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Something From Nothing (There):
Collecting Global IPv6 Datasets From DNS

Tobias Fiebig1, Kevin Borgolte2, Shuang Hao2,
Christopher Kruegel2, Giovanni Vigna2

1TU Berlin
2UC Santa Barbara

Abstract. Current large-scale IPv6 studies mostly rely on non-public datasets, as
most public datasets are domain specific. For instance, traceroute-based datasets
are biased toward network equipment. In this paper, we present a new method-
ology to collect IPv6 address datasets that does not require access to restricted
network vantage points. We collect a new dataset spanning more than 5.8 million
IPv6 addresses by exploiting DNS’ denial of existence semantics (NXDOMAIN).
This paper documents our efforts in obtaining new datasets of allocated IPv6 ad-
dresses, so others can avoid the obstacles we encountered.

1 Introduction

The adoption of IPv6 has been steadily increasing in recent years [4]. Unsurprisingly, si-
multaneously, the research question of efficiently identifying allocated IPv6 addresses
has received more and more attention from the scientific community. However, un-
fortunately for the common researcher, these studies have—so far—been dominated
by the analysis of large, restricted, and proprietary datasets. For instance, the well-
known content delivery network (CDN) dataset used for most contemporary IPv6 anal-
yses [15, 8], Internet exchange point (IXP) datasets, which were used regularly by
some other research groups [3, 9], or, slightly less restrictive, the Farsight DNS recursor
dataset [21]. Although public datasets do exist, they are traceroute-based datasets from
various sources, including the RIPE Atlas project [17], which are limited due to their
nature: they are biased towards addresses of networking equipment, and, in turn, bear
their own set of problems for meaningful analyses.

Correspondingly, in this paper, we aim to tackle the problem of obtaining a dataset
of allocated IPv6 addresses for the common researcher: We present a new methodology
that can be employed by every researcher with network access. With this methodology
we were able to collect more than 5.8 million unique IPv6 addresses The underlying
concept is the enumeration of IPv6 reverse zones (PTR) leveraging the semantics of
DNS’ denial of existence records (NXDOMAIN). Although the general concept has
been discussed in RFC 7707 [10], we identified and overcame various challenges that
prevented the use of this technique on a global scale. Therefore, we document how
we can leverage the semantics of NXDOMAIN on a global scale to collect allocated
IPv6 addresses for a new IPv6 dataset. Our detailed algorithmic documentation allows
researchers everywhere to implement this technique, reproduce our results, and collect
similar datasets for their own research.
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In this paper, we make the following contributions:

– We present a novel methodology to enumerate allocated IPv6 addresses without re-
quiring access to a specific vantage point, e.g., a CDN, IXP, or large transit provider.

– We focus on the reproducibility of our techniques and tools, to provide researchers
with the opportunity to collect similar datasets for their own research.

– We report on a first set of global measurements using our technique, in which we
gather a larger and more diverse dataset that provides new insights into IPv6 ad-
dressing.

– We present a case-study that demonstrates how our technique allows insights into
operators’ networks that could not be accomplished with previous techniques.

2 Previous Work

Active probing for network connected systems is probably one of the oldest techniques
on the Internet. However, tools that can enumerate the full IPv4 space are relatively new.
The first complete toolchain that allowed researchers to scan the whole IPv4 space was
presented by Durumeric in 2013 [6] with ZMap. The problem of scanning the whole
IPv4 address space is mostly considered solved since then. Especially the security scene
heavily relies on these measures [19]. The address space for IPv6 is 128bit, which
is significantly larger than the 32bit of IPv4. Hence, a simple brute-force approach
as presented for IPv4 is—so far—not feasible. Indeed, most current research efforts
in the networking community are concerned with evaluating large datasets to provide
descriptive information on utilized IPv6 addresses [10].

