

Delft University of Technology

No Spring Chicken
Quantifying the Lifespan of Exploits in IoT Malware Using Static and Dynamic Analysis
Al Alsadi, Arwa Abdulkarim; Sameshima, Kaichi; Bleier, Jakob; Yoshioka, Katsunari; Lindorfer, Martina; Van
Eeten, Michel; Gañán, Carlos H.
DOI
10.1145/3488932.3517408
Publication date
2022
Document Version
Final published version
Published in
ASIA CCS 2022 - Proceedings of the 2022 ACM Asia Conference on Computer and Communications
Security

Citation (APA)
Al Alsadi, A. A., Sameshima, K., Bleier, J., Yoshioka, K., Lindorfer, M., Van Eeten, M., & Gañán, C. H.
(2022). No Spring Chicken: Quantifying the Lifespan of Exploits in IoT Malware Using Static and Dynamic
Analysis. In ASIA CCS 2022 - Proceedings of the 2022 ACM Asia Conference on Computer and
Communications Security (pp. 309-321). (ASIA CCS 2022 - Proceedings of the 2022 ACM Asia Conference
on Computer and Communications Security). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3488932.3517408
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3488932.3517408
https://doi.org/10.1145/3488932.3517408

No Spring Chicken:Quantifying the Lifespan of Exploits in IoT
Malware Using Static and Dynamic Analysis

Arwa Abdulkarim Al Alsadi
Delft University of Technology

Delft, The Netherlands
a.a.a.alalsadi@tudelft.nl

Kaichi Sameshima
Yokohama National University

Yokohama, Japan
sameshima-kaichi-mx@ynu.jp

Jakob Bleier
TU Wien

Vienna, Austria
jakob.bleier@tuwien.ac.at

Katsunari Yoshioka
Yokohama National University

Yokohama, Japan
yoshioka@ynu.ac.jp

Martina Lindorfer
TU Wien

Vienna, Austria
mlindorfer@iseclab.org

Michel van Eeten
Delft University of Technology

Delft, The Netherlands
M.J.G.vanEeten@tudelft.nl

Carlos H. Gañán
Delft University of Technology

Delft, The Netherlands
C.HernandezGanan@tudelft.nl

ABSTRACT

The Internet of things (IoT) is composed by a wide variety of soft-

ware and hardware components that inherently contain vulnerabil-

ities. Previous research has shown that it takes only a few minutes

from the moment an IoT device is connected to the Internet to the

first infection attempts. Still, we know little about the evolution of

exploit vectors: Which vulnerabilities are being targeted in the wild,

how has the functionality changed over time, and for how long are

vulnerabilities being targeted? Understanding these questions can

help in the secure development, and deployment of IoT networks.

We present the first longitudinal study of IoT malware exploits

by analyzing 17,720 samples collected from three different sources

from 2015 to 2020. Leveraging static and dynamic analysis, we

extract exploits from these binaries to then analyze them along

the following four dimensions: (1) evolution of infection vectors

over the years, (2) exploit lifespan, vulnerability age, and the time-

to-exploit of vulnerabilities, (3) functionality of exploits, and (4)

targeted IoT devices and manufacturers. Our descriptive analysis

uncovers several patterns: IoT malware keeps evolving, shifting

from simply leveraging brute force attacks to including dozens

of device-specific exploits. Once exploits are developed, they are

rarely abandoned. The most recent binaries still target (very) old

vulnerabilities. In some cases, new exploits are developed for a

vulnerability that has been known for years. We find that the mean

time-to-exploit after vulnerability disclosure is around 29 months,

much longer than for malware targeting other environments.

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASIA CCS ’22, May 30śJune 3, 2022, Nagasaki, Japan

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9140-5/22/05.
https://doi.org/10.1145/3488932.3517408

CCS CONCEPTS

· Security and privacy→Malware and its mitigation; Vulner-

ability scanners; · Computer systems → Embedded systems.

KEYWORDS

Static Analysis; Dynamic Analysis; Exploits; Vulnerabilities; Infec-

tion Vectors; Malware; IoT

ACM Reference Format:

Arwa Abdulkarim Al Alsadi, Kaichi Sameshima, Jakob Bleier, Katsunari

Yoshioka, Martina Lindorfer, Michel van Eeten, and Carlos H. Gañán. 2022.

No Spring Chicken: Quantifying the Lifespan of Exploits in IoT Malware

Using Static and Dynamic Analysis. In Proceedings of the 2022 ACM Asia

Conference on Computer and Communications Security (ASIA CCS ’22), May

30śJune 3, 2022, Nagasaki, Japan. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3488932.3517408

1 INTRODUCTION

The widespread deployment of Internet-of-Things (IoT) devices,

such as IP cameras and smart home appliances, bring us new ser-

vices but also provides new resources for attackers to compromise.

Indeed, devices have been infected at scale [4]. Attackers rely on

exploits as infection vectors for IoT [3]Ðcontrary to attacks on desk-

top and mobile devices, which have increasingly included vectors

based on social engineering and user interaction.

While our knowledge has increased about IoT malware families

and their capabilities [11, 61], we know much less about the attack-

ers behavior in terms of the vulnerabilities they target with their

exploit code. Just as the overall number of newly discovered vul-

nerabilities keeps growing [41], so does the number of IoT-related

vulnerabilities: from a dozen or so reported in 2010 to more than

500 in 2019 [6]. Which of these vulnerabilities are targeted? Do the

authors of different malware families go after the same vulnera-

bilities? How soon do they target a new vulnerability after it has

been published? For how long do they keep focusing on a specific

vulnerability? We have insights into these behaviors for desktops

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

309

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3488932.3517408
https://doi.org/10.1145/3488932.3517408

and servers, where attackers predominantly target the last-but-one

version of the software after a patch is released [1, 51, 58].

This pattern is unlikely to hold for IoT, however, since patching

is more spotty and difficult in this ecosystem [55].

Earlier research has investigated exploit code used by specific

malware families at specific times [4, 14, 24], but we lack a sys-

tematic understanding of how vulnerabilities are targeted over

time across the IoT malware landscape. The closest related work

is a concurrent study by Alrawi et al. [3]. The study conducted a

wide-ranging analysis of IoT malware binaries collected in 2019

and identified 25 exploits observed in that year via static analysis.

We end up confirming some of the results of this paper. We also

go beyond it by directly observing the longitudinal evolution of

exploits across five years and across malware families, as well as

the timeline of the targeted vulnerabilities. We identify 63 exploits

and track them over time, as well as the 68 vulnerabilities they are

targeting. This allows us to present previously unobserved patterns

in exploit lifetime, vulnerability lifetime, and time-to-exploit.

We base our analysis on IoT malware binaries from three dif-

ferent sources spanning five years (2015ś2020). We analyzed 5,855

samples from a hybrid low-high interaction honeypot [43], collected

between September 2018śAugust 2020, and 2,292 samples from the

URLhaus malware repository [56], collected between JulyśOctober

2020. We clustered all binaries with AVClass2 [49] and Vhash [59]

based on their binary similarity. For the URLhaus and honeypot

datasets, we identified 156 clusters across 9 different malware fam-

ilies. We conducted dynamic analysis on both datasets to extract

exploits. We also manually reverse engineered one sample for each

cluster to extract further exploit functions. For all discovered ex-

ploits, we created a signature, which we could then trace further

back in time using the Genealogy dataset, which was collected from

VirusTotal [50] between 2015ś2018 [13]. This allowed us to analyze

the occurrence of these exploits in 17 additional malware families,

beyond the 9 families from the URLhaus and honeypot datasets.

By mapping these exploits to vulnerabilities with and without

published Common Vulnerabilities and Exposures (CVE) entries,

we observe the evolution of infection vectors over the past five

years. Whereas IoT malware started out exclusively focusing on

brute-forcing credentials, infection vectors have since greatly diver-

sified. Beyond brute forcing, we have identified 63 unique exploits

across 26 families that target 68 vulnerabilities associated with 49

different manufacturers. The targeted vulnerabilities include re-

cently discovered ones as well older ones, going back up to 12 years.

Many vulnerabilities keep being targeted by new binaries for years

on end, suggesting that patching is not rendering these attacks

ineffective. In summary, our main contributions are:

• We present the first longitudinal study on IoT malware quan-

tifying the exploits, targeted vulnerabilities and devices span-

ning 5 years.We find that attackers rarely abandon an exploit

over time and that the number of targeted vulnerabilities

has doubled every year since 2017.

• We create 63 unique signatures for the HTTP requests of

each exploit and make these available to the community to

facilitate detection.

Packed?

Matched vulnerability

Encoded? Drop

Exploits Extraction Using Static Analysis Exploits Extraction Using Dynamic Analysis

4- Data Extraction

Genealogy

Exploits

Exploits extraction using exploit search

Binary unpacked using

UPX, Hexeditor

Binary unpacked using

Ghidra, xorsearch

Yes

Yes

Create

exploit

fingerprint

Exploits

search

Match

vulnerability using

CVEs-NVD,

exploits-db,..etc

Analyzing

binary

Sample

No

Sample

Execute in

sandbox

Packet capture

Include

exploit?

Yes

No

Extract Exploits

using Ghidra,

 Strings

No

Figure 1: Analysis pipeline. We extract exploits using static

and dynamic analysis from samples collected from 2018 to

2020 to create signatures, which we then match against a

Genealogy dataset of unpacked samples from 2015 to 2018.

• The time between a vulnerability publication and the first

occurrence of an exploit in a binary is 29 months on average,

though this is skewed by some very old vulnerabilities.

• In terms of exploit lifespan, we see that on average exploits

are used for 23 months, a number that is increasing as most

exploits were still in use in the latest binaries.

