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A B S T R A C T

The cohesive element has been widely employed to model delamination and matrix cracking in
composite materials. However, an extremely fine mesh along the potential crack path is required
to achieve accurate predictions of stresses within the cohesive zone. A sufficient number of co-
hesive elements must be present within the cohesive zone ahead of the crack tip, resulting in very
high computational cost and time for application to practical composite structures. To mitigate
this problem, an adaptive floating node method (A-FNM) with potential to reduce model size and
computational effort is proposed. An element with adaptive partitioning capabilities is designed
such that it can be formulated as a master element, a refined element and a coarsened element,
depending on the damage state in the progressive damage process. A relatively coarse overall
mesh may be used initially, and by transforming the element configurations adaptively, the local
refinement and coarsening schemes are applied in the analysis. The localized stress gradient
ahead of the crack front within the refinement zone is captured by the refined elements. The
refinement and coarsening operations are performed at the elemental level with fixed nodal
connectivity, so that global successive remeshing in adaptive mesh refinement (AMR) techniques
is avoided; this is the key difference between AMR and A-FNM. It is demonstrated that, without
loss of accuracy, the present method simplifies the modelling procedure and reduces computa-
tional cost.

1. Introduction

Delamination and matrix cracking are two of the most common failure mechanisms for laminated composite materials arising
from low-velocity impacts, bearing loads or manufacturing defects. Their interaction and propagation significantly affect the strength
and integrity of composite structures [1].

Two explicit approaches are commonly adopted to model fracture in composite materials: the virtual crack closure technique
(VCCT) [2,3] and cohesive zone model (CZM) [4,5]. Assuming self-similar crack propagation, VCCT may be performed to calculate
the strain energy release rate and predict crack propagation. It has been applied to model delamination migration in composite
laminates [6] with an accompanying failure criterion for matrix crack initiation. In general, however, the assumption of an initial
crack and requirement for successive remeshing operations make the application of this method rather cumbersome. The other
alternative, the cohesive element (CE) method, is formulated based on the CZM and has been widely used to model the onset and
propagation of cohesive cracks [7–15]. A cohesive zone (or fracture process zone) is introduced in front of the crack tip to model the
material damaging mechanisms. Combined with other numerical methods such as the extended finite element method (XFEM) and
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floating node method (FNM) [16–25], modified or enhanced CEs have been used to predict the coupled interaction between matrix
cracking and delamination propagation.

However, to achieve accurate predictions with the CZM, sufficient number of CEs must be used within the moving cohesive zone
ahead of the crack front, which is extremely small compared with the scale of most structures [26,27]. It has been found that
significant mesh dependency and over-prediction of structural strength can be expected if coarse CE meshes are adopted in the
simulations [12]. Consequently, application of the CE modelling requires an excessively refined mesh (usually determined by the
cohesive zone length) along the potential crack path, leading to very high computational expense.

To address the strict mesh size requirement, which is the significant drawback of CE modelling, several numerical techniques have
been proposed. Guiamatsia et al. enriched the CE with analytical solutions obtained from the beam on an elastic foundation and
hence increased the size requirement in the simulation [28–30]. Turon et al. introduced an engineering solution: by artificially
reducing interface strength, CE models with relatively coarse meshes may provide satisfactory results [12]. On the other hand,
globally fine meshes can be avoided by employing adaptive mesh refinement (AMR) techniques [31–33]. The meshes ahead of the
crack tip were refined to the required length scale while, in the far field, relatively coarse meshes could be used [34–38]. To reduce
the number of CEs in the model, Shor et al. adaptively inserted and deleted the CEs around the crack tip region during delamination
propagation [39]. Other adaptive modelling techniques and enriched formulations have been researched in the literature [40–44].
Although these techniques may, to some extent, overcome the difficulties of CE modelling, there are also significant limitations. For
instance, if reduced interface strength is used, the cohesive traction fields in front of the crack tip could not be faithfully captured and
user experience is needed to choose the appropriate mesh size and the corresponding reduced strength parameters. AMR techniques
generally require continuing global mesh regeneration and the associated nodal mapping, which in turn increases overall compu-
tational cost and implementation complexity.

Within the very small cohesive zone, it is necessary for the mesh to be very fine; however, in the intact and the extensively failed
regions, there is no need for such refinement. Based on this understanding, an efficient adaptive floating node method (A-FNM) is
developed in this study. The floating node method (FNM) is a recently developed discrete crack method for modelling progressive
failure of fiber-reinforced composites [19–21]. In the FNM, besides the standard element nodes, additional floating nodes are in-
cluded in the formulation to potentially capture discontinuities introduced by the cracks. The performance and accuracy of the FNM
have been validated in previous work [19–21]. Based on the same framework, the A-FNM is proposed and an adaptive element is
formulated, which may be interchangeably partitioned into one of three configurations (namely, the master element, refined element
and coarsened element), depending on the stage of damage evolution experienced by the element. The master and coarsened ele-
ments are used in fields far from the critical damaged region while the refined elements are assigned ahead of the crack tip. By
altering the element configurations adaptively in the analysis, local refinement and coarsening are achieved within an originally
coarse mesh. The refined region moves together with the propagating crack front, more accurately modelling the progressive damage
process. This would be particularly useful in cases of advancing delamination or concentrated damage fronts.