Plonka and Berger provide a first assessment of active IPv6 addresses in their 2015
study using a large CDN’s access statistics as dataset [15]. Subsequently, in their 2016
work Foremski et al. propose a technique to generate possibly utilized IPv6 addresses
from initial seed datasets for later active probing [8]. Gasser et al. attempt a similar en-
deavor, using—among various other previously mentioned datasources—a large Inter-
net Exchange Point (IXP) as vantage point [9]. However, prior work has the drawback
that the used vantage points are not publicly accessible.

Measurement-studies using public data sources have been recently published by
Czyz et al. [4, 5]. They combine various public data sources, like the Alexa Top 1 mil-
lion and the Farsight DNS recursor dataset [21]. In addition, they resolve all IPv4 re-
verse pointers and attempt to resolve the returned FQDNs for their IPv6 addresses.

3 DNS Enumeration Techniques

Complimentary to prior approaches, van Dijk enumerates IPv6 reverse records by utiliz-
ing the specific semantics of denial of existence records (NXDOMAIN) [10, 2]: When
correctly implementing RFC1034 [12], as clarified in RFC8020 [2], the Name Error
response code (NXDOMAIN in practice) has the semantic of there is nothing here or
anywhere thereunder in the name tree. Making this notion explicit in RFC8020 [2] is a
relatively recent development. Combined with the IPv6 PTR DNS tree, where each sub-
zone has 16 (0-f, one for each IPv6 nibble) children up to a depth of 32 levels, provides
the possibility to exploit standard-compliant nameservers to enumerate the zone.
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Algorithm 1: Algorithm for iterating over ip6.arpa., based on RFC7707 [10].
// Base-Case: max.ip6.arpa.len = 128/4 ∗ 2 + len(”ip6.arpa.”);
Function enumerate(base, records={ }, max.ip6.arpa.len)

for i in 0..f do
newbase← i+”.”+base;
qryresult← getptr(newbase);
if qryresult != NXDOMAIN then

if len(newbase) == max.ip6.arpa.len then
add(records, newbase);

else
enumerate(newbase,records,max.ip6.arpa.len);

.ip6.arpa

0 1 e f...

0 1 e f...

0 1 e f...

Fig. 1. Enumerating f.0.f.-
ip6.arpa., existing nodes are
highlighted in bold.

Specifically: Starting at the root (or any other known
subtree), a request for each of the possible child nodes
is performed. If the authoritative server returns NXDO-
MAIN, the entire possible subtree can be ignored, as
it indicates that no entries below the queried node ex-
ist. Algorithm 1 shows the corresponding algorithmic
description. Figure 1 provides a simplified visualiza-
tion, e.g., if a queries for 0-e.ip6.arpa. return NXDO-
MAIN, but f.ip6.arpa. returns NOERROR, we can ignore
these subtrees, and continue at f.ip6.arpa., finally finding
f.0.f.ip6.arpa. as the only existing record.

4 Methodology and Algorithmic Implementation

The approach outlined in Section 3 has been used on small scales in the past: Foremski
et al. [8] used it to collect a sample of 30,000 records from selected networks for their
study. In this section, we analyze the challenges of a global application of the technique
and describe how we can overcome these limitations.
Non RFC8020-compliant Systems: The current technique requires that RFC8020 [2]
is correctly implemented, i.e., that the nameserver behaves standard-compliant. How-
ever, following RFC7707 [10], this is not the case for all authoritative DNS nameserver
software found in the wild [2]. Specifically, if higher level servers (from a DNS tree
point of view) are not enumerable by any of the presented techniques, then this can
mask the enumerable zones below them. For example, if a regional network registry,
like APNIC or, RIPE would use a DNS server that cannot be exploited to enumerate
the zone, then all networks for which they delegate the reverse zones would become
invisible to our methodology.

To approach this challenge, we seed the algorithm with potentially valid bases, i.e.,
known to exist ip6.arpa. zones. Our implementation obtains the most recent Route-
views [20], and the latest RIPE Routing Information Service (RIS) [18] Border Gate-
way Protocol (BGP) tables as a source. Particularly important to allow the approach to
be easily reproducible: both are public BGP view datasets, available to any researcher.

