for selecting spatial dimensions in COMSOL. 

Next is to select the physics under study (Figure 2.4), which as explained above, is 

‘electrostatic physics’. The next step is to select the study type; ‘stationary’, ‘time 

dependent’, or ‘frequency domain’ options are available. For electrostatic field 

calculation ‘stationary study’ should be selected. 
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Step 2- Select Physics 

 

 

Step 3- Select Study 

 

 
 
 
 
 
 
 

 

Figure 2.4 Schematic representation of the process of selecting the physics (a) and study 

options (b) in COMSOL. 

 

Next step is to create the geometry of the lens and to assign the material properties 

of each domain (Figure 2.5). Since for electrostatic study the only material property 

that matters is permittivity, the permittivity of the material is the main parameter 

here. The lens is inside a vacuum and voltages of all electrodes will be defined, 

therefore the vacuum permittivity for all domains can be used.  

Thereafter, boundary conditions including voltages of all electrodes are assigned and 

the whole geometry is meshed (Figure 2.6). Finally the simulation is executed and the 

results can be extracted. The results can be extracted at any position (point, line, etc.) 

in the geometry. Electric field calculation in COMSOL should be fully-automated and 

be implemented as a function inside the optimization program, therefore it is 

necessary to connect COMSOL to MATLAB and perform all the above mentioned steps 

via MATLAB. 

b a 
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Step 4- Draw Geometry 

 

 

Step 5- Assign Material Properties and Boundary 
Conditions 

 

 

Figure 2.5  A schematic representation of the step of drawing the geometry (a) and assigning 

material properties and boundary conditions (b) in COMSOL. 

Every step mentioned above can be performed directly in the graphical user interface 

of COMSOL or it can be implemented using equivalent codes in MATLAB. Finally, the 

code created in MATLAB is connected to the COMSOL server and uses the COMSOL 

engine to perform the calculation.  

Step 6- Perform the mesh 

 

Step 7- Run the simulation 

 

Figure 2.6  Schematic representation of the step of the meshing (a) and running the simulation 

(b) in COMSOL. 
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Since all steps are now in the format of MATLAB codes, it is straightforward to define 

a function which receives a list of input parameters needed to create the COMSOL 

model, to perform the calculation and to extract any parameter (e.g. voltage, electric 

field, etc. along the axis of symmetry) that is needed to be calculated by the 

simulation. In this case, the optimization program can send the input of each model 

to that function and the function calculates and outputs the desired parameters. 

Step 8- Extract Data at a Point, Boundary or Cutline 

 
 

Figure 2.7  Schematic representation of the step of extracting data: electric potential versus 

arc length (a) and electric field versus arc length (b). 

An axial symmetrical lens system with disk shaped lenses can be produced using 

rectangles in 2D axisymmetric geometry in COMSOL. In the program that has been 

created, to generate an N electrodes lens system, 4N-1 parameters are needed. 

Voltages (𝑉1, 𝑉2, … , 𝑉𝑁), inner radii (𝑟1, 𝑟2, … , 𝑟𝑁), and thicknesses of the electrodes 

(ℎ1, ℎ2, … , ℎ𝑁),  are 3N parameters. The other N-1 parameters are the gaps between 

electrodes, (𝑔1, 𝑔2, … , 𝑔𝑁−1). Using the input geometrical parameters it is possible to 

draw the electrode lens systems. In COMSOL a rectangle can be made with the 

following commands: 

model.component('comp1').geom('geom1').create('r1', 'Rectangle'); 
model.component('comp1').geom('geom1').feature('r1').set('size', [5 1]); 
model.component('comp1').geom('geom1').feature('r1').set('pos', [1 2]); 
model.component('comp1').geom('geom1').run('r1'); 

Through the second line it is possible to set the length and width of a rectangle. The 

width is set equal to an electrode thickness. The length is the subtraction of the inner 
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electrode radius from a fixed number 𝑤. The 𝑤 is the radius of the lens column (from 

the axis to the outer radius) which should be defined by the user, as shown in Figure 

2. 8. 

 

Figure 2.8. The geometry of an electrode as it is defined in COMSOL. 

The position of the rectangle is identified based on the position of the lower left corner 

of the rectangle. The first electrode is placed at position (𝑟, 𝑧) = (𝑟1, 0). The position 

of the next electrode is defined based on the inner radius of that electrode, and also 

the gap between that electrode and the previous electrode. Using a loop, all 

electrodes are first created and finally the whole lens system is placed inside a 

rectangle with a width of 𝑤 and height of:  

2𝑙 + ∑(

𝑁−1

𝑖=1

ℎ𝑖 + 𝑔𝑖) + ℎ𝑁 
(2.26) 

In which 𝑙 is a length that is defined by the user before the first and after the last 

electrode. After this stage each electrode is assigned with its voltage. After running 

the simulation desired parameters have to be extracted.  

For paraxial ray tracing, the voltage distribution and its first and second derivatives 

along the axis of symmetry are needed.  To achieve a good resolution of the desired 

parameters the axis of symmetry is discretized using uniformly distributed points 
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separated with a distance of 𝑑𝑧 to be set by the user (our default value is 10 𝜇𝑚). The 

vector of the data points on the axis of symmetry are then defined by: 

𝑧 = ∑ −𝑙 +

2𝑙/𝑑𝑧

𝑗=0

(𝑗 ∗ 𝑑𝑧) + ∑(

𝑁−1

𝑖=1

ℎ𝑖 + 𝑔𝑖) + ℎ𝑁 

(2.27) 

The following commands can be used to extract the abovementioned parameters 

along the axis of symmetry. In the following, 𝑧𝑧 is a data set on the axis of symmetry 

over which the parameters are to be evaluated. It consists of a matrix of 2 rows and a 

number of columns equal to the size of vector 𝑧. The first row contains values of r (all 

equal to 0 because it is on axis of symmetry) and on the second row values of vector 

𝑧.  

data00 = mphinterp(model,'V','coord',zz); 
data10 = mphinterp(model,'es.Ez','coord',zz);  
data20 = mphinterp(model,'d(es.Ez,z)','coord',zz);  

For real ray tracing, it is necessary to extract electric field in the whole space. The 

following commands are used to extract 𝑟 and 𝑧 components of electric field on all 

mesh points in the space. 

Ez = mpheval(model, 'es.Ez'); 
EZ=[transpose(Ez.p(1,:)) transpose(Ez.p(2,:)) transpose(Ez.d1(1,:))]; 
Er = mpheval(model, 'es.Er'); 
ER=[transpose(Er.p(1,:)) transpose(Er.p(2,:)) transpose(Er.d1(1,:))]; 

Since the mesh points are irregularly distributed in space, it is necessary to map the 

value of the electric field from the mesh points obtained by COMSOL, on a grid like 

mesh to make the calculation of real ray tracing easier. In the following, the first line 

creates the grid data, lines 2-4 are the data obtained from COMSOL (r coordinate of 

the mesh point, z coordinate of the mesh point, and the value of z component of the 

electric field at that mesh point). Line 5 uses a MATLAB function to create an 

interpolation function and line 6 evaluates that function at the regular grid mesh point 

that is created on line 1. In this way, the 𝑧 component of the electric field can be 

evaluated at the regular grid points. A similar approach is used to find the r component 

of electric field at the regular grid points. 

[xqz,yqz] = meshgrid(Min_x:mesh_dr:Max_x,Min_y:mesh_dz:Max_y); 
xz=EZ(:,1); 
yz=EZ(:,2); 
vz=EZ(:,3); 
F = scatteredInterpolant(xz,yz,vz); 
vqz=F(xqz,yqz); 
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2.4 Field Calculation by SOEM Versus FEM 

To compare the accuracy and computational time of field calculations using the SOEM 

[1, 2] and FEM methods, the tests on six different typical electrostatic lens systems 

have been conducted, consisting of 3, 4, and 5 electrodes. These systems are 

represented in 2D in Figure 2.9. The axial potential calculation is performed using the 

methods of SOEM and FEM methods (implemented with COMSOL[3]). MATLAB [4] is 

used for the SOEM calculations. Initially, the axial potential and its derivatives are 

compared graphically. For the purpose of graphical comparison, since all lens systems 

exhibit similar trends, the graphs related to only one system (system 1 from Figure 

2.9) have been depicted and presented. The overlaid graphs can be found in Figures 

2.10 and 2.11. 

In electron optical lens systems, the aberration coefficients are the factors which 

determine the quality of the lens systems. The lower the values of these parameters, 

the less the aberrations exist and therefore the better the lens system [5-7]. In our 

case-study, the lens systems are only suffering from the spherical and chromatic 

aberrations. Hence, the chromatic and spherical aberration coefficients (denoted by 

Cc and Cs) are the deterministic factors in the lens design and optimization here. These 

parameters are functions of the axial potential and its derivatives. The presentation of 

the formulation is given in equations 2.28 and 2.29. More details on the formulations 

and their derivations are skipped here and can be found in the references [7-9] . 
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  (2.29) 

Here, 𝜙0 represents the potential at the object side, and 𝑟𝛼(𝑧) denotes the principal 

imaging ray [5], which travels from the object side along the optical axis at an angle 1. 

The principal imaging ray 𝑟𝛼(𝑧)  is determined through ray tracing.  

Figure 2.9 presents six different typical electrostatic lens systems (in 2D), which were 

chosen as test systems to compare the methods of SOEM and FEM. The colours in the 

table indicate the voltages applied to each electrode. To enhance visualization of the 

lens system, a schematic representation of the primary beam passing through the lens 

system (highlighted in red) is included. The units along the axes of the graphs are in 

millimetres. 
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System1 : Three-electrode lens system 

  

System2: Three-electrode lens system 

 
 System3: Four-electrode lens system 

  

 System4: Four-electrode lens system 

System5: Five-electrode lens system 

 

System6: Five-electrode lens system 

 

Figure 2.9. The six typical electrostatic lens systems are depicted in 2D. The colors in the table 

represent the voltages applied to each electrode. To facilitate visualization of the lens system, 

a schematic diagram showing the primary beam passing through the lens system (highlighted 

in red) is provided. The units along the axes of the graphs are in millimeters. 

 

Precision in computing Cs and Cc plays a critical role in electron lens design. As these 

parameters are functions of the potential and its derivatives, they offer a valuable 

means to qualitatively and quantitatively assess the accuracy of axial potential 

calculations. Hence, these optical parameters are also extracted from the computed 

axial potential and its derivatives using SOEM and FEM methods, followed by a 

comparative analysis. The related graphs are presented in Figure 2.12. The 

quantitative data associated to these optical parameters are showcased and subjected 

to comparison within Tables 2.1 and 2.2. 



Chapter 2 

25 
 

 
Figure 2.10. a). The overlapped graphs of axial potential for System 1 from Figure 2.9, 

calculated with different methods of SOEM and FEM. b) and c) the enlarged sections of the 

graphs.  

 

Figure 2.11. The overlapped graphs of first a) and second b) derivative of the axial potential for 

System1 from Figure 2.9, calculated with two different methods of SOEM and FEM. 

In Figure 2.10a, a graphical comparison is made between the axial potential computed 

using two different methods of SOEM and FEM. This comparison reveals a generally 

close alignment between the axial potential graphs. Nevertheless, looking at the 

zoomed plots in Figures 2.10b and 2.10c, subtle deviations become evident. These 

deviations become more recognizable when observing the graphs of 𝜙′ (Figure 2.11a) 

and 𝜙′′ (Figure 2.11b). In the Cs and Cc graphs, as depicted in Figure 2.12, a pattern 

similar to that of the axial potential derivatives emerges, with a notable degree of 

alignment, yet minor deviations arise, particularly at the peaks of these graphs. This 
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deviation is more recognizable in Cs graphs. In our case study, this situation occurs 

because Cs exhibits a dependence on both the first and second derivatives of the axial 

potential, whereas Cc relies solely on the first derivative. The larger fluctuations in the 

second derivatives (as evident in Figure 2.11b compared to 2.11a) contribute to this 

observation. 

 

 

 

 

 

Figure 2.12. The overlapped graphs of chromatic (a) and spherical (b) aberration coefficients 

for System1 from Figure 2.9, calculated with different methods of SOEM  and FEM. 

In addition to the visual comparisons, for a comprehensive quantitative analysis, we 

have computed values for optical parameters including chromatic and spherical 

aberrations (Cc and Cs), as well as the image position (Xc), which is a crucial factor in 

lens design [7]. These calculations encompass all six lens systems outlined in Figure 2.9, 

and the results are presented in Tables 2.1 and 2.2. It's worth noting that the Cs and 

Cc data presented are related to the image side.  

Table 2.1. The data related to the optical parameters such as chromatic and spherical 

aberrations (Cc and Cs) and the image position (Xc), calculated by FEM and SOEM, for six 

different typical electrostatic lens systems (presented in Figure 2.9). 

Systems System1  System2 System3 System4 System5 System6 

Xc (mm) FEM 8.92 8.26 9.65 13.39 10.03 15.43 

SOEM 9.12 8.62 9.87 13.78 10.35 15.65 

Cc (mm) 

 

FEM 18.71 15.26 23.73 26.13 1.82 0.98 

SOEM 19.45 16.80 24.10 18.78 2.03 0.77 

Cs (mm) 

 

FEM 21.13 54.70 22.88 217.65 7.14 12.48 

SOEM 30.77 104.58 37.07 392.57 13.19 11.77 

A quick glance at Table 2.1 reveals that the optical parameters, when computed using 

the SOEM method, have values reasonably close to the accurate values obtained 

through FEM calculations. To assess the deviation of SOEM-derived data for each 
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system from the accurate data, we determine the error by considering COMSOL data 

(FEM) as the reference for accuracy. These errors are documented in Table 2.2 for 

each individual system. In Table 2.2, the final column provides the average error value 

across all six lens systems. 

Table 2.2. The percentage of error in calculation of the optical parameters derived by SOEM, 

for six different typical electrostatic lens systems (presented in Figure 2.9) compared with the 

data calculated with the accurate method of FEM. 

Systems System1  System2 System3 System4 System5 System6 Error avg. 

 

Error in Xc  

by SOEM 

2.24 %    4.36 %   2.28 %     2.91 %    3.19 %    1.42 % 2.73 % 

Error in Cc 

by SOEM 

3.95%   10.09 %   1.56 %     28.13 %    11.53 %    21.43 % 12.79 % 

Error in Cs 

by SOEM 

45.62 %    91.18%   62.01 %   80.37 %   84.73 %     5.69 % 61.60 % 

It is demonstrated in Table 2.2 that SOEM yields reasonably accurate values for Xc , 

exhibiting an average value of error of 2.73%, when compared to the accurate FEM 

values. The error percentage, on average, for Cc calculation by SOEM is 12.79% and 

61.6% in average for the Cs calculation. Notably, the absolute error percentages for Cs 

are considerably higher compared to those for Cc and Xc calculations, owing to their 

different dependence on the potential and its derivatives. The computation times 

needed to evaluate the optical parameters for each lens system, using FEM and SOEM 

are   ̴ 60 sec, and  0.4 sec, respectively.  

In summary, the quantitative data comparison shows, similar as the graphical 

comparison, that with SOEM, optical parameters which depend on the first derivative 

of the potential, such as Xc and Cc, can be calculated with reasonable accuracy but has 

large deviations for parameters related to the second derivative of the axial potential, 

such as Cs. However, due to the very fast calculation it is worthwhile to use it in an 

optimization routine as a first estimate to be complemented with more accurate FEM 

calculations to achieve shorter optimization times. This is the subject of the study in 

the coming sections.  

Note that the accuracy and computational time of a field calculation method are also 

influenced by the respective meshing technique employed. For detailed insight into 

the meshing parameters utilized in COMSOL, please refer to Appendix B. 
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3. Optimization  

3.1 Optimization in General  

In science and engineering, an optimization problem refers to the problem of finding 

the best element among all existing elements, with regard to certain criteria. There 

might be constraints involved in the problem. To optimize function 𝑓(𝑋), subject to 

equality constraints 𝑔(𝑋) and inequality constraints ℎ(𝑋), the optimization process 

can be mathematically formulated as: 

minimize 𝑓(𝑋)  𝑆 → 𝑅, from set 𝑆 into set of real numbers of 𝑅 (3.1) 

In which, 𝑆 can be a set of finite or infinite real numbers, 𝑋𝑖
𝑚,    𝑖 = 1,2, … , 𝑛 : for an 𝑛 

element 𝑋, where 𝑋 is a vector in 𝑚 -variable space 

𝑔𝑗(𝑋) = 0  ,   𝑗 = 1,2, … , 𝑝 (3.2) 

ℎ𝑘(𝑋) ≤ 0 ,   𝑘 = 1,2, … , 𝑞 (3.3) 

if 𝑝 > 0 𝑎𝑛𝑑 𝑞 > 0: constrained optimization problem (3.4) 

if 𝑝 = 0 𝑎𝑛𝑑 𝑞 = 0: unconstrained optimization problem (3.5) 

Minimization and maximization can be formulated as equations 3.6 and 3.7, 

respectively: 

𝑋𝑜𝑝𝑡 ∈ 𝑆, 𝑖𝑓 𝑓(𝑋𝑜𝑝𝑡) ≤ 𝑓(𝑋) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝑆

→    𝑋𝑜𝑝𝑡: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑓(𝑋) 

                              

(3.6) 

𝑋𝑜𝑝𝑡 ∈ 𝑆, 𝑖𝑓 𝑡(𝑋𝑜𝑝𝑡) ≥ 𝑡(𝑋) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝑆

→    𝑋𝑜𝑝𝑡: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑓(𝑋) 

(3.7) 

In the standard format, by convention, the optimization problem is often defined as 

the “minimization” problem as it is formulated in equation 3.6. However, the problem 

can be converted to a “maximization” problem in a straightforward way by negating 

𝑓(𝑋). Equations 3.8 and 3.9 show converting maximization problem for a function of 

𝑡(𝑋) into minimization problem of 𝑓(𝑋) by negating 𝑡(𝑋):  

𝑓(𝑋) = −𝑡(𝑋) , 𝑡(𝑋): 𝑆 → 𝑅 (3.8) 
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𝑓(𝑋𝑜𝑝𝑡) ≤ 𝑓(𝑋) ↔  𝑡(𝑋𝑜𝑝𝑡) ≥ 𝑡(𝑋)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈  𝑆

→ 𝑋𝑜𝑝𝑡: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 𝑓𝑜𝑟 𝑓(𝑋) 
(3.9) 

The function 𝑓(𝑋) is called the objective function, merit function or cost function. The 

diagram of an optimization process (here afterwards minimization), can be 

schematically represented as Figure 3.1. 

 
Figure 3.1. Diagram of optimization problem in general, where the process is to optimize a 
function 𝑓(𝑋)  for input parameters of the elements 𝑋. The constraints are the equality and 
inequality constraints of 𝑔(𝑋) and ℎ(𝑋), respectively. 𝑋𝑜𝑝𝑡 is the minimum point found 

through the optimization process as its output. 

Optimization problems can be divided into different categories depending on different 

views and specifications of the problems. Figure 3.2 presents this categorization in 

general, schematically. Note that different categorized views and branches presented 

are not necessarily mutually exclusive. For instance, a static optimization problem can 

be either a constrained or an unconstrained problem. At the same time, the problem 

can also be a discrete or continuous optimization problem. These categorizations are 

explicitly explained in the following.  

1. The “Static” optimization refers to the problem where the output is independent of 

time, while in “dynamic” optimization, the output varies with time. For instance, 

consider an optimization problem to find the best route to drive from a starting point 

to a destination. If the problem is considered from a distance point of view, it would 

be static and the solution can be found using a map. While, if the problem is meant to 

find the fastest route, then it is a dynamic one and the output depends on the time of 

day, accidents, weather, routes’ conditions and so on.  
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Figure 3.2. Schematic categorization of the optimization problems in general. 

2. In “Discrete” optimization, some or all of element 𝑋 belong to a discrete set and can 

only include finite numbers within possible range of values. While, in “continuous” 

optimization, the elements 𝑋 can consist of an infinite number within a range of 

values. Expressing this mathematically, S in equation 3.1 would be a set of finite 

numbers for discrete optimization and a set of infinite real numbers for continuous 

optimization. Discrete optimization is sometimes also called combinatorial 

optimization, since the solutions of this problem involve different combinations of 

parameters selected from finite (or sometimes countable) sets of all possible 

parameters.  

3. Where there is only one objective function defined to be optimized, the 

optimization is called a “single-objective optimization” problem (hereafter “SOP”). 

This optimization is also known as single-parameter optimization. However, in many 

optimization problems, there is more than one objective function defined to be 

optimized. These types of optimization are referred to as “multi-objective 

optimization” problems (hereafter “MOP”). Looking at equation 3.1, these 

optimizations can be mathematically expressed as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑛
(𝑋)  𝑆 → 𝑅, 𝑛 = 1,2, …𝑁, 𝑁 > 1  ∶      𝑀𝑂𝑃 (3.10) 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓
𝑛
(𝑋)  𝑆 → 𝑅, 𝑛 = 1                              ∶      𝑆𝑂𝑃 (3.11) 

where 𝑁 refers to total number of objective functions. 

4. In “Constrained” optimization, there are some equality and/or inequality 

constraints (in equations 3.2-3.3 mentioned as 𝑔(𝑋) and ℎ(𝑋)) involved in the 
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optimization problem. In the problems where there exist no equality/inequality 

constraints, the optimization problem is an “Unconstrained” optimization problem.  

5. Optimization techniques are divided into two main categories, regarding their 

search strategies. In the first group, namely “Calculus Based”, the search is started 

from an initial point, while approaching towards a better point is performed by 

calculation of the best direction. Finding the best direction in these search methods, 

is based on calculus and generally uses the derivatives of the objective function. The 

result is particularly dependent on the selected initial point. These techniques tend to 

be fast, however, easily become stuck in the local minima [1]. In the second group, 

“Guided Random”, the search can start either from defined or randomly-created initial 

point/points. The direction of the movement towards the better points is found based 

on probabilistic calculations. These techniques are shown to be slower compared to 

the first group, but have greater success in reaching the global minimum [1].  

The last abovementioned category (i.e. 5th category in Figure 3.2), is assumed as the 

main categorization. In principle, the optimizations are named according to the sub-

divisions of this category. A schematic of the search-techniques classification is 

represented in Figure 3.3. As shown, the search techniques are divided into two main 

groups of calculus-based and guided-random search techniques.   

 

Figure 3.3. Schematic of “Search Techniques” classification. 
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A metaheuristic is an iterative search approach which efficiently explores and exploits 

the search space, using intelligent concepts inspired by nature, to reach near-optimal 

solutions. The metaheuristic is a guided-random search (Figure. 3.3), which is proven 

to work efficiently in solving real-life complex problems from different fields of 

politics, economics, science, engineering and management [2, 3]. The metaheuristics 

have the following characteristics [4]: 

➢ Easy to integrate with existing problems.  

➢ Do not require the gradient information of the objective function. 

➢ Possible to implement in a broad range of problems with different subjects. 

➢ The algorithms are approximate and usually non-deterministic. 

Moreover, as previously mentioned, for problems where there are multiple local 

minima, metaheuristics generally outperform the calculus-based techniques, since 

they tend to escape better from the local minima. In our problem, it is expected that 

there are multiple local minima, because as we will see in Chapter 5, the objective 

function is a highly non-linear and complex function with respect to its parameters. 

Therefore, our main focus is on metaheuristic search techniques.  

The majority of metaheuristic algorithms are mimicking physics law, swarm behavior 

of organisms to search food, and evolution processes in nature [5]. These algorithms 

can be divided into two main groups of “single-solution based” and “population-

based” algorithms (Figure 3.3) regarding their technique in finding better solutions [6]. 

A single-solution based algorithm utilizes only one solution and tries to improve this 

solution by a local search. Due to this search characteristic, it may become stuck in a 

local minima [2, 7]. The most well-known single-solution based metaheuristic 

algorithms are Simulated Annealing (SA) [8], Guided Local Search (GLS) [9], Tabu 

Search (TS) [10], and Micro-canonical Annealing (MA) [11]. 

The population-based algorithms consider multiple solutions and try to improve all of 

them simultaneously by their search procedures. Therefore, these algorithms have a 

higher chance of exploring a larger area of objective function landscape, hence, they 

have higher diversity and less chance of becoming trapped in a local minima. The 

population-based algorithms can themselves be subdivided into two different groups, 

namely “Evolutionary algorithms” and “Swarm Intelligence”, according to their 

specific search technique, either taken from the evolutionary process or imitating a 

swarm behavior, respectively (Figure 3.3).  
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The most commonly known algorithms of the first group (i.e. evolutionary algorithms) 

are Genetic Algorithm (GA) [12], Immune Algorithm (IA) [13], Differential Evolutions 

(DE) [14], and Harmony Search (HS) [15]. For the second group (i.e. swarm 

intelligence) several well-known algorithms are Particle Swarm Optimization (PSO) 

[16], Ant Colony Optimization (ACO) [17], Artificial Bee Colony (ABC) [18], and Emperor 

Penguin Optimizer (EPO) [19]. 

In the following section, some of the most known optimization algorithms, such as GA, 

SA, PSO and ABC as a representative of each group, are introduced in detail and 

thereafter implemented in our-case-study. A “Calculus Based” optimization, is also 

then presented and implemented in our case-study, as a local optimization technique. 

Implementations of these algorithms for our case-studies and their related flowcharts, 

followed by the defined case-study problems, are presented at the end of this section.  

3.2 Genetic Algorithm (GA) 
In the early 1950s, the idea of evolution-based and genetics computation procedures 

came to the attention of scientists. There were many contemporary scientists around 

the world, such as Friedman, Tooms, Baricelli, Bledsoe, Box, Bremermann, Reed and 

Holland who were working independently on this subject [20]. However, John Holland 

was the first to really popularize this idea and achieved credit as the inventor of 

genetic algorithms. Holland’s idea became publicly known through one of his students, 

David Goldberg, who had solved a complex problem of controlling gas-pipeline 

transmission in his dissertation [21]. Holland was also the first who developed ways to 

apply evolutionary phenomena, such as adaptation, to computer applications [22, 23]. 

His first genetic algorithms were  direct application taken from his observation in 

natural evolution [23].  In this section, the framework of the genetic algorithm and its 

operators involved, are explained in detail.  

3.2.1 Framework of Genetic Algorithm 
The GA mimics natural evolution, based on Darwin’s theory [24]. The algorithm starts 

with randomly created elements, called initial population, represented by 

𝑃1(𝑋𝑖
𝑚) (𝑖 = 1,2, … , 𝑁𝑝𝑜𝑝). Similar to the general cases of optimization mentioned 

in section 3.1, 𝑋𝑚  represents an element with a vector in m-variable space. A so-

called parameter of “population”, defines the number of elements in each generation, 

denoted here by 𝑁𝑝𝑜𝑝. In nature, the elements are the chromosomes of different 

organisms. In electron lens design, the set of electron lens systems from which the 

lens design variables are determined, represents the elements.  
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The GA uses a variety of genetic operators such as Crossover, Mutation and Elitism, to 

gradually improve a set of elements 𝑃𝑗(𝑋1
𝑚,… , 𝑋𝑁𝑝𝑜𝑝

𝑚 ), in a so-called “generation” of 

j, towards the next generation of 𝑗 + 1, having a better set of elements 

𝑃𝑗+1(𝑋1
𝑚,… , 𝑋𝑁𝑝𝑜𝑝

𝑚 ), regarding their objective function values. The algorithm 

proceeds until it satisfies the stopping criteria. Different conditions can be set as the 

stopping criteria, such as a maximum computational run time, a specified value of 

objective function, or a maximum number of generations. In our case-study, reaching 

a maximum number of generations, denoted here by 𝐺𝑚𝑎𝑥, is appointed to end the 

process. A simplified algorithm for a classical GA is presented below: 

Table 3.1 : Classical Genetic Algorithm 

Input 

    Population size, 𝑁𝑝𝑜𝑝 Maximum number of generations, 𝐺𝑚𝑎𝑥  

Output 

    The global optimum solution, 𝑋𝑔𝑙𝑜𝑏𝑜𝑝𝑡
𝑚

  

start 

    Generate 𝑁𝑝𝑜𝑝 number of elements 𝑋𝑖
𝑚(𝑖 = 1,2, … , 𝑁𝑝𝑜𝑝), as the initial 

population, for the first generation.  

    Set counter of generations  𝑗 = 1  

While  (𝑗 < 𝐺𝑚𝑎𝑥) 

    Select the 𝑁𝑝𝑜𝑝 better elements for the reproduction  

    Apply the genetic operators such as Crossover, Mutation, and Elitism on the 

selected elements to produce the new 𝑁𝑝𝑜𝑝 elements 

    Replace the old population with the new population 

    Increment generation counter by 1 

end while 

    represent the global optimum, 𝑋𝑔𝑙𝑜𝑏𝑜𝑝𝑡  

end 

 

The flow diagram of this algorithm is presented in Figure 3.4. 
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Figure 3.4. The flow diagram of a classical Genetic Algorithm. 

3.2.2 GA operators 
There are a variety of genetic operators involved in the GA process, such as encoding, 

selection, crossover, mutation and elitism. These operators can be performed via 

different schemas. In Figure 3.5, the most well-known schemas for each operator are 

represented. A brief explanation on how these operators work is given in this sub-

section. Taking the proper schema for each operator depends on the problem, and 

can influence the performance of the GA. The study of the tuning of these parameters, 

with more detailed explanation on the most proper schemas in our case-study, is fully 

discussed in section 3.4.  

3.2.2.1 Encoding 
To enable the GA to initialize processing the information, the given data of each 

element has to be encoded in a bit-string format [24, 25]. The encoding can be 

performed differently according to the type of problem.   
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Figure 3.5. The Genetic Algorithm operators and their related schemas. 

The most common encoding options, as depicted in figure 3.5, are “Binary”, “Octal”, 

“Hexadecimal” and “Value-based” encoding. In “Binary” encoding, each element is 

represented as bit strings including 1 or 0 [26]. This encoding method is the one most 

generally used, since the implementation of mutation and crossover on the elements, 

having a format of strings of 0 and 1, are fast and easy.  

Another encoding option is “Octal” encoding. In this method, similar to “Binary” 

encoding, the elements are converted to strings, but include the numbers between 0 

and 7. In “Hexadecimal” encoding, the method is still the same, while the strings can 

include the numbers between 0 and 9 and A to F.[27, 28].  

The other option is value encoding. In this schema, the element is also converted to 

strings. However, the strings can involve the values from the real integer numbers, or 

characters [29]. This encoding technique is mainly useful when the elements have 

complicated values. Where the value includes real integer numbers, the encoding 

technique is called “Real-coded GA” (RGA). RGA is used in a variety of real-life 

optimization problems. Its main advantage over the Binary-coded GA (BGA) is its 

robustness, efficiency and accuracy. However, it suffers from premature convergence 

[31]. BGA may achieve better results regarding the convergence, however, it has 

difficulty on reaching the specific desired precision [30].  

3.2.2.2 Selection 
Selection is the step used to determine which elements will participate in the next 

generation of the reproduction process [31]. The most commonly used schemas for 
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selection are “Roulette Wheel”, “Rank”, “Tournament”, “Boltzmann”, “Thresholding” 

and “Stochastic Uniform”. 

“Roulette wheel” selection is based on the working principle of a roulette wheel. The 

sections of the wheel are allocated to different elements, proportional to their 

objective function value. The wheel is then rotated randomly to select specific 

elements. The wheel stops at a point where its value has been assigned randomly by 

the algorithm. This method highly relies on the stochastics. It can hence cause a 

premature convergence towards a local minimum [31].  

To modify this selection schema, De Jong and Brindle, introduced the “Rank” selection, 

based on the concept of determinism in selection. “Rank” selection, similar to the 

“Roulette wheel”, works based on a rotating wheel, but now the rankings of the 

elements are used instead of their objective functions in allocating the sections in the 

wheel to the elements, so that ranking of the elements are assigned to them according 

to their objective function values. Therefore, the elements each have a chance 

according to their rankings. This selection schema has a lower chance of facing 

premature convergence compared to the “Roulette Wheel” selection method [31]. 

3.2.2.3 Crossover 
Crossover is an operator of GA, which is used to create new elements (in GA context, 

called offspring), by combining the old elements (in GA context, called parents). The 

crossover performs through different schemas. The most well-known among them 

are, “single-point crossover”, “two-point crossover”, “intermediate crossover”, 

“scattered crossover”, “heuristic crossover” and “arithmetic crossover”. 

In a “single-point Crossover” [32], first, a random integer number A, between 1 and 

the number of variables (m), is generated by GA. The vector entries from the first 

parent numbered below or equal to 𝑁𝑐, will be swapped with the same vector entries 

from the second parent. The tails from both parents will also be swapped similarly. 

This is schematically shown in figure 3.6 for two elements, assuming A=2. Note: parent 

1 and parent 2 are represented as 𝑃1 and 𝑃2. Offspring 1 and offspring 2 are illustrated 

by 𝑂1and 𝑂2.  

In “two-point crossover” [32], two random integer numbers A and B, between 1 and 

the number of variables (𝑚), are created by GA. The vector entries from the two 

parents which are numbered between A and B, will be exchanged with each other to 

create the new elements. This process is schematically illustrated for two elements, 

assuming A=2 and B=5, in figure 3.6.  



Chapter 3 

39 
 

In “scattered crossover” [33], a binary vector, with the vector entries’ number equal 

to the vector entries’ number of parents, is randomly created by the GA. The vector 

entries from the first parent with values of 1 will be replaced by the corresponding 

vector entries from the second parent. An example is presented in Figure 3.6, 

assuming the random vector is [0 1 1 0 0 0 0]. 

 

Figure 3.6. A schematic of different crossover schemas. 

In the “Intermediate Crossover” [33], a single parameter (called “Ratio”), is initially 

created by GA. This “Ratio” can be either a scalar or a row vector of length equal to 

the number of variables (𝑚). The GA then creates offspring using a weighted average 

of the parents, based on this “Ratio”, and the following equation: 

𝑂1 = 𝑃1 + 𝑟𝑎𝑛𝑑 .  𝑅𝑎𝑡𝑖𝑜(𝑃2 − 𝑃1) (3.12) 

Where, as noted before, parent 1 and parent 2 are represented as P1 and P2. Offspring 

1 and offspring 2 are illustrated by O1 and O2. 

In the “Heuristic” crossover [34], GA first indicates the better and worse parents by 

their objective function values. The value for the parameter of “Ratio” is specified by 

the user. The crossover operator then creates the offspring using the “Ratio” and 

based on the following formula (assuming 𝑃1 is better than 𝑃2): 

𝑂1 = 𝑃2 + 𝑅𝑎𝑡𝑖𝑜(𝑃1 − 𝑃2) (3.13) 

The generated offspring therefore will achieve a value in the interval between the two 

parents’ values. The distance of the offspring from the best and the worst parent is 

determined by the parameter “Ratio”. 
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In the “Arithmetic” crossover [35], the operator creates the offspring by taking the 

average of the two parents. The created offspring therefore have always a value in the 

interval between the upper and lower pre-determined bounds. 

3.2.2.4 Mutation 
The mutation operator is used to enhance the diversity on the elements space by 

changing the vector entries of the elements in a random manner. This way, the GA has 

a higher chance to search the full space of possible solutions and to achieve  the global 

optimum. There are different schemas through which the mutation can be performed. 

Some prevalent schemas, “Uniform”, “Gaussian” and “ Adaptive-feasible” mutation 

are explained below. 

The “Uniform” mutation[36], performs via a two-step process. In the first step, part of 

the vector entries of each element is selected to be mutated. In the second step, the 

selected vector entries of the elements, would be replaced by randomly created 

numbers with the probability determined by a so-called “Rate” factor. The “Rate” 

factor is a number in the range of [0 1], which is pre-defined by the user. 

In the Gaussian mutation[33], the GA adds a randomly created number, which is 

selected from a Gaussian distribution, into the vector entries of each element. The 

Gaussian distribution is defined by two factors of “scale” and “shrink”. The Gaussian 

distribution is centered at zero, while its width is determined by the “scale” 

parameter, which diminishes to the smaller values by the factor of “shrink” in the 

course of generations. In other words, the “scale” is used to specify the amount of 

deviation at the first generation and the “shrink” determines how the initially 

introduced deviation will be diminished as the generations proceed.  

In the adaptive-feasible mutation[37], the GA applies the mutation on each element 

with a probability proportional to its objective function value. A better element will 

therefore be less prone to mutation and have a lower probability of being discarded. 

hence, the direction of mutation is called to be in the direction of the worst elements. 

3.2.2.5 Reproduction (Crossover Factor , Elitism) 
The “Elitism” is the operator in the reproduction process, used to prevent the loss of 

the best elements as the generations proceed. The “Elite number” is a number 

assigned by the user, which determines how many of the best elements are to be kept 

unchanged. In each generation, after the objective function evaluations, the “Elitism” 

does not permit the vector entries of the best specified elements to encounter any 
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changes. In this way, the best elements are always transferred to the next generations 

and are not lost.  

In the reproduction process, there is another main factor, “Crossover Factor”, which 

controls the reproduction implementation. This parameter is assigned by the user and 

determines how many of the elements in each generation are encountered by the 

“Crossover” and how many will go through the mutation process.  

3.2.2.6 Stopping Criteria 
The algorithm stops when the defined stopping criteria is reached. The stopping 

criteria can be defined by the user, in different ways: 

“Function Tolerance”: The algorithm stops when the difference between two 

sequential objective function values becomes smaller than a default value. 

“Maximum Iterations” The algorithm continues until the number of iterations reaches 

the defined maximum number of iterations. 

“Maximum Function Evaluations”: The algorithm stops when the number of function 

evaluations reaches a specified number. 

“Maximum Time”: The algorithm continues until the execution time reaches a defined 

value for the maximum execution time. 

“Objective Limit”: The algorithm runs until the value of the objective function reaches 

a value less than a defined value for the objective function. 

3.3 Particle Swarm Optimization (PSO) 

3.3.1 Introduction  

Particle swarm optimization (PSO) is a population-solution based, meta-heuristic 

global optimization method [38]. This technique is based on the algorithm initially 

proposed by Kennedy and Eberhart in 1995 [39], with modifications presented later 

by Mezura-Montes and Pedersen [40, 41]. 

3.3.2 Modeling and Algorithm 

The algorithm starts by generating the initial particles. To each particle an initial 

position and velocity are assigned. The objective function will be evaluated at each 
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particle position. The best objective function value and the best position will be 

determined accordingly.  

To find the optimum point, each particle selects a new velocity and position, based on 

its current velocity, its best found positions, and the best found positions of its 

neighboring particles. The velocity and position of the particles will be updated in each 

iteration. A simplified algorithm of this approach is presented in Table 3.2 [42].   

Where, 𝑝𝑖  represents particles position in PSO, which is similar to Xm
i  in the general 

context of optimization. In which i represents the particle index, 𝑖𝑡𝑒𝑟 shows the 

current iteration number, 𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  is the total number of particles, 𝑝 the position 

of the particle, 𝑉 is velocity of the particle and f stands for the objective function. In 

each iteration, 𝑝𝑏𝑒𝑠𝑡(the best element in a specific iteration), 𝑔𝑏𝑒𝑠𝑡(the best element 

among all iterations counted up to a specific iteration), 𝑉 and 𝑝 will be updated using 

the equations 3.14-3.17. 

𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑖𝑡𝑒𝑟) = arg𝑚𝑖𝑛 [𝑓(𝑝𝑖(𝑗))]  

 𝑖 = 1,2, … , 𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 , 𝑗 = 1,… , 𝑖𝑡𝑒𝑟 
(3.14) 

 

𝑔𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) = arg𝑚𝑖𝑛 [𝑓(𝑝𝑖(𝑗))] 

𝑖 = 1,… ,𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑗 = 1,… , 𝑖𝑡𝑒𝑟 

(3.15) 

 

𝑉𝑖(𝑖𝑡𝑒𝑟 + 1) = 𝑉𝑡 . 𝑉𝑖(𝑖𝑡𝑒𝑟) + 𝑎1. 𝑟1(𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑖𝑡𝑒𝑟) − 𝑝𝑖(𝑖𝑡𝑒𝑟))

+ 𝑎2. 𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) − 𝑝𝑖(𝑖𝑡𝑒𝑟)) 
(3.16) 

 
𝑝𝑖(𝑖𝑡𝑒𝑟 + 1) = 𝑝𝑖(𝑖𝑡𝑒𝑟) + 𝑉𝑖(𝑖𝑡𝑒𝑟 + 1) (3.17) 

The algorithm will be ended when the defined stopping criteria is reached. The 

stopping criteria can be determined by the user using different schemas. These 

schemas are defined similarly to other optimization algorithms, and have been 

explained previously in section 3.2.2.6. 
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Table 3.2:  Standard Particle Swarm Optimization 

Input 

    Total number of particles, 𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  

    Maximum number of iterations, 𝐼𝑚𝑎𝑥  

Output 

    The global optimum solution, 𝑝𝑔𝑙𝑜𝑏𝑜𝑝𝑡  

start 

    Generate randomly 𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒  number of particles 𝑝𝑖(0), (𝑖 =

1,… ,𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒), as the initial particles, for the first iteration  

    Set the initial values of 𝑝𝑏𝑒𝑠𝑡(𝑖, 0) equal to the value of their corresponding initial 

positions: 𝑝𝑏𝑒𝑠𝑡(𝑖, 0) = 𝑝𝑖(0) 

    Set 𝑔𝑏𝑒𝑠𝑡(0) equal to the minimum value of the whole particles’ (swarm) initial 

positions:  𝑔𝑏𝑒𝑠𝑡(1) = arg𝑚𝑖𝑛 [𝑓(𝑝𝑖(0))], 𝑖 = {1,2, … , 𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒} 

    Set counter of iteration: 𝑖𝑡𝑒𝑟 = 1 

   Generate randomly 𝑁𝑡𝑜𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒number of velocities as initial velocities 

𝑉𝑖(0) corresponding to each particle. 

While ( 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥) 

   Calculate the objective function for all 𝑝𝑖 

   Find the 𝑝𝑏𝑒𝑠𝑡 related to each 𝑝𝑖 and 𝑔𝑏𝑒𝑠𝑡 regarding all 𝑝𝑖   , using equations 3.14 

and 3.15 

   Pick random numbers 𝑎1  and 𝑎2 in the interval of [0,1] 

   Update particles velocity and position using equation 3.16 and 3.17 

   If  𝑓(𝑝𝑖(𝑖𝑡𝑒𝑟)) < 𝑓(𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑖𝑡𝑒𝑟)) 

       Update the best position of particle 𝑖:  𝑝𝑖(𝑖𝑡𝑒𝑟) = 𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑖𝑡𝑒𝑟)  

       If  𝑓(𝑝𝑖(𝑖𝑡𝑒𝑟)) < 𝑓(𝑔𝑏𝑒𝑠𝑡(𝑖, 𝑖𝑡𝑒𝑟)) 

         Update the swarm’s best position : 𝑝𝑖(𝑖𝑡𝑒𝑟) = 𝑔𝑏𝑒𝑠𝑡(𝑖, 𝑖𝑡𝑒𝑟) 

 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

end while 

    represent the global optimum 𝑝𝑔𝑙𝑜𝑏𝑜𝑝𝑡  

end 

The flowchart of this algorithm is shown schematically in Figure 3.7. 
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Figure 3.7. The flow diagram of a standard Particle Swarm algorithm. 

3.4 Simulated Annealing (SA) 

3.4.1 Introduction 

Simulated annealing (SA) is a single-solution based, meta-heuristic algorithm 

implemented for unconstrained/bound-constrained global optimization problems 

[43]. It was initially presented, independently, by the two contemporary researchers 

Kirkpatrick et al. [44] in 1983, and by Cerny [45] in 1985.  

The algorithm simulates the physical process of annealing in the material. Annealing  

means to heat up a substance to a specified level above its melting temperature, and 

then to lower the temperature down gradually, in a specific manner, to reach the 
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minimum energy level of the system and make the material crystalize. This crystalized 

substance, having all its lattice atoms perfectly aligned, is an example of nature finding 

a beautiful optimum structure of a substance. However, if the cooling process is 

performed too quickly, the crystalized state will never be reached and the substance 

becomes an amorphous solid not a crystal. The key to achieving the minimum energy 

level and the crystalized state, is to carefully control the rate of temperature 

decrement. The annealing process should be performed under specific conditions, 

otherwise the material will not reach its minimum energy level and will not crystalize. 

The format of the annealing function, for the first time derived by Geman and Geman 

in 1984, is shown to be inversely proportional to a logarithmic function of time [46]. 

The method has an easy implementation into algorithm. Therefore, it is one of the 

most common global optimization techniques used to solve a variety of practical 

optimization problems such as, traveling salesman [45, 47], communications 

systems [48], timetabling [49, 50], job shop scheduling [51], and continuous 

optimization [52].  

The probability that SA reaches the global optimum point becomes higher when the 

annealing process is extended to a longer time [52]. Hence, it might end up in a local 

minimum if the annealing time is not enough to reach a global minimum, or SA takes 

too long to reach the global point. 

To avoid being trapped in local minima and/or to speed up the convergence speed, 

various techniques are presented by researchers, including adaptive simulated 

annealing (ASA) [53], faster annealing schedules [54], or hybridized SA with other 

meta-heuristic optimization techniques, such as genetic algorithm [55], particle 

swarm optimization [56], or artificial bee colony [57], and so on. In this section, the 

theory and modeling for a classical SA is presented. A hybridized SA with GA (called 

hereafter HSAGA), with PSO (called HSAPSO) and with ABC (called HSAABC), are also 

implemented in our work. The results taken from HSAGA, HSAGA and HSAABC, 

together with the comparison of results solely from GA, SA, PSO and ABC, are 

represented in chapter 5. 

3.4.2 Modeling and Algorithm 
The SA algorithm, mimicking physical annealing in nature, can be formulated as the 

following steps: 

The algorithm initializes a first guess (randomly created) state 𝑋𝑚    which, similar to 

the general optimization case, stated in section 3.1, 𝑋𝑚 represents an element with a 

https://www.sciencedirect.com/science/article/pii/S1568494610001304#bib10
https://www.sciencedirect.com/science/article/pii/S1568494610001304#bib7
https://www.sciencedirect.com/science/article/pii/S1568494610001304#bib12
https://www.sciencedirect.com/science/article/pii/S1568494610001304#bib3
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vector in m-variable space. In addition, a first initial temperature 𝑇0
𝑚

 should also be 

defined, in correspondence with elements 𝑋𝑚 as the initial temperature of 

component  𝑚 with which to start annealing. 

At each iteration, a new element is randomly generated by SA. Generating this new 

element is based on a probability distribution which is related to the temperature. 

Assuming the element  as a point in the space, the step length and direction form the 

current point to the next point can be determined using different schemas. Some 

more common annealing techniques are mentioned below: 

➢ “Annealing fast”: In this annealing schema, the step length is equal to the 

current temperature. The direction is selected in a uniformly random format. 

➢ “Annealing Boltzmann”: The step length is equal to the square root of the 

temperature. The direction is selected in a uniformly random format. 

In the next step, the algorithm accepts the new elements with lower objective 

function and replaces the old one with the new element. However, with a certain 

probability, it also accepts the element having a higher objective function value. The 

reason why it also accepts the worst elements is to provide a wider solution space to 

be explored by the SA, and hence, to lower the chance of being trapped in a local 

minima in the early iterations.  

The probability at which the acceptance of the worst elements occur can also be 

defined differently. One common schema to define this probability is: 

𝑃 =
1

1 +  exp (
𝑓(𝑋𝑖) − 𝑓(𝑋𝑖−1)

𝑇𝑖
)2

 
(3.18) 

Where 𝑇𝑖 is the current temperature and 𝑓(𝑋𝑖) is the objective function value for the 

element 𝑋𝑖. The value of the objective function in SA, is analogues to the energy level 

of the substance in nature, in which the “heating” of the substance occurs by 

modifying the free variables of the problems 𝑋𝑖.  

Since in equation 3.18, 𝑓(𝑋𝑖) > 𝑓(𝑋𝑖−1) and  𝑇𝑖 > 0 , the probability P is a value 

between 0 and 1/2, where smaller 𝑇𝑖, leads to smaller acceptance probability. Also, 

having a larger difference of  𝑓(𝑋𝑖) and 𝑓(𝑋𝑖−1), leads to a smaller chance of 

acceptance.  

The SA decreases the temperature, while storing the best element found. The 

temperature  𝑇𝑖 , hence also needs to be  updated. The update functionality can form 

via different schemas: 



Chapter 3 

47 
 

➢ Temperature exponential :  

𝑇𝑖
𝑚 = 𝑇0

𝑚.  (0.95)𝑘𝑖
𝑚

 (3.19) 

➢ Temperature fast:  

𝑇𝑖
𝑚 = 𝑇0

𝑚/𝑘𝑖
𝑚 (3.20) 

➢ Temperature Boltzmann:  

𝑇𝑖
𝑚 = 𝑇0

𝑚/ log (𝑘𝑖
𝑚) (3.21) 

Where, 𝑘𝑖
𝑚 is the annealing parameter, equals the iteration number for component 

𝑚, until reannealing.  

The algorithm will stop when the defined stopping criteria is reached. The stopping 

criteria are explained in section 3.2.2.6. and can be applied similarly to this algorithm. 

The SA algorithm is illustrated schematically in Figure 3.8. 

3.5 Calculus-Based Optimization (CBO) 
Calculus-based optimization (CBO) is an optimization technique which uses the 

gradient (derivatives) of the objective function. A common type of this optimization is 

the method of gradient descent (also called steepest descent). This method is 

implemented on the objective function 𝑓(𝑋)  , starting from an initial point of 𝑋1, to 

progressively search in the neighborhood of this point to reach the local optimum 

point. Note that in this method, the function 𝑓(𝑋) should be differentiable in all 

neighboring points which are progressively taken under search. The algorithm starts 

from an initial point of 𝑋0, taking the steps of δ𝑁 , moving towards the direction of the 

negative gradient of the objective function to progressively reach to the local 

minimum of the function. If it is a maximization problem, the direction will be in the 

direction of the positive gradient of the function to reach the maximum point. This 

process is formulated mathematically below, for a minimization problem:  

𝑋𝑁+1 = 𝑋𝑁 − 𝛿𝑁. 𝑓(𝑋𝑁) , 𝑁 ≥ 0  (3.22) 

𝑓(𝑋0) ≥ 𝑓(𝑋1) ≥ 𝑓(𝑋2) ≥⋯ 𝑓(𝑋𝑁) (3.23) 

In which, XN is a local minimum of the objective function f, which is reached after N 

sequential iterations, when the search started from 𝑋0 .  
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Figure 3.8. The flow diagram of a Simulated Annealing algorithm. 

This process is schematically shown in Figure 3.9. As it is illustrated, by applying this 

technique, starting from two different initial points (𝑋10 and 𝑋20), it will end at two 

different local minimum points  (𝑋1𝑁 and 𝑋2𝑁). 
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Figure  3.9. Schematic illustration of a steepest descent (gradient descent) method. It is applied 
on a 3-D objective function, starting from two different initial points and ends at two different 
minima [58]. 

 

3.6 Defining our case-study optimization problem 
The optimization problem, as explained in section 3.1, is defined mainly by two 

factors; objective functions (𝑓(𝑋) in Eq. 3.1), and the free parameters of optimization 

in m variable space (𝑋𝑚 in Eq. 3.2). In electron-lens-system design, there might be 

different aims for the optimization depending on the application. Here, two main 

optimization problems which exist in multi-electrode lens systems design, are 

considered.  

In the first application (hereafter called “Application1”), the aim is to acquire the 

smallest spot size at the image side (𝐷𝑠𝑝𝑜𝑡    in Eq. 5.1). The spot size is a function 

influenced by the geometry of the lens and the voltages of the electrodes. The 

optimization for this case-study, is therefore to find the minimum value of the spot 

size by tuning the voltages of the electrodes and geometry of the lens. 

The other application (hereafter called “Application2”), aims to acquire the least spot 

size, while getting the highest detection efficiency of the secondary electrons 

(explained in detail in section 5.3). 

The optimization problem can then be formulated as: 
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𝑓𝑁(𝑋) = 𝐷𝑠𝑝𝑜𝑡 , 𝑛 = 1                 ∶   𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛1 (3.24) 

𝑓𝑁(𝑋) = [𝐷𝑠𝑝𝑜𝑡 , 𝑆𝐸𝐷𝐸 ],   𝑛 = 1, 2   ∶   𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛2 (3.25) 

𝑋𝑚 = [𝑇𝑖   𝐺𝑖   𝑅𝑖    𝑉𝑖] ,    𝑖 = 1,… ,𝑁𝑒𝑙  (3.26) 

Where, 𝑁𝑒𝑙  stands for the number of electrodes. 𝑇𝑖   , 𝐺𝑖  , 𝑅𝑖  and  𝑉𝑖  are denoted for 

thicknesses, gaps, radii and voltages correspondent to each electrode, respectively.  

Some constraints/bounds may also exist in these problems. The constraints can be 

brought into the objective function part. This issue will be discussed in greater detail 

later for each case-study regarding the situation and analysis-case of the problems. 

The discreteness and continuity of the parameter of the optimization also differ 

depending on the case-study and situation of the defined problem. This subject will 

also be explained more specifically when each case-study is defined. 
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4. Multi-Electrode Lens Optimization Using Genetic 

Algorithms 

Abstract  
In electrostatic charged particle lens design, optimization of a multi-electrode lens 

with many free optimization parameters is still quite a challenge. A fully automated 

optimization routine is not yet available, mainly because the lens potential 

calculations are often done with very time-consuming methods that require meshing 

of the lens space. A new method is proposed that improves on the low speed of the 

potential calculation while keeping the high accuracy of the mesh-based calculation 

methods. This is done by first using a fast potential calculation based on the so-called 

Second-Order Electrode Method (SOEM), at the cost of losing some accuracy, and 

then using a Genetic Algorithm (GA) for the optimization. Then, by using the 

parameters of the approximate systems found from this optimization based on SOEM, 

an accurate GA optimization routine is performed based on potential calculation with 

the commercial finite element package COMSOL. A six-electrode electrostatic lens was 

optimized accurately within a few hours, using all lens dimensions and electrode 

voltages as free parameters and the focus position and maximum allowable electric 

fields between electrodes as constraints.  

Keywords 
Multi-electrode lens design; optimization; second-order electrode method (SOEM); genetic 

algorithms (GAs). 
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4.1 Introduction 
Although optimization routines are very powerful techniques for finding optima of 

complex functions, they have not been used extensively in the field of charged particle 

optics. To find the optimum design of electrostatic lenses has always been quite 

challenging, especially when multiple electrodes are involved. Mostly, this is done 

manually in a trial and error fashion. Given a certain lens geometry and voltages on 

the electrodes, the electrostatic field is usually calculated numerically, meshing either 

the entire volume of the lens (finite element method) or the electrode surfaces 

(charge density method). From the axial potential and its derivatives (at least up to 

second-order) the first-order optical properties and the aberration coefficients of the 

lens can then be calculated [1]. To optimize the design, an objective function is then 

defined which needs to be minimized by changing the lens geometry and/or electrode 

potentials. For each trial-design this sequence of steps, of which the field calculation 

is most time consuming, needs to be done. Some attempts toward automated 

optimization were made in the past by Szilagy et al., [2,3] Adriaanse et al. [4] and Barth 

et al. [5-8] They avoided the time-consuming field calculation and calculated the axial 

potential using the Second-Order Electrode Method (SOEM) [4,5].  However, at that 

time, computers were still slow and the results were not very accurate. Now that more 

powerful computers are available it is worthwhile to revisit the problem. A new 

approach is proposed in which a Genetic Algorithm (GA) is used as the optimization 

technique. The lens systems considered are rotationally symmetric electrostatic lens 

systems with multiple electrodes. To achieve a quick evaluation of the objective 

function, SOEM is used. Although this comes at the cost of losing some accuracy, it 

allows for rapid optimization using the GA. Using the parameters from this 

optimization, a more accurate GA optimization is subsequently performed, in which 

the objective function is calculated using the electrostatic field simulated with 

COMSOL [9] (based on the finite element method). As a demonstration, a six-electrode 

lens system was optimized for the smallest focused probe size within a few hours, with 

all geometries and electrode voltages as free parameters, and the focus position and 

maximum breakdown fields between electrodes as constraints. To extend the method 

to more complex systems and designs is rather straightforward. This chapter is 

organized as follows. In section 4.2 a brief summary of SOEM will be presented. The 

geometry of the example system used in this study is described in section 4.3. The 

fitness function, or objective function, needed for the optimization is discussed in 

section 4.4. Section 4.5 addresses the accuracy of SOEM compared to more accurate 
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methods such as finite element methods. The GA is introduced in section 4.6 and the 

parameters relevant in the optimization process are discussed. Results of the GA 

optimization using various methods to calculate the objective function are presented 

in section 4.7 and 4.8, and conclusions are drawn in section 4.9. 

4.2 SOEM  
In a rotationally symmetric system, the potential in space can be expressed in terms 

of the axial potential and its derivatives with respect to the axial coordinate z:  

𝜑(𝑟, 𝑧)  =  𝜑(0, 𝑧) – 𝑟2/4𝜑(2)(0, 𝑧)  + 𝑟4/64𝜑(4)(0, 𝑧)  − ⋯ (4.1) 

                                                                  

Here, φ(0, z) is the axial potential, 𝜑(𝑛) (0, z) is the nth derivative with respect to z 

and r is the radial coordinate. To allow for a fast calculation of the axial potential, this 

equation is solved by fitting the axial potential with a cubic spline [10] (i.e. a twice 

differentiable function built piece wise from polynomials of second-order). This 

approximation requires to omit terms higher than second-order in Eq. 4.1, which is 

then rewritten for each spline interval as: 

𝜑′′ (𝑟, 𝑧)  =  4 [𝜑𝑖(0, 𝑧) – 𝜑𝑖(𝑟, 𝑧)]/ 𝑟
2            (4.2) 

where i is the index of a discrete axial point. A cubic spline on an arbitrary mesh of N 

can be written as [4]: 

φ(
1

∆𝑖
+

1

∆𝑖−1
) =

𝜑𝑖−1
∆𝑖−1

+
𝜑𝑖+1
∆𝑖

−
𝜑𝑖−1
′′ ∆𝑖 +  2𝜑𝑖

′′(∆𝑖  +  ∆𝑖−1) + 𝜑𝑖+1
′′ ∆𝑖

6
,

𝑖 = 2,⋯ ,𝑁 − 1 

(4.3) 

Here, ∆𝑖 is the interval between point i and i + 1. In our lens model, the points placed 

inside each electrode are assumed to be equidistant and the gaps between electrodes 

are taken as one single spline interval. Equation 4.2 can be substituted in Eq. 4.3 to 

get: 

𝜑𝑖−1 (
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2𝛥𝑖

3𝑟𝑖+1
2 −

1

𝛥𝑖
) =

2𝑉𝑖−1

3𝑟𝑖−1
2 𝛥𝑖−1 +

4𝑉𝑖

3𝑟𝑖
2 (𝛥𝑖−1 + 𝛥𝑖) +

2𝑉𝑖+1

3𝑟𝑖+1
2 𝛥𝑖+1,    𝑖 = 2,⋯ ,𝑁 − 1            

(4.4) 
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where 𝑟𝑖  is the radius of the electrode at position i and 𝑉𝑖 is the electrode potential at 

point i. In Eq. 4.4, renaming the coefficients of 𝜑𝑖−1, 𝜑𝑖 and 𝜑𝑖+1by 𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 , 

respectively, and the right-hand side of the equation by 𝑑𝑖 , it follows that: 

𝑎𝑖  =
2𝛥𝑖

3 𝑟𝑖−1
2 −

1

𝛥𝑖−1
   ,   𝑏𝑖 =

1

𝛥𝑖−1
+
1

𝛥𝑖
+
4

3

𝛥𝑖−1+𝛥𝑖

𝑟𝑖
2     

(4.5) 𝑐𝑖 =
2𝛥𝑖

3𝑟𝑖+1
2 −

1

𝛥𝑖
   ,   𝑑𝑖 = 

2𝑉𝑖−1

3𝑟𝑖−1
2 𝛥𝑖−1 +

4𝑉𝑖

3𝑟𝑖
2 (𝛥𝑖−1 + 𝛥𝑖) +

2𝑉𝑖+1

3𝑟𝑖+1
2 𝛥𝑖+1 

𝑎𝑖𝜑𝑖−1 + 𝑏𝑖𝜑𝑖 + 𝑐𝑖𝜑𝑖+1 = 𝑑𝑖 

 Equation 4.5 correlates the axial potential at each point to its value at the neighboring 

points, and can be represented as a tri-diagonal matrix: 

[
 
 
 
 
 
 
 
𝑏1 𝑐1 0 0 0 0 0
𝑎2 𝑏2 𝑐2 0 0 0 0
0 𝑎3 𝑏3 𝑐3 0 0 0
0 0 . . . 0 0
0 0 0 . . . 0
0 0 0 0 𝑎𝑁−1 𝑏𝑁−1 𝑐𝑁−1
0 0 0 0 0 𝑎𝑁 𝑏𝑁 ]

 
 
 
 
 
 
 

×
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𝜑
1
.
.
.
.
.
𝜑𝑁]
 
 
 
 
 
 

=
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𝑑1
.
.
.
.
.
𝑑𝑁]
 
 
 
 
 
 

 (4.6) 

where the matrix elements (𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖, i =  2 ∶  N −  1) are known parameters 

related to the geometry of the lenses and electrode voltages. Applying boundary 

conditions (zero field and derivative at the first and last electrode), the tridiagonal 

matrix can be solved very fast by numerical methods (for which MATLAB [11] is used 

in this work) to derive the axial potential at all points i. Accordingly, first and second 

derivatives can also be numerically calculated. 

4.3 Lens geometry 
The example lens system considered here is a six-electrode rotationally symmetric 

electrostatic lens as schematically shown in Figure 4.1. The object is assumed to be far 

left from the lens system (10 times the length of the system) and the image plane is 

fixed at z = 3.5 mm from the entrance of the lens. The initial electron energy is 𝑒𝑉1 , 

where 𝑉1  is the voltage of the first electrode and the landing energy of the electrons 

in the image plane is fixed at 1 keV. The lens parameters such as thicknesses of the 

electrodes, radii of the holes, gaps between electrodes and the voltages of each 

electrode, are the variable parameters of the optimization problem. The ranges of 

these free parameter are from 0.05 to 0.3 mm, 0.01 to 0.3 mm and 0.1 to 0.6 mm, for 
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thicknesses, radii and gaps, respectively. The voltages at each electrode (𝑉𝑖 ) are free 

to change in the range of 500 V to 5 kV. However, there are some constraints. First of 

all, the maximum field between two sequential electrodes has to be less than 10 

kV/mm to avoid voltage breakdown, i.e.  

 

Figure 4.1. Schematic of a six-electrode lens (𝑇𝑖 : thicknesses, 𝑅𝑖 : radii, 𝐺𝑖 : gaps between 

electrodes, 𝑉𝑖 : voltages of the electrodes). 

(𝑉𝑖+1 − 𝑉𝑖 ) /  (𝑇𝑖+1 − 𝑇𝑖 ) <   10  𝑘𝑉/𝑚𝑚  (𝑛𝑜 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) (4.7) 

where 𝑉𝑖  and 𝑇𝑖  are the voltage and the thickness of the ith electrode, respectively. 

The second constraint is that the image plane is fixed at a position 𝑋c . 

𝑋c  =  𝑐𝑜𝑛𝑠𝑡. (𝑤𝑖𝑡ℎ 2% 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒) (4.8) 

4.4 The objective function  
In a rotationally symmetric probe-forming electron-optical system, the image of a 

point source is a blurred spot due to geometrical and chromatic aberrations of the 

imaging system. Geometrical aberrations strongly depend on the geometry of the lens 

as well as the voltages on the electrodes. The optimization routine can be used to find 

the optimum lens design by tuning the geometry of the lens and/or the voltages of 

the electrode to minimize the aberration contributions, thereby obtaining the smallest 

spot size. Since the aim is to minimize the spot size at the image side, it is taken as the 

objective function (or the so-called “fitness function” in the context of GA). Assuming 

that the lens only suffers from axial spherical and chromatic aberrations, the spot size 

can be expressed as [12]: 

𝐷𝑠
2 = (0.18 𝐶𝑠 𝛼

3 )2 + (0.6 𝐶𝑐  𝛼 
𝛥𝑈

𝑈
)2 (4.9) 

Z [mm]0 3.5

𝑇3 

𝑒− 

𝐺4  

𝑅2  

𝑉3  
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where, if 𝐷𝑠 is calculated at the image side (as is the case here), all parameters in the 

equation are taken at the image side. The first term is the contribution from spherical 

aberration, with 𝐶𝑠 the spherical aberration coefficient of the lens, the second term is 

the contribution from chromatic aberration, with 𝐶𝑐  the chromatic aberration 

coefficient of the lens, α is the half opening angle of the beam (chosen to be 10 mrad 

in this case-study), ∆U is the energy spread of the electron source (taken as 1 eV) and 

U is the acceleration energy (equal to the potential at the image plane = 1 kV). Note 

that the source image contribution is neglected in Eq. 4.9. The aberration coefficients 

are first calculated at the object side. Then using the magnification, they are converted 

to the image side. The spherical and chromatic aberration coefficients can be 

calculated from the axial potential, its derivatives and a principle imaging ray 𝑟𝛼(𝑧), 

starting on the optical axis in the object with angle 1, using the following integrals [13]: 

𝐶𝑠 =
1

16𝜑0
1/2
∫ 𝜑1/2
𝑍𝑖
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{(
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4
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𝜑
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5

24
(
𝜑′

𝜑
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4 +
14

3
(
𝜑′

𝜑
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(4.11) 

whereas 𝑍𝑜 and 𝑍𝑜 denote the z-axis positions of the object and image, respectively. 

𝐶𝑠 and 𝐶𝑐  are calculated at the object side, and 𝜑0 refers to the potential at the object 

side. The principle imaging ray 𝑟𝛼(𝑧) is obtained by ray tracing. The relativistic 

equation of motion, in the paraxial approximation, takes the following form [13]: 

1 + ɛ

1 + 2ɛ
𝜑(𝑧). 𝑟𝑎

′′(𝑧) +
1

2
𝜑′(𝑧). 𝑟𝑎

′(𝑧) +
1

4
𝜑′′(𝑧). 𝑟𝑎(𝑧) = 0 

(4.12) 

where ɛ (z)  =  e/(2𝑚0c
2 ) in which e, 𝑚0 and c are the elementary charge, electron 

rest mass and velocity of light, respectively. The equation is solved numerically. The 

magnification M is obtained by using another principle ray 𝑟𝑏, starting in the object 

plane at a height h and with angle 0, and calculating the height in the image plane, as 

determined by the axis crossing of 𝑟𝑎 at the image side, and dividing by h. 𝐶𝑠 and 𝐶𝑐  at 

the image side are then obtained by: 



Chapter 4 

63 
 

𝐶𝑠_𝑖𝑚 = 𝑀
4.  (

𝑉7

𝑉1
)
(
3
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. 𝐶𝑠_𝑜𝑏𝑗  
(4.13) 
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2.  (
𝑉7

𝑉1
)
(
3
2)

. 𝐶𝑐_𝑜𝑏𝑗  
(4.14) 

Inserting 𝐶𝑠_𝑖𝑚 and 𝐶𝑐_𝑖𝑚 into Eq. 4.9 the spot size 𝐷𝑠 at the image side is calculated. 

When, in the remainder of the paper, the spot size is mentioned, the spot size in the 

image plane is meant.  

4.5 Accuracy of SOEM 
EOD [14] is a professional software package commonly used by electron optical lens 

designers, while COMSOL is a multi-physics finite element-based solver software 

which is not very commonly used so far by electron optical designers. We wanted to 

use a well-known and reliable electron optical software package as the main reference 

(benchmark) for comparison. But we also wanted to make use of a program which can 

be integrated in MATLAB to accurately calculate the potential in an automated way, 

and could be used together with our other codes (ray-tracing and optimization). As 

EOD could not easily be automated and integrated into MATLAB, we have done that 

part using COMSOL. Although it is expected that COMSOL also produces accurate 

results, for more certainty, EOD is also taken as a benchmark initially to compare to 

results obtained from COMSOL. It has been shown that COMSOL gives results as 

accurate as EOD (Figure 4.2), COMSOL then has been used as an accurate software 

program to calculate the potential, and it has been used as a reference for the rest of 

the study. To evaluate the accuracy of the potential and its derivatives as calculated 

using SOEM, a comparison was made to results obtained with EOD, as well as with the 

finite element package COMSOL. The calculation was done for the lens system of 

Figure 4.1. The axial potentials and its first and second derivatives, as calculated using 

SOEM, COMSOL and EOD for two different designs of the system of six-electrodes 

(Figure 4.1), are shown in Figures 4.2 and 4.3. Another example of a three-electrode 

lens system can be found in [15]. 
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(a)                                                   (b)                                                       (c) 

Figure 4.2. Comparison of the axial potential and its first and second derivatives, calculated by 

SOEM, COMSOL and EOD, for a six-electrode lens of Figure 4.1,                                                                                    

𝑇𝑖 = [0.11, 0.18, 0.70, 0.12, 0.24, 0.10] 𝑚𝑚, 𝑅𝑖 = [0.10, 0.23, 0.21, 0.21, 0.09, 0.08] 𝑚𝑚, 

𝐺𝑖 = [0.43, 0.29, 0.35, 0.22, 0.52] 𝑚𝑚, 𝑉𝑖 = [5000, 3300, 2000, 3850, 5000, 550] V. 

(Results: 𝐶𝑠 COMSOL = 1.6 mm, 𝐶𝑐 COMSOL= 0.59 mm, 𝐶𝑠 SOEM = 1.3 mm, 𝐶𝑐 SOEM= 0.52 

mm; all values taken at the image side) 

 

Figure 4.3. Comparison of the axial potential and its first and second derivatives, calculated by 

SOEM and COMSOL, for a six-electrode lens of Figure 4.1, 𝑇𝑖 = [0.06, 0.06, 0.64, 0.09,

0.27, 0.24] 𝑚𝑚, 𝑅𝑖 = [0.05, 0.19, 0.23, 0.24, 0.12, 0.06] 𝑚𝑚, 𝐺𝑖 =

[0.38, 0.59, 0.33, 0.18, 0.46] 𝑚𝑚, 𝑉𝑖 = [5000, 4750, 3000, 4550, 4850, 550] V (Results: 𝐶𝑠 

COMSOL =3.13 mm, 𝐶𝑐 COMSOL =0.69, 𝐶𝑠 SOEM = 9.88 mm, 𝐶𝑐 SOEM= 1.41 mm; all values 

taken at the image side). 

The results calculated with COMSOL and EOD agree very well with each other, even 

for the second derivatives. But the potential calculated by SOEM is slightly different, 

which becomes more visible in the derivatives. At first sight, the difference between 

the derivatives calculated by SOEM and COMSOL in both figures looks pretty much the 

same. But when calculating the aberration coefficients with both methods, almost the 

same 𝐶𝑠  and 𝐶𝑐  are found for the system of Figure 4.2 but for the system of Figure 4.3 

COMSOL results in a three times lower 𝐶𝑠  and a two times lower 𝐶𝑐. This means that 

the objective function is a quite sensitive function of the potential, and the 
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approximate potential as determined by SOEM may lead to deviations of the objective 

function. Irrespective of that, the higher computation speed of SOEM, compared to 

the commercial programs, still makes it attractive to use in an optimization routine. 

As many parameters are involved in optimizing the lens system considered here, it is 

expected that the objective function landscape may have many local minima. 

Therefore, a global optimizer is needed. Due to its random nature, the GA is a good 

candidate to find such a global solution [16,17]. In section 4.6 GA will be briefly 

introduced. 

4.6 Genetic Algorithm optimization using SOEM 
The GA is a heuristic search technique with a logic which mimics the natural evolution 

process [18]. The GA optimization procedure starts with a set of systems (each system 

representing a “chromosome” in the context of GA) called the initial population. The 

initial population can be a randomly generated state denoted by 𝑃1(𝑥1, . . . , 𝑥𝑛), where 

the 𝑥𝑖  are vectors representing the chromosomes of the individual systems i. For the 

lens system of Figure 4.1, the initial population is the set of lens systems with each 

system characterized by a vector containing its design parameters, i.e. a vector of 23 

parameters including six electrode thicknesses (𝑇𝑖) (the third thickness, as a choice, is 

kept dependent to the other thicknesses and gaps, to keep the length of system 

constant), 6 radii (𝑅𝑖), 5 gaps (𝐺𝑖) and 6 electrode voltages (𝑉𝑖). This initial population 

gradually evolves toward a set of chromosomes (set of lens parameters) with better 

properties, to be judged by evaluating the objective function, a function of the 

chromosomes (lens design parameters). The evolution leads to a new generation, a 

new population of systems 𝑃𝑖+1 (𝑥1, . . . , 𝑥𝑛) closer to the optimum of the objective 

function. The creation of a new population, in a so-called Simple Genetic Algorithm 

(SGA), is mainly done using operators such as selection, crossover and mutation. 

Systems are selected based on the value of the objective function. The crossover and 

mutation operators serve as a mechanism to produce the population for the next 

generation. Crossover is the operator which combines two individuals (parents) to 

create a new individual (offspring). The idea behind using this operator is to create 

new individuals with better characteristics than their parents by inheriting the best 

characteristics from each parent. Crossover is applied on the population during 

evolution based on a user definable crossover probability. Mutation is a procedure 

applied in the algorithm, analogous to biological mutation, to give genetic diversity by 

altering genes in a chromosome of a population from one generation to the next 

generation. This procedure is applied in the algorithm to give each individual a better 
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opportunity to reach the full space of possible solutions by enhancing the diversity of 

the population. Elitism is an additional operator, which could be added to the process 

to enhance the result of the GA. This operator copies a certain number (i.e. the elite 

count) of best parents, unchanged, into the next generation. This prevents the GA 

from wasting time in rediscovering these best parents which could otherwise have 

been discarded while breeding new populations. A schematic of a simple GA is shown 

in Figure 4.4. SOEM is used in the objective function evaluation part of the 

optimization. Generation is the number of iterations the GA algorithm executes before 

it terminates. This parameter can be set as the stopping criterion of the GA, as was 

done in this study. The population size is the number of individuals present in each 

generation. The MATLAB GA module with constraints was used for the optimization. 

The potential calculation using SOEM and the ray-tracing codes to evaluate the 

objective function were coded in MATLAB as well. In section 4.6.1 the choice of GA 

optimization parameters is discussed. 

 
Figure 4.4.    A schematic of the GA, with SOEM used for the objective function evaluation. 
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4.6.1 GA Parameters  
The GA has a variety of parameters such as initial population, population size, 

generation, crossover, mutation and elitism (elite count). These parameters should be 

tuned well based on the exact application, to get the best performance.  

Increasing the population size, the GA will search the space more extensively. This 

increases the probability of reaching the global solution and reduces the chance of 

getting trapped in local optima. However, increasing the population size to large 

values will also significantly increase the execution time of the GA. Thus, it is a tradeoff 

between run time and the best result. As a good compromise a population size of 50 

was chosen in this study. The MATLAB GA routine contains different crossover and 

mutation types. For optimization problems with constraints, as is the case here, most 

of the available crossover and mutation types are not applicable. Among the ones 

applicable, the types “Intermediate” and “Adapt-feasible” for crossover and mutation, 

respectively, were found to be the most efficient ones.   

 

Figure 4.5. Three different GA runs to assess the generation number and elite count. The elite 

count is indicated in the graphs, and the lowest Dspot value achieved in each graph is indicated 

above the graphs. 

The effects of increasing the generation number and elite count on the performance 

of the GA was also assessed. As the generation number has a direct effect on the 

execution time of the algorithm, a tradeoff between result and execution time has to 

be made. Figure 4.5 shows a few examples of these assessments. The plots show the 

value of the objective function, or the spot size Dspot, as a function of the generation 

number, for three different values of the elite count: 0, 1 and 3. For each generation 

number the mean value of Dspot is plotted (purple pentagram, light pentagram in gray 

scale) as well as the smallest, or best, value of Dspot (black dots, dark dots in gray scale). 
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It is seen, in all plots, that increasing the number of generations to more than 200 did 

not significantly lower the best value of Dspot, while the execution time would continue 

to increase. Therefore, the number of generations was limited to 200 in this study. 

Analyzing the effect of the elite count parameter on the result of the GA, it is observed 

that a value of one (the middle graph in Fig. 4.5) led to the smallest value of Dspot  (Dspot 

= 0.927). So, a value of one was chosen in this work.       

Summarizing, the MATLAB GA parameters chosen for this study were: generation 

number 200, population number 50, elite count 1, selection type stochastic uniform, 

crossover type Intermediate, and mutation type Adapt-feasible. 

4.7 Results of GA optimization with SOEM 
A GA run starts with the first generation of 50 systems, randomly created within the 

parameter ranges defined in section 4.3, and then evolves for 200 generations. In a 

run 10000 systems in total are evaluated, of which around 1500 systems (15%) fulfilled 

the constraints and went through the selection, based on the value of the objective 

function as determined by SOEM. The spot sizes Dspot obtained for these 1500 systems 

are sorted in descending order and plotted in that order in Fig. 4.6 (the black ∗ 

symbols). Note that the horizontal axis represents the position of the systems in the 

sorted array according to their spot sizes and not the systems in which the plotted 

spot sizes were found. The plot also contains information on the generation in which 

each spot size value was obtained. Corresponding to each point on the black curve, 

there is a purple pentagram (or pentagrams) in the graph. The pentagrams show the 

generation in which the system index has occurred (the pentagram lies on a line that 

passes through that black dot and is perpendicular to x-axis). It is seen that larger spot 

sizes can be found in all generations, basically but the smallest spot sizes (on the right-

hand side of the graph) occur predominantly in higher generations. The smallest spot 

size of 0.93 nm was found first in the 187th generation. 
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Figure 4.6. The spot size (Dspot, left-hand axis), taken from one optimization run using SOEM, 

sorted in decreasing order (black (dark in gray scale) dots), and the generation in which the 

spot size occurred ( purple (light in gray scale) pentagrams, right-hand axis). 

In section 4.5, it was seen that SOEM only provides an approximate potential, 

compared to the potential obtained from COMSOL, and it was seen for two different 

systems that the values of Cs and Cc are quite sensitive to the actual potential. 

Therefore, it was investigated how far off the SOEM optimization results are from 

COMSOL results.  