Although the presented A-FNM shares some features in common to the AMR, several drawbacks of AMR have been overcome:

• Global successive remeshing is not required: the refinement and coarsening operations in A-FNM are performed on the elemental
level. By simply transforming the element configurations, local refinement and coarsening with fixed nodal connectivity is
achieved.

• Mapping of nodal information is not required: all the nodal information, e.g., the displacements and the failure indices, is stored in
the same element throughout the simulation. Mapping information between different meshes is avoided.

• Specially-designed solvers are not required: the proposed A-FNM can be generally implemented as a user-defined element in
commercial finite element (FE) software packages such as Abaqus.

Nomenclature

� assembly operator
D constitutive matrix
e relative error
K stiffness matrix
lch characteristic length
lCE length of cohesive element
lCZ length of cohesive zone
lrf length of refinement zone
N shape function matrix
Q nodal force vector
t traction
u displacement
U strain energy
δ variation operator
Δ separation
ζ tolerance

ε strain
σ stress
A-FNM adaptive floating node method
AMR adaptive mesh refinement
B-K Benzeggagh–Kenane
CE cohesive element
CZM cohesive zone model
DCB double cantilever beam
DoF degree of freedom
DM delamination migration
ENF end notch flexure
FE finite element
FNM floating node method
MMB mixed-mode bending
OHT open-hole tension
SE solid element
VCCT virtual crack closure technique
XFEM extended finite element method
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As a demonstration in this paper, the proposed A-FNM is applied to the modelling of delamination and matrix cracking in
composite materials. In Section 2, a brief review on CZM and the associated cohesive zone length is presented. The details of A-FNM
and the corresponding refinement and coarsening schemes are described in Section 3. Section 4 provides the FE formulation and
implementation details. Several verification examples are given in Section 5. Finally, some conclusions are drawn in Section 6.

2. The cohesive zone model and cohesive zone length

In the present work, the A-FNM is formulated based on the mesh size requirement of the CE, guided by the cohesive zone length in
CZM. In this section, we briefly review the theory of CZM and introduce the cohesive zone length in numerical simulations.

As shown in Fig. 1a, the CZM developed by Dugdale [4] and Barenblatt [5] introduced a fracture process zone (or cohesive zone)
in front of the crack tip, and a cohesive law was adopted to describe the traction-separation behaviors of the crack surfaces [45].
Considering the bilinear cohesive law shown in Fig. 1a, the material strength is characterized by the maximum traction tnc, beyond
which a softening curve is used to represent the irreversible behavior of the damaged material. The area under the traction-separation
curve is equal to the fracture toughness of the material.

Based on the CZM, a characteristic length, lch, is proposed to estimate the size of the cohesive zone [46–48]. For fracture analysis
of orthotropic materials (e.g., composite materials) in an infinite domain, the characteristic lengths for mode I and mode II loading
are given by:

=
′

l
E G
σ( )ch I

I IC

I max
,

,
2 (1)

=
′

l
E G
σ( )ch II

II IIC

II max
,

,
2 (2)

Cohesive zone

Crack

Crack tip

Stress profile

Cohesive zone
Crack tip

(a)

(b)

High stress gradient

Fig. 1. (a) Cohesive zone model and the bilinear traction-separation cohesive law; (b) a typical stress profile ahead of the crack tip.
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where GIC and GIIC are the mode I and mode II fracture toughness; σI max, and σII max, are the strength of two modes, respectively. ′EI and
′EII are the equivalent elastic moduli, depending on the material properties and loading conditions (details can be found in

[26,49–51]). For slender laminates, Eq. (1), (2) can be further modified as [26,52]:

=l l h( )ch I
s

ch I, ,
1/4 3/4 (3)

=l l h( )ch II
s

ch II, , (4)

where h is the half-thickness of the laminate.
It was reported that the characteristic length is within an order of magnitude of the cohesive zone length [51] and may be used to

estimate the cohesive zone length (lCZ) [26,27]:

=l 0.5[min(Eq. (1), (2), (3), (4))]CZ (5)

As can be seen from stress profile shown in Fig. 1b, the cohesive law falls into the softening part ahead of the crack tip, which
represents material degradation in the cohesive zone. The stress increases initially from zero to the material strength, and high stress
gradient is expected. It has been demonstrated that for accurate failure predictions, at least two or three CEs should be used to model
the cohesive zone [12,53]. In this paper, the number of CEs used in this critical region is three, so that the length of CE, lCE, is
calculated as:

=l l
3CE
CZ

(6)

Eq. (6) provides an a priori size requirement for CE in the A-FNM formulation in Section 3.

3. Adaptive floating node method (A-FNM)

In this section, a detailed formulation of the A-FNM and the corresponding refinement and coarsening schemes are presented. In
the present work, we focus on cohesive fracture problems and propose an efficient numerical approach that addresses the excessive
mesh size requirement in conventional application of CEs. Based on the FNM [19], an enriched element with adaptive partitioning
capabilities is developed. Several configurations of the element are illustrated, together with the corresponding automatic refinement
and coarsening algorithm.