Based on the data, we create a collapsed list of prefixes. Following prior work, we
consider the generated list a valid view on the Global Routing Table (GRT) [22]. For
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each of the collapsed prefixes we calculate the corresponding ip6.arpa. DNS record.
The resulting list is then used as the input seed for our algorithm. Alternative pub-
lic seed datasets are the Alexa Top 1,000,000 [4, 5] or traceroute datasets [8] (which,
as aforementioned, are biased by nature; thus, special care must be taken for tracer-
oute datasets). If available, other non-public datasets like the Farsight DNS recursor
dataset [21] could also be used.

Complimentary approaches to collect ip6.arpa. addresses or subtrees from systems
that implement RFC8020 incorrectly are those with which one can obtain (significant
parts of) a DNS zone. For example, by employing insufficiently protected domain trans-
fers (AXFRs), which are a prominent misconfiguration of authoritative nameservers [1].
Breadth-First vs. Depth-First Enumeration: For our data collection, we employ Al-
gorithm 1. Unfortunately, the algorithm leverages depth-first search to explore the IPv6
reverse DNS tree. This search strategy becomes problematic if any of the earlier sub-
trees is either rather full (non-sparse) or if the authoritative nameservers are relatively
slow to respond to our queries. Slow responses are particularly problematic: they allow
an “early” subtree to delay the address collection process significantly.

Substituting depth-first search with breadth-first search is non-trivial unfortunately.
Therefore, we integrate features of breadth-first search into the depth-first algorithm
(Algorithm 1), which requires a multi-step approach: Starting from the seed set, we
first use Algorithm 1 to enumerate valid ip6.arpa. zones below the records up to a cor-
responding prefix-length of 32 bits. If we encounter input-records that are more specific
than 32 bits, we add the input record and the input record’s 32-bit prefix to the result set.
Once this step has completed for all input records, we conduct the same process on the
result set, but with a maximum prefix-length of 48 bits, followed by one more iteration
for 64-bit prefixes. We opted to use 64 bits as the smallest aggregation step because it is
the commonly suggested smallest allocation size and designated network size for user
networks [11]. Algorithm 2 provides a brief description of the cook down algorithm.
The last step uses Algorithm 1 on these /64 networks with a target prefix size of 128
bits, effectively enumerating full ip6.arpa. zones up to their leaf nodes. To not overload
a single authoritative server, the ip6.arpa. record sets are sorted by the least significant
nibble of the corresponding IPv6 address first before they are further enumerated. Sort-
ing them by the least significant nibble spreads zones with the same most significant
nibbles as broadly as possible.

Combined with the observed low overall traffic that our modified technique gener-
ates, we can prevent generating unreasonably high load on single authoritative name-
server. Our approach, contrary to prior work, does not generate high load on the au-
thoritative nameservers before moving on to the next one. Otherwise it would launch a
denial of service attack against the nameserver. If our approach is more widely adopted
by researchers, future work should investigate how distributed load patterns can be pre-
vented, i.e., thousands of researchers querying the same nameserver simultaneously
(see Section 4).
Detecting Dynamically-generated Zones: Dynamically generating the reverse IP ad-
dress zone, i.e., creating a PTR record just-in-time when it is requested, has been pop-
ular in the IPv4 world for some time [16]. Unsurprisingly, utilizing dynamically gener-
ated IPv6 reverse zones has become even more common over time as well. Especially
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Algorithm 2: Algorithm cooking down the initial seed records.
Function cook down (records)

for prefix.len in 32,48,64 do
records.new←{ };
cur.ip6.arpa.len← prefix.len/4 ∗ 2 + len(”ip6.arpa.”);
for base in records do

