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Immunoglobulin G (IgG), a glycoprotein secreted by plasma B-cells, plays a major 
role in the human adaptive immune response and are associated with a wide range 
of diseases. Glycosylation of the Fc binding region of IgGs, responsible for the anti-
body’s effector function, is essential for prompting a proper immune response. This 
study focuses on the general genetic impact on IgG glycosylation as well as corre-
sponding subclass specificities. To identify genetic loci involved in IgG glycosylation, 
we performed a genome-wide association study (GWAS) on liquid chromatography 
electrospray mass spectrometry (LC–ESI-MS)—measured IgG glycopeptides of 1,823 
individuals in the Cooperative Health Research in the Augsburg Region (KORA F4) study 
cohort. In addition, we performed GWAS on subclass-specific ratios of IgG glycans 
to gain power in identifying genetic factors underlying single enzymatic steps in the 
glycosylation pathways. We replicated our findings in 1,836 individuals from the Leiden 
Longevity Study (LLS). We were able to show subclass-specific genetic influences on 
single IgG glycan structures. The replicated results indicate that, in addition to genes 
encoding for glycosyltransferases (i.e., ST6GAL1, B4GALT1, FUT8, and MGAT3), other 
genetic loci have strong influences on the IgG glycosylation patterns. A novel locus on 
chromosome 1, harboring RUNX3, which encodes for a transcription factor of the runt 
domain-containing family, is associated with decreased galactosylation. Interestingly, 
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members of the RUNX family are cross-regulated, and RUNX3 is involved in both IgA 
class switching and B-cell maturation as well as T-cell differentiation and apoptosis. 
Besides the involvement of glycosyltransferases in IgG glycosylation, we suggest that, 
due to the impact of variants within RUNX3, potentially mechanisms involved in B-cell 
activation and T-cell differentiation during the immune response as well as cell migration 
and invasion involve IgG glycosylation.

Keywords: genome-wide association study, immunoglobulin g, glycosylation, RUNX3, lc–esi-Ms

inTrODUcTiOn

Glycosylation is among the most abundant post-translational 
protein modifications (1) and defects therein can lead to severe 
diseases (2–4), and aberrant glycosylation patterns are likewise 
associated with different types of cancer (5–12). A complex 
dynamic network, including genetic and epigenetic factors, 
regulates the glycosylation pathways, involving various enzymes 
ta king part in these processes (13–15). Whereas most of the 
enzyme activities, as well as substrate specificity, are supported by 
in vitro experiments, in vivo experimental validation, taking into 
account the complex intracellular processes, is still unfeasible (16). 
To deepen our understanding of glycan biosynthesis and its role in 
the pathophysiology of many diseases, it is imperative, however, 
that we identify all factors involved in glycosylation pathways.

The best described glycoprotein so far is immunoglobulin 
G (IgG) (17). Its glycosylation is thought to have important 
regulatory functions in the immune response (18) and has been 
associated with various diseases, such as rheumatoid arthritis (19) 
and different types of cancers (10, 11). Also within the healthy 
population, a high interindividual variability in IgG glycosyla-
tion patterns is observed, that is, partly attributable to a heritable 
component (14, 20). With the development of high-throughput 
glycosylation techniques, it has now become feasible to analyze 
glycosylation profiles and their relation with genetics at a popu-
lation level. A first genome-wide association study (GWAS) by 
Lauc et al. (21)., including 2,247 individuals from four European 
cohorts (CROATIA-Vis, CROATIA-Korcula, Orkney Complex 
Disease Study and Northern Swedish Population Health Study), 
identified four loci encoding glycosyltransferases associated with 
IgG N-glycans. The authors likewise propose that five additional 
loci are involved in IgG glycosylation showing that a GWAS can 
be used to identify genetic loci controlling glycosylation of a sin-
gle plasma protein (21). They replicated the association of two of 
their loci, MGAT3 and B4GALT1, in a cohort of MALDI–TOF MS 
(matrix-assisted laser desorption/ionization time-of-flight mass 
spectrometry) measured glycan data from the Leiden Longevity 
Study (LLS) (22). A recent study by Shen et al. (23) used a mul-
tiphenotype approach to analyze the genetic background of IgG 
glycosylation. Here, the authors examine IgG glycan structures 
measured by ultra-performance liquid chromatography [(UPLC) 
(24)] in a multivariate way and thereby detect five novel genetic 
loci that are associated with combinations of IgG glycan traits.

In contrast to UPLC, used by Lauc et al. and Shen et al., the liquid 
chromatography electrospray mass spectrometry (LC–ESI-MS) 

method allows for subclass-specific quantification of N-linked 
glycans. It has been shown that the IgG subclasses, IgG1–IgG4, 
not only differ in their structure, especially within the hinge 
region of the glycoprotein, but also in their effector functions (17, 
25). Besides differences in the number of disulfide bonds and the 
length and flexibility of the hinge region, glycosylation profiles 
also differ between the four IgG subclasses (26). While IgG2 is 
characterized by a higher degree of core-fucosylation and a low 
level of galactosylation, IgG1 shows a particularly high level of 
galactosylation for both neutral and sialylated structures (26). 
IgG4, on the other hand, shows a high level of core-fucosylated 
complexes with bisecting N-acetylglucosamine (GlcNAc) (26). 
How these subclass-specific glycosylation profiles are realized 
and what their specific contributions are in the pathophysiology 
of diseases remains largely illusive.

Previous GWAS on serum metabolite levels have indicated 
that analyzing enzyme substrate-product ratios benefits in gain 
by power for detecting associated genetic loci over analyzing 
single metabolites (27). Due to the LC–ESI-MS method, we are 
able to derive different types of IgG glycan traits to address the 
genetic background of the IgG glycan synthesis, including within-
subclass ratios representing the addition of one monosaccharide 
at a time, i.e., a single pathway step within IgG glycan synthesis. 
The same approach was utilized to validate pathway steps inferred 
by a network-based approach in Benedetti et al. (28). Here, the 
authors included GWAS data on ratios of IgG glycan structures 
representing specific, established and newly predicted enzymatic 
pathway steps. The GWAS data as well as additional laboratory 
experiments verified the hypotheses drawn from the network 
analysis. In contrast to Benedetti et al. we extend the list of ratios 
to all possible one-step pathway steps independent of any prior 
selection. Furthermore, to challenge the assumption of similar 
genetic control of glycan biosynthesis for all IgG subclasses (16), 
we additionally compute subclass-specific IgG glycan traits con-
taining between-subclass ratios and subclass-specific IgG glycan 
proportions. Furthermore, we include summarizing traits for IgG 
glycan structures to capture general trends associated with varia-
tions in genetic loci as well as additional biologically meaningful 
glycosylation traits.

By means of a GWAS including these newly derived traits of 
the LC–ESI-MS measured IgG glycopeptides in our discovery 
cohort from the KORA F4 study (n = 1,823), and a replication 
of the results for the same glycan panel in an additional 1,800 
samples from LLS, we want to further investigate the underlying 
genetic control of IgG glycosylation.

http://www.frontiersin.org/Immunology/
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FigUre 1 | Overview of the study and analyses.

3

Wahl et al. GWAS on IgG Glycosylation Patterns

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 277

resUlTs

We conducted an age- and sex-adjusted genome-wide association 
scan on 376 glycan traits, including 50 initial measured IgG gly-
copeptides, 155 summarizing derived traits, 95 within-subclass 
ratios, 40 between-subclass ratios, and 36 glycan proportions (see 
Figure 1 for an overview; Table S1 in Supplementary Material; 
and Section “Materials and Methods” for further details). In our 
discovery cohort, KORA F4 (n = 1,823, study characteristics in 
Table S2 in Supplementary Material), 23,277 associations between 
1,694 SNPs and 260 traits reached the suggestive significance 
threshold (p  <  5  ×  10−8, Bonferroni corrected), out of which 
14,425 associations (848 SNPs and 164 traits) reached genome-
wide significance (p < 1 × 10−9, Bonferroni corrected). Explained 
variances in the discovery cohort ranged from 1.4 to 14.1% (Table 
S3 in Supplementary Material).

