
Protein Structure And
Sequence Co-Design
Through Graph-Based Generative
Diffusion Modeling
Mehul Harish Bhuradia

Protein Structure And Sequence Co-Design
Through Graph-Based Generative Diffusion

Modeling
by

Mehul Harish Bhuradia

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday, June 24, 2024, at 1:00 PM.

Student Number: 4848969

Degree: MSc. Computer Science, Artificial Intelligence Track

Faculty: Electrical Engineering, Mathematics and Computer Science

Project Duration: October 2023 – June 2024

Thesis Committee: Dr. Amelia Villegas-Morcillo, TU Delft, Daily Co-Supervisor

Dr. Hadi Jamali-Rad, TU Delft, Daily Supervisor

Dr. Jana Weber, TU Delft, Daily Supervisor

Prof. dr. Marcel Reinders, TU Delft, Thesis Advisor

Dr. Wendelin Böhmer, TU Delft

An electronic version of this thesis is available at https://repository.tudelft.nl/

https://repository.tudelft.nl/

Protein Structure And Sequence Co-Design Through Graph-Based
Generative Diffusion Modeling
Mehul Harish Bhuradia

Delft University of Technology

Abstract :
Proteins are fundamental biological macromolecules essential for cellular structure, enzymatic catalysis, and immune defense, making

the generation of novel proteins crucial for advancements in medicine, biotechnology, and material sciences. This study explores protein

design using deep generative models, specifically Denoising Diffusion Probabilistic Models (DDPMs). While traditional methods often

focus on either protein structure or sequence design independently, recent trends emphasize a co-design approach addressing both aspects

simultaneously. We propose a novel methodology utilizing Equivariant Graph Neural Networks (EGNNs) within the diffusion framework

to co-design protein structures and sequences. We modify the EGNN architecture to improve its effectiveness in learning intricate data

patterns. Experimental results show that our approach effectively generates high-quality protein sequences, although challenges remain

in producing plausible protein backbones and ensuring strong sequence-structure correlation.

Index Terms: Protein co-design, Diffusion, EGNNs, Generative AI

1 Introduction

Proteins are the building blocks of life; they perform many essen-

tial roles such as driving chemical reactions, fighting infections,

and regulating hormone levels. While many proteins exist in

nature, generating novel proteins with desired properties is crucial

for advancing medicine, biotechnology, and material sciences.

Novel proteins can be used to combat emerging diseases, create

efficient industrial enzymes, and drive innovation across various

fields [1]. The creation of novel proteins can be achieved through

both experimental and/or computational methods.

Over the years, many methods have been proposed for de-

signing proteins computationally. Leading approaches rely on

heuristics and structure optimization through energy minimiza-

tion. However, these methods face significant challenges and

are limited by the vast search space of protein sequences and

structures [2]. Even with substantial resource and time in-

vestment, traditional methods often yield proteins that are not

plausible. Additionally, the diversity of the generated samples is

typically constrained by the provided data, limiting their utility.

However, with the recent rise of deep learning in various fields,

its ability to efficiently handle vast search spaces and generalize

beyond provided data, the field of protein design has embraced it.

Deep generativemodels, such as Generative Adversarial Networks

(GANs), Variational Autoencoders (VAEs), autoregressive models,

andDenoisingDiffusion ProbabilisticModels (DDPMs) [3] — here-

after referred to as diffusion models — are now being explored for

protein generation [2, 4–22]. This project explores computational

protein design, employing generative diffusion models.

Various approaches leveraging deep generative modeling have

been investigated to design novel proteins. Traditionally, methods

have predominantly concentrated on designing either the protein

backbone structure [2, 4–10] or the protein sequence [11–16]

independently. The protein backbone structure comprises only

the coordinates of a few selected atoms per amino acid, without

including the amino acid type. Meanwhile, the protein sequence

specifies the linear order of amino acids in the protein. However,

recent advancements aim to address both aspects simultaneously

through a process known as protein co-design [17–22].

Combining methods for designing either the protein structure

or sequence with techniques like inverse folding [23] and protein

folding [24, 25] facilitates the generation of the entire protein

structure and sequence, achieving outcomes akin to a co-design

model while reducing the problem complexity. However, Jin et

al. [17] discovered that generating sequences independently led

to subpar results. This underscores the importance of developing

models for protein co-design, which offer a strategic advantage by

comprehensively addressing both structure and sequence design,

thereby capturing their intricate relationship.