// See Section 4 Dynamically-generated Zones/Prefix Exclusion/Opt-Out for details;
if checks(base) == False then

pass
else if len(base)≥ cur.ip6.arpa.len then

add(records.new, base);
crop.base = croptolength(base,cur.ip6.arpa.len);
add(records.new, crop.base);

else
add(records.new, enumerate(base, cur.ip6.arpa.len));

access networks tend to utilize dynamically-generated reverse records. While this pro-
vides a significant ease-of-use to the network operators, our algorithm will try to fully
enumerate the respective subtrees. For a single dynamically-generated /64 network it
leads to 264 records to explore, which is clearly impractical. Therefore, we introduce
a heuristic to detect if a zone is dynamically-generated, so that we can take appropri-
ate action. To detect dynamically-generated reverse zones, we can rely on the semantic
properties of reverse zones. The first heuristic that we use is the repeatability of returned
FQDNs. Techniques for dynamically-generated reverse zones usually aim at providing
either the same or similar fully-qualified domain names (FQDNs) for the reverse PTR
records. For the former detection is trivial. In the latter case, one often finds the IPv6
address encoded in the returned FQDN. In turn, two or more subsequent records in an
dynamically generated reverse zone file should only differ by a few characters. There-
fore, a viable solution to evaluate if a zone is dynamically-generated is the Damerau-
Levenshtein distance (DLD) [7].

Unfortunately, we encountered various cases where such a simplistic view is insuf-
ficient in practice. For instance, zones may also be dynamically-generated to facilitate
covert channels via DNS tunneling [14]. In that case, the returned FQDNs appear ran-
dom. Similarly in other cases, the IPv6 address is hashed, and then incorporated into
the reverse record. In those cases the change between two records can be as high as
the full hash-length of the utilized hash digest. We devised another heuristic based on
the assumption that if a zone is dynamically-generated, then all records in the zone
should be present. Following prior work by Plonka et al. and Foremski et al. [15, 8],
we determined that certain records are unlikely to exist in one zone all together, specif-
ically, all possible terminal records of a base that utilize only one character repeatedly.
For example, for the base 0.0.0.0.0.0.0.0.0.0.0.0.0.8.e.f.ip6.arpa such a record would be
f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.f.0.0.0.0.0.0.0.0.0.0.0.0.0.8.e.f.ip6.arpa. Therefore, we build and
query all sixteen possible records from the character set 0..f. Due to these records be-
ing highly unlikely [8], and the use of packet-loss sensitive UDP throughout DNS, we
require only three records to resolve within a one second timeout to classify a zone as
dynamically-generated. We omit the heuristic’s algorithmic description for brevity, as
the implementation is straight forward.



6 Fiebig et al.

Algorithm 3: Call-order in final script.
seeds← get seeds();
enum.records← cook down(seeds);
final.result←{ };
for base in enum.records do

// See Section 4 Dynamically-generated Zones/Prefix Exclusion/Opt-Out for details;
if checks(base) == False then

return { } ;

tmp.results← enumerate(base, 128);
final.result← final.result + tmp.results;