We make the datasets, network artifacts, and developed signatures

available at: https://doi.org/10.4121/19248725

2 METHODOLOGY

Our goal is to track the evolution of exploit code in IoT malware

to gain insights into which vulnerabilities and devices they target

over time. Identifying exploit code can be achieved via static and

dynamic analysis of binaries. Automated static analysis is prone to

code obfuscation and packing,

while manual static analysisÐi.e., reverse engineeringÐis re-

source intensive, yet more complete and reliable. In contrast, auto-

mated dynamic analysis can deal with packing and is more scalable,

but comes with the drawback of limitations in the coverage of ex-

ploits. We combine manual static analysis and automated dynamic

analysis to leverage the strengths of each approach. We then supple-

ment these results by a targeted exploit search in a binary repository

that covers three years before our binaries were collected.

We present a high-level overview of our methodology in Figure 1.

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

310

Table 1: Number of collected samples per dataset, collection time period, and included malware families.

Dataset # Binaries # Shell Scripts Malware Families (Avclass2) # Vhash # Singletons Collection Period

URLhaus 2,292 6 Mirai, Gafgyt, Tsunami, Xorddos, Hajime, Mozi 108 6 Jul 2020 - Oct 2020

Honeypot 5,855 2,815 Mirai, Gafgyt, Tsunami, Xorddos, Hajime, Mozi, Berbew, Generica, Silex 107 59 Sep 2018 - Aug 2020

Genealogy 6,752 0 Mirai, Gafgyt, Tsunami, Hajime, Generica, Casur, Ddostf, Dnsamp, Dofloo, Gixec, Goram, Iotreaper,
Luabot, Minerd, Pnscan, Qysly, Rakos, Ramgo, Remaiten, Satori, Shishiga and Ztorg

277 144 Jan 2015 - Aug 2018

2.1 Data Collection

2.1.1 IoT Malware Binaries. We collect current samples from two

different sources (URLhaus and a honeypot) to create exploit signa-

tures, which we then match against an older dataset (Genealogy)

to cover an earlier period of time.

URLhaus: This repository collects URLs that are being used for

distributing malware [56]. We used this source to collect a dataset

of recent binaries as input for our dynamic and static analysis.

From July 2020 to October 2020, we retrieved a daily file containing

URLs of all captured binaries and other related information, such as

file type. Since we focus on IoT malware, we extracted URLs only

related to “Executable and Linkable Formatž (ELF) files. We ran

a daily script to download those files during the 4-month period.

In total, we downloaded 2,298 binaries for different architectures

including Renesas SH, Motorola 68000, SPARC, Intel 80386, ARM,

PowerPC, MIPS, ARC Cores Tangent-A5, and AMD x86-64. Note

that we include x86-based malware as previous work has shown

that this is present in IoT devices [37].

While 6 of the 2,298 files were actually shell scripts, we manually

verified that their functionality only included binary downloads

and no propagation techniques.

Honeypot: We obtained 5,855 MIPS binaries from September

2018 to August 2020 via IoTPOT [43]. IoTPOT is a combination of

low-interaction and high-interaction honeypot: the low-interaction

honeypot emulates different network services, such as Telnet, HTTP

front-ends, CPE WAN Management Protocol (CWMP), a backdoor

of Netis routers, and the remote access setup service of several

IP cameras. The high-interaction honeypot uses four bare-metal

vulnerable IoT devices (a router, an IP camera, and twoWiFi storage

devices). The honeypot is connected to 130 IP addresses in Japan.

We also obtained a dataset of 2,815 files captured by IoTPOT

whose file type were not ELF binaries. We executed them as shell

scripts in a closed environment and found that 2,608 had the func-

tionality of downloaders using wget, curl, etc. The remaining 207

files contained 10 Python scripts, two Perl scripts, and the remain-

ing 195 files were recognized as ASCII texts but not script files.

We then manually inspected these 10 Python and two Perl scripts

and executed them in a sandbox and found that only one Python

script includes exploits. Thus, we believe it is reasonable to focus

the remainder of our analysis on the binary samples.

Genealogy:We supplemented the first two datasets with sam-

ples collected by a research project studying the genealogy of IoT

malware [12, 13]. The dataset consists of IoT binaries submitted

to VirusTotal [50] between January 2015 and August 2018. The au-

thors selected binaries with file type ELF that had been detected by

at least five anti-virus (AV) vendors, amounting to a total number

of 93,652. For their study, they focus on a subset of 6,752 binaries,

which they unpacked with their analysis pipeline. For our analysis

we also use this set of unpacked binaries.

2.1.2 IoT Device Vulnerabilities. Once we identified exploits, we

used the following sources to collect information about the targeted

vulnerabilities:

National Vulnerability Database (NVD [35]): This database

publishes Common Vulnerabilities and Exposures (CVEs) [54], in-

cluding their identification number, a description, and public refer-

ence(s) for each vulnerability. Only 47 out of the 68 vulnerabilities

(67.14%) that we identified have an associated CVE ID. This is a

general issue also reported by VulnDB [60], which identified over

83,472 vulnerabilities that never received a CVE ID. We further

found one exploit mapped to two CVEs from different years. We

also encountered the opposite: two exploits targeting same CVE.

Thus, an exploit can be linked to one or multiple vulnerabilities.

Exploit-DB [19]: We used this database of public exploit code

and corresponding vulnerabilities as a source for exploits that were

not assigned to any CVE.

Other public reports: For 15 exploits, there was no information

in the above sources. We used keywords (e.g., strings found in

HTTP headers, credentials, function names) to locate reports from

AV vendors and researchers describing those vulnerabilities.

2.2 Malware Classification and Sampling

For all the binaries across the three datasets we used VirusTotal [50]

to collect metadata about these files, such as the time a sample

was first submitted to VirusTotal, its architecture, and AV labels.

We further used AVClass2 [49] to assign malware family labels

based on the majority of votes by the individual AV labels. Table 1

summarizes the results. If a sample does not have enough votes to

assign it to a specific malware family, we label it as a Singleton [48].

Since manual reverse engineering is not feasible for thousands

of binaries, we turned to VirusTotal in-house clustering based on

Vhash [59]. It is a fuzzy hashing algorithm that clusters files based

on their structural similarity.

In total, we obtained 108 different clusters for the URLhaus bi-

naries and 107 clusters for the honeypot binaries. For the manual

reverse engineering, we randomly selected one binary from each

cluster. The binaries categorized as Singletons all have a unique

Vhash, i.e., were assigned their own cluster. Therefore, we included

all of them in our subset. Since binaries in each cluster are highly

similar, we assume they also share the same exploit code. To double

check this assumption, we randomly choose and reversed engi-

neered two additional samples from five clusters. We found that

all three binaries from each cluster indeed shared the same exploit

code.

2.3 Exploit Extraction and Signature Matching

We perform dynamic analysis on the whole URLhaus and honeypot

datasets, manual static analysis on a set of binaries sampled from

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

311

all clusters, and finally generate and match signatures against the

Genealogy dataset.

2.3.1 Exploit Extraction using Dynamic Analysis. We executed each

of the 2,298 binaries from URLhaus and 5,855 MIPS binaries from

the honeypot in a malware sandbox. The sandbox is constructed as

a virtual machine running Linux Debian for the MIPS, ARM, and

x86-64 architectures using VirtualBox. we execute each binary for

five minutes in an isolated network environment, except for DNS

resolutions. This isolated environment helps us distinguish between

port scans and C&C communications, especially when they are on

the same port, as malware keeps trying to connect the C&C server

in such an environment while port scans on the same host are not

usually repeated. Moreover, we determine that a destination port

is scanned if the number of destination IP addresses accessed by

the binary on the port exceeds our heuristic threshold of 100. After

the cleanup of the sandbox, we execute the binary again for five

minutes with dummy servers running on the scanned ports. All

connection attempts on the scanned port are then redirected to the

dummy servers, implemented with PyNetSim, a network simulator

for malware analysis. The current version of the dummy servers

only establishes TCP sessions and does not respond any further.

While this is a clear limitation, we find large portion of the binaries

do start scanning and exploiting vulnerabilities right after their

execution without interacting with C&C servers or their targets.

During the dynamic analysis, 109 binaries from URLhaus and 4,700

binaries from the honeypot dataset were successfully executed and

started exploiting.

We then examine the obtained attack payloads to check if they

include any exploits. We manually extract the exploits as a charac-

teristic sub-string of the payloadsÐfor example, the target resource

of HTTP GET and HTTP POST requests.

2.3.2 Exploit Extraction using Static Analysis. We conducted the

manual static analysis on the subset of 156 binaries following the

steps shown on the left side of Figure 1. The first step is to unpack

the binary, if necessary. Malware authors use certain tactics to avoid

detection and analysis. One of the most used methods is malware

packing. A packer can compress, encrypt and obfuscate a program.

Authors can also manipulate headers to corrupt them [31]. We

run the binary in DIE [25] to check whether it is packed and, if

so, by which packer. If the packer can be identified, we can use

it to unpack the binary. For our samples, UPX [42] was the only

packer we encountered. We could unpack 12 binaries with a simple

’upx -d filename’. One sample from theMozi family used custom

UPX packing to hamper automatic unpacking. Customization to

UPX can range from simply patching one byte, to more thorough

modifications [32, 42]: modifying the UPX! magic headers, ELF

magic bytes, the copyright string, section header names, and adding

extra junk bytes throughout the binary are common. We unpack

binaries packed with UPX manually by using a hexeditor [27] to

fix the headers.