Out of the suggestive 1,694 SNPs in the discovery, 1,476 SNPs 
were available for replication in the LLS cohort. The list of 1,801 
SNP-trait associations excluded from the replication can be seen 
in Table S4 in Supplementary Material. For the replication, we 
used in total 21,476 associations between 1,476 SNPs and 253 

phenotypic traits and set our Bonferroni-corrected replication 
significance threshold to 2.33 ×  10–6. From the 21,476 associa-
tions available for replication, we replicated 15,342 associations 
between 159 traits and 718 SNPs, which are displayed in Figure 2 
(network representation) and Figure S1 (Manhattan plot) and 
Table S5 (all replicated results) in Supplementary Material. 
Table  1 summarizes the mentioned results. This table presents 
the associated genomic loci with p-values and effect sizes from 
both cohorts and associated IgG glycan traits and their directions 
of association.

The replicated traits cover all types of glycan traits and all IgG 
subclasses: 22 (out of 50) initial IgG glycopeptides, 87 (out of 155) 
summarizing derived traits, 39 (out of 95) within-subclass ratios, 
6 (out of 40) between-subclass ratios, and 5 (out of 36) glycan 
proportions. Effects for all replicated associations are in the same 
direction and of similar magnitude as in the discovery cohort 
(part 2 in Figure 1).

The replicated SNPs are spread over seven independent loci on six 
chromosomes [chromosome 1: 25,296,560–25,298,841 (6,809 bp 
upstream of RUNX3), chromosome 3: 186,705,790–186,782,999 
(ST6GAL1), chromosome 7: 50,336,551–50,355,207 (IKZF1), 
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FigUre 2 | Network of replicated associations immunoglobulin G (IgG) glycan traits (circles) for different subclasses (octagon: IgG1; diamonds: IgG2; circles: IgG4; 
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chromosome 9: 33,113,322–33,180,813 (B4GALT1), chromo-
some 14: 65,734,600–66,275,755 (FUT8), chromosome 22: 
24,100,654–24,189,032 (SMARCB1/DERL3), and chromosome 
22: 39,737,929–39,893,932 (MGAT3)]. An overview of the associ-
ated traits per locus can be found in Table S8 in Supplementary 
Material and is shortly given in Table 1. With our study, we can 
confirm six of the loci associated with UPLC-measured IgG glycan 
traits (21, 23) being associated with LC–ESI-MS-measured IgG 
glycan structures in a comparable way (see the Supplementary 
note and Table S13 in Supplementary Material for additional 
details). In addition, we detect a novel locus at RUNX3 (chromo-
some 1p36.11).

On chromosome 1, three SNPs (rs16830188, rs10903120, and 
rs11270291) have significant impact on glycan traits. A multi-
variate analysis in KORA F4 reveals that the three SNPs describe 
one locus, with rs16830188 being the most influential SNP (see 
Table S10 in Supplementary Material). These SNPs are in high 
linkage disequilibrium (LD) (r2  ≥  0.5) and are flanking the 
gene RUNX3 (see Figure S6A in Supplementary Material). The 
T-allele of the most significant marker for all associated glycan 
traits, rs16830188, is associated with an increase in agalacto-
sylated structures and a decrease in mono- and digalactosylated 
structures. In addition, this SNP has the largest effect sizes for all 
associated glycan traits and explains 1.4 to 3.5% of the variance 
of the associated traits (see Table S3 in Supplementary Material). 
The genetic variants within RUNX3 especially affect IgG glycan 

traits from IgG2 and IgG4, illustrating the merit of the subclass-
specific analysis.

In contrast to UPLC, LC–ESI-MS is suited for quantifying 
subclass-specific IgG glycan structures and thus for analyzing 
within-subclass ratios that represent single pathway steps in 
IgG glycan synthesis, as well as between-subclass ratios and 
glycan proportions. Using QQ-plots to compare the associations 
obtained with initial IgG glycan traits versus within-subclass 
ratios, we clearly demonstrate a gain in power for the latter 
analytical approach (Figure 3). These ratios even outperform the 
summarizing derived traits. Subclass specificity assessed by glycan 
proportions and between-subclass ratios perform almost as good 
as initial measured IgG glycopeptides, except for associations 
with very low p-values (1 × 10–18) (Figure S3A in Supplementary 
Material). In addition, we performed meta-analyses on replicated 
SNP–glycan associations of the two cohorts and statistically com-
pared the strength of the associations of the same glycan trait for 
different subclasses.

Except for four IgG glycan ratios (IgG2_G2/IgG2_G1, IgG1_
G2N/IgG1_G1N, IgG1_G1NS1/IgG1_G1N, and IgG1_G1S1/
IgG1_G1), the associations of within-subclass ratios support 
the known functions of the glycosyltransferases within the IgG 
glycan synthesis across the subclasses (see Figures S4A–F in 
Supplementary Material). Ratios of monogalactosylated over 
agalactosylated structures are associated with SNPs within the 
galactosyltransferase B4GALT1 locus; ratios of structures with 
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bisecting GlcNAc over structures without bisecting GlcNAc 
associate with SNPs within the N-acetylglucosaminyltransferase 
MGAT3 locus; ratios of sialylated over non-sialylated glycan traits 
associate to variants within the sialyltransferase ST6GAL1 locus 
and ratios of fucosylated over non-fucosylated structures associ-
ate with fucosyltransferase FUT8.

Besides known pathway steps in IgG glycan synthesis and 
inferred reactions from network analyses (28), the results hint 
at hitherto unknown enzymatic reaction steps catalyzed by the 
known glycosyltransferases, e.g., associations between variants of 
FUT8 and IgG1_G0FN/IgG1_G0N.

Subclass comparisons of meta-analyzed data revealed that 
22 glycan traits are significantly different associated with 432 
SNPs on 4 chromosomes (Table S7 in Supplementary Material 
contains all results from the statistical tests, an overview is 
given in Table S8 in Supplementary Material and, graphically, 
in Figures S2 and S4F in Supplementary Material). In addition, 
as stated before, associations to five between-subclass ratios 
and six glycan proportions were replicated. Taken together, the 
major difference of IgG glycan traits on different subclasses lies 
in bisecting and fucosylation. We found 13 IgG glycans to be 
significantly different associated with SNPs at FUT8 between 
IgG1 and IgG2. In addition, the neutral glycan traits G0n, G1n, 
and G2n showed significantly different behaviors between IgG1 
and IgG2 as well as between IgG2 and IgG4 as the T-allele of 
the strongest SNP in this locus (FUT8), rs11158592, was sig-
nificantly negative associated with these traits in IgG1 and IgG2 
but not in IgG4.

Furthermore, for the association between SNPs within MGAT3 
and IgG glycan traits, we detected two traits being significantly 
different between IgG1 and IgG2, 10 glycan traits differing 
between IgG2 and IgG4, and only one glycan trait being different 
for IgG1 and IgG4 (G1FN). Almost all of the significantly dif-
fering glycan structures contain a bisecting GlcNAc. In addition, 
within-subclass ratios representing the addition of a GlcNAc 
(G1FN/G1F, G2FN/G2F, and G0FN/G0F) are significantly dif-
ferently associated with the MGAT3 locus for the IgG subclasses.

DiscUssiOn

Our study attempts to deepen the knowledge of genetic influence 
on IgG glycosylation and to disclose possible subclass specificity 
in the synthesis pathways. We used the LC–ESI-MS-measured 
glycopeptides in both the discovery and replication cohort. In 
contrast to the UPLC and MALDI–TOF MS data used in Ref. 
(21, 23), we quantify subclass-specific attached N-glycans, and 
the traits are comparable between the discovery and replication 
study.

With the new analytical method, LC–ESI-MS, we confirmed 
the association of IgG glycosylation to six of the loci previously 
identified with UPLC (21, 23) and, moreover, detect a novel 
locus, RUNX3, on chromosome 1p36.11. Unfortunately, we 
could not verify any of the additional proposed loci proposed by 
Shen et al. (23), probably due to power reasons and difference in 
statistical methodology (multivariate vs univariate approach). In 
addition, it has to be highlighted, however, that IgG glycan traits 
originating from the two analytical methods cannot be combined 

straightforwardly (see the Supplementary note and Table S10 in 
Supplementary Material).