Prefix Exclusion: Naturally, in addition to excluding dynamically-generated zones, a
network operator may ask to be excluded from her networks being scanned. During
our evaluation, multiple network operators requested being excluded from our scans.
Furthermore, we blacklisted two network operators that did use dynamically-generated
zones, but for which our heuristic did not trigger, either due to rate-limiting of our
requests on their side, or bad connectivity toward their infrastructure. Similarly, our
algorithm missed a case for a US based university which used /96 network access allo-
cations, which we did not detect as dynamically-generated due to the preselected step-
sizes for Algorithm 2. In total, we blacklisted five ISPs’ networks and one university
network.
Ethical Considerations and Opt-Out Standard: To encourage best practice, for our
experiments and evaluation, the outbound throughput was always limited to a maximum
of 10 MBit/s in total and specifically to 2MBit/s for any single target system at a time
following our least-significant byte sorting for ip6.arpa zones. Although the load we
incurred was negligible for the vast majority of authoritative nameservers, we acknowl-
edge that the load this methodology may put onto authoritative servers may become
severe, particularly if more researchers utilize the same approach simultaneously or do
not limit their outbound throughput. Hence, we suggest to adopt and communicate the
practice of first checking for the existence of a PTR record in the form of 4.4.4.f.4.e-
.5.4.5.3.4.3.4.1.4.e. ... .ip6.arpa.. The respective IPv6 record encodes the ASCII repre-
sentation of DONTSCAN for /64 networks. For networks larger than /64, we suggest to
repeat the string. We do not use a non-PTR conform record, as this would exclude users
utilizing, e.g., restrictive DNS zone administration software possibly sanitizing input.
We will carry this proposal toward the relevant industry bodies, to provide operators a
simple method to opt out of scans.
CNAMEs: Our investigation also found cases of seemingly empty terminals in the
DNS tree, i.e., records of 32 nibble length without an associated PTR resource record
that do not return NXDOMAIN. Upon removal of these records, and by focusing on
non-empty terminals in these address bases, we still obtain valid results. In addition to
cases where the terminals are fully empty, CNAME records [13] may exist instead of
PTR records, which is why it is necessary to resolve CNAME records if a PTR record
does not exist.
Parallelization: Combining the previously presented algorithms, we can enumerate
the IPv6 PTR space (see Algorithm 3). Due to our algorithm’s nature, parallelization is
ideally introduced in the for loop starting at line 5 of Algorithm 2 and the for loop at
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Experiment Runtime Records Found Addresses Queries Dynamic Zones Blacklisted
/32 /48 /64 Full Total Seed /32 /48 /64 Total Unique /32 /48 /64 /32 /48

ip6.arpa. 120 130 429 3,244 3,932 / 3.5k 52.5k 1M 1.6M 335k 62M 615 15k 223k 0 1.5k
GRT SEED80 7 232 1,040 2,956 4,235 72k 73k 856k 582k 5.3M 2.8M 221.3M 1.5k 716k 80.5k 713 63

GRT SEED400 7 144 404 775 1,330 72k 73k 834k 1.4M 2.2M 33k 190.7M 1.5k 690k 796k 715 65
Unique Sum 73k 75k 895k 2,2M 5.8M 1.5k 732k 1M 715 1.6k

Table 1. Overview of the results of our evaluation.

line 4 in Algorithm 3. Technically, it would also be possible to introduce parallelization
in the first for loop of Algorithm 1. However, then parallelization might be performed
over a single authoritative server. This would put a high load on that system. By paral-
lelizing our approach through Algorithm 2 and Algorithm 3 parallel queries are made
for different IPv6 networks, thus most likely to different authoritative servers.

5 Evaluation

We evaluate our methodology on a single machine running Scientific Linux 6.7 with
the following hardware specification: four Intel Xeon E7-4870 CPUs (2.4GHz each)
for a total of 80 logical cores, 512GB of main memory, and 2TB of hard-disk capacity.
We installed a local recursive DNS resolver (Unbound 1.5.1) against which we perform
all DNS queries. Connection-tracking has been disabled for all DNS related packets on
this machine, as well as other upstream-routers for DNS traffic from this machine. An
overview of our results can be found in Table 1.
Enumerating .ip6.arpa.: In our first evaluation scenario, we enumerate addresses us-
ing the PTR zone root node of .ip6.arpa. as the initial input only, which will serve
as basic ground-truth. The respective dataset corresponds to the first column of Ta-
ble 1: ip6.arpa. The enumeration was completed within 65.6 hours, of which most time
was spent enumerating pre-identified /64s networks. As such, the impact of dynamic-
generation is evident from this experiment: 615 /32 prefixes are ignored due to dynam-
ically-generated PTR records, with an additional 15k /48 prefixes and more than 223k
/64 networks subsequently. This experiment yields a total of 1.6 million allocated IPv6
addresses.
GRT SEED80: Seeded Enumeration (80 Threads): For our second experiment, we
used the current IPv6 GRT as a seed and ran our algorithm with 80 threads in parallel.
The respective dataset is identified as GRT SEED80 in Table 1. The GRT is compiled
following our description in Section 4. In contrast to simply enumerating the ip6.arpa.
zone, pre-aggregating to /32 prefixes takes significantly less time. The reduced time is
primarily due to the seeds in the GRT having a certain prefix length already, mostly /32
prefixes. The same can be observed when comparing the seed set among aggregated
/32 prefixes. Interestingly, the dataset only increases by around 1,000 prefixes in that
aggregation step, mostly due to longer prefixes being cropped. However, in the next
step, we do find a significantly larger number of prefixes than those contained in the seed
set. Unfortunately, the next aggregation step demonstrates that a significant amount of
them are in fact dynamically-generated client allocations. Nonetheless, at more than 5.4
million unique allocated IPv6 address collected, leveraging the GRT seed to improve
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(c) Enum. to /128