3.1. Adaptive floating node element

As shown in Fig. 2, the adaptive element is defined by real and floating nodes with the associated degrees of freedom (DoF)
[19–21]. First, as usual the real nodes are used to construct the elements and discretize the domain of the solid body. Each element is
further enriched with pre-allocated floating nodes in anticipation of possible partitioning of the element. The corresponding nodal

(a). Master Element (b). Refined Element (c). Coarsened Element

: Dummy floating node

: Activated floating node

: Real node

: Solid element

: Cohesive element

Fig. 2. Adaptive floating node element with partitioning capabilities: (a) master element configuration; (b) refined element configuration; (C) coarsened element
configuration.
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connectivity of real and floating nodes are established within the element. At this stage, it is not necessary to define the position
vectors of the floating nodes and they can be simply assigned to the origin of the coordinate system (zero position vectors).

While the real nodes are used to construct the original model, the floating nodes are successively deployed in subsequent steps of
the analysis to refine the element and model the discontinuities due to cracking as determined by failure initiation and fracture
criteria (Fig. 2b and c). In Fig. 2a, some floating nodes are assigned to the edges and shared by the adjacent elements. This ar-
rangement ensures continuation of crack propagation across element boundaries. The rest of the floating nodes are reserved for
deployment within the element.

Each floating node may assume one of two states: dummy or active. A dummy floating node has no stiffness or force is associated
with its DoF but is activated when partitioning the parent element into sub-elements (Fig. 2b and c). The coordinates of the node are
calculated based on the configuration of the partition. The DoFs of the newly activated floating node are included in the global
equilibrium equation.

For application to fracture, three element configurations are possible: the master element, refined element and coarsened element.
Only real nodes are used in the master element, while all floating nodes remain as dummy nodes (i.e. undeployed), with the usual
stiffness matrix of a standard quadrilateral element:

=K Kmaster quad (7)

However, when an element is approached by an advancing crack front, it is transformed to the refined configuration (Fig. 2b). CEs
are inserted into the element for predicting the propagation of the crack. The dummy floating nodes within the element are activated
to refine each of the sub solid elements (SEs) and sub-CEs to a size smaller than the required length scale (Eq. (6)). Thus, the stiffness
matrix of the refined element is simply an assembly of the stiffnesses of all sub-elements within:

�= = … = …K K K i N j N( , ), 1,2, , 1,2,refined s
i

c
j

S C (8)

where � is the assembly operator; Ks
i and Kc

j denote the stiffness matrices of the ith SE and jth CE; NS is the number of sub-SEs and Nc

is the number of sub-CEs, respectively. In this way, crack propagation may be modelled by failing the sub-CEs.
Once the crack tip and the associated cohesive zone has passed the refined elements, the high stress gradients no longer exist in

these elements. The refined element is re-coarsened and the sub-CEs are deleted. The floating nodes on the cracked edges remain
active to describe the crack surfaces, while the remaining floating nodes and their corresponding DoFs are deactivated and removed
from the overall element formulation. Therefore, the stiffness matrix of a coarsened element is given by:

�= = …K K i N( ), 1,2,coarsened s
i

S (9)

The element introduced here possesses adaptive partitioning capabilities, i.e., it can be readily converted to any pre-defined
configuration at any stage of the FE analysis. Since the nodes as well as the connectivity are predefined before the analysis, global
remeshing and stop-restart operations are not required. Details of the A-FNM are presented in the following subsections.

3.2. Formulation of the refined element configuration

In the proposed A-FNM scheme, the element is first converted into a refined configuration to model the progressive fracture
process. Assuming the initial mesh yields a converged solution for linear elastic analysis and that the size requirement in Eq. (6) is
satisfied, the refined element configuration can be determined. Assuming the element size of the initial mesh is l0 and the required
size of CE is lCE, the number of sub-CEs embedded in refined configuration can be calculated as:

Master Element

: Floating nodes

: Real nodes

: Solid element

: Cohesive element

: No. of CEs

Fig. 3. Refined element configurations with different nCE .
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= ⎡
⎢⎢

⎤
⎥⎥

n l
lCE
CE

0

(10)

where ⌈■⌉ is the ceiling function which returns the smallest integer larger than the input value. nCE as given by Eq. (10) determines
the total number of floating nodes that should be predefined in the element as well as the configuration of the refined element
(Fig. 3). For practical implementation, the number of sub-CEs is reduced by half if the crack propagates across the neighboring edges
of the master element. It is worth noting that the A-FNM proposed in the present work possesses adaptivity and flexibility, i.e., the
associated refined configurations can be tailored automatically for a given nCE.

3.3. Refinement zone and refinement schemes

In conventional AMR techniques, the mesh refinement operations are generally applied with a posteriori error estimators [31,32].
If the errors based on current mesh exceed the prescribed tolerance, remeshing will be performed and the size of the refined mesh can
be estimated by the predicted errors. Automatic mesh generators repeat this process of successive refinement. In the proposed A-FNM,
however, an a priori refinement criterion for CE simulation can be established based on the theory of CZM as introduced in Section 2.