The values of Cs, Cc, Xc (the image plane position), and Dspot (spot size) were obtained 

by an optimization with SOEM, and were then compared to the values as calculated 

using COMSOL for the systems found. As, by nature of the GA, the resulting data of a 

run, are jumping up and down to reach to a final good result (as is seen in Figure 4.6), 

the data are again sorted by their objective function value in descending order, to 

more clearly see the trends. Because it is time consuming to do the field calculation 

with COMSOL, not all 1500 systems were calculated. Of 980 systems only one out of 

20 systems were taken, resulting in still a representative number of 49 systems to 

compare. In Figure 4.7, the values of Cs, Cc, Xc and Dspot, based on the SOEM 

optimization, are plotted in descending order (the black star symbols). For each 

system indicated with a black star the same parameters were then inserted in the field 

calculation with COMSOL. The resulting values of Cs, Cc, Xc and Dspot are shown as 

red stars in the plots. 
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Figure 4.7. The sorted data of spherical aberration (Cs), chromatic aberration (Cc), spot size 

(Dspot) and Xc (image plane position) for 49 systems, taken from an optimization run based on 

SOEM and the comparison with accurate values calculated using COMSOL. 

It is seen in all plots that the SOEM-based data and the COMSOL-based data show the 

same trend. The SOEM-based values are mostly close to the more realistic COMSOL-

based ones, only in some cases deviations up factors of 2–3 can be seen, as was 

already seen for the two systems shown in Sec. 4.5. Please note that the smallest spot 

size in Figure 4.7 is 3.8 nm, and not 0.927 as in Figure 4.6, because only 980 systems 

are considered instead of 1500. A very critical parameter is the value of Xc, which is 

one of the constraints. In Figure 4.7, it is seen that the SOEM-based values of Xc are 

often lower than the COMSOL-based ones, by up to 5%. Such deviations, however, are 

still considered to be acceptably small. As such, the SOEM-based optimization offers 

a very good approximate parameter estimation. But because of the observed 

deviations, SOEM-based GA is not advisable when accurate results are desired. 

Therefore, a more accurate method is needed, which is proposed in Sec. 4.8. 
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4.8 GA optimization with SOEM and COMSOL 
To improve the optimization accuracy, the possibility to integrate COMSOL in the 

optimization routine was investigated. This provides a more accurate calculation of 

the potential and the objective function but the optimization will become more time 

consuming. As a compromise, a first rough optimization with SOEM is performed (GA-

SOEM), resulting in a few approximately optimized systems. Then, using the 

parameters of the systems found, a new set of systems is defined and fed to the GA 

among the population of the first generation. Then a more accurate but somewhat 

slower, COMSOL-based optimization is done, starting from these almost good systems 

(GA-SOEM+COMSOL). A schematic of this optimization flowchart is shown in Figure 

4.8. This method prevents the GA from running for many more generations before 

reaching a good system. This method has been tested and succeeded in very 

accurately optimizing the example system of Sec. 4.3, within a few hours. 

 

Figure 4.8. Schematic of the flowchart of the GA based on a combination of SOEM and 

COMSOL. 
 

In Figure 4.9(a), the resulting spot size as obtained from the GA-SOEM, with 50 

populations and 200 generations, is shown as a function of the generation number. 

Again, as in Figure 4.5, the minimum spot size and the mean spot size are plotted. This 

optimization run took about 30 min and the best spot size was 0.927 nm. For this best 

system the potential and its derivatives were subsequently calculated with COMSOL, 
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resulting in a more accurate spot size for this system of 4 nm and a slightly different 

location of the focal plane.  

In the next step, the 20 best systems found by GA-SOEM are fed as initial population 

into GA-SOEM+COMSOL. MATLAB GA automatically creates the additional 10 random 

systems to create a total of 30 initial populations. Afterwards, GA-SOEM+COMSOL is 

run for only 20 generations to reach the best solution of 3.317 nm (see Figure 4.9(b)), 

i.e. slightly smaller than the 4 nm. This took about 1 h. To continue for more 

generations did not lead to further improvement. Thus, running GA-SOEM followed 

by GA-SOEM+COMSOL resulted in a good and accurate system in about 1 h. To assess 

the speed of GA-SOEM+COMSOL, this method is compared with the situation where 

the GA is only based on COMSOL (GA-COMSOL). In Figure 4.9(c), the result of GA-

COMSOL is presented, where the GA started from randomly created systems and ran 

for 70 generations, with a population of 50. The execution time was about 5.5 h. The 

smallest spot size at the first generation was about 12 nm. As is shown, after 70 

generations, it still has not arrived at the best solution obtained from GA-

SOEM+COMSOL. It is thus concluded that it is worthwhile to first use GA-SOEM, 

although its results sometimes deviate a bit from accurate results obtained from GA-

COMSOL, as a rough optimization and as preoptimized input for a short COMSOL-

based GA optimization. A considerable time saving is achieved this way. 

As a final example, to show the usefulness of an optimization routine, a manual design 

of a five-electrode lens system is shown in Figure 4.10(a). The parameters to vary were 

the electrode diameters, their thicknesses and voltages. The values of Cs, Cc and Dspot 

obtained after many hours of trial and error simulations, are shown in Figure 4.10(a). 

For comparison, using the GA-SOEM+COMSOL method, a six-electrode system could 

be found with a smaller spot size, Cs and Cc (see Figure 4.10(b)) in a reasonably fast 

time (˜few hours). A precise time is not given for the traditional methods (manual 

optimization by the designers), as it is very dependent on the expertise and knowledge 

of the designer to manually reach a satisfactory result. 

However, the consumed time would be far longer than the presented fully-automated 

optimization technique presented in this paper, which basically tests thousands of 

systems and reaches an optimized system in a few hours. It should also be mentioned 

that it is not only a matter of time comparison. To manually reach a satisfactory result 

for complex systems with all parameters as variables, with many objective functions 

to be minimized simultaneously, is a very cumbersome task and is not guaranteed in 
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a reasonable time. This is indeed the advantage of having an automated optimization 

technique to ensure getting a satisfactory result within a short amount of time. 

 

Figure 4.9. (a) optimization using GA-SOEM, (b) optimization using GA-SOEM+COMSOL, 

starting from 20 initial populations resulting from GA-SOEM (plot a) and (c) optimization only 

using GA-COMSOL. 

                              (a)                                                                                                        (b)                    

Figure 4.10. An example of a manually optimized five-electrode system (a), compared to a six 

electrode system optimized using the GA-SOEM+COMSOL method (b). 
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4.9 Conclusion  
Fully automated optimization routines can relieve the laborious manual design of 

charged particle optics components. However, such routines suffer from low 

computational speed. The main reason for the low computation speed is the time-

consuming process of the lens potential calculation, which is needed to calculate the 

objective function. This is often done with very time-consuming methods based on a 

meshing of the lens space. A new method is proposed that improves on the low speed 

of the potential calculation while keeping the high accuracy of the mesh-based 

calculation methods. In this method, the potential of the system is calculated using a 

fast potential calculation based on the so-called SOEM. A set of coarse optima for the 

design is then selected using a GA. Then by using the parameters of the approximate 

systems found from this optimization based on SOEM, an accurate GA optimization 

routine is performed based on a potential calculation with the commercial finite 

element package COMSOL. A six-electrode electrostatic lens was optimized accurately 

within a few hours, using all lens dimensions and electrode voltages as free 

parameters and the focus position and maximum allowable electric fields between 

electrodes as constraints. 
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5. Multiple Criteria Optimization of Electrostatic 

Electron Lenses Using Multi-Objective Genetic 

Algorithms 

Abstract 
The design of an electrostatic electron optical system with five electrodes and two 

objective functions is optimized using multi-objective genetic algorithms (MOGA) 

optimization. The two objective functions considered are minimum probe size of the 

primary electron beam in a fixed image plane, and maximum secondary electron 

detection efficiency at an in-lens detector plane. The time-consuming step is the 

calculation of the system potential. There are two methods to do this. The first is using 

COMSOL (finite element method) and the second is using the second order electrode 

method (SOEM). The former makes the optimization process very slow but accurate, 

and the latter makes it fast but less accurate. A fully automated optimization strategy 

is presented, where a SOEM-based MOGA provides input systems for a COMSOL-

based MOGA. This boosts the optimization process and reduces the optimization 

times by at least ~10 times, from several days to a few hours. A typical optimized 

system has a probe size of 11.9 nm and a secondary electron detection efficiency of 

80 %. This new method can be implemented in electrostatic lens design with one or 

more objective functions and multiple free variables, as a very efficient, fully 

automated optimization technique. 
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5.1 Introduction 

Designing electrostatic electron optical systems manually can become quite 

challenging when the number of electrodes increases. A large number of parameters 

is involved, such as the electrode thicknesses, the spacings between the electrodes, 

the aperture sizes of the electrodes and the electrode voltages. These can all be varied 

to optimize the performance of the optical system, while simultaneously taking typical 

constraints into account, such as the maximum allowable field between electrodes to 

prevent discharges. It was demonstrated [1] that the design of such systems with a 

single objective function, i.e. a single requirement that needs to be fulfilled for 

optimized performance, can be automated using optimization techniques based on 

genetic algorithms [2]. A six-electrode electrostatic lens system was optimized to 

focus a primary electron (PE) beam to the smallest possible spot in a fixed image plane. 

The objective function in this case was the spot size, consisting of contributions from 

the spherical aberration and the chromatic aberration of the lens. To determine the 

lens properties and the objective function, requires calculation of the lens field. This 

can be done most accurately using a finite element method (FEM), such as that offered 

by the commercial simulation package COMSOL.  However,  calculating the objective 

function using COMSOL is relatively slow (~1 min for each system evaluation). This 

makes the optimization extremely time consuming. A faster but less accurate method 

is to calculate the axial potential of the lens using the second order electrode method 

(SOEM) [3-6] (~1 sec for each system evaluation). In evolutionary algorithms (EA) such 

as GA, the objective function usually needs to be called numerous times in the 

optimization process,  as many as hundreds or thousands of times. Using COMSOL 

then makes the optimization extremely time consuming. 

 A promising technique to reduce the computation time in such problems, is the use 

of surrogate models [7], also known as surrogates These are computationally 

inexpensive approximation models, employed to assist in evaluation of 

computationally expensive functions to reduce the computational time of the 

problem. Studies on surrogate-assisted evolutionary algorithms such as GA began a 

decade ago. In the subsequent years, this method has been implemented in many 

different applications to optimize single and multi-objective optimization problems 

and found to be very efficient [8-10]. The surrogates (called the “Low Fidelity model”) 

can be implemented through different strategies combined with the accurate function 
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calculation (known as the “High Fidelity model”) to assist the optimization process 

[11]. In the previous study [1], a surrogate-assisted GA was used by first running a GA 

optimization using field calculation by SOEM (Low Fidelity), resulting in a number of 

approximately good systems that were then inserted into a subsequent GA 

optimization using field calculation by COMSOL (High Fidelity). With this approach an 

optimized design was obtained in a reasonable time.  

 In this work a similar optical system is considered, but now with two objective 

functions. Challenging and labour-intensive examples of such electron optical designs 

can be found in [12, 13], but the example to be used in this work is a five-electrode 

lens that focuses a PE beam in a fixed sample plane and simultaneously projects the 

secondary electrons (SE) emitted from the sample back through the lens onto a 

detector. This situation is typically encountered in electrostatic scanning electron 

microscopes with in-lens detection. To optimize this system requires a multi-objective 

optimization. 

A recent work [14] has been published on the design of an ion optical device with 

many possible free parameters, involving multi-objective functions (up to two). There, 

an adjoint variable method is implemented. In the optimization based on the adjoint 

method, the computational time would stay nearly constant with increment of the 

free parameters, in contrast with the optimization using the evolutionary algorithms 

where it would increase dramatically. This gives an advantage over the evolutionary 

optimization technique for electron/ion design problems, where many free 

parameters are involved. However, the optimization based on the adjoint method is 

suitable for a few objective functions, while evolutionary optimization techniques 

such as GA are capable of optimizing multiple objective functions. Another difference 

is that the adjoint-based optimization is a local optimization technique (which can be 

used for global optimization problems by sampling different initial points), whereas 

the evolutionary algorithms are considered as global optimization techniques due to 

their meta-heuristic characteristics which can automatically search more spaces 

through the objective function landscape and prohibit trapping in local optima.  

 In the design of electrostatic lens systems, such as in our case-study, the objective 

function landscape (even in the case of a single objective function) appears to have 

many local minima [15]. In addition, multiple objective functions are usually aimed to 

be optimized, while the number of free parameters is not huge  (in the order of tens). 

In such circumstances, EA/GA appears to be a better fit to the problem. Hence, a 

MOGA [16] is proposed to be used here. A surrogate model, similar to that in the 
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previous work [1], is then applied in the problem to assist MOGA.  It is by no means 

obvious that the same two-step optimization strategy, combining SOEM and COMSOL, 

as was successfully used in the single objective function case, can be applied here too. 

The different energy and angular distributions of the PE and SE may cause the latter 

to follow trajectories considerably further away from the optical axis than the former. 

This means that the potential as approximated by the use of SOEM may not be 

sufficiently accurate to trace the SE towards the in-lens detector. Although a more 

accurate potential can be obtained using COMSOL, this will make the optimization 

really slow (one to two orders of magnitude slower, compared to optimization using 

SOEM), especially considering that a MOGA optimization scheme with two non-linear 

objective functions needs thousands of runs [15].  

 The objective of this work is to investigate whether the combination of an initial 

optimization using the less accurate SOEM and a subsequent optimization using 

COMSOL can also optimize systems with two objective functions in a reasonable time.  

5.2 Lens system geometry and optimization parameters 
A schematic drawing of the electrostatic electron probe-forming objective lens used 

in this study is presented in Figure 5.1. The lens, consisting of five planar electrodes, 

in combination with the sample positioned in a fixed image plane, is used to focus the 

PE beam, coming from the left, onto the sample plane. This geometry resembles an 

electrostatic scanning electron microscope design presented elsewhere [17-19], and 

some of the dimensions were taken from there. 

 
Figure 5.1. Cross-sectional schematic of a rotationally symmetrical 5-electrode lens system: 

The primary and secondary electrons pass through the same lens. 𝑇𝑖, 𝑅𝑖, and 𝑉𝑖, correspond 

to the thickness, radius and voltage at each electrode i, 𝐺𝑖 indicates the gap between two 

sequential electrodes. There are 19 free variables in total. 
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 The SE emitted from the sample by exposure to the PE beam are accelerated into the 

lens and directed towards the detector. The detector is a disk-shaped electrode 

(radius of 2.5 mm) with a central hole (radius of 0.5 mm) around the optical axis. The 

origin of the coordinate along the optical axis is taken at the surface of the first 

electrode, i.e. the surface closest to, and facing the detector. The detector plane is 

positioned at -23 mm and the sample plane is at +17 mm.   

 During the optimization process, the parameters that define the geometry of the lens, 

such as the thickness of the electrodes (Ti), the aperture radius of the electrodes (Ri) 

and the gap between electrodes (Gi) are allowed to vary within certain boundaries. 

The allowed intervals are 1 mm < Ti  (i=1..5) < 3 mm, 0.1 mm < Ri (i=1..5) < 2 mm, and 

1 mm < Gi (i=1..4) < 3 mm. The voltage of the first electrode V1 is allowed to vary from 

6-8 kV whereas the other voltages Vi, (i=2...5) can range from 700 V to 10 kV. There 

are 19 free variables in total. The detector is kept at the same voltage as the first 

electrode V1. The voltage at the image plane is fixed to 600 V. Two constraints are set: 

a fixed image plane position (X-crossover=17 mm) and a voltage breakdown condition 

(electric field < 15 kV/mm).  

5.3 The Objective functions 

The first objective function is the probe size, and its calculation is described in detail 

in [1]. In brief, the probe size contains contributions from two axial aberrations only 

(spherical and chromatic aberration), and is given by [20]: 

Ds
2 = (0.18 Cs α

3 )2 + (0.6 Cc α 
ΔU

U
)
2

 
(5.1) 

Where Cs and Cc are the spherical and chromatic aberration coefficient in the image 

plane, respectively, α is the half opening angle at the probe (here taken to be 10 mrad), 

U is the landing energy at the sample and ΔU is the energy spread in the PE beam (here 

taken as 1 eV). In eq. (1) the contributions from the geometric source image and 

diffraction are neglected. This is because, for very small probe currents, the 

contribution from the source image is negligible compared to those from the axial 

aberrations and the contribution from diffraction does not change during the 

optimization, since the landing energy and the half opening angle of the PE beam at 

the probe are fixed. The spherical and chromatic aberration coefficients can be 

calculated from aberration integrals, which contain the axial potential, its derivatives 

and a principle ray ra(z), starting in the object on the optical axis with unit angle (45 
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degrees) [21]. Furthermore, the magnification has to be taken into account, which is 

obtained by tracing a second principle ray rb(z) from the object plane, at unit height 

and zero angle, to the image plane. The position of the image plane is found where 

ra(z) crosses the optical axis.  

The second objective function is the detector collection efficiency of the SE emitted 

from the sample. This requires tracing SE from the sample plane at z=+17 mm to the 

detector plane at z=-23 mm. The starting angles of the SE emerging from the sample 

are chosen from a uniform distribution of polar angles θ (the emission angle with 

respect to the sample surface normal) between 0.01 and 1.5 rad. The azimuthal angle 

is kept constant because of the rotational symmetry of the lens. However, in reality 

the angular distribution of the SE-yield is proportional to cosθ [22, 23] and the SE are 

emitted within a solid angle dΩ = 2π sinθ dθ.  Therefore, the detector signal is weighed 

by a factor of  sinθ cosθ ~  sin 2θ. For simplicity, the energy of the emitted SE is taken 

from a uniform distribution between 1 and 10 eV. 

5.4 Ray-tracing: SOEM versus COMSOL 

The ray tracing and the determination of the lens properties requires calculation of 

the lens field. The SOEM approach [1,3] makes use of the fact that the solution to the 

Laplace equation can be expressed in terms of the axial potential and its derivatives 

with respect to z. By ignoring terms higher than second order and using a cubic spline 

approximation to the axial potential, the latter can be obtained by solving a set of 

linear equations. The results are accurate within the paraxial approximation and prone 

to deviations further from the optical axis [1,6]. COMSOL is an accurate method to 

calculate the potential in the space of the lens system. However, as this method 

meshes the entire lens space to calculate the potential using the finite element 

method, it is associated with long computation times [1]. Both approaches will be used 

to calculate the objective functions of the example system. 

The ray tracing is done using a MATLAB code. For the PE, which follow small angle 

trajectories, the equation of motion in the paraxial approximation is used, as in [1].  

However, for the SE which follow larger angle trajectories, a more accurate real ray 

tracing is performed. The equations of motion are [24]:  

E𝑟  q

m
 
t2

2
+ v0rt + r0 = r 

 

(5.2) 
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E𝑧 q

m
 
t2

2
+ v0zt + z0 = z 

(5.3) 

Here Er and Ez are the radial and axial components of the field, respectively. The 

equations are solved numerically, by taking very small time-steps of Δt, starting from 

(r0, z0), with initial velocity of v0r and v0z (calculated based on the initial energy of the 

SE). 

 In this section the effect is studied, on both objective functions, of calculating the 

potential by SOEM, resp. by COMSOL. Its effect on the probe size objective function 

can be judged from the two principle rays ra(z) (i.e. the ray starting in the object on 

the optical axis with unit angle (45 degrees)) and rb(z) (i.e. the ray starting from the 

object plane at unit height and zero angle. Figure 5.2 shows, for a typical system within 

the range mentioned in section 5.2,  both rays traced through the potential as 

calculated by SOEM, resp. COMSOL. It is seen that the principle rays calculated by 

SOEM have a slight deviation but reasonably good overlap, with respect to the ones 

calculated by COMSOL. 

(a) (b)

 

Figure 5.2. The ray-radius along the optical axis z resulting from the potential calculation by 

SOEM (pink dashed line) and COMSOL (blue solid line) for a) the principle ray ra(z), i.e. the ray 

starting in the object on the optical axis with unit angle (45 degrees), and b) the principle ray 

rb(z), i.e. the ray starting from the object plane at unit height and zero angle. 

 It is to be expected that the method of calculating the potential has a greater effect 

on the second objective function. For SE starting at the sample plane (z=17mm ) with 

angles ranging from 0.01 to 0.5 rad, and with an energy of 1 eV, the trajectories are 

calculated through fields calculated by SOEM and COMSOL to the detector at z=-23 

mm. The results are shown in Figure 5.3, where in Figure 5.3a the SOEM-calculated 
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trajectories are shown as dashed lines and the COMSOL-calculated trajectories as solid 

lines.  
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Figure 5.3. a) Trajectories of SE, emitted at various angles (colour scale) from the sample at 

z=17mm to the detector at z=-23 mm, obtained using potential calculation by SOEM (dashed 

lines) and COMSOL (solid lines). b) The same trajectories as in a) on a larger vertical scale, 

including also the lens geometry. The colours indicate the potentials applied to the electrodes 

in this system (red: 6000 V, blue: 1094 V, yellow: 4370 V, orange: 4700 V, brown: 6600V). 

Figure 5.3b shows the same rays on a larger vertical scale including the lens geometry.  

Although the SOEM-rays clearly deviate from the COMSOL-rays, they are not 

dramatically far off. Considering that the required computation time for SOEM-rays is 

around 1 second and for COMSOL-rays around 60-70 seconds, it may be worthwhile 

in the optimization of lens systems to initially use SOEM for the potential calculation, 

thereby creating some approximately good systems, and feed those to a more 

accurate COMSOL-based multi-objective function genetic algorithm (MOGA) 

optimization. This is the subject of the next section. 

5.5 Optimization using MOGA 

The Genetic Algorithm (GA), categorized as one of the evolutionary algorithms, mimics 

natural evolution (inspired by Darwin`s theory). It starts with a randomly generated 

initial population which includes a set of systems, denoted by P1(x1,…,xn). In natural 

evolution, ‘xi’ represent the chromosomes of different members. In electron lens 

system optimization, ‘xi’ represents the electron lens systems. Hence, P1 includes a set 

of initially randomly generated electron lens systems, defined based on the lens 



Chapter 5 

85 
 

system variables. In nature, across time, the initial population is gradually improved 

towards members which are better matched with their environmental conditions. In 

GA, analogously, the initial population evolves toward a new set of systems 

(Pi+1(x1,...,xn)) which better satisfy the conditions of the problem in each so-called 

“Generation”. The new population is mainly created by the operators “Selection”, 

“Crossover” and “Mutation”. Conditions which are determined to be optimized are 

formulated by a so-called objective function.  

The multi-objective GA (MOGA) [16] differs from a classical GA in how the objective 

function value is assigned and ranked to each member in the population. The initial 

population is created randomly, similar to that for the GA. The next generations are 

derived using the non-dominated ranking [25]. Each member gets a non-dominated 

rank corresponding to its relative objective function. The members of the population 

are then evaluated, ranked, sorted and selected by the MOGA based on the non-

dominated classification. A set of Pareto fronts [25] (the non-dominated solutions for 

which none of the objective functions can be improved in value without degrading the 

values of other objective functions) are found and presented to the user at the end of 

the optimization process. The user has then the choice to select the system which best 

suits their problem among them. The remaining features of the algorithm, such as 

“Crossover” and “Mutation” are the same as those in a classical GA.  

The proposed algorithms here is run on a PC with an Intel (R) Xeon (R) W-2123 CPU 

@3.60 GHz and 32 GB of RAM. 

5.5.1 MOGA using potential calculation with SOEM  

It will first be analyzed how MOGA optimization of the example lens system performs 

when SOEM is used for the potential calculation (hereafter called MOGA+SOEM). The 

parameters used for the MOGA in this case-study are population size = 100, maximum 

generations = 1000 and crossover fraction = 0.5. The optimization starts with an initial 

population of 100 systems randomly created by MOGA. Multiple runs are performed 

from which two example runs are presented in the Figures 5.4a and b. The figures 

show for a typical run the SE detection efficiency versus the probe size. In a relatively 

short time of 20 hours, MOGA evaluated 100,000 systems from which 30,000-40,000 

systems passed the constraints. Hereafter these systems are referred to as good-

systems. 

In Figures 5.4a and 5.4b, which do not include all systems but only the good-systems, 

a trend towards decreasing probe size and increasing detection efficiency is seen. The 
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Pareto front [16] points for the two runs are illustrated as the dark blue and cyan 

points. By MOGA optimization of the voltages and the geometry of the lens the initial 

probe size of 60 nm is reduced to only 9 nm with a detection efficiency ranging from  

0 % to 49 %. The system with a probe size of 18 nm and a detection efficiency of 49 % 

is indicated by ‘L’ in Figure 5.4a, the system with 9 nm probe size and 14 % detection 

efficiency by ‘K in Figure 4b. It takes on average ~200 min to reach the Pareto front 

systems in this optimization. 

(c)(b)(a)

L

K

 

Figure 5.4. SE detection efficiency versus probe size for good-systems obtained by MOGA 

optimization based on potential calculation by SOEM. The optimizations tends towards smaller 

probes and larger detection efficiencies. Two different runs are shown in green (a) and purple 

(b).  The Pareto fronts are shown as dark blue and cyan points in (a) and (b), respectively. The 

points L and K are explained in the text. (c) The data from a) and b) overlapped, including both 

Pareto fronts, illustrating how different runs may lead to different optimization results. 

Figure 5.4c shows Figures 5.4a and 5.4b in one graph. It is clearly seen that for different 

runs the Pareto fronts vary considerably. This reveals the complexity of the (highly 

non-linear) objective functions and the existence of multiple local minima. The large 

number of free parameters in the design problem can easily cause the optimization to  

reach a different local optimum (Pareto front) in different runs.  

5.5.2 MOGA using potential calculation with COMSOL 

Next, a MOGA optimization is performed where for the calculation of the objective 

functions the necessary lens potential is calculated using COMSOL. Hereafter, we will 

call this method MOGA+COMSOL. All systems in the initial population are created 

randomly by MOGA itself. Since the computation time for the objective function 

calculation by COMSOL is dramatically longer, the population size is taken here to be 

50 instead of 100, and the maximum generations as 200 instead of 1000. The 

crossover fraction is kept the same as before, i.e. 0.5.  
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In total, 10,000 systems have been evaluated and the entire optimization took about 

7000 minutes (~5 days). Of these 10,000 systems, 3,000 - 4,000 systems passed the 

constraints and are thus labeled as good-systems. Figures 5.5a and 5.5b show the 

detection efficiency versus probe size for the good-systems of two separate runs. The 

Pareto front points of these two runs are shown as the black and orange points. Figure 

5.5c shows the overlap of the plots in Figure 5.5a and 5.5b.  

(c)(b)(a)

O
N

M

 
Figure 5.5. SE detection efficiency versus probe size for good-systems obtained by MOGA 

optimization based on potential calculation by COMSOL. The optimization tends towards 

smaller probes and larger detection efficiencies. Two different runs are shown in grey (a) and 

dark blue (b).  The Pareto fronts are shown as black and orange points in (a) and (b), 

respectively. (c) The data from a) and b) overlapped, including both Pareto fronts, illustrating 

how different runs may lead to different optimization results. The points O, N and M are 

explained in the text. 

Table 5.1 summarizes the optical parameters for three different systems in the Pareto-

front of these MOGA+COMSOL optimizations. As can be seen from Table 5.1, it takes 

at least ~900 minutes of optimization time to reach the Pareto-front system with a 

probe size of 17.5 nm with an SE detection efficiency DESE = 57 % (system O in Figure 

5c) or ~2000 minutes to reach a system with spot size Dspot = 13.0 nm and DESE = 52 

(system N in Figure 5.5c). The smallest spot size reached in this optimization, was Dspot 

= 12.3 nm with DESE = 48%  nm (system M in Figure 5.5c), which took  ~4000 min. It 

can be concluded that the computational time of MOGA+COMSOL to reach a 

satisfactory result is extremely long. In the next sub-section the use of good-systems 

from MOGA+SOEM as an input for MOGA+COMSOL is considered as a means to 

reduce the optimization time. 
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Table 5.1. The optical parameters of three examples of non-dominated optimized systems 

(taken from the Pareto-front in Figure 5c) found by MOGA+COMSOL. 

Example systems from the Pareto-

front found by MOGA+COMSOL 

System M System N System O 

Xcrossover 17.0±0.1 mm 17.0±0.1 mm 17.0±0.1 mm 

Probe size (Dspot) (nm)  12.3 nm 13.0 nm 17.5 nm 

Detection Efficiency (DESE) 48 % 52 % 57 % 

Computational time on average to 
find such system 

 ̴ 4000 min   ̴ 2000 min 

  

 ̴ 900 min 

 

5.5.3 MOGA using potential calculation with COMSOL and 
MOGA+SOEM-optimized input systems  

 In an attempt to reduce the computational times involved in MOGA+COMSOL 

optimization, as initial input  systems with pre-optimized geometries and voltages 

obtained by MOGA+SOEM were fed into MOGA+COMSOL. Hereafter, this will be 

called MOGA+SOEM+COMSOL. 10,000 systems with the same optimization 

parameters as used in MOGA+COMSOL (population size= 50, maximum generations= 

200 and crossover fraction= 0.5) were evaluated. 20 systems are taken from Pareto 

front systems found by MOGA+SOEM and fed into the initial population, together with 

30 systems created randomly by MOGA. The MOGA starts with these 50 initial systems 

while calculating the objective functions based on potential calculation by COMSOL.    

This is schematically shown as a flow-chart in Figure 5.6. 

The optimization results for two runs are plotted as SE detection efficiency versus 

probe size in the Figures 5.7a and b. The Pareto front systems are indicated as well, by 

the red and green stars in Figure 5.7a and 5.7b, respectively. The results from both 

runs are overlapped in Figure 5.7c. Table 5.2 presents the optical parameters of three 

nondominated optimized systems taken as representatives from the Pareto front 

systems. It is seen that after only ~100 minutes, the optimization found an optimized 

system having a probe size of 17.5 nm and a very high detection efficiency of 85 % 

(system R in Figure 5.7c), or a system with a probe size of 12.2 nm and a detection 

efficiency of 81 % (system Q in Figure 5.7c), found after ~300 minutes. After ~2500 

minutes, this optimization reached a system with the very small spot size of 8.6 nm 

and detection efficiency of 73 % (system P in Figure 5.7c).  
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 It is noted that the time consumed in MOGA+SOEM to generate the initial data (~200 

min) should be added to the computational time of this optimization.  

 

Figure 5.6. Schematic of the flowchart of MOGA+SOEM+COMSOL. 

 

(c)(b)(a)

R
P

Q

 
Figure 5.7. SE detection efficiency versus probe size for good-systems obtained by MOGA 

optimization based on potential calculation by COMSOL, but with feeding in 20 initial systems 

obtained from MOGA+SOEM optimization. Two different runs are shown in cyan (a) and purple 

(b). The Pareto fronts are shown as red and green points in (a) and (b), respectively. (c) The 

data from a) and b) overlapped, including both Pareto fronts. The points P, Q and R are 

explained in the text. 
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Table 5.2. The optical parameters of three examples of non-dominated optimized systems 

(taken from the Pareto front in Figure 7c) found by MOGA+SOEM+COMSOL. 

Examples of systems from the Pareto 

front found by MOGA+SOEM+COMSOL 

System P System Q System R 

Xcrossover 17.0±0.1 mm 17.0±0.1 mm 17.0±0.1 mm 

Probe Size (Dspot) 8.6 nm 12.2 nm 17.5 nm 

Detection Efficiency (DESE) 73 % 81 % 85 % 

Computational time on average to find 

such system 

 ̴ 2500 min   ̴ 300 min 

  

 ̴ 100 min 

5.6 MOGA+SOEM+COMSOL versus MOGA+COMSOL 
Comparing the data in table 5.2 and table 5.1, the MOGA+SOEM+COMSOL 

optimization achieved much better systems in a considerably shorter time than the 

MOGA+COMSOL optimization. For instance, reaching a system with a spot size of 17.5 

nm only takes 100 min in the former case and 900 min in the latter, even with a 

dramatically higher SE detection efficiency. It should be noted that the minimum spot 

size of 8.6 nm with a detection efficiency of 85 %,  reached in the time frame of ~300-

2500 min, could not be reached at all by the MOGA+COMSOL optimization, even after 

evaluation of 10,000 system (~7000 minutes). 

 
Figure 5.8. Comparison of the MOGA+COMSOL results of Figure 5.5c (2 runs in gray and dark 

blue symbols; the Pareto front points are shown in black and orange) and 

MOGA+SOEM+COMSOL results of Figure 5.7c (2 runs in cyan and purple symbols; the Pareto 

front points are shown in red and green). 
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In Figure 5.8 the results from Figure 5.5c and Figure 5.7c are compared in one graph, 

i.e. a comparison between optimized systems obtained by MOGA+COMSOL and 

MOGA+SOEM+COMSOL, resp., including the Pareto front systems. It is noted that the 

runs in the latter case show much more overlap than what was seen in the former 

case. Furthermore, The systems optimized by MOGA+SOEM+COMSOL clearly 

outperform the ones optimized by MOGA+COMSOL. Hence, it is concluded that, 

despite the deviating field calculation by SOEM, it is still very effective to use this 

technique in the optimization, to find preliminary, approximately good-systems, to be 

fed into another optimization, which is performed based on accurate field calculation 

by COMSOL, to boost the optimization. 

5.7 Examples of systems optimized by 

MOGA+SOEM+COMSOL 
The evolution of some lens systems during the optimization by 

MOGA+SOEM+COMSOL are summarized in Figure 5.9. A clear change is observed in 

the geometries and voltages of the systems while the optimization is progressing until 

it finally reaches a set of optimized systems. It should be noted that those SE hitting 

the electrodes, do not contribute to the detection efficiency. The PE are started at z=-

23 mm, with angles ranging between 0.1 and 0.8 rad, and traced by paraxial ray-

tracing. The horizontal axis runs from -10 to +17 mm, for a better visualization. SE 

trajectories are produced by real ray-tracing. In the Figure 5.9, these are drawn for 

visualization purposes only. To validate the final optimization results, an optimized 

system found by MOGA +SOEM+COMSOL (system A4 in Figure 5.9) is simulated using 

the EOD software package from SPOC [26]. Figure 5.10 shows the EOD simulation 

result for the geometry and the trajectories of both PE and SE in this system. The 

optical parameters of system A4, as obtained from MOGA +SOEM+COMSOL and EOD, 

are compared in table 5.3. The presented results show that the optimization result 

agrees very well with the EOD simulation. 

Table 5.3. A comparison of the optical parameters of system A4 from Figure 9, as obtained by 

MOGA+SOEM+COMSOL and EOD. 

 MOGA+SOEM+COMSOL EOD 

System A4 
Xcrossover = 16.99 mm 
Probe size = 11.91 nm 
Detection Efficiency = 80% 

Xcrossover = 16.99 mm 
Probe size = 11.90 nm 
Detection Efficiency = 81% 
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 Lens system with PE passing through Lens system with SE passing through 

System A1 

One of the first systems 

created   

-Primary beam is out of 

focus 

- Xcrossover=14.8 mm 

 

 

 

System A2 

A middle-evolved system  

-Primary beam is on-focus 

-Large Probe Size 

-Small Det. Efficiency 

- Xcrossover =16.97 mm 

- Probe size =35.2 nm 

- Det. Efficiency=39 %  

 

System A3 

An evolved nondominant 

system  

-Primary beam is on-focus 

-Very small Probe Size 

-Reasonably high Det. 

Efficiency 

- Xcrossover =16.99 mm 

-Probe size =8.66 nm 

-Det. Efficiency=73 % 

 

 

System A4 

An evolved nondominant 

system  

-Primary beam is on-focus 

-Reasonably small Probe 

Size 

-Very large Det. Efficiency 

- Xcrossover =16.99 mm 

- Probe size =11.92 nm 

- Det. Efficiency=80 % 

 

 

Figure 5.9. System improvement by MOGA+SOEM+COMSOL optimization, while trying to find 

optimum values for the two objective functions and satisfying the constraints. System A1: 

constraint not satisfied. System A2: constraint satisfied, very low SE detection efficiency (DESE) 

and relatively high spot size (Dspot). System A3: constraint satisfied, very small Dspot and 

relatively low DESE. System A4: constraint satisfied, very high DESE and reasonably small Dspot. 

The color scale in the middle column indicates the electrode potential values in V. The units 

along the axes of the graphs are mms. 
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Figure 5.10. An optimized system found by MOGA+SOEM+COMSOL (system A4, in Figure 5.9), 

simulated using EOD. PE trajectories are shown in red. Only SE trajectories with initial energy 

of 1 eV and 10 eV are shown, in blue and green, respectively. 

5.8 Conclusion  

The design of a pure electrostatic lens system with 5 electrodes and two objective 

functions was optimized using a surrogate-assisted multi-objective genetic algorithm 

(MOGA) approach. The system is required to focus a PE beam into a fixed image plane 

with minimum probe size and attract SE emitted from the image plane back into the 

lens on to an SE detector with the highest possible detection efficiency. The main 

challenge of such optimization is the long computation time necessary for an accurate 

COMSOL-based field calculation. The much faster, but less-accurate, field calculation 

technique SOEM combined with MOGA does not provide the best optimized systems, 

but reasonably good ones that can be used as input for a COMSOL-based MOGA 

optimization. This strategy has been demonstrated to lead to optimized systems in a 

reasonably short time of a few hours, compared to many days when using COMSOL-

based MOGA only. The optimization process is fully automated and may help electron 

optics designers to quicker find solutions for complex electrostatic systems. 
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6. Local versus Global Optimization of Electron Lens 

System Design 

Abstract 
In electron optics, the design of electron lens systems is still a challenge. To optimize 

such systems, the objective function which should be calculated, depends on the 

electric potential distribution in the space created by the lenses. To obtain the electric 

potential, the existing methods are generally based on some mathematical techniques 

which need to mesh the space of the lens system and derive the electric potential at 

all mesh points. Hence, calculation of the objective function for such systems is 

computationally expensive. Therefore, applying a fully automatic optimization routine 

has not yet been feasible, especially for lens systems with many free variables. Hence, 

the study of the objective-function landscape of such problems has not yet been 

performed. 

One of the questions of interest for optical designers, that has not been studied in the 

literature, is whether this problem can be solved by a local optimizer or is it necessary 

to apply a global optimizer. Recently we succeeded in implementing a method (based 

on a so-called SOEM (Second Order Electrode Method) technique) which calculates 

the electric potential in a fast and reasonably accurate way. In this paper, that method, 

is implemented to perform the study of local versus global optimization for electron 

lens design. The global optimization method here is performed by GA (Genetic 

Algorithm). The objective function is taken to be the probe size of the electron beams 

at the image plane.  The results of our study show that the objective function of this 

problem has many local minima and the optimization of such problems cannot be 

handled by a local optimizer. GA is shown to perform well by overcoming these 

multiple-local minima to arrive at a global minimum. 
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6.1 Introduction  
Optimization of multi electrode lens systems, is still a challenging task for electron-

optical designers. The challenge is due to the fact that the objective function for such 

problems (i.e. spot size) cannot be analytically formulated. The existing methods that 

numerically calculate the objective function, are based on  methods such as finite 

element method, boundary element method, or finite difference method that all need 

to mesh the space of electrode lens systems. Calculation of optical parameters on all 

these mesh points is then needed to derive the objective function for each system. 