Fig. 2. Executed DNS queries vs. obtained records for GRT SEED80.

collection exceeds the initial dataset by far (1.6 milion to 5.4 million). It is important
to note, however, that we discovered 335,670 records that are unique to the ip6.arpa.
dataset. These originate from currently unannounced prefixes. The ip6.arpa. root-node
should hence be included into every seed-set. However, depending on the purpose of
the data collection, identified yet unrouted addresses should be marked in the collected
data set.
GRT SEED400: Seeded Enumeration (400 Threads): Unfortunately, a full run with
80 parallel threads takes nearly three full days to complete. Therefore, a higher time
resolution is desirable. Due to low CPU load on the measurement machine we inves-
tigated the impact of running at a higher parallelization degree, using 400 threads to
exploit parallelization more while waiting for input/output. We refer to this dataset as
GRT SEED400, which was collected in less than a day. In comparison to collecting with
less parallel threads, we do not see a significant impact at the first aggregation level to-
ward /32s prefixes (which we expected) due to the generally low number of them that
must be enumerated here.

At the same time, we see a far higher number of obtained prefixes, primarily /64
prefixes. However, when examining the number of detected dynamically-generated and
blacklisted prefixes closer, we do see that a number of dynamically-generated prefixes
are not being detected correctly, which we discovered is due to packet loss. This is
highlighted by the number of prefixes in GRT SEED400 for each aggregation level,
which are considered dynamically-generated in a less specific aggregation level of
GRT SEED80. Indeed, for 92.94% of dynamically-generated /64 in GRT SEED400,
they have a /48 prefix already considered dynamically-generated in GRT SEED80.

Although the results between GRT SEED80 and GRT SEED400 differ significantly,
CPU utilization for GRT SEED400 was not significantly higher. The core reason for
this behavior is that our technique is not CPU bound. Instead, the number of maximum
sockets and in-system latency during packet handling have a significantly higher impact
on the result. Hence, instead of running the experiment on a single host, researchers
should opt to parallelize our technique over multiple hosts.
Queries per Zone and Records Found: The number of queries sent to each /32,
/48 and /64 prefixes respectively versus the number of more specific ip6.arpa. records
obtained per input prefix is contrasted in Figure 2(a)-2(c). An interesting insight of our
evaluation is that most zones at each aggregation level contain only a limited set of
records. Furthermore, we discover that the number of records found versus the number
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(a) Combined Result Set
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(b) Biased Data Acquisition

Fig. 3. Probability mass function for each 4bit position in obtained datasets following Foremski
et al. [8]. Figure 3(a) visualizes our combined dataset, with 5,766,133 unique IPv6 addresses.
Figure 3(b) depicts an artifact from a measurement error in an earlier study.

of executed queries is most densely populated in the area of less than 10 records per
zone. Additionally, we see a clear lower-bound for the number of required queries.
Specifically, the lower bound consists of the 16 queries needed to establish if a zone is
dynamically-generated, plus the minimum number of queries necessary to find a single
record. Correspondingly, for the de-aggregation to /64, an additional 64 queries are
required. To go from an aggregation level of /64 to a single terminal record, at least 256
queries are necessary.