Among all deep generative modeling techniques, diffusion

models have emerged as the predominant method in the field

of protein design [2, 7–10, 16, 19, 21, 22, 26]. This is mainly

due to their versatility, allowing for tasks such as inpainting

[27] and the conditional generation [28] of proteins with desired

properties. Diffusion models consist of a forward noising process

that iteratively adds noise to the data and a reverse generative

process that iteratively removes noise from the data. Within

this framework, a neural network - hereafter referred to as the

denoising neural network - is utilized to approximate the reverse

generative process. This network is trained to remove noise from

corrupted data and subsequently employed to denoise randomly

sampled data, thereby generating new data samples.

Various denoising neural network architectures have been

employed within a diffusion framework. Among these, Graph

Neural Networks (GNNs) [29] have showcased their proficiency

in generating chemical [30] and protein structures [2, 10]. They

represent data as graphs and iteratively exchange and aggregate

information between neighboring nodes. Meanwhile, within

the domain of protein structure generation and protein co-

design, there is a noticeable trend towards adopting denoising

neural networks that are equivariant to rotations and translations.

Equivariant denoising neural networks ensure that the probabil-

ity distribution from which the protein structures are sampled

remains invariant to any rotations or translations, applied to the

protein structures [31]. This invariance improves the robustness,

parameter efficiency, and data efficiency of the neural network,

and also enhances the quality of the generated structures.

For protein structure generation, the GNNs employed are

the Equivariant Graph Neural Networks (EGNNs), proposed by

Satorras, Hoogeboom, and Welling [32]. They have demonstrated

considerable success in prior research focused on generating novel

protein structures using diffusion [2, 10]. They have also proven

to be highly effective in diffusion models that integrate coordinate

features with categorical features [30]. This highlights their

potential for use in protein co-design, which similarly relies on

both coordinate and categorical features. However, EGNNs have

not yet been leveraged for the task of protein co-design. To address

this gap, we propose a novel approach that utilizes modified

EGNNs as denoising neural networks within a diffusion modeling

framework to co-design proteins.

Contrary to previous research that employs EGNNs as the

denoising neural network for protein structure generation via

diffusion [2, 10], we aim to generate both the protein structure and

sequence. Another notable contrast lies in ourmodeling approach,

which incorporates the coordinates of three atoms per amino acid

in the protein, whereas both Fu et al. [2] and Trippe et al. [10]

only consider the coordinates of one atom per amino acid. We opt

to model the coordinates of three atoms along with the protein

sequence because this combination holds promise for efficiently

generating the coordinates of all other atoms in the protein

structure using side chain packing algorithms [33]. While these

methodological differences might open up numerous potential

applications, they also significantly escalate the complexity of

our task.

We summarize our contributions related to protein structure

and sequence co-design as follows:

• We investigate the efficacy of EGNNs for the co-design task.

• We propose to update the coordinate operation in the EGNN

architecture to improve its performance while maintaining

its equivariance properties.

• We establish an evaluation pipeline to accurately assess a

model’s capabilities in protein sequence generation, protein

structure generation, and protein co-design tasks.

• We define two new metrics to evaluate the correlation

between the generated protein sequences and the generated

protein structures.

This report is structured as follows: Section 2 provides a

brief overview of key terms and concepts. Section 3 provides

an overview of recent related work in the field. Section 4

outlines the methods used, including the diffusion process, neural

network architecture, and dataset. Section 5 discusses the research

questions and the experiments designed to answer them. Section

6 presents the results and includes a discussion of the findings.

Finally, Section 7 concludes the report by summarizing the key

findings and outlining potential avenues for future research.

2 Background

2.1 Proteins

A protein is composed of numerous amino acids linked together

sequentially. For protein design tasks, proteins are typically

represented using the protein sequence, the protein structure, or a

combination of both. The protein sequence and protein structure

representations are explained in the following subsections.

2.1.1 Protein Sequence

The protein sequence serves as a fundamental representation

of a protein’s composition and order of amino acids. In this

representation, each amino acid is denoted by a single-letter code,

simplifying the complex structure of proteins into a linear string

of characters. For instance, the amino acid alanine is represented

by the letter "A," and the amino acid lysine by "K," and so forth. By

arranging these letters in a specific order that corresponds to the

sequence of amino acids in the protein, we can achieve a simple

yet informative representation of the protein.