Using such calculation intensive methods in an optimization routine significantly 

increases the optimization time. It causes running a fully-automatic optimization 

routine  to be not easily feasible, especially when many free parameters are involved. 

Due to the problem mentioned above, to our knowledge, there is not yet a fully 

automated optimization routine which can handle the optimization of a multi electrode 

lens system, having all its geometry and voltages as free parameters. Therefore, 

studying the objective function landscape of such problems, even the question of 

whether the optimization of multi-electrode lens systems is a global or local 

optimization problem,  has still not been performed and answered in the literature. 

This topic is of interest to electron optical designers and can be very useful in speeding 

up the optimization process in electron lens design.  

Recently we have introduced and implemented successfully a fast method to calculate 

the electric potential (hereafter we call it potential), and therefore the objective 

function, in electron-lens design problems [1] (based on a so-called Second Order 

Electrode Method (SOEM) method, first proposed by Adriaanse and Barth in 1989 [2-

4]). Once we had developed such an automated and fast routine, we decided to use 

that to perform the above mentioned study on the electron lens design. The main 

intention of this work is to investigate the objective function landscape of a multi-

electrode lens design system, and whether or not it has many local minima, and if this 

problem can be handled by a local optimizer or not.  

The objective function (spot size) calculated by SOEM has some deviation from its 

precise value [5], which could be derived using Finite Element Method (FEM),  however, 

it is shown in our previous work [1], that the trend of decrement of spot size that 

resulted from optimization based on SOEM is almost the same as the one calculated 

accurately based on FEM (using COMSOL Multi-physics  software, version 5.3a). The 

formulation of objective function calculation (derivation of spot size from the potential) 
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in SOEM, mathematically, is also similar to the one calculated by FEM. The main 

intention of this work was not to run the optimization to  accurately ascertain the best 

optimized system, but simply to study the local versus global optimization, so this can 

be performed by the fast, approximate SOEM method. Therefore, all optimization for 

this study is performed based on SOEM. Genetic Algorithm (GA) [6] is used as a global 

optimizer to make this study. 

This optimization problem also has a constraint. In order to apply the constraint two 

approaches are taken. The outcome of these approaches are also analyzed and 

illustrated in this paper. The chapter is structured as follows. In section 6.2, 

Optimization parameters, namely objective function, free variables, bounds and 

constraints for multi-electrode lens optimization problems, are described. 

Implementation of local and global optimization in MATLAB (Matrix Laboratory, version 

r2016 b), as well as constraint implementation are addressed in section 6.3. The study 

of local versus global optimization is described and analyzed in section 6.4. Section 6.5 

contains the conclusion of this study. 

6.2 Optimization Parameters  

6.2.1 Objective Function 

In electron-optical imaging systems, the main application of electrode lenses is bending 

and focusing a bunch of electron beams by electric fields for the purpose of image 

formation. The better the electrode-lens system,  the higher the resolution of the 

image. To achieve an image with higher resolution, a so-called optical parameter of 

“spot size” (the cross section area of a bunch of electron beams passing through the 

system, at the image plane), should be minimized. Thereby, this optimization problem 

is to obtain the system with the smallest spot size at the image side. So, the spot size 

(at the image side) is taken as the objective function. 

The spot size, assuming the lens only suffers from axial aberrations such as chromatic 

and spherical aberrations, can be estimated as [7]: 

𝐷𝑠
2 = (0.18 𝐶𝑠 𝛼

3 )2 + (0.6 𝐶𝑐  𝛼 
𝛥𝑈

𝑈
)2 

(6.1) 

where, 𝐷𝑠 stands for spot size, 𝐶𝑠 and 𝐶𝑐  are spherical and chromatic aberration 

coefficients, respectively. This estimation is presumed to be valid for our case-study. α 

is the half opening angle of the beam (chosen to be 10 milliradian in this case-study), 

ΔU is the energy spread of the electron source (taken as 1eV) and U is the acceleration 

energy (equal to the potential at the image plane = 1kV), these values are typical for 
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low voltage electron beam systems. To get the spot size (𝐷𝑠) at the image side, all 

parameters mentioned in equation 6.1 should be calculated at the image side. Here, 

first 𝐶𝑠 and 𝐶𝑐  are calculated at the object side, then using the magnification (M), they 

are converted to their correspondent values at the image side.  

𝐶𝑐  and 𝐶𝑠 at the object side, can be calculated as a function of axial potential (𝜑), its 

first and second derivatives (𝜑' and 𝜑''),  and the imaging principle ray of  𝑟𝑎 (𝑧)  starting 

on-axis, from the object side, with a slope of 1 as [8]:  

𝐶𝑠 =
1

16𝜑0
1/2
∫ 𝜑1/2
𝑍𝑖

𝑍𝑜

{(
5

4
(
𝜑′′

𝜑
)2 +

5

24
(
𝜑′

𝜑
)4) 𝑟𝛼

4 +
14

3
(
𝜑′

𝜑
)3𝑟𝛼

3𝑟𝛼
′

−
3

2
(
𝜑′

𝜑
)2𝑟𝛼

2𝑟𝛼
′2} 𝑑𝑧 

(6.2) 

𝐶𝑐 = −𝜑0
1/2
∫ (

3𝜑′
2

8𝜑
5
2

)𝑟𝛼
2

𝑍𝑖

𝑍𝑜

𝑑𝑧 

(6.3) 

where 𝜑0 refers to the potential at the object side.  

The above mentioned principle ray ( 𝑟𝑎 (𝑧) ) is derived by ray tracing numerically, using 

the equation of motion of electrons, in the paraxial approximation [8]: 

1 + ɛ

1 + 2ɛ
φ(𝑧). 𝑟𝑎

′′(𝑧) +
1

2
φ′(𝑧). 𝑟𝑎

′(𝑧) +
1

4
φ′′(𝑧). 𝑟𝑎(𝑧) = 0  

(6.4) 

The spot size at the image side is calculated by inserting Cs and Cc at the image side 

into equation 6.1. From now on, where the spot size is mentioned, it means the spot 

size at the image side.  

Spot size, as shown above, can be derived from the axial potential and its derivatives. 

For multi electrode lenses, with many free parameters, to reach a satisfactory result, 

this function should be evaluated for thousands of systems within an optimization 

routine [1]. As the potential calculation part is the most time-consuming part of the 

objective function evaluation, a fast method of potential calculation for this study is 

needed. Therefore, SOEM has been applied for the potential calculation part of this 

research.  

6.2.2 Free Variables and Bounds   
To explain the optimization parameters such as free variables, bounds and constraints 

for multi-electrode lens systems more specifically, an example of a system of multi-

electrode lenses with 6 lenses is taken as the case-study. This choice was made 
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arbitrarily, simply as an example which has enough complexity as a type of multi-

electrode lens system. Changing it to other numbers of electrodes is straightforward. 

A schematic of this system in 3D is shown in Figure 6.1. As the system is rotationally 

symmetrical, it can be converted and solved as a 2D problem (Figure 6.2).  

Z [mm]0

𝑇1  

𝑒− 

𝐺3  

𝑅4  

𝑉2  

Image 
plane  

Figure 6.1. a. Schematic of the rotationally symmetrical electrostatic lens system including 6 
electrodes in 3D. b. Schematic of the rotationally symmetrical electrostatic lens system 
including 6 electrodes in 2D. 𝑇𝑖, 𝑅𝑖,  and 𝑉𝑖,  correspond to thicknesses, radii and voltages at 
each electrode, 𝐺𝑖, are gaps between two sequential electrodes. 

6.2.3 Constraints 
The constraint is related to the image position. It is aimed to get the image at a fixed 

position 𝑋𝑐. For our case-study, this distance is taken to be 3.5 mm from the entrance 

plane of the first electrode (shown in Figure 6.3). A deviation up to a few micrometer 

(~ 3 µm) is acceptable in our case-study. Therefore the constraint is determined as:  

 

3.48 𝑚𝑚 < 𝑋𝑐 < 3.52 𝑚𝑚 (6.5) 

6.3 Implementation in MATLAB 

6.3.1 Applying Global and Local Optimizers 
Having defined the optimization parameters, a global and local optimizer can now be 

implemented. Genetic Algorithm (GA) and a so–called “fmincon” local optimizer, in 

MATLAB, are used as the global and local optimizer, respectively. The choice of using 

GA as a global optimizer was based on our experience of its successful performance 

on optical lens system design [9] and recently in electron lens system design [1]. There 

are different optimization solvers which can be implemented as the local optimizer in 

MATLAB. Our optimization problem is a nonlinear problem. In MATLAB, “fmincon” is 

offered as a suitable optimizer for such a problem. This optimizer does not guarantee 

to find the global minima, but does guarantee to arrive at the local minima of the 

objective function-landscape’s valleys, dependent on the point where it is initiated. 

Therefore, this optimizer is used as a local optimizer for this case-study.  
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6.3.2 Constraint Implementation  
Generally, an optimization program can be divided into two major parts.  The function 

which generates systems (here we call it “Optimization function” and in this work this 

is performed by GA or “fmincon”), and the “objective function calculation” part. An 

optimization program with constraints includes the third additional part; the 

“constraint evaluation” function.  

The “Optimization function” part generates systems starting with those randomly 

created in GA, whereas in “fmincom” it starts from an initially given system. 

Afterwards the process continues in GA by generating the new systems using GA 

parameters such as crossover, mutation, population, generation, etc. and ends based 

on its stopping criteria (that can be determined as the maximum number of 

generation, execution time, value of the objective function). In “fmincon” this process 

is performed based on the objective functions` gradient, controlled by several limiting 

parameters such as iterations, tolerance, etc. The boundaries  of the problem 

(maximum and minimum ranges of the geometry and voltages of the systems) should 

also be determined in this part.  

Based on our previous experience of using GA in optimization of such systems having 

constraints [1], also considering the fact that the intention of this investigation was 

not to get the best optimized system, but to achieve some results out of GA which can 

be used as comparison between a global and a local optimizer,  the GA parameters 

are chosen to be: population = 50 and maximum generation = 100. Crossover and 

Mutation are selected to be 'crossoverarithmetic' and  'mutationadaptfeasible', 

respectively. Elitism is taken to be 1. 

In a standard way, for the optimization routine with constraints, the generated 

systems are then imported to the second part, i.e. “constraint evaluation”, to check 

whether or not the constraints are satisfied. The third part, the “objective function 

calculation”, calculates and evaluates the objective function (spot size) for the systems 

which had already satisfied the constraints.  

However, due to the nature of gradient-based  “fmincon” and the possibility of having 

a non-smooth objective function, in order to ensure the constraints be well-satisfied, 

the constraints are applied within the objective evaluation part and not by 

implementing the constraint function as a separate function in MATLAB. To have both 

GA and “fmincon” run in a similar fashion, for the sake of having fair comparison, this 

strategy is applied to both. This approach is presented below, and schematically 

shown in Figure 6.3. 
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Figure 6.3.  Schematic of the optimization routine, when the constraints are brought inside the 

body of objective function evaluation code. 

After the first part (“optimization function”) generates the system/systems, they are 

evaluated for the constraint. If the constraint is not satisfied, a high constant value is 

assigned to the objective function, and the function ends, otherwise, it continues to 

calculate the real image plane position. Therefore, the systems which do not satisfy 

the constraint automatically would have a very small chance of being chosen as the 

parents to bring to the next generations for breeding the offspring in GA, or to be 

among the next selected systems in “fmincon”. 

To choose the high constant value, it should be noted that this value should be high 

enough that it exceeds the real feasible values for the systems which are within the 

constraints. Otherwise, these systems could enter the selection process by their non-

real low objective function values.  As the spot size for the systems in which their 

image plane is within the ranges of 3.48 𝑚𝑚 ≤ 𝑋𝑐 ≤  3.52 mm, mostly is below  40 

nm, taking a value of 100 can be a proper value. Therefore, this approach (here called 

approach A) is applied by assigning a constant value of 100 as the objective function 

value for systems which are not within the constraints: 

Approach A: 

If 3.48 𝑚𝑚 ≤ 𝑋𝑐 ≤  3.52 mm ∶ Spot size = its real value                

If 𝑋𝑐 >  3.52 mm ∶  Spot size =  100   

If 𝑋𝑐 < 3.48 𝑚𝑚 ∶  Spot size =  100                                  
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However, by this approach, all systems which are not within the ranges of the 

constraint, no matter how far they are out of the range, get a similar value of 100. It 

sounds more efficient to give a high value that depends on the distance of them from 

the border of the constraint. The spot size based on this approach, considering the 

value of maximum feasible spot size (i.e. = 40), is formulated as:  

Approach B: 

3.48 𝑚𝑚 ≤ 𝑋𝑐 ≤  3.52 mm        :  Spot size = real value  

If 𝑋𝑐 >  3.52 mm :  Spot size = 50 ∗ (𝑋𝑐 − 3.52 + 1) 

If 𝑋𝑐 < 3.48 𝑚𝑚 :   Spot size = 50 ∗ (3.48 − 𝑋𝑐 + 1) 

Choosing this format of formulation and taking value of 1 to the offset, and 50 for 

multiplication factor was arbitrary, simply to ensure that it takes a value above 40. 

Taking other values may speed up the optimization further and can be played with. 

However, for now this format and value, was working properly and efficient enough 

for this study.  

To take the more efficient constraint implementation approach, these two methods 

(i.e. approach A and B) are  tested and compared. As this comparison is performed 

only to select the better constraint implementation approach for the rest of the study, 

therefore, it was sufficient to apply only one of the optimization methods. GA is 

implemented for this search. Since GA, as a global optimizer, is assumed to cover 

systems having more variety with larger differences in their objective function values, 

it is better for such an evaluation and data analysis. The results of this comparison are 

discussed in the following section. 

6.3.3 Comparison of two approaches on constraint 
implementation 

As GA is a semi-heuristic search optimization technique, the optimizations have been 

run for each approach (approach A and B) 10 times to provide statistically more 

reliable data. Each time GA is run for 5000 systems (Population=50 and 

Generation=100). As representative of the 10 runs, the plots for three runs are 

presented in Figure 6.4. The first row (a, b and c) is related to approach A, the second 

row (d, e and f) corresponds to approach B.  
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Figure 6.4.  Three runs related to implementation of two different approaches A and B (the 

first row (i.e. (a), (b) and (c)) are results of approach A, the second row (i.e. (d), (e) and (f)) are 

related to approach B). 

 

Figure 6.5.  Result comparison from implementation of approach A and B (shown by options 2 

and 1 in the figure, respectively). The plot represents the data related to the minimum value 

of the objective function which is found after 5000 system iterations for 10 different runs. 

As can be seen at a glance from both Figure 6.4 and Figure 6.5, approach B could get 

better results. This has also been logically anticipated, as approach B endows the 
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optimization routine with greater intelligence compared to approach A. This is 

achieved by providing the optimization process with insights into the varying degrees 

of deterioration among discarded systems, unlike approach A, where all discarded 

systems are considered equally weighted. The minimum objective functions reached 

by approach B after 5000 iterations (shown by the blue columns in Figure 6.5) has in 

general, lower values compared to the ones from approach A (yellow columns). For 

some runs, GA could not even find a system which satisfies the constraint, within 

evaluation of 5000 systems (Figure 6.4(b) or first and 7th column in Figure 6.5).  

Hence, in total, it is clear from the figure, that approach B could, on average, find a 

much better system. It can be concluded that, using a value depending on the distance 

from the border of the constraints (approach B) helps the optimization to get better 

results. Therefore approach B is taken as the constraint implementation approach for 

our problem. 

6.4 local versus global optimization 
By selecting the constraint implementation method, now our study of global versus 

local optimization can be performed. To conduct this study, the following steps are 

taken. First, the optimization routine using the GA for the selected specific number of 

generations and populations is executed. The constraint on image plane, is applied 

using approach B. Some points which were intermediate systems found by GA are 

taken and fed to “fmincon” as the initial points to start with. “fmincon” is executed 

from each point until it converges to a solution. This is shown schematically in Figure 

6.6. 

To analyze, the data from one of the GA runs (Figure 6.4(d)) out of 10 previous runs is 

taken as a sample. Figure 6.7 presents this sample. The top plot, includes the objective 

function data for the systems which are within the constraints, together with those 

which have not satisfied the constraints (the one in which their values are above 40 

nm). The bottom plot shows the data only for those which satisfied the constraint, by 

omitting the systems which were not within constraint. The total number of systems 

to be evaluated with GA, is taken to be 5000 (population=50, generation=100). 
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Figure 6.6. Schematic of optimization implementation for combined “fmincon” and GA.    
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Figure 6.7.  A run using GA with 5000 evaluated systems  (left): spot size versus iterations, for 

all systems including the ones which have not satisfied the constraints, (right): spot size versus 

iterations only for the systems which had satisfied the constraints. 

Four different intermediate points are taken from this run (points A, B, C and D, shown 

in Figure 6.8), and fed to “fmincon” as its initial system to start with. 

 

Figure 6.8.  Spot size versus iterations, for “fmincon” and GA. 

If the optimization problem is a global one, it is expected that “fmincon” can arrive at 

the same solution as GA. However, as can be seen, each system could be improved 

only slightly by “fmincon”and could not arrive at the last point which had been found 

by GA (Figure 6.8) (point A: reached from 10.35 nm to 8.39 nm, point B from 7.19 nm 

to 7.02 nm, point C from 5.72 nm to 5.55 nm, point D from 4.91 nm to 4.87 nm). It 
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shows that this problem is a global optimization problem and not a local one, and 

there are multiple local minima in the objective function landscape of this problem.  

It also illustrates that GA can properly perform this optimization problem, by starting 

from randomly generated systems having high spot size, overcoming many local 

minima, reaching to a satisfactory result of a system with very small spot size. 

Moreover, looking at the last point tested by “fmincon” (point D in Figure 6.8), it is 

seen that this point could also not be improved further by the “fmincon” than the 

point where GA converged. This shows that GA could  act by itself as a good local 

optimizer and bring the point from different valleys of objective functions to their local 

point. 

6.5 Conclusion 
In this work, an investigation on local versus global optimization has been performed 

to find out whether the objective function landscape of electron lens system 

optimization is either a global or a local problem. The results show that the search 

space of this problem has multiple local minima . For example, starting from a probe 

size of 10.35 nm, the local optimizer reaches a probe size of 8.39 nm The global 

optimizer, starting from a probe size of 10.35 nm, reaches a probe size of 4.87 nm.  A 

local optimizer, therefore, is not sufficient to find a satisfactory result of such 

problems and a global optimizer should be used instead.  

It is also shown that a Genetic Algorithm acts as a powerful global optimizer, which 

could handle this complex multi-dimensional objective function problem having many 

local minima. However, a local optimizer might be used in addition to GA, to speed up 

the process of finding the global point.  
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7. Tuning Parameters in the Genetic Algorithm 

Optimization of Electrostatic Electron Lenses  
 

Abstract  
The design of electrostatic electron lenses involves the choice of many geometrical 

parameters for the lens electrodes as well as the choice of voltages applied to the 

electrodes. The purpose of the design is to focus the electrons at a specific point and 

to minimize the aberrations of the lens. In a previous study, genetic algorithm 

optimization was introduced to aid the designer. For speeding up the electrostatic 

field calculations, new methods for analytical approximations of the field near the 

optical axis were introduced. In this paper, the influence of the main tuning 

parameters of the Genetic Algorithms are analyzed. The analysis is performed on a 

typical electrostatic lens system including 6 electrodes.  Different combinations of 

population sizes and number of generations are taken and the quality of the optimized 

lens system is compared. It is seen that within a constant computational effort (time 

or total number of system evaluations), a lower population size with a larger number 

of generations can achieve better results compared to having larger population size 

and fewer generations. The combination of Crossover Heuristic with Mutation 

Gaussian showed significantly better results compared to all other combinations of 

Mutations and Crossovers. Crossover Fraction is also evaluated to find the most suited 

values of this parameter. 

Keywords 
Genetic Algorithms, Tuning Parameters, Electrostatic Lens, Lens Design Optimization. 
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7.1 Introduction 
Optimization routines such as Genetic Algorithms (GAs), though very effective for 

finding the optima in complex functions, have not been extensively used for the 

optimization of electrostatic electron lenses. In such lenses, the objective function is 

a combination of obtaining the correct focus position and the minimization of lens 

aberrations. For calculating these, one needs to find the electric field of the lens which 

is generally calculated by accurate methods such as the Finite Element Method (FEM). 

To perform the optimization while all geometries and voltages of the lens electrodes 

may vary, thousands of systems need to be evaluated. Using the accurate field 

calculation methods such as FEM (60 seconds per system evaluation on a modern PC), 

the optimization takes a very long time, up to several days [1,2]. In 2018, we presented 

an optimization technique based on a fast but approximate model to calculate the 

fields around the optical axis [1, 3, 4] (0.4 second per system evaluation on the same 

PC).  We combined this with an accurate method to calculate the field in a second 

optimization step. In a further search to reduce the computation time, we now analyze 

the influence of the tuning parameters of the Genetic Algorithm. We shall vary the 

population size, the number of generations, mutation method and cross-over type. In 

this study there is no need of fine tuning the electron lens by an accurate field 

calculation,  so only our approximate method (the second order electrode method, 

SOEM) is implemented to calculate the electric field. The study is performed on a lens 

system having 6 electrodes.    

7.2 Optimization Problem 

An example of an electrostatic lens with 6 lens electrodes is selected as the case-study 

to perform the optimization. A cross-section of the round lens is shown in Fig 7.1. The 

free variables for the optimization are the thicknesses (𝑇𝑖), Radii (𝑅𝑖) and voltages 

(𝑉𝑖) of each electrode, and the gaps between the electrodes (𝐺𝑖). In total, there are 

23 free variables. Any imaging system such as the electrostatic lens system suffers 

from aberrations. The smaller the aberrations, the higher the resolution of the image 

and therefore the higher the quality of the lens system. The aberrations can be 

calculated by aberration integrals, using the electric field on axis and a first order 

(aberration-free) trajectory. These aberrations can be combined into a contribution to 

the spot size when the lens is used to image an electron source on a sample as is done 
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in a scanning electron microscope. The objective function for the optimization 

problem is hence the spot size at the image side.  

 

Figure 7.1. A 2D illustration of a typical multi-electrode lens systems with 6 electrodes.   

In our case-study it is presumed that the lens only suffers from spherical and chromatic 

aberrations. The spot size (presented by 𝐷𝑠 in equation 7.1) can be calculated using 

the equation below [5]. 

 

𝐷𝑠
2 = (0.18 𝐶𝑠 𝛼

3 )2 + (0.6 𝐶𝑐  𝛼 
𝛥𝑈

𝑈
)2 

(7.1) 

            

Where 𝐶𝑐  and 𝐶𝑠 stand for chromatic and spherical aberration coefficients, 

respectively. 𝛼 (the half opening angle of the beam) is taken as 10  milliradian. 𝑈 and 

∆𝑈 (the acceleration energy and the energy spread of the electron source) are chosen 

here to be 1 kV and 1 eV, respectively. The constraint of this optimization problem is 

to have the image at a fixed positon 𝑋𝐶  (at 15mm). 𝑋𝐶  is also a function of the electric 

field and can be calculated using ray-tracing. In our case-study MATLAB is used as the 

programing language. To calculate the objective function and image position (i.e. 𝐷𝑠 

and 𝑋𝐶), the field calculation is performed by SOEM and our ray-tracing codes use the 

paraxial approximation. The computational work related to this study is performed on 

a PC with an Intel (R) Xeon (R) W-2123 CPU @3.60 GHz and 32 GB of RAM. 

7.3 GA Tuning Parameters  

7.3.1 Population size and number of Generation 
The population size (P) is determined by the number of members (here electrostatic 

lens systems) in each generation.  The number of generations in an optimization 

execution is called G.  To perform the assessment, different combinations of 

population sizes and number of generations are taken, both with the values 20, 

Z [mm]

𝑇1  𝐺3  𝑉2  

Primary 
beam

𝑒− 

𝑅4  
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50,100, 200 and 500, so 25 combinations in total. Since in GA each run with identical 

parameters can yield a different optimization result, the optimization is run 10 times 

to give statistically reliable results. The results are represented in Figure 7.2. The 

average, maximum and minimum of the Objective Function (OF) values are given in 

blue, gray and green bars, respectively. The units of the objective function are in 

nanometers. The black thin bars inside the blue bars illustrate the standard deviation 

in the averaged OF values in 10 runs. The corresponding times are given in Figure 7.2b. 

Note that in our optimization problem the constraint function is added to the 

objective function.  By giving the lens systems which did not satisfy the constraint a 

very high contribution to the objective function (approach A mentioned in chapter 6 

), the lens systems which do not satisfy the constraints are automatically thrown out 

of the solution pools. To evaluate the GA performance, OF values and the execution 

time are the two factors which should be evaluated together. It can be seen in Figure 

7.2a. that, as expected, increasing the population size and the number of generations, 

the average value of the objective function decreases (visualized by the dashed yellow 

lines). From Figure 7.2b it can be seen that at very high population sizes and number 

of generations, the execution time increases dramatically while the OF values shows 

no marked improvement. Hence, it can be concluded that if GA is run for a shorter 

time-frame, a larger improvement can be recognized in that short period rather than 

longer. This conclusion is in line with the investigations performed on GA in other 

optimization problems [6]. 

Another  study on population and generation is to evaluate the GA performance within 

a fixed time, that is with a specified number of system evaluations NPG = 𝑃. 𝐺; the 

important question is then “for a fixed value of NPG, which combination of P and G 

achieves the better results”. To study this, the cases with the same NPG having 

different combinations of P and G are picked from Figure 7.2a and shown together in 

Figure 7.3. The options with smaller G and larger P are shown in dark blue bars, and 

the options with larger G and smaller P are shown by light blue bars. The black thin 

bars inside the blue bars illustrate the standard deviation in the averaged OF values in 

10 runs.  
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In all cases except the first one (i.e. NPG =1000), the light blue bars are lower than the 

dark blue bars. Note however that the first case shows an unstable result as can be 

concluded from the large standard deviation. Clearly NPG =1000 is too small for the 

optimization with so many free parameters. It is hence concluded that for the same 

amount of evaluations NPG , a GA optimization with  a higher number of generations 

and a smaller population size achieve a better result than a larger population size and 

a lower number of generations. This conclusion is in contrast with what has been 

reported in [7]. However, there were also other studies [8] in line with what we 

conclude here.  

      a 

b   

 

Figure 7.2. a. GA performance for 25 different combinations of P and G (shown in the x-axis) b. 

The corresponding time for each of the 25 cases. 
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Figure 7.3. Graphs of GA runs to illustrate comparison of similar values of NPG, having different 

combinations of P and G.  

 

In [8] it is shown that a large number of generations is better when the optimization 

problem has many basins of attraction, with multiple local minima in the objective 

function landscape. In such situations, having a large population size would not help 

GA to search the area more extensively, but it will degrade the GA performance since 

it will cause GA to be trapped in the wrong basin of attractions and stay in a local 

minimum. So probably our situation is like that. To continue the rest of the analysis on 

other GA tuning parameters, a fixed value of P and G is taken at which the computation 

time was not very long, while the objective function was reasonably small. For this 

aim, option 8 (pointed out by ‘B’ in Fig. 7.2.b.) with NPG=5000 (P=50, G=100) and run 

time ~100 Sec, is selected.  

7.3.2 Crossover and Mutation 

This section is devoted to discovering the most suitable options of the two main tuning 

parameters of GA, Crossover and Mutation. The mutation type concerns the 

distribution of the random changes in the population within one generation. The 

crossover type determines how the offspring in a next generation is formed from 

parents in the earlier generation.  

There are 3 different Mutation methods namely Gaussian, Adapt-Feasible and 

Uniform, and 5 different options for Crossover; Scattered, Heuristic, Single point, Two 

point and Arithmetic available in MATLAB (in total 15 different combinations). Figure 

7.4a gives the results of the comparison. 
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The Y-axis shows the average value (blue bars), the maximum (gray bars) and 

minimum value (green bars) of the objective function value for 10 runs per 

combination. As can be seen from Figure 7.4a, the best performance comes from the 

combination Crossover Heuristic and Mutation Gaussian.  However, to be able to 

better compare the options, a 2D graph for averaged values of the objective functions, 

in a categorized manner (grouped by their different Mutation methods) is given in 

Figure 7.4b. Looking at this figure, by comparing bars with the same colors, it is seen 

that all cases with different crossover methods have the smallest OF values when 

combined with Mutation Gaussian.  

a 

b 

Figure 7.4. a. 3-D Bar graph illustrating the objective function values averaged over 10 runs for 

15 different combinations of Crossover and Mutation GA options. b. The data of graph a when 

categorized according to Mutation and Crossover type.  
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Among Crossover methods, it is seen that Crossover Heuristic achieves better results 

than other mutation types. Noticeable is that Mutation Uniform performs the worst. 

Crossover Single-point also achieves the worst result compared to other Crossover 

options. It is important to mention that the less favorable tuning parameters in our 

case study, which have demonstrated poorer results, are not configured as the default 

settings in MATLAB's Genetic Algorithm (GA). Regarding the other tuning parameters, 

the variations in results, also by considering the standard deviations, are not 

substantial. As a result, users can confidently utilize either MATLAB's default GA 

settings or the recommended tuning parameters provided here, without significant 

concern about encountering substantial differences in outcomes. 

7.3.3 Crossover Fraction 
Another tuning parameter of GA which can influence the results is the Crossover 

Fraction, that is the fraction of individuals that is incorporated in the next generation 

through the crossover process. The study is performed on 9 different values of the 

Crossover Fractions varying from 0 to 1 with a step sizes of 0.1. The GA is run 10 times 

with a Population of 50 and Generation of 100. The Crossover and Mutation methods 

are taken as Crossover Heuristic and Mutation Gaussian. The results are given in Figure 

7.5, with the average values as bars in blue with the error bars as thin black bars. 

Crossover fractions of 0.5 or 0.6 give the smallest values of the objective function. The 

result can be understood by realizing that having an intermediate value of the 

Crossover Fraction allows enough diversity in the population occurs while the diversity 

is not too high to avoid the convergence of the GA. 

 

 

Figure 7.5. 3-D Bar graph illustrating the objective function values averaged over 10 runs for 9 

different Crossover Fraction values.  
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7.4 Conclusion 
Having implemented a Genetic Algorithm optimization for electrostatic electron lens 

design allowed us to perform a study on the influence of GA tuning parameters. The 

study is performed on a typical lens with six electrodes which has 23 free variables. 

The extension to more complex designs is straightforward. Our study illustrates that 

the GA has the robustness to be implemented as a global optimizer for electrostatic 

lens design. It also shows that there is not one optimized design because the value of 

the final objective function is different every time the GA is run. This implies that the 

fine tuning of the GA parameters is important for optimizing the performance of the 

GA. An analysis is performed of the impact of the values of population size and number 

of generations. As expected, the results improve by increasing both values. However, 

a population of 50 with 100 generations can provide reasonably good results. 

Increasing to higher values of population and generation will not significantly improve 

the results while the related computational time dramatically increases. It is also seen 

that within a constant computational effort (time or total number of system 

evaluations), having a lower population size than the number of generations can 

achieve better results than having a larger population size than the number 

generations. The Crossover and Mutation types as the main tuning parameters of GA 

are analyzed to find the most suitable options. It is found that irrespective of the type 

of Crossover, the Mutation Gaussian achieves the best result. Moreover, Crossover 

Heuristic shows the best performance among different crossover types. The 

combination of Crossover Heuristic with Mutation Gaussian shows significantly better 

results than all other combinations of Mutations and Crossovers. Crossover Fraction 

is also evaluated to find the most suitable values of this parameter. It is shown that a 

Crossover Fraction of 0.5 or 0.6 achieve the best results. The guidelines provided here 

for tuning the GA parameters may be helpful not only for the optimization of 

electrostatic lens designs, but also for other GA optimization of functions with similar 

complexity. 
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8. Comparison of Different Optimization Techniques in 

Electron Lens Design 

Abstract  
To design electron lens systems, applying a fully automated optimization routine has 

not yet been feasible, especially for the case where the optimization has many free 

variables of the lens system, such as all parameters that define the geometry of the 

lens electrodes and the voltage of each electrode. Hence, the study of the 

implementation of different optimization procedures has not yet been possible either. 

In one of our previous studies, we have proposed to use the so-called Second Order 

Electrode Method  (SOEM) which performs the electrostatic field calculations in a very 

short time by the approximations of the field near the optical axis. There, using SOEM 

in field calculation, a Genetic Algorithm (GA) was successfully implemented to 

optimize the electron lens systems. One of the questions  that has not been studied 

and answered in the literature yet, is whether the GA is the most suitable option 

among different optimization techniques for the design/optimization of electron lens 

systems. In this paper, by implementing the SOEM technique as the field calculation 

method, different optimization procedures are implemented and their performances 

are compared. For this study, a typical six electrode lens system is employed. The 

implemented optimization techniques include calculus-based local optimization 

('Fmin') and metaheuristic methods such as GA, Particle Swarm Optimization (PSO), 

and Simulated Annealing (SA). The results demonstrate that the population-based 

global optimization techniques like GA and PSO significantly outperform single 

solution-based local optimization methods such as 'Fmin' and SA. Additionally, PSO 

shows slightly better performance than GA, although it cannot be concluded that 

PSO will always outperform GA for every electron lens design problem. Furthermore, 

in the comparison between the two single-based optimization techniques, the 
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metaheuristic approach (SA) outperforms the calculus-based one ('Fmin'). Hence, we 

recommend implementing metaheuristic, global, population-based optimization 

techniques like GA and PSO for the optimization electron lens systems. 

Keywords 
Electron Electrostatic Lens Design, Global Optimization, Local Optimization, Meta-

heuristic based Optimization Algorithms, Genetic Algorithms, Particle Swarm 

Optimization , Simulated Annealing, SOEM (Second Order Electrode Method).
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8.1 Introduction 
Design and optimization of electron lens systems are yet a laborious work for electron-

optical designers. In such lens system optimization, the objective function is to obtain 

the correct focus position while to minimize lens aberrations. To calculate these, the 

electric field of the lens system, which is generally calculated by accurate methods 

such as the Finite Element Method (FEM) [1] have to be derived. To perform the 

electron lens system optimization while voltages and all geometries of the electrodes 

are free parameters of the optimization, thousands of systems need to be evaluated 

[2, 3]. Using the existing accurate field calculation methods such as FEM (60 seconds 

per system evaluation on a modern PC), a fully automated optimization becomes 

impractical in a feasible time [2, 3]. Due to the problem mentioned above, to our 

knowledge, there is not yet a fully automated optimization routine which performs 

the optimization of a multi electrode-lens system, having all its geometric dimensions 

as free parameters. Therefore, studying the performance of different optimization 

techniques for electron lens system design has not been studied either. Previously, 

the authors have presented an optimization technique [2, 3] based on a fast but 

approximate so-called Second Order Electrode Method (SOEM) (proposed by 

Adriaanse in 1988) [4, 5] to calculate the electric fields around the optical axis (0.4 

second per system evaluation on the same PC) while implementing Genetic 

Algorithms (GA) [6, 7].  Now, having such an automated and fast routine developed, 

we decided to use that to perform the above mentioned study on comparison of the 

performance of different optimization techniques for the electron lens design 

optimization. In our previous studies on electrostatic lens system design optimization, 

it was demonstrated that in optimization of electrostatic lens systems, a global 

optimization is needed [8]. Our case-study is a highly-nonlinear complex optimization 

problem [3, 8]. In many papers it has been shown that for such optimization problems 

the meta-heuristic optimization techniques can be the most suitable choice. However, 

which one of the meta-heuristic technique provides the best result in our case-study? 

This question will be answered in this paper. In addition, a comparison with a calculus-

based local optimization is presented here to show the difference between the 

performance of a local optimization compared to a global one.  

First, a brief recap of different types of the meta-heuristic optimizations and the 

reason why it is hard to predict in advance which type is the best choice for our case-

study, is presented. In section 8.2 the optimization problem is defined. Section 8.3 
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presents a brief introduction of the most well-known meta-heuristic optimization 

techniques that are going to be compared in our case-study. In 8.4 the results of the 

implementation and comparison are provided and the conclusion is presented in 8.5.  

More than 50 years have passed since the time when the mathematical foundations 

of Metaheuristic-based optimization algorithms (hereafter  called MA)  [9-11] were 

introduced by the pioneers of this work who include Holland [12], Schwefel [13], Foget 

et al. [14] and Rechenberg [15]. MA includes many different algorithms, the most 

common of which are Genetic Algorithm (GA) [16], Particle Swarm Optimization (PSO) 

[17] and Simulated Annealing (SA) [18]. From the beginning,  the practitioners of this 

field had questions on how to select the optimization algorithm type. “Is there any 

specific type of optimization algorithm which outperforms the others?”, and “Can we 

predict a specific optimization algorithm which can achieve the best performance out 

of the choice of algorithms for a defined optimization problem?” 

In all these years, despite considerable efforts performed by the researchers in this 

field, it has been discovered that finding the type of optimization algorithm which is 

best in a specific optimization problem, is neither a problem that can be generalized, 

nor one easy to predict before running the optimization [19]. It is represented as “No 

Free Lunch” (NFL) theory in optimization [20].  

In other words, a specific type of MA which outperforms the other types in one 

optimization problem may not do so in another problem with a different objective 

function landscape. Having the information from the objective function landscape will 

help to select the most appropriate type of MA. However, knowing the objective 

function landscape in advance, before running the optimization, is a challenge as it 

requires the optimization to be run first. Hence, it became a dilemma how to select 

the most appropriate algorithm among MAs for a specific optimization problem. One 

way to find this is to run the optimization for different problems, with a variety of MAs, 

to ascertain the situations at which the optimization achieves the best result. Here, 

our work is to perform such study in electron optics, for optimization of electrostatic 

lens systems, which to the best of our knowledge does not yet exist.  

8.2 Defined Optimization Problem 
For this case study we selected an example of an electrostatic lens with 6 lens 

electrodes to perform the comparison analysis of the above-mentioned different 

optimization techniques. A cross-section of the round lens is shown in Fig 8.1. The free 

variables for the optimization are the thicknesses (𝑇𝑖), Radii (𝑅𝑖) and voltages (𝑉𝑖) of 
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each electrode, and the gaps between the electrodes (𝐺𝑖). There are 23 free variables 

in total. The electrostatic lens system, as any imaging system, suffers from aberrations. 

The smaller the aberrations, the higher the resolution of the image and therefore the 

higher the quality of the lens system. The aberrations can be calculated by aberration 

integrals, using the electric field on axis and a first order (aberration-free) trajectory. 

These aberrations can be combined into a contribution to the spot size when the lens 

is used to image an electron source on a sample as is conducted in a scanning electron 

microscope. Hence, the objective function for the optimization problem is the spot 

size at the image side.  

 

Figure 8.1. A 2D illustration of a typical multi-electrode lens systems with 6 electrodes.   

It is presumed in our case study that the lens only suffers from spherical and chromatic 
aberrations. The spot size (presented by 𝐷𝑠 in equation 8.1) can be calculated using 
the equation below [15]. 