Next, we checked whether a binary is obfuscated or further

encrypted by using ’strings -a’ [53] to check whether we can

read the binary in plain text. If this is the case, we start then to

read the whole binary and extract hard-coded credentials as well

as exploits in HTTP requests. If this was not possible, we used

Ghidra [39] to find the encryption key of 15 binaries and use one

of its built-in scripts to decrypt them. If Ghidra could not locate

the key, we identified the key ourselves and fed it to the built-in

script for the decryption. We then either continued the analysis

and exploits extraction in Ghidra or with strings. Some binaries

still contained gibberish text even after the decryption. Therefore,

we used XORSearch in those cases to make sure we extracted all

the exploits. From our results from other binaries, we knew which

keywords to use to help extract the exploits. For instance, we used

"http", "GET /", "POST /" and other combinations from the HTTP

syntax, as well as hard-coded credentials. If XORSearch found a

decoded match, it returned the match with the XOR key used to

encode it. Decoding the whole file by using this key allowed us

investigate the binary further to find more hidden exploits.

2.3.3 Exploit Signature Generation and Matching. For every exploit

we also created an exploit signature as an ordering of strings that

can be used to uniquely identify an exploit. For each exploit inHTTP

request format, we extracted the header. We used the request target,

URI (Uniform Resource Identifier) or absolute path, following the

GET or POST method in the request line. We used the standard

URI syntax to generate signatures. The first box in Figure 2 shows

the generic URI syntax that consists of a sequence of components:

scheme, authority, path, query and fragment. The most common

form is the origin form where an absolute path is followed by a ’?’

and then a query string. The bottom three boxes in Figure 2 show an

example of howwe generated an exploit signature.We extracted the

HTTP request of an exploit and identified the URI syntax of it. Based

on the information we found in public databasesÐe.g., Exploit DBÐ

we confirmed the structure of the exploit signature. For example, in

the third box, the parameter that comes after the path and the query

was ’sourceUri’ that was triggering a command, then followed

by the payload. The colored part might be adapted by attackers, so

this could change the signature, while the remainder is stable.

While we mainly focus on exploits, we also looked for brute

forcing capabilities as an infection vector. To this end, we used

hard-coded credentials to create one signature for all binaries that

rely on brute forcing. We used these signatures to extend the time-

line of the exploits by tracing back their presence in the binaries

from the Genealogy dataset. These binaries were collected between

2015ś2018, so in the three years before the samples collected from

URLhaus and the honeypot. We implemented a script to automate

the exploit search based on matching the 63 exploit signatures be-

sides binaries that rely on brute forcing credentials with the 6,752

unpacked binaries.

3 EXPLOIT LANDSCAPE

We now present the findings on exploits and vulnerabilities in

IoT malware. Table 3 shows the findings across the three differ-

ent datasets. Overall, we found 64 infection vectors: brute forcing

hard-coded credentials, as well as 63 unique exploits that target

68 vulnerabilities. The occurrence of each vulnerability for each

dataset is presented in the rightmost column in Table 3. We iden-

tify exploits, infection vectors, targeted vulnerabilities and device

manufacturers.

Two groups of URLhaus binaries did not contain exploits and

are not included in the table. The first group of 27 out of 108 (25%)

binaries only included hard-coded credentials for brute forcing. A

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

312

Figure 2: Example of a signature we generated for an exploit

against CVE-2018-17173 [20, 40].

second group of 11 binaries (10%) did not include any infection vec-

tor in the code and only contained functions to receive commands

from a command-and-control (C2) server and execute attacks. Prior

work [29] has found that these commands implement attack vectors

such as: UDP flood, SYN flood, ACK flood, TCP flood, UDP flood,

VSE flood, DNS flood, GRE IP flood, GRE Ethernet flood and HTTP

flood. These binaries belonged to Tsunami, XORDDoS, Hajime or

were Singletons. For the remaining 70 binaries (65%), we found they

contained 256 exploits targeting web vulnerabilitiesÐi.e., exploits

based on HTTP GET / and POST / requests.

In Table 3, we categorized the vulnerabilities into six groups,

based on the vulnerability description in NVD or Exploit-DB: Re-

mote Code Execution (RCE), Backdoor, Command Injection (CMDi),

Buffer Overflow,Web Application Firewall (WAF) Bypass and Brute

Force. More than half of the total vulnerabilities (55.88%) used Re-

mote Code Execution (RCE) as the infection vector. RCE is also the

most frequently targeted vulnerability type in both the URLhaus

and the honeypot dataset, (55.9%) and (53.65%) respectively. Among

the shared vulnerabilities across all the three datasets, CMDi was

the most frequently used infection vector (56.25%).

Mirai used to infect vulnerable devices by using brute force,

as was visible in its leaked source code [22] in 2016. More recent

binaries have expanded the range of vectors: attackers now scan

a number of different ports to exploit different protocols such as:

Telnet, Android Debug Bridge (ADB), HTTP. Table 2 shows the

Table 2: Observation port scanning in the honeypot dataset

during dynamic analysis.

Infection Vector Protocol Port

Backdoor Telnet 443, 9530

Brute Force Telnet 2223, 23, 23023, 2323, 2332, 26,

5885, 6000, 60000, 9001

Android Debug Bridge ADB 5555

Shell CMDi

Buffer Overflow HTTP 443

Command Injection HTTP 80, 88, 8081, 8080, 60001, 8000,

5501, 8082, 81, 8089, 8443, 5500,

49152, 443

Remote Code Execution HTTP 37215, 1723, 55555, 443, 7547,

8080, 52869, 1024, 1234, 50000,

6666, 8001, 8081, 9080, 80, 8181,

9090, 161, 9000, 5555, 7574, 81

protocols and ports we observed during the dynamic analysis in

respect to each infection vector.

The second column in Table 3 shows the 68 unique vulnerabilities.

Those that share the same exploit code or are targeted by more

than one exploit are marked with ’*’. These are the vulnerabilities

we extracted from the URLhaus and the honeypot. From the 69

infection vectors (including brute force), 31 are shared between both

URLhaus and the Honeypot. The remaining 38 are 27 vulnerabilities

found in only the URLhaus dataset and 11 vulnerabilities found

in the Honeypot. When matching our exploit signatures against

the older Genealogy dataset, we found 16 vulnerabilities matched

by 17 exploits signatures. All of them were also present in the

URLhaus (i.e., the most recent) dataset except for one: we only

found the “SonicWall GMS-XMLRPC CMDiž in the Honeypot and

the Genealogy datasets (see the last two columns in Table 3).

Not all vulnerabilities are recent ones: The third column in Ta-

ble 3 shows the date each vulnerability was published. The oldest

targeted vulnerability, CVE-2009-0545, was published in 2009 and

dates back 12 years. However, the same exploit code was used to

target another vulnerability, CVE-2019-12725, that was published

ten years after that, in 2019. On the other hand, the most recent

vulnerability, CVE-2020-17496, was published in August 2020 and

exploited a month after that.

Mirai is the most versatile family: it targets all vulnerabilities ex-

cept for three. This is consistent with the fact that Mirai contained

the highest number of binary clusters, so it basically a family of fam-

ilies. The other malware families contained a subset of the exploits

present in the Mirai family. For instance, in the URLhaus dataset,

all of its vulnerabilities were present in Mirai samples except for

one: CVE-2016-4429, which is a buffer overflow vulnerability in

Qualcomm components that was only targeted by one binary cate-

gorized as a singleton (see rightmost column in Table 3).

Not only is Mirai the most versatile, it is also leading the way.

Figure 3 shows a timeline of the occurrence of vulnerabilities and

exploits in four malware families as well as singletons. Out of 68

vulnerabilities, 64 were observed first in Mirai samples before they

were seen in other families. We discuss this figure in more detail in

the next section. Mirai was also the only malware family with the

most exploits per binary: up to 35 exploits, the maximum number

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

313

Table 3: Summary of infection vectors, vulnerabilities and devices across datasets (U=URLhaus, H=Honeypot, G=Genealogy). We

identified 69 vectors (68 exploits + brute forcing default/weak credentials). indicates that we found samples exploiting a

vulnerability across all three datasets, G# that we only found samples in two out of three datasets, and # that we only found

samples in one dataset, demonstrating the value of samples from different vantage points and across time.

Type Vulnerability Vuln. Exploit Families Manufacturer Target Device U H G # of

Published Published Samples

RCE CVE-2009-0545; CVE-2019-12725 * 2009-02-12;
2019-06-04

2009-02-09 Mirai Zeroshell Zeroshell Linux Distribution # 2

Netgear DGN1000 RCE 2013-06-05 2013-06-05 Mirai, Mozi, Gafgyt Netgear DGN1000 Netgear routers 107

Linksys E-series RCE 2013-07-02 2014-02-16 Mirai, Gafgyt Cisco Linksys routers E-series G#G# 150

Edimax EW-7438RPn-v3 RCE 2015-07-17 2015-07-17 Mirai Edimax EW-7438RPn-v3 # 4

Multi-vendor CCTV/DVR RCE 2016-03-23 2016-03-23 Mirai, Mozi, Gafgyt Multi-vendor Multi-vendor CCTV/DVR 79

NUUO NVRmini RCE 2016-08-06 2016-08-06 Mirai NUUO NUUO NVR G#G# 4

Xfinity Gateway RCE 2016-12-02 2016-12-02 Mirai Xfinit Xfinity Gateway # 3

CVE-2017-(8221-8225) * 2017-04-25 2017-03-08 Mirai GoAhead GoAhead IPcam # 3

EnGenius IoT GCS1.4.11 RCE 2017-06-04 2017-06-04 Mirai EnGenius EnGenius IoT Cloud Service G#G# 3

CVE-2017-14135 2017-09-04 2017-07-03 Mirai Dream Property Opendreambox # 1

CVE-2017-14127; CVE-2019-18396 * 2017-09-04;
2019-10-24

2019-11-13 Mirai Technicolor Technicolor TD5336 G#G# 5

Vacron NVR RCE 2017-10-22 2017-10-08 Mirai, Mozi Vacron Vacron NVR devices 26

Shenzhen_TVT RCE 2018-04-03 2018-04-09 Mirai Shenzhen TVT Shenzhen TVT DVR/NVR/IPC # 3