2.1.2 Protein Structure

Each amino acid within a protein consists of multiple atoms, with

the 𝐶𝛼 (central atom), the 𝐶 , and the 𝑁 atoms being the most

important. The 𝐶𝛼 atom serves as the central point within the

amino acids, while the𝐶 and𝑁 atoms are connected to it at specific

angles. These three atoms form bonds between amino acids,

connecting them to create proteins. The bonds formed by these

atoms ultimately determine how the protein folds. Consequently,

the coordinates of the 𝐶𝛼 , the 𝐶 , and the 𝑁 atoms for each amino

acid are commonly used to represent protein structures. A visual

representation illustrating the arrangement of the 𝐶𝛼 , 𝐶 , and 𝑁

atoms in an amino acid is presented in Fig 1.

2.2 Roto-Translation Equivariance

Roto-translation equivariance refers to a property of a function

where its output remains consistent when the input undergoes

rotations and translations. In mathematical terms, the function

𝑓 is considered to be roto-translation equivariant if for any

input 𝑥 and any rotation matrix R and translation vector T , the

following holds:

𝑓 (R𝑥 + T) = R 𝑓 (𝑥) + T (1)

In simpler words, if you rotate or translate the input data, the

output of the function should undergo the same transformations.

2.3 Denoising Diffusion Probabilistic Models (DDPMs)

Based on the formulation described by Ho, Jain, and Abbeel [3],

constructing a diffusionmodel requires establishing two processes

defined by Markov chains over 𝑇 timesteps. The first is the

forward noising process, which spans from timestep 𝑡 = 0 to 𝑡 = 𝑇 .

This process incrementally adds noise to the data until it converges

to the prior distribution, effectively mimicking random noise. The

forward noising process is defined below:

𝑞(x𝑡 |x𝑡−1) = N
(
x𝑡

��� √︁1 − 𝛽𝑡 · x𝑡−1, 𝛽𝑡 I
)
, (2)

where the data is denoted as x0
with dimensionality x𝑑𝑖𝑚 , whereas

x1:𝑇
represent the progressively noisier versions of the data as

it undergoes the forward noising process. The amount of noise

3

Figure 1. Visual depiction of an amino acid’s chemical structure, showcasing its components: the R group, amino group, and carboxylic acid group

connected to the central𝐶𝛼 atom. Emphasis is placed on highlighting the positions of the crucial𝐶𝛼 ,𝐶 , and 𝑁 atoms.

added is controlled by a variance schedule, 𝛽𝑡 . I represents a

x𝑑𝑖𝑚 × x𝑑𝑖𝑚 identity matrix. Since this process is Markovian, we

can efficiently transition from 𝑡 = 0 to any timestep:

𝑞(x𝑡 |x0) = N
(
x𝑡

��� √𝛼𝑡 · x0, (1 − 𝛼𝑡)I
)
, (3)

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑡
𝜏=1

𝛼𝜏 . We can then compute

x𝑡 using the reparameterization trick proposed by Ho, Jain, and

Abbeel [3]:

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝝐, (4)

where 𝝐 ∼ N(0, I).

The second process is the reverse generative process, which

operates in the opposite direction from 𝑡 = 𝑇 to 𝑡 = 0. Starting

from the prior distribution, this process recursively removes noise

from the data until it matches the desired distribution. A neural

network, 𝝐𝜃 (x𝑡 , 𝑡), is trained to approximate the reverse gener-

ative process using the data generated by the forward noising

process. The reverse generative process is formally defined as:

𝑝 (x𝑡−1 |x𝑡) = N
(
x𝑡−1

�� 𝝁𝜃 (x𝑡), 𝛽𝑡 I) , (5)

𝝁𝜃 (x𝑡) =
1

√
𝛼𝑡

(
x𝑡 − 𝛽𝑡

√
1 − 𝛼𝑡

𝝐𝜃 (x𝑡 , 𝑡)
)
, (6)

The neural network is trained to approximate the reverse

generative process by minimizing the simplified loss introduced

by Ho, Jain, and Abbeel [3], as defined below:

𝐿(𝜃) = E𝑡∼Uniform(1...𝑇)
[

𝝐 − 𝝐𝜃

(√
𝛼𝑡x𝑡0 +

√
1 − 𝛼𝑡𝝐, 𝑡

)

] , (7)

where 𝑡 is uniformly sampled between 1 and 𝑇 .