RUNX3 encodes for a transcription factor of the runt domain-
containing family. It is located on chromosome 1 and three vari-
ants within this locus are associated with 10 phenotypic traits. All 
three SNPs are in high LD to each other (r2 ≥ 0.5). RUNX3 and 
other transcription factors of the runt-family have a large impact 
on hematopoiesis (29). Methylation of RUNX3 promoters has an 
impact on several diseases (30–32), as well as on inflammation 
and immune response (33–35). In particular, RUNX3 could be 
linked to B-cell maturation (36).

In addition, the transcription factor has been shown to con-
tribute greatly to the regulation of apoptosis in cancer metastasis 
in general (37) and in the differentiation of T-cells to CD4+ and 
CD8+ T-cells in particular (38–41). While IgG is secreted by 
differentiated B-cells, it nonetheless has been shown that IgG1 
glycosylation is dependent on B  cell stimuli during their dif-
ferentiation. These stimuli include T-cell derived cytokines and 
metabolites (42). By influencing T-cell differentiation, RUNX3 
could likely indirectly influence the glycosylation of antibodies 
produced by B-cells. Thus, T-cell differentiation may stimulate 
B-cell activation and influence the glycosylation of their secreted 
antibodies.

The opposing effect directions for structures with and without 
attached galactose lead to the hypothesis that the RUNX3 locus 
plays an important role in galactosylation. There is a striking 
overlap between glycan traits associated with the RUNX3 locus 
and the B4GALT1 locus, supporting this hypothesis. Interestingly, 
a similar feature as for RUNX3, namely altering the differentiation 
process of T-cells, is attributed to the enzymes of the Ikaros family 
including IKZF1 (43, 44). However, in our study no glycan traits 
overlapped for the two loci. Potentially, the two transcription 
factors regulate different glycosyltransferases.

While the other six loci have been described before in Ref. 
(21, 23) to be associated with N-glycan biosynthesis, variants 
in the RUNX3 locus are novel candidates from our study. Since 
only glycan traits from less abundant IgG2 (IgG2/3 in KORA) 
and IgG4 were associated (17), it is reasonable to assume that the 
reason why the locus on chromosome 1 could not be detected 
before by the UPLC is because this technique does not provide 
information about N-glycosylation that is subclass specific, but 
instead results in total IgG N-glycans quantification and thus, a 
larger sample size may have been needed for UPLC data. Indeed, 
subclass-specific analyses reveal this association presumably due 
to higher power for the subclass-specific associations.

The IgG glycan traits based upon the two analytical methods, 
UPLC and LC–ESI-MS are not entirely comparable. A benefit of 
the LC–ESI-MS method is the subclass-specific IgG glycosylation 
measurements, with the drawback of non-separable IgG2 and 
IgG3 in the discovery cohort, which is due to the identical peptide 
moieties (E293EQFNSTFR301) of their tryptic Fc glycopeptides 
in Caucasians (45). Nevertheless, we were able to compare SNP 
associations for similar glycan traits between the subclasses and 
examine the IgG glycan synthesis separately for each subclass.

The within-subclass ratios representing enzymatic pathway 
steps are mainly associated with the assumed genetic loci cod-
ing for known glycosyltransferases (16) (see Figures S4C–E in 
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Table 1 | Summarized table of replicated associations.
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1 1 25296560 25298841 RUNX3 3 10 3 7 rs16830188 LC_IGP90 1.71E−14 1.00868 1.27E−06 0.7404 T C 0.0179878 LC_IGP_R62#, LC_IGP133#, LC_IGP135, LC_IGP144, LC_IGP145#, LC_IGP175#, LC_
IGP199#, LC_IGP88#, LC_GP89#

3 1 186705790 186708013 ST6GAL1a 7 18 0 18 rsl30S2825 LC_IGPI22 6.25E−21 −0.347613 1.60E−23 −0.4665 C G 0.54829256 LC_IGP_R34, LC_IGP_R35, LC_IGP_R74, LC_IGP_R75, LC_IGP_R92, LC_IGP_R93, LC_
IGP111, LC_IGP120, LC_IGP123, LC_IGP186, LC_IGP189, LC_IGP190, LC_IGP25, LC_IGP36, 
LC_IGP37, LC_IGP7, LC_IGP93

3 2 186708571 186711453 ST6GAL1a 3 14 0 14 rs4012171 LC_IGPI22 1.22E−17 −0.354924 2.79E−19 −0.4471 C A 0.75708572 LC_IGP_R34, LC_IGP_R35, LC_IGP_R74, LC_IGP_R75, LC_IGP_R93, LC_IGP111, LC_
IGP120, LC_IGP123, LCJGP190, LC_IGP25, LC_IGP36, LC_IGP37, LC_IGP93

3 3 186712711 186744563 ST6GAL1a 73 26 0 26 rs11710456 LC_IGP 
R74

1.17E−56 −0.608772 6.30E−73 −0.7558 A G 0.26023337 LC_IGP_R33, LC_IGP_R34, LC_IGP_R35, LC_IGP_R75, LC_IGP_R92, LC_IGP_R93, 
LC_IGP110, LC_IGP111, LC_IGP120, LC_IGP121, LC_IGP122, LC_IGP123, LC_IGP179, LC_
IGP186, LC_IGP187, LC_IGP189, LC_IGP190, LC_IGP25, LC_IGP29, LC_IGP34, LC_IGP35, 
LC_IGP36, LC_IGP37, LC_IGP7, LC_IGP93

3 4 186754722 186782999 ST6GAL1a 18 17 16 17 rs57679165 LC_IGP_
R74

3.72E−20 −0.41011 4.60E−23 −0.4698 G C 0.18513165 LC_IGP_R34, LC_IGP_R35, LC_IGP_R75, LC_IGP_R92, LC_IGP_R93, LC_IGP111, LC_
IGP120, LC_IGP122, LC_IGP123, LC_IGP186, LC_IGP189, LC_IGP190, LC_IGP25, LC_IGP36, 
LC_IGP37, LC_IGP93

7 1 50336551 50355207 IKZF1a 12 11 2 9 rs7782210 LC_IGP56 2.76E−09 −0.220405 2.38E−13 −0.2853 G A 0.35729058 LC_IGP_R16, LC_IGP14, LC_IGP15, LC_IGP55, LC_IGP77, LC_IGP78, LC_IGP79, LC_IGP81#, 
LC_IGP84#, LC_IGP86

9 1 33113322 33113322 B4GALT1a 1 1 0 1 rs7019909 LC_IGP_
R89

2.90E−08 −0.30427 1.52E−07 −0.3075 T C 0.12458268

9 2 33119241 33180813 B4GALT1a 81 31 17 15 rs12342831 LC_IGP_
R89

1.79E−17 −0.3271−43 2.96E−20 −0.3813 C T 0.2611263 LC_IGP_R20, LC_IGP_R22, LC_IGP_R23, LC_IGP_R28, LC_IGP_R29, LC_IGP_R62, LC_
IGP_R63, LC_IGP_R68, LC_IGP_R69, LC_IGP_R88, LC_IGP109, LC_IGP133, LC_IGP134, 
LC_IGP144#, LC_IGP145, LC_IGP175, LC_IGP180, LC_IGP187, LC_IGP199, LC_IGP205, 
LC_IGP23, LC_IGP3, LC_IGP4#, LC_IGP48, LC_IGP49#, LC_IGP58#, LC_IGP59, LC_IGP60, 
LC_IGP88, LC_IGP89

