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Abstract

Introduction: Primary liver cancer is a commonly
diagnosed cancer and accurate diagnosis is crucial for
treatment planning. To differentiate between malignant
and benign liver tumors, contrast-enhanced MRI is
typically used as it provides information over multiple
contrast phases. However, diagnosis based on MRI is
challenging. In this study, automatic classification is
used to distinguish common primary liver tumors.

Methods: Imaging data from 102 patients with
malignant (hepatocellular carcinoma) and benign (focal
nodular hyperplasia and hepatocellular adenoma)
primary liver tumors was used for binary classification
through radiomics and deep learning approaches. The
radiomics method was applied with the use of the
open-source toolbox WORC. The deep learning model
was based on the ResNet-10 architecture. The data
input consisted of individual and combined phases of
contrast-enhanced T1-weighted and T2-weighted MRI.

Results: The highest performance values were found
for the radiomics approach that combined the
precontrast, arterial, portal venous, and delayed
contrast phases together with T2-weighted MRI, with
an AUC of 0.92. The deep learning model scored an
AUC of 0.83 with this data input, however substantial
overfitting occurred due to the limited sample size.

Conclusion: The radiomics classifiers based on
combined contrast-enhanced T1-weighted and
T2-weighted MRI can differentiate malignant from
benign primary liver tumors with limited data samples.
The classification task is too complex with the given
data when using a ResNet-10 model and should be
applied to an extended dataset.

Keywords: Radiomics, Deep Learning, ResNet, MRI,
Post-contrast T1, Liver Cancer

1 Introduction

Primary liver cancer is the sixth most frequently
diagnosed cancer and the third most frequent cause of

cancer deaths globally, with around 906,000 new cases
and 830,000 deaths in 2020 [1]. Whether a primary liver
tumor is malignant or benign is crucial for treatment
planning. Of the primary malignant lesions,
hepatocellular carcinoma (HCC) is the most common
phenotype [2] as it accounts for roughly 75% of all liver
cancers [3, 4]. The earlier HCC can be detected, the
more treatment possibilities there are for the patient, of
which examples are liver transplantation, resection,
and immunotherapy [5].

Besides primary malignant lesions, a range of
primary benign hepatic lesions exists of which
frequently occurring examples are focal nodular
hyperplasia (FNH) and hepatocellular adenoma (HCA).
From these two lesions, FNH is most common with a
0.4–3 % prevalence, followed by HCA with a
prevalence between 0.001 and 0.004 % [6–8]. The need
for treatment of these benign lesions depends on the
presence of symptoms, the risk of future complications,
and the risk of malignant transformation. For FNH,
patients usually don’t experience any symptoms and
there is no risk of malignant transformation. In most
cases, a follow-up instead of treatment is sufficient [7].
For HCA, there is a higher risk probability, of which
bleeding is the highest. HCA can transform into a
malignancy and therefore become an HCC lesion over
time [7].

To provide the most fitting treatment planning, a fast
and accurate diagnosis is needed. A common, early
procedure in diagnosis-making is the analysis of
magnetic resonance imaging (MRI) by a radiologist.
Radiologists use a combination of MRI sequences to
analyze lesions in the liver, as they provide
complementary information. Sequences used for a
standard MRI examination are T2-weighted (T2),
pre-contrast and post-contrast T1-weighted (T1), and
in-phase and out-of-phase MRI, and
diffusion-weighted imaging (DWI) [9]. The diagnosis of
HCC with MRI is based on vascular image
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characterizations, which appear in typical ways in
post-contrast T1 [10]. In contrast-enhanced
T1-weighted (CE-T1) imaging, a series of images is
acquisitioned over several contrast phases with the use
of gadolinium-based contrast agents. The contrast
injections emphasize the difference in vascular
architecture of the liver parenchyma and most liver
lesions [9] and can accentuate phenotype-specific
characteristics, which aids radiologists in
distinguishing the lesions. For HCC, this typically
results in hypervascularity in the arterial contrast phase
and washout in the delayed and portal venous phase
for instance [10].

Despite the use of contrast enhancement, difficulties
in diagnosis can arise when different types of lesions
show similar image characterizations. For example,
fibrolamellar HCC and FNH are both frequently
hypervascular [11]. Another example is a central scar,
which is typical for FNH but is also reported in more
than a quarter of HCC [11]. HCA can show something
that looks like a central scar, which in reality is tissue
from fat, necrosis, or old hemorrhage [11]. Difficulties
in diagnosis like these may lead to an unnecessary
referral from a peripheral to a tertiary care center,
which is costly and time-consuming. While diagnosis
on imaging remains challenging, the final diagnosis is
often based on a biopsy. Besides being time-consuming,
taking a biopsy is an invasive method that brings
inconveniences to the patient and has the risk of tumor
seeding and other complications [12].

Computer-aided diagnosis (CAD) techniques hold a
potential solution in the search to reduce the need for
biopsies and increase diagnostic accuracy. A CAD tool
that can distinguish malignant from benign liver
tumors based on quantitative information can decrease
the diagnosis process by acting as a quickly available
second opinion. In CAD, radiomics and deep learning
are the most often applied methods. Both approaches
extract high-dimensional, quantitative features from
medical images and analyze them for diagnosis or
prediction [13]. Whether a radiomics or a deep learning
model is the best choice for tumor classification,
depends on the complexity of the task and available
data. In radiomics, the extracted features are
predefined and hand-engineered. They can be divided
into histogram, morphologic, and texture features [13].
To extract these features, radiomics methods most often
require segmentations of the lesions, which can be
time-consuming to make. In deep learning, the
extracted features are not predefined and the model
learns the best features from the data for the given
task [13]. The freedom in feature extraction gives the
possibility to have highly accurate classification
without the use of segmentations. Therefore,

segmentations are often not part of the data input and
instead bounding boxes surrounding the tumor are
used, which are much easier to define. To perform well,
deep learning models need a high number of data
samples to generalize well, while datasets in the
medical field are often limited in size. In contrast to
deep learning, the image information that a radiomics
model can learn is limited by the choice of predefined
features and important information might therefore be
missed. However, this limitation in features can be
beneficial for the generalizability of the model when
dealing with a small dataset.

For the automatic classification of liver tumors based
on CE-T1 MRI, multiple studies have used radiomics
methods [10, 14–16] and deep learning methods [17–22]
with promising results. In these studies, both radiomics
and deep learning models for liver lesion classification
have been demonstrated to benefit from the combined
usage of various contrast phases and sequences. These
studies are described in the literature review in
Appendix B, together with more background on
primary liver tumors and classification through
radiomics and deep learning.

To our best knowledge, no study has been performed
on the classification of primary liver tumors based on
contrast-enhanced MRI that compares radiomics and
deep learning on the same dataset. The primary goal of
this research was therefore to develop a method for
distinguishing benign and malignant primary liver
tumors based on contrast-enhanced MRI imaging with
the use of radiomics and deep learning. The secondary
aim of this research was to compare the performance of
contrast-enhanced and non-enhanced MRI, to analyze
the contribution of the use of contrast agents. The third
aim was to analyze the deep learning performance
without the use of segmentations.

2 Methods

2.1 Data

2.1.1 Dataset description

The dataset used in our study was based on the dataset
acquired by Starmans et al. (2021) [23]. This dataset was
collected from patients who were diagnosed in or
referred to the Erasmus Medical Center (Rotterdam, the
Netherlands) between 2002 and 2018. The data consists
of the patient’s imaging data, age, sex, and liver lesion
phenotype. In the study of Starmans et al., only T2
images were used and segmentations were based on
these images. For our study, the CE-T1 images of the
patients were used. Since the patients originate from
different hospitals and had been imaged with different
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Figure 1: MRI scans of a patient with a HCA lesion. A: the precontrast phase, no contrast enhancement. B: arterial
phase, the contrast is uptaken by the lesion and a heterogeneous pattern can be seen on the spleen. C: the portal
venous phase, the spleen is now homogeneous. D: the delayed phase, the image characteristics are almost identical
to the portal venous phase, E: the T2-weighted sequence.

protocols, there was much heterogeneity in the
contrast-enhanced imaging data. A variety of contrast
agents has been used, including Multihance, Gadovist,
Dotarem, Magnevist, and Primovist. The number of
contrast phases differed per patient and some patients
had no contrast-enhanced scans at all and were
therefore excluded. For our research, in total four
contrast phases were included: the precontrast, arterial,
portal venous, and delayed phases. Images made
during the hepatobiliary phase were not included in
the dataset since only a fraction of the patients were
imaged with contrast agents that allow for this contrast
phase (Multihance or Primovist). The patients that were
diagnosed with HCC, FNH, or HCA were included. A
fourth phenotype in the dataset of Starmans et al. [23],
i.e. intrahepatic cholangiocarcinoma (iCCA), was not
used in our dataset because only four patients could be
included. Examples of the included images are shown
in Figure 1.