 

𝐷𝑠
2 = (0.18 𝐶𝑠 𝛼

3 )2 + (0.6 𝐶𝑐  𝛼 
𝛥𝑈

𝑈
)2 

(8.1) 

            

Where 𝐶𝑐  and 𝐶𝑠 represent chromatic and spherical aberration coefficients, 

respectively. 𝛼 (the half opening angle of the beam) is taken as 10  milliradian. 𝑈 and 

∆𝑈 (the acceleration energy and the energy spread of the electron source) are chosen 

here to be 1 kV and 1 eV, respectively. This optimization problem’s constraint is to 

have the image at a fixed position 𝑋𝐶  (at 15mm from the surface of the first electrode). 

𝑋𝐶  is also a function of the electric field and can be calculated using ray-tracing. Our 

case-study used MATLAB as the programming language. To calculate the objective 

function and image position (i.e. 𝐷𝑠 and 𝑋𝐶), the field calculation is performed by 

SOEM and our ray-tracing codes use the paraxial approximation. A PC with an Intel (R) 

Xeon (R) W-2123 CPU @3.60 GHz and 32 GB of RAM was used to perform the 

computational work related to this study. 
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8.3 Optimization Techniques Applied in Our Case-

Study 
The optimization procedures which are implemented here include four optimization 

techniques. The first one is taken from the category  “Calculus-Based” which is a local 

optimization. In MATLAB, this function is referred to as "Fmin" or "Fmincon," but for 

the sake of simplicity, we will subsequently refer to it as "Fmin". The others are from 

the category of “Metaheuristics”. One is taken from the “Single-solution Based”, i.e. 

Simulated Annealing (SA). The two others are the most well-known optimization 

techniques from the “Population-Based” category namely, Genetic Algorithm (GA) 

and Particle Swarm Optimization (PSO).  

8.3.1 Calculus-Based local optimization  
The so-called “Fmin” in MATLAB, is a “Calculus-based optimization (CBO) technique. 

CBO uses the gradient (derivatives) of the objective function. This method is 

implemented on the objective function 𝑓(𝑋), starting from an initial point of 𝑋0, 

taking the steps of δ𝑁, moving towards the direction of the negative gradient of the 

objective function to ultimately reach the local minimum of the function. If it is a 

maximization problem, the direction will be that of the positive gradient of the 

function to reach the maximum point. Note that in this method, the function 𝑓(𝑋) 

should be differentiable in all neighboring points which are progressively taken under 

search. More details on the algorithm can be found in section 3.5 of this thesis. 

8.3.2 SA 
Simulated annealing (SA) is a single-solution based, meta-heuristic algorithm. This 

algorithm simulates the physical process of annealing in a material. Annealing  means 

to heat up a substance to a specified level above  a phase transition temperature, and 

then to lower the temperature gradually, in a specific way, to reach the minimum 

energy level of the system until the material crystalizes. This crystalized substance, 

with all its lattice atoms perfectly aligned, is an example of nature finding a beautiful 

optimum structure of a substance. If, however, the cooling process is performed too 

fast, the crystalized state will not be reached and the substance becomes an 

amorphous solid rather than a crystal. The way to achieving the minimum energy level 

and the crystalized state, is to carefully control the rate of temperature decrement.  

In the mathematical optimization context, mimicking from the nature process, a trial 

point (electrostatic lens system parameters in our case-study optimization problem) 

is randomly generated based on a defined normal probability distribution within the 
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specified ranges of the parameters. The distance between this trial point and the 

previous point is based on a probability distribution with a scale parameter depending 

on the current temperature. The temperature is a pre-defined value by the user. The 

algorithm then determines whether or not the new point is better than the previous 

point. If it is better, the previous point is replaced with the new point. If the new point 

is worse than the previous point, the algorithm may still select the new point based 

on a probability function. The algorithm lowers the temperature in every iteration. 

After a certain number of iterations the reannealing process is activated in which the 

temperature is increased again. The algorithm keeps exploring the landscape until a 

stopping criteria is reached. More details on the algorithm, formulation and related 

flowcharts can be found in section 3.4. 

8.3.3 GA 
Randomly created values of the parameters (elements,) called initial population, are 

the starting point for the GA , a population-solution based, meta-heuristic global 

optimization method, mimicking natural evolution. The parameter “population” 

defines the number of elements in each generation, denoted here by Npop. In nature, 

the elements are the chromosomes of the organism. In electron lens design, the set 

of electron lens systems from which the lens design variables are determined, 

represents the elements.  

The GA uses a variety of genetic operators namely Crossover, Mutation and Elitism, to 

gradually improve a set of elements in a so-called “generation” towards the next 

generation, having a better set of elements, regarding their objective function values. 

The algorithm proceeds until it satisfies the stopping criteria, which could be set as, 

for instance, a maximum computational run time, a specified value of objective 

function, or a maximum number of generations. In our case-study, reaching a specified 

computational time is chosen to end the process. More details on the algorithm, 

formulation and related flowcharts can be found in section 3.2. 

8.3.4 PSO 
Particle swarm optimization (PSO) presented in 1995 [23], is another type of 

population-solution based, meta-heuristic global optimization method which mimics 

the intelligent collective behaviour of some animals in nature such as birds or flocks. 

The algorithm starts by generating a set of initial particles (electrostatic lens systems 

parameters), and assigns a velocity (randomly selected from a range given by the user) 

to each particle. It evaluates the objective function for each particle and defines the 
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best location and lowest objective function. It choses new velocities based on particle 

current velocity, the particle’s individual best location and best location of all particles. 

It then updates the particle position (current position plus the velocity, while making 

sure the boundaries and constraints are fulfilled). The iteration continues until a 

stopping criteria is reached. When the defined stopping criteria is reached the 

algorithm will be ended.  The stopping criteria can be determined by the user using 

different schemas. In this case-study, reaching a certain computational time is set as 

the stopping criteria. More details on the algorithm, formulation and related 

flowcharts can be found in section 3.3. 

8.4 Results and Analysis 
To compare the performance of the above-mentioned different optimization 

techniques, the minimum value of the Objective Function (OF) reached by the 

optimization procedures should be evaluated. However, to achieve a fair comparison, 

the run time is set to a constant value as the stopping criteria of the optimizations. As 

stated in chapter 7, a reasonable computation time could be around T= 1500 sec. This 

value therefore is set as the stopping criteria of the optimizations.   

It should be noted that for the local optimizations, such as “Fmin”, the optimization 

routine may stop before this fixed time, due to the fact that a calculus-based 

optimization would stop when it reaches the minimum point at each basin of 

attractions.  

To perform the comparisons, as the first step, an analysis is performed among the four 

optimization routines running 10 times to achieve statistically-reliable results. The GA 

and PSO are run without initial data. However, SA and Fmin need to be assigned an 

initial data set to start. A random initial system is taken and given as the starting point 

of SA and Fmin. For some of the initial data, these two optimizations could not find 

any system which satisfied the constraints. As the first step for these algorithms, an 

initial system is taken which allows the SA and Fmin to reach an optimum system 

which satisfied the constraints (this initial system is found by trial and error among 

different randomly created systems). 

Figure 8.2 shows the minimum objective function values, averaged over 10 runs, 

achieved by the four different optimization techniques. The units of the objective 

function are in nanometers. The green bars represent the averaged minimum 

objective function vlaues. The black thin bars inside the green bars represent the 

standard deviation in the averaged values for 10 runs.  



Chapter 8 

131 
 

 

 
Figure 8.2. The comparison of the performance for four different Optimization techniques 

namely Fmin, SA, GA and PSO. The presented values are averaged over 10 runs.  

 

Among the 10 runs, one example run (with the objective function value in the middle 

range) is depicted as the representative of all runs and illustrated in Figure 8.3. The y-

axis shows the objective function value in the course of the runs. The x-axis presents 

the system evaluations. The blue, pink, red and green starts are representatives of 

runs related to the PSO, GA, Fmin and SA, respectively. 

 

Figure 8.3. Comparison of the progress in the four different Optimizations. The presented data 

is taken from one run among 10 runs as an example representative of different runs. 
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From Figure 8.2 and 8.3, it can be seen that the two optimizations GA and PSO clearly 

outperform the two others Fmin and SA. Moreover, the standard deviations for the 

former optimizations (GA and PSO) are much lower compared to the two latter ones 

(Fmin and SA). This is due to the nature of being meta-heuristic and also to starting 

and proceeding with populations and not only a single system. This provides a much 

higher chance of finding the area in the parameter landscape with lower values of the 

objective function.  Due to this, in some literature, SA is assumed as a local optimizer 

and not a global one.  

Since for Fmin and SA, the results depend on the initial data (X0), with which the 

optimization started, these two optimizations are run with different initial data to 

achieve a statistically more reliable analysis. Six different initial data sets are given as 

the starting points. The corresponding runs are called Run1 to Run6, respectively. Each 

“Run” is executed 10 times to provide statistically reliable results. For the Fmin, 

because it is based on the derivative of the function, the root finding is always the 

same and there is no standard deviation. It should also be noted that there are some 

situations that these two optimizations could not find any systems which have 

satisfied the constraints.  

The data is visualized in figure 8.4. The blue (purple) bars represent the OF for 6 “Run”s 

related to the SA (Fmin). The black thin bars inside the blue bars are representative of 

the standard deviations for different runs.  

 

Figure 8.4. Comparison of the performance of Fmin and SA. The presented values are averaged 

over 10 runs. 
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As can be seen, the OF related to the SA are in most cases lower than the ones of Fmin. 

There is only one case (Try1) in which Fmin could perform better than SA. In all other 

tries SA could outperform the Fmin. This can be due to the metaheuristic nature of  

the SA which does not exist in the calculus-based optimization procedures such as 

Fmin. The inherent metaheuristic nature of the optimization process enables a more 

comprehensive exploration of the search space, preventing it from being confined to 

a single local minimum associated with the specific basin of attraction of the initial 

starting point. 

8.5 Conclusion 
Different optimization techniques such as Fmin, SA, PSO and GA are implemented for 

electrostatic electron lens design on a typical lens system with six electrodes (23 free 

variables) to perform a study on the comparison of their performance. The extension 

of the electrodes to more complex designs is straightforward. In this study it is 

recognized that the GA and PSO outperform Fmin and SA. The reason can be that the 

former ones are population-based optimization techniques while the latter ones are 

single-based optimization ones. It is also seen that the PSO achieves better results 

than the GA. However, the difference between PSO and GA is not as much as the 

difference between population-based optimizations and single solution-based 

optimizations. It is hence advised to implement the meta-heuristic, global, population-

based optimizations such as GA and PSO. It is not possible to conclude that PSO will 

outperform GA for every problem in  electron lens design. 

Moreover, from the comparison between two single solution-based optimization 

techniques, it is illustrated that the metaheuristic one (SA) outperforms the calculus-

based one (Fmin). These two optimization methods work as a sort of local optimization 

which might not even find any system within the constraints and thus have limited use 

in electron lens design. 
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 9.  A New Approach for Fast Field Calculation in 

Electrostatic Electron Lens Design and Optimization  
 

Abstract  
In electron optics, calculation of the electric field plays a major role in all computations 

and simulations. Accurate field calculation methods such as the Finite Element 

Method (FEM), Boundary Element Method (BEM) and Finite Difference Method 

(FDM), have been used for years. However, such methods are computationally very 

expensive and make the computer simulation challenging or even infeasible when 

trying to apply automated design of electrostatic lens systems with many free 

parameters. Hence, for years, electron optics scientists have been searching for a fast 

and accurate method of field calculation to tackle the aforementioned problem in the 

design and optimization of electrostatic electron lens systems. 

This paper presents a novel method for fast electric field calculation in electrostatic 

electron lens systems with reasonably high accuracy to enable the electron-optical 

designers to design and optimize an electrostatic lens system with many free 

parameters in a reasonably short time. The essence of the method is to express the 

off-axis potential in an axially symmetrical coordinate system in terms of derivatives 

of the axial potential up to the fourth order, and equate this to the potential of the 

electrode at that axial position. Doing this for a limited number of axial positions, we 

get a set of equations that can be solved to obtain the axial potential, necessary for 

calculating the lens properties. We name this method the Fourth-Order Electrode 

Method (FOEM) because we take the axial derivatives up to the fourth order. To solve 

the equations, a quintic spline approximation of the axial potential is calculated by 

solving three sets of linear equations simultaneously. The sets of equations are 

extracted from the Laplace equation and the fundamental equations that describe a 

quintic spline. The accuracy and speed of this method is compared with other field 
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calculation methods, such as the Finite Element Method (FEM) and Second Order 

Electrode Method (SOEM). The new field calculation method is implemented in 

design/optimization of electrostatic lens systems by using a Genetic Algorithm (GA) 

based optimization program for electrostatic lens systems developed by the authors.  

The effectiveness of this new field calculation method in optimizing optical 

parameters of electrostatic lens systems is compared with FEM and SOEM and the 

results are presented. 

Keywords 
Field Calculation, Electrostatic Lens Systems, Lens Design Optimization, Second Order 

Electrode Method, Fourth Order Electrode Method 
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9.1 Introduction 

In electron optics, the quality of an electrostatic lens system is specified by its 

electron-optical properties, which are determined from its electric field [1- 3]. 

Calculation of the electric field for electrostatic lens systems is hence the most 

significant step needed in evaluation of the lens system. Therefore, the speed and 

accuracy of calculating the electric field (or electric potential) plays a major role in 

electron-optics computation, design and optimization. The electric field can be 

calculated using numerical methods such as FEM [4], Boundary Element Method 

(BEM) [5] and Finite Difference Method (FDM) [6]. Although these methods result in 

very accurate values for the electric field (which consequently results in accurate 

determination of optical parameters), all these methods are time consuming. For 

instance, calculation of the potential distribution using FEM and performing ray 

tracing takes   ̴1 min for each system [7]. Note: All computer simulations in this study 

were conducted on our system, a PC equipped with an Intel® Xeon® W-2123 CPU 

@3.60 GHz and 32 GB of RAM, using the MATLAB programming language. The 

reported computation times are estimated based on the results obtained on the 

mentioned PC and programming language. However, as demonstrated in the 

following sections, the study primarily focuses on the comparative analysis of 

computational times across different methods, making the specific PC and 

programming language used less significant; what matters are the relative numbers. 

Currently it is not difficult to find electron-optical software such as SIMION [8], EOD 

[9], GPT [10], CPO [11], etc. to design/optimize electron lens systems which conducts 

the field calculations by the aforementioned accurate field calculation methods. 

However, in the design process they only change one lens geometric parameter or the 

voltages to influence the aberrations or to auto-focus, they are not capable of 

changing the whole shape of the lens. Assuming these programs can be used in an 

optimization loop by changing all lens geometries and voltages as free parameters, it 

can take many days or even weeks to get the results due to the computational time 

required for the accurate field calculation [7, 12]. For instance,  the design of even a 

simple system using FEM by COMSOL (a multi-physics design modelling software [13]) 

takes such a long computational time that the designer might not have the patience 

to wait for the result [7, 12].  

In recent years, a method is presented by Lars et al. [14] for the optimization of ion 

lens design based on an accurate field calculation (FEM), by implementing  an adjoint 
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optimization. This works in a feasible short time and is suitable for multi-objective 

functions of up to two. However, in electrostatic lens design, we sometimes want 

more than two objective functions in the design process. Moreover, we have found 

that  electrostatic lens design optimization often has multiple local minima [15]. This 

hence requires to implement a global optimization technique such as an evolutionary 

algorithm instead of a local optimization technique, such as the adjoint method 

(further insights into the evaluation of popular evolutionary optimization algorithms, 

including Genetic Algorithms (GA) [16, 17], Particle Swarm Optimization (PSO) [18], 

and Simulated Annealing (SA) [19], alongside a gradient-based local optimization [17], 

for the optimization of electrostatic lens systems, along with their comparisons, can 

be found in our other recent study [20, 21]). As a consequence, implementation of any 

of the above mentioned previously-existed accurate field calculation methods in 

electron lens system optimization programs (to find the optimum shape of electrodes 

and potentials), in which usually thousands of systems must be evaluated to obtain a 

reasonable result, makes the total optimization slow and impractical [7,12]. Therefore, 

a fast field calculation method is highly demanded in the field of charged particle 

optical lens design. 

Adriaanse et al. (1989) proposed a fast method to calculate the electric field by means 

of approximation of the axial potential with cubic splines and solving a set of linear 

equations [22-24]. In their method, the terms of the Laplace equation with higher 

order than the second derivative are truncated and the method is named the Second-

Order Electrode Method (SOEM). Hesam et al. (2019) compared the accuracy of SOEM 

and FEM methods as well as their computational time for optical parameter 

calculations in electrostatic lens systems [7, 25]. It was seen that due to the 

approximation applied some, although very fast (  ̴0.4 sec for each system evaluation), 

suffers from inaccuracy, specifically for the calculation of optical parameters, such as 

aberration coefficients. Hesam et al. (2019) [7, 12] proposed a fully-automated 

technique, utilising a combination of SOEM and FEM, by implementing the Genetic 

Algorithm (GA) for optimization of multi-electrostatic lens systems which made their 

design possible with all geometries and voltages of the lens system as free parameters 

in a reasonable time (around several hours for combination of SOEM and FEM, 

compared to many days if only FEM was used) [7, 11]. The time-consuming aspect of 

the described method is associated with the 'fine-tuning' phase of FEM. During this 

stage, data is input into another segment of the program responsible for recalculating 

optical parameters using FEM. This iterative process refines and corrects results 

obtained from SOEM, thereby significantly enhancing the accuracy of optical 
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parameter calculations. This fine-tuning is essential and necessary to ensure the 

reliability of the overall optimization. 

In the previously presented approach based on SOEM, first running a GA-aided 

optimization based on field calculation by SOEM is executed. Subsequently, the 

optimized system’s data is used as the initial input for another GA-aided optimization 

based on field calculation by FEM and to run this part as another full-optimization. 

Due to the inaccuracies in the field calculation by SOEM, this fine-tuning process for 

SOEM involves a full-GA-aided optimization run with multiple iterations to correct the 

systems and identify optimized configurations, where their optical parameters are 

calculated with the high accuracy of FEM (referred to as SOEM+FEM+GA). 

Hence, though it is major progress for electron optics designers to tackle the challenge 

of designing electrostatic lens systems in a fully-automated way in a reasonable time, 

the computational time is still not considered to be very short. This is due to the 

degree of optical parameter calculation inaccuracy in SOEM, which needs more time 

to be fine-tuned by FEM at the end of the optimization. To increase the accuracy of 

the field calculation part by SOEM, the Laplace equations therefore need to be solved 

by considering the higher order terms as well. 

In this paper, a new method for fast and reasonably accurate field calculation is 

presented. This method is based on solving the Laplace equation by retaining  terms 

up to the fourth order derivatives. Hence the method is named the Fourth-Order 

Electrode Method (FOEM). The accuracy and computation time for field calculation of 

this method is evaluated and compared with the existing methods SOEM and FEM.  

Next, the recently introduced FOEM method is incorporated into an optimization 

routine utilizing a Genetic Algorithm to assess its efficiency in optimizing electrostatic 

lens systems, referred to as FOEM+GA and its comparison with a GA-aided 

optimization based on field calculation by FEM (FEM+GA). In this context, efficiency 

refers to the time and effort needed to discover an optimized lens system with 

accurately calculated optical parameters, considering the quality of the optimized lens 

system found by that method within the given time. 

After evaluating the efficiency of FOEM+GA and FEM+GA methods, further analysis is 

crucial. The results of the FOEM+GA optimization are then employed in another 

optimization based on FEM calculations, referred to as FOEM+FEM+GA. This analysis 

aims to determine whether, for FOEM+GA to achieve optical parameter calculation 

accuracy equivalent to FEM, a comprehensive optimization run based on FEM (as the 
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fine-tuning step) is necessary after GA+FOEM, or alternatively, the FOEM+GA alone is 

sufficiently effective, requiring only a brief fine-tuning step by FEM (potentially by just 

a few iterations in FOEM+FEM+GA) rather than a complete FOEM+FEM+GA 

optimization with an extensive number of iterations.  

Additionally, a comparison with the previously introduced SOEM based optimization 

method (SOEM+FEM+GA [7, 12]) is essential to investigate the superiority of the newly 

introduced method based on FOEM in optimizing electrostatic lenses. 

This paper is organised as follows. In section 9.2, the mathematical derivation for the 

axial potential calculation using FOEM is explained and presented. To derive the axial 

potential formulation, first the fundamental equations of the quintic spline [26] for a 

dataset with unequal gaps between the data points are derived in sub-section 9.2.1. 

Next, in sub-section 9.2.2, using these equations in combination with the Laplace 

equation and proper boundary conditions, a system of linear equations is formed, 

from which the axial potential and its first and second derivatives are calculated. The 

accuracy and speed of the field and optical parameters calculation of this new method 

in comparison with FEM and SOEM is presented in section 9.3 for different typical 

electrostatic lens systems including 3, 4 and 5 lens electrodes. In section 9.4, the newly 

introduced field calculation method (FOEM) is implemented in a Genetic Algorithm-

based optimization program (FOEM+GA).  

Subsequently, in Section 9.4.2, the improvement trends and accuracy calculations of 

optical parameters for the optimized systems in a single run of GA-aided optimization 

based on FOEM are investigated and compared with situations where the optimized 

systems are calculated using SOEM and FEM. This is done to obtain more statistically 

reliable results for the accuracy comparisons of optical parameters calculated using 

different methods of FOEM, FEM, and SOEM. Additionally, we illustrate and compare 

the trends of improvements in finding better lens systems in the mentioned single run 

of GA optimization based on FOEM with situations where the optimized systems are 

calculated using SOEM and FEM.  

In Section 9.4.3, a comparative study on the efficiency of various GA-aided 

optimization approaches based on FOEM, FEM, and SOEM is presented. Building on 

this study, to assess the efficiency of FOEM+GA, the results of FOEM+GA are fed into 

another optimization based on FEM (FOEM+FEM+GA), and the outcomes are 

presented at the end of this  section. Conclusions are drawn in Section 9.5.  
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9.2 Mathematical derivation of the axial potential for 

electrostatic electron lens systems using FOEM  

In this section, the aim is to derive the axial potential formulation for rotationally 

electrostatic lens systems with multi-electrodes. An illustrative example of such lens 

systems is provided schematically in both 3D (Figure 9.1.a) and 2D (Figure 9.1.b) 

below. Where,  𝑇𝑗,  𝑅𝑗,  and 𝑉𝐸𝐿𝑗   refer to the thicknesses, radii, and voltages at each 

electrode, respectively (𝑗 = 1,2, … , 𝑡𝑜𝑡, where 𝑡𝑜𝑡 is the total number of electrodes). 

While 𝐺𝑗  represents the gaps between two consecutive electrodes ((𝑗 = 1,2, … , 𝑡𝑜𝑡 −

1). 

 

Figure 9.1. a. Illustration of the rotationally symmetrical electrostatic lens system with 4 

electrodes in a 3D representation. b. Schematic depicting the rotationally symmetrical 

electrostatic lens system with 4 electrodes in a 2D representation. Here,  𝑇𝑗, 𝑅𝑗,  and 

𝑉𝐸𝐿𝑗  denote the thicknesses, radii, and voltages at each electrode. 𝐺𝑗 represents the gaps 

between two consecutive electrodes. 

It can be demonstrated that for such geometries with axial symmetry, the spatial 

potential distribution can be obtained from the axial potential and its derivatives. The 

solution of the Laplace equation for a rotationally symmetrical geometry in terms of 

the axial potential and its derivatives is given by [27]. 

𝜑(𝑟, 𝑧) = 𝜑(0, 𝑧) −
𝑟2

4
𝜑(2)(0, 𝑧) +

𝑟4

64
𝜑(4)(0, 𝑧) + ⋯+

(−1)𝑚𝑟2𝑚

(𝑚!)222𝑚
𝜑(2𝑚)(0, 𝑧)

+ ⋯ 

(9.1) 

in which 𝑟 is the radial distance to the axis, 𝑧 is the horizontal distance from the 

entrance of the lens system, 𝜑(𝑟, 𝑧) is the potential in space at coordinate (𝑟, 𝑧), 

𝜑(0, 𝑧) is the axial potential at coordinate (0, 𝑧), and  𝜑(2𝑖)(0, 𝑧) is the (2𝑖)th 

derivative of the axial potential at coordinate (0, 𝑧). When the symmetry axis is 
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discretized into N points, and the terms are truncated after the fourth order derivative 

of the axial potential, equation (1) can be expressed as: 

𝑉𝑖(𝑟𝑖) = 𝜑𝑖 −
𝑟𝑖
2

4
𝜑𝑖
(2)
+
𝑟𝑖
4

64
𝜑𝑖
(4)
          𝑖 = 2, 3,⋯ ,𝑁 − 1                                                   (9.2) 

Considering equation (2) , it is evident that the potential distribution along the axis 

(𝜑𝑖) is linked to voltages at the surface of the electrodes (𝑉𝑖(𝑟𝑖)), where the values of 

𝑉𝑖(𝑟𝑖)) are known at each electrode and correspond to the electrode voltages 

assigned to that specific electrode (𝑉𝐸𝐿𝑗  , 𝑗 = 1,2, … , 𝑡𝑜𝑡). 

However, as it is seen, directly deriving the voltage distribution along the axis 

(𝜑𝑖) from this equation (i.e. equation (2)) is not feasible due to the greater number of 

unknowns compared to the available equations. Therefore, introducing additional 

conditions becomes necessary for solving the equations. 

 In this paper it is proposed that the axial potential can be effectively modelled by 

fitting it to a piecewise fifth-order spline equation. When combined with Laplace's 

equation, these equations can be solved together to determine the values of voltages 

along the axis.  

9.2.1 Fundamental equations of the quintic spline 
 

While a method to construct the quintic spline for a dataset with equal intervals 

between data points is presented in [26], it is important to note that, in general, a lens 

system may have unequal gaps between the electrodes and different thicknesses for 

the lenses. Consequently, the set of data points created on the electrodes may have 

unequal intervals. As there are no references found that derive the aforementioned 

equations for general unequal intervals, this section addresses that gap. Therefore, in 

the following section, the fundamental equations of the quintic spline are obtained 

and formulated for the scenario in which intervals between the data points are not 

equal. 

To initiate the formulation, let's consider a dataset represented as (𝑥𝑖 , 𝜑𝑖), where  𝑖 =

1,2, … , 𝑁, comprising 𝑁 data points, each with two components. The first component 

is denoted as 𝑥𝑖, and its corresponding value is 𝜑𝑖. Our goal is to fit splines to this set 

of 𝑁 data points. Specifically, a spline is fitted between data points (𝑥𝑖 , 𝜑𝑖)  and 

(𝑥𝑖+1, 𝜑𝑖+1). 

For a data set {(𝑥𝑖 , 𝜑𝑖)}, 𝑖 = 1, 2,⋯ ,𝑁, the quintic spline function 𝑆(𝑥) is defined by 

(3): 
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𝑆(𝑥) = 𝑆𝑖(𝑥),        𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1],        𝑖 = 1, 2,⋯ ,𝑁 − 1 (9.3) 

in which 𝑆𝑖(𝑥) is a fifth order polynomial defined on the interval [𝑥𝑖 , 𝑥𝑖+1] and 

𝑆𝑖(𝑥𝑖) = 𝜑𝑖.  

To ensure a smooth transition from one spline to the next, additional conditions are 

imposed: 

𝑆𝑖
(𝑟)(𝑥𝑖+1) = 𝑆𝑖+1

(𝑟) (𝑥𝑖+1), 𝑟 = 0, 1, 2, 3, 4 (9.4) 

where 𝑆𝑖
(𝑟)(𝑥) is the 𝑟th derivative of 𝑆𝑖(𝑥). 

When all these splines are combined, a generalized spline named S(x) is formed. At 

the data points on this generalized spline, certain conditions are imposed during spline 

construction, as mentioned above. 

Since the polynomial is fifth order, the fourth derivative of the polynomial is a linear 

polynomial. Therefore the 4th derivative of 𝑆𝑖(𝑥) can be written as (9.5). 

𝑆𝑖
(4)(𝑥) = 𝑍𝑖+1

(𝑥 − 𝑥𝑖)

∆𝑖
+ 𝑍𝑖

(𝑥𝑖+1 − 𝑥)

∆𝑖
 (9.5) 

in which 𝑍𝑖 = 𝑆𝑖
(4)(𝑥𝑖), 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1], and ∆𝑖= 𝑥𝑖+1 − 𝑥𝑖. Integrating (9.5) four times, 

and after some rearrangements, equation (9.6) can be obtained. 

𝑆𝑖(𝑥) = 𝑍𝑖+1
(𝑥 − 𝑥𝑖)

5

120∆𝑖
+ 𝑍𝑖

(𝑥𝑖+1 − 𝑥)
5

120∆𝑖
+ 𝐴𝑖(𝑥 − 𝑥𝑖)

3 + 𝐵𝑖(𝑥𝑖+1 − 𝑥)
2 + 𝐶𝑖(𝑥

− 𝑥𝑖) + 𝐷𝑖(𝑥𝑖+1 − 𝑥) 
(9.6) 

In Eq. 9.6, 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , and 𝐷𝑖, 𝑖 = 1, 2, … , 𝑁 − 1 are coefficients which can be 

determined in terms of 𝜑
𝑖
, 𝜇𝑖, 𝜂𝑖, and 𝑍𝑖, which are defined in Eq. 9.7. 

𝜑
𝑖
= 𝑆𝑖(𝑥𝑖) , 𝜇𝑖 = 𝑆𝑖

(2)(𝑥𝑖) ,     𝜂𝑖 = 𝑆𝑖
(3)(𝑥𝑖) ,     𝑍𝑖 = 𝑆𝑖

(4)
(𝑥𝑖)        (9.7) 

Taking the derivative of Eq. 9.6 three times results in Eq. 9.8 and using the identities 

given by Eq. 9.7, results in Eq. 9.9, after simplification. 

𝑆𝑖
(3)(𝑥) = 𝑍𝑖+1

(𝑥 − 𝑥𝑖)
2

2∆𝑖
− 𝑍𝑖

(𝑥𝑖+1 − 𝑥)
2

2∆𝑖
+ 6𝐴𝑖 (9.8) 

 

𝐴𝑖 =
∆𝑖
12
𝑍𝑖 +

𝜂𝑖
6

 (9.9) 
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Eq. 9.10 is then obtained by taking the derivative of Eq. 9.6 twice, which  produces Eq. 

9.11, using the identities given by Eq. 9.6 and after simplification. 

𝑆𝑖
(2)(𝑥) = 𝑍𝑖+1

(𝑥 − 𝑥𝑖)
3

6∆𝑖
+ 𝑍𝑖

(𝑥𝑖+1 − 𝑥)
3

6∆𝑖
+ 6𝐴𝑖(𝑥 − 𝑥𝑖) + 2𝐵𝑖 (9.10) 

 

𝐵𝑖 =
𝜇𝑖
2
−
∆𝑖
2

12
𝑍𝑖 (9.11) 

 

Replacing 𝑥 = 𝑥𝑖+1 in Eq. 9.5 and using the identities given by Eq. 9.7 yields Eq. 9.12 

which produces Eq. 9.13, after simplification. 

𝜑𝑖+1 = 𝑍𝑖+1
∆𝑖
4

120
+ 𝐴𝑖∆𝑖

3 + 𝐶𝑖∆𝑖 (9.12) 

 

𝐶𝑖 =
𝜑𝑖+1
∆𝑖

−
∆𝑖
3

12
𝑍𝑖 −

∆𝑖
3

120
𝑍𝑖+1 −

∆𝑖
2

6
𝜂𝑖 (9.13) 

 

(9.14) is obtained by replacing 𝑥 = 𝑥𝑖  in (9.6) and using the identities given by (9.7). 

Following simplification, using (9.11) in (9.14) then produces (9.15). 

𝐷𝑖 =
𝜑𝑖
∆𝑖
− 𝑍𝑖

∆𝑖
3

120
− 𝐵𝑖∆𝑖 (9.14) 

 

𝐷𝑖 =
𝜑𝑖
∆𝑖
+
9∆𝑖

3

120
𝑍𝑖 −

𝜇𝑖
2
∆𝑖 (9.15) 

 

In the equations below, the conditions of continuity of derivatives given in (9.4) for 

𝑟 = 1, 2, 3 are applied. For the case when 𝑟 = 3, after simple evaluation, (9.16) and 

(9.17) are obtained. By equating (9.16) and (9.17) and using (9.9), Eq. (9.18) is derived. 

𝑆𝑖
(3)(𝑥𝑖+1) = 𝑍𝑖+1

∆𝑖

2
+ 6𝐴𝑖 (9.16) 

 

𝑆𝑖+1
(3) (𝑥𝑖+1) = −𝑍𝑖+1

∆𝑖+1

2
+ 6𝐴𝑖+1 (9.17) 

 

∆𝑖
2
𝑍𝑖+1 +

∆𝑖
2
𝑍𝑖 + 𝜂𝑖 − 𝜂𝑖+1 = 0 (9.18) 
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For the case when 𝑟 = 2,  through a straightforward assessment, (9.19) and (9.20) are 

obtained. By equating (9.19) and (9.20) and using (9.9) and (9.11), Eq. (9.21) is 

produced. 

𝑆𝑖
(2)(𝑥𝑖+1) = 𝑍𝑖+1

∆𝑖
2

6
+ 6𝐴𝑖∆𝑖 + 2𝐵𝑖 (9.19) 

 

𝑆𝑖+1
(2) (𝑥𝑖+1) = 𝑍𝑖+1

∆𝑖+1
2

6
+ 2𝐵𝑖+1 (9.20) 

 

𝜂𝑖 = −
2∆𝑖
6
𝑍𝑖 −

∆𝑖
6
𝑍𝑖+1 −

𝜇𝑖
∆𝑖
+
𝜇𝑖+1
∆𝑖

 (9.21) 

For the case when 𝑟 = 1 and after simple evaluation, (9.22) and (9.23) are obtained. 

By equating (9.22) and (9.23) and using (9.9), (9.11), (9.13), and (9.15), equation (9.24) 

then results. 

𝑆𝑖
(1)(𝑥𝑖+1) = 𝑍𝑖+1

∆𝑖
3

24
+ 3𝐴𝑖∆𝑖

2 + 𝐶𝑖 − 𝐷𝑖 (9.22) 

 

𝑆𝑖+1
(1) (𝑥) = −𝑍𝑖+1

∆𝑖+1
3

24
− 2𝐵𝑖+1∆𝑖+1 + 𝐶𝑖+1 − 𝐷𝑖+1 (9.23) 

 

11∆𝑖
3

120
𝑍𝑖 +

4∆𝑖
3 + 4∆𝑖+1

3

120
𝑍𝑖+1 +

∆𝑖+1
3

120
𝑍𝑖+2 +

2∆𝑖
2

6
𝜂𝑖 +

∆𝑖+1
2

6
𝜂𝑖+1 +

∆𝑖
2
𝜇𝑖

+
∆𝑖+1
2
𝜇𝑖+1 =

𝜑𝑖+2
∆𝑖+1

−
𝜑𝑖+1
∆𝑖+1

−
𝜑𝑖+1
∆𝑖

+
𝜑𝑖
∆𝑖

 

(9.24) 

 

On substituting (9.21) in (9.18) and (9.24), equations (9.25) and (9.26) are derived, 

which are referred to in this paper as the fundamental equations of the quintic spline.  

∆𝑖
6
𝑍𝑖 +

2(∆𝑖 + ∆𝑖+1)

6
𝑍𝑖+1 +

∆𝑖+1
6
𝑍𝑖+2 −

𝜇𝑖
∆𝑖
+
𝜇𝑖+1
∆𝑖

+
𝜇𝑖+1
∆𝑖+1

−
𝜇𝑖+2
∆𝑖+1

= 0          𝑖

= 1, 2,⋯ ,𝑁 − 2 

(9.25) 

 

−
7∆𝑖

3

360
𝑍𝑖 −

8(∆𝑖
3 + ∆𝑖+1

3)

360
𝑍𝑖+1 −

7∆𝑖+1
3

360
𝑍𝑖+2 +

∆𝑖
6
𝜇𝑖 +

2(∆𝑖 + ∆𝑖+1)

6
𝜇𝑖+1

+
∆𝑖+1
6
𝜇𝑖+2 =

𝜑𝑖+2
∆𝑖+1

−
𝜑𝑖+1
∆𝑖+1

−
𝜑𝑖+1
∆𝑖

+
𝜑𝑖
∆𝑖
             𝑖

= 1, 2,⋯ ,𝑁 − 2 

(9.26) 
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9.2.2 Solving the Laplace equations up to the fourth order 
derivatives 

Once the quintic spline is formulated, the axial potential has to be numerically written 

up to the fourth order, to be simultaneously solved together with the spline equations.  

φ1 φ2 φi 

V2 

Vi  

φN−1 φN 

VN−1 

∆f1 ∆fN−1 

r2 

Vi+1 

φi+1 

ri ri+1 

⋯ 

⋯ 

Z [mm]

r 
[m

m
]

Z = 0

rN−1 

VEL1
 VEL3

 VELto t
 VEL2

 

 
Figure 9.2. A typical rotationally symmetrical electrostatic lens system in 2D. The z-axis is the 

axis of rotational symmetry.  

 

A typical rotationally symmetrical electrostatic lens system in 2D is shown in figure 

9.2. For a clearer visualization of the lens geometry in 2D and 3D, along with detailed 

explanations of its parameters, please refer to Figure 9.1. The geometry of the 

electrodes, including the gaps between them and the voltages at each electrode, 

determine the lens properties. 

As aforementioned, by omitting the terms above the fourth derivatives and using the 

identities in (9.27), Eq. (9.1) can be written numerically as (9.28).  

𝜑(𝑟, 𝑧) = 𝜑(0, 𝑧) −
𝑟2

4
𝜑(2)(0, 𝑧) +

𝑟4

64
𝜑(4)(0, 𝑧) (9.27) 

𝑉𝑖(𝑟) = 𝜑𝑖 −
𝑟𝑖
2

4
𝜇𝑖 +

𝑟𝑖
4

64
𝑍𝑖          𝑖 = 2, 3,⋯ ,𝑁 − 1 (9.28) 

In electrostatic lens systems, it can be assumed that the axial potential before the first 

electrode and after the last electrode approaches the potential of the first and the 

final electrode, respectively. However, the exact position for which the above 

condition is valid must be identified. Referring to figure 9.2, this means the distances 
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∆𝑓1 and ∆𝑓𝑁−1 must be properly calculated. Equations (9.25) and (9.26) and (9.28) 

each form 𝑁 − 2 equations, resulting in a total of 3𝑁 − 6 equations, while there are 

𝑁 unknown 𝜑𝑖, 𝜇𝑖 , 𝑍𝑖 for 𝑖 = 1, 2,⋯ ,𝑁 which results in 3𝑁 unknowns in total. 

However, as stated above, it is assumed that 𝜑1 = 𝑉2 and 𝜑𝑁 = 𝑉𝑁−1, in which 𝑉2 is 

the voltage of the first electrode (i.e. 𝑉𝐸𝐿1) and 𝑉𝑁−1 is the voltage of the last electrode 

((i.e. 𝑉𝐸𝐿𝑡𝑜𝑡), are both known values. Therefore, based on the above assumption, the 

two unknown parameters are already known, but instead, the distances ∆𝑓1 and 

∆𝑓𝑁−1 are unknown, which again results in a total of 3𝑁 unknown parameters. 