14 1 65734600 66262963 FUT8a 324 45 44 42 rsll158592 LC_IGP11 1.32E−24 −0.348762 2.39E−19 −0.3429 T G 0.49714172 LC_IGP_Rl#, LC_IGP_R2#, LC_IGP_R26#, LC_IGP_R3#, LC_IGP_R32#, LC_IGP_R36#, LC_IGP_
R4#, LC_IGP_R41#, LC_IGP_R5#, LC_IGP_R64#, LC_IGP_R8#, LC_IGP_SC13, LC_IGP_SC15, 
LC_IGP12, LC_IGP13, LC_IGP138, LC_IGP14, LC_IGP148#, LC_IGP15, LC_IGP21#, LC_IGP26#, 
LC_IGP27#, LC_IGP28#, LC_IGP31#, LC_IGP32#, LC_IGP47#, LC_IGP52, LC_IGP53, LC_IGP54, 
LC_IGP55, LC_IGP56, LC_IGP61#, LC_IGP62#, LC_IGP63#, LC_IGP64#, LC_IGP65#, LC_
IGP68#, LC_IGP77, LC_IGP78, LC_IGP79, LC_IGP81#, LC_IGP84#, LC_IGP86, LC_IGP97

14 2 66275755 66275755 FUT8a 1 1 1 0 rs4899183 LC_IGP14 1.17E−08 0.210149 1.96E−06 0.191 G A 0.65685741

22 1 24100654 24179922 SMARCB1-
DERL3a

28 32 7 30 rs2186369 LC_
IGP108

1.55E−09 −0.286669 2.50E−13 −0.3778 G T 0.17226762 LC_IGP_R11, LC_IGP_R12, LC_IGP_R51, LC_IGP_R52, LC_IGP_R53, LC_IGP135, LC_
IGP155, LC_IGP156, LC_IGP157, LC_IGP158, LC_IGP159, LC_IGP160, LC_IGP161, LC_
IGP162, LC_IGP168, LC_IGP169, LC_IGP171#, LC_IGP22, LC_IGP5, LC_IGP50, LC_IGP69, 
LC_IGP70, LC_IGP71, LC_IGP72, LC_IGP73, LC_IGP74, LC_IGP75, LC_IGP82, LC_IGP83, 
LC_IGP85#, LC_IGP91

22 2 24182500 24189032 SMARC81-
DERL3a

2 11 1 10 rs6519476 LC_IGP 
_55

1.19E−09 −0.259124 9.57E−09 −0.2448 A G 0.25942042 LC_IGP_R52, LC_IGP108, LC_IGP135, LC_IGP156, LC_IGP157, LC_IGP159, LC_IGP161, 
LC_IGP168, LC_IGP169, LC_IGP171#

22 3 39737929 39737929 MGAT3a 1 1 0 1 rsl37680 LC_IGP_
R81

7.82E−11 −0.271863 3.35E−07 −0.2543 T C 0.59436303

22 4 39738425 39860868 MGAT3a 160 45 36 42 rs73167342 LC_IGP_
R81

7.71E−35 −0.455612 2.53E−38 −0.5559 G C 0.662518 LC_IGP_R11, LC_IGP_R12, LC_IGP_R13, LC_IGP_R51, LC_IGP_R82, LC_IGP_R83, LC_IGP_
SC25#, LC_IGP_SC31, LC_IGP_SC35#, LC_IGP_SC36#, LC_IGP135, LC_IGP156, LC_IGP160, 
LC_IGP173#, LC_IGP176, LC_IGP177, LC_IGP178, LC_IGP183, LC_IGP197#, LC_IGP200, 
LC_IGP201, LC_IGP202, LC_IGP22, LC_IGP4, LC_IGP49, LC_IGP5, LC_IGP50, LC_IGP66#, 
LC_IGP69, LC_IGP70, LC_IGP71, LC_IGP72, LC_IGP73, LC_IGP74, LC_IGP75, LC_IGP76, 
LC_IGP82, LC_IGP83, LC_IGP85#, LC_IGPRG14#, LC_IGPRG15#, LC_IGPRG16#, LC_IGPRG25, 
LC_IGPRG26

22 5 39873937 39873937 MGAT3a 1 6 6 0 rsl2484278 LC_IGP_
R81

3.66E−12 0.320619 2.56E−10 0.287 A G 0.24144208 LC_IGP_R82, LC_IGP177, LC_IGP177, LC_IGP183, LC_IGP201, LC_IGP70

22 6 39889080 39893932 MGAT3a 3 1 1 0 rs34692520 LC_IGP_
R81

1.39E−12 0.308965 I.09E−06 0.229 G C 0.24220301

*Lowest p-value to any glycan trait from either the discovery or replication cohort.
aEffect estimates for any SNP within the linkage disequilibrium-Block.
#SNP effect in opposite direction to most significant trait.
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Table 1 | Summarized table of replicated associations.

c
hr

o
m

o
so

m
e

lD
-b

lo
ck

 p
er

 
ch

ro
m

o
so

m
e

M
in

im
al

 p
o

si
ti

o
n

M
ax

im
al

 p
o

si
ti

o
n

g
en

e 
lo

cu
s

n
um

b
er

 o
f 

as
so

ci
at

ed
 

re
p

lic
at

ed
 s

n
P

s

n
um

b
er

 o
f 

as
so

ci
at

ed
 

re
p

lic
at

ed
 t

ra
it

s

n
um

b
er

 o
f 

tr
ai

ts
 

w
it

h 
p

o
si

ti
ve

 e
ff

ec
t 

es
ti

m
at

es
a

n
um

b
er

 o
f 

tr
ai

ts
 

w
it

h 
ne

g
at

iv
e 

ef
fe

ct
 

es
ti

m
at

es
a

r
ep

lic
at

ed
 s

n
P

  
w

it
h 

lo
w

es
t 

p
-v

al
ue

*

r
ep

lic
at

ed
 t

ra
it

  
w

it
h 

lo
w

es
t 

p
-v

al
ue

*

p
-V

al
ue

 in
 d

is
co

ve
ry

 
(K

O
r

a
) f

o
r 

th
e 

le
ad

 s
n

P
–g

ly
ca

n 
co

m
b

in
at

io
n

e
ff

ec
t 

si
ze

 in
  

d
is

co
ve

ry
 (K

O
r

a
) f

o
r 

th
e 

le
ad

 s
n

P
–g

ly
ca

n 
co

m
b

in
at

io
n

p
-V

al
ue

 in
 r

ep
lic

at
io

n 
[l

ei
d

en
 l

o
ng

ev
it

y 
s

tu
d

y 
(l

ls
)]

 f
o

r 
th

e 
le

ad
 s

n
P

–g
ly

ca
n 

co
m

b
in

at
io

n

e
ff

ec
t 

si
ze

 in
 

re
p

lic
at

io
n 

(l
ls

) f
o

r 
th

e 
le

ad
 s

n
P

–g
ly

ca
n 

co
m

b
in

at
io

n

e
ff

ec
t 

al
le

le
  

fo
r 

le
ad

 s
n

P

O
th

er
 a

lle
le

  
fo

r 
le

ad
 s

n
P

e
ff

ec
t 

al
le

le
  

fr
eq

ue
nc

y 
in

 t
he

 
d

is
co

ve
ry

 (K
O

r
a

)

O
th

er
 a

ss
o

ci
at

ed
  

tr
ai

ts

1 1 25296560 25298841 RUNX3 3 10 3 7 rs16830188 LC_IGP90 1.71E−14 1.00868 1.27E−06 0.7404 T C 0.0179878 LC_IGP_R62#, LC_IGP133#, LC_IGP135, LC_IGP144, LC_IGP145#, LC_IGP175#, LC_
IGP199#, LC_IGP88#, LC_GP89#

3 1 186705790 186708013 ST6GAL1a 7 18 0 18 rsl30S2825 LC_IGPI22 6.25E−21 −0.347613 1.60E−23 −0.4665 C G 0.54829256 LC_IGP_R34, LC_IGP_R35, LC_IGP_R74, LC_IGP_R75, LC_IGP_R92, LC_IGP_R93, LC_
IGP111, LC_IGP120, LC_IGP123, LC_IGP186, LC_IGP189, LC_IGP190, LC_IGP25, LC_IGP36, 
LC_IGP37, LC_IGP7, LC_IGP93