As shown in Fig. 1b, the stress gradient remains very high for the region within and right after the cohesive zone, and to correctly
capture the material behaviors in that region, refined elements should be employed. For this reason, a refinement zone ahead of the
crack tip is defined, and all the elements within this zone should be formulated as refined configurations (Fig. 4). This refinement
zone is attached to the moving crack front during the progressive damage process (Fig. 4b and c). In general, the refinement zone
should be larger than the cohesive zone. Based on previous studies on crack tip traction profiles [12,26–28], the length of the
refinement zone (lrf ) may be set as three times the cohesive zone length, i.e.:

=l l3rf CZ (11)

The refinement zone and the associated refinement scheme is illustrated through an example shown in Fig. 4. As introduced in
Section 3.1, the initial model is built up by the real nodes and the dummy floating nodes predefined in the element (Fig. 4a). The
global nodal connectivity is given by:

(a)

(b)

(c)

1 2 3 4 5

23~26

I II III IV

Crack tip

New crack tip Moving refinement zone

6 7 8 9 10

11~14

15~18

19~22

27~30

31~34

35~38

39~42

43~46

47~50

51~54

55~58

59~62

63~78 79~94 95~110 111~126

: Activated floating node: Real node : Dummy floating node

Fig. 4. Element refinement schemes with moving refinement zone: (a) initial configuration and global connectivity; (b) refined elements in the refinement zone; (c)
moving refinement zone along with the crack propagation.
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∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼

I: {1,2,7,6,11 14,15 18,19 22,23 26,63 78}
II: {2,3,8,7,19 22,27 30,31 34,35 38,79 94}
III: {3,4,9,8,31 34,39 42,43 46,47 50,95 110}
IV: {4,5,10,9,43 46,51 54,55 58,59 62,111 126} (12)

The number of the embedded floating nodes and the corresponding refined configurations are determined by nCE, which can be
evaluated from the material properties and the loading conditions (Eq. (10)). Here, nCE is set to 5 in the example (Fig. 4).

As shown in Fig. 4a, far away from the crack front, the initial intact material is modelled by master elements, and the dummy
floating nodes in elements I–IV are not used in this step. Hence, only nodes 1–10 are engaged in the global calculation. When the
crack approaches element I during the damage process (Fig. 4b), elements I and II enter the refinement zone. The dummy floating
nodes in elements I and II are activated and they are converted to the refined configurations. Further loading causes progressive
failure of the sub-CEs while the crack advances in element I. Subsequently, element III enters the refinement zone and is refined as
well (Fig. 4c). In this way, adaptive refinement is performed while keeping the overall nodal connectivity the same as given in Eq.
(12); hence no updating is required.

Discussions on the effects of refinement zone length on numerical predictions are provided in Section 5 via some examples.

3.4. Element coarsening schemes

Based on a posteriori error control criterion on the strain energy, the element coarsening schemes for A-FNM are introduced in this
subsection. As shown in Fig. 5a, with the increase of the external load, all the sub-CEs in the refined element may be failed and the
material behaviors are fully governed by the linear SEs 1–20. However, the size of sub-SEs in a refined configuration may be
unnecessarily small for the purpose of modelling elastic deformation. Therefore, the following element coarsening procedure is
proposed to reduce model size and computational cost.

The strain energy for the refined element with failed interface is calculated as (Fig. 5a):

∫∑= = …σ εU d i: V, 1,2, 20ref
i

i i i
(13)

where σi and εi are the stress and strain tensor for the sub-SE i in the refined element and Vi is the corresponding volume. Firstly,
assume that the refined element is completely coarsened (Fig. 5b) and the strain energy for this coarsened configuration is given as:

∫∑= =σ εU d i: V, 1,2crs
i

i i i
(14)

Then, the change in strain energy induced by coarsening the element is evaluated:

=
−

×e
U U

U
| |

100%ref crs

ref (15)

A tolerance ζ is prescribed and the coarsening operation is applied, if the error calculated from Eq. (15) is within the tolerance,
i.e., the coarsening criterion is satisfied:

⩽e ζ (16)

Otherwise, if Eq. (16) is not satisfied, an intermediate configuration (Fig. 5c) is considered, and a smaller sub-SE size is adopted.
The previous procedures (Eqs. (14) and (15)) are repeated until the coarsening criterion Eq. (16) is met by deactivating the

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

1

2

3

4

(a)

(b)

(c)

1

2

Fig. 5. Element coarsening schemes: (a) refined element with failed sub-CEs; (b) completely coarsened element configuration; (c) partially coarsened element con-
figuration.
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appropriate number of floating nodes.

4. Implementation details

In this section, implementation of the A-FNM in FE analysis is described. The general FE formulation including the CZM is
presented. We also introduce the numerical techniques that can deal with the compatibility problems arising from the proposed A-
FNM.

4.1. Finite element formulation

Quasi-static fracture problem with cohesive zone modelling is considered in FE analysis. In the absence of body forces, the weak
form of governing equation is obtained from principle of virtual work:

∫ ∫ ∫+ =ε σ t u tδ d δ d δ d: V Δ· Γ · Γcoh coh tΩ Γ Γcoh t (17)

where u is the solution of displacement field and Δ is the separation between the cohesive crack surfaces. Furthermore, ε and σ are
strain and stress tensors, related by a constitutive tensor D, =σ D ε: ; t and tcoh are the traction vectors acting the on the force
boundary Γt and cohesive boundary Γcoh, respectively.

