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ABSTRACT

Functional ultrasound (fUS) is a novel neuroimaging
technique that measures brain hemodynamics through a
time series of Doppler images. The measured spatiotem-
poral hemodynamic changes reflect changes in neural activ-
ity through the neurovascular coupling (NVC). Often, such
image time series is used to analyze dynamic functional con-
nectivity (dFC) by directly computing a connectivity metric
between the measured hemodynamic signals, ignoring the
functional connectomics of underlying neural populations.
This work proposes a novel fUS signal model, consisting of
a hidden Markov model (HMM) cascaded with a convolutive
model, that captures how fUS signals arise from a generative
perspective while incorporating high-level biological func-
tioning of neural populations. Consequently, the developed
model enables inference of functional connectivity networks,
being co-activation patterns (CAPs) of neural populations.
Our results show that our methods can identify biologically
plausible networks of functional connectivity. Furthermore,
this method captures a difference in brain dynamics between
wild-type and Shank2-/- mouse mutants.

Index Terms— Dynamic functional connectivity, func-
tional ultrasound, deconvolution, hidden Markov models, co-
activation patterns

1. INTRODUCTION

Functional neuroimaging focuses on revealing physiological
changes in the brain in order to obtain a better understanding
of its function. With the introduction of functional imaging
techniques, the functional connectome has been increasingly
researched. Functional connectivity can be defined as the
statistical relationship between signals measured at different
brain regions of interest (ROIs) [1]. Multiple regions that are
functionally connected comprise a so-called functional net-
work. Until recently, the stationarity of these networks was

The contributions of Bas Generowicz and Bas Koekkoek from the Center
for Ultrasound and Brain imaging at Erasmus MC (CUBE) and Saffira Tjon
to provide a unique fUS data set are gratefully acknowledged.

assumed. However, the signature of these networks is chang-
ing dynamically in time [1, 2]. This discovery led to the devel-
opment of dynamic functional connectivity (dFC), in which
changes in functional connectivity of networks are measured.
Measures of (dynamic) functional connectivity have proven
useful in characterizing abnormalities in brain connectivity.
For example, altered connectivity patterns in disorders such
as autism spectrum disorder (ASD) have been identified in
humans and mice [3, 4]. Identifying disorder-specific func-
tional connectivity alterations can help understand the origin
of such disorders to improve diagnosis and eventually lead to
better treatment options.

Functional ultrasound (fUS) is a relatively new neu-
roimaging technique that measures hemodynamic changes
proportional to the moving cerebral blood volume (CBV)
[5, 6]. The measured changes are related to the underly-
ing activity of neural populations through the neurovascular
coupling (NVC) mechanism. When a brain region activates,
an increased blood flow provides the region with, amongst
others, oxygen and glucose to maintain the homeostasis of
the cerebral micro-environment [7]. As fUS records activity
of multiple brain regions simultaneously, functional connec-
tivity patterns can be identified. However, since fUS is a
relatively new imaging technique, there are only a handful of
contributions to analyzing (dynamic) functional connectivity.
In the work of [8, 9], static functional connectivity patterns
are revealed. In addition, dFC has been analyzed using k-
means clustering of phase coherence matrices in [10, 11].

It should be noted that all previously mentioned works
compute a metric of functional connectivity using the mea-
sured fUS signals directly. However, from a biological per-
spective, functional connectivity occurs at the neural level
[12]. Therefore, in this paper, functional connectivity is mea-
sured as the co-activation of underlying neural populations,
named ROIs, instead of the statistical relationship between
time courses of ROIs. We expect that through reconstructing
and identifying the underlying neural co-activation patterns
(CAPs), a more accurate and biologically plausible represen-
tation of functional connectivity networks and their fast dy-
namics can be obtained.
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In the context of functional magnetic resonance imaging
(fMRI), it is indeed found that functional networks, previ-
ously inferred from conventional correlation analysis, are
driven by activity at only a few critical time points using
CAP detection [2, 13]. In the work of [14], CAPs are de-
tected by clustering innovation signals, being derivatives of
total activation (TA) deconvolved time courses. Then, by
using a back-projection step, block-type neural signals are
obtained. Concerning brain network dynamics, the authors of
[15] deploy the hidden Markov model (HMM) on fMRI time
courses directly, revealing that brain states are temporally or-
ganized. Also, nonrandom sequencing of brain networks has
been revealed at the neural basis of fMRI using simultaneous
EEG-fMRI measurements in [16].