3 2 186708571 186711453 ST6GAL1a 3 14 0 14 rs4012171 LC_IGPI22 1.22E−17 −0.354924 2.79E−19 −0.4471 C A 0.75708572 LC_IGP_R34, LC_IGP_R35, LC_IGP_R74, LC_IGP_R75, LC_IGP_R93, LC_IGP111, LC_
IGP120, LC_IGP123, LCJGP190, LC_IGP25, LC_IGP36, LC_IGP37, LC_IGP93

3 3 186712711 186744563 ST6GAL1a 73 26 0 26 rs11710456 LC_IGP 
R74

1.17E−56 −0.608772 6.30E−73 −0.7558 A G 0.26023337 LC_IGP_R33, LC_IGP_R34, LC_IGP_R35, LC_IGP_R75, LC_IGP_R92, LC_IGP_R93, 
LC_IGP110, LC_IGP111, LC_IGP120, LC_IGP121, LC_IGP122, LC_IGP123, LC_IGP179, LC_
IGP186, LC_IGP187, LC_IGP189, LC_IGP190, LC_IGP25, LC_IGP29, LC_IGP34, LC_IGP35, 
LC_IGP36, LC_IGP37, LC_IGP7, LC_IGP93

3 4 186754722 186782999 ST6GAL1a 18 17 16 17 rs57679165 LC_IGP_
R74

3.72E−20 −0.41011 4.60E−23 −0.4698 G C 0.18513165 LC_IGP_R34, LC_IGP_R35, LC_IGP_R75, LC_IGP_R92, LC_IGP_R93, LC_IGP111, LC_
IGP120, LC_IGP122, LC_IGP123, LC_IGP186, LC_IGP189, LC_IGP190, LC_IGP25, LC_IGP36, 
LC_IGP37, LC_IGP93

7 1 50336551 50355207 IKZF1a 12 11 2 9 rs7782210 LC_IGP56 2.76E−09 −0.220405 2.38E−13 −0.2853 G A 0.35729058 LC_IGP_R16, LC_IGP14, LC_IGP15, LC_IGP55, LC_IGP77, LC_IGP78, LC_IGP79, LC_IGP81#, 
LC_IGP84#, LC_IGP86

9 1 33113322 33113322 B4GALT1a 1 1 0 1 rs7019909 LC_IGP_
R89

2.90E−08 −0.30427 1.52E−07 −0.3075 T C 0.12458268

9 2 33119241 33180813 B4GALT1a 81 31 17 15 rs12342831 LC_IGP_
R89

1.79E−17 −0.3271−43 2.96E−20 −0.3813 C T 0.2611263 LC_IGP_R20, LC_IGP_R22, LC_IGP_R23, LC_IGP_R28, LC_IGP_R29, LC_IGP_R62, LC_
IGP_R63, LC_IGP_R68, LC_IGP_R69, LC_IGP_R88, LC_IGP109, LC_IGP133, LC_IGP134, 
LC_IGP144#, LC_IGP145, LC_IGP175, LC_IGP180, LC_IGP187, LC_IGP199, LC_IGP205, 
LC_IGP23, LC_IGP3, LC_IGP4#, LC_IGP48, LC_IGP49#, LC_IGP58#, LC_IGP59, LC_IGP60, 
LC_IGP88, LC_IGP89

14 1 65734600 66262963 FUT8a 324 45 44 42 rsll158592 LC_IGP11 1.32E−24 −0.348762 2.39E−19 −0.3429 T G 0.49714172 LC_IGP_Rl#, LC_IGP_R2#, LC_IGP_R26#, LC_IGP_R3#, LC_IGP_R32#, LC_IGP_R36#, LC_IGP_
R4#, LC_IGP_R41#, LC_IGP_R5#, LC_IGP_R64#, LC_IGP_R8#, LC_IGP_SC13, LC_IGP_SC15, 
LC_IGP12, LC_IGP13, LC_IGP138, LC_IGP14, LC_IGP148#, LC_IGP15, LC_IGP21#, LC_IGP26#, 
LC_IGP27#, LC_IGP28#, LC_IGP31#, LC_IGP32#, LC_IGP47#, LC_IGP52, LC_IGP53, LC_IGP54, 
LC_IGP55, LC_IGP56, LC_IGP61#, LC_IGP62#, LC_IGP63#, LC_IGP64#, LC_IGP65#, LC_
IGP68#, LC_IGP77, LC_IGP78, LC_IGP79, LC_IGP81#, LC_IGP84#, LC_IGP86, LC_IGP97

14 2 66275755 66275755 FUT8a 1 1 1 0 rs4899183 LC_IGP14 1.17E−08 0.210149 1.96E−06 0.191 G A 0.65685741

22 1 24100654 24179922 SMARCB1-
DERL3a

28 32 7 30 rs2186369 LC_
IGP108

1.55E−09 −0.286669 2.50E−13 −0.3778 G T 0.17226762 LC_IGP_R11, LC_IGP_R12, LC_IGP_R51, LC_IGP_R52, LC_IGP_R53, LC_IGP135, LC_
IGP155, LC_IGP156, LC_IGP157, LC_IGP158, LC_IGP159, LC_IGP160, LC_IGP161, LC_
IGP162, LC_IGP168, LC_IGP169, LC_IGP171#, LC_IGP22, LC_IGP5, LC_IGP50, LC_IGP69, 
LC_IGP70, LC_IGP71, LC_IGP72, LC_IGP73, LC_IGP74, LC_IGP75, LC_IGP82, LC_IGP83, 
LC_IGP85#, LC_IGP91

22 2 24182500 24189032 SMARC81-
DERL3a

2 11 1 10 rs6519476 LC_IGP 
_55

1.19E−09 −0.259124 9.57E−09 −0.2448 A G 0.25942042 LC_IGP_R52, LC_IGP108, LC_IGP135, LC_IGP156, LC_IGP157, LC_IGP159, LC_IGP161, 
LC_IGP168, LC_IGP169, LC_IGP171#

22 3 39737929 39737929 MGAT3a 1 1 0 1 rsl37680 LC_IGP_
R81

7.82E−11 −0.271863 3.35E−07 −0.2543 T C 0.59436303

22 4 39738425 39860868 MGAT3a 160 45 36 42 rs73167342 LC_IGP_
R81

7.71E−35 −0.455612 2.53E−38 −0.5559 G C 0.662518 LC_IGP_R11, LC_IGP_R12, LC_IGP_R13, LC_IGP_R51, LC_IGP_R82, LC_IGP_R83, LC_IGP_
SC25#, LC_IGP_SC31, LC_IGP_SC35#, LC_IGP_SC36#, LC_IGP135, LC_IGP156, LC_IGP160, 
LC_IGP173#, LC_IGP176, LC_IGP177, LC_IGP178, LC_IGP183, LC_IGP197#, LC_IGP200, 
LC_IGP201, LC_IGP202, LC_IGP22, LC_IGP4, LC_IGP49, LC_IGP5, LC_IGP50, LC_IGP66#, 
LC_IGP69, LC_IGP70, LC_IGP71, LC_IGP72, LC_IGP73, LC_IGP74, LC_IGP75, LC_IGP76, 
LC_IGP82, LC_IGP83, LC_IGP85#, LC_IGPRG14#, LC_IGPRG15#, LC_IGPRG16#, LC_IGPRG25, 
LC_IGPRG26

22 5 39873937 39873937 MGAT3a 1 6 6 0 rsl2484278 LC_IGP_
R81

3.66E−12 0.320619 2.56E−10 0.287 A G 0.24144208 LC_IGP_R82, LC_IGP177, LC_IGP177, LC_IGP183, LC_IGP201, LC_IGP70

22 6 39889080 39893932 MGAT3a 3 1 1 0 rs34692520 LC_IGP_
R81

1.39E−12 0.308965 I.09E−06 0.229 G C 0.24220301

*Lowest p-value to any glycan trait from either the discovery or replication cohort.
aEffect estimates for any SNP within the linkage disequilibrium-Block.
#SNP effect in opposite direction to most significant trait.
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Supplementary Material). These traits contain not only well-
known enzymatic reactions within IgG glycan synthesis (Figure 
S4A in Supplementary Material), inferred reactions based on 
network analysis as in Ref. (28) but also all possible ratios rep-
resenting the addition of one monosaccharide at a time (Figure 
S4B in Supplementary Material). Comparing the results from 
the known enzymatic steps and other possible one-step pathway 
relations suggests the existence of several of the latter (see Figure 
S3B in Supplementary Material), even in addition to the pathway 
steps supposed by Benedetti et  al. (28). However, few of the 
within-subclass ratios are associated with variants from different 
genetic loci (see Figure 2).