CVE-2018-10561; CVE-2018-10562 * 2018-04-30 2018-05-03 Mirai, Mozi, Gafgyt Dasan GPON Home Routers 259

CVE-2018-11510 2018-05-28 2018-08-15 Mirai ASUSTOR ASUSTOR NAS # 1

HomeMatic Zentrale CCU2 RCE 2018-07-18 2018-07-18 Mirai HomeMatic HomeMatic Zentrale CCU2 # 3

CVE-2018-15887 2018-08-26 2018-08-02 Gafgyt ASUS ASUS DSL-N12E_C1 # 6

CVE-2018-17173 2018-09-18 2019-05-06 Mirai LG LG Supersign EZ CMS TV G#G# 9

CVE-2018-20062; CVE-2019-9082 * 2018-12-11;
2019-02-24

2019-01-14;
2020-04-16

Mirai, Singletons ThinkPHP v-5.0.23/5.1.31 Server G#G# 21

CVE-2019-2725 2018-12-14 2019-05-08 Mirai Oracle Oracle WebLogic Server # 1

CVE-2019-7276 2019-01-31 2019-11-12 Mirai Optergy Optergy 2.3.0a # 3

CVE-2019-10655 2019-03-30 2019-03-31 Mirai Grandstream GAC2500; GVC3202; GXV3275-40; GXP2200 * # 3

CVE-2018-20841 2019-06-11 2019-01-14 Mirai HooToo HT-TM05&HT-05 routers # 1

Sar2HTML 3.2.1 RCE 2019-08-02 2019-08-02 Mirai Sar2HTML Sar2html 3.2.1 # 3

CVE-2020-9054 2020-02-18 2020-02-24 Mirai Zyxel Zyxel NAS and Firewall G#G# 6

Netlink GPON Router 1.0.11 RCE 2020-03-18 2020-03-18 Mirai Netlink GPON Netlink GPON Router 1.0.11 # 58

Symantec SWG 5.0.2.8 RCE 2020-04-09 2020-04-09 Mirai Symantec Symantec Web Gateway 5.0.2.8 G#G# 34

Netgear R7000 RCE 2020-06-15 2020-06-15 Mirai Netgea Netgear R7000 # 7

CVE-2019-16759; CVE-2020-17496 * 2019-09-24;
2020-08-12

2020-08-12 Mirai vBulletin 5.x Servers using vBulletin 5.x # 2

Backdoor CVE-2014-2321 2014-03-10 2014-03-03 Tsunami ZTE ZTE F460 and F660 # 2

Xiaongmai-based DVR/NVR/IPcam 2020-02-04 2020-02-04 Mirai, Gafgyt Multi-vendor DVR/NVR/IPcams # 31

CMDi CVE-2014-8361 * 2014-10-20 2015-06-01 Mirai, Mozi, Gafgyt D-Link D-Link Routers using Realtek SDK 272

CVE-2014-9094 2014-11-26 2014-07-13 Mirai WordPress WordPress Plugin DZS-VideoGallery G# G# 35

CVE-2015-2051 2015-02-23 2015-06-01 Mirai, Mozi, Gafgyt D-Link D-Link DIR-645 93

AVTECH IPCam/NVR/DVR CMDi 2016-10-11 2016-10-11 Mirai AVTECH AVTECH IPcam/NVR/DVR G#G# 69

CVE-2016-10372 2016-05-16 2016-11-08 Mirai, Mozi, Gafgyt Zyxel Eir D1000 Router (rebranded Zyxel) G#G# 78

CVE-2016-6277 2016-07-22 2017-03-13 Mirai, Mozi, Gafgyt Netgear Netgear R7000 and R6400 41

NUUO OS CMDi 2016-08-06 2016-08-06 Mirai NUUO NUUO NVRmini 2 3.0.8 # 3

MV Power Shell CMDi 2017-02-27 2017-02-27 Mirai, Mozi MV Power MVPower DVR TV-7104HE 1.8.4 G#G# 168

CVE-2017-6884 2017-03-14 2017-04-02 Mirai Zyxel EMG2926 Router G# G# 39

CVE-2017-18368 2019-05-02 2016-12-26 Mirai, Singletons, Gafgyt Zyxel Zyxel P660HN-T routers G#G# 77

CVE-2017-17215 2017-12-04 2017-12-25 Mirai, Mozi, Gafgyt, Singletons Huawei Huawei home routers HG532 921

CVE-2018-7841 2018-03-08 2019-05-14 Mirai U.motion U.motion software v.1.3.4 # 4

D-Link DSL-2750B OS CMDi 2018-05-25 2018-05-25 Mirai D-Link D-Link DSL-2750B 241

SonicWall GMS-XMLRPC CMDi 2018-08-01 2018-08-01 Mirai SonicWall SonicWall GMS G#G# 1

CVE-2018-19276 2018-11-14 2019-12-18 Mirai OpenMRS OpenMRS before 2.24.0 G#G# 5

CVE-2019-7256 2019-01-31 2019-11-12 Mirai Linear Linear eMarge E3 series # 1

CVE-2019-12489 2019-05-30 2019-11-13 Mirai Fastweb Fastweb Fastgate 0.00.81 # 3

CVE-2013-7471 2019-06-11 2013-09-17 Mirai, Mozi, Gafgyt D-Link D-Link DIR-645 29

CVE-2019-14931 2019-08-10 2019-08-13 Mirai Mitsubishi Mitsubishi smartRTU& INEA ME-RTU # 7

CVE-2020-1956 2019-12-02 2020-06-20 Mirai Apache Apache Kylin 2.3.0-2.6.5,3.0.1 # 4

CVE-2019-19824 2019-12-16 2015-07-16 Mirai TOTOLINK TOTOLINK Realtek SDK routers # 7

CVE-2020-5722 2020-01-06 2020-03-24 Mirai Grandstream Grandstream UCM6200 series G#G# 5

CVE-2020-7209 2020-01-16 2020-05-17 Mirai HP LinuxKI HP LinuxKI-v6.01 # 3

CVE-2020-10173 2020-03-05 2020-02-27 Mirai Comtrend Comtrend VR-3033 G#G# 5

CVE-2020-13786 2020-06-03 2020-06-12 Mirai D-Link D-Link DIR-865L Ax1.20B01 # 7

Buffer OF CVE-2016-4429 2016-05-02 2016-05-18 Singletons Qualcomm Qualcomm Server # 5

CVE-2019-7405 2019-02-05 2019-12-16 Mirai TP-Link TP-Link Archer C5-v4 routers # 4

WAF Bypass Cloudflare WAF Bypass 2017-04-04 2016-10-25 Mirai, Gafgyt CloudFlare CloudFlare WAF G# G# 37

Brute Force Dictionary Attack - - Mirai, Mozi, Singletons,
Tsunami, Gafgyt, xorddos

- - 5,631

Total 59 41 16

’*’ indicates that this entry consists of vulnerabilities that are targeted by the same exploit code or vice versa

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

314

Table 4: Number of time device types were targeted by bina-

ries, for each dataset, and in total.

Device Category URLhaus Honeypot Genealogy Total

Router 461 1,342 610 2,413

Home security 93 219 78 390

Web application 36 38 32 106

Web server 22 10 - 32

TV 7 2 - 9

NAS 27 27 - 54

Total 646 1,638 729 3,004

of exploits we observed in an single binary that was part of the

most recent samples from the URLhaus dataset (see Figure 4).

The only vulnerability that is exploited by all IoT malware fami-

lies and found across all the three datasets was CVE-2017-17215,

which targets Huawei HG532 home routers. In terms of targeted

manufacturers and devices, this vulnerability also had the highest

frequency across binaries, which is (somewhat) visible in Figure 3

from the density of dots, and in last column in Table 3. Routers

were the most favorable IoT device type for attackers to target over

the period of six years. As can be seen in Table 4, 2,413 (80%) of

targeted IoT devices were routers. In fact, this number is larger than

summing up all the other IoT device types together.

4 EXPLOIT LIFESPAN

The number of IoT vulnerabilities, together with the number of

exploits targeting these vulnerabilities, has been increasing over

the years. Following the methodology explained in Section 2.3,

we searched for matches for exploit signatures in the Genealogy

dataset (2015ś2018). Out of 64 exploit signatures, 17 signatures

(associated with 16 vulnerabilities) had a match in the Genealogy

dataset. Figure 3 illustrates one of the reasons for this limited pres-

ence of the exploits in older binaries: 32 (47%) of the vulnerabilities

were published after August 2018, the end of the collection period

of the Genealogy dataset. This still leaves 15 exploits targeting older

vulnerabilities absent from the Genealogy dataset. Assuming that

the Genealogy dataset is representative for that period, it would

mean that these older vulnerabilities were selected by authors of

more recent malware, years after they were first published. In total,

we found matches in 5,421 samples out of the 6,752 binaries (80%).

The lack of matches with the remaining 20% could reflect the use of

abandoned exploit code that is no longer present in later binaries,

but it is certainly also impacted by the number of packed and en-

coded samples in this dataset, as acknowledged by the researchers

who created the repository. We discuss this limitation in Section 6.

With the extended timeline from the Genealogy dataset, we

investigated the lifespan of the exploits, i.e., the time from when an

exploit was first seen until the last time it was observed. We also

investigate the time-to-exploit, i.e., the time that passes between the

publication of the vulnerability and the first observation of a binary

that contains exploit code for that vulnerability. For all binaries, we

collected the ‘first seen’ date from VirusTotal.

Table 5: Number of hits (occurrence), exploits, and vulnera-

bilities per year.