2.1.2 Contrast phase labeling

To compare the classification performance for each
contrast phase individually as well as combined, one
image per contrast phase for each patient was included
in our dataset. To find the CE-T1 images in the dataset,
a string search was performed on the following
DICOM tags: series description (0008,103E), protocol
name (0018,1030), and contrast/bolus agent (0018,0010).
Inclusion terms were e.g. ‘dynamic’, ’multiphase’, and
the names of contrast agents and the four contrast
phases. To select an image per phase, the contrast
phases of the available dynamic images had to be
identified. The contrast phase labeling steps were based
on the protocols described by Donato et al. [24] and
were performed under the supervision of an
experienced radiologist.

First, the earliest postcontrast image had to be
identified, which is the first image to show a
hyperintense aorta. The time difference between the

first postcontrast images and all the other dynamic
images after were calculated.

Second, the image that was made right before the
first postcontrast image was selected as the precontrast
phase. Although often multiple precontrast images were
available and could be found by their series description,
this image was selected since it was expected to have
the least motion artifacts compared to the following
contrast-enhanced images.

Third, the arterial phase can be recognized by
heterogeneous enhancement of the kidneys and
spleen [25, 26]. Often, multiple images per patient
showed this enhancement. Radiologists prefer to
evaluate the late arterial phase over the early arterial
phase since the contrast agent is more likely to be taken
by the tumor. Therefore, the last made arterial image
was selected to increase the chance of including a late
arterial phase image.

Fourth, the images that no longer showed
heterogeneity in the kidneys and spleen were either
labeled as the portal venous or delayed phase. Since the
portal venous and delayed phases are visually
indistinguishable, the DICOM information on
acquisition time (0008,0032) was applied in the labeling
of these two phases. Any image that was made
minimally 2.5 minutes and maximally 7 minutes after
the first postcontrast image, was considered to be made
during the delayed phase. To have a maximum
difference between the portal venous and the delayed
phase, the first portal venous and the last delayed
images were chosen.

Only patients with all four contrast phases were
included in the dataset to compare all phases
individually on the same data. Patients with missing
acquisition times in the DICOM information were
excluded. Since this occurred mostly for patients with
HCC, some subjects with benign tumors were excluded
to not further imbalance the classes.
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2.1.3 Segmentations

The dataset of Starmans et al. [23] included
segmentations that were semi-automatically made by
radiologists on the T2 images. These segmentations
were warped so that they spatially overlapped with the
tumors in the dynamic images. To warp these
segmentations, a rigid registration of the T2 images to
the CE-T1 images was performed with the elastix
toolbox [27]. The components of the registration
consisted of the multi-resolution registration, the
mutual information metric, the Euler transform, the
adaptive stochastic gradient descent optimizer, and the
third-order B-spline interpolator. The masks were
warped by using a nearest-neighbor interpolator. The
quality of the transformed segmentations was visually
analyzed over a sample of the total number of patients.

2.1.4 Data preprocessing

For the radiomics experiments, only z-score
normalization was applied on the whole image as the
used method allows for different image and voxel sizes.

For the deep learning method, the images were
preprocessed to make the image and voxel sizes equal
for all samples. First, the images and segmentations
were resampled to the same voxel size. This was set to
the median voxel size of the images from the portal
venous phase: 1.4 x 1.4 x 2.5 mm. Second, the images
and segmentations were cropped around the center
point of the tumor with a crop size of 192 x 160 x 96
voxels. This bounding box fitted the largest tumor
diameters plus a margin for mask shifts due to
warping. Padding with the minimal image intensity
value was applied if the bounding box fell outside the
image. Lastly, z-score normalization was applied to the
images.

2.2 Radiomics classification

For the radiomics classification method, the machine
learning toolbox WORC (Workflow for Optimal
Radiomics Classification) [28] was used. This
open-source toolbox optimizes radiomics workflows by
performing classification along many combinations and
algorithms and hyperparameters and by comparing the
performances. WORC uses conventional radiomics
pipelines and conventional machine learning
algorithms [28]. The workflows in WORC are divided
into image acquisition, image preprocessing,
segmentation, feature extraction, and data mining [29].

The input data for radiomics with WORC consisted
of images, segmentations, and ground truth labels.
After pre-processing, 564 quantitative features were
extracted from the imaging data within the

segmentation boundaries. These features represent
information about the intensity, morphology,
orientation and positioning, and texture of the
segmented lesions [28]. WORC optimizes algorithms
and hyperparameters for data mining (e.g. feature
selection) and machine learning. In total, 1000
workflows are sampled through a random search of
algorithms and hyperparameters. Then, the workflows
are ranked based on the F1-score performance of a
validation dataset. The 100 workflows highest in rank
are ensembled to form the final prediction model.

2.3 Deep learning classification

The deep learning classification was performed with a
residual neural network (ResNet) [30], which is a
convolutional neural network (CNN) with residual
units. The architecture was copied from the
Pytorch-based, open-source framework MONAI [31].
The used model is a 3D ResNet-10, which has ten deep
layers. This model is the most shallow 3D ResNet
within the MONAI framework and is chosen because
our dataset was relatively small. A schematic overview
of the ResNet-10 architecture is shown in Figure 2. The
ten deep layers consist of a convolutional layer, four
residual blocks of each of two deep layers, and a final
fully connected layer. The first convolutional layer is
followed by batch normalization, a ReLU activation
function, and max-pooling. A residual block consists of
two repetitions of a convolution layer, batch
normalization, and a ReLU. Besides the normal
residual block outputs, ResNets also have skip
connections. In a skip connection, the input is only
downsampled before being fed to the next layer and
thus does not go through the residual block. Before the
input within the residual block goes through the
second ReLU layer, the output of the skip connection is
added. Together they go through the ReLU and form
the input of the next layer. After the last residual block,
there is an adaptive average pooling layer that fits its
kernel size and stride to a target output of 1 x 1 x 1.
Lastly, a fully connected layer is connected with a
single output.

2.4 Experimental setup

2.4.1 Fitted models

For both the radiomics and deep learning methods,
eight different models were fitted, which included both
the images and segmentations as input. To evaluate the
predictive value of each MRI sequence, five models of a
single sequence were fitted, called Precontrast, Arterial,
Portal venous, Delayed, and T2. Next, three
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Figure 2: Architecture of the ResNet-10 model. The numbers in brackets are the output dimensions of each
layer and represent the number of convolution filters and the width, height, and depth of the image, respectively.
The convolution and pooling operations are in 3D and the kernel size and stride apply to all three dimensions.
Abbreviations: Conv: convolution, RB: residual block, FC: fully connected, ReLU: rectified linear unit, ks: kernel size,
Adapt. avg: adaptive average.

combinations of image inputs were applied: 1)
Precontrast + T2, to evaluate the predictive value of all
sequences without contrast; 2) All phases, to evaluate
the combined predictive value of the four contrast
phases; and 3) All phases + T2, to evaluate whether all
sequences combined has more value. In the ground
truth labels for the binary classification, the positive
class represented the malignant tumors, the negative
class represented the benign tumors.

2.4.2 Radiomics experiments

The radiomics experiments were performed on AMD
Opteron 2378 CPUs. Python version 3.6.8 and WORC
version 3.6.0 [29] were used.

The WORC toolbox performed a cross-validation
with a 100x stratified random-split for an 80% training
and 20% test set. For model optimization, a second
internal cross-validation is performed on the training
set, with a 5x random-split for an 85 % training and
15 % validation set. With 5 splits for training, 100 splits
for testing, and 1000 workflows in the random search, a
total of 500,000 workflows were applied per radiomics
experiment.

2.4.3 Deep learning experiments

The deep learning experiments were performed on an
AMD EPYC 7742 CPU with Nvidia A40 48GB GPUs.
Python version 3.7.4, MONAI version 1.1.0 [31], and
Pytorch version 1.13.1 [32] were used for fitting the
models.

The ResNet-10 model had two input channels per
MRI sequence: one for the image and one for the
segmentation. After shuffling the data with a fixed
random seed, a stratified 5-fold cross-validation was
implemented. This was substantially less than the 100x
random split of the radiomics method because
applying a 100x random split was not feasible for the
given time and resources of this research. Data
augmentation was applied to the training set to
generalize the model. The augmentation was
performed with MONAI transforms that were
randomly applied with probability p. These transforms
consisted of zooming (p = 0.3), flipping (p = 0.5), 20°
rotation (p = 0.3), and Gaussian noise with a standard
deviation of 0.05 (p = 0.5).