The comparison of IgG glycan traits across subclasses leads 
to the hypothesis that fucosylation catalyzed by Fut8 and the 
addition of bisecting GlcNAc supported by Mgat3 is realized to 
different extent between the IgG subclasses. Fucosylation seems 
to be especially different between IgG1 and IgG2 while bisection 
is mostly differing between IgG2 and IgG4. For more details, 
see the supplementary note in Data Sheet S1 Supplementary 
Material. Still, functional studies are needed to elucidate the 
underlying mechanisms, especially with regard to subclass 
specificity. Indeed, it has been shown that specific subclasses 
and their attached glycan structure are highly relevant as 
biomarkers for diseases and even more when used in antibody 
therapy (46–50).

The obtained results help to broaden our knowledge on the 
pathway steps of IgG glycan synthesis in general, and, specifically 
the differences for each IgG subclass. While the initial glycan traits 
outperform the between-subclass ratios and glycan proportions, 
the findings from comparing SNP–glycan associations across 
subtypes (Table S5 and Figures S2 and S4F in Supplementary 
Material) hint at altered glycan synthesis for the different IgG 
subclasses.

cOnclUsiOn

Summarizing, our analysis yields 159 phenotypic traits based 
on LC–ESI-MS measured IgG glycopeptide structures being 
significantly associated with 718 genetic variants on seven 
distinct loci. For UPLC-measured IgG glycans, six out of the 
seven loci have been shown to influence IgG glycosylation (21, 
23). The new gene found to be associated with LC–ESI-MS 
measured IgG glycopeptide traits is RUNX3 on chromosome 
1. Ratios of IgG glycans representing enzymatic pathway steps 
within the N-glycan biosynthesis are predominantly associ-
ated with genetic variants within regions of a priori suggested 
genes encoding for known glycosyltransferases. Subclass 
comparisons point to specific behavior of variants covering 
the MGAT3 locus on chromosome 22 and the FUT8 locus on 
chromosome 14.

FigUre 3 | QQ-Plot (−log10(p-values)) for comparison of the results from initial glycopeptide traits and from within-subclass ratios and summarizing derived traits 
(results are obtained from a Meta-Analysis of the Replicated Associations).
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MaTerials anD MeThODs

Discovery cohort—KOra F4
The KORA F4 study, conducted in 2006–2008, is an indepen-
dent population-based health survey (51) and was performed as 
a follow-up of the KORA S4 study (1999–2001) (52). The study 
followed the recommendations of the Declaration of Helsinki and 
was approved by the local ethical committees. In the F4 follow-up, 
a total of 3,080 persons participated of whom 1,823 individuals 
were available for the genome-wide association scan of IgG gly-
copeptides traits. Genotyping was realized with the Affymetrix 
Axiom Chip (53, 54). Prephasing was done by SHAPEIT v2 and 
imputation was carried out by IMPUTE v2.3.0 using 1000 Genome 
(phase 1 integrated haplotypes CEU) as a reference panel. SNPs 
were non-monomorphic and filtered based on their call rate (98%), 
their minor allele frequency (>1%) and were excluded if they 
significantly aberrated from the Hardy–Weinberg Equilibrium 
(p  <  5  ×  10−6). All individuals were of European ancestry and 
samples with mismatching phenotypic and genetic gender were 
excluded. These criteria led to a total of 18,185,628 SNPs. After the 
analysis, we additionally excluded SNPs with imputation quality 
defined by IMPUTE lower than 30%.

A total of 1,823 individuals from the KORA F4 cohort were 
used for discovery. The samples include 935 women and 888 
men ranging from 32 to 81 years, with mean age of 62.56 years 
(SD = 9.89) (see Table S2 in Supplementary Material for more 
details).

replication cohort—lls
The LLS followed the recommendations of the Declaration of 
Helsinki, the study protocol was approved by the local medical 
ethical committee and good clinical practice guidelines were 
maintained.

The LLS examined long-lived siblings of European descent 
together with their offspring and the partners of the offspring. 
Families with at least two long-lived siblings (age ≥89 for man, 
age ≥91 for women) were recruited. This age category represented 
<0.5% of the Dutch population in 2001 (22). In total, 944 long-
lived individuals (age range 89–104), 1,671 of their offspring (age 
range 39–81), and 744 partners thereof (60  years, 36–79) were 
included (55). DNA genotyping for LLS was performed at baseline 
as described in detail in Ref. (56) with the Illumina Human660W 
and Illumina OmniExpress arrays. Genotype imputation was per-
formed using IMPUTE v2.2 (beta) with the 1000 Genome (phase 
1 integreated haplotypes CEU) as reference panel. Quality control 
included SNP-wise call rate (95%), their minor allele frequency 
(>1%) and derivation from the Hardy–Weinberg equilibrium 
(p < 1 × 10−4). As for KORA F4, we excluded SNPs with imputation 
quality lower than 30% as provided by IMPUTE. For the current 
genome-wide association analysis with IgG glycopeptide measure-
ments, 1,836 samples of offspring and their partners were available.

Measurement of igg glycosylation
IgG Isolation
As described in Ref. (20), IgG was isolated from plasma by 
affinity chromatography using 96-well protein G monolithic 

plates (BIA Separations, Ljubljana, Slovenia) for KORA 
F4 samples and Protein A Sepharose Fast Flow beads (GE 
Healthcare, Uppsala, Sweden) for the LLS samples. For the 
KORA F4 sample analysis, 100 µL of plasma was first diluted 
10× with 1× PBS and then filtered through 0.45 µm GHP filter 
plate (Pall Corporation, Ann Arbor, MI, USA). Following, it 
was applied to the protein plate and instantly washed. With 
1 mL of 0.1 M formic acid (Merck, Darmstadt, Germany), the 
IgGs were eluted from the protein plate and neutralized with 
1 M ammonium bicarbonate (Acros Organics, NJ, USA). For 
the LLS sample analysis, 2 µL of plasma was incubated together 
with 15  µL of Protein A beads in a total volume of approxi-
mately 180  µL PBS in 96-well filter plates. The samples were 
then washed thrice with PBS and thrice with MilliQ-purified 
water, before elution with 0.1 M formic acid (Fluka, Steinheim, 
Germany). The samples were subsequently dried in a vacuum 
concentrator for 2 h at 60°C.

Due to the different IgG isolation procedures for KORA F4 
and LLS, we obtained subclass-specific measurements for IgG1, 
IgG2/IgG3, and IgG4 in KORA F4 and IgG1, IgG2, and IgG4 
in LLS. IgG3 is less abundant compared with IgG2 and we thus 
denote the IgG2/IgG3 mixture in KORA as IgG2 only.

IgG Tryptic Digestion and Purification
Isolated IgG (approximately 25  µg) was resuspended in 40  µL 
of ammonium bicarbonate containing 200  ng of trypsin 
(Worthington, USA for KORA F4 samples; sequencing grade 
modified trypsin, Promega, Madison, WI, USA for LLS sam-
ples) and digested at 37°C over night. The KORA F4 samples 
underwent an additional purification step: resulting tryptic gly-
copeptides were purified by reverse phase solid phase extraction 
using Chromabond C18 ec beads (Macherey-Nagel, Germany). 
C18 beads were activated by 80% acetonitrile (ACN), 0.1% tri-
fluoroacetic acid (TFA) (Sigma-Aldrich, USA) and conditioned 
with 0.1% TFA. Tryptic digest was diluted 10× with 0.1% TFA 
and loaded onto C18 beads. Beads were washed with 0.1% TFA 
and glycopeptides eluted with 20% ACN and 0.1% TFA. Tryptic 
glycopeptides were dried by vacuum centrifugation and dissolved 
in 20 µL of ultrapure water.