In FE analysis, the domain is discretized into SEs and CEs to represent bulk solids and interfaces respectively. The element
displacement fields are given by:

=u N us n (18)

= N uΔ c n (19)

where Ns and Nc are the shape function matrices for SE and CE, respectively. un is the nodal displacement vector of the elements.
The strains are related to the displacements by the strain-displacement transformation matrix B,

=ε Bun (20)

The stresses and cohesive tractions are given in terms of the nodal displacements through the constitutive relations:

= =σ D DBuε n (21)

= =t D D N uΔcoh c c c n (22)

where Dc is the constitutive matrix for CEs. Substituting Eqs.(18)–(22) into Eq. (17), the governing equation becomes:

∫ ∫ ∫′ ′ + ′ ′ = ′ ′u B DBu u N D N u u N tδ d δ d δ dV Γ Γn n n c c c n coh n s tΩ Γ Γcoh t (23)

∫ ∫ ∫⎛
⎝

′ + ′ ⎞
⎠

= ′B DB N D N u N td d dV Γ Γc c c coh n s tΩ Γ Γcoh t (24)

Let Ks
i and Kc

j denote the stiffness matrices of ith SE and jth CE, respectively; let Qs
i denote the external force vector applied on ith

SE. Then Eq. (24) can be rewritten as:

� �= = … = …K K u Q i N j N( , ) ( ), 1,2, , 1,2,s
i

c
j

n s
i

S C (25)

where � is the assembly operator; NS and Nc are the total numbers of SEs and CEs in the model, respectively. Eq. (25) finally leads to:

=Ku Qn (26)

with �=K K K( , )s
i

c
j and �=Q Q( )s

i , respectively.

4.2. Constitutive relation of cohesive zone model (CZM)

A mixed-mode bilinear cohesive law is adopted to construct the CE (Fig. 6):

Mode I Mode II

Fig. 6. Cohesive law for mode I and mode II fracture.
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∫ = =t d t GΔ 1
2

Δe e e
m

e
f

mc0

Δe
f

(27)

where superscript f represents final failure and m represents maximum value; variable with subscript e is the effective value for
mixed-mode failure:

= ⎧
⎨⎩

+ ⩾
<

= ⎧
⎨⎩

+ ⩾
<

t t t
t

Δ Δ Δ Δ 0
Δ Δ 0

, ( Δ Δ )/Δ Δ 0
Δ 0e

n t n

t n
e

n n t t e n

t n

2 2

(28)

where Δn and Δt are the normal and transverse separations; tn and tt are the corresponding tractions, calculated as:

= − = −t d K t d K(1 ) Δ , (1 ) Δn m p n n m p n (29)

where Kp is the penalty stiffness and dm is the damage variable obtained from the cohesive law.
The Benzeggagh–Kenane (B-K) law is adopted for the mixed-mode energy release rate [54]:

⎜ ⎟= + − ⎛
⎝ +

⎞
⎠

G G G G G
G G

( )mc Ic IIc Ic
II

I II

η

(30)

where GIc and GIIc are the fracture toughness for mode I and mode II failure; η is the material properties obtained from experimental
tests; GI and GII are determined at the failure oneset as:

= =G t G tmax(0,Δ )· , ΔI n n II t t (31)

4.3. Master-Slave constraint

To ensure the compatibility between different element configurations, the master-slave constraints are applied on the transitional
edges. As shown in Fig. 7, the floating nodes on the edges that connect the refined and master elements are set as the slave nodes,
while the corresponding real nodes at the endpoints are set as the master nodes. In this way, the displacements of the slave nodes can
be interpolated by the values of master nodes:
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where di j, is the distance between nodes i and j.
Applying the constraint equations in Eq. (32), the slave nodes and the associated DoFs are removed from the formulation of the

stiffness matrix and the displacements of those constrained edges are fully characterized by the real end nodes. In this way, the
compatibility problems brought about by A-FNM are properly addressed.

4.4. Crack propagation and element partitioning

The proposed A-FNM can be applied in unstructured meshes to model the crack propagation. Upon satisfaction of failure criterion,
the initiation of new cracks is assumed at the center of the element (Fig. 8a). The crack angle α is determined from the fiber direction
or the elemental state of stress, depending on the problems analyzed. On the other hand, for an existing crack propagating across an
element, the crack path is determined by the fiber orientation or crack propagation criterion (Fig. 8b) and does not have to pass
through the element center.

In implementation, the crack path may sometimes approach very close to a node (Fig. 8c). To avoid consequent sub-elements with
very high aspect ratios, a small deviation of the crack path is imposed [20]. This deviation, δdev, is set to be 10% of the original edge
length of the element (Fig. 8c).
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: Constrained floating node
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Fig. 7. Master slave constraints on transitional edges.
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5. Numerical verification

In this section, a few benchmark problems are selected to demonstrate the accuracy and efficiency of the proposed A-FNM. The
first is the double cantilever beam (DCB) test for mode I delamination propagation, followed by the end notch flexure (ENF) for mode
II and the mixed-mode bending (MMB) test. Open-hole tension (OHT) of a composite laminate is then analyzed. Finally, the dela-
mination migration (DM) in cross-ply laminates is modelled with A-FNM.