Considering that there are only 3𝑁 − 6 equations, this means 6 boundary conditions 

must be selected first. Here we assume 𝜇1 = 𝜇𝑁 = 𝜂1 = 𝜂𝑁 = 𝑍1 = 𝑍𝑁 = 0. These 

assumptions are all reasonable, since before the first point and after the last point 

there are field-free regions and therefore assuming the second, third and fourth 

derivatives of voltage to be zero is also justifiable. Note that all voltages 𝑉𝑖 belonging 

to the same electrode j are equal to 𝑉𝐸𝐿𝑗. 

It should also be noted that, In equation 9.28, we discretized the Z axis, and as a result, 

the Z coordinate is embedded in the indices of the parameters. For instance, z=0 

corresponds to 𝜑1, and with a discretization step of, for example, 0.001 mm, the point 

z=0.001 is associated with 𝜑2, and so on. When we refer to the 'first electrode,' it 

implies that there are no other electrodes before it. Consequently, the voltage 

preceding the first electrode will be dominated by the voltage of the first electrode. 

This holds true for the last electrode as well. If any other part of the microscope 

preceding the first electrode has a voltage different from that of the first electrode, 

we assume that part to be the first electrode. Preceding this assumed first electrode, 

the voltage will tend to become equal to that of the first electrode. 

9.2.3 Calculation of ∆f1 and ∆fN−1  

In this section, first the values of ∆𝑓1 and ∆𝑓𝑁−1 are calculated for the case when there 

is a hole (opening in the electrode near the axis) in the first and in the last electrodes, 

as shown in figure 9.3.a. In this case it is assumed that the voltages at the outer radius 

of the lens before the first electrode and after the last electrode are set to the voltage 

of the first electrode and the last electrode, respectively. It means that on the axis, 

starting from the entrance of the lens toward the left (with reference to figure 9.3.a), 

the voltage gradually approaches the voltage of the first electrode, and at point 1 the 

voltage is exactly the same as that of the first electrode. Based on these conditions it 

can be concluded that the electric field at the first and the last point is equal to zero.  
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The Taylor expansion of axial potential for 𝜑2 and assuming ∆𝑓1 = ∆𝑓 can be written 

as: 

𝜑
2
= 𝜑1 + 𝜑1

′
∆𝑓

1!
+ 𝜑1

′′
∆𝑓2

2!
+ 𝜑1

(3) ∆𝑓
3

3!
+ 𝜑1

(4) ∆𝑓
4

4!
+ 𝜑1

(5) ∆𝑓
5

5!
+ ⋯ (9.29) 
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Figure 9.3. Lens system illustration showing the voltages at the outer radius of the lens before 

the first electrode and after the last electrode are set to the voltage of the first electrode and 

the last electrode, respectively. a) shows holes in both the first and the last electrodes. b) 

shows a hole in the first electrode but the last electrode is closed. 

Considering the boundary conditions, and also the fact that the electric field at point 

1 is zero, equation (9.29) can be simplified to (9.30) by ignoring terms with higher than 

fifth order derivatives. Alternatively, equation (9.31) can also be written. Combining 

(9.30) and (9.31) results in (9.32).  

𝜑
2
= 𝜑1 + 𝜑1

(5) ∆𝑓
5

5!
 (9.30) 

𝜑1
(5)
=
𝜑2
(4)
− 𝜑1

(4)

∆𝑓
=
𝜑2
(4)

∆𝑓
 (9.31) 

𝜑
2
= 𝜑1 + 𝜑2

(4) ∆𝑓
4

5!
 (9.32) 

Considering equation (9.28) for 𝑖 = 2, equation (9.33) can be obtained.  
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𝑉2 = 𝜑2 −
𝑟2
2

4
𝜑2
(2)
+
𝑟2
4

64
𝜑2
(4)

 (9.33) 

Equation (9.21) for 𝑖 = 1, by considering that in this case ∆1= ∆𝑓 and using the 

boundary conditions at point 1, can be written as equation (9.34):  

𝜑
2
(2) =

(∆𝑓)2

6
𝜑2
(4)

 (9.34) 

By combining equations (9.32) and (9.33) and defining 𝑋 = (
𝑟2
4

64
−
𝑟2
2

4

(∆𝑓)2

6
), equation 

(9.35) is derived: 

𝜑
2
(4) =

𝑉2 − 𝜑2
𝑋

 (9.35) 

By combining (9.32) and (9.35), equation (9.36) is obtained. Equating 
∆𝑓4

5!𝑋
= −1 

produces the desired result of 𝜑1 = 𝑉2, and results in equation (9.37), after some 

simplification . 

𝜑
1
= 𝜑2 (1 +

∆𝑓4

5! 𝑋
) − 𝑉2

∆𝑓4

5! 𝑋
 (9.36) 

∆𝑓4 − 5𝑟2
2∆𝑓2 +

15

8
𝑟2
4 = 0 (9.37) 

Equation 9.37 has four roots, two of which are negative and two positive (Eq. 9.38).  

The negative ones cannot be acceptable. From the two positive roots, only the smaller 

one is acceptable. This is because if the larger one is selected as ∆𝑓1 (as shown in Figure 

9.4b), considering  the larger root as point 1, the smaller root falls between point 2 

and point 1. In this way, there is another point on the axis that has a potential equal 

to 𝑉2 . This means that the voltage before point 2 is not smoothly approaching 𝑉2, but 

oscillating, as shown in Figure 9.4b, which is not possible. Therefore, the larger root 

cannot be an acceptable solution of the equation. 

∆𝑓 = 𝑟2
√5 −√

35
2

2
, ∆𝑓 = 𝑟2

√5 +√
35
2

2
 

(9.38) 

The same concept is valid for the last electrode and ∆𝑓𝑁−1 can be obtained. In this 

case, to obtain Eq. 9.34, equations 9.18 and 9.21 must be evaluated for 𝑖 = 𝑁 − 1, 

and after combining them Eq. 9.34 is obtained. The rest of the procedure is the same 

and the smaller root shown in Eq. 9.38 can be used to calculate ∆𝑓𝑁−1with 

replacement of 𝑟2 with 𝑟𝑁−1. 
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Figure 9.4. Proper selection of ∆𝑓1 and ∆𝑓𝑁−1 from the roots of Eq. 9.37. a) axial potential 

smoothly approaches the voltage of the first electrode when ∆𝑓 is equal to the smaller root of 

Eq. 9.37, b) axial potential oscillates before it reaches  the voltage of the first electrode when 

∆𝑓 is equal to the larger root of Eq. 9.37. 

It is worth mentioning that, on the boundary conditions, if the first electrode is open 

(contains a hole) and the last electrode is completely closed (no hole), as shown in 

Figure 9.3b, the final data point is 𝜑𝑁, and its voltage is known and is equal to 𝑉𝑁, the 

voltage of the last electrode. As before, there are 3𝑁 − 6  equations, while there are 

3𝑁 unknowns in total. However, 𝜑1 = 𝑉2 and 𝜑𝑁 = 𝑉𝑁, which means 2 unknowns are 

already known, but instead, the distance ∆𝑓1must be identified, which can be found 

using (9.38). For this case it is not necessary to add another point after the last 

electrode and, hence, ∆𝑓 does not exist after the last electrode. Therefore, only 5 

extra boundary conditions are needed. The extra boundary conditions imposed are 

𝜇1 = 𝜇𝑁 = 𝜂1 = 𝑍1 = 𝑍𝑁 = 0. Note that for this case it is not necessary to set 𝜂𝑁 =

0. In this case, while the electric field at the first point is zero, the electric field at point 

𝑁 is an unknown value which depends on the lens system’s geometry and voltages. 

9.2.4 Matrix formulation of the equations  

First, the matrix formulations of the equations are explained for the scenario in which 

both the first and the last lenses have a hole in them. Assume [𝜑]𝑁×1 is the vector of 

the axial potential, [𝜇]𝑁×1 is the vector of the second derivative of the axial potential, 

and [𝑍]𝑁×1 is the vector of the fourth derivative of the axial potential. Equation 9.25 

in the matrix form can be written as Eq. 9.39. Elements of matrices [𝐴] and [𝐵] can be 

obtained from Eq. 9.25. The close format of matrices are represented in the text. The 

open-format of matrices are given in the appendix C for more clarity. 
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[𝐴](𝑁−2)×𝑁[𝑍]𝑁×1 = [𝐵](𝑁−2)×𝑁[𝜇]𝑁×1 (9.39) 

With the boundary conditions 𝑍1 = 𝑍𝑁 = 𝜇1 = 𝜇𝑁 = 0, it is possible to reduce 

equation Eq. 9.39 and obtain Eq. 9.40. In Eq. 9.40 [𝑍∗] and [𝜇∗] are the vectors of the 

fourth derivative and second derivative of axial potential, respectively, starting from 

point 2 until point 𝑁 − 1. Matrices [𝐴∗] and [𝐵∗] are the reduced [𝐴] and [𝐵]. 

[𝐴∗](𝑁−2)×(𝑁−2)[𝑍
∗](𝑁−2)×1 = [𝐵

∗](𝑁−2)×(𝑁−2)[𝜇
∗](𝑁−2)×1 (9.40) 

Equation 9.26 in the matrix form can be written as Eq. 9.41. Elements of the matrices 

[𝐶], [𝐷] and [𝐾] can be obtained from Eq. 9.26. With the boundary conditions 𝑍1 =

𝑍𝑁 = 𝜇1 = 𝜇𝑁 = 0, it is possible to reduce Eq. 9.40 to equation (42). In Eq. 9.42 

matrices [𝐶∗], [𝐷∗] and [𝐾∗] are the reduced [𝐶], [𝐷] and [𝐾]. In Eq. 9.42 [𝑈0] is a 

vector of size (𝑁 − 2) × 1, in which element 1 is 𝜑
1

, which is equal to the voltage of 

the first electrode, element N is 𝜑
𝑁

, which is equal to the voltage of the last electrode, 

and all the other elements are zero. 

 [𝐶](𝑁−2)×𝑁[𝑍]𝑁×1 + [𝐷](𝑁−2)×𝑁[𝜇]𝑁×1 = [𝐾](𝑁−2)×𝑁[𝜑]𝑁×1 (9.41) 
 

[𝐶∗](𝑁−2)×(𝑁−2)[𝑍
∗](𝑁−2)×1 + [𝐷

∗](𝑁−2)×(𝑁−2)[𝜇
∗](𝑁−2)×1

= [𝐾∗](𝑁−2)×(𝑁−2)[𝜑
∗](𝑁−2)×1 + [𝑈0](𝑁−2)×1 

(9.42) 

Equation 9.28 can be written in matrix form, as in Eq. 9.43. In equation 9.43, vector 

[𝑉] represents the voltages of all points on the electrodes (therefore it is a known 

vector) and matrix [𝑟] is a diagonal matrix of size (𝑁 − 2) × (𝑁 − 2) and the diagonal 

elements are the distances between each point on the electrode to its mapped 

counter point on the axis of symmetry. 

[𝑉](𝑁−2)×1 = [𝜑
∗](𝑁−2)×1 −

[𝑟](𝑁−2)×(𝑁−2)
2

4
[𝜇∗](𝑁−2)×1

+
[𝑟](𝑁−2)×(𝑁−2)

4

64
[𝑍∗](𝑁−2)×1 

(9.43) 

Equation 9.40 can be written as Eq. 9.44. Using Eq. 9.44 and Eq. 9.42, equation Eq. 

9.45 can be calculated. Combining equation Eq. 9.45 and Eq. 9.43 results in equation 

Eq. 9.46, after simplification. Rewriting Eq. 9.46, equation Eq. 9.47 can be obtained 

from which [𝜑∗] can be calculated. Using [𝜑∗] in Eq. 9.45 [𝑍∗] is derived and using 

[𝑍∗] in Eq. 9.44, [𝜇∗] can be obtained. Adding the first and last element to the 

vectors [𝜑∗], [𝜇∗] and [𝑍∗] using the boundary conditions,  𝑍1 = 𝑍𝑁 = 𝜇1 = 𝜇𝑁 = 0 
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and the fact that 𝜑
1

 is equal to the voltage of the first electrode and 𝜑
𝑁

 is equal to 

the voltage of the last electrode, the full vectors of [𝜑], [𝜇] and [𝑍] can be 

determined. 

[𝜇∗] = [𝐵∗]−1[𝐴∗][𝑍∗] (9.44) 

[𝑍∗] = {[𝐶] + [𝐷][𝐵∗]−1[𝐴∗]}−1([𝐾∗][𝜑∗] + [𝑈0]) (9.45) 

 (9.46) 

[𝑉] − (
[𝑟]4

64
−
[𝑟]2

4
[𝐵∗]−1[𝐴∗]) {[𝐶] + [𝐷][𝐵∗]−1[𝐴∗]}−1[𝑈0]

= (𝐼 + (
[𝑟]4

64
−
[𝑟]2

4
[𝐵∗]−1[𝐴∗]) {[𝐶] + [𝐷][𝐵∗]−1[𝐴∗]}−1[𝐾∗]) [𝜑∗] 

 

[𝜑∗] = [𝑃]−1[𝑄] 

 
(9.47) 

[𝑃] = (𝐼 + (
[𝑟]4

64
−
[𝑟]2

4
[𝐵∗]−1[𝐴∗]) {[𝐶] + [𝐷][𝐵∗]−1[𝐴∗]}−1[𝐾∗]) 

 

[𝑄] = [𝑉] − (
[𝑟]4

64
−
[𝑟]2

4
[𝐵∗]−1[𝐴∗]) {[𝐶] + [𝐷][𝐵∗]−1[𝐴∗]}−1[𝑈0] 

 

Having established [𝜑], [𝜇] and [𝑍], it is possible to formulate quintic spline equations 

𝑆𝑖(𝑥) for 𝑖 = 1, 2,⋯ ,𝑁 − 1.  𝑆𝑖(𝑥) can be calculated using Eq. 9.6. Coefficients 𝐴𝑖, 𝐵𝑖, 

and 𝐷𝑖 can be directly calculated using Eq. 9.9, Eq. 9.11 and Eq. 9.15. To calculate 𝐶𝑖, 

𝜂𝑖 for 𝑖 = 1, 2,⋯ ,𝑁 − 1 must first be determined from Eq. 9.21, and based on the 

assumed boundary condition 𝜂𝑁 = 0. Having all 𝜂𝑖 and using Eq. 9.13, it is now 

possible to calculate 𝐶𝑖. 

If the last electrode is closed, the same strategy as explained above can be used to 

calculate 𝑆𝑖(𝑥) for 𝑖 = 1, 2,⋯ , 𝑁 − 1. The only difference is that, after determining 𝜂𝑖 

for 𝑖 = 1, 2,⋯ ,𝑁 − 1, the value of 𝜂𝑁 should be calculated using Eq. 9.18 by setting 

𝑖 = 𝑁 − 1.  

Note: To solve the matrix equations, various software and programming languages 

like MATLAB or Python can be employed for this task. In general, a linear matrix 

equation in the form of 𝐴𝑥 = 𝐵 can be easily solved, for example, in MATLAB by 

defining the matrices A and B and using the command 𝑥 = 𝐴−1𝐵. Since all matrices 

presented in Section B-2 can be computed from the geometry data and electrode 

voltages, the final matrices can be effortlessly calculated through a straightforward 

implementation in MATLAB. Following this, as explained, it is feasible to compute 
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cubic splines, and from there, the voltage distribution along the axis of symmetry can 

be derived. 

9.3 Accuracy of FOEM 
To analyse the accuracy of calculation of the electric field and optical parameters using 

FOEM, six different typical electrostatic lens systems including 3, 4 and 5 electrodes, 

are taken as test systems (represented in 2D in figure 9.5). The axial potential 

calculation is performed by the two previously existing methods of SOEM and FEM 

(using COMSOL [13]) and by the newly-presented FOEM method. For the SOEM and 

FOEM calculation, we use MATLAB [28]. First, the axial potential and its derivatives 

are graphically compared. In the graphical comparison, only the graphs related to one 

system (system1 from figure 5) are depicted and presented here since all lens systems 

show almost similar trends. The overlaid graphs are presented in figures 9.6 and 9.7.  
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System1 : Three-electrode lens system 

  

System2: Three-electrode lens system 

 

 System3: Four-electrode lens system 

  

 System4: Four-electrode lens system 

 

 

System5: Five-electrode lens system 

 

System6: Five-electrode lens system 

 

Figure 9.5. Six different typical electrostatic lens systems (in 2D) taken as test systems for 

making the comparison of the methods of SOEM, FOEM and FEM. The colours indicate the 

voltages at each electrode. The primary beam passing through the lens system (in red), as taken 

from our raytracing codes in MATLAB using FEM field calculation, is sketched for a better 

visualisation of the lens. The units along the axes of the graphs are in millimetres. 

In electron optical lens systems, the aberration coefficients are the factors which 

determine the quality of the lens systems. The lower the values of these parameters, 

the less the aberrations exist and therefore the better the lens system [1-3]. In our 

case-study, the lens systems are only suffering from the spherical and chromatic 

aberrations. Hence, the chromatic and spherical aberration coefficients (denoted by 

𝐶𝑐  and 𝐶𝑠) are the deterministic factors in the lens design and optimization here. These 

parameters are functions of the axial potential and its derivatives. The presentation of 

the formulation is given in equations 9.48 and 9.49. More details on the formulations 
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and their derivations are skipped in this paper and can be found in the references [7, 

12].  

𝐶𝑆 =
1

16𝜙0

1
2

∫ 𝜙
1

2(
5

4
(
𝜙′′

𝜙
)2 +

5

24
(
𝜙′

𝜙
)4𝑟𝛼

4 +
14

3
 (
𝜙′

𝜙
)3𝑟𝛼

3𝑟𝛼
′ −

3

2
(
𝜙′

𝜙
)2𝑟𝛼

2𝑟𝛼
′2)𝑑𝑧

𝑧𝑖
𝑧0

            (9.48) 

 

𝐶𝑐 = 𝜙0
1
2∫ (

3

8
) 
𝜙′
2

𝜙
5
2

𝑟𝛼
2𝑑𝑧

𝑧𝑖

𝑧0

 
(9.49) 

Where, 𝜙0 is the potential at the object side, and 𝑟𝛼(𝑧), refers to the principle imaging 

ray [1] , travelling from the object side along the optical axis, with angle 1. The 

principle imaging ray rα(z) is calculated by ray tracing. 

The accuracy in the calculation of 𝐶𝑆 and 𝐶𝑐  is important in electron lens design. Since 

these parameters are functions of the potential and its derivatives, hence they can be 

used as an important qualitative and quantitative measure to check the accuracy of 

the axial potential calculations. Therefore, these optical parameters are also derived 

from the calculated axial potential and its derivatives by FOEM, SOEM and FEM and 

compared. The related graphs are presented in figure 9.8. The quantitative data 

related to these optical parameters are presented and compared in Tables 1 and 2. 

 
Figure 9.6. a). The overlapped graphs of the axial potential for System1 from figure 9.5, 

calculated with different methods of SOEM, FOEM and FEM. b) and c) the enlarged sections of 

the graphs.  
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Figure 9.7. The overlapped graphs of the first a) and second b) derivative of the axial potential 

for System1 from figure 5, calculated with different methods of SOEM, FOEM and FEM. 

Figure 9.6.a, compares graphically the axial potential calculated by the three different 

methods (SOEM, FOEM and FEM), and a reasonably good overlap in the axial potential 

graphs can be seen. However, when zooming in (figure 9.6.b and c, slight deviations 

are recognized. These deviations become more recognizable in the graph of 𝜙′ (figure 

9.7.a), and 𝜙′′ (figure 9.7b). It is evident that the deviations are mainly between SOEM 

and FEM, while there is reasonably good overlap between FOEM and FEM.  

In the 𝐶𝑠 and 𝐶𝑐  graphs, shown in figure 9.8, similar to the graphs of the axial potential 

derivatives, the graphs of FOEM are in much higher agreement with FEM than the 

ones of SOEM. This behaviour is more recognizable in the 𝐶𝑐  graphs. This is because 

in our case-study, 𝐶𝑠 is dependent on both the first and second derivative of the axial 

potential, while 𝐶𝑐  is only a function of the first derivative, and the fluctuations in the 

second derivatives (as seen in figure 9.7.a and b) are larger. 
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  (a) 

 
 (b) 

Figure 9.8. The overlapped graphs of chromatic (a) and spherical (b) aberration coefficients for 

System1 from figure 9.5, calculated with different methods of SOEM, FOEM and FEM. The 

vertical axis has unit of mm.  

In addition to the graphical comparisons, to also achieve quantitative data 

comparisons, the values of optical parameters such as chromatic and spherical 

aberrations (𝐶𝑐  and 𝐶𝑠) as well as the image position (𝑋𝑐) (another important factor in 

lens design) [1], are calculated for the six lens systems (from figure 9.5) and presented 

in Tables 9.1 and 9.2. The presented data of 𝐶𝑠 and 𝐶𝑐  are related to the image side. 

Table 9.1. The data related to the optical parameters such as chromatic and spherical 

aberrations (𝐶𝑐 and 𝐶𝑠) and the image position (𝑋𝑐), calculated by FEM, FOEM and SOEM, for 

six different typical electrostatic lens systems (presented in figure 9.5). 

Systems System1  System2 System3 System4 System5 System6 

𝑿𝒄(𝒎𝒎) FEM 8.92 8.26 9.65 13.39 10.03 15.43 

FOEM 8.87 8.29 9.61 13.12 9.97 15.39 

SOEM 9.12 8.62 9.87 13.78 10.35 15.65 

𝑪𝒄(𝒎𝒎) FEM 18.71 15.26 23.73 26.13 1.82 0.98 

FOEM 18.85 15.35 23.45 27.79 1.89 0.94 

SOEM 19.45 16.80 24.10 18.78 2.03 0.77 

𝑿𝒔(𝒎𝒎)  FEM 21.13 54.70 22.88 217.65 7.14 12.48 

FOEM 21.98 56.85 21.82 206.65 7.47 11.02 

SOEM 30.77 104.58 37.07 392.57 13.19 11.77 

From Table 9.1, it can be seen at a glance that all optical parameters, when calculated 

by FOEM are much closer to the accurate values calculated by FEM, compared to those 

calculated by SOEM. The difference between FOEM and SOEM in being more 

compatible with FEM, can be especially realized in 𝐶𝑠 values.  
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To estimate the deviation of the calculated data with FOEM and SOEM for each 

system, with respect to the accurate data, the error is determined by taking COMSOL 

data (FEM) as the reference for accurate values. The errors are presented in Table 9.2 

for each system. The last column in Table 9.1 presents the average value of the error 

for 6 lens systems. This average is computed as a mathematical mean of the errors 

over the six different lens systems ((∑ (𝑒𝑟𝑟𝑜𝑟𝑖)
6
𝑖=1 )/6)).  

As it is seen at a glance from Table 9.2, the reported errors from calculation with FOEM 

for all systems are much smaller than the ones calculated with SOEM. It should be 

noted that it might be possible to occasionally get a result with a slightly larger 

calculation error with FOEM than with SOEM. This scenario can occur due to the 

determination of the total values of 𝐶𝑠 and 𝐶𝑐  through the integration of summations 

involving terms dependent on 𝜙 , 𝜙′and 𝜙′′.Fluctuations are evident in the graphs of 

these parameters, particularly seen in figures 9.8.a and b for phi' and phi". When 

examining the overlap of graphs from FOEM and SOME with those from FEM in these 

figures, larger deviations are noticeable in SOEM compared to FOEM. However, in the 

calculations of 𝐶𝑠 and 𝐶𝑐, owing to the complexities of the functions, the terms in the 

integral may occasionally compensate for each other. This compensation results in the 

total values of 𝐶𝑠 and 𝐶𝑐  calculated for SOEM occasionally getting closer to those 

calculated with FEM compared to FOEM with FEM, even though the absolute values 

at each point in the graphs of 𝜙 , 𝜙′and 𝜙′′ for FOEM and FEM exhibit closer values. 

Such instances, however, are infrequent. In general, as shown in Table 9.2, the 

calculated data by FOEM consistently demonstrates much smaller errors compared to 

SOEM. 

Table 9.2. The percentage of error in calculation of the optical parameter derived by FOEM and 

SOEM, for six different typical electrostatic lens systems (presented in Table 9.2) compared 

with the data calculated with the accurate method of FEM. 

Systems System1  System2 System3 System4 System5 System6 Error avg. 

 

Error 

in XC 

 

FOEM 0.56 %     0.36 %  0.41 %    2.02 %    0.60 %    0.26 % 0.70 % 

SOEM 2.24 %    4.36 %   2.28 %     2.91 %    3.19 %    1.42 % 2.73 % 

Error 

in Cc 

 

FOEM 0.75 %    0.59 %  1.18 %    6.35 %    3.85 %    4.08 % 2.80 % 

SOEM 3.95%   10.09 %   1.56 %     28.13 %    11.53 %    21.43 % 12.79 % 

Error 

in Cs 

 

FOEM 4.02 %     3.93 %  4.63 %    5.05 %    4.62 %    11.70 % 5.66 % 

SOEM 45.62 %    91.18%   62.01 %   80.37 %   84.73 %     5.69 % 61.60 % 
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As illustrated in Table 9.2, FOEM values provide reasonably accurate results for 𝑋𝑐 

(with the average value of error 0.7%), with respect to the accurate values of FEM. 

Also, noticeable is that, FOEM resulted in much smaller error percentages (approx. 4 

times smaller) than SOEM with respect to the accurate values. A similar trend of 

having higher accuracy for FOEM than SOEM is seen in the values of 𝐶𝑐. The error 

percentage, on average, for 𝐶𝑐  calculation by FOEM is around 5 times smaller than by 

SOEM (i.e. 2.8% for FOEM versus 12.79%). Having much smaller error percentage (  ̴4-

5 times) for 𝐶𝑠 calculation in FOEM compared to SOEM (5.6% for FOEM versus 61.6% 

) keeps the  same trend of higher accuracy of FOEM. However, the absolute values of 

the error percentages in 𝐶𝑠 are much higher than in the cases of 𝐶𝑐  and 𝑋𝑐 calculation. 

which is due to their different functionality to the potential and its derivatives. The 

computation time needed to evaluate the optical parameters for each lens system, 

using FEM, FOEM and SOEM are   ̴ 60 sec,  0.5 sec, and  0.4 sec, respectively.  

In summary, the quantitative data comparison, similar to the graphical analysis, 

demonstrates that FOEM performs the optical parameters calculation in a very short 

time with reasonably high accuracy, showing deviations ranging from around 1% to a 

maximum of 6% compared to FEM. Notably, FOEM exhibits significantly higher 

accuracy in both field calculation and optical parameter calculations compared to 

SOEM. This is particularly evident for optical parameters dependent on the second 

derivative of the potential, such as 𝐶𝑠.  

9.4 Optimization of electrostatic electron lens systems 

based on FOEM and a comparison with SOEM- and 

FEM-based optimization  

As discussed earlier, the primary goal of developing a fast field calculation method for 

electrostatic lens systems was to incorporate it into an automated optimization 

routine for lens system optimization. With the identification of the proposed fast field 

calculation method (FOEM), the next step is to implement it in an optimization routine 

(here Genetic Algorithm) to assess its efficiency in producing optimized lens systems 

with accurately calculated optical parameters, all within a reasonably short 

computational runtime. This objective will be addressed in this section.  

In this section therefore first a brief introduction on Genetic Algorithm (GA) in the 

context of electrostatic electron lens system optimization is provided in subsection 

9.4.1. Then a section is introduced (section 9.4.2), to conduct an optimization that 
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calculates the potential using FOEM (referred to as 'FOEM+GA') and verify the 

accuracy of the calculated optical parameters associated with the resulting lens 

systems within a single run of GA. The aim of this section is to analyze the accuracy 

and trends in optical parameter calculation using FOEM, SOEM, and FEM in a single 

run of GA Optimization.  

The problem in comparing the outcomes of the three methods is that they all may 

yield small values for the optimization parameter, but the calculation of the 

parameters by SOEM and FOEM may be inaccurate and when the parameters of the 

resulting optimized designs are calculated by FEM, they may be much higher. The 

solution to that problem is of course to calculate the optical parameters of the 

resulting designs by FEM.  

There is one more check we need to do in order to have a fair comparison between 

FOEM and SOEM. In a previous study [7, 12], we followed a SOEM optimization by a 

FEM optimization that was fed by the results of the SOEM optimization. This turned 

out to be very efficient as compared to a strict FEM optimization. Now the question is 

if a strict FOEM optimization, or a FOEM optimization with subsequent FEM 

optimization can compete with that earlier approach. A detailed exploration of the 

aforementioned subjects is presented in Section 9.4.3. 

9.4.1 Introduction to Electrostatic Electron Lens Optimization 

by FOEM+GA 

The Genetic Algorithm (GA), a member of the evolutionary algorithms, emulates 

natural evolution, drawing inspiration from Darwin’s theory. The process commences 

with the creation of a randomly generated initial population denoted as 

𝑃1(𝑥1 , … , 𝑥𝑛 )  where '𝑥𝑖  ' signifies the chromosomes in natural evolution and, in the 

context of electrostatic electron lens system optimization, represents the electrostatic 

electron lens systems. Consequently, 𝑃1 constitutes an initial set of randomly 

generated electrostatic electron lens systems based on the variables of the lens 

system. In the context of Genetic Algorithms (GA), the user has the option to provide 

some or all of the initial elements of the first population instead of implementing 

solely the randomly generated ones. 

In natural evolution, over time, the initial population gradually evolves towards 

members that are better adapted to their environmental conditions. Likewise, in the 

GA, the initial population progresses through successive "generations" towards a new 
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set of systems [𝑃𝑖+1(𝑥1 , … , 𝑥𝑛 )]  that better satisfy the problem conditions. The 

conditions identified for optimization are specified by a designated “objective 

function”. The term “generation” in the GA corresponds to the number of iterations 

the algorithm undergoes before termination. In this study, this parameter serves as 

the stopping criterion for the GA. The GA is determined by also other tuning operators 

such as "crossover," and "mutation."  

9.4.2 The calculation of optical parameters in a single run of 

GA Optimization based on FOEM, versus SOEM and FEM  

To undertake this analysis, a full optimization is performed utilizing the Genetic 

Algorithm to optimize a four-electrode electrostatic lens system, with optical 

parameters calculated using the FOEM technique. Based on insights from our recently 

published work on tuning GA parameters for electrostatic lens system optimization 

[21], also considering the fact that the primary goal of this investigation is not to obtain 

the best-optimized system but rather to derive results for comparing different field 

calculation approaches implemented within GA, the chosen GA tuning parameters are 

as follows: population = 50, generation = 100, Crossover :”Heuristic” and Mutation: 

“Gaussian” techniques, with a crossover fraction of 0.6 (indicating the proportion of 

the population through which the next generation is created by the crossover 

function).  

All the geometries of the lenses, such as thicknesses (𝑇𝑗), radii (𝑅𝑗) and gaps between 

electrodes (𝐺𝑗), as well as the voltages at each electrode (𝑉𝐸𝐿𝑗) are free parameters of 

the optimization. These parameters can range in the interval of 1 𝑚𝑚 < 𝑇𝑗  (𝑗 =

 1, … , 4) < 3 𝑚𝑚, 0.3 𝑚𝑚 < 𝑅𝑗  (𝑗 =  1, … , 4) < 2 𝑚𝑚, 1 𝑚𝑚 < 𝐺𝑗  (𝑗 =  1, 2) <

3 𝑚𝑚 and 700𝑉 < 𝑉𝐸𝐿𝑗 < 10 𝑘𝑉 (𝑗 =  2, 3). The voltage of the first electrode is 

7000V. In total, there are 12 free lens parameters in the optimization. The voltage at 

the image plane is kept fixed at 1000 V. The total length of the lens system is kept 

constant (here 15mm). A schematic drawing of such a lens system can be seen in figure 

9.5 (System4). The origin of the x-coordinate is at the left side of the first electrode’ s 

surface. The primary beam comes from far behind the origin (-100 mm), to focus at 

the image plane. During the optimization the constraints are to have a fixed image 

position (at 𝑋𝐶 = 15 𝑚𝑚, with a tolerance of ±0.05), and to have a maximum electric 

field <15 kV/mm (to avoid the voltage breakdown between sequential electrodes) . 

The optimization objective is to obtain systems with the lowest value of the spherical 
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and chromatic aberrations. The objective function is therefore a function of 𝐶𝑆 and 𝐶𝐶 . 

How to define the objective function based on 𝐶𝑆 and 𝐶𝐶  can be different and depends 

on the application. Here, a summation of 𝐶𝐶  and 𝐶𝑆, with weights of 5 and 1, 

respectively, is taken. The objective function can be mathematically written as: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 5 . 𝐶𝐶 + 𝐶𝑆                                                                              (9.50)                                                        

The abovementioned choice of the geometry, objective function and constraints, 

resembles an earlier reported probe-forming electrostatic objective lens system [5]. 

However, since the aim is to compare the results of “FOEM+FEM+GA” with 

“SOEM+FEM+GA”, this specific selection does not influence the results of the analysis 

and can also be altered with other logical choices.    

For the optimization, a GA is used with the generation and population of 100 and 50, 

respectively. Therefore, a total of 5000 systems are being evaluated in this 

optimization. From the results of this optimization, the 30 best non-identical systems 

(the system with the lowest objective function values with different designs) are taken 

for the comparison analysis. The related data are presented in figure 9.9.  

Note: we didn't include all 5000 systems from their respective generations in the 

graph since they were too crowded. Instead, we manually selected the 30 best non-

identical systems—those with the lowest objective function values and different 

designs—for this comparison. The reason for not selecting the real 30 best systems 

out of the GA run was to avoid having almost 30 identical systems that GA converged 

to as solutions in the last generations. This would have hindered a proper observation 

of the trend of decrement. Additionally, not having 30 almost very different lens 

systems would not provide a suitable basis for testing optical parameter accuracy 

calculations. Therefore, we manually chose 30 systems to represent the overall trend 

of decrement in their objective functions. These systems were sorted in the plot and 

identified by their sorted system numbers (System 1 to 30) in figure 9.8. 

The data of 𝑋𝐶 , 𝐶𝐶  and 𝐶𝑆, for these 30 systems are given as squares (in red) in figures 

9.9.a, b, and c, respectively. The optical parameters of 𝑋𝐶 , 𝐶𝐶and 𝐶𝑆 for these 30 

systems are again calculated using SOEM and FEM (by COMSOL). The data calculated 

by SOEM are presented with stars (in blue), and by FEM are shown with circles (in 

black) in the same figures (9.9.a – 9.9.d). As it is clear from figure 9a, the data for 𝑋𝐶  

are reasonably accurate both for FOEM and SOEM compared to FEM, but with higher 

accuracy for FOEM than for SOEM. It is noticeable from figures 9.9.b,c and d, that the 

data of 𝐶𝐶  and 𝐶𝑆 for FEM and SOEM follow the same decreasing trend as FOEM, 
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however, with much less deviation from the accurate data of FEM for FOEM data 

compared to those of SOEM. 

 

 
Figure 9.9. (a) Comparison of crossover point (𝑋𝐶), (b) chromatic aberation cofficient (𝐶𝐶), (c, 

d) and spherical aberation cofficient (𝐶𝑆), for the best 30 systems obtained using SOEM, FOEM 

and COMSOL. The 30 systems are the best non-identical optimised systems derived from an 

optimisation using GA with data calculation by FOEM. 

The  first conclusion is that both SOEM and FOEM can be used in an initial optimization 

to start from no initial data and reach reasonably optimized systems. However, it is 

important to note that the inaccuracy in the data obtained with SOEM is large, 

specifically in 𝐶𝑆 (see figure 9.9.c and zoomed-in in 9.9.d).  

9.4.3 The efficiency of GA optimization based on FOEM, FEM 

and SOEM 

In this subsection, the objective is to compare the outcomes of FOEM+GA, FEM+GA, 

and SOEM+GA. To achieve this, different optimizations, as detailed below, will be 

executed and subsequently compared: FEM+GA optimization starting with random 

parameters (very time consuming), then FEM+GA starting with a feed from SOEM and 
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finally FEM+GA starting with a feed from FOEM. The generation (denoted by ‘G’) and 

population (denoted by ‘P’) in GA are taken as 100 and 50, respectively. The results of 

these three optimizations are presented in Figure 9.10.a, 9.11.a and 9.12.a. Figures 

9.10.b, 9.11.b and 9.12.b depict a zoomed-in view. As previously discussed, the results 

from FEM are accurate. Therefore, the results taken from “FEM+GA” do not need to 

be fine-tuned.  In order to get accurate and optimized out-put results, the 10 best 

optimized systems are taken and fed into another optimization by GA as its initial 

population, but this time the objective function is calculated using FEM. The results of 

these optimizations which are called “SOEM+FEM+GA” and “FOEM+FEM+GA”, are 

presented in figures 9.11.c and 9.12.c, respectively. The quantitative data related to 

these optimizations are represented and summarized in Table 9.3. 

 

 
Figure 9.10.(a) Optimisation of a 4-electrode lens system using GA, while the optical 

parameters are calculated by FEM (“FEM+GA”). The graph represents the objective function 

(OF) values (Y-axis) versus generation (X-axis). The black/blue dots show the best/mean 

objective function values at each generation. Figure b shows the zoomed-in data of figure a. 

System A is the best system found in this optimisation with OF=15.75, occurring at generation 

83. ’CT’ stands for the computation time needed to run the optimisation till the generation 

indicated by the green arrow. 

As is seen from figure 9.10.a, to run the full optimization for “FEM+GA”, the 

computation time (denoted by CT in the figures 9.10-9.12), is 80 hours.  However, the 

best system, with the objective function of 15.75 (shown by ‘A’ in figure 9.10.b), is 

reached at generation G=83. Hence, the computation time needed to reach the best 

system in this case is around 70 hours. After this time, the optimization could not be 

improved any further within its 100 generations. Therefore the CT needed   for 

“FEM+GA” can be reported as 70 hours and the best system has OF=15.75 

(represented in Table 9.3 as well).  
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Figure 9.11, shows the results of “SOEM+FEM+GA”. The first plot, 9.9.a, presents the 

improvement of the objective function versus generation during the optimization. The 

total computation time to run this optimization is CT  ̴33 minutes. The zoomed-in data 

is shown in figure 9.11.b where it is seen that the optimization has improvements 

almost until the last generation. The best system (system B in figure 9.11.b) is found 

at generation of G=99, with an objective function of OF=19.01. The computation time 

to find this system is   ̴32 minutes. The related data for this system is given in Table 

9.3. As is evident from Table 9.3, the image position of this system when derived from 

“SOEM+GA” is reported to be 𝑋𝐶_𝑆𝑂𝐸𝑀=14.96 mm. However, when the optical 

parameters of this system are calculated accurately by FEM, 𝑋𝐶_𝐹𝐸𝑀 =14.54 mm and 

𝑂𝐹_𝐹𝐸𝑀 =13.56 is achieved.  

Here OF_FEM seems to have a small value of 13.56. However, it should be noted that 

the accurate Xc when calculated by FEM turned out to be 𝑋𝐶_𝐹𝐸𝑀 =14.54 and not at 

the expected required value of 𝑋𝐶 =15 mm. It means, this system is not at the required 

fixed-image position and might have a larger OF value, when it is tuned to have its 

𝑋𝐶 at 15 mm. 
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Figure 9.11. (a) The results from an optimisation of a 4-electrostatic lens system using GA, while 

the optical parameters are calculated by SOEM (“SOEM-GA”). The graph represents the 

objective function (OF) values (Y-axis) versus generation (X-axis). The black/blue dots show the 

best/mean objective function values at each generation. Figure (b) shows the zoomed-in data 

of figure (a). System B is the best system found in this optimisation. ’CT’ stands for the 

computation time needed to run the optimisation until the generation indicated by the green 

arrow. Figure (c) presents the result of an optimisation using GA, called “SOEM-FEM-GA”, with 

the initial data fed from a previous optimisation of “SOEM-GA”. A lens system, depicted by B’, 

is an optimised system resulting from “SOEM-FEM-GA” with OF=15.66, occurring at generation 

34.  