The model had 14,356,929 trainable parameters in
total. The batch size was maximized based on the
available GPU memory, which allowed for a batch size
of 2. An Adam optimizer with a learning rate of 0.0001
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was used, after it gave better loss curves compared to a
stochastic gradient descent (SGD) optimizer and a
range of lower and higher learning rates. Since there
were only two classes, the loss function was the binary
cross-entropy with logits loss (BCEWithLogitsLoss on
PyTorch). This loss functions combines a sigmoid
function and binary cross-entropy loss into one layer,
turning the output into a probability before the loss is
calculated.

The experiments were performed over a total of 200
epochs. The test loss curves showed sharp fluctuations
over epochs. Therefore, an exponential moving average
filter was applied to smoothen the curves, after which
the test output was calculated over an average of the
last 5 epochs. A sigmoid layer was applied to the test
output to get the prediction probabilities, which were
later used for the evaluation metrics.

For the model with the highest AUC value, three
more adjusted versions were fitted. In the first of these
models, the segmentation input channels were
removed. Gradient-weighted class activation mapping
(Grad-CAM) [33] was used to make heatmaps for the
last convolutional layer of this model and the original
one. These heatmaps visualize which regions were
important for the final prediction of the CNN. In the
other two models, transfer learning was applied with
and without the use of segmentations. Transfer
learning is often used for limited datasets [34]. The
models were initialized with pre-trained weights, from
Med3D [35], which are based on 23 medical datasets
and are publicly available.

2.5 Statistical analysis of performance

The accuracy, area under the curve (AUC) of the
receiver operating characteristics (ROC) curve,
F1-score, sensitivity, and specificity were analyzed for
both the radiomics and deep learning experiments. The
prediction probabilities had values between 0 and 1
and the accuracy, F1-score, sensitivity, and specificity
were calculated with a cut-off of 0.5. For the metrics
that the radiomics method outputs for the test set
evaluation, 95 % confidence intervals were constructed
from the 100x random-split cross-validation. These
intervals were made with a corrected resampled
t-test [36]. For calculating the deep learning evaluation
metrics scikit-learn version 1.0.2 [37] was used. The
mean value and standard deviation of the 5-fold
cross-validation were calculated for all metrics.

The AUC performance of the radiomics models,
including 100 values from each split, were compared in
a paired corrected t-test [36]. To the pairwise
comparison of the eight fitted models, a Bonferonni
correction was applied and the calculations were also

performed with scikit-learn. This test was not applied
to compare the deep learning results because they only
consist of five AUC values per model, which makes the
test inappropriate.

Boxplots of the AUC values of both methods were
made for each fitted model with Seaborn version 0.11.2.
AUC values higher than 0.5, were considered to be
better than random guessing.

A Mann-Whitney U test was performed on the
radiomics features, which tests for significant
differences in the distribution between the two classes
for each feature [28]. A Bonferonni correction was also
applied to this test [29].

2.6 Failed classification analysis

The radiomics method outputs a percentage of correct
classifications over the 100 test splits for each subject.
To gain insight into why certain lesions could not be
classified, failed cases were analyzed with the help of a
radiologist. The subjects that had a 0 % correct
classification for more than one of the fitted models
were selected for the analysis. An experienced
radiologist classified the lesions with the use of the T2
and CE-T1 images and stated which sequences were
most informative for the decision. The radiologist also
labeled the lesions as typical or atypical based on their
image characterization. Then, the images were
analyzed based on tumor size, image quality,
segmentation quality, and the radiologist’s input. For
the model with the highest AUC value, the lesions that
were correctly classified in 50% or less of the test splits,
a comparison to the deep learning performance of the
corresponding model was made.

3 Results

3.1 Final dataset

The data set consisted of 102 patients in total.
Information about age, sex, and phenotype are
depicted in Table 1. The malignant class consisted of 40
HCC lesions, and the benign class consisted of 35 HCA
and 27 FNH lesions.

Table 1: Clinical characteristics of the dataset.

Patients Age* Male Female HCA FNH HCC
Benign 62 38 [30, 46] 2 60 35 27
Malignant 40 68 [60, 73] 22 18 40
Total 102 44 [32, 63] 24 78 35 27 40
*: median [1st quartile, 3rd quartile]
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3.2 Warped segmentations

The quality of the warped segmentations was
considered sufficient for most scans based on visual
analysis. The quality was considered sufficient when
the segmentation overlapped well with the tumor, with
the focus on the middle axial slices, where the tumor
area is typically the largest. Due to warping, few spatial
shifts of the segmentation to the lesion occurred both in
and out of plane. For smaller tumors, spatial shifts had
more effect which led to worse segmentation overlap.
In other cases, the segmentations were well aligned.
however, with some parts of the tumor missing in the
segmentation. These tumor regions were overlooked
upon annotation in the T2 images. Examples of warped
segmentations for these cases are depicted in Figure 3.

3.3 Radiomics

The performance of the different radiomics experiments
is summarized in Table 2. It should be noted that the
95% confidence intervals overlap for all models over
all the metrics. From the individual image inputs, the
mean AUC values ranged from 0.75 to 0.88. From these
models, the phases with contrast enhancement had a
higher AUC than the Precontrast and T2 models. From
the combined image inputs, the AUC ranged from 0.85
to 0.92. The Precontrast + T2 had a higher AUC than
its individual models and performed similarly to the
All phases model. In Figure 4, all the AUC values are
collated in boxplots. For all performance metrics, the All
phases + T2 model had the highest values. According to
the pairwise t-test on the AUC, there was no significant
difference between any of the models.

The radiomics features associated with a statistically
significant difference between the classes were all
texture features, except for the three histogram features
of the Arterial models. None of the models had
significantly different shape features. For the All phases
+ T2 model, 33 features were statistically significantly
different for the two classes. These features had a
p-value below 2e-05, which was the Bonferonni
corrected p-value of the Mann-Whitney U test. These
features were divided into vessel filter (21), local binary
pattern (8), Laplacian of Gaussian filter (3), and Gabor
filter (1) features.

3.4 Deep learning

The performance of the ResNet-10 model with channels
for both images and segmentations is summarized in
Table 3. It should be noted that the standard deviations
of all metrics are relatively high and extracting from and
adding to the mean values gives ranges that overlap for
all models. The AUC values of the individually fitted

models ranged from 0.77 to 0.80, and of the combined
models from 0.79 to 0.83. In Figure 4, all the AUC values
are collated in boxplots. In contrast to the radiomics
models, the Precontrast model had a higher AUC than
the T2 model and the contrast-enhanced models, except
for the All phases + T2 model. Like in the radiomics
models, the highest AUC can be found for the All phases
+ T2 model. The mean values of the AUC are lower
than for the radiomics models, except for the Precontrast
model. Also, the range of the mean AUC values over
the models is smaller than for the radiomics models.

Although the performance metrics were within the
same range as the radiomics experiments, overfitting
on the training sets occurred in all experiments. There
was a notable variation in the test loss for the five cross-
validation folds and some folds showed overfitting in
the test loss straight from the first epoch. The value of
the test loss at the first epoch was similar for every fold
with a standard deviation range of 0.022-0.053 over all
the models. After 200 epochs, the mean value of the test
loss remained similar to that of the first epoch, however,
the standard deviation range increased to 0.12-0.25. A
typical example of the test and train loss curves and the
AUC are depicted in Figure 5. This figure shows that
the variation of the loss increased over the epochs but
the mean AUC and its variation stagnated over time.

Since the highest AUC value was found for the All
phases + T2 model, the experiments without
segmentation input and with the use of transfer
learning were applied to this model. The results are
shown in Table 4. The use of pretrained weights
decreased all of the performance metrics. Only a slight
change was found in the mean values of the evaluation
metrics when the segmentation input was removed.
The GradCAM visualizations of the models trained
with and without segmentations are depicted in
Figure 6 for three correctly classified lesions. For two of
the three examples, the model did not focus on the area
of the tumor for any of the models.

3.5 Failed classification

For the 15 lesions with a 0 % correct classification for
more than one radiomics model, no relation was found
with tumor size, image quality, segmentation quality,
or whether the tumor was typical or atypical on the
different sequences. The sequences that the radiologist
considered to be uninformative for classification did not
directly relate to the sequences of the radiomics models
that failed.

For the All phases + T2 radiomics model, 16 lesions
had a correct classification score of 50% or less. From
these 16 subjects, 11 were incorrectly classified by the
All phases + T2 deep learning model.
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Figure 3: Examples of warped segmentations used for the arterial phase images. A: Good quality segmentation with
a 0 % correct classification score in the All phases + T2 radiomics model. B: Lesion with missing tumor regions with a
100 % correct classification score in the All phases + T2 radiomics model. C: Spatial shift in the axial plane with a
100 % correct classification score in the All phases + T2 radiomics model. D: Lesion with missing tumor regions with
a 10 % correct classification score in the All phases + T2 radiomics model.