5.1. Double cantilever beam (DCB) test

A typical DCB [8] is shown in Fig. 9. The dimensions of the beam are length 2L=100mm, thickness h=3mm and width 20mm.
An initial crack of length a=30mm is embedded in the beam and the material properties are given in Table 1. The delamination
propagates under the prescribed displacements Δ at the loaded end of the beam.

5.1.1. Length of cohesive zone and refinement zone
The length of the cohesive zone for this problem, based on the material properties of Table 1 and Eq. (5), is calculated as:

≈l 0.5836 mmCZ (33)

Since three CEs are assigned in the cohesive zone to guarantee accurate predictions, the required size for CE is calculated as:

= ≈l l
3

0.1945 mmCE
CZ

(34)

In addition, the refinement zone is set to be three times the cohesive zone, therefore:

= ≈l l3 1.7508 mmrf cz (35)

Validation of Eqs. (33)–(35) is given through numerical analysis.
Fig. 10 shows a mesh sensitivity test for the CEs modelling the mode-I delamination fracture. With mesh size smaller than or equal

to 0.2mm (Eq. (34)), accurate and converged predictions are achieved when benchmarked with results from VCCT [8] and analytical
[55] models. However, if coarse meshes are adopted (larger than 0.2mm), incorrect results are obtained. As can be observed from the
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Crack tip

Center

(a) (b) (c)

: Floating nodes

: Real nodes

: Constrained nodes

Original path

Deviated path

: Crack path

dev

Fig. 8. The crack propagation and element partitioning: (a) crack initiates from the center of an element; (b) crack propagates across an element; (c) deviation of crack
path around a node.
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Fig. 9. DCB test: set-up and loading conditions.
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loading curves, the strength of the structure is over-predicted by about 100% for the model with 1mm mesh.
Fig. 11 shows the distribution of normal traction ahead of the crack tip for 0.2mm size mesh. At the onset of the delamination, the

cohesive zone length obtained from the numerical results is 0.6mm, satisfying the criterion of Eq. (33). The estimated refinement
zone length given by Eq. (35) is therefore adequate.

5.1.2. A-FNM modelling for DCB mode-I delamination
A-FNM is applied to simulate the DCB mode I delamination propagation. Based on the previous discussions, the refinement zone

length is set to be 2mm and the tolerance for coarsening schemes is prescribed as 5%, i.e.:

≡l 2 mmrf (36)

≡ζ 5% (37)

Table 1
Material properties used in Section 5 [6,20,39].

E11 (GPa) E22/E33 (GPa) G12/G13 (GPa) G23 (GPa) v12/v13 (-) GIc (N/mm) GIIc (N/mm) σmax/τmax (Mpa) η (–)

DCB 135.3 9 5.2 3.08 0.24 0.28 – 57 –
ENF 135.3 135.3 – – 0.25 – 4 57 –
MMB 135.3 9 5.2 3.08 0.24 4 4 57 2
OHT 161 11.4 5.17 3.08 0.32 0.29 0.63 40/50 2
DM 161 11.38 5.17 3.98 0.32 0.21 0.77 60/90 2.1
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Fig. 10. Load-displacement curves for DCB test with different CE mesh sizes.
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(a) Without refinement:

(b) Global refinement:

(c) A-FNM: Initial refinement zone

Moving refinement zone

Fig. 12. Meshes for traditional FEM and A-FNM models: (a) FEM model without refinement (1mm mesh); (b) FEM model with global refinement (0.2 mmmesh); (c) A-
FNM model with moving refinement.
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Fig. 13. Delamination evolution predicted by traditional FEM and A-FNM models: (a) uniform 1mm coarse FEM mesh; (b) uniform 0.2mm fine FEM mesh; (c) A-FNM
1–0.2mm mesh with 2mm refinement zone.
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Fig. 14. Loading curves obtained from traditional FEM models and A-FNM models.
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Table 2
DCB: computational cost for different models (CPU time, X5690@3.47 GHz).

Mesh size (mm) 1 0.2 A-FNM 1-0.2 A-FNM 3-0.2
Computational time (s) 110.8 640.58 368.82 336.71
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Fig. 15. DCB: Sensitivity to length of refinement zone.

Table 3
DCB: computational times for A-FNM with different lrf (CPU time, X5690@3.47 GHz).

lrf (mm) 1 2 3 4 5
Computational time (s) 209.82 368.82 380.88 384.96 412.23
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h
P, 
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Kinematic constraints Applied displacement
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L L
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Fig. 16. Setup and loading conditions for: (a) ENF test; (b) MMB test.
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The results of three modelling strategies are compared:

• FEM with global coarse 1mm mesh (Fig. 12a);

• FEM with global refined 0.2mm mesh (Fig. 12b) (Benchmark case);

• A-FNM with adaptive 1–0.2 mm mesh (Fig. 12c).

Here, “adaptive 1–0.2mm mesh” means that outside the refined region, the size of elements is 1 mm (master and coarsened
elements), while within the refinement zone, 0.2mm sub elements are used.