Year # Occurrences # Exploits # Vulnerabilities

2017 46 10 8

2018 727 15 15

2019 376 26 27

2020 1,855 58 63

Figure 3 visualizes the lifespan of malware exploit vectors by

mapping the observations of the exploit in binaries (colored dots)

and the publication dates of the underlying vulnerabilities (black

X) and exploit code (red circle). In some cases, e.g., CVE-2013-

7471, the date recorded in the CVE ID was years before the official

publish date: 2019-06-11. We noticed in four more CVEs (CVE-2020-

1956; CVE-2018-20841; CVE-2019-2725) that the publish date is

not consistent with the CVE ID. That might explain why in some

cases, the exploit publish date occurred well before the vulnerability

publish date. The total number of exploits that were published

before the official vulnerability disclosure date is 20, though in

most cases the dates were relatively close together, so this order

might reflect inaccuracies in the underlying data rather than the

true order of events.

Figure 3 also presents the evolution of malware families.

All binaries that were first seen in 2015ś2016 relied exclusively

on hard-coded credentials for brute forcing. In total, these were

4,091 out of the 5,421 binaries. This might have been reinforced by

the release of Mirai source code in November 2016 [22]. Mirai was

the first IoT botnet able to amass millions of IoT devices and thus

considered a leap in the IoT malware realm. Thus, since Mirai code

had relied solely on brute forcing hard-coded credentials back then,

the other variants and families appeared to follow suit. Since then,

brute forcing has remained present in binaries up until the most

recent data.

Figure 4 shows that, over time, the number of exploits per binary

went up, as viewed by the difference across the datasets. Most

binaries contain only one or two exploits, but from one dataset

to the next, the upper part of the curve shifts towards the right.

We found binaries in 2018 that had nine exploit signatures per

individual sample. In binaries captured late 2020, as part of the

URLhaus data, we found samples with up to 35 exploits, more

than three times the number found in 2018. This is relative to

the signatures we had, so it might undercount the exploits in the

Genealogy dataset. Still, we see a similar increase compared to the

honeypot binaries. Table 5 extends this picture by showing that not

only individual binaries include more exploits, but that the total

number of exploits rapidly increases over time across the malware

landscape: from 2017 onwards, the total number of exploits and

targeted vulnerabilities roughly doubles each year.

Even though the first exploits only emerged in 2017, four of

the underlying vulnerabilities had already been published in 2013

or earlier (even before the start of the collection period of the

Genealogy dataset). We calculated the time-to-exploit, which is the

time between the vulnerability publication and the first time the

associated exploit was observed in binaries. On average, the time-to-

exploit is 29 months, though the underlying distribution is skewed

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

315

2010 2012 2014 2016 2018 2020

CVE-2009-0545; CVE-2019-12725
Netgear DGN1000 RCE

Links\s E-series RCE
CVE-2014-2321
CVE-2014-8361
CVE-2014-9094
CVE-2015-2051

Edimax EW-7438RPn-v3 RCE
AVTECH IPCam, NVR, DVR CI
Multi-vendor CCTV/DVR RCE

CVE-2016-4429
CVE-2016-6277

NUUO OS CI
CVE-2016-10372

Xfinit\ Gatewa\ RCE
MV Power Shell CI

CVE-2017-6884
Cloudflare WAF B\pass
CVE-2017-(8221-8225)

CVE-2017-18368
EnGenius EnShare IoT GCS1.4.11 RCE

CVE-2017-14135
CVE-2017-14127; CVE-2019-18396

Vacron NVR RCE
CVE-2017-17215
CVE-2018-7841

Shen]hen TVT_DTC DVR/NVR/IPC API RCE
CVE-2018-10561; CVE-2018-10562

D-Link DSL-2750B OS CI
CVE-2020-9054

CVE-2018-11510
HomeMatic Zentrale CCU2 RCE

NUUO NVRmini RCE
SonicWall GMS-XMLRPC CI

CVE-2018-15887
CVE-2018-17173
CVE-2018-19276

CVE-2018-20062; CVE-2019-9082
CVE-2019-2725
CVE-2019-7276
CVE-2019-7405

CVE-2019-10655
CVE-2019-12489
CVE-2013-7471

CVE-2018-20841
Sar2HTML 3.2.1 RCE

CVE-2019-14931
CVE-2019-16759; CVE-2020-17496

CVE-2019-7256
CVE-2020-1956

CVE-2019-19824
CVE-2020-5722
CVE-2020-7209

Backdoor Xiaongmai-based DVR\NVR\IPcam
CVE-2020-10173

Netlink GPON RCE
S\mantec SWG 5.0.2.8 RCE

CVE-2020-13786
Netgear R7000 RCE

Mirai

Mo]i

Gafg\t

Tsunami

SINGLETONS

2010 2012 2014 2016 2018 2020

Figure 3: Occurrence of binaries that exploit vulnerabilities, per IoT malware family, ordered by vulnerability publication

date. Each line represents a unique exploit. It might attack more than one vulnerability. The X symbol highlights the time the

vulnerability was first published whereas the O symbol highlights the time the exploit was first discovered.

by very old vulnerabilities. The median is 26 months. When the

authors of Mirai and other malware families started branching out

from brute forcing to exploits, they apparently selected relatively

old vulnerabilities to target first. This might reflect the device types

they were interested in, namely routers and home security, as well

as the size of install base of the targeted devices. Given that patching

is spotty and difficult in the IoT ecosystem, they might have found

that many devices were still vulnerable years after the vulnerability

was first published.

For a closer inspection of the time-to-exploit for more recently

discovered vulnerabilities, we calculated this metric for vulnerabili-

ties published within the period of the honeypot binary collection

(September 2018 ś August 2020). All vulnerabilities published be-

fore September 2018 were excluded. This resulted in 326 exploit

occurrences that mapped to 20 unique vulnerabilities (95% in Mirai

and the remaining in Gafgyt). The mean time-to-exploit in 2019 was

40 days (median: 30 days). For 2020, when most exploits appeared,

the mean was 135 days (median: 96 days). So there does not appear

to be a decrease in the time-to-exploit in recent years. The overall

average of 2019 and 2020 is 129 days.

The exploit lifespan is the period between when an exploit was

first and last seen in binaries. Only in five cases did we observe a

short attack window followed by a persistent absence of the exploit

in future binaries. Most vulnerabilities are consistently targeted for

months or years. On average, they are active for 23 monthsśand

this number would be increasing, since these exploits were still

present in the latest binaries we analyzed. Figure 5 also shows that

the majority of vulnerabilities are exploited for months.

5 DISCUSSION

After Mirai’s initial infection attempts by brute-forcing default (or

weak) credentials, the arsenal of exploits has rapidly increased.

Compared to prior work [3], which identified 25 exploits, a more

alarming picture is emerging from our findings. Not only did we

identify a larger set of exploits and targeted vulnerabilities, namely

68 of each, we also demonstrated that the evolution of exploits is

gaining more and more velocity. Since 2017, the number of exploits

and targeted vulnerabilities has roughly doubled every year.

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

316

Our findings also provide new insights into the attackers’ be-

havior. For roughly half of all vulnerabilities, the attackers persist

in their attacks for two years or more, while for the other half we

see a pattern where an exploit is used for a short period and then

abandoned. The latter might reflect a pattern of trial and error. If

the exploit code is successful enough in recruiting bots, the attacks

persist. The longer an attack persists, the more likely it is that the

exploit code gets copied across clusters and families. Then, the

vulnerability is consistently being attacked for years.

Another interesting finding is the selection of vulnerabilities

by the attackers. IoT malware developers select old vulnerabilities,

compared to malware developers for desktop operating systems

or server software. The latter have been found to focus on reverse

engineering the latest vulnerabilities from patch releases and to

then attack the one-but-last version of the software [58]. For desk-

top and server software, the time-to-exploitÐi.e., the time between

the publication of a vulnerability and the first observation of a

binary attacking that vulnerabilityÐtypically ranges from a single

day (e.g., “Exploit Wednesdayž following on Microsoft’s “Patch

Tuesdayž) to, at most, a few months for a few high profile attacks

as Wannacry and Not-Petya [18, 63]. This strategy makes sense,

given that the largest share of vulnerable systems is running the

one-but-last version of the software.

We see a dramatically different pattern for IoT malware. The

mean time-to-exploit is a stunning 29months (median is 26 months).

This attacker strategy is rational if devices are not really updating

their software, since then whatever version was running on the

devices when they were originally deployed into the market will re-

main the same.While new releases might or might not be developed

by the manufacturer, our evidence clearly suggests that for the tar-

geted devices, available patches are not being adopted by the device

owners. In fact, a recent study by Xie et al. [64] found that, on aver-

age, 64.3% of unpatched devices were affected by 176 vulnerabilities

due to lack of updates. A recent illustration of this attacker strategy

was provided by the so-calledMeris botnet, which launched “record-

shatteringž DDoS attacks against Yandex and Cloudflare [28]. The

botnet consisted of 250,000 compromised MikroTik routers that

were running different versions of the RouterOS software. By far

the largest share was running 6.45.9 [45], which is a whopping 21

versions behind the latest stable release.

How can we improve our defense against the increasing velocity

of IoT exploit development? Our data suggests that core of the issue

is patchingÐor rather, the lack of patching. Assuming the observed

attacker behavior is rational, then the owners of the devices are

not installing updates for years or perhaps ever. This is consistent

with other research [57]. The obvious path forward would then be

to educate users on the importance of patching these devices.

The problem with relying on users to patch their devices is that

manufacturers do not always make patches available and, even if

they do, the install path is often far from user-friendly. Many users

have incorrect mental models for IoT malware infections. They

might see the devices as appliances rather than computers [17, 47].

One study on IoT malware remediation found that many users had

no clue on how to interact with their device, even for relatively

simple tasks like changing the default password [7].

Another key stakeholder for mitigating this problem is the pop-

ulation of Internet Service Providers (ISPs). The bulk of all IoT

0 5 10 15 20 25 30 35
Number of exploits per binary

0.0

0.2

0.4

0.6

0.8

1.0

C
um

m
ul

at
iv

e
pr

ob
ab

ili
ty

URLhaus
Honeypot
Genealogy

Figure 4: CDF of the number of exploits per sample.