Table 2: Performance of the radiomics experiments. The mean values of the internal cross-validation and the 95 %
confidence intervals are reported. Abbreviations: Pre: Precontrast, Art: Arterial, PV: Portal venous, Del: Delayed,
AUC: area under the receiver operating characteristic curve. The highest values are written in bold text.

Models Accuracy AUC F1-score Sensitivity Specificity
Precontrast 0.70 (0.61, 0.79) 0.75 (0.64, 0.87) 0.69 (0.59, 0.78) 0.48 (0.31, 0.64) 0.84 (0.72, 0.95)
T2 0.74 (0.65, 0.82) 0.80 (0.70, 0.89) 0.73 (0.64, 0.82) 0.58 (0.40, 0.77) 0.83 (0.70, 0.96)
Precontrast + T2 0.80 (0.72, 0.88) 0.85 (0.78, 0.93) 0.79 (0.71, 0.87) 0.69 (0.52, 0.86) 0.86 (0.76, 0.96)
Arterial 0.75 (0.66, 0.85) 0.81 (0.71, 0.92) 0.74 (0.64, 0.84) 0.56 (0.36, 0.76) 0.87 (0.77, 0.97)
Portal venous 0.80 (0.72, 0.88) 0.88 (0.81, 0.95) 0.80 (0.71, 0.88) 0.69 (0.53, 0.85) 0.87 (0.76, 0.98)
Delayed 0.81 (0.73, 0.89) 0.88 (0.82, 0.95) 0.81 (0.72, 0.89) 0.70 (0.54, 0.86) 0.88 (0.78, 0.98)
All phases* 0.80 (0.73, 0.88) 0.87 (0.79, 0.95) 0.80 (0.72, 0.88) 0.68 (0.52, 0.84) 0.88 (0.79, 0.96)
All phases* + T2 0.85 (0.78, 0.92) 0.92 (0.85, 0.98) 0.85 (0.78, 0.92) 0.78 (0.62, 0.93) 0.90 (0.81, 0.99)
*: All four contrast phases: precontrast, arterial, portal venous, and delayed.

Table 3: Performance of the deep learning experiments. The mean values of the 5-fold cross-validation and the
standard deviation are reported. Abbreviations: Pre: Precontrast, Art: Arterial, PV: Portal venous, Del: Delayed, AUC:
area under the receiver operating characteristic curve. The highest values are written in bold text.

Models Accuracy AUC F1-score Sensitivity Specificity
Precontrast 0.71 ± 0.09 0.80 ± 0.11 0.63 ± 0.12 0.62 ± 0.18 0.77 ± 0.11
T2 0.70 ± 0.07 0.79 ± 0.07 0.62 ± 0.12 0.65 ± 0.19 0.73 ± 0.09
Precontrast + T2 0.74 ± 0.05 0.81 ± 0.06 0.63 ± 0.12 0.60 ± 0.16 0.82 ± 0.03
Arterial 0.72 ± 0.09 0.79 ± 0.08 0.64 ± 0.10 0.62 ± 0.09 0.79 ± 0.13
Portal venous 0.71 ± 0.09 0.77 ± 0.12 0.59 ± 0.11 0.55 ± 0.14 0.81 ± 0.11
Delayed 0.68 ± 0.10 0.77 ± 0.13 0.50 ± 0.24 0.50 ± 0.32 0.79 ± 0.10
All phases* 0.75 ± 0.12 0.79 ± 0.12 0.68 ± 0.12 0.65 ± 0.10 0.82 ± 0.15
All phases* + T2 0.75 ± 0.04 0.83 ± 0.07 0.62 ± 0.09 0.55 ± 0.14 0.87 ± 0.08
*: All four contrast phases: precontrast, arterial, portal venous, and delayed.

Table 4: Performance of the deep learning All phases* + T2 model with and without the use of segmentations
and pretraining. The mean values of the 5-fold cross-validation and the standard deviation are reported. The highest
values are written in bold text. AUC: area under the receiver operating characteristic curve.

Segmentations Pretraining Accuracy AUC F1-score Sensitivity Specificity
✓ 0.75 ± 0.04 0.83 ± 0.07 0.62 ± 0.09 0.55 ± 0.14 0.87 ± 0.08

0.75 ± 0.10 0.80 ± 0.08 0.66 ± 0.14 0.60 ± 0.14 0.85 ± 0.07
✓ ✓ 0.68 ± 0.09 0.72 ± 0.11 0.57 ± 0.16 0.55 ± 0.19 0.77 ± 0.08

✓ 0.68 ± 0.10 0.71 ± 0.09 0.56 ± 0.14 0.53 ± 0.16 0.79 ± 0.05
*: All four contrast phases: precontrast, arterial, portal venous, and delayed.
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Figure 4: Area under the receiver operating curve (AUC) for the radiomics (100x random split) and deep learning
(5-fold cross-validation (CV)) experiments. The middle line in a box represents the median AUC value. The box
edges represent the lower and upper quartiles, which form the interquartile range (IQR). The whiskers represent the
minimum and maximum value within 1.5*IQR from the box edges, AUC values outside of this range are shown as
outliers. The dashed line at 0.5 represents the AUC of random guessing.
*: All four contrast phases: precontrast, arterial, portal venous, and delayed.

4 Discussion

During this research, the classification of malignant and
benign primary liver tumors has been studied through
the use of different computer-aided diagnosis methods.
MRI data of different sequences and contrast phases
have been used as input for radiomics and deep
learning models. The highest performance metrics were
found for the radiomics model with a combined input
of all the contrast phases and T2. By extracting
information from imaging data in a way that is not
possible through visual analysis by humans, radiomics
and deep learning can, after further research and
validation, improve diagnostic accuracy for primary
liver lesions.

4.1 Performance analysis

This study uses the same dataset as Starmans et al.
(2021) [23]. The AUC value of 0.74 for the T2 radiomics
experiment is comparable to the AUC values of
Starmans (0.78 for internal cross-validation and 0.74
and 0.76 for external validation), even though this
study only includes 102 of the 187 patients in
Starmans’s paper. For the radiomics approach, the
highest AUC is found for combining all the contrast
phases with T2, however, this model does not
significantly differ from any of the other models. The

performance of the radiomics models that combine
sequences fits in the range of results from studies that
used radiomics for the classification of HCC and other
(benign) lesions with multiphasic MRI [14, 16]. For the
deep learning models, the performance is similar to the
paper of Jian et al. [17] but lower compared to the other
found literature with limited datasets [18, 21, 22]. See
Table 1 in Appendix B for a complete overview of
similar studies and their performance.

In the evaluation of the radiomics approach, the most
relevant features were texture features, in particular
vessel filter and local binary pattern features. The
vessel filter features appeared most frequently in
experiments that included the portal venous and
delayed phase. These features might be of importance
because the contrast agent specifically enhances the
vascularization characterizations of a tumor. The
importance of other texture features could be explained
by the more heterogeneous image characteristics of the
malignant lesions compared to the benign ones. Except
for the experiment with arterial phase images, no
histogram features were significantly different between
the classes. Histogram features are only calculated for
regions within the tumor and do therefore not include
the intensity differences between normal liver and
lesion that are amplified with contrast enhancement.
This is different for texture features, which are
calculated with filters that blend some information
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Figure 5: Results of the All phases + T2 deep learning model. Left: Loss curves of the training and test set for the
deep learning method. Right: Area under the receiver operating curve (AUC) of the training and test set for the deep
learning method. The solid lines represent the mean value and the lighter-colored filled regions represent the mean ±
standard deviation. The dashed line at 0.5 represents the AUC of random guessing.

from the tumor edge into the region within the
segmentation. Therefore, texture features might take
the liver-lesion intensity difference into account, which
typically differs for benign and malignant lesions. The
shape features were never significantly different over
the classes, not even for the original segmentations
made on T2, which are considered to be of better
quality than the warped segmentations. This is in line
with conventional liver lesion diagnosis where the
tumor shape plays an unimportant role.

Since the deep learning method does not use
predefined features, it potentially could perform well
without the input of segmentations. However, the
GradCAM visualizations showed that for correctly
classified cases, the CNN did not focus on the tumor
area for the prediction, also not if the model was
trained on the segmentations. Preferably, a CNN
extracts information from the lesion since this contains
clinically relevant information but this is not the case in
these models. Using bounding boxes that include less
of the background surrounding the tumor, could aid
the model to focus on the tumor areas.