The results obtained from both traditional FEM and the proposed A-FNM are presented in Figs. 13 and 14. The benchmark FEM
model with 0.2mm mesh provides accurate results, as expected. However, the globally 1mm mesh is too coarse to correctly capture
the onset and propagation of the delamination. On the other hand, applying the A-FNM to the coarse mesh results in acceptable
accuracy: both the global load-displacement response and delamination propagation are correctly predicted. An additional case with
adaptive 3–0.2 mm mesh also produced acceptable results; in this case, the initial mesh is 3mm and 15 sub-CEs are allocated in the
refined configurations to meet the 0.2mm size requirement (i.e., =n 15CE in Fig. 3).

The computational cost for each modelling scheme is shown in Table 2. As can be expected, globally fine mesh is capable of
accurate prediction but incurs a large computational time. In contrast, A-FNM results in saving of the computational time by up to
47%.

5.1.3. Sensitivity to refinement zone length
Next, the sensitivity of the A-FNM to the length of refinement zone is studied in Fig. 15.
As shown in Fig. 15, =l 1 mmrf is not sufficient for accurate solution. lrf equal to or larger than 2mm are required but with

increased computational cost (Table 3). With an appropriate choice of lrf , estimated through Eq. (11), accurate and efficient mod-
elling by A-FNM is possible.
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Fig. 17. Loading curves for: (a) ENF model; (b) MMB model.

Table 4
Computational time for ENF and MMB models (CPU time, X5690@3.47 GHz).

ENF Mesh size (mm) 5 1 A-FNM 5-1
Computational time (s) 23.2 29.09 24.47

MMB Mesh size (mm) 3 1 A-FNM 3-1
Computational time (s) 16.99 45.92 19.89

100mm

30
m

m

10mmx

y

Thickness: 1mm

Fig. 18. OHT test: set-up and loading conditions.
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5.2. End notch flexure (ENF) and mixed-mode bending (MMB) tests

The ENF (mode II) and MMB (mixed mode) tests in [7] are modelled in this subsection. Similar in-plane geometries as the DCB
case are adopted for the ENF and MMB tests: length 2L=100mm, thickness h=3mm, width 1mm and initial crack length
a=30mm (Fig. 16). For the MMB test, the prescribed displacement is applied at the right end of the rigid lever (with c= 41.5mm).
The material properties shown in Table 1 are used.

Since the mode II fracture toughness is higher than the mode I toughness, larger elements may be employed in the analysis based
on the minimum size requirement predicted by Eq. (6). The force-displacement responses are compared with the reference and
analytical results from [7] (Fig. 17). Models with coarse meshes tend to over predict the strength; however, by employing the A-FNM,
the accuracy of the predictions is improved and close agreement with reference results is obtained.

Although the required computational time of ENF and MMB simulations is much less than the DCB test, time reduction is still
expected with the A-FNM modelling. As shown in Table 4, employing the A-FNM, 16% and 57% time saving is achieved for the ENF
and MMB tests, respectively.

5.3. Open-hole tension (OHT) of a unidirectional composite plate

The OHT of a unidirectional composite plate is analyzed here. The dimensions of the specimen are shown in Fig. 18, with the left
edge constrained and a prescribed uniaxial displacement imposed on the right edge. All the plies are oriented at 0°, in the direction of
the applied load. Again, material properties used in the model are given in Table 1.

Three structured meshes are used: 1. The benchmark is a very fine mesh with elements near the hole about 0.25mm in size and
those further from the hole about 0.5 mm (Fig. 19a); 2. Coarse mesh where the elements around the hole are about 1mm and those
away from the hole are about 2mm (Fig. 19b); and 3. A-FNM with coarse initial mesh, with ≡n 4CE in the refined region (Fig. 19c, for
comparison with the fully refined model) and ≡l 6 mmrf based on material properties (Table 1).

The Tsai-Wu failure criterion is adopted to initiate the onset of matrix cracking [56] in the form of longitudinal splitting in the

(a)

(b)

(c)

-40 -20 0 20 40

Fig. 19. Comparison between different models at initiation stage: (a) refined model; (b) coarse model; (c) A-FNM model.
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fiber direction at hole edges (Fig. 19) driven by local shear stresses τxy. After initiation, the cracks continue to propagate along the
fiber direction (Fig. 20), in agreement with experimental observations [57,58]. At both initiation and propagation stages, the coarse
mesh model over predicts the high stress region around the crack fronts. However, with local refinement defined ahead of the crack
tip, the A-FNM model provides stress distributions comparable to those given by the refined model. To further demonstrate the
performance of the A-FNM, a random unstructured mesh is applied in the analysis. As shown in Fig. 21, similar observations are
obtained and the stress profile is effectively captured in the moving refinement zone.

According to the loading responses obtained from both structured and unstructured meshes (Fig. 22), the A-FNM models correctly
predict the splitting initiation as well as the subsequent damage process, which is in close agreement with the results of the
benchmark refined models. However, the coarse mesh models significantly over-estimate the load at onset of splitting. As shown in
Fig. 23, computational time saving of over 80% is achieved, if the proposed A-FNM is employed (81.4% and 82.5% for structured and
unstructured meshes, respectively).