This system, together with nine other optimized systems, are fed into another 

optimization of “FEM+GA” (with P=20, G=50), as their initial population. The optimized 

system (B’ in figure 9.11.c), is found at generation of G=34. The optimization did not 

show recognizable improvement afterwards. Therefore G=34 is taken to be the 

generation at which  the optimization reached the best system. The computation time 

to reach this system is   ̴6.5 hours. Figure 9.11.c shows that the best system found by 

SOEM actually had an OF=21 when properly focused instead of the values OF=19.01 
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or 13.56 as discussed above. The FEM optimization could improve the design to 

OF=15.66. 

To complete the comparison, an optimization is performed using FOEM . The results 

of this optimization are presented in figure 9.12.a. It is evident that the computation 

time for a full optimization is around 41.5 minutes. The best system (system C with 

OF=10.9) here is found at G=68 after around 30 minutes. No further improvement is 

recognized after that.  

 

 
Figure 9.12. (a) The results from an optimisation of a 4-electrostatic lens system using GA, 

where the optical parameters are calculated by FOEM (“FOEM-GA”). The graph represents the 

objective function (OF) values (Y-axis) versus generation (X-axis). The black/blue dots show the 

best/mean objective function values at each generation. Figure (b) shows the zoomed-in data 

of figure (a). System B is the best system found in this optimisation. ’CT’ stands for the 

computation time needed to run the optimisation until the generation indicated by the green 

arrow. Figure (c) presents the result of an optimisation using GA, called “FOEM-FEM-GA”, with 

the initial data fed from a previous optimisation of “FOEM-GA”. A lens system depicted by C’, 

is an optimised system resulting from “FOEM-FEM-GA” with OF=14.32, occurring at generation 

2.  
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As seen from Table 9.3, the image position and objective function values of system C 

derived by “FOEM+GA” are 𝑋𝐶_𝐹𝑂𝐸𝑀 =15.00 mm, and 𝑂𝐹_𝐹𝑂𝐸𝑀 =10.9. These 

parameters when they are calculated accurately by FEM are reported to be 𝑋𝐶_𝐹𝐸𝑀 

=14.93 mm and 𝑂𝐹_𝐹𝐸𝑀 =15.18 (see Table 9.3). To achieve the accurate and 

optimized  out-put system, this optimized system (system C in figure 9.12.b), together 

with nine other best systems are taken and fed into another optimization of 

“FEM+GA”, with P=20, G=50 as the initial population. The result of this optimization is 

presented in figure 12c. As is evident from figure 9.12.c, the optimization already 

reached the optimized system (system C’ in figure 9.12.c) after only the first 

generation (at G=2, OF=14.32). After the second generation the optimization 

improvements are almost negligible. This means that the initial systems which had 

been fed were close to the accurate solutions calculated by FEM.  

The reason why the ”SOEM+FEM+GA” optimization takes a longer time than 

“FOEM+FEM+GA” to find the optimized system is that the objective function and 

image position of the optimized system found by this optimization (system B) deviate 

more from the corresponding accurately calculated values by FEM (see Table 9.3) than 

those achieved by “FOEM+GA” (system C). 

 

Table 9.3. The data related to the comparison between three optimisation strategies of “FEM-

GA”, “FOEM-FEM-GA” and “SOEM-FEM-GA”. 

 

In summary, based on what has been discussed above and reported in Table 9.3, it is 

seen that the total computation time needed to run a fully-automated optimization, 

for “FEM+GA”, “SOEM+FEM+GA” and “FOEM+FEM+GA”, is 70 hours, 7 hours and 1.25 

hour (i.e. 35 min + 40 min), respectively. The optimized systems found by these three 
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methods, which satisfied the constraints, have objective function values of 15.75, 

15.66 and 14.32 ,respectively. Although “SOEM+FEM+GA” could reach an optimized 

system with low objective function within a reasonably short time (  ̴7 hours), 

“FOEM+FEM+GA” could reach it   ̴10 times faster and it is even   ̴70 times faster than 

the optimization based on “FEM+GA”. From these results, it is clear that 

“FOEM+FEM+GA” could reach a lower value of the objective function and in an 

enormously shorter computation time than the other two optimization strategies.  

However, what is noticeable here is that, as it is seen from the last row of the Table 

9.3, the optimized system found by only “FOEM+GA” got close enough to the accurate 

optimized system, which after a very short time of tuning (10 minutes) could achieve 

an optimized system which could not be further improved by a full optimization of 

FEM+GA (after 35 min of “FOEM+FEM+GA”, the optimized system has the optical 

parameters of: OF_FEM=14.32 with XC_FEM=15.01 mm, resulting from improving on 

a previously optimized system of : OF_FEM=14.35, XC_FEM=15.02 mm).  

Hence, it is evident that FOEM results are close enough to the accurate results such 

that this method has the possibility to be even used separately in an optimization run 

without the need of another full run of FEM, while SOEM needed that. This method 

therefore can have high impact on the process of automated design and optimization 

of electrostatic lens systems.  

To have a visualisation of the electrostatic lens system optimized by “FOEM+GA” , 

system C’ is presented in figure 9.13 (2D in a, 3D in b).   

 

 
Figure 9.13. The optimised electrostatic lens system (system C’ in figure 9.12.c) including 4 

electrodes, optimised by “FOEM-GA”, in 2D (a) and 3D (b).  

9.5 Conclusion 
In this work, a novel fast field calculation method, with reasonably high accuracy, for 

cylindrical rotationally-symmetrical electrostatic lens systems is presented. It is 
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performed by solving the Laplace equation while keeping the terms up to its fourth 

order derivatives and utilizing quintic splines. This method is therefore called Fourth 

Order Electrode Method (FOEM) by the authors. First, fundamental equations of the 

quintic spline are derived for a system with unequal distances between the points, 

which is new as far as we know. Using the Laplace equation and by means of 

discretizing the axis-of-symmetry and approximation of the axial potential in each 

section with a quintic spline, a mathematical equation for calculating the potential 

along the axis of symmetry is derived. Accuracy and computation time of the proposed 

method in calculation of the axial potential, its first and second derivatives and related 

optical parameters, are compared with other field calculation methods, such as the 

Finite Element Method (FEM) and Second Order Electrode Method (SOEM). As 

expected, especially the second derivative of the axial potential is calculated much 

more accurate in FOEM than in SOEM, which is especially important for the calculation 

of the spherical aberration of a lens system. 

The proposed method is then used to optimize an electrostatic lens system by 

implementing Genetic Algorithm (GA) optimization and the computation time of 

optimization and effectiveness of evaluated optical parameters are compared with 

optimization performed by “FEM” as well as “SOEM+FEM”. It is concluded that using 

“FOEM”, optical parameters calculated by FOEM achieve reasonably high accuracy 

compared with values obtained by FEM and the optimization based on FOEM can be 

performed significantly faster (70 times) than by FEM. When the final design found by 

FOEM optimization is recalculated by FEM, the resulting lens parameters are very 

close to the results from the much slower FEM optimization.  

When the results from the FOEM optimization are fed into the GA optimization with 

FEM field calculation, it is found that the results only improves marginally. For other 

systems than our example, this may be different,  but based on the experience in the 

analyzed example it is expected that such a “fine tuning” step can be quite short. 

This new method might be of interest to electron optics designers when a fast 

calculation of the axial field in electrostatic lens systems is needed. The most obvious 

application is the fully-automated design and optimization of multi-electrode lens 

systems, with many free parameters and multi-objective functions. 
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10.  Fast Electrostatic Lens System Design (FELSD) Program  

In the previous chapters, different methods for field calculation of electrostatic lens 

systems (fast and reasonably accurate with SOEM or FOEM, or slow and accurate with 

COMSOL) were presented. Using them, the required optical parameters for an 

electrostatic lens system to evaluate the quality of the lens system could be calculated 

in an automated way. Thereafter, some techniques for optimization of lens systems 

were proposed and successfully implemented which could design/optimize 

electrostatic lens systems in a fully-automated way. The details of the program 

designed to achieve the above-mentioned tasks are presented in this chapter. Since 

our program enables the fast design of an optimized electrostatic lens system, it is 

named the ‘Fast Electrostatic Lens System Design (FELSD)’ program.  

The ‘FELSD’ program can be used for different scenarios. One scenario (we call it S-

No.1) is when there is a known lens system and the user only aims to calculate the 

optical parameters of this system. (S-No.2) is when there is a known system but in 

addition to wanting to know the optical parameters of that system, the user intends 

also to improve the lens system quality. A third scenario (S-No.3) is when no initial 

known lens system is at hand, but there are some criteria (and/or constraints) which 

affect the user searching for a lens system that has the best quality within the defined 

boundaries.   

The program therefore consists of two parts; “Single Lens System Calculation” and 

“Lens System Optimization”. For the above-mentioned first scenario (S-No.1), the 

former option (“Single Lens System Calculation”) can be used. In the situation where 

optimization of a specified lens system is needed (i.e. S-No.2 and S-No.3), the latter 

option (“Lens System Optimization”) is implemented. These two options are explained 

in detail in the following two sub-sections 10.1 and 10.2.  

Note: The codes are written in MATLAB 2018b The program is converted into a user 

friendly app format to make the implementation easier for external users (called 

FELSD App). The FELSD App can be executed in the MATLAB environment.  

10.1 “Single Lens System Calculation” (SLC) 

To calculate the optical parameters of a lens system various input parameters are 

needed. The data related to the lens itself includes the lens geometry and voltages at 
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each electrode. Moreover, the data related to the optics of the ray-tracing for the lens 

system, including the position from where the PB is coming, the opening angle, the 

angles and energies at which SEs are coming from the sample plane (if SE tracing is 

needed), and the step sizes for the meshing of the lens space, etc.  In our program, 

the data related to the lens itself is called “Lens Parameters”, and the latter category 

which are related to the ray-tracing is specified by “Initial Data”.  

As seen in the flow diagram illustrated in Figure 10.1 for the “Single Lens System 

Calculation” (SLC) by feeding the input data into the program, the lens can be first 

sketched for the sake of visualization. Then, the field can be calculated by SOEM, 

FOEM or COMSOL based on the user’s aim. Thereafter, having the electric field, by 

implementing the electron-optical formulas (discussed in chapters 4 and 5), the ray 

tracing can be derived and optical parameter calculations are performed by the 

program. Finally the output data will be extracted. The output data can include the 

spherical and chromatic aberrations, the probe size of the PB, the detection deficiency 

of the lens system, etc. The input and output data are presented in detail in Tables 

10.1-10.2.  

 
Figure 10.1. Schematic flowchart of “Single Lens System Calculation” of the FELSD program. 

The option SLC can be performed utilizing a fast but less accurate method (by SOEM, 

or FOEM) or a relatively slow but highly accurate method of FEM (using COMSOL). The 

related flowcharts are different. These flowcharts are given below as Figure 10.2 (for 

SOEM/FOEM) and figure 3 (for COMSOL).  

As illustrated in Figure 10.2, to calculate the SLC by SOEM or FOEM, first the meshing 

along the optical axis will be performed (box SLCF2 in Figure 10.2). Note that the 

approach to meshing is application-dependent. Detailed explanations for various 

applications are provided in Section 3. For additional insights into ‘application 1’, refer 

to equation 3.24. Then, the field will be calculated using the theory of SOEM or FOEM 

at the mesh points. For the meshing stage, our MATLAB program meshes the axis 

along the optical axis (Z-axis) based on the step size Δz which is given as an input 
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parameter by the user for the PB calculation. The first and second derivatives of the 

field are then derived numerically at the specified mesh points. Thereafter, the ray-

tracing in a paraxial regime is performed (based on the equations in section 2) for the 

PB. The output data will be extracted at the end.  

 

Figure 10.2. Flow diagram of the calculation of the optical parameters for a single lens system, 

using SOEM/FOEM for the field calculation. 

The flow diagram for SLC by COMSOL is illustrated in Figure 10.3. To calculate the SLC 

using COMSOL, first COMSOL itself automatically creates the meshes in the whole 

space (box SLCC3 in Figure 10.3). Afterwards, it calculates the field and derivatives in 

the space as well as along the optical axis. Using our MATLAB program connected to 

COMSOL, the calculated field and derivatives, both along the optical axis and in the 

space, are taken as its output data.  

However, in the field calculation by COMSOL an intermediate stage is needed for the 

meshing (box SLCC2 and SLCC4 in Figure 10.3). Note that the meshing strategy is 
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contingent on the specific application. Section 3 offers explanations on different 

applications. For more insights into ‘application 1’ and ‘application 2’, refer to 

equation 3.24 and 3.25 accordingly. The mesh points defined in MATLAB should be 

connected to the corresponding mesh points created in COMSOL. This step is 

performed as follows; when doing real ray tracing using COMSOL, first the data 

obtained by COMSOL in the space of the lens system must be mapped to a uniform 

rectangular grid. The reason for this is that data directly obtained from COMSOL are 

only available on the mesh points that are used in COMSOL. These mesh points are 

not regular and complicated interpolation is needed to calculate the electric field in 

the whole space to be used for real ray tracing. Therefore first the data on the irregular 

mesh of COMSOL is mapped to a regular grid. This is done through an interpolation 

function available in MATLAB. This data is then used to interpolate the electric field in 

any point of space when doing real ray tracing. When doing ray tracing, first the 

location of the electron beam in the next time step is determined. Based on this it is 

known which element of the rectangular grid must be used for the interpolation. The 

interpolation in the element of interest is simply conducted using a linear weighted 

interpolation of values of electric field on the four corners of the rectangular section. 

The weights used in the interpolation are proportional to the distance between the 

point of interest and the four corners of the rectangular section. 

In this way the field and its derivatives along the optical axis, as well as in the whole 

space, are known at the specified mesh points as defined in MATLAB. The former is 

used in the PB tracing and the latter is used for SE tracing calculation. The details of 

this approach can be found in section 5.  
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Fig. 10.3. Flow diagram of the calculation of the optical parameters for a single lens 

system, using COMSOL for the field calculation. 

The related user-friendly app developed in MATLAB, is schematically shown below in 

Figure 10.4. To select the option SLC first the tab “Single” should be selected. The input 

data, can be inserted manually by the user into the on-screen boxes or it can be 

automatically read from a pre-provided text/Excel file by choosing “Load input Data”. 

Then, to choose field calculation by SOEM or FOEM, the button in orange of “SOEM” 

or “FOEM” can be pressed. If the field is to be calculated by COMSOL, the green button 

“calculation single system” should be pressed. After pressing these buttons, the 

output data will be calculated and illustrated in the output data box. Details of the 

input data related to the lens (“Lens Parameters”), including their notations and 

dimensions, are given in Table 10.1, and details of additional input data needed for 

the simulation and ray tracing are given in Table 10.2 
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Figure 10.4. Schematic of the FELSD App, illustrating the page related to the “Single Lens 

System Calculation” option.  

Table 10.1. Input data related to the lens geometry and voltages (“Lens Parameters”) 

“Lens Parameters” Notations/ Dimensions 

Thickness  [T1 T2 T3 … Twafer] /  mm 

Gaps (spaces between two sequential electrodes) [G2 G3 … GapLens&wafer] / mm 

Radii [R1 R2 R3 … Rwafer] / mm 

Voltages at each electrode [V1 V2 V3 … Vwafer] / V 

 

Note1: The number of electrodes can be changed to any desired number. The shape 

of the electrode for now is cylindrical, hence each electrode can be defined by a fixed 

radius (the distance of the electrode from the optical axis). The input data which are 

needed to calculate the ray-tracing for the primary and secondary electron beam 

(“Initial Data”)are given in  Table 10.2. 

Note 2: In the provided data in table 10.1, the term 'wafer' refers to the sample. In 

table 10.2, ‘width of the electrode lens system’ (Wel) denotes the radial distance from 

the optical axis to the upper surface of the electrodes.Note3: The SLCC-Input/Output, 

and the SLCSF-Input/Output are the same data as the SLC-Input/Output-Data which 

are provided in Tables 10.1 and 10.2.  
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Table 10. 2. Input data related to the ray tracing (“Initial Data”) 

“Initial Data”  Notations 
/Dimensions 

The position from which PBs are coming (reference is the surface of the 
first electrode, counting from the left) 

X0, mm 

Position until where the PBs are sketched in the MATLAB figures Xend, mm 

Step size along the z axis (dz) dz, mm 

Length of the lens system Lsystem, mm 

The detector position (reference is the surface of the first electrode) Xdetector, mm 

The distance before the first electrode where the field is closed in COMSOL XbefclosedCOM, 
mm 

The distance after the wafer(sample), where the field is closed in COMSOL  XafclosedCOM, 
mm 

Width of the electrode lens system  Wel, mm 

The time step for the real ray tracing calculation (e.g here 1e-13 sec) Sec 

The step size of the mesh along the z-coordinate for the real ray tracing. dz, mm 

The step size of the mesh along the radial coordinate for the real ray 
tracing. 

dr, mm 

The number of iterations to calculate real ray tracing Dimensionless 

Maximum allowed electric field  Emax, V/mm 

Opening angle at the image side  Alpha, rad 

Maximum allowed electric field between two sequential electrodes Emaxeli, V 

The angles at which SEs are coming from the sample plane  SEangle , rad  

The energies at which SEs are coming from the sample plane  SEenergy , eV 

The distance behind the wafer where the electric field is closed in COMSOL  Xclose , mm 

 

10.2 Lens System Optimization (“LSO”) 

To optimize a lens system, the user can choose to use local optimization (the so-called 

‘Fmin/Fmincon’ function in MATLAB, explained in section 6.3) or a global optimizer 

(for now, the Genetic Algorithm), with the possibility of varying all lens geometries 

and voltages of the electrodes. It is also possible to only vary the voltages at the 

electrodes and use the superposition optimization.  

The superposition option works as follows: in the first step before the optimization 

starts, a set of base calculations is performed. 1 volt is applied to electrode 1 while all 

the other electrodes are assigned with zero volts. The lens system is meshed and the 

field is calculated (here by COMSOL) throughout the lens system. The data (electric 

field) is stored in a matrix where its element index represents the r-z coordinates of 

the lens system. The same procedure is repeated by assigning 1 volt to the next 
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electrode while all the other electrodes are at zero volt. A matrix of data 

corresponding to each of these calculations is stored (for an N-electrode lens system 

the procedure will be repeated N times and at the end we will have N matrices of field 

data at each mesh point of the lens system).In the next stage the optimizer produces 

a set of initial data for which all the geometry data is exactly the same as was used in 

the first stage, but the voltages of the electrodes are assigned different values for each 

system under investigation. To obtain the electric field in the whole space for a set of 

voltages, the base matrix of each electrode is multiplied by its voltage value after 

which the modified matrices of all electrodes are added together. Since the base 

matrices are already available, this addition can be performed very quickly. Having the 

electric field in the space, the program can calculate the optical parameters. This 

procedure is repeated throughout the entire optimization. This optimization is 

particularly useful when a roughly optimized lens geometry is available, and the user's 

goal is to make slight improvements to the lens system by adjusting voltages or to 

achieve a quick auto-focus. 

The standard optimization procedure, as discussed earlier (where all geometry and 

voltages serve as free parameters in the optimization), is simply referred to as 'Lens 

System Optimization' (LSO), denoting optimization not based on superposition. Users 

can choose from SOEM, FOEM, and COMSOL to calculate the field. The related 

flowchart of how LSO works is given below in Figure 10.5. As shown in the flowchart 

Figure 10.5, the lens system optimization starts by feeding LSO-input data into the 

program. In LSO, the input data are included; a single initial lens system (if the 

optimization is a local optimizer or multiple initial lens systems (if it is a global 

optimizer) to start the optimization with, or, the parameters of the optimization 

procedure (e.g. the tuning parameters of GA such as number of generations, 

population size, etc.), the objective function, the constraints, boundaries, etc.   
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Figure 10.5. The program’s flow diagram of lens system optimization.  

To select the optimization method when the field calculation is to be performed by 

COMSOL, and the optimization by a global optimizer such as GA, the user should press 

the “COMSOL_S_D” button. For optimization with the field calculation by SOEM, and 

a global optimizer, select the “SOEM_S_D” button.  If a local optimizer is preferred 

instead of a global optimizer then the user should select the  “COMSOL_Local” or 

“SOEM_Local” buttons.   If the user only wants to vary the voltages for a fixed lens 

geometry, and optimize using superposition, the “Superposition” button should be 

selected. In the above-mentioned cases, since the appearance of the App page is 

similar, but only the tabs at the top are different, only the page related to the 

“COMSOL_S_D” is shown as representative for the global optimization. For the other 

options the appearance is similar to this (Fig. 10.6 top figure). For local optimization, 

the page related to “SOEM_Local” is illustrated as representative for local 

optimization (Figure 10.6, yellow button at the bottom of the figure). 

The objective function can be defined using the parameters of A, B, C and D, and the 

formula given in the relevant box as shown in Figure 10.6. The input data for the 

optimization, including the lens parameters (if needed) and optimization tuning 

parameters can be manually inserted. These can also be read from a loaded pre-

prepared text file. The optimization is then run by pressing the “Perform GACO_D 

optimization” button. 
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Note: The LSO-Input/Output, are the data of the SLC Input/Output-Data provided in 
Table 10.1 and 10.2, in addition to the Initial data related to the optimization 
procedure explained in the above.  

 

 

Figure 10.6. Schematic of the FELSD App, illustrating the page related to the “Lens System 

Optimization” options. 
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11.  Summary and Conclusion  
 

The design of electrostatic charged particle lenses involves changing many 

geometrical parameters of the lens electrodes as well as changing the voltages at each 

lens electrodes. The objective of the design is often to get the electrons passing 

through the lens system to be focused at a specific point and to minimize the 

aberrations of the lens. To make such a design is a laborious task for electron optical 

lens designers. A fully-automated optimization routine to relieve the laborious manual 

design of charged particle lens systems has been demanded for years, however,  to 

achieve this outcome while many free optimization parameters are involved in the 

lens system design is quite a challenge. This is mainly due to calculations of the lens 

electric potential which are in general carried out with very time-consuming 

techniques that require meshing of the lens space. Currently it is not difficult to find 

the electron-optical software to conduct accurate field calculations such as EOD, GPT, 

CPO, Simion, etc., that can be used in an optimization loop. However, it can take 

months to get the results. For instance,  the design of even a simple system using 

COMSOL takes such a long computational time that the designer might not have the 

patience to wait for the result (assuming the computational memory allows them to 

do so). Therefore, although some charged particle optics design programs exist which 

could change a few geometrical parameters of the lenses or the voltages (EOD, GPT, 

CPO, Simion, etc.), a fully-automated optimization routine which could make a design 

where all geometries and voltages of the lenses could be varied in a feasible time did 

not exist. A first attempt (SOEM) was made more than 30 years ago, but it still had too 

many limitations to be widely used. The main objective of this thesis therefore was to 

find a technique which would enable electron optical designers to tackle this problem. 

To achieve this aim, many questions had first to be studied and answered. The first 

question was “What is the main limitation which makes having a fully-automated 

optimization as yet infeasible and how can it be tackled?”. The main challenge, as 

mentioned above, is the high computational time of the existing field calculation 

method for each lens system evaluation, while the total number of system evaluations 

are very long (in the order of thousands for a typical multi-electrode lens system with 

few electrodes for all geometries and voltages of the system as free parameters of the 

optimization). To evaluate so many systems using the existing field calculation 

methods, an infeasible amount of time and computational memory is required To 
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overcome this difficulty, we were seeking for another method of filed calculation 

rather than the existing ones including FEM (Finite Element Method), BEM (Boundary 

Element Method) and FDM (Finite Difference Method).  

A new method is proposed in chapter 4 which could improve on the low speed of the 

field calculation while keeping the high accuracy of the mesh-based calculation 

methods. The method is to first use a fast field calculation based on the so-called 

Second-Order Electrode Method (SOEM) (background is presented in chapter 2), at 

the cost of losing some accuracy, and then to use a Genetic Algorithm (GA) for the 

optimization (background provided in chapter 3). Afterwards, by using the data 

related to the approximate lens systems found from this optimization based on SOEM 

(called SOEM-GA), another GA optimization routine is performed based on accurate 

field calculation method of FEM using the commercial multi-physics software package 

of COMSOL (background is provided in chapter 2). Using this method an example of 

six-electrode electrostatic lens system was optimized within some hours where all lens 

geometries and electrode voltages were as the free optimization parameters and the 

focus position and maximum allowable electric fields between electrodes were as 

constraints.  

The next question was “Can a local optimization technique be implemented in the 

place of a global optimization technique such as GA to design the electrostatic lens 

systems?” . This question is answered in chapter 5. There, both a local, namely “Fmin” 

(background in chapter 3), and a global optimization technique, namely GA, is 

implemented on a group of typical electrostatic lens systems with 6 electrodes, to 

investigate whether the objective function landscape of such a design optimization is 

a local problem or a global one. It is illustrated in chapter 5 that the search space of 

our case-studies has multiple local minima.  Implementing a local optimizer is hence 

not sufficient to reach to the optimum lens system and a global optimization is 

necessary to be used instead. It is also discovered that the GA performs as a robust 

global optimizer which could handle this complex optimization problem having many 

local minima.  

The optimization problems discussed until chapter 5, was a single-objective 

optimization problem, meaning that if there exist more than one objective function 

which are non-conflict objective functions they could be combined with different 

weights to form one single objective function. However, there are some situations 

with two or more conflicting objective functions such as having both PB (Primary 

Beams) focusing at the image plane and having the highest detection efficiency for the 
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SE (Secondary Electrons) emerged from the image plane, simultaneously. In such 

situations it is better to use the multi-objective optimization techniques such as multi-

objective genetic algorithm (MOGA) . The question was then whether MOGA can 

handle such complex design (electrostatic lens systems design while there exist 

multiple objective functions in addition to having all geometries and voltages as free 

parameters of the optimization) or not. This subject is studied in chapter 6. 

The strategy was similar to the SOGA (Single-Objective Genetic Algorithm) to use first 

a much faster, but less-accurate field calculation technique using SOEM combined 

with MOGA. Afterwards, to use approximately good systems as input for a COMSOL-

based MOGA optimization. Without implementation of this strategy for MOGA, there 

was no way to find whether this method would also work efficiently for MOGA as it 

did for SOGA. A typical electrostatic lens system including 5 electrode lenses and two 

objective functions, was taken to try this strategy. The aim of the design problem was 

to focus a PE beam into a fixed image plane with minimum probe size and to attract 

SE emitted from the image plane back into the lens on to an SE detector with the 

highest detection efficiency. It is illustrated that by using the above-mentioned 

strategy with a surrogate-assisted multi-objective genetic algorithm (MOGA), 

electrostatic lens systems could be successfully optimized in a reasonably short time 

of a few hours, compared to many days when using COMSOL-based MOGA only.  This 

new method of MOGA can be hence implemented in electrostatic lens design with 

one or more objective functions and multiple free variables, as a very efficient, fully 

automated optimization technique.  

Note: Since in electrostatic lens system optimization/design problems more general 

case-studies involve non-conflicting objective functions, our main focus for the rest of 

the work is yet in using SOGA. However, MOGA is tested and presented in chapter 6 

for other situations if needed. 

Another important study was on tuning the GA parameters which is discussed in 

chapter 7. Having implemented a Genetic Algorithm optimization for electrostatic 

electron lens design allowed us to perform a study on the influence of GA tuning 

parameters. The study is performed on an example of multi-electrostatic lens system 

including 6 electrodes which has 23 free variables. The extension to more complex 

designs is straightforward. First, an investigation is performed of the influence of the 

values of population size and number of generations. As expected, by increasing both 

values the optimization achieved better results. However, it has been shown that a 

population of 50 with 100 generations could provide reasonably good results in our-
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case studies. Increasing to higher values of population and generation did not 

significantly improve the results while the correspondent run time was dramatically 

increased. Moreover, it is also discovered that having a fixed computational effort 

(time or total number of system evaluations), a lower population size with larger 

generation size usually offers better results compared to the reverse case. An analysis 

also is performed on the Crossover and Mutation types as the main tuning parameters 

of GA to find the most suitable options. It is illustrated that irrespective of the type of 

Crossover, the Mutation Gaussian achieves the best result. It is also found that among 

different crossover types, Crossover Heuristic achieves the best performance. It is also 

discovered that, the combination of Crossover Heuristic with Mutation Gaussian 

would provide significantly better results than all other combinations of Mutations 

and Crossovers. Moreover, an analysis is performed on the Crossover Fraction which 

led to the result that a Crossover Fraction of 0.5 or 0.6 achieve the best results. The 

guidelines provided in chapter 7 for tuning the GA parameters which might be helpful 

not only for the optimization of electrostatic lens designs, but also for other GA 

optimization of functions with similar complexity. 

In chapter 8, different meta-heuristic optimizations algorithms such as Genetic 

Algorithm, Particle Swarm Optimization and Simulate Annealing also a calculus based 

local minimization were implemented and compared. The analysis is performed on a 

typical lens system with six electrodes (23 free variables). It was shown that the 

population-based meta-heuristic optimization namely, PSO and GA generate 

significantly better outcomes compared to the single-based metaheuristic 

optimization (namely SA), and calculus based local minimization (namely “Fmin”), 

while PSO offers slightly better results than GA. Moreover, from the analysis 

performed on SA and “Fmin” , it is discovered that these two optimizations work as a 

sort of local optimization which therefore better not to be implemented in our case-

study where the constraints and objective functions are complex with multiple local 

minima. The comparison between these two local optimizations illustrated that the 

metaheuristic one (SA) outperforms the calculus-based one (Fmin). 

In chapter 9 a novel method of fast field calculation is presented. As mentioned 

previously, in all other areas of  computations and simulations in electron optics, 

calculation of the electric field plays a major role. Accurate field calculation methods 

such as the Finite Element Method (FEM), Boundary Element Method (BEM) and Finite 

Difference Method (FDM), have been used for years. However, such methods are 

computationally very expensive and make the computer simulation challenging or 
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even infeasible when trying to apply automated design of electrostatic lens systems 

with many free parameters. Hence, for years, electron optics scientists have been 

searching for a fast and accurate method of field calculation. 

Second Order Electrode Method (SOEM) which was introduced in 1980s by Adriaanse 

is based on truncation of the Laplace equation from the second term. Satisfactory 

accuracy and very fast field calculation (0.1 second for each system) could be achieved. 

However, some deviation in optical parameters was observed compared to the case 

where electric field is calculated by means of accurate models such as FEM. A novel 

method of fast field calculation is for the first time developed by the authors which is 

presented in chapter 9. This method offers much higher accuracy in field calculation 

than the previously presented method  of SOEM , but yet at a very short computation 

time (0.5 second for each system) similar order as the SOEM. The field calculation 

formulation is performed by solving the Laplace equation near the optical axis by 

keeping the terms in the off-axis potential expansion up to the fourth order derivatives 

of the axial potential with respect to the optical axis coordinate. This method is hence 

named by the authors Fourth Order Electrode Method (FOEM). Optical parameters 

obtained by FOEM are close to the values calculated by FEM and considering the 

reduction of ~100 in calculation time, it also  provides a good basis for even a faster 

optimization technique than the previously presented one (namely “SOEM-COMSOL-

GA”) for electrostatic lens system design.  

This recently proposed method is implemented on the optimization of typical 

electrostatic lens systems including 6 electrode lenses using the GA as the 

optimization algorithm. The effectiveness of evaluated optical parameters and the 

computation time of optimization are compared with optimization performed by 

“FEM” as well as by “SOEM-FEM”. It is illustrated that using “FOEM”, optimization was 

performed significantly faster (70 times) and optical parameters calculated by FOEM 

achieve reasonably high accuracy compared with values obtained by FEM. This new 

method might be of interest to electron optics scientists where a fast calculation of 

field for electrostatic lens systems is needed. This method also enables electron 

optical designers, after searching for a solution for many years, to design/optimize 

multi-electrode lens systems, with many free parameters of the lens system, and 

multi-objective functions, in a fully-automated optimization process. 

By implementation of all the above-mentioned theories and formulations in MATLAB, 

a software was developed which has the capability of calculating optical parameters 

using field calculation based on FEM as well as calculating optical parameters using 
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fast field calculation methods such as SOEM and FOEM. The software is able to 

calculate optical parameters of a single lens system, as well as perform full global 

based optimization such as GA and PSO utilizing SOEM and FOEM and FEM as well as 

doing local optimization such as SA and “Fmin”. Furthermore, superposition based 

field calculation method using accurate FEM field calculation is introduced in the 

software with which a fixed geometry lens system can be optimized over a given 

voltage range with full accuracy and high speed. The flowcharts and the detailed 

explanations for the user-friendly software are presented in chapter 10. Since our 

program can perform the design/optimize of an electrostatic lens systems fast, it is 

named ‘Fast Electrostatic Lens System Design (FELSD)’ Program. The ‘FELSD’ program 

can be implemented for different scenarios. One scenario is when there is a known 

lens system and the user only aims to calculate the optical parameters of this system. 

The second scenario is when there is a known system and the user intends to improve 

the lens system quality. A third scenario is when no initial known lens system is in 

hand, but there are some criteria (and/or constraints) which affect the user searching 

for a lens system that has the best quality within the defined boundaries.  The program 

is therefore comprised of two main parts; “Single Lens System Calculation” and “Lens 

System Optimization”. The codes are written in MATLAB 2018b. The FELSD App can 

be executed in MATLAB environment. 

To summarize,  the main contribution of our work is the presentation of a fully-

automated optimization technique (which was also the main objective of this research 

work) for the electro optics community based on SOEM,  and more significantly FOEM, 

combined with an evolutionary algorithm such as GA or PSO. The presented technique 

enables electron optical designers, who have searched for a solution for many years, 

to design/optimize complex multi-electrode lens systems, with many free parameters 

of the lens system and multi-objective functions, in only a few hours. Currently it is 

not difficult to find the electron-optical software to conduct accurate field calculations 

such as EOD, GPT, CPO, etc., that can be used in an optimization loop however,  it can 

take months to get the results. For instance,  the design of even a simple system using 

COMSOL takes such a long computational time that the designer might not have the 

patience to wait for the result (assuming the computational memory allows them to 

do so). However due to its fast field calculation and a fast optimization, the technique 

presented in this thesis  enables designers  to easily change the requirements/ 

constraints of the design by seeing the result quickly and then deciding whether to run 

it again with other conditions. By creating this possibility, our software to offers 
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charged particle optics designers anywhere in the world an efficient tool to develop a 

fast and efficient charged particle electrostatic lens design for the first time.  

As the main future works, there can be other additional options to be added to the 

presented software to make it yet a more general charged particle optics design 

program package. The additional options can be for instance to have any geometry 

shape of the lenses possible in the design, in place of only having the rectangle lenses. 

Also, to have the magnetic lenses in the design in addition to presence of electrostatic 

lenses. Moreover, as one of the very useful application of this software can be to 

implement it for design and optimization of multi-electron beam lens systems. This 

application has been so far partly performed and preliminary successful results are 

achieved. A full design of multi-electron beam lens system using the presented 

software is hence planned and under progress. 
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12.  Samenvatting en Conclusies 
 

Het ontwerp van elektrostatische geladen-deeltjeslenzen omvat het veranderen van 

veel geometrische parameters van de lenselektroden en het veranderen van de 

spanningen op elke lenselektrode. Het doel van het ontwerp is vaak om de elektronen 

die door het lenssysteem gaan op een specifiek punt te focusseren en de aberraties 

van de lens te minimaliseren. Een dergelijk ontwerp is lastig voor ontwerpers van 

elektronenoptische lenzen. Er is al jaren vraag naar een volledig geautomatiseerde 

optimalisatieroutine om het moeizame handmatige ontwerp van lenssystemen 

onnodig te maken. Het is echter een behoorlijke uitdaging om dit resultaat te bereiken 

omdat er veel vrije optimalisatieparameters betrokken zijn bij het ontwerp van een 

lenssysteem. Dit is voornamelijk het gevolg van de berekeningen van de elektrische 

potentiaalverdeling in  de lens, die over het algemeen worden uitgevoerd met zeer 

tijdrovende technieken die meshing van de lensruimte vereisen. Hoewel er 

ontwerpprogramma's voor geladen-deeltjesoptica bestaan die enkele geometrische 

parameters van de lenzen of de spanningen ervan kunnen variëren (EOD, GPT, CPO, 

Simion, enz.), bestond er nog geen volledig geautomatiseerde optimalisatieroutine die 

het ontwerp kon maken binnen een redelijke tijd, inclusief de mogelijkheid om alle 

geometrieën en spanningen van de lenzen te variëren. Meer dan 30 jaar geleden werd 

een eerste poging gedaan (SOEM), maar die had nog te veel beperkingen om breed 

ingezet te worden. Het hoofddoel van dit proefschrift was dan ook het vinden van een 

techniek die ontwerpers van elektronenoptica in staat zou stellen dit probleem aan te 

pakken.  

Om dit doel te bereiken moesten veel vragen worden beantwoord. De eerste vraag 

was “Wat is de belangrijkste beperking waardoor een volledig geautomatiseerde 

optimalisatie nog niet haalbaar is en hoe kan dit worden aangepakt?” De belangrijkste 

uitdaging, zoals hierboven vermeld, is de lange rekentijd van de bestaande 

veldberekeningsmethoden voor elke lenssysteemevaluatie, terwijl het totale aantal 

systeemevaluaties zeer hoog is (in de orde van duizenden voor een typisch multi-

elektrode lenssysteem met enkele elektroden, waarbij alle geometrieën en 

spanningen van het systeem als vrije parameters van de optimalisatie worden 

beschouwd). Om zoveel systemen te evalueren met behulp van de bestaande 

veldberekeningsmethoden, is een onacceptabele hoeveelheid tijd en rekengeheugen 

vereist. Om dit probleem op te lossen, waren we op zoek naar een andere methode 
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van veldberekening in plaats van de bestaande, waaronder FEM (Finite Element 

Method), BEM (Boundary Element Method) en FDM (Finite Difference Method).  

In hoofdstuk 4 wordt een nieuwe methode voorgesteld die de snelheid van de 

veldberekening zou kunnen verhogen, terwijl de hoge nauwkeurigheid van de mesh-

gebaseerde berekeningsmethoden behouden blijft. De methode houdt in eerst een 

snelle veldberekening te gebruiken op basis van de zogenaamde Second-Order 

Electrode Method (SOEM) (de achtergrond hiervan wordt gepresenteerd in hoofdstuk 

2), hoewel dit leidt tot enig verlies van nauwkeurigheid. Hierbij wordt gebruik gemaakt 

van een genetisch algoritme (GA) voor de optimalisatie (de achtergrond wordt 

toegelicht in hoofdstuk 3). Daarna wordt, door uit te gaan van de bij benadering 

bepaalde gegevens van de lenssystemen die zijn gevonden uit de optimalisatie op 

basis van SOEM (genaamd SOEM-GA), een andere GA-optimalisatieroutine uitgevoerd 

op basis van de nauwkeurige veldberekeningsmethode FEM, met behulp van het 

commerciële multi-physics softwarepakket COMSOL (de achtergrond wordt 

besproken in hoofdstuk 2). Met behulp van deze methode werd binnen enkele uren 

een elektrostatisch lenssysteem met zes elektroden geoptimaliseerd, waarbij alle 

lensgeometrieën en elektrodespanningen de vrije optimalisatieparameters vormden 

en de focuspositie en maximaal toegestane elektrische velden tussen elektroden de 

beperkingen waren.  