4.2 Limitations of this study

The dataset that has been used to train the machine
learning models is relatively small (n=102) for the
complexity of the classification task. Much of the total
available data had to be discarded as subjects missed
acquisition time information due to anonymization
methods or missed a contrast phase. Small datasets are

likely to cause overfitting. When comparing the
radiomics and deep learning methods, overfitting
seems to be less of a problem for the radiomics
approach. To verify whether overfitting is not a
problem in the trained radiomics method, an external
test set should be introduced in a future study. For the
deep learning models, the applied data augmentation
was not enough to prevent overfitting, but it did help to
decrease the test loss. That the model did not
generalize well, was reflected by the large variance in
the test loss. Increasing the epochs caused more
overfitting but the AUC stayed stable after 200 epochs
and was therefore stopped from that point. After the
problem of overfitting was identified, the ResNet-10
model was adjusted to have fewer parameters. A
widen factor of 0.5 was applied to halve the number of
filters for each layer, which decreased the number of
trainable parameters from 14.4 to 3.6 million. However,
since this had no effect on the loss and AUC, we chose
to continue with the original model to be able to use all
the pretrained weights that were available for later
experiments. The loss and AUC curves of the smaller
ResNet-10 are shown in Figure 9 in Appendix A.

Another limitation of this study was the comparison
of the radiomics models to the deep learning models.
When comparing the evaluation metrics, one should
take into account that the radiomics method outputs
100 values and the deep learning method only outputs
five. Statistical tests were not applied to the deep
learning results for this reason, which makes the
interpretation of these results more subjective. It is
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Figure 6: A,D,G: The MRI image with the segmentation in red. B, E, H: The GradCAM visualization of the All phases
+ T2 model trained on both the images and segmentations. C, F, H: The GradCAM visualizations of the All phases +
T2 model trained on the images only. All three examples were correctly classified with the model.

likely that choosing another seed for the train-test splits
of the folds will have a big impact on the deep learning
results. When comparing the AUC boxplots, the
interquartile range (IQR) is much more sensitive to
outliers for the deep learning method. On top of that,
the IQR changes substantially over epochs, and
therefore also the number of outliers. On top of that,
the input data of the radiomics models and the deep
learning models were differently preprocessed, which
makes the comparison of performance less fair. The
deep learning input data was resampled and cropped
but the input data for radiomics was not. However,
radiomics models could benefit from resampled data
when combining image inputs of different sequences.

A different limitation of this study is that the deep
learning results are only performed for single
hyperparameter choices, e.g. the learning rate and
optimizer. For this study, the hyperparameters were
based on common choices and only compared for a
single fold. Variating and comparing hyperparameter
selections based on the mean performance of all folds

could lead to better performance.

Furthermore, the warped segmentations were
considered to be of less quality than the manual
segmentations because of the difference in voxel sizes
of the T2 and CE-T1 images. When analyzing the
subjects for which multiple experiments always failed
the classification, no correlation with the segmentation
quality was found. Considering the fact that no shape
features were significantly different between the
classes, this raises the question of how important the
quality of segmentation is. In further research, this
might be solved by only using segmentations that are
of high quality. Since manual segmentations are
time-consuming, automatic segmentation with deep
learning models like nnU-net [38] might aid speeding
up the process.

Lastly, in this research, only binary classification has
been performed while more than two phenotypes were
included in the dataset. Differentiating between the
two benign phenotypes FNH and HCA would be
clinically relevant because both phenotypes appear in
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similar populations (younger females) and because
HCA gives a higher risk of complications and can
transform into malignancy. Ideally, more hepatic
lesions would be added to the dataset and
multi-classification would be performed.

4.3 Future research

As the dataset for this research is relatively small, the
first step for future research would be to extend the
dataset. Since the highest performance metrics occur
for the All phases + T2 experiment, the radiomics
model appears to benefit from combining sequences.
Except for increasing the sample size, increasing the
number of different input images per patient could
increase the performance. MRI sequences that could be
added in future research are e.g. DWI, in- and
out-phase, and the hepatobiliary contrast phase.
Another improvement to the radiomics method could
be to allow feature extraction on the liver tissue
surrounding the tumor, as the intensity difference
between tumors and normal lesions is relevant when
using contrast enhancement. This could be achieved by
dilating the segmentations or using whole liver
segmentations. However, since the final radiomics
model currently has a good performance, it would be
already valuable to compare it to the performance of
radiologists on the same sequences and contrast
phases.

For the deep learning method, the overfitting is a
strong indication that the model needs to be trained on
a much larger dataset, preferably in the range of
hundreds of scans. Increasing the dataset could be
achieved by loosening inclusion and exclusion criteria
for both patient and image selection, like tumor size
and required sequences. Acquisition times were vital to
distinguish between the portal venous and the delayed
phase and the most frequent missing phase was the
delayed phase. Since the combined image input gave
the highest performance, dataset size is apparently
more important than correct phase labeling of portal
venous and delayed phases. Also, since the portal
venous and delayed phases are very similar in image
characteristics and performance, for future research,
subjects can be included that have at least one image
that resembles either of these two phases, even if their
exact acquisition time is unknown. To generate more
data samples for the deep learning network, 2D models
could be used as this provides a sample per slice.
However, this would exclude 3D features that might
hold important information. For further research, a
2.5D residual neural network might hold a solution for
small datasets.

Lastly, patient information like age and sex could give

relevant information in diagnostics. They have shown to
be strong predictors for binary classification in age-and-
sex-only models for the dataset [23]. In typical cases,
the phenotypes are correlated with age and sex as HCC
appears more in older men and HCA and FNH more in
younger women, which is reflected by the used dataset
(see Table 1). Since it’s desirable to correctly classify rare
cases, for this research, the model has only been trained
on image information and not on additional features.
Automatic classifiers could benefit from sex and age
information but future research should consider the risk
of missing rare cases.

5 Conclusion

The radiomics classifiers based on combined
contrast-enhanced T1-weighted and T2-weighted MRI
can differentiate malignant from benign primary liver
tumors with limited data samples. We conclude that
the classification task is too complex with the given
dataset when using a ResNet-10 deep learning model,
as overfitting always occurred.

Although adding contrast-enhanced and T2 MRI
sequences improved the mean performance in both
radiomics and deep learning, a statistically significant
improvement was not found.

For future research, the complementary information
of multiphasic T1-weighted and T2-weighted MRI
should be used for the classification of primary liver
tumors. The radiomics performance should be
compared to radiologists and validated on an external
dataset. Before this deep learning model can be
compared to radiologists’ performance and tested on
an external dataset, it must be trained on a substantially
larger dataset for better generalizability.
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Appendix A

Figure 7: Results of the Portal venous experiment with widen factor = 1.

Figure 8: Results of the Portal venous experiment with widen factor = 0.5.

Figure 9: Left: Loss curves of the training and test set for the deep learning method. Right: Area under the receiver
operating curve (AUC) of the training and test set for the deep learning method. The solid lines represent the mean
value and the lighter-colored filled regions represent the mean ± standard deviation. The dashed line at 0.5 represents
the AUC of random guessing.
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Appendix B
Classification of primary liver tumors with radiomics and deep learning based on
multiphasic MRI: a literature review

A.A. Goedhart

Abstract

Accurate diagnosis of primary liver cancer is crucial for
treatment planning. Contrast-enhanced multiphasic MRI
is commonly used for the diagnosis of primary liver
tumors. The contrast agents emphasize the image
characterizations of different liver lesions over multiple
contrast phases, which aids radiologists in distinguishing
different phenotypes. Despite the use of contrast
enhancement, image-based diagnosis can remain
challenging, especially when different lesion types show
similar image characterizations, often resulting in the
need for biopsies. Computer-aided diagnosis techniques
like radiomics and deep learning have been used in the
literature for the automatic classification of liver lesions
with the goal to increase diagnostic accuracy and to
reduce the need for biopsies. Radiomics and deep
learning models have both been shown to benefit from
the combined usage of contrast phases and the literature
has presented promising results. However, the
generalizability of models is often limited because they
have been trained on small and single-center datasets.
Also, for both radiomics and deep learning studies on the
classification of liver lesions, the standardization of
methods is missing. Further studies need to tackle these
limitations before the models can be used for clinical
practice.

1 Introduction and clinical background

Primary liver cancer is the sixth most frequently diagnosed
cancer and the third most frequent cause of cancer deaths
globally, with around 906,000 new cases and 830,000
deaths in 2020 [1], and the mortality numbers are still
increasing [2]. Whether a primary liver tumor is malignant
or benign is crucial for treatment planning. Therefore,
accurate diagnosis is essential. A common, early procedure
in the diagnosis of primary liver lesions is the analysis of
magnetic resonance imaging (MRI) by a radiologist.

Radiologists use a combination of MRI sequences to
analyze lesions in the liver, as they provide complementary
information. Sequences used for a standard MRI
examination are T2-weighted (T2), precontrast and
postcontrast T1-weighted (T1), in-phase and out-of-phase,
and diffusion-weighted imaging (DWI) [3].