Clear upper and lower bounds for the quotient of executed queries and obtained
records are also visible. In fact, these bound become increasingly clear while the ag-
gregation level becomes more specific and follows an exponential pattern, hinting at an
overall underlying heavy-tailed distribution. Furthermore, the two extremes appear to
accumulate data-points, which is evident from Figure 2(c). The upper bound thereby
corresponds to zones with very distributed entries, i.e., zones that require a lot of dif-
ferent paths in the PTR tree to be explored, e.g., zones auto-populating via configura-
tion management that adds records for hosts with stateless address auto-configuration
(SLAAC). On the other hand, the lower bound relates to well-structured zones, i.e., for
which the operators assign addresses in an easily enumerable way, e.g., sequentially
starting at PREFIX::1.
Address Allocation: We utilized the visualization technique introduced by Foremski
et al. [8] to analyze our dataset. To do so, we created the set of all unique IPv6 address
records we obtained over all measurements. The respective results are depicted in Fig-
ure 3: the least significant nibbles are relatively evenly distributed, which aligns with
our observation that zones are either very random or in some form sequential.

Fortunately, the technique by Foremski et al. [8] also allows us to validate our
dataset. Specifically, Figure 3(b) has been created over an earlier dataset that we col-
lected where an unexpected summation of the value d in IPv6 addresses between the
64th and 96th bit appears. A closer investigation revealed that this artifact was caused
by a US-based educational institution that uses their PREFIX:dddd:dddd::/96 alloca-
tion for their DHCPv6 Wi-Fi access networks. As aforementioned, this dynamically-
generated network was not detected due to the step-sizes in Algorithm 2, which is why
we excluded it manually, see Section 4. Further work should evaluate 4 nibble wide
steps, as proposed earlier in this paper.
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Fig. 4. Overview of address allocation in the SaaS cloud provider’s network.

6 Case-Study

Following, we present how findings of our technique can be used to obtain in-depth
insights into practical issues. We provide a brief analysis of the IPv6 efforts in the in-
ternal infrastructure of a large SaaS (Software-as-a-Service) cloud platform operator.
For our investigation, we selected the prefixes of this operator based on its IPv6 an-
nouncements collected via bgp.he.net. To obtain further ground-truth, we also collected
the PTR records for all IPv4 prefixes announced by the operator’s autonomous sys-
tem (AS) from bgp.he.net. We took two measurements, T1 and T2, two weeks apart in
September 2016. Figure 4 shows an overview of the allocation policy of the operator.
Specifically, the operator uses three /32 prefixes, with one being used per region she
operates in (see Figure 4(a)). In each region, the operator splits her prefix via the 40th

to 44th bit of addresses. IPv6 networks used by network-edge equipment for intercon-
nectivity links between different regions are distinguished by an 8 at the 48th to 51st

bit, instead of 0, which is used by all other prefixes.
Another interesting part of the addressing policy are the /48 networks the SaaS

provider allocates. Here, we can see that networks are linearly assigned, starting with
PREFIX:0000::/48, thus creating pools of /64s for various purposes. Furthermore, with
/48s being linearly assigned, we discover that prefixes with higher indexes have not
yet been assigned. The same assignment policy holds for hosts in /64s networks, as
indicated by the distribution over the three least significant nibbles used in addresses.

A third aspect of the operator’s assignment policy is documented in Figure 4(b).
Specifically, the boxplots show the number of hosts per /64 prefix in the operators net-
works. For both measurements, we only observe two /64 prefixes with significantly
more than 250 hosts. A closer investigation of these networks reveals that they are re-
lated to internal backbone and firewalling services spanning multiple Points-of-Presence,
following the PTR naming schemes of the obtained records. Apart from this change, we
do see a slight increase in the number of hosts per network in the median, but not the
mean. An interesting side-note is that the IPv6 PTR records appear manually allocated
by the operator’s network staff. We do arrive at this conclusion because we encountered
various records with typographical errors in them.