LC–ESI-MS/MS Analysis of IgG Tryptic 
Glycopeptides
For the KORA F4 study, tryptic glycopeptides were analyzed 
on nanoACQUITY UPLC system (Waters, USA) coupled to 
Compact mass spectrometer (Bruker Daltonics, Germany) via 
a capillary electrophoresis electrospray (ESI) interface (Agilent 
Technologies, Santa Clara, CA, USA). A sheath liquid (50% 
isopropanol, 20% proprionic acid) was pumped at a flow rate 
of 2  µL/min. Nine µL of IgG tryptic glycopeptides was loaded 
on Acclaim PepMap100 C8 (5 mm × 300 μm i.d.) trap column. 
The glycopeptides were washed 1 min with 0.1% TFA (solvent 
A) at a flow rate of 40 µL/min and separated on an HALO C18 
nanoLC column (50 mm × 75 μm i.d., 2.7 µm HALO fused core 
particles) (Advanced Materials Technology, USA) at 30°C, using 
a 3.5 min gradient from 19 to 25% solvent B (80% ACN) at 1 µL/
min flow rate. Mass spectra were acquired from 500 to 2,000 m/z 
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units with two averages at a frequency of 0.5 Hz. The quadrupole 
ion energy and collision energy were set to 4 eV. NanoACQUITY 
UPLC system was operated under MassLynx software version 
4.1 and the Bruker micrOTOF-Q was operated under HyStar 
software, version 3.2. Data extraction was performed using an 
in-house Python script. In short, data were m/z recalibrated 
based on a subset of hand-picked analytes having a high signal-
to-noise ratio and the expected isotopic distribution. Intensities 
for the top four isotopologues were extracted using a 10 ppm m/z 
window. Retention times were aligned toward the cohort median 
and retention time bins were determined for the analytes. All of 
the signals belonging to a single analyte for every sample were 
summed up.

For the LLS study, the IgG glycopeptide samples were ana-
lysed using an Ultimate 3000 RSLCnano liquid chromatography 
system (Dionex, Sunnyvale, CA, USA) coupled to a Maxis 
Impact quadrupole time-of-flight-MS (micOTOF-Q, Bruker 
Daltonics), as described previously (57). Samples were run 
over a trap column (Acclaim PepMap100 C18, 5 mm × 300 µm 
i.d., Dionex, Sunnyvale, CA, USA) and a separation column 
(Ascentis Express C18 nanoLC, 50  mm×  75  µm i.d., 2.7  µm 
HALO fused core particles; Supelco, Bellefonte, PA, USA). A 
linear gradient was used with a flow rate of 0.9 µL/min, with 
solvent A consisting of 0.1% TFA and B of 95% ACN: t = 0, 3% 
solvent B; t = 2, 6%; t = 4.5, 18%; t = 5, 30%; t = 7, 30%; t = 8, 
0%; t = 11, 0%. The LC was coupled to the MS via a sheath-flow 
electrospray (ESI) interface (Agilent Technologies, Santa Clara, 
CA, USA). A sheath flow, consisting of 50% isopropanol, 20% 
proprionic acid, and 30% MilliQ-purified water, was applied 
with a flow rate of 2 µL/min, along with nitrogen gas at 4 L/min. 
Mass spectra were acquired within an m/z range of 600–2,000 
at a frequency of 0.5  Hz. LC–MS data were examined and 
calibrated using Compass Data Analysis 4.2 (Bruker Daltonics), 
and retention time alignment was done using Msalign. In-house 
developed software Xtractor 2D (see http://ms-utils.org/
Xtractor/) was used to extract signal intensity data. For each 
type of glycopeptide, the background-subtracted signal inten-
sity of the first three isotopic peaks in both 2+ and 3+ charge 
state were summed.

For the following analyses we used the most prominent meas-
ureable 20 glycopeptides in subclasses IgG1 and IgG2 (a mixture 
of IgG2 and IgG3 in KORA F4, IgG2 only in LLS) and the most 
prominent and identifiable 10 fucosylated glycopeptides in IgG4, 
since peaks belonging to afucosylated IgG4 glycans overlapped 
with those of earlier eluting and much higher abundant IgG1 
glycans.

Preprocessing of igg glycopeptides
Glycosylation is highly differing between individuals. Absolute 
values of peaks obtained by the LC–ESI-MS method are not 
comparable. We normalize glycopeptides per subclass by 
total area normalization as defined in the R-package “glycanr” 
(R-package version 0.3.0) (58), taking their relative abundance 
within subclasses as phenotypes and input variables for ratios. 
Batch correction per subclass was performed with the ComBat 
(59) algorithm of the R-package “sva” (R-package version 3.14.0) 
(60). To meet the assumptions for ComBat batch correction, 

samples were log-transformed before applying the algorithm 
and exponentiated afterward to regain the original scale. 
Derived traits have been computed from batch corrected glycan 
measurements.

Summarizing derived traits per subclass were computed as 
described in S1 using the ildt function from glycanr package (58). 
Ratios within subclasses were defined as product over substrate 
for all possible one-step reactions in the pathways, based on the 
assumption that single sugar molecules can only be added and 
not removed (61). Ratios between subclasses were calculated as 
described in Data Sheet S1 in Supplementary Material. Here, we 
do not assume an actual product-substrate relationship. For ratios 
including glycopeptides traits from IgG4, we renormalized the 
glycopeptide traits on all corresponding fucosylated traits only. 
All ratios were log-transformed.

For the glycan proportions, i.e., normalization per specific 
glycopeptide trait in total Fc IgG glycopeptides, we also used 
the total area normalized traits as input. We only calculated per 
glycan normalization for core-fucosylated glycopeptides as oth-
ers are not available for IgG4. In addition, we computed the sums 
per IgG subclass as ratios of these sums. Again, the ratios were 
log-transformed before any further analyses. For the discovery 
cohort, characteristics of all IgG glycan traits can be found in 
Table S2 in Supplementary Material.

igg glycan Traits
With LC–ESI-MS, 50 initial glycopeptides from different IgG 
subclasses were measured and quantified. For IgG1 and IgG2 
(IgG2/3 in KORA), 20 initial glycopeptides are available, for IgG4, 
only glycopeptides with core-fucosylation (10 glycopeptides) 
were measured.

From these 50 initial glycopeptides, summarizing traits per 
subclass were derived [as seen in Table S1 in Supplementary 
Material and in Ref. (24)], including, e.g., “Percentage of IgG1 
Fucosylation” (sum of all fucosylated glycan traits in IgG) or the 
“ratio of afucosylated monosialylated structures with and without 
bisecting GlcNAc in total IgG1 glycans” (the ratio of sum of 
afucosylated monosialylated structures with bisecting GlcNAcs 
over the sum of afucosylated monosialylated structures without 
bisecting GlcNAcs in total IgG1 glycan traits).

In addition, we included all one-step pathway ratios of product 
over substrate possible within each subclass, e.g., IgG1_G0F/
IgG1_G0 (see Figure S4B in Supplementary Material). The ratios 
describe reactions that are already known to be part of the IgG 
glycosylation biosynthesis as well as reactions that can be derived 
on the assumption of the addition of one monosaccharide at a 
time, but which are hitherto unknown.

To analyze differing glycosylation pathways for the subclasses, 
we included ratios of glycopeptides across subclasses in our 
analysis, e.g., IgG1_G0/IgG2_G0. Glycopeptide traits being 
used for ratios with IgG4 were additionally normalized on their 
respective fucosylated glycopeptides only.