1.1 Contrast-enhanced MRI

The diagnosis of primary liver tumors is often based on
contrast-enhanced MRI. In contrast-enhanced
T1-weighted (CE-T1) images, a series of images is made
over several contrast phases with the use of
gadolinium-based contrast agents. These contrast phases
are defined by the time after intravenous contrast injection
and are usually divided into the precontrast phase (before
injection), the arterial phase (30 s), the portal venous phase
(60-70 s), the delayed phase (3-8 min), and the
hepatobiliary phase (20 min - 2 h) [4]. The contrast agent
emphasizes the difference in the vascular architecture of
the liver parenchyma and most liver lesions [3] and can
accentuate phenotype-specific characteristics. Contrast
agents can be divided into extracellular and intracellular
agents. Extracellular agents include the first four
mentioned contrast phases. Examples of intracellular
contrast agents are Gadovist, Dotarem, and Magnevist.
Intracellular contrast agents are hepato-specific and allow
for the fifth contrast phase, the hepatobiliary phase. There
are two hepato-specific contrast agents used in the clinic,
which are Primovist and Multihance, for which the
hepatobiliary phase appears after 20 min and 1-2 h,
respectively [4].

1.2 Malignant liver lesions

Of the primary malignant liver lesions, hepatocellular
carcinoma (HCC) is the most common phenotype [2] as it
accounts for roughly 75% of all liver cancers [5, 6]. HCC
occurs 2 to 4 times more in men than in women and the
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main risk factors are excessive use of alcohol, hepatitis B
and C, diabetes, and obesity [2]. Most patients with HCC
also suffer from chronic liver disease and cirrhosis [2]. The
earlier that HCC can be detected, the more treatment
possibilities there are for the patient, which increases the
chance of success for treatment outcomes. Therefore, fast
diagnosis is important. Magnetic resonance imaging (MRI)
is a preferred imaging technique for HCC diagnosis since it
shows higher sensitivity for lesions in patients with chronic
liver disease than computed tomography (CT) [2]. The
diagnosis of HCC with MRI is based on vascular image
characterizations, which appear in typical ways in
contrast-enhanced MRI [7]. For HCC, this typically results
in hypervascularity in the arterial contrast phase and
washout in the delayed and portal venous phase [7]. If
imaging alone is not enough for a clear diagnosis, biopsies
must be taken. A biopsy has its inconveniences and risks
for the patient because it is an invasive method. For
example, needle biopsies have the risk of HCC tumor
seeding with an incidence of 2.7% [8].

After HCC, cholangiocarcinoma (CCA) is the most
common primary malignant lesion found in the liver. CCA
can be divided into intrahepatic CCA (iCCA), perihilar CCA
(pCCA), and distal CCA (dCCA), of which iCCA is the most
common type [5]. Diagnosis of iCCA is more challenging
than the diagnosis of HCC [9]. Just like HCC, hepatitis B
and C are risk factors for iCCA [5]. Contrast-enhanced MRI
contributes to the diagnosis to a large degree because iCCA
progressively takes up the contrast agent in the arterial and
portal venous phase. In contrast to HCC, iCCA does not
show strong washout in the portal venous phase [5].
However, the differentiation between HCC and iCCA can
be complicated because differences are often subtle and
the hypervascular characterization of iCCA in the arterial
phase can lead to it being falsy interpreted as HCC [7].
Further complicating the diagnosis of these malignant
lesions is the possibility of a hybrid tumor: combined
hepatocellular cholangiocarcinoma (cHCC-CC). In most
cases, biopsies have to be taken to confirm the lesion is
CCA [5].

1.3 Benign liver lesions

The most common primary benign tumors are hepatic
hemangioma (HH), focal nodular hyperplasia (FNH), and
hepatocellular adenoma (HCA). HH is the most common
lesion of the three as it is present in 0.4–20 % of the
population [10]. HH appears 1.2 to 6 times more frequently
in women than in men and is most frequently found in
women of the age group of 30-50 years. Most patients with
HH do not experience any symptoms and the lesion is
often found incidentally [10, 11]. For MRI, HH lesions
typically show hypointensity on precontrast T1 and
hyperintensity on T2 MRI. This does not apply to

contrast-enhanced MRI, for which HH can be atypical.
During the delayed phase, the lesion can appear
hypointense compared to the surrounding liver tissue,
which mimics the washout that appears for lesions like
HCC. This creates an imaging pitfall and sometimes leads
to the need for a biopsy. However, the strong signal on T2
and the enhancement during the arterial phase are usually
sufficient for diagnosis [10].

The second most common benign primary liver lesion,
FNH, has a prevalence of 0.4–3 % and is usually found
incidentally [10, 12]. The lesion is more frequently found in
women than in men, with ratios ranging from 2:1 to 26:1. A
leading cause of FNH lesions is vascular abnormalities and
the lesion is associated with HH. FNH has no
transformation into a malignant lesion in further stages,
does typically not cause complications, and is mostly
asymptomatic [12]. MRI has the overall best performance
for FNH diagnosis [10]. On T2, FNH is isotense or slightly
hyperintense, while it is isointense or slightly
hyper-intense on non-enhanced T1. For FNH, the
sensitivity of MRI diagnosis decreases when the lesion does
not include a central scar [10]. A central scar appears in
30 % of FNH and shows hypointensity on non-enhanced
T1. For contrast-enhanced T1, FNH shows increased signal
intensity during the arterial and portal venous phase but
the central scar is not enhanced. During the delayed and
hepatobiliary phase, FNH (including the central scar) is
hyperintense [13]. A pitfall for FNH diagnosis is
hypervascularity, as fibrolamellar HCC and FNH are both
frequently hypervascular [14]. The central scar can be a
pitfall for other lesion: even though it is typical for FNH, it
is also reported in more than a quarter of HCC [14]. HCA
can show something that looks like a central scar, which in
reality is tissue from fat, necrosis, or old hemorrhage [14].

HCA is the third most common benign primary liver
with a prevalence between 0.001 and 0.004 % [10]. HCA is
mainly found in women and very rarely in men. The lesion
is associated with the intake of oral contraceptives because
of the steroid sex hormones that those contain. Another
factor that is correlated with HCA is glycogen storage
disease [10, 12]. Just like the other benign lesions, HCA is
often asymptomatic. However, HCA must be treated when
it reaches a certain volume. This is because HCA has the
risk of complications like hemorrhage and malignant
transformation into HCC [10, 12]. Diagnosis of HCA is
preferably done on solely imaging because needle biopsies
are often not clear enough to confirm the diagnosis and
because the tumors are likely to bleed [12]. MRI is the best
image modality for HCA [10]. The image characterization
on MRI differs per HCA subphenotype. For example,
inflammatory HCA can be characterized by hyperintensity
on T2 and continuous enhancement during the delayed
phase with the use of extracellular contrast agents. For
β-catenin HCA, enhancement is shown during the arterial
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phase but the intensity can be both continuous or
decreased during the delayed phase. In the hepatobiliary
phase, typical HCA is not enhanced [13]. The difference in
risks of complications of benign tumors emphasizes the
importance of distinguishing HCA from FNH and HH. In
contrast to FNH and HCA, HH is a nonsolid tumor which
makes a diagnosis on imaging relatively easy [15]. When
using intracellular contrast agents, both inflammatory and
β-catenin HCA can show contrast agent uptake during the
hepatobiliary phase, which mimics FNH [16]. However,
HCA usually shows more heterogeneous intensities than
FNH [13]. In case of doubt, phenotype confirmation can be
accomplished after surgical excision [12].

2 Computer-aided image analysis

Despite the use of contrast enhancement, difficulties in
diagnosis can arise when different types of lesions show
similar image appearances. These difficulties may lead to
an unnecessary referral from a peripheral to a tertiary care
center and biopsies, which can be costly and
time-consuming. Computer-aided diagnosis (CAD)
techniques hold a potential solution in the search to
reduce the need for biopsies and increase diagnostic
accuracy if they overcome the imaging pitfalls. In CAD,
radiomics and deep learning are the most researched
methods. Both extract high-dimensional, quantitative
features from medical images and analyze them for
diagnosis or prediction [17].

2.1 Radiomics

Radiomics is an image analysis technique in which a high
number of quantitative medical imaging features are
extracted for clinical predictions, to gain information that
is more complete than from a physician or radiologist
alone [18]. A radiomics workflow input requires
high-quality images for diagnostics or treatment (for
example MRI- or CT-based) and for shape information it
also requires lesion segmentations that are either made
manually or (semi-)automatically. Image preprocessing
steps like normalization and resampling voxel size are
usually required to extract radiomics features [17, 19].

The quantitative features are extracted within the
segmented region and are based on histogram,
morphologic, and texture features [17]. The distribution of
intensity values over voxels in the segmentation can be
shown in a histogram. Examples of histogram features are
magnitude, dispersion, and asymmetry. Features about the
size, volume, and shape of the lesion are examples of
morphologic features. Information about the spatial
relationship between intensities can be found in textural
features in which pixel values are compared to surrounding
ones. The higher-order texture features are not extracted

from the image directly but from filtered versions.
Examples of filtering are smoothing Gaussian filters and
edge-enhancing Laplacian filters [17].