Comparing of the datasets with the corresponding IPv4 PTR sets, we note that the
diversity of records is far higher in the IPv4 set. There, various second-level domains
can be found mixed together, which we did not encounter for the IPv6 set. Various
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naming schemes for infrastructure hosts are also present. For example, we discover that
the customer-facing domain of the operator is being used for infrastructure services.
However, it has apparently been disbanded with the growth of the organization, as we
also discover infrastructure specific second-level domains. For the IPv6 set we only
observe one infrastructure domain. In general, naming is far more consistent for IPv6.
Our conjecture is that the operator made an effort in keeping a consistent state when
finally rolling out IPv6, while IPv4 is suffering from legacy setups introduced during
the company’s growth. The last striking observation is that the PTR records returned for
IPv4 and IPv6 reverse pointers do not resolve to valid A and AAAA records themselves.
A direct consequence is that, for this network operator, the technique proposed by Czyz
et al. [5] is not applicable. We conjecture that the operator chose this setup because
she does not require forward lookups, yet wants traceroutes and other reverse-lookup
related tools, especially distributed logging, to show the FQDNs.

7 Conclusion

We introduce a novel methodology to collect a large IPv6 dataset from exclusively
public data sources. Our initial evaluation of the methodology demonstrates its prac-
tical applicability. Requiring no access to a specific network vantage point, we were
able to collect more than 5.8 million allocated IPv6 addresses, of which 5.4 million
addresses were found in just three days by issuing 221 million DNS queries. Specif-
ically, our technique discovered one allocated IPv6 address per only 41 DNS queries
on average. With the obtained dataset, we were able to provide an in-depth look into
the data-centers of a large cloud provider. By comparing our results with the corre-
sponding IPv4 reverse entries, we demonstrate that our technique can discover systems
which would have been missed by previous proposals for collecting IPv6 addresses [5].
In summary, our technique is an important tool for tracking the ongoing deployment
of IPv6 on the Internet. We provide our toolchain to researchers as free software at:
https://gitlab.inet.tu-berlin.de/ptr6scan/toolchain

We note that our technique can also be applied to E.164 records (Telephone Num-
bers in DNS), but leave this for future work. Furthermore, future work should utilize this
technique over a period of time in order to obtain a progressing view on IPv6 deploy-
ment on the Internet. To increase coverage, additional seeds and other address collection
techniques should be integrated. This extension of our work should be combined with
security scanning as it is already done for IPv4 [19]. Following the findings of Czyz et
al. [5], such projects are direly needed to increase overall security on the Internet.

Acknowledgements. We thank the anonymous reviewers for their helpful feedback and
suggestions, and Peter van Dijk for suggesting this research path to us. This material
is based on research supported or sponsored by the Office of Naval Research (ONR)
under Award No. N00014-15-1-2948, the Space and Naval Warfare Systems Com-
mand (SPAWAR) under Award No. N66001-13-2-4039, the National Science Founda-
tion (NSF) under Award No. CNS-1408632, the Defense Advanced Research Projects
Agency (DARPA) under agreement number FA8750-15-2-0084, a Security, Privacy and
Anti-Abuse award from Google, SBA Research, the Bundesministerium für Bildung
und Forschung (BMBF) under Award No. KIS1DSD032 (Project Enzevalos), a Leibniz



12 Fiebig et al.

Price project by the German Research Foundation (DFG) under Award No. FKZ FE
570/4-1. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The opinions,
views, and conclusions contained herein are those of the author(s) and should not be
interpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of ONR, SPAWAR, NSF, DARPA, the U.S. Government, Google,
SBA Research, BMBF, or DFG.

References
1. Atkins, D., Austein, R.: Threat Analysis of the Domain Name System (DNS). RFC3833
2. Bortzmeyer, S., Huque, S.: NXDOMAIN: There Really Is Nothing Underneath. RFC8020
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