In this work, we develop a novel two-stage generative fUS
signal model consisting of an HMM cascaded with a con-
volutive model. As an additional novelty, we propose non-
negative paradigm free mapping (PFM) to reconstruct time
courses of neural activity, inspired by the signatures of neural
population time courses in [17]. As CAPs enable a frame-
wise analysis approach, we leverage the relatively high tem-
poral resolution of fUS imaging and research the fast brain
dynamics in mice.

2. FUNCTIONAL ULTRASOUND DATA MODELING

In this section, we construct an fUS signal model comprising
two cascaded stages. The first stage consists of a generative
model to provide insight into the recurring CAPs of underly-
ing neural activity and their transitional preferences. The sec-
ond stage of the signal model consists of a convolutive signal
model, relating the underlying neural activity to the measured
fUS signals.

2.1. Generative modeling of neural population activity

The neural activity amplitude, underlying the fUS data, of an
ROI m ∈ {1, ...,M} over discrete time n ∈ {1, ..., N}, is
denoted by vector ym ∈ RN . Then, having neural activity
patterns of multiple ROIs, matrix Y = [y1,y2, ...,yM ] is
constructed. Now, the co-activations of ROIs can be recog-
nized in the rows of matrix Y, denoted by yn ∈ RM , that are
assumed to be constant within a time-bin equal to the sam-
pling period. The co-activation vector yn can be considered a
multivariate random variable, where matrix Y is a realization
of a stochastic process Y . The distribution from which yn is
generated can change over time, as various co-activation pat-
terns may be present between the ROIs, ultimately leading to
a non-stationary stochastic process Y .

As a next step, a probabilistic structure is imposed be-
tween the different co-activation patterns via the well-known
HMM structure. The realization z = [z1, z2, ..., zN ] of the
latent stochastic process Z, indicates the presence of a par-
ticular composition of active ROIs. Each zn comes from a

discrete state-space S = {1, ...,K}, which labels the co-
activation patterns yn, and only one state zn ∈ S can be ac-
tive at a time. The state transitions are governed by a state
transition probability matrix A, containing elements

aij = P (zn+1 = j|zn = i). (1)

Thus, this process can be recognized as a first-order discrete-
time Markov chain, and the HMM framework establishes it-
self by relating the random co-activity vector yn to the hidden
process Z. For the Gaussian HMM, in which each state gen-
erates emissions from a state-specific multivariate Gaussian
distribution, the vector yn is conditionally dependent only on
zn:

p(yn|zn = i) ∼ N (µzn ,Σzn), (2)

where µzn ∈ RM and Σzn ∈ RM×M . Thus, the functional
connectivity pattern is captured by the mean µzn of the multi-
variate Gaussian distribution. This finally results in a mixture
of multivariate Gaussian distributions for all possible states
in S. The high-level biological functioning of neural popula-
tions is incorporated into the model since it allows a specific
CAP to have various amplitudes, which is logical as an ROI
always contains multiple neurons. Also, no activity is present
when an ROI has zero amplitude.

2.2. Convolutive fUS signal model

The observed fUS signals F ∈ RN−L+1×M are modeled as
the convolution of the CAPs in Y and the causal Toeplitz LTI
filter matrix H ∈ RN−L+1×N , modeling the NVC:

F = HY +N. (3)

The observed fUS signals also contain noise, represented by
matrix N = [ϵ1, ϵ2, ..., ϵM ] with columns following an i.i.d.
Gaussian white noise process ϵn,m ∼ N (0, σ2). The rows
of H contain the hemodynamic response function (HRF) h ∈
RL, representing the transfer function linking neural activity
with the fUS signals, and having entries

hl = p3(Γ(p1))
−1(tl)

p1−1pp1

2 e−p2tl , (4)

where l ∈ {0, ..., L−1}, and tl = lTs with Ts being the sam-
pling period. Furthermore, parameters p1 and p2 determine
the shape of the HRF, and p3 scales the HRF to unit ampli-
tude without loss of generality.