3 Related Work

In recent years, the utilization of deep learning methods for

protein generation has witnessed a significant surge, spanning

across both protein structures and sequences. In this section,

we delve into the recent advancements in the development of

deep learning methods for protein sequence generation, protein

structure generation, and the co-design of protein structure

and sequence.

3.1 Protein Sequence Generation

The array of deep learning methods employed for this task

includes the use of Variational Autoencoders (VAEs) [11, 12],

Generative Adversarial Networks (GANs) [13], and autoregressive

Transformers [14, 15]. Additionally, diffusion models operating

on latent embeddings of the protein sequence have also shown

promising results. Alamdari et al. [26] employ a Dilated 1D

convolution neural network architecture operating on learned

embeddings of the protein sequence, Meshchaninov et al. [16]

utilize Transformers operating on the ESM-2 [34] embeddings of

the protein sequence.

3.2 Protein Structure Generation

Similar to protein sequence generation, various deep learning

approaches have been applied to the task of protein structure

generation. However, most of these efforts focus on generating

the protein backbone rather than the all-atom protein structure.

They choose to only model the protein backbone, consisting of

the𝐶𝛼 ,𝐶 and 𝑁 atoms (see Section 2.1.2), because all amino acids

contain these atoms and it is simpler to represent compared to the

all-atom protein structure. The 𝐶𝛼 , 𝐶 and 𝑁 atoms dictate how

the protein folds. Their positions along with the protein sequence

(which can be generated using inverse folding [23]) can be used in

side-chain packing algorithms [33] to calculate the positions of all

other atoms and obtain the all-atom protein structure [35].

While methods like GANs [4, 5] and VAEs [6] have been used,

the field is predominantly dominated by diffusion models. This

is primarily due to their numerous advantages over alternative

generative models, like their capacity to seamlessly learn complex

distributions, accommodate high-dimensional data, and generate

highly diverse samples [36].

These diffusion models employ diverse protein backbone rep-

resentations and utilize a variety of denoising neural network

architectures. Wu et al. [7] employ Transformers as the denoising

neural network and choose to represent the protein structure

using 6 torsion angles between adjacent amino acid residues. This

representation is inherently invariant to rotations and transla-

tions.

The predominant method to represent protein backbones in-

volves utilizing the Cartesian coordinates of the 𝐶𝛼 atom along

4

with an orientation matrix that describes the orientation of the

𝑁 − 𝐶𝛼 − 𝐶 frame with respect to the 𝐶𝛼 atom. This orientation

matrix along with the 𝐶𝛼 atom coordinate can then be used to

calculate the coordinates of the𝐶 and 𝑁 atoms. However, this rep-

resentation requires the utilization of roto-translation equivariant

neural networks since the probability distribution from which the

protein structures are sampled is no longer inherently invariant

to rotations and translations [31]. Watson et al. [8] utilize this

representation with a fine-tuned pretrained RoseTTAFold [25]

network as the denoising neural network. Yim et al. [9] also

employ this representation but they incorporate the Equivariant

transformer with invariant point attention (IPA) module from

AlphaFold [24] as the denoising neural network instead.

A simpler approach to representing the protein structure

involves using only the coordinates of the 𝐶𝛼 atoms. While this

simplification reduces the complexity of the problem, it confines

the model to designing only the 𝐶𝛼 atoms rather than the entire

backbone. EGNNs have been successfully employed with this

simplified representation to generate 𝐶𝛼 -only protein backbones

in both diffusion [10] and latent diffusion [2] settings.

3.3 Protein Co-Design

While protein structure and sequence co-design is a relatively new

field, it follows the trends seen in protein structure generation, as

protein structure generation is a component of protein co-design.

Many different techniques have been applied to co-design

proteins. For instance, Jin et al. [17] utilize a graph-based

model that generates a sequence in an autoregressive manner

and iteratively refines the predicted global structure. Meanwhile,

Anishchenko et al. [18] utilize trRosetta [37], an existing structure

prediction network, to generate new proteins through Monte

Carlo sampling in amino acid sequence space. Similarly, Wang

et al. [20] employ both RoseTTAFold [25] and AlphaFold [24],

existing structure prediction networks, to create new proteins by

iteratively optimizing their networks within the sequence space.