For detecting genetic influence on the abundances of the IgG 
subclasses, we additionally normalized the traits “per glycan” [e.g., 
IgG1_G0F/(IgG1_G0F + IgG2_G0F + IgG4_G0F)] and included 
the newly normalized glycopeptides, the subclass-specific sums, 
and ratios thereof in the analyses. These traits describe the relative 
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All variants in LD with r2  ≥  0.5 were assigned to the same 
LD-block. Hereby, SNPs could be assigned to more than one 
LD-block. We then merged LD-blocks that were overlapping 
position-wise (see Figures S5A–F in Supplementary Material). 
This step takes care of SNPs for which no LD information 
was available but which are still situated in a highly heritable 
genetic region. The remaining (now larger) LD blocks can thus 
be clearly separated by positions on the chromosome and can 
be more easily observed by specific regional plots (see Figure 
S6 in Supplementary Material). This approach helps to sum-
marize variants within loci. However, it does not account for 
functional similarity between markers or their relevance on 
IgG glycopeptide traits.

Information on the position of SNPs and their genetic fea-
tures are obtained from the UCSC Genome Browser on Human 
[February 2009 (GRCh37/hg19)] (66).

For replicated SNPs on chromosome 1, we additionally 
performed multivariate linear models with the data from the 
discovery cohort, KORA F4, and settings as in the original model. 
For associated glycopeptide traits, models included one up to all 
three of the replicated SNPs on chromosome 1. We compared the 
significance of the single SNPs in the joint models as well as the 
added explained variance of the glycan traits.

eThics sTaTeMenT

The KORA study was carried out in accordance with the recom-
mendations of good clinical practice guidelines and the guide-
lines of the KORA study group, with written informed consent 
from all subjects. All subjects gave written informed consent in 
accordance with the Declaration of Helsinki. The protocol was 
approved by the KORA study group. The LLS study was carried 
out in accordance with the recommendations of good clinical 
practice guidelines and the guidelines of the medical ethics 
committee of the Leiden University Medical Center, with writ-
ten informed consent from all subjects. All subjects gave written 
informed consent in accordance with the Declaration of Helsinki. 
The protocol was approved by the medical ethics committee of 
the Leiden University Medical Center.
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subclass.

All traits declared as “ratios” were log-transformed before any 
statistical analysis.

For a complete list of all 376 phenotypic traits, please see Table 
S1 in Supplementary Material.

genome-Wide association analysis and 
Meta-analysis
We performed a genome-wide association analysis in the dis-
covery cohort, KORA F4. First, each phenotype (see “IgG glycan 
traits” for explanation) was adjusted for sex and age and regression 
residuals were inverse normal rank transformed to assure normal 
distribution. The transformed residuals were used for association 
analysis in a linear model performed with snptest v2.5.1 software 
(62) using an additive genetic model.

The threshold determining the suggestive SNPs was set 
to 5  ×  10−8. Given that we performed 376 different GWASs, 
the genome-wide significant threshold for the discovery was 
additionally adjusted for the number of initially measured 
glycopeptide traits and thus set to 1  ×  10−9 (5  ×  10−8/50 ini-
tially measured glycopeptides). All derived traits and different 
ratios are a function of initially measured glycan traits and 
are therefore dependent on these traits. We acknowledge that 
there might be less independent traits within initially measured 
glycans, but we decided to be more conservative and correct 
for 50 tests.

For the LLS cohort, we computed linear regression models for 
the suggestive associations from the discovery only. Similar to 
the discovery cohort, each trait was adjusted for sex and age first, 
and the obtained residuals were normally rank transformed. For 
LLS, a score test including family information (63) was conducted 
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additionally performed an inverse variance-weighted fixed effects 
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meta-analysis was performed using the software METAL (64). 
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sons, we included all glycopeptide traits being available in at least 
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significantly different glycopeptide traits for the IgG subclasses 
and the replicated associations for ratios of IgG glycopeptides 
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relation of replicated snPs
For all replicated SNPs, we obtain the information on their 
LD from SNiPA (65) (last update version from November 
2015, setting: GRCh 37, 1000 Genomes Phase 3 v5, European, 
Ensembl82). As for some variants, LD information is miss-
ing, we next generated LD-blocks of replicated markers. 
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FigUre s1 | Mirrored Manhattan plot of all suggestive (p < 5 × 10−8) and 
replicated (p < 2.33 × 10−6) SNPs with their minimal p-values for any association.

FigUre s2 | Network of significantly different associated IgG glycopeptide traits 
and SNPs summarized by linkage disequilibrium-blocks IgG glycan traits (circles) 
for different subclass comparisons (red: IgG1 vs. IgG4; light green: IgG1 vs. 
IgG2; blue: IgG2 vs. IgG4; purple: glycan proportions for IgG4; and green: glycan 
proportions for IgG2) and their associations to the replicated loci (edges only for 
replicated results).

FigUre s3 | (a) QQ-Plot (−log10(p-values)) for comparison of results from initial 
glycopeptide traits and from between-subclass ratios and glycan proportions 
(results are obtained from the discovery cohort only). (b) QQ-Plot (−log10(p-
values)) for comparison of results from all known pathway steps and additionally 
suggested pathway steps (known relations include associations as displayed in 
Figures S4; predicted relation includes associations represented with dashed 
lines in Figures S4; results are obtained from the meta-analysis).

FigUre s4 | Enzymatic pathway steps in IgG glycosylation. (Colors indicate 
the enzymes responsible for the attachment of monosaccharides.) (a) Known 
enzymatic pathway steps in IgG glycosylation (the glycosylation pathways are 
assumed to be the same for all IgG subclasses). (b) Known and suggested 
(dashed) one-step enzymatic pathway steps in IgG glycosylation (the 
glycosylation pathways are assumed to be the same for all IgG subclasses).  
(c) Replicated associations for IgG1 within the IgG glycan synthesis.  
(D) Replicated associations for IgG2 (IgG2/3) within the IgG glycan synthesis.  
(e) Replicated associations for IgG4 within the IgG glycan synthesis. 
(F) Replicated associations for between-subclass ratios and glycan 
proportions as well as significant subclass comparisons based on meta-
analyzed data.

FigUre s5 | (a–g) Representation of the linkage disequilibrium-blocks 
summarizing the replicated SNPs for each gene region. (a) RUNX3 (chr.1),  
(b) ST6GAL1 (chr.3), (c) IKZF1 (chr.7), (D) B4GALT1 (chr.9), (e) FUT8  
(chr.14), (F) SMARCB1-DERL3 (chr.22), and (g) MGAT3 (chr.22).

FigUre s6 | (a–g) Regional association plots for SNPs and their lowest 
p-values for any association for each linkage disequilibrium (LD)-block (only if LD 
information was available). (a) RUNX3 (chr.1), LD-block 1, [(b), i–iv] ST6GAL1 
(chr.3), LD-block 1–LD-block 4, (c) IKZF1 (chr.7), LD-block 1, [(D) i, ii] B4GALT1 
(chr.9), LD-block 1, and LD-block 2, [(e), i, ii] FUT8 (chr.14), LD-block 1, and 
LD-block 2, [(F), i, ii] SMARCB1-DERL3 (chr.22), LD-block 1, and LD-block 2, 
and [(g), i–iii] MGAT3 (chr.22), LD-block 2–LD-block 4.

Table s1 | Description of immunoglobulin G (IgG) glycopeptide traits.

Table s2 | Study characteristics of the discovery cohort KORA.

Table s3 | Explained variance of the immunoglobulin G (IgG) glycopeptide traits 
by the single SNPs in KORA.

Table s4 | List of association in KORA F4 to SNPs excluded for the replication 
due to unavailability in Leiden Longevity Study.

Table s5 | List of all replicated associations.

Table s6 | List of replicated phenotypic traits for each gene region.

Table s7 | Complete list of results for subclass comparisons of immunoglobulin 
G (IgG) glycopeptide traits.

Table s8 | Overview of results from subclass comparisons of immunoglobulin 
G (IgG) glycopeptide traits.

Table s9 | Results from joint linear models for replicated SNPs on  
chromosome 1.

Table s10 | Comparison of ultra-performance liquid chromatography  
(UPLC)-measured and LC/MS-measured immunoglobulin G (IgG) glycan traits 
[adapted from Huffman et al. (24)].

Table s11 | Replicated association and comparison to the study by  
Lauc et al. (21).

Table s12 | Summary of replicated association and comparison to study by 
Lauc et al. (21).

Table s13 | Confirmation of loci reported in Lauc et al. (21).
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