De volgende vraag was: “Kan een lokale optimalisatietechniek worden 

geïmplementeerd, in plaats van een globale optimalisatietechniek zoals GA, om de 

elektrostatische lenssystemen te ontwerpen?” Deze vraag wordt beantwoord in 

hoofdstuk 5. Daar wordt zowel een lokale optimalisatietechniek geïmplementeerd, 

namelijk Fmin (de achtergrond wordt gegeven in hoofdstuk 3), als een globale, 

namelijk GA, op een groep typische elektrostatische lenssystemen met zes elektroden. 

Het doel hiervan was om te onderzoeken of het optimaliseringslandschap van zo’n 

ontwerp een lokaal of een globaal minimum bevat. In hoofdstuk 5 wordt aangetoond 

dat de zoekruimte van onze casestudies meerdere lokale minima heeft. Het 

implementeren van een lokale optimalisatie is daarom niet voldoende om het 

optimale lenssysteem te bereiken. In plaats daarvan is een globale optimalisatie nodig. 

Ook werd duidelijk dat de GA presteert als een robuuste globale optimizer, die dit 

complexe optimalisatieprobleem met veel lokale minima aankan. 

De optimalisatieproblemen die tot hoofdstuk 5 zijn besproken, waren een 

optimalisatieprobleem met één doel, wat betekent dat als er meer dan één 

optimalisatie functie bestaat, en deze niet met elkaar conflicteren, deze kunnen 
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worden gecombineerd met verschillende gewichten om één enkele 

optimalisatiefunctie te vormen. Er zijn echter situaties met twee of meer 

tegenstrijdige optimalisatiefuncties, zoals in het geval van tegelijkertijd primaire 

bundels  die scherpstellen op het beeldvlak, als de hoogste detectie-efficiëntie voor 

de secondaire elektronen die uit het beeldvlak komen. In dergelijke situaties is het 

beter om multi-functie optimalisatietechnieken te gebruiken, zoals het multi-functie 

genetische algoritme (MOGA). De vraag was daarom of MOGA dergelijke complexe 

ontwerpen aankan (dat wil zeggen het ontwerpen van elektrostatische lenssystemen 

met meerdere optimalisatiefuncties, waarbij alle geometrieën en spanningen als vrije 

parameters van de optimalisatie worden beschouwd). Dit onderwerp wordt 

behandeld in hoofdstuk 6.  

De strategie was vergelijkbaar met de SOGA (Single-Objective Genetic Algorithm): 

eerst werd een veel snellere, maar minder nauwkeurige veldberekeningstechniek 

gebruikt met SOEM in combinatie met MOGA. Vervolgens werden bij benadering 

juiste systemen gebruikt als input voor een MOGA-optimalisatie in COMSOL. Zonder 

de implementatie van deze strategie voor MOGA was het onmogelijk om uit te zoeken 

of deze methode ook voor MOGA efficiënt zou werken, zoals voor SOGA. Om deze 

strategie uit te proberen, werd een typisch elektrostatisch lenssysteem gemaakt met 

vijf elektroden en twee optimalisatiefuncties. Het doel van het ontwerpprobleem was 

om een primaire bundel te focusseren op een vast beeldvlak met een minimale 

spotgrootte en om secondaire elektronen die vanuit het beeldvlak werden ge-

emitteerd terug door de lens, te sturen naar een detector met de hoogste detectie-

efficiëntie. Er werd aangetoond dat met deze strategie,  elektrostatische lenssystemen 

met succes konden worden geoptimaliseerd in een redelijk korte tijd (enkele uren), 

vergeleken met vele dagen bij gebruik van alleen MOGA in COMSOL. Deze nieuwe 

methode van MOGA kan daarom worden geïmplementeerd in elektrostatisch 

lensontwerp met een of meer optimalisatiefuncties en meerdere vrije variabelen, als 

een zeer efficiënte, volledig geautomatiseerde optimalisatietechniek. (Opmerking: 

Aangezien bij optimalisatie- of ontwerpproblemen van het elektrostatische 

lenssysteem meer algemene casestudies betrekking hebben op niet-conflicterende 

optimalisatiefuncties, lag onze belangrijkste focus voor de rest van het werk op het 

gebruik van SOGA. MOGA wordt echter getest en gepresenteerd in hoofdstuk 6 voor 

andere relevante situaties. ) 

Een andere belangrijke studie was gericht op het afstemmen van de GA-parameters, 

hetgeen wordt besproken in hoofdstuk 7. Het implementeren van een GA-
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optimalisatie voor het ontwerp van elektrostatische elektronenlenzen maakte het 

mogelijk onderzoek te doen naar de invloed van GA-afstemparameters. De studie 

werd uitgevoerd met behulp van een voorbeeld van een multi-elektrostatisch 

lenssysteem met zes elektroden, dat 23 vrije variabelen had. De uitbreiding naar 

complexere ontwerpen is eenvoudig. Eerst werd onderzocht wat de invloed is van de 

waarden voor populatieomvang en het aantal generaties. Zoals verwacht heeft de 

optimalisatie betere resultaten opgeleverd door beide waarden te verhogen. Er werd 

echter aangetoond dat een populatie van 50 met 100 generaties redelijk goede 

resultaten kan opleveren in onze casestudies. Hogere waarden van populatie en 

generatie verbeterden de resultaten niet significant, terwijl de doorlooptijd sterk 

toenam. Bovendien werd ook ontdekt dat met een vooraf bepaalde rekeninspanning 

(tijd of totaal aantal systeemevaluaties), een kleinere populatieomvang met een 

grotere generatieomvang meestal betere resultaten oplevert dan in het omgekeerde 

geval. Er werd ook een analyse uitgevoerd op de Crossover- en Mutation-types als de 

belangrijkste afstemmingsparameters van GA om de meest geschikte opties te vinden. 

Er werd aangetoond dat, ongeacht het type Crossover, de Mutation Gaussian het 

beste resultaat oplevert. Er werd ook vastgesteld dat van de verschillende Crossover-

types Crossover Heuristic de beste prestaties levert. Bovendien leverde de combinatie 

van Crossover Heuristic met Mutation Gaussian significant betere resultaten op dan 

alle andere combinaties van Mutations en Crossovers. Daarnaast werd een analyse 

uitgevoerd op de Crossover Fraction, waaruit bleek dat een Crossover Fraction van 0,5 

of 0,6 de beste resultaten geeft. Hoofdstuk 7 beschrijft richtlijnen voor het afstemmen 

van de GA-parameters, die niet alleen nuttig kunnen zijn voor de optimalisatie van 

elektrostatische lensontwerpen, maar ook voor andere GA-optimalisaties van functies 

met vergelijkbare complexiteit. 

In hoofdstuk 8 worden verschillende metaheuristische optimalisatie-algoritmen 

geïmplementeerd en vergeleken, zoals Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO) en Simulated Annealing (SA), evenals een op calculus gebaseerde 

lokale minimalisatie. De analyse werd uitgevoerd op een typisch lenssysteem met zes 

elektroden en 23 vrije variabelen. Er werd aangetoond dat de op populatie 

gebaseerde metaheuristische optimalisaties, namelijk PSO en GA, significant betere 

resultaten genereren dan de single-solution-based metaheuristische optimalisatie 

(namelijk SA) en de op calculus gebaseerde lokale minimalisatie (namelijk Fmin), 

terwijl PSO enigszins betere resultaten gaf dan GA. Bovendien werd uit de analyse 

uitgevoerd op SA en Fmin vastgesteld dat deze twee optimalisaties werken als een 

soort lokale optimalisatie. Het is daarom het beste om deze niet te implementeren in 



Chapter 12 

197 
 

onze casestudie, waar de beperkingen en optimalisatieuncties complex zijn, met 

meerdere lokale minima. De vergelijking tussen deze twee lokale optimalisaties 

toonde aan dat de metaheuristische (SA) beter presteert dan de op calculus 

gebaseerde (Fmin).  

In hoofdstuk 9 wordt een nieuwe methode voor snelle veldberekening gepresenteerd. 

Zoals eerder vermeld, speelt de berekening van het elektrische veld een grote rol in 

alle andere gebieden van berekeningen en simulaties in elektronenoptica. 

Nauwkeurige veldberekeningsmethoden, zoals de Finite Element Method (FEM), 

Boundary Element Method (BEM) en Finite Difference Method (FDM), worden al jaren 

gebruikt. Dergelijke methoden zijn echter rekenkundig erg duur en maken de 

computersimulatie lastig of zelfs onmogelijk, wanneer wordt getracht 

geautomatiseerde ontwerpen te maken van elektrostatische lenssystemen met veel 

vrije parameters. Daarom zijn wetenschappers op het gebied van elektronenoptica al 

jaren op zoek naar een snelle en nauwkeurige methode voor veldberekening.  

De Second Order Electrode Method (SOEM), die in 1980 door Adriaanse werd 

geïntroduceerd, is gebaseerd op het afkappen van de Laplace-vergelijking in 

cilindrische coördinaten rond de optische asbij de term met de tweede orde afgeleide 

van de axiale potentiaal. Deze methode bereikt een acceptabele nauwkeurigheid en 

zeer snelle veldberekening (0,1 seconde voor elk systeem). Er wordt echter enige 

afwijking in optische parameters waargenomen in vergelijking met het geval waarin 

het elektrische veld wordt berekend door middel van nauwkeurige modellen zoals 

FEM. Een nieuwe methode voor snelle veldberekening is nu voor het eerst ontwikkeld 

en wordt gepresenteerd in hoofdstuk 9. Deze methode biedt een veel grotere 

nauwkeurigheid bij veldberekening dan de methode SOEM, maar heeft nog steeds een 

zeer korte rekentijd (0,5 seconde voor elk systeem), vergelijkbaar met SOEM. De 

formulering van de veldberekening wordt uitgevoerd door de Laplace-vergelijking 

nabij de optische as op te lossen door ervoor te zorgen dat de termen in de 

potentiaalfunctie buiten de as tot aan de vierde orde afgeleide van de axiale potentiaal 

meegenomen worden. De auteurs hebben deze methode daarom Fourth Order 

Electrode Method (FOEM) genoemd. Optische parameters verkregen door FOEM 

liggen dicht bij de waarden berekend door FEM en, gezien de vermindering van een 

factor ~100 in rekentijd, biedt het ook een goede basis voor een nog snellere 

optimalisatietechniek dan de eerder gepresenteerde techniek (namelijk SOEM-

COMSOL-GA) voor het ontwerp van elektrostatische lenssystemen. 
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Deze nieuwe methode is geïmplementeerd voor de optimalisatie van typische 

elektrostatische lenssystemen, waaronder zes-elektrodelenzen, met behulp van GA 

als optimalisatie-algoritme. De verkregen optische parameters en de rekentijd van de 

optimalisatie werden vergeleken met optimalisaties uitgevoerd door zowel FEM als 

SOEM-FEM. Er werd aangetoond dat met behulp van FOEM de optimalisatie 

aanzienlijk sneller werd uitgevoerd (70 keer) en dat de optische parameters berekend 

door FOEM een redelijk hoge nauwkeurigheid bereiken in vergelijking met waarden 

verkregen door FEM. Deze nieuwe methode kan interessant zijn voor wetenschappers 

op het gebied van elektronenoptica wanneer een snelle veldberekening voor 

elektrostatische lenssystemen nodig is. Deze methode stelt ontwerpers van 

elektronenoptica ook in staat om multi-elektrode lenssystemen, met veel vrije 

parameters van het lenssysteem en multi-functie optimalisaties, te ontwerpen of te 

optimaliseren in een volledig geautomatiseerd optimalisatieproces.  

Door alle bovengenoemde theorieën en formuleringen in MATLAB te implementeren, 

werd een software programma ontwikkeld dat de mogelijkheid heeft om optische 

parameters te berekenen met behulp van veldberekening op basis van FEM, en 

optische parameters te berekenen met behulp van snelle veldberekeningsmethoden 

zoals SOEM en FOEM. De software is in staat om de optische parameters van een 

systeem met één lens te berekenen, evenals volledige globale optimalisatie door GA 

en PSO met behulp van SOEM, FOEM en FEM, en lokale optimalisatie zoals SA en Fmin. 

Bovendien zijn op superpositie gebaseerde veldberekeningsmethoden met behulp 

van nauwkeurige FEM-veldberekening in de software opgenomen, zodat een 

lenssysteem met vaste geometrie kan worden geoptimaliseerd over een bepaald 

spanningsbereik met zeer hoge nauwkeurigheid en hoge snelheid. De stroomschema’s 

en gedetailleerde uitleg voor deze gebruiksvriendelijke software worden 

gepresenteerd in hoofdstuk 10. Aangezien ons programma het ontwerp of de 

optimalisatie van een elektrostatische lenssysteem snel kan uitvoeren, heet het ‘Fast 

Electrostatic Lens System Design (FELSD)’-programma. Het FELSD-programma kan 

voor verschillende scenario’s worden geïmplementeerd. Een eerste scenario is 

wanneer er een lenssysteem bekend is en de gebruiker de optische parameters van 

dit systeem wil berekenen. Een tweede scenario is wanneer het systeem bekend is en 

de gebruiker de kwaliteit van het lenssysteem wil verbeteren. Een derde scenario is 

wanneer er geen bekend lenssysteem aanwezig is, maar er enkele criteria en/of 

beperkingen zijn en de gebruiker op zoek is naar een lenssysteem dat de beste 

kwaliteit heeft binnen de gedefinieerde grenzen. Het programma bestaat dan ook uit 

twee hoofdonderdelen: “Single Lens System Calculation” en “Lens System 
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Optimization”. De codes zijn geschreven in MATLAB 2018b. De FELSD-app kan worden 

uitgevoerd in een MATLAB-omgeving.  

Samenvattend kan worden geconcludeerd dat het hoofddoel van deze studie in 

voldoende mate is bereikt en dat er software is ontwikkeld die in staat is een 

elektrostatisch lenssysteem met rotatiesymmetrische rechthoekige elektroden te 

optimaliseren, die kan worden gebruikt door ontwerpers van elektronenoptische en 

ionenoptische lenzen. Toekomstig onderzoek moet worden gedaan om een meer 

algemene software te creëren die externe gebruikers in staat stelt om elke gewenste 

geometrie van elektrostatische lenssystemen te implementeren, niet alleen 

rechthoekige. Daarnaast is er onderzoek nodig dat alle verschillende combinaties van 

optimalisatietechnieken in de software kan implementeren, waarbij de gebruiker zelf 

kan kiezen welke hij implementeert. Een andere toekomstige uitbreiding van dit werk 

kan zich richten op implementatie van magnetische lenssystemen naast 

elektrostatische lenssystemen.  
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Appendix A: The Theory of Cubic Spline 
Assume that there are n points from 𝑥1 to 𝑥𝑁, and it is aimed to fit cubic splines on 

those points. To fit a cubic spline on the data set 𝑥1  to 𝑥𝑁, 𝑆(𝑥) is written as: 

𝑆(𝑥) = {

𝑆1(𝑥), 𝑥1 ≤ 𝑥 < 𝑥2
𝑆2(𝑥), 𝑥2 ≤ 𝑥 < 𝑥3

⋮
𝑆𝑁−1(𝑥), 𝑥𝑁−1 ≤ 𝑥 < 𝑥𝑁

 (A.1) 

 

Where, 𝑆𝑖 is a third order polynomial, which can be generally written as: 

𝑆𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)
3 + 𝑏𝑖(𝑥 − 𝑥𝑖)

2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖    , 𝑖 = 1:𝑁 − 1                                                             (A.2) 

In which, 𝑎𝑖 ,  𝑏𝑖 , 𝑐𝑖 and 𝑑𝑖 are constant parameters. In a close-format, it can be 

expressed as:  

𝑆(𝑥) = 𝑆𝑖(𝑥), 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]     , 𝑖 = 1:𝑁 − 1                                                                                                          (A.3) 

To satisfy the continuity conditions, the derivatives of the function at the borders of 

each spline should be equal. Since the polynomials are of the third order, this 

condition can be written up to the second derivatives, as: 

𝑆𝑖
(𝑟)(𝑥𝑖+1) = 𝑆𝑖+1

(𝑟) (𝑥𝑖+1)     , 𝑟 = 0, 1, 2 (A.4) 

Normally, splines are used to fit a function on N given points, where the values at each 

point are known. However, there are also problems where the values of the function 

at the points are not known, but instead some relations between the values of the 

function and its derivatives at the points are given. In such situations, writing the 𝑆𝑖(𝑥) 

in the format of Eq. A.2, makes solving the problem complicated. Instead, we rewrite 

𝑆𝑖(𝑥) differently, to make solving easier. This is explained in the following. 

Since the polynomial is of the third order, the second derivative of the polynomial is a 

linear polynomial. Therefore, 𝑆𝑖(𝑥) can be written as: 

𝑆𝑖
(2)(𝑥) = µ𝑖+1

(𝑥−𝑥𝑖)

∆𝑖
+ µ𝑖

(𝑥𝑖+1−𝑥)

∆𝑖
                       (A.5) 

In which, µ𝑖 = 𝑆𝑖
(2)(𝑥𝑖), and ∆𝑖= 𝑥𝑖+1 − 𝑥𝑖  
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After integrating Eq. A.5 twice, we obtain: 

𝑆𝑖(𝑥) = µ𝑖+1
(𝑥 − 𝑥𝑖)

3

6∆𝑖
+ µ𝑖

(𝑥𝑖+1 − 𝑥)
3

6∆𝑖
+ 𝐴𝑖(𝑥 − 𝑥𝑖) + 𝐵𝑖(𝑥𝑖+1 − 𝑥) 

(A.6) 

Where 𝐴𝑖 , 𝐵𝑖 , 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑁 − 1 are coefficients which must be determined in 

terms of 𝑢𝑖 , and µ𝑖 , in which: 

𝑢𝑖 = 𝑆𝑖(𝑥𝑖), and µ𝑖 = 𝑆𝑖
(2)(𝑥𝑖) (A.7) 

The coefficients 𝐴𝑖and 𝐵𝑖  can be derived by replacing 𝑥 = 𝑥𝑖  and 𝑥 = 𝑥𝑖+1 in Eq. A.6, 

respectively, as: 

𝐴𝑖 =
𝑢𝑖+1
∆𝑖

− µ𝑖+1
∆𝑖
6
 , 𝐵𝑖 =

𝑢𝑖
∆𝑖
− µ𝑖

∆𝑖
6

 
(A.8) 

By imposing the condition of continuity of the derivatives on Eq. A.6 at the spline’s 

borders (𝑥 = 𝑥𝑖  and 𝑥 = 𝑥𝑖+1), and some mathematical works, the following equation 

can be derived: 

     (A.9)  

𝑢𝑖+1 (
1

∆𝑖
+

1

∆𝑖+1
) =

𝑢𝑖+2
∆𝑖+1

+
𝑢𝑖
∆𝑖
−
1

6
(µ𝑖∆𝑖 + 2µ𝑖+1(∆𝑖 + ∆𝑖+1) + µ𝑖+2∆𝑖+1) 

 

Rewriting the equation in terms of the cubic splines 𝑆𝑖(𝑥) again, results in: 

 (A.10) 

𝑆𝑖+1(𝑥) (
1

∆𝑖
+

1

∆𝑖+1
)

=
𝑆𝑖+2(𝑥)

∆𝑖+1
+
𝑆𝑖(𝑥)

∆𝑖

−
1

6
(𝑆𝑖
(2)(𝑥)∆𝑖 + 2𝑆𝑖+1

(2) (𝑥)(∆𝑖 + ∆𝑖+1) + 𝑆𝑖+2
(2) (𝑥)∆𝑖+1) 

 

This equation needs two more equations to make it solvable. The two boundary 

conditions are used to solve the problem. These boundary conditions can be assumed 

to be: 

𝑆1(𝑥)  = 𝑆𝑁(𝑥) = 0 (A.11) 
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This equation together with eq. A.10, can be solved to obtain 𝑆𝑖(𝑥) and 𝑆𝑖
(2)(𝑥). 

Having 𝑆𝑖(𝑥) and 𝑆𝑖
(2)(𝑥), the coefficients 𝐴𝑖 and 𝐵𝑖 can be calculated, from which 

equation A.6 can be fully determined and the cubic spline fit 𝑆(𝑥) can be obtained.   
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Appendix B: Insights into COMSOL Meshing 
For the lens systems utilized in this thesis, given their similar geometric scales, a 

consistent meshing strategy for COMSOL, has been employed. The mesh was 

generated by applying an edge mesh of 10 𝜇𝑚 along the axis-symmetric line and along 

the boundaries of all electrodes. The remaining space was meshed using a free 

triangular mesh with a predefined "Normal" setting in COMSOL, featuring a maximum 

element growth rate of 1.3. Example of code used to create meshes are provided 

below: 

model.mesh('mesh1').create('edg1', 'Edge'); 
model.mesh('mesh1').feature('edg1').selection.set([1:3*(n+1)]); 
model.mesh('mesh1').feature('size').set('custom', 'on'); 
model.mesh('mesh1').feature('size').set('hmax', '0.01'); 
model.mesh('mesh1').run('edg1'); 
model.mesh('mesh1').create('ftri1', 'FreeTri'); 
model.mesh('mesh1').feature('ftri1').create('size1', 'Size'); 
model.mesh('mesh1').run('ftri1'); 
model.mesh('mesh1').run; 

The choice of a 10 𝜇𝑚 value for the edge mesh stemmed from testing various edge 
mesh values to achieve a balance between reasonably accurate optical parameter 
calculations and manageable computational time. Ultimately, we found that the 
above-mentioned meshing values offered an optimal balance for our work, and we 
maintained consistency with these values throughout our study. 
To provide insight into the meshing data and its influence on the results and 

computational time, an example among our tests, the analysis for two typical lens 

systems (referred to as System P and System Q), conducted with three different values 

of the edge mesh (10 𝜇𝑚, 100 𝜇𝑚, and 200 𝜇𝑚), has been presented in Table B.1 (for 

System P) and Table B.2 (for System Q). The lens geometries related to Systems P and 

Q are illustrated in Figures B.1 and B.2, respectively. 

                                      

Figure B.1.  a. Schematic of the lens system geometry of System P (sketched in MATLAB), b. Visualization 

with the voltages at each electrode. 



Insights into COMSOL Meshing 

206 
 

The table in below (Table B.1) schematically illustrates the variation in mesh element 

sizes for System P, plotted in COMSOL. Different mesh element sizes (10 𝜇𝑚, 100 𝜇𝑚 

and 200 𝜇𝑚) are depicted to provide insight into the meshing strategy employed for 

System P. The right side of the table provides a zoomed plot of the left side, enhancing 

visualization. 

Table B.1: Mesh element sizes variation (10 𝜇𝑚, 100 𝜇𝑚 and 200 𝜇𝑚) schematics for System P 

(plotted in COMSOL). 

 
Edge element size of 10 𝜇𝑚                            

 
Edge element size of 10 𝜇𝑚 (zoomed) 

 
Edge element size of 100 𝜇𝑚 

  
Edge element size of 100 𝜇𝑚 (zoomed) 

 
Edge element size of 200 𝜇𝑚 

 
Edge element size of 200 𝜇𝑚 (zoomed) 
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Table B.2: Comparison of voltage graphs and their first and second derivatives for System P with 

different mesh element sizes of 10 𝜇𝑚, 100 𝜇𝑚, and 200 𝜇𝑚. 

Edge element size 10 𝜇𝑚 Edge element size 100 𝜇𝑚 Edge element size 200 𝜇𝑚 

   

   

   

   
 

 

Table B.2 presents a comparison of various parameters, including voltage graphs and 

their first and second derivatives for System P, utilizing different mesh element sizes of 

10 𝜇𝑚, 100 𝜇𝑚, and 200 𝜇𝑚. As observed, deviations are discernible in the first and 

second derivatives of the potential, particularly at the peaks of the graphs. 
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Below, in Table B.3, the number of elements, edge elements, and mesh vertices 

corresponding to each edge mesh sizes of 10 𝜇𝑚, 100 𝜇𝑚, and 200 𝜇𝑚, are 

presented. For each edge mesh size, the optical parameters of 𝐶𝑠, 𝐶𝑐, and 𝑋𝑐 calculated 

using the potential, first and second derivatives, are provided to offer a quantitative 

insight into the influence of different mesh element sizes on these parameters. 

Additionally, the corresponding computational time for each element size option is 

provided in the table below. 

Note: The optical parameters 𝐶𝑠, 𝐶𝑐, and 𝑋𝑐 represent the spherical and chromatic 

aberration coefficients and image position, respectively. For further details on these 

parameters, please refer to Section 2.4. 

Table B.3: Meshing data in COMSOL and comparison of optical parameters of 𝐶𝑠, 𝐶𝑐, and 𝑋𝑐 and 

computational time for System P using different mesh element sizes of 10 𝜇𝑚, 100 𝜇𝑚, and 

200 𝜇𝑚. 

Edge 
mesh  

Number of 
Elements 

Edge 
elements 

Mesh 
vertices 

Computati
onal time 

Optical 
parameters 

10 𝜇𝑚 177605 8679 90728 63 𝑠𝑒𝑐 𝑋𝑐 (mm)= 13.38 
𝐶𝑐= 26.13 
𝐶𝑠 = 217.50 
 

100 𝜇𝑚 11785 945 6124 42 𝑠𝑒𝑐 𝑋𝑐 (mm)= 13.38 
𝐶𝑐= 26.20 
𝐶𝑠 = 218.25 
 

200 𝜇𝑚 4688 499 2471 38 𝑠𝑒𝑐 𝑋𝑐 (mm)= 13.39 
𝐶𝑐= 26.19 
𝐶𝑠 = 218.66 
 

 

As observed in Table B.3, the optical parameters exhibit slight deviations from the 

accurate values calculated using an edge mesh size of 10 𝜇𝑚. Therefore, it appears that 

the deviations induced by increasing the edge mesh sizes from 10 to 200 𝜇𝑚 for the 

calculated optical parameters in this scenario can be disregarded. However, it is 

necessary to also test other lens system geometries that may be more sensitive to 

meshing, such as situations where the inner radius of an electrode becomes smaller. 

For this test example, the lens system used in the previous case (System P) has been 

modified. For instance, the inner radius of the second electrode has been reduced 

from 1.2 𝑚𝑚 to 0.1 𝑚𝑚. The geometry of this test lens system (System Q) is 
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schematically depicted in Figure B.2.a, with visualization of the voltages at each 

electrode (b). 

Table B.4. illustrates the comparison of voltage graphs and their first and second 

derivatives for System Q, utilizing different mesh element sizes of 10 𝜇𝑚, 100 𝜇𝑚, and 

200 𝜇𝑚. 

Meshing data in COMSOL alongside a comparison of optical parameters (𝐶𝑠, 𝐶𝑐, and 

𝑋𝑐) and computational time for System Q, employing different mesh element sizes of 

10 𝜇𝑚, 100 𝜇𝑚, and 200 𝜇𝑚, are presented in Table B.5. 

 

       
                                                    a.                                                                               b. 

Figure B.2. a. Schematic of the lens system geometry of system Q (sketched in MATLAB), b. 

Visualization with the voltages at each electrode. 

Table B.4: Comparison of voltage graphs and their first and second derivatives for system P with 

different mesh element sizes of 10 𝜇𝑚, 100 𝜇𝑚, and 200 𝜇𝑚. 
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Edge element size 10 𝜇𝑚 Edge element size 100 𝜇𝑚 Edge element size 200 𝜇𝑚 
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Table B.5: Meshing data in COMSOL and comparison of optical parameters of 𝐶𝑠, 𝐶𝑐, and 𝑋𝑐 

and computational time for System Q using different mesh element sizes of 10 𝜇𝑚, 100 𝜇𝑚, 

and 200 𝜇𝑚. 

Edge mesh  Number of 
Elements 

Edge 
elements 

Mesh 
vertices 

Time to 
solve one  

 

10 𝜇𝑚 181501 8899 92676 69 𝑠𝑒𝑐 𝑋𝑐 (𝑚𝑚)= 8.31 
𝐶𝑐= 9.80 
𝐶𝑠= 699.43 
 

100 𝜇𝑚 11819 967 6141 48 𝑠𝑒𝑐 𝑋𝑐 (𝑚𝑚)= 8.33 
𝐶𝑐= 9.95 
𝐶𝑠 = 647.65 
 

200 𝜇𝑚 4695 512 2475 39 𝑠𝑒𝑐 𝑋𝑐 (𝑚𝑚)= 6.81 
𝐶𝑐= 4.18 
𝐶𝑠 = 177.58 
 

 

A noticeable deviation in the calculation of the optical parameters becomes apparent 

with an increase in the edge mesh size values beyond 10 𝜇𝑚. This underscores the 

importance of selecting a small edge element size, such as 10 𝜇𝑚, to ensure accurate 

calculation of optical parameters for certain lens geometries. Therefore, this value has 

been designated as the edge mesh size in this study. 
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Appendix C: Matrix Representation of FOEM equations 
Matrix Representation of Eq. 9.38 : 

[𝐴](𝑁−2)×𝑁[𝑍]𝑁×1 = [𝐵](𝑁−2)×𝑁[𝜇]𝑁×1 

(

 
 
 
 
 
 
 

𝑎11 𝑎12 𝑎13
𝑎22 𝑎21

𝑎33

𝑎23
𝑎34 𝑎35

𝑎(𝑁−4)(𝑁−4) 𝑎(𝑁−4)(𝑁−3)
𝑎(𝑁−3)(𝑁−3)

𝑎(𝑁−4)(𝑁−2)
𝑎(𝑁−3)(𝑁−2) 𝑎(𝑁−3)(𝑁−1)
𝑎(𝑁−2)(𝑁−2) 𝑎(𝑁−2)(𝑁−1) 𝑎(𝑁−2)(𝑁))

 
 
 
 
 
 
 

(𝑁−2)×𝑁
(

 
 
 
 
 
 

𝑍1
𝑍2
𝑍3
⋮
⋮
⋮

𝑍𝑁−2
𝑍𝑁−1
𝑍𝑁 )

 
 
 
 
 
 

=

(

 
 
 
 
 
 
 

𝑏11 𝑏12 𝑏13
𝑏22 𝑏21

𝑏33

𝑏23
𝑏34 𝑏35

𝑏(𝑁−4)(𝑁−4) 𝑏(𝑁−4)(𝑁−3)

𝑏(𝑁−3)(𝑁−3)

𝑏(𝑁−4)𝑁−2)
𝑏(𝑁−3)(𝑁−2) 𝑏(𝑁−3)(𝑁−1)
𝑏(𝑁−2)(𝑁−2) 𝑏(𝑁−2)(𝑁−1) 𝑏(𝑁−2)(𝑁))

 
 
 
 
 
 
 

(𝑁−2)×𝑁

(

 
 
 
 
 
 

𝜇1
𝜇2
𝜇3
⋮
⋮
⋮

𝜇𝑁−2
𝜇𝑁−1
𝜇𝑁 )

 
 
 
 
 
 

 

 

Matrix Representation of Eq. 9.39 : 

[𝐴∗](𝑁−2)×(𝑁−2)[𝑍
∗](𝑁−2)×1 = [𝐵

∗](𝑁−2)×(𝑁−2)[𝜇
∗](𝑁−2)×1 

(

 
 
 
 
 
 
 

𝑎12 𝑎13
𝑎22 𝑎21

𝑎33

𝑎23
𝑎34 𝑎35

𝑎(𝑁−4)(𝑁−4) 𝑎(𝑁−4)(𝑁−3)

𝑎(𝑁−3)(𝑁−3)

𝑎(𝑁−4)(𝑁−2)
𝑎(𝑁−3)(𝑁−2) 𝑎(𝑁−3)(𝑁−1)
𝑎(𝑁−2)(𝑁−2) 𝑎(𝑁−2)(𝑁−1))

 
 
 
 
 
 
 

(𝑁−2)×(𝑁−2)

(

 
 
 
 

𝑍2
𝑍3
⋮
⋮
⋮

𝑍𝑁−2
𝑍𝑁−1)

 
 
 
 

=

(

 
 
 
 
 
 
 

𝑏12 𝑏13
𝑏22 𝑏21

𝑏33

𝑏23
𝑏34 𝑏35

𝑏(𝑁−4)(𝑁−4) 𝑏(𝑁−4)(𝑁−3)

𝑏(𝑁−3)(𝑁−3)

𝑏(𝑁−4)(𝑁−2)
𝑏(𝑁−3)(𝑁−2) 𝑏(𝑁−3)(𝑁−1)
𝑏(𝑁−2)(𝑁−2) 𝑏(𝑁−2)(𝑁−1))

 
 
 
 
 
 
 

(𝑁−2)×(𝑁−2)

(

 
 
 
 

𝜇2
𝜇3
⋮
⋮
⋮

𝜇𝑁−2
𝜇𝑁−1)

 
 
 
 

 

 

 

Matrix Representation of Eq. 9.40 : 

[𝐶](𝑁−2)×𝑁[𝑍]𝑁×1 + [𝐷](𝑁−2)×𝑁[𝜇]𝑁×1 = [𝐾](𝑁−2)×𝑁[𝜑]𝑁×1  
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(

 
 
 
 
 
 
 

𝑐11 𝑐12 𝑐13
𝑐22 𝑐21

𝑐33

𝑐23
𝑐34 𝑐35

𝑐(𝑁−4)(𝑁−4) 𝑐(𝑁−4)(𝑁−3)
𝑐(𝑁−3)(𝑁−3)

𝑐(𝑁−4)(𝑁−2)
𝑐(𝑁−3)(𝑁−2) 𝑐(𝑁−3)(𝑁−1)
𝑐(𝑁−2)(𝑁−2) 𝑐(𝑁−2)(𝑁−1) 𝑐(𝑁−2)(𝑁))

 
 
 
 
 
 
 

(𝑁−2)×𝑁
(

 
 
 
 
 
 

𝑍1
𝑍2
𝑍3
⋮
⋮
⋮

𝑍𝑁−2
𝑍𝑁−1
𝑍𝑁 )

 
 
 
 
 
 

+

(

 
 
 
 
 
 
 

𝑑11 𝑑12 𝑑13
𝑑22 𝑑21

𝑑33

𝑑23
𝑑34 𝑑35

𝑑(𝑁−4)(𝑁−4) 𝑑(𝑁−4)(𝑁−3)
𝑑(𝑁−3)(𝑁−3)

𝑑(𝑁−4)(𝑁−2)
𝑑(𝑁−3)(𝑁−2) 𝑑(𝑁−3)(𝑁−1)
𝑑(𝑁−2)(𝑁−2) 𝑑(𝑁−2)(𝑁−1) 𝑑(𝑁−2)(𝑁))

 
 
 
 
 
 
 

(𝑁−2)×𝑁

(

 
 
 
 
 
 

𝜇1
𝜇2
𝜇3
⋮
⋮
⋮

𝜇𝑁−2
𝜇𝑁−1
𝜇𝑁 )

 
 
 
 
 
 

=

(

 
 
 
 
 
 
 

𝑘11 𝑘12 𝑘13
𝑘22 𝑘21

𝑘33

𝑘23
𝑘34 𝑘35

𝑘(𝑁−4)(𝑁−4) 𝑘(𝑁−4)(𝑁−3)
𝑘(𝑁−3)(𝑁−3)

𝑘(𝑁−4)(𝑁−2)
𝑘(𝑁−3)(𝑁−2) 𝑘(𝑁−3)(𝑁−1)
𝑘(𝑁−2)(𝑁−2) 𝑘(𝑁−2)(𝑁−1) 𝑘(𝑁−2)(𝑁))

 
 
 
 
 
 
 

(𝑁−2)×𝑁

(

 
 
 
 
 
 

𝜑1
𝜑2
𝜑3
⋮
⋮
⋮

𝜑𝑁−2
𝜑𝑁−1
𝜑𝑁 )

 
 
 
 
 
 

 

 
 

Matrix Representation of Eq. 9.41 : 

[𝐶∗](𝑁−2)×(𝑁−2)[𝑍
∗](𝑁−2)×1 + [𝐷

∗](𝑁−2)×(𝑁−2)[𝜇
∗](𝑁−2)×1

= [𝐾∗](𝑁−2)×(𝑁−2)[𝜑
∗](𝑁−2)×1 + [𝑈0](𝑁−2)×1 
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(

 
 
 
 
 
 
 

𝑐12 𝑐13
𝑐22 𝑐21

𝑐33

𝑐23
𝑐34 𝑐35

𝑐(𝑁−4)(𝑁−4) 𝑐(𝑁−4)(𝑁−3)

𝑎(𝑁−3)(𝑁−3)

𝑐(𝑁−4)(𝑁−2)
𝑐(𝑁−3)(𝑁−2) 𝑐(𝑁−3)(𝑁−1)
𝑐(𝑁−2)(𝑁−2) 𝑐(𝑁−2)(𝑁−1))

 
 
 
 
 
 
 

(𝑁−2)×(𝑁−2)

(

 
 
 
 

𝑍2
𝑍3
⋮
⋮
⋮

𝑍𝑁−2
𝑍𝑁−1)

 
 
 
 

+

(

 
 
 
 
 
 
 

𝑑12 𝑑13
𝑑22 𝑑21

𝑑33

𝑑23
𝑑34 𝑑35

𝑑(𝑁−4)(𝑁−4) 𝑑(𝑁−4)(𝑁−3)

𝑑(𝑁−3)(𝑁−3)

𝑑(𝑁−4)(𝑁−2)
𝑑(𝑁−3)(𝑁−2) 𝑑(𝑁−3)(𝑁−1)
𝑑(𝑁−2)(𝑁−2) 𝑑(𝑁−2)(𝑁−1))

 
 
 
 
 
 
 

(𝑁−2)×(𝑁−2)

(

 
 
 
 

𝜇2
𝜇3
⋮
⋮
⋮

𝜇𝑁−2
𝜇𝑁−1)

 
 
 
 

 

=

(

 
 
 
 
 
 
 

𝑘12 𝑘13
𝑘22 𝑘21

𝑘33

𝑘23
𝑘34 𝑘35

𝑘(𝑁−4)(𝑁−4) 𝑘(𝑁−4)(𝑁−3)
𝑘𝑁−3𝑁−3

𝑘(𝑁−4)(𝑁−2)
𝑘(𝑁−3)(𝑁−2) 𝑘(𝑁−3)(𝑁−1)
𝑘(𝑁−2)(𝑁−2) 𝑘(𝑁−2)(𝑁−1))

 
 
 
 
 
 
 

(𝑁−2)×(𝑁−2)

(

 
 
 
 

𝜑2
𝜑3
⋮
⋮
⋮

𝜑𝑁−2
𝜑𝑁−1)

 
 
 
 

+

(

 
 
 
 

𝑘11𝜑1
0
⋮
⋮
⋮
0

𝑘(𝑁−2)(𝑁)𝜑𝑁)

 
 
 
 

 

Matrix Representation of Eq. 9.42 : 

(

 
 
 
 

𝑉2
𝑉3
⋮
⋮
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