However, the prevailing method is to use a diffusion model on

a modified version of the protein structure representation used by

Watson et al. [8] and Yim et al. [9], with a customised version

of the IPA module from AlphaFold [24] as the denoising neural

network. This modified representation includes the amino acid

type in addition to the𝐶𝛼 atom coordinate, the orientation for each

amino acid in the protein. This approach has been used by Luo et

al. [19], Shi et al. [21], and Anand and Achim [22].

3.4 Insights

In our examination of related work on protein design, crucial

insights have guided our distinctive approach and innovations,

particularly in addressing identified challenges. Notably, diffusion

emerges as the most commonmethod for generating novel protein

sequences, structures, or both together. Hence, we also opt to

utilize diffusion in our approach. Another observation we made

was that existing methodologies in protein structure generation

and co-design predominantly rely on either inherently invariant

protein representations or equivariant denoising neural networks,

underscoring the significance of equivariance. We also observe

that, despite the success of EGNNs in protein structure generation,

their potential for the protein co-design task remains largely un-

tapped. To bridge this gap and fully investigate their capabilities,

we opt to incorporate EGNNs as the denoising neural network

in our approach. We also noticed that existing works using

EGNNs for protein structure generation tend to focus exclusively

on modeling 𝐶𝛼 atoms, neglecting other crucial atoms like 𝐶 and

𝑁 atoms. Consequently, we aim to further explore their capability

to model multiple atoms. Moreover, we observed that the most

commonly used representation includes the amino acid type, the

𝐶𝛼 atom coordinate, and the orientation for each amino acid in

the protein. However, the use of 𝐶𝛼 , 𝐶 , and 𝑁 atom coordinates

rather than orientation has not been investigated. We address this

gap by exploring the use of 𝐶𝛼 , 𝐶 , and 𝑁 atom coordinates. One

advantage of this representation over orientation is its suitability

for EGNNs, which are inherently equivariant in coordinate space.

4 Methods

In this section, we describe the protein representation, the

diffusion processes, the denoising neural network architecture,

our modification to the EGNN architecture, the hyperparameter

tuning performed and the dataset used.

4.1 Protein Representation

The 3D structure of a protein is modeled as a fully connected

graph, with each individual node representing a specific amino

acid. We use fully connected graphs rather than explicit edges,

as our neural network architecture predicts edge weights, which

gives us a soft estimation of the presence of edges. This approach

of utilizing a fully connected graph followed by edge weight

prediction has proven successful in similar tasks, such as protein

backbone structure generation [10].

The graph is denoted as G = {(𝑠 𝑗 , x𝑗) | 𝑗 = 1, ..., 𝑛}, where
𝑛 denotes the total number of amino acids in the protein.

Here, G𝑗 represents information about the 𝑗𝑡ℎ amino acid in

the graph. This includes the type of amino acid, denoted as

𝑠 𝑗 ∈ {𝐴𝐶𝐷𝐸𝐹𝐺𝐻𝐼𝐾𝐿𝑀𝑁𝑃𝑄𝑅𝑆𝑇𝑉𝑊𝑌 }. It also includes the

normalized x, y, and z coordinates for the 𝐶𝛼 , 𝐶 , and 𝑁 atoms

in the amino acid, denoted as x𝑗 ∈ R9
. We apply normalization

to the coordinates using the mean and standard deviation from

the protein structures in the training set. This normalization

transforms the coordinates into a standard normal distribution,

which enables us to use Gaussian diffusion [3].

The representation explained above draws inspiration from the

work of Luo et al. [19], which represents an amino acid by its type,

the coordinates of the 𝐶𝛼 atom, and the orientation to depict the

protein structure. In contrast to the representation used by Luo

et al. [19], we opt to utilize the coordinates of the 𝐶𝛼 , 𝐶 , and

𝑁 atoms. This decision stems from the fact that the orientation

of the individual amino acids is calculated using the coordinates

of the 𝐶𝛼 , 𝐶 , and 𝑁 atoms, effectively providing the network

with the same information. Additionally, this choice aligns better

with the neural network architecture used and simplifies the

implementation of equivariance since the network is already roto-

translation equivariant in the coordinate space.