0 10 20 30 40
Exploit lifespan (months)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

m
ul

at
iv

e
pr

ob
ab

ili
ty

Figure 5: CDF of lifespan of each exploit.

infection reside in the networks of consumer ISPs [8, 9, 38, 46].

Increasingly, ISPs are taking on the task of notifying customers

with infected IoT devices, in line with best practices for mitigating

malware on personal computers. While remediating malware on,

say, Windows machines has become much more user-friendly and

effective over the year, the situation for IoT is totally different. There

are tens of thousands of different devices in the market [30, 46], all

with different remediation paths. Unable to handle this enormous

diversity, ISPs and governments have been resigned to providing

users with very generic remediation advice that is hardly actionable.

Our findings suggest a different way forward: while more and more

vulnerabilities are being targeted, the total set is actually finite and

somewhat manageable in size: 68 in all. ISPs could be provided

with remediation advice for each of these vulnerabilities and their

corresponding devices and then point their infected customers to

this finite set to see if they have a device on this list.

While it will be hard for manufacturers to repair these intrinsic

problems with the devices that are already deployed in the market,

our findings do underline the critical importance of user-friendly

update mechanisms for new devices. A related issue is the duration

of manufacturer support. We observed that attackers selected vul-

nerabilities that are many years old, in one case even a decade old.

No manufacturer is currently supporting IoT devices on those time

scales. This plays to the attackers advantage. They now have very

attractive proposition: spend some effort on exploit development

for an easy-to-exploit vulnerability on a device with a large install

base and then recoup this investment by exploiting it for many

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

317

years, since patching is not happening fast enough and at some

point will stop altogether, while the devices remain in the field.

6 LIMITATIONS AND FUTUREWORK

We rely on a number of external sources and tools, and thus inherit

their limitations. First, during the data collection, we found that 17

of the exploits had no CVE ID, which makes it harder to accurately

measure the disclosure date and lifespan of a vulnerability. Even for

published CVEs, these fields have idiosyncrasies, where publication

might not happen until years after the CVE process has been started,

as indicated by the year in the CVE’s ID.

Second, there is some ambiguity in the malware family classifi-

cation. We followed best practices by using AVClass2 to normalize

labels, but we could not assign 209 of the samples to a specific

family and had to treat them as singletons. For further clustering to

select samples for our manual analysis, we relied on light-weight

fuzzy hashing. Telfhash [33] is widely used by malware analysts,

and Pagani et al. [44] showed that it is robust to minor source code

changes. In our experiments, Telfhash [33] failed to cluster 48% of

samples, and had issues with packed files and corrupted headers.

This indicates that Telfhash potentially puts too much emphasis

on features from the ELF headers, making it less suitable in our

scenario. We achieved better results with the functional similar-

ity as calculated by VirusTotal’s Vhash, which unfortunately is

not publicly documented. To gain insights into the quality of our

classification and clustering based on AVClass2 and Vhash, we com-

pared it against a binary similarity metric using BinDiff [65] on the

packed and unpacked URLhaus dataset. The results can be found in

Appendix A. Although there are differences, overall there is enough

consistency among the clusters identified by BinDiff and those of

Vhash (as marked by the different colors) to provide confidence that

Vhash is in line with state-of-the-art tools. In general, comparing

whole binaries can be very susceptible to obfuscation and it might

be better to search for similar functionality instead (e.g. [34]).

Our analysis pipeline faces the same limitations as other studies

based on static and dynamic analyses techniques in a malware con-

text: malware writers tend to include anti-analysis and obfuscation

techniques to evade detection. Especially code packing is an issue

for static analysis, and therefore not only an issue for our clustering,

but also for our static exploit signature matching.

During dynamic analysis we faced the issue of samples not exe-

cuting correctly, as also reported by Alrawi et al. [3]. We investi-

gated this issue by running the same binaries using two different

sandbox configurations (vm-sandbox and docker-sandbox). We

found that both the number of binaries and amount of traffic cap-

tured was 84% higher in the former. Still, improving dynamic anal-

ysis coverage is an open and orthogonal research problem.

In terms of exploit coverage, we consider privilege escalation

(i.e., exploits after the initial infection) out of scope. Extending our

analysis to capture these exploits as well should be straightfor-

ward, especially as we expect the Yara signatures created by Alrawi

et al. [3] as part of concurrent work in this area can be transformed

into our signature format with little effort (and vice versa).

Finally, in terms of malware coverage, it is hard to estimate how

representative our dataset is for IoT malware. We made our best

effort to collect a dataset that is as diverse as possible. We collected

samples from different vantage points, both actively through a

honeypot and passively from public repositories and other studies.

7 RELATEDWORK

IoT security research has traditionally focused on designing ap-

propriate security controls for resource-constrained devices, yet

few studies have looked into the security of already deployed IoT

devices and their vulnerabilities. Feng et al. [21] studied IoT vul-

nerabilities using different sources in the wild such as public vul-

nerability and exploit databases, forums, mailing lists and blogs to

propose using them for more effective defenses. Using similar data

sources but leveraging machine learning, Blinowski and Piotrowski

[6] proposed a vulnerability classification based on the CVE of IoT

systems. Putting aside open data, Alrawi et al. [2] analyzed the

vulnerabilities of a subset of home-Based IoT deployments in the

first empirical evaluation of the security controls and vulnerabilities

present in IoT devices already in the market.

While these previous studies focused on the defensive side of IoT

security, recent research also looked into attacks by analyzing IoT

malware [3, 5, 10, 14, 16]. These studies either leverage honeypots

to capture IoT malware (e.g., IoTPOT [43]), collect samples from

VirusTotal [50], or use open threat intelligence data (e.g., CyberIOCs

[15]). For instance, Hamou-Lhadj and Razgallah [23] investigated

which CVEs are more likely to be targeted by IoT malware based

on public reports. They showed that IoT malware targets vulner-

abilities that can be exploited remotely and do not require user

interaction to compromise the device.

Recently, Alrawi et al. [3] analyzed a set of 166,000 IoT mal-

ware samples collected in 2019 with the aim of understanding code

reuse and evolution of different IoT malware families. Similar to our

research methodology, the authors used both static and dynamic

analyses to identify similarities and differences across the differ-

ent malware samples. Our work extends their initial effort in four

ways that allow us to characterize different types of exploits and

their evolution during a larger time period: (1) we provide a much

more comprehensive understanding of the targeted vulnerabilities

analyzing 68 vulnerabilities (excluding hard-coded credentials) as

found in the binaries, to just 25 studied by Alrawi et al. [3], by

analyzing 17,720 binaries from three types of data sources; (2) we

covered binaries from a much larger time frame, 2015 to 2020, while

Alrawi et al. [3] analyzed only one year of binaries from 2019; (3)

we extracted exploits via a combination of static analysis, dynamic

analysis, and signature matching, rather than only static analysis

and YARA signatures; and (4) we longitudinally measured exploit

lifetime, vulnerability lifetime, and time-to-exploit, which Alrawi

et al. [3] did not measure at all. For the exploits that they discovered,

they only identified a single point in time when the first industry

report mentioned the exploit. This is not observed from their own

data, nor is it measured longitudinallyśe.g., the time frame in which

binaries use the exploit. Thus, our work presents the first stepping

stone to understand how attackers regularly target (very) old vul-

nerabilities and how they persist in certain attacks for years.

Focusing in vulnerabilities in general, several authors have an-

alyzed the life cycle of vulnerabilities. For instance, Spanos and

Angelis [52] argued that vulnerabilities’ descriptions can be used

to predict vulnerability characteristics. They developed a model

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

318

that combined analyzing texts and multi-target classification to

determine the characteristics, severity, impact and score of a vul-

nerability. Analogously, Wijayasekara et al. [62] developed a text

mining classifier to identify hidden impact vulnerabilities, i.e., vul-

nerabilities identified only long after their bugs report released in

public databases. They found out that hidden impact vulnerabilities

has increased from 25% to 36% in Linux and from 59% to 65% in

MySQL within two years.

Finally, some authors also looked at the relationship between

vulnerabilities and exploits. Nayak et al. [36] found that 85% of

known vulnerabilities are never exploited in the wild. They intro-

duced different security metrics such as the count of vulnerabilities

exploited and the size of the attack surface. They conducted an

empirical study of security in the deployment environment using

around 300 million reports of intrusion-protection telemetry that

were collected from more than six million hosts. They found no

single product within their study that had more than 35% of their

disclosed vulnerabilities exploited in the wild. Also, newer products

or newer product versions tend to decrease the exploitation ratio

and the exercised attack surfaces. Householder et al. [26] focused on

answering ‘when and how many vulnerabilities get associated pub-

lic exploits’ via analyzing CVE-IDs to find out how they influence

exploit publication. They found that around 4% of the published

CVEs get a public exploit code associated with them within 365

days. They argued that the exploit publication likelihood increase

is influenced by CVSS score, CWE, and the recent mechanism of

publishing CVE-ID. They studied 75,807 vulnerabilities for which

they found that only 3,164 of them had public exploits during the

whole 6 years of study. Those exploits have 2 days as a median time

to publication whereas the mean time is 91 days.

8 CONCLUSION

In this paper, we performed the first longitudinal measurement

study leveraging multiple vantage point to analyze the IoT malware

ecosystem and underlying dynamics. Using static and dynamic

analysis, as well as signature matching, we extracted the 63 unique

exploits from 17,720 binaries belonging to 26 different IoT mal-

ware families. Our results show the ecosystem has diversified, from

generic brute force attacks to embody a wide variety of device-

specific exploits.