After the calculation of features, the next step is feature
selection. From the hundreds to thousands of calculated
features, a large part stays unused [19]. Selection is based
on whether the features are independent of the others,
reproducible, and prominent [18]. Different selection
criteria can be used and ideally features differ for each class
with statistical significance. When dealing with a large
amount of radiomics features, machine learning can
provide help in the feature selection and for the
classification based on the selected features [17].

After the features are selected, machine learning
classifiers are used for the prediction. Various machine
learning methods are used for feature-based classification,
like regression, support vector machine (SVM), decision
tree, and random forest, which all require hyperparameter
optimization [17].

2.2 Deep learning

Deep learning is a subset of machine learning, inspired by
the neural networks in the human brain. In deep learning,
predictions are made with models of multiple layers of
connected neurons that extract features from the input
data. For medical image classification, convolutional
neural networks (CNN) in combination with supervised
learning (training on labeled data) is the most popular
method [20]. In a CNN classifier, the middle layers (called
hidden layers) consist of repetitions of convolutional layers
and pooling layers. Convolutional layers apply filters to the
input of which the network learns different image features,
like edges and textures. Higher-level features are extracted
in deeper layers, which allows the network to learn
complex tasks. Pooling layers downsample the
convolutional output. The output of the hidden layers is
flattened and passed through one or more fully connected
layers that apply weights. Lastly, the output layer has a size
equal to the classes and returns the class predictions by
passing a softmax layer [20, 21].

In contrast to radiomics, features do not need to be
predefined and no separate feature extraction step has to
be taken for learning input-output relations in deep
learning [17, 20, 22]. The freedom in feature extraction gives
the possibility to have high-performance classification
without the use of segmentations. Therefore,
segmentations are often not part of the data input and
instead bounding boxes surrounding the tumor are used.
However, since deep learning features are not predefined,
networks are often seen as a black box, which makes them
harder to interpret than radiomics models. Furthermore,
deep learning models typically need a large number of
training data [17]. If the dataset is too small, the model will
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not generalize well and can lead to overfitting, which
makes them less suited for limited medical datasets than
radiomics.

CNNs for image classification increased in popularity
after the introduction of AlexNet when it won the ImageNet
classification championship in 2012. Following up on
AlexNet, various deeper networks like GoogleNet and
VGGNet improved the classification performance further in
2014 [23]. However, neural networks can not be infinitely
increased in depth to gain better performance. Deeper
networks have the problem of information loss due to
many backpropagation steps and the gradients can
disappear or explode [24]. The introduction of residual
neural networks (ResNets) by He et al. [25] in 2015
contributed to solving these problems. In the architecture,
the data does not go through every layer as the network
includes so-called skip connections that skip over a block
of layers (residual blocks). The output of such a residual
block is added together with the output of the skip
connection. Therefore, the input for the following layers
still contains information from data from earlier layers, as
the network leans the differences between the residual
block and the skip connection output. This way, ResNet
tackles the issue of degradation and allows for deeper
architectures with more than 100 deep layers. By adding
skip connections between all deep layers, Huang et al. [26]
introduced the densely connected convolutional network
(DenseNet) in 2016. In a DenseNet, all layers are connected
to all other layers within the same dense block. Therefore,
the input of a layer consists of the concatenated output of
all previous layers. Just like with ResNets, the problem of
vanishing gradients is tackled by reusing feature maps from
previous layers. Compared to ResNets, DenseNets need
fewer parameters for similar test accuracy [26]. In the
literature on the two networks, the minimum number of
layers for ResNet and DenseNet are 10 and 121,
respectively.

3 Automatic classification of liver lesions

For this literature review, studies on the automatic
classification of primary liver tumors with the use of
contrast-enhanced MRI are discussed. The studies in this
review aimed to classify at least one of the following liver
lesions: HCC, CCA, HH, FNH, or HCA. The imaging data
input of the studies had to include one or more contrast
phases. The methods for the automated classification had
to be either based on a radiomics model or a CNN deep
learning model, or a combination of both. Lastly, only
studies from 2019 and on were included. In total, four
radiomics studies, five deep learning studies, and one
combined study were included in the review. An overview
of the studies is shown in Table 1.

3.1 Radiomics studies

Motivated by the lack of automatic classifiers for liver
lesions that were fitted on dynamic contrast-enhanced
MRI, Jansen et al. [27] developed a classifier that was fitted
on T2, precontrast T1, and the late arterial and portal
venous contrast phases. From these sequences, 164
features were extracted, which include image features
(contrast curve, histogram, and texture) and risk factor
features. The added risk factors were the presence of
steatosis, cirrhosis, and other known primary tumor in the
body. The dataset consisted of 95 patients with 125 benign
lesions (HCA, cysts, and HH) and 88 malignant lesions
(HCC and metastasis from different sites). The model
differentiated the five lesions with a single type of classifier:
an extremely randomized trees classifier. This classifier
assembles decision trees, of which each tree node applies a
random set of thresholds to a random subset of features in
order to keep the most informative features. Adding the
dynamic images to the T2 increased the performance of
the model, and so did adding risk factor features. Further, it
was concluded that features were selected from all
categories, which indicated the importance of a wide
selection of features. The AUC values of the model that
included all sequences and all features ranged from 0.88 to
1.00 for the five classes.

A recent study from Sun et al. [28] showed that
multiphasic MRI images of small HCC (SHHC) tumors
(diameter less than 2 cm) could be differentiated from
normal liver tissue and from benign lesions (HH and cysts).
In this study, the precontrast, arterial, portal venous, and
delayed phase images from 124 subjects were used both
individually and combined as model input. The radiomics
model extracted 1132 features and they were selected with
a least absolute shrinkage and selection operator (LASSO)
regression model. A radial basis-function, kernel-based
support vector machine classifier was used. First, models
were trained on individual contrast phases and the LASSO
regression model was used to filter the features. After
filtration, new models were fitted on the individual phases
and a combination of all four phases. With an AUC of 0.93
and 0.97 for the SHCC-normal tissue and SHCC-benign
lesions classification, respectively, the combination of all
phases was higher than for the individually fitted models.

In a study by Liu et al. [29] on differentiating HCC from
malignant non-HCC liver tumors, models based on
different MRI and CT features were compared. The MRI
data consisted of non-enhanced sequences (T2,
precontrast T1, DWI, and in-phase) and contrast-enhanced
T1 images (arterial, portal venous, late venous, delayed,
and hepatobiliary phase). Precontrast, arterial, portal
venous, and delayed CT phases were also included. The
data included 86 lesions of HCC, CCA, and combined
hepatocellular cholangiocarcinoma (cHCC-CC). In total,
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1419 radiomics features were extracted and an SVM
classifier was used. For differentiating HCC, post-contrast
phases had a higher AUC (0.79-0.81) than the
non-enhanced MRI sequences (0.45-74). The model fitted
on the hepatobiliary phase had an AUC of 0.90 but this was
considered to be an unreliable result due to the small
sample size of 23 lesions. All post-contrast phases
individually showed an AUC within the range of 0.79-0.81,
compared to the AUC range of 0.49-0.74 for the mentioned
non-enhanced sequences. Opposite to the MRI images, for
CT the precontrast model had a higher AUC (0.81) than the
CT contrast phases (0.52-0.71).

In a study by Hu et al. [7], a radiomics model for the
differentiation of HCC and iCCA was researched with
manual and automatic optimization. The dataset consisted
of 489 subjects and the input data consisted of combined
T2 and CE-T1 in the arterial and portal venous phase. From
the sequences, 173 image features were extracted, which
were repeatedly calculated for different isotropic voxel
sizes. On top of that, the sex and age information was
added, which result in 6130 features per sequence. The
model used variance-based feature selection (VBFS) for
different thresholds and the following eight classifiers were
used on the training set: SVM, random forest, multilayer
perceptron, XGBoost, AdaBoost, extra trees, logistic
regression, and gradient boosting. In the manual
optimization, for each combination of thresholds and
classifiers, a k-fold cross-validation was performed and the
mean AUC over the folds was documented. For each
classifier, the threshold with the highest AUC was selected
for the final model. For the automatic optimization, the
Tree-Based Pipeline Optimization Tool (TPOT) was used.
TPOT automates the feature extraction, feature selection,
and model selection for maximal accuracy, by using a
search algorithm. For each run, with a population size of
20, the TPOT classifier randomly generates 10 model
pipelines, which form a generation. The best-performing
model pipelines of the generation fill 10 % of the
population of the next run. The model is run 10 times,
forming 10 generations, and in the end 100 % of the
population is generated by the selection process. From this
population, the contents of two random model pipelines
are split and swapped, and mutation operation is applied
to the other model pipelines. This is repeated for the 10
generations and then the model pipeline with the highest
AUC was selected for the final model. The best-performing
model of the manual and automatic optimization methods
had similar AUC values on the test set of 0.79-0.80 and
0.76–0.79, respectively. The automated method showed
similar sensitivity and specificity to radiologists.