3. METHODS

3.1. Deconvolution

A deconvolution procedure is used to estimate the underlying
neural activity per ROI m. As demonstrated in (5), regulariza-
tion is performed via the least absolute shrinkage and selec-
tion operator to solve the originally ill-posed problem of re-
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constructing ym. Now, we expand PFM [18] to non-negative
PFM by the addition of a non-negativity constraint.

ŷm = argmin
ym

1

2N
||fm −Hym||22 + λ||ym||1

s.t. ym ≥ 0.

(5)

3.2. Inference of functional networks

For the HMM inference of functional networks from the
reconstructed matrix Ŷ = [ŷ1, ŷ2, ..., ŷM ], we deploy the
Baum-Welch algorithm, being an instance of the expectation
maximization (EM) algorithm, by using the implementation
of [19]. We initialize the EM algorithm by k-means clus-
tering of observations. Furthermore, the initial probabilities
π and state transition probability matrix A are uniformly
initialized. For the EM procedure, we use 50 iterations to
learn the model parameters, sufficient for convergence of the
model log-likelihood in practice. Finally, Viterbi decoding is
applied to infer the most probable state sequence z.

4. RESULTS

In this section, simulation and experimental data results are
presented. Through a brief simulation, we analyze the ability
to recover true functional networks and the influence of noise
on the state transition probability matrix A. Subsequently, we
test the developed model and methods on experimental data,
analyzing dFC in normal and mutated mice. 1

4.1. Simulation

Synthetic data is generated by creating a bivariate binary state
pattern consisting of K = 3 states, depicted in Fig. 1a. This
synthetic state pattern follows the state transition probability
matrix of Fig. 1c. Subsequently, bivariate synthetic fUS data
is generated according to (3), with intensity σ = 0.5.
After deconvolution and state-space inference on synthetic
data, the correct CAPs were inferred. The inferred transition
probability matrix in Fig. 1d shows reduced transition prob-
abilities concerning the second and third state and increased
transition preference to the first state due to sparse regular-
ization on noisy synthetic data. However, the main trends,
being state self-transitions and transitional preference from
state two to state three, are still visible.

4.2. Experimental data

The experimental data set on which we test the developed
model and methods consists of four wild-type mice and four
Shank2-/- mutant mice. This mutation results in autistic-like
behavior and is often used in ASD research. At the Center for

1Code and additional information on the analysis available at:
https://github.com/rubenwijnands999/dFC-fUS

Fig. 1. Synthetic data generation and inference. (a) Synthetic
states K = 3 with active (red) and not active (blue) patterns,
involving M = 2 ROIs. (b) Example binary activation pat-
tern ym (orange) and synthetic noisy fUS time course fm with
σ = 0.5 (black). True (c) and inferred (d) state transition
probability matrix.

Ultrasound and Brain imaging at Erasmus MC (CUBE), 12-
minute recordings consisting of 2D power Doppler images
(PDIs) have been acquired at a sampling rate of 4 Hz. Specif-
ically, the brain section containing the thalamus and motor
cortex has been imaged. During fUS acquisition, the mice
were head-fixed yet freely moving on a running wheel. We
investigate whether our developed methods can reveal a dif-
ference in brain dynamics between the two groups of mice.

The fUS data is pre-processed as follows. First, the pix-
els belonging to M = 3 ROIs are identified by performing a
spatial independent component analysis (sICA), with model
order C = 25, and thresholding the pixels of the independent
spatial components within a warped Allen Mouse Brain At-
las. Subsequently, the mean fUS time course is computed for
each ROI, and the baseline of the result is centered around the
zero axis.

Then, for each group of mice, an HMM inference proce-
dure with K = 4 is applied on the concatenated time courses
obtained from non-negative PFM deconvolution. The inferred
functional networks, shown in Fig. 2a, appeared to be similar
for each group of mice and are consistent across subsampled
data sets and different initializations of the EM algorithm.
Furthermore, this decomposition of neural activity is biolog-
ically plausible [17, 20]. For comparison, we also applied
non-negative TA deconvolution, as demonstrated in Fig. 2b.
However, state-space inference did not result in a decomposi-
tion of the all-active brain state (state number two in Fig. 2a).
Rather, it resolved multiple all-active brain states with differ-
ent activity levels (not shown).
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Fig. 2. Inference on experimental fUS data. (a) Inferred func-
tional connectivity networks (thresholded) of both wild-type
and Shank2-/- mutant mice, with active (red) and not active
(blue) brain regions. (b) mean fUS time course of the mo-
tor region (black) with deconvolved time course using non-
negative PFM (green) and TA (purple). State transition proba-
bility matrices of (c) wild-type and (d) Shank2-/- mutant mice.