Mirai is the family that has evolved the most since its inception

in 2016 and it still is the leading innovator. Most exploits were

observed in Mirai first. Other malware families followed the same

trend increasing the complexity of IoTmalware and at the same time

targeting more IoT devices and different protocols. The landscape is

rapidly evolving: the number of exploits and targeted vulnerabilities

has doubled every year since 2017.

Once exploits are developed, they are rarely abandoned. Many

still appear in the most recent binaries. In our case, the exploit

lifespan is longer than 5 years, though the duration of exploits is

38 months, on average.

Attackers target (very) old vulnerabilities. The mean time-to-

exploit between the publication of the vulnerability and the first

occurrence of an exploit in a binary is 29 months on average, though

this time frame varies wildly across exploits. This is very different

from the patterns we observe for malware targeting desktop and

server software. Assuming this different attacker strategy for IoT is

rational, then our evidence suggests that the targeted IoT devices are

rarely, if ever, patched. Thus, windows for exploiting a vulnerability

do not decrease rapidly over time. The age of the vulnerability is

much less relevant to attackers than the size of the install base of the

device and the easy with which exploit vectors can be developed.

Once they are developed, they remain in use for years.

Our study clearly shows that attackers are taking advantage of

certain weaknesses in the IoT ecosystem, most notably the lack of

patching and the diversity of devices and manufacturersśrecently

estimated to consist of over 14,000 different companies [30]. This

is a target-rich environment where device not only have different

vulnerabilities, but also their own paths and dead-ends towards

making them more secure against malware. We identified a number

of implications of our findings for users, Internet Service Providers

and manufacturers.

ACKNOWLEDGMENTS

This work is partly supported by the Dutch Research Council

(NWO) under the RAPID project (Grant No. CS.007) and the “Hes-

tia Research Programmež (Grant No. VidW.1154.19.011). This re-

search is partly funded by King Abdulaziz City for Science and

Technology (KACST). A part of this research was conducted in

"MITIGATE" project among "Research and Development for Ex-

pansion of Radio Wave Resources (JPJ000254)", supported by the

Ministry of Internal Affairs and Communications, Japan. The re-

search has further received funding from the Vienna Science and

Technology Fund (WWTF) through project ICT19-056 (IoTIO), and

SBA Research (SBA-K1), a COMET Centre within the framework

of COMET ś Competence Centers for Excellent Technologies Pro-

gramme and funded by BMK, BMDW, and the federal state of

Vienna. The COMET Programme is managed by FFG.

REFERENCES
[1] Luca Allodi. 2017. Economic Factors of Vulnerability Trade and Exploitation. In

Proceedings of the ACM SIGSAC Conf. on Computer and Communications Security.
[2] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:

Security Evaluation of Home-Based IoT Deployments. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P). https://doi.org/10.1109/SP.2019.00013

[3] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Ryan Court, Kevin Snow, Fabian
Monrose, and Manos Antonakakis. 2021. The Circle Of Life: A Large-Scale Study
of The IoT Malware Lifecycle. In 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, 3505ś3522.

[4] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the Mirai Botnet. In Proceedings of the USENIX
Security Symposium. 1093ś1110.

[5] Afsah Anwar, Jinchun Choi, Abdulrahman Alabduljabbar, Hisham Alasmary,
Jeffrey Spaulding, An Wang, Songqing Chen, DaeHun Nyang, Amro Awad, and
David Mohaisen. 2021. Understanding Internet of Things Malware by Analyzing
Endpoints in their Static Artifacts. arXiv preprint arXiv:2103.14217 (2021).

[6] Grzegorz J Blinowski and Paweł Piotrowski. 2020. CVE Based Classification
of Vulnerable IoT Systems. In Proceedings of the International Conference on
Dependability and Complex Systems (DepCoS). 82ś93.

[7] Brennen Bouwmeester, Elsa Rodríguez, Carlos Gañán, Michel van Eeten, and
Simon Parkin. 2021. "The Thing Doesn’t Have a Name": Learning from Emergent
Real-World Interventions in Smart Home Security. In Proceedings of the USENIX
Symposium on Usable Privacy and Security (SOUPS). USENIX Association.

[8] Orçun Çetin, Carlos Gañán, Lisette Altena, Takahiro Kasama, Daisuke Inoue,
Kazuki Tamiya, Ying Tie, Katsunari Yoshioka, and Michel van Eeten. 2019. Clean-
ing Up the Internet of Evil Things: Real-World Evidence on ISP and Consumer
Efforts to Remove Mirai. (2019). https://doi.org/10.14722/ndss.2019.23438

[9] Orçun Çetin, Carlos Ganán, Lisette Altena, Samaneh Tajalizadehkhoob, and
Michel Van Eeten. 2019. Tell Me You Fixed It: Evaluating Vulnerability Notifica-
tions via Quarantine Networks. In 2019 IEEE European Symposium on Security

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

319

https://doi.org/10.1109/SP.2019.00013
https://doi.org/10.14722/ndss.2019.23438

and Privacy (EuroS&P). IEEE, 326ś339.
[10] Jinchun Choi, Afsah Anwar, HishamAlasmary, Jeffrey Spaulding, DaeHun Nyang,

and Aziz Mohaisen. 2019. IoT Malware Ecosystem in the Wild: A Glimpse into
Analysis and Exposures. In Proceedings of the ACM/IEEE Symposium on Edge
Computing (SEC). 413ś418.

[11] Andrei Costin and Jonas Zaddach. 2018. IoT Malware: Comprehensive Survey,
Analysis Framework and Case Studies. BlackHat USA (2018).

[12] Emanuele Cozzi. 2021. The Tangled Genealogy of IoT Malware Dataset. https:
//github.com/eurecom-s3/tangled_iot/tree/master/dataset

[13] Emanuele Cozzi, Sophia Antipolis, France Pierre-Antoine Vervier France Mat-
teo Dell, France Yun Shen, Leyla Bilge, Davide Balzarotti, Pierre-Antoine Vervier,
Matteo Dell, and Yun Shen. 2020. The Tangled Genealogy of IoT Malware. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC).

[14] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding Linux Malware. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), Vol. 2018-May. 161ś175.

[15] CyberIOCs. 2020. CyberIOCs Daily malware pack. https://freeiocs.cyberiocs.pro
[16] Fan Dang, Zhenhua Li, Yunhao Liu, Ennan Zhai, Qi Alfred Chen, Tianyin Xu, Yan

Chen, and Jingyu Yang. 2019. Understanding Fileless Attacks on Linux-based IoT
Devices with Honeycloud. In Proceedings of the Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys). 482ś493.

[17] Antoine d’Estalenx and Carlos Gañán. 2021. NURSE: eNd-UseR IoT malware
detection tool for Smart homEs. In Proceedings of the 11th International Conference
on the Internet of Things (IoT ’21). 1ś8.

[18] Michel Edkrantz, Staffan Truvé, and Alan Said. 2015. Predicting Vulnerability
Exploits in the Wild. In Proceedings on the IEEE International Conference on Cyber
Security and Cloud Computing. 513ś514.

[19] Exploit-db. 2009. Exploit Database - Exploits for Penetration Testers, Researchers,
and Ethical Hackers. Retrieved June 15, 2021 from https://www.exploit-db.com/

[20] Alejandro Fanjul. 2018. LG SuperSign EZ CMS 2.5. Retrieved May 01, 2021 from
https://www.exploit-db.com/exploits/45448

[21] Xuan Feng, Xiao Liao, X Wang, Qiang Li, Kai Yang, Hong Zhu, and Limin Sun.
2019. Understanding and Securing Device Vulnerabilities through Automated
Bug Report Analysis. In Proceedings of the USENIX Security Symposium.

[22] Jerry Gamblin. 2016. Mirai Source Code. https://github.com/jgamblin/Mirai-
Source-Code

[23] Abdelwahab Hamou-Lhadj and Asma Razgallah. 2021. An Analysis of the Use of
CVEs by IoT Malware. In Proceedings of the International Symposium on Founda-
tions and Practice of Security (FPS), Vol. 12637. 47.

[24] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, and Dave
Levin. 2019. Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet.

[25] Hors. 2021. Detect-It-Easy: Program for determining types of files for Windows,
Linux and MacOS. https://github.com/horsicq/Detect-It-Easy

[26] Allen D Householder, Jeff Chrabaszcz, Trent Novelly, David Warren, and
Jonathan M Spring. 2020. Historical Analysis of Exploit Availability Timelines. In
Proceedings of the USENIX Workshop on Cyber Security Experimentation and Test.

[27] Maël Hörz. 2020. HxD - Freeware Hex Editor and Disk Editor | mh-nexus.
https://mh-nexus.de/en/hxd/

[28] Brian Krebs. 2021. KrebsOnSecurity Hit By Huge New IoT Botnet
“Merisž. https://krebsonsecurity.com/2021/09/krebsonsecurity-hit-by-huge-
new-iot-botnet-meris/

[29] Ayush Kumar and Teng Joon Lim. 2018. A Secure Contained Testbed For Analyz-
ing IoT Botnets. In Proceedings of the International Conference on Testbeds and
Research Infrastructures (TridentCom). 124ś137.

[30] Deepak Kumar, Kelly Shen, BentonCase, Deepali Garg, Galina Alperovich, Dmitry
Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. 2019. All Things Considered:
An Analysis of IoT Devices on Home Networks. In Proceedings of the USENIX
Security Symposium. USENIX Association, Santa Clara, CA, 1169ś1185.

[31] Keane Lucas, Mahmood Sharif, Lujo Bauer, Michael K. Reiter, and Saurabh Shintre.
2021. Malware Makeover: Breaking ML-based Static Analysis by Modifying
Executable Bytes. In Proceedings of the ACM ASIA Conference on Computer and
Communications Security (AsiaCCS).