3.2 Deep learning studies

Hamm et al. [30] classified six common liver lesions (FNH,
HCC, iCCA, cysts, cavernous hemangioma, and colorectal
cancer metastasis) with contrast-enhanced MRI of the late
arterial, portal venous and delayed phase. Precontrast
images were not included. A CNN of three convolutional
layers was trained with cross-validation for 494 subjects.
HCC could be distinguished from the rest with an AUC of
0.992 and 92 % accuracy, which was higher than the
accuracy of radiologists. For the other lesions, only the
sensitivity and specificity across all lesions were given, with
an average value of 90 % and 98 %, respectively. In a
consecutive study by Wang et al. [31] the CNN was
combined with radiomics features. Feature maps were
created for interpretability in the decision-making of the
model. This was done by labeling a subset of the lesions
with radiological features that fitted the lesions, like a
central scar, washout, and heterogeneity. For the
differentiation of HCC, the sensitivity was 82 %.

In a study by Jian et al. [32], a deeply supervised
cross-modal transfer learning CNN model was used for the
characterization of HCC. Pretraining was performed on 2D
MRI data of 150 subjects, which included the precontrast,
arterial, and portal venous phases. During the cross-modal
pertaining, the precontrast and contrast-enhanced images
were put into the model in separate channels and went
through separate convolutional layers before they were
combined in a final linear layer, leading to a submodel for
the arterial phase and one for the portal venous phase. For
the final training and testing, the data consisted of only
precontrast images. The motivation for testing without
contrast enhancement was to provide a classifier for cases
where using a contrast agent is clinically not possible. The
best performance was achieved when the submodels were
combined and deep supervision was applied, which led to
an AUC of 0.82.

Binary classification of HCC versus non-HCC lesions was
performed in a study by Oestmann et al. [33]. The dataset
consisted of 150 lesions and included lesions with atypical
imaging features. The non-HCC class consisted of iCCA,
HH, cysts, regenerative nodules, dysplastic nodules, FNH
and bile duct adenoma. The dataset included
contrast-enhanced MRI of the arterial, portal venous, and
delayed phases. Precontrast images were not used. The
CNN model was built with three convolutional layers, two
maximum pooling layers, and two fully connected layers.
The HCC lesions were differentiated with an AUC of 0.912,
which demonstrates the model’s ability to correctly classify
atypical HCC.

The high performance of tumor liver classification with
the use of DenseNets was demonstrated by Stollmayer et
al. [34]. In this study, a 2D- and a 3D-DenseNet-264 model
were compared for the classification of HCC, FNH, and
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metastases. The dataset consisted of 216 lesions imaged on
T2 and CE-T1 MRI in the arterial, portal venous, and
hepatobiliary phases. The 3D images of each sequence
were registered, cropped around the lesion, and
concatenated into a single image. For the 2D method, the
concatenated image consisted of the three axial slices per
sequence that were the most representative. For the three
lesions, the average AUC values of the 2D and 3D networks
were 0.98 and 0.94, respectively. For none of the classes, the
difference was statistically significant for the two models.
The results of this study indicate that 2D information can
be sufficient for the differentiation of liver lesions.

A deep learning system created with a pretrained Google
Inception-ResNet V2 CNN by Zhen et al. [35] was trained
for binary classification (malignant versus benign),
three-way malignancy (HCC, non-HCC primary
malignancy like iCCA, and non-hepatic metastasis) and
seven-way classification (three-way malignancy, FNH, cyst,
HH, and other benign nodules). The image data sequences
consisted of T2, DWI, and precontrast, arterial, portal
venous, and delayed phases from 1411 subjects. The
models were trained on two datasets: one including the
contrast phases and one without. For the seven-way
classification, the AUC values were in the range of
0.897-0.987 and 0.841-0.965 for the model with and
without contrast enhancement, respectively. For all
classifiers, the performance was similar to that of
radiologists but the use of contrast enhancement did not
give statistically better results. With this study, Zhen et al.
showed the potential of accurate deep learning diagnosis
without the use of contrast agents, in contrast to the other
studies mentioned before.

4 Discussion

From the described radiomics and deep learning studies,
we can conclude that the automatic classification of
primary liver lesions is feasible with the use of
contrast-enhanced MRI. Both methods show promising
results with the use of combined contrast phases, which
indicates that radiomics and deep learning models benefit
from the complimentary information of the different
phases. The results of the study show that high AUC values
can be achieved with limited datasets (150 samples or less)
for both radiomics and deep learning. The discussed
studies include different phenotypes as classes, which
makes direct comparisons of the performances
challenging. Additionally, the limitations of the studies
have to be considered when interpreting the results.

Limitations of some of the studies are the sample size
and the use of single-center data. When training on small
datasets, the model is more prone to overfitting and may
not generalize well. Using-single center data is also limits
the generalizability. As imaging data from different centers

vary from each other in imaging protocol and image
quality, a model that performs well on multi-center data is
more robust. Therefore, the generalizability of
single-centered studies should always be verified with an
external dataset. The performance of the studies with small
datasets, for example of Liu et al. [29] (86 lesions) could
probably be improved by only extending the data. However,
since cHCC-HCC is less common and they included the
hepatobiliary contrast phase that can only be found for
Primovist and Multihance, adding more data is difficult.
Since not all contrast-enhanced MRI examinations include
the hepatobiliary phase, it leads to the discussion of
whether including this phase enhances or limits the
training performance. To prevent having a too small
dataset, it may be preferable to include patients that only
miss the hepatobiliary phase, rather than excluding them
from the dataset. Another small data study is the study of
Sun et al. [28], which achieved a high AUC for a relatively
small sample size but the data was single-centered and
similar performance is not expected when the model will
be tested on external data. The same holds for the study of
Stollmayer et al. [34], which had a very high AUC. The used
dataset was small and from a single institute, so the
generalization of the model is not demonstrated.

Despite the fact that all the studies used
contrast-enhanced T1 MRI, several did not make use of the
precontrast phase [7, 30, 33, 34]. The precontrast phase is
usually always available for patients who have been imaged
with contrast agents and its image characterizations can
differ for different liver lesions. The study of Jian et al. [32]
showed that classification on test sets of precontrast
images is possible when pretraining has been performed
on precontrast and postcontrast phases. Not including the
precontrast in the training data restricts the amount of
complimentary information that a model can learn and is
therefore a limitation.

The methods of the radiomics studies and of the deep
learning studies showed very different measures, which
shows a lack of standardization. A clear difference in the
radiomics studies is the number of extracted features,
varying from 164 to 6130. Also, the methods for feature
selection were different and the number of classifiers
ranged from one to eight. This shows there is little
consensus on what radiomics methods are optimal for liver
lesion classification since there are so many options for
feature extraction, feature selection, and classification. A
framework that optimizes for these steps was introduced
by Starmans et al. [19], in order to optimize radiomics
classification.

Since the use of deep learning for liver tumor
classification is fairly new, standardization is still missing.
The depth of the networks and the number of filters per
layer of the used CNNs showed substantial variation. The
use of well-known, standardized architectures like ResNets
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and DenseNets could improve the ability to compare
studies and to use of transfer learning, as pretrained
weights will be easily implemented in the models.

In this literature review, only contrast-enhanced MRI
studies have been discussed. However, a substantial
number of studies based on contrast-enhanced CT can be
found in the literature as this imaging modality is also
commonly used for liver lesion patients. As
contrast-enhanced CT also contains complimentary
information divided over contrast phases, the inclusion of
CT-based studies is expected to give a more comprehensive
and inclusive overview of the contribution of
contrast-enhanced multiphasic imaging for liver tumor
diagnosis from the past few years.

5 Conclusion

Radiomics and deep learning models based on multiphasic
MRI show promising results for the automatic
classification of primary liver lesions. Both radiomics and
deep learning models for liver lesion classification have
demonstrated to benefit from the combined usage of
various contrast phases and sequences. Using automated
classification methods in the clinic could aid in the
diagnosis of primary liver lesions when differentiation on
image characterizations causes difficulties for radiologists.
Removing doubts about image-based diagnoses can
decrease the need for biopsies and increase the diagnostic
accuracy.

For further research, studies should aim for multi-center
data of a large sample size as this improves the
generalizability of the model. Furthermore, the models
could benefit from transfer learning on pretrained
multiphasic data as medical imaging data is often limited.
To use transfer learning and to compare studies fairly, more
standardization is needed. In following studies, the
performance always needs to be compared to radiologists
and the models always need to be validated on external
datasets before they can be implemented in the clinic.
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