As shown in Fig. 2c-d, the transitional dynamics are also sim-
ilar across the groups, except for altered transition probabili-
ties between states 2 and 3, of which the effect is further in-
vestigated. To analyze the genuineness of the observed effect,
we performed 500 Monte Carlo experiments. In each Monte
Carlo experiment, two random groups of fUS recordings are
made, and an HMM inference procedure is applied for each
random group. Then, the inferred state transition probabil-
ity matrices that only contain the second and third state are
re-scaled such that the rows sum to unit probability. Finally,
the mean squared error (MSE) between both sub-matrices is
computed, resulting in 96.8% of the Monte Carlo experiments
having a lower measured effect than the actual effect.

5. DISCUSSION

This paper presented a novel approach to inferring dynamic
functional networks from fUS data, through modeling fUS
data from a generative perspective, using an HMM cas-
caded with a convolutive model. In fMRI deconvolution
procedures, typically activation and de-activation patterns
are k-means clustered, being deviations from a baseline neu-
ral activity [14]. Motivated by [17], this work proposes a
framework more closely related to the high-level function-
ing of neural populations. This novelty is incorporated in
the non-negativity constraint of the deconvolution procedure,
being an expansion of the well-known PFM [18]. Further-
more, instead of k-means clustering, we infer a finite number

of CAPs using an HMM structure, assuming a probabilistic
transitional structure between functional networks. This spa-
tiotemporal clustering approach using Gaussian distributions
is advantageous in practice as it allows a specific CAP to have
various amplitudes, yet it also learns clusters that show a clear
separation between active and non-active brain regions.

It appears that our model and methods can explain fUS
data, as biologically plausible functional networks are in-
ferred, and a significant difference in brain dynamics between
wild-type and Shank2-/- mutant mice is shown. However, us-
ing non-negative TA deconvolution, we did not obtain similar
functional networks. This could be explained by the fact that
TA regularizes the solution with smoothness, and thereby
does not emphasize short instances of neural activity. In
Fig. 2b, it is also visible that TA deconvolved time courses
generally follow the main trends of the fUS time course.

For future work, it is recognized that a joint multivariate
deconvolution procedure and CAP inference approach could
improve the developed methodology by obtaining a global so-
lution to the problem of inferring functional networks from
data. Also, information captured by Σzn or its inverse could
be further exploited, being a measure of connectivity upon a
certain CAP.

Lastly, our method has a few tunable parameters. For cre-
ating the HRF, we used L = 33, p1 = 4.00, p2 = 1.50,
and p3 = 2.98, such that the HRF shape is similar to the
HRF presented in [21]. Furthermore, we select λ such that
the error ||fm−Hŷm||22 does not exceed a percentage thresh-
old of 1% between a non sparse solution, also recognized as a
non-negative least squares (NNLS) solution, and an extremely
sparse solution, i.e., ym = 0. Also, the number of states K
was motivated by the empirical observation of biologically
plausible networks. We tested different values for K, result-
ing in no significant differences in the fractional occupancy
of states, mean state life time, and mean inter-state time.

6. CONCLUSION

We developed an fUS signal model and leveraged methods
that allow for reconstructing dynamic functional connectiv-
ity networks from fUS measurements in terms of the co-
activation patterns of underlying neural activity. The model
consists of an HMM cascaded with a convolutive model, and
the methods comprise a deconvolution procedure and state-
space inference approach. In a simulation study, we showed
that although noisy measurements influence reconstructed
neural activity, the derived networks and the main trends in
the inferred transition probability matrix are reliable. Our
method inferred biologically plausible functional networks
in an experimental data set investigating brain activity of
wild-type and Shank2-/- mutant mice. Also, we observed a
transitional bias towards the functional network comprising
the motor and somatosensory cortices in Shank2-/- mutant
mice, related to the mutation with 96.8% certainty.
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