[32] Malwaremustdie. 2018. Unpacking the non-unpackable. https:
//github.com/radareorg/r2con2018/blob/master/talks/unpacking/Unpacking-a-
Non-Unpackables.pdf

[33] Fernando Mercês and Joey Costoya. 2020. Telfhash: An Algorithm That Finds
Similar Malicious ELF Files Used in Linux IoT Malware. Technical Report.

[34] Azqa Nadeem, Christian Hammerschmidt, Carlos H Gañán, and Sicco Verwer.
2021. Beyond labeling: Using clustering to build network behavioral profiles
of malware families. In Malware Analysis Using Artificial Intelligence and Deep
Learning. Springer, Cham, 381ś409.

[35] National Institute of Standards and Technology (NIST). 2021. National Vulnera-
bility Database. https://nvd.nist.gov/ (Accessed on 2021-06-16).

[36] Kartik Nayak, Daniel Marino, Petros Efstathopoulos, and Tudor Dumitraş. 2014.
Some Vulnerabilities are Different than Others: Studying Vulnerabilities and
Attack Surfaces in the Wild. In Proceedings of the International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID).

[37] Weina Niu, Xiaosong Zhang, Xiaojiang Du, Teng Hu, Xin Xie, and Nadra Guizani.
2019. Detecting Malware on x86-based IoT Devices in Autonomous Driving. IEEE
Wireless Communications 26, 4 (2019), 80ś87.

[38] Arman Noroozian, Elsa Turcios Rodriguez, Elmer Lastdrager, Takahiro Kasama,
Michel Van Eeten, and Carlos Gañán. 2021. Can ISPs Help Mitigate IoT Mal-
ware? A Longitudinal Study of Broadband ISP Security Efforts. In IEEE European
Symposium on Security and Privacy.

[39] NSA. 2020. Ghidra. https://ghidra-sre.org/
[40] NVD. 2018. CVE-2018-17173. https://nvd.nist.gov/vuln/detail/CVE-2018-17173
[41] NVD. 2021. CVSS Severity Distribution Over Time. https:

//nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-
severity-distribution-over-time

[42] Markus F.X.J. Oberhumer, László Molnár, and John F. Reiser. 2020. UPX - the
Ultimate Packer for eXecutables. https://github.com/upx/upx

[43] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,
Takahiro Kasama, and Christian Rossow. 2015. IoTPOT: Analysing the Rise
of IoT Compromises. In Proceedings of the USENIX Workshop on Offensive Tech-
nologies (WOOT).

[44] Fabio Pagani, Matteo Dell’Amico, and Davide Balzarotti. 2018. Beyond Precision
and Recall: Understanding Uses (and Misuses) of Similarity Hashes in Binary
Analysis. In Proceedings of the ACM Conference on Data and Application Security
and Privacy (CODASPY).

[45] Qrator. 2021. Mēris botnet, climbing to the record. https://blog.qrator.net/en/
meris-botnet-climbing-to-the-record_142/

[46] Elsa Rodríguez, Arman Noroozian, Michel van Eeten, and Carlos Gañán. 2021.
Superspreaders: Quantifying the Role of IoT Manufacturers in Device Infections.
Workshop on the Economics of Information Security (WEIS) (2021).

[47] Elsa Rodríguez, Susanne Verstegen, Arman Noroozian, Daisuke Inoue, Takahiro
Kasama, Michel van Eeten, and Carlos Gañán. 2021. User compliance and re-
mediation success after IoT malware notifications. Journal of Cybersecurity 7, 1
(2021).

[48] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AV-
class: A Tool for Massive Malware Labeling. In Proceedings of the International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID). 230ś253.

[49] Silvia Sebastián and Juan Caballero. 2020. AVclass2: Massive Malware Tag Extrac-
tion from AV Labels. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC). 42ś53.

[50] Gaurav Sood. 2021. VirusTotal. https://www.virustotal.com/gui/home/search
[51] Kyle Soska and Nicolas Christin. 2014. Automatically Detecting Vulnerable

Websites Before They Turn Malicious. In Proceedings of the USENIX Security
Symposium. USENIX Association, San Diego, CA, 625ś640.

[52] Georgios Spanos and Lefteris Angelis. 2018. A Multi-target Approach to Estimate
Software Vulnerability Characteristics and Severity Scores. Journal of Systems
and Software (2018).

[53] Strings. 2009. Strings(1) - Linux man page. Retrieved November 1, 2020 from
https://linux.die.net/man/1/strings

[54] The MITRE Corporation. 2021. CVE - Common Vulnerabilities and Exposures
(CVE). https://cve.mitre.org/index.html

[55] Hannes Tschofenig and Stephen Farrell. 2017. Report from the Internet of Things
Software Update (IoTSU) Workshop 2016. RFC 8240.

[56] URLhaus. [n. d.]. URLhaus | Malware URL exchange. https://urlhaus.abuse.ch/
[57] Kami Vaniea, Emilee J. Rader, and Rick Wash. 2014. Betrayed by updates: how

negative experiences affect future security. In CHI Conference on Human Factors
in Computing Systems, Matt Jones, Philippe A. Palanque, Albrecht Schmidt, and
Tovi Grossman (Eds.). ACM, 2671ś2674.

[58] Marie Vasek and Tyler Moore. 2014. Identifying Risk Factors for Webserver
Compromise. In Proceedings of the International Conference on Financial Cryptog-
raphy and Data Security (FC), Nicolas Christin and Reihaneh Safavi-Naini (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 326ś345.

[59] VirusTotal. 2020. VirusTotal Reference API | Files. https://developers.virustotal.
com/v3.0/reference#files

[60] Vulndb. 2020. Comprehensive Vulnerability Intelligence. https://vulndb.
cyberriskanalytics.com/#statistic (Accessed on 2021-05-01).

[61] Huanran Wang, Weizhe Zhang, Hui He, Peng Liu, Daniel Xiapu Luo, Yang Liu,
Jiawei Jiang, Yan Li, Xing Zhang, Wenmao Liu, Runzi Zhang, and Xing Lan. 2021.
An Evolutionary Study of IoT Malware. IEEE Internet of Things Journal (2021).

[62] Dumidu Wijayasekara, Milos Manic, Jason Wright, and Miles McQueen. 2012.
Mining Bug Databases for Unidentified Software Vulnerabilities. In Proceedings
of the International Conference on Human System Interactions (HSI ’12). 89ś96.

[63] Chaowei Xiao, Armin Sarabi, Yang Liu, Bo Li, Mingyan Liu, and Tudor Dumitras.
2018. From Patching Delays to Infection Symptoms: Using Risk Profiles for an
Early Discovery of Vulnerabilities Exploited in the Wild. In Proceedings of the
USENIX Security Symposium. USENIX Association, Baltimore, MD, 903ś918.

[64] Wei Xie, Chao Zhang, Pengfei Wang, Zhenhua Wang, and Qiang Yang. 2021.
ARGUS: Assessing Unpatched Vulnerable Devices on the Internet via Efficient
Firmware Recognition. In Proceedings of the 2021 ACM Asia Conference on Com-
puter and Communications Security. ACM, 421ś431.

[65] Zynamics. 2021. BinDiff. https://www.zynamics.com/bindiff.html

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

320

https://github.com/eurecom-s3/tangled_iot/tree/master/dataset
https://github.com/eurecom-s3/tangled_iot/tree/master/dataset
https://freeiocs.cyberiocs.pro
https://www.exploit-db.com/
https://www.exploit-db.com/exploits/45448
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/horsicq/Detect-It-Easy
https://mh-nexus.de/en/hxd/
https://krebsonsecurity.com/2021/09/krebsonsecurity-hit-by-huge-new-iot-botnet-meris/
https://krebsonsecurity.com/2021/09/krebsonsecurity-hit-by-huge-new-iot-botnet-meris/
https://github.com/radareorg/r2con2018/blob/master/talks/unpacking/Unpacking-a-Non-Unpackables.pdf
https://github.com/radareorg/r2con2018/blob/master/talks/unpacking/Unpacking-a-Non-Unpackables.pdf
https://github.com/radareorg/r2con2018/blob/master/talks/unpacking/Unpacking-a-Non-Unpackables.pdf
https://nvd.nist.gov/
https://ghidra-sre.org/
https://nvd.nist.gov/vuln/detail/CVE-2018-17173
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time
https://github.com/upx/upx
https://blog.qrator.net/en/meris-botnet-climbing-to-the-record_142/
https://blog.qrator.net/en/meris-botnet-climbing-to-the-record_142/
https://www.virustotal.com/gui/home/search
https://linux.die.net/man/1/strings
https://cve.mitre.org/index.html
https://urlhaus.abuse.ch/
https://developers.virustotal.com/v3.0/reference#files
https://developers.virustotal.com/v3.0/reference#files
https://vulndb.cyberriskanalytics.com/#statistic
https://vulndb.cyberriskanalytics.com/#statistic
https://www.zynamics.com/bindiff.html

A CLUSTERING AND CLASSIFICATION

Figure 6 provides auxiliary information for our classification and clustering based on AVClass2 and Vhash. As discussed in Section 6, we

used BinDiff [65] to compare binary similarity on the packed and unpacked URLhaus dataset.

(a) Coloured by Vhash

(b) Coloured by AVClass2

Figure 6: Results of pairwise similarity calculation of the URLhaus samples using Ghidra 1.9.2 and BinDiff 6. 1,725 out of 2,298

samples could be analyzed, shown are only samples with a similarity score and confidence above 0.8. Colours indicate distinct

clusters of Vhash and AVClass2 respectively. For Vhash, dark teal indicates a missing Vhash while for AVClass2 dark teal

indicates a singleton class.

Session 3A: Cyber-physical and IOT Security #1 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

321

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Collection
	2.2 Malware Classification and Sampling
	2.3 Exploit Extraction and Signature Matching

	3 Exploit Landscape
	4 Exploit Lifespan
	5 Discussion
	6 Limitations and Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Clustering and Classification