5.4. Delamination migration (DM) of cross-ply composite laminates

The proposed A-FNM is employed to model DM of cross-ply laminates [6,59]. The test setup is shown in Fig. 24a. Pre-crack is
inserted in the specimen between the 0° and 90° plies and it may migrate to the upper interface through a matrix crack developed in
the blocked 90° laminae. The layup and geometries adopted in the FE model is shown in Fig. 24b, and only the middle ply-block
( T[0/90/0 /90 / /0/90 ]3 4 4 ) is modelled by A-FNM elements. With clamping force =F 1700 NC imposed at two ends and rigid contact
(friction coefficient =μ 0.23) defined between the specimen and the clamps, prescribed displacement is applied on the top surface of
the specimen [6].

From the mesh refinement test, while models with 1mm mesh over-predict the structural strength by about 100%, 0.2mm mesh
leads to converged results. In this case, models with globally fine 0.2mm mesh are set as benchmarks and A-FNM is performed on the
overall 1 mm mesh (with ≡n 5CE and ≡l 3 mmrf ). The comparisons between different models are given in the following.

(a)

(b)

(c)

-40 -20 0 20 40

Fig. 20. Comparison between different models at propagation of longitudinal splits: (a) refined model; (b) coarse model; (c) A-FNM model.
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Fig. 21. Comparison between different models with unstructured meshes at initiation (left column) and propagation stages (right column): (a) refined model; (b)
coarse model; (c) A-FNM model.
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5.4.1. Loading responses and migration locations
With load offsets (L a/ 0) ranging from 1.0 to 1.3, different load-displacement responses are obtained (Fig. 25). Although the

models with 1mm mesh fails to give correct predictions, the accuracy of modelling is substantially enhanced by applying the
proposed A-FNM and consistent results are achieved compared to the benchmarks and experiments [6,59].

As has been reported in [6], similar failure events are observed in both fully refined and A-FNM models: after propagating at the
lower interface for a certain distance, the delamination migrates and progresses along the upper interface. For the case =L a0,
unstable delamination is predicted to occur right after the maximum load, resulting in the first load-drop (Fig. 25a). However, when
the delamination starts to migrate via crack kinking in the 90° plies, further loading is required to propagate the matrix crack, leading
to the increase of the external load during the migration process. Once the delamination fully relocates onto the new interface, the
second load-drop is experienced, representing unstable delamination growth along the upper interface. In general, the predicted
failure events agree well with observations from experiments [6,59].

However, different damage sequences are observed for cases =L a1.1 0 to =L a1.3 0 (Fig. 25b–d). After the peak load, the stable
delamination along the lower interface is firstly experienced, followed by unstable propagation once the crack front passes the
loading position. The load-drop is expected, during which the migration occurs.

The predicted migration locations, ΔM , further demonstrate the accuracy of the A-FNM modelling (Fig. 26). It is worth noting that
all the migration locations predicted by the A-FNM models are within the experimental scatters.

5.4.2. Adaptive modelling and the efficiency
Fig. 27 shows the predicted failure patterns during the overall damage process. The local refinement moves with the advancing

crack front, and after delamination migration, it relocates onto the new interface. It is shown in Fig. 27 that stress concentration
ahead of the crack tip is accurately captured within the local refinement, thus ensuring the correctness of the damage prediction.

The computational cost for both fully refined and A-FNM models is given in Fig. 28. Compared to the fully refined models, about
74% of the computational time is saved if the A-FNM is adopted.

6. Conclusion

This paper presents a novel and efficient adaptive technique based on the floating node method for modelling coupled delami-
nation and matrix cracking failure in laminated composite materials. The proposed adaptive floating node method (A-FNM) is able to
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mitigate excessive mesh size requirements, thus significantly reducing computational cost.
The designed A-FNM element is capable of assuming several element configurations: the master element, refined element and

coarsened element, depending on the propagation and proximity of the crack front. A refinement zone ahead of the crack tip is
defined, wherein the elements should be sufficiently fine to accurately model composite failure process. When the crack front has
propagated past the refinement zone, the mesh in the crack wake may be re-coarsened. An element coarsening criterion is proposed
based on a posteriori error estimator for the element strain energy. In this way, refinement and re-coarsening can be performed
efficiently.
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Fig. 27. A-FNM modelling of delamination migration: (a) delamination at the lower interface; (b) migration via matrix cracking; (c) delamination at the upper
interface; (d) experimental record of migration [59].
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Several numerical examples, including mode I, mode II, mixed-mode delamination test, the OHT of unidirectional composite plate
and delamination migration of cross-ply laminates, are provided to demonstrate the performance of A-FNM. The proposed A-FNM
offers several advantages over the existing numerical techniques:

• The need for very fine global mesh is alleviated and up to 82.5% of computational time in the case of OHT can be saved.

• Reduction on materials strength is avoided [12], and therefore stress distribution ahead of the crack tip is accurately captured.

• Compared to adaptive mesh refinement (AMR) method [34,35], successive mesh regenerations and mesh information mapping
are not required for A-FNM. Reductions in computational time and complexity of implementations can be achieved.
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