5

4.2 Diffusion Processes

Given that the amino acid coordinates (x𝑗) are continuous, while
the amino acid types (𝑠 𝑗) are categorical, it is necessary to establish

two separate diffusion processes that operate simultaneously. We

use Gaussian diffusion [3] for continuous values and multinomial

diffusion for categorical values [38] following the approach of

Luo et al. [19]. Fig. 2 offers a high-level overview of how the

Gaussian and multinomial diffusion processes are utilized to train

the denoising neural network.

We denote the type and coordinates of a node 𝑗 at timestep 𝑡 as

𝑠𝑡
𝑗
and x𝑡

𝑗
, respectively. The entire structure and sequence sampled

at timestep 𝑡 are represented as G𝑡 = {(𝑠𝑡
𝑗
, x𝑡
𝑗
) | 𝑗 = 1, ..., 𝑛}. The

following subsections detail the diffusion processes employed for

the amino acid coordinates and the amino acid types.

4.2.1 Diffusion for Amino Acid Coordinates

The diffusion process for amino acid coordinates x𝑗 follows

the method outlined by Luo et al. [19], which is based on the

Gaussian diffusion process defined byHo, Jain, and Abbeel [3] (See

Section 2.3).

The key difference from the DDPM formulation is that instead

of processing the entire data sample at once, we focus on the

coordinates of a single node in the graph (x𝑗) at a time, conditioned

on the entire graph (G), which includes the amino acid types.

To establish the forward noising process, we update Eq. 4 to

operate on the normalized amino acid coordinates of an individual

node, as defined below:

x𝑡𝑗 =
√︃
𝛼𝑡
pos

x0

𝑗 +
√︃

1 − 𝛼𝑡
pos

𝝐 𝑗 , (8)

where 𝝐 𝑗 ∼ N(0, I), 𝛼𝑡
pos

= 1 − 𝛽𝑡
pos

and 𝛼𝑡
pos

=
∏𝑡
𝜏=1

𝛼𝜏
pos

. The

rate of diffusion, parameterized by 𝛽𝑡
pos

, follows the cosine noise

schedule used by Luo et al. [19].

To establish a reverse generative process, we similarly adapt

Eq. 5 and Eq. 6 to operate on the normalized amino acid

coordinates of an individual node, conditioned on the entire graph,

as defined below:

𝑝 (x𝑡−1

𝑗 |G𝑡) = N
(
x𝑡−1

𝑗

��� 𝝁𝑝 (G𝑡), 𝛽𝑡posI) , (9)

𝝁𝑝 (G𝑡) =
1√︃
𝛼𝑡
pos

©­­«x𝑡𝑗 −
𝛽𝑡
pos√︃

1 − 𝛼𝑡
pos

Dzyn[c](G𝑡) [𝑗]
ª®®¬ , (10)

where Dzyn[c](·) [𝑗] is a part of the neural network defined in

Section 4.5. It takes in the entire protein graph at timestep 𝑡 and

predicts the standard Gaussian noise 𝝐 𝑗 ∼ N(0, 𝐼) added in the

forward noising process defined in Eq. 8.

We also adjust the loss term in Eq. 7, employed for training the

neural network. An important modification is the removal of the

expectation previously present, which will be reintroduced later

when combining the loss for amino acid coordinates with the loss

for amino acid types.

𝐿𝑡
pos

=
1

𝑛

∑︁
𝑗

∥𝝐 𝑗 − Dzyn[c](G𝑡)∥2
(11)

4.2.2 Diffusion for Amino Acid Types

The diffusion process for amino acid types 𝑠 𝑗 follows the method

outlined by Luo et al. [19], which is based on the multinomial

diffusion process defined by Hoogeboom et al. [38].

The core concept of multinomial diffusion closely resembles

that of DDPMs. However, the formulation differs significantly

due to its focus on modelling multinomial distributions. Similar

to Eq. 2 and Eq. 3, we establish a forward process for multinomial

distributions, specifically tailored to the amino acid type (𝑠 𝑗) of a

given node in the graph, defined as follows:

𝑞(𝑠𝑡𝑗 |𝑠
𝑡−1

𝑗) = Mt

(
(1 − 𝛽𝑡

type
) · onehot(𝑠𝑡−1

𝑗) + 𝛽𝑡
type

· 1

20

· 1
)
,

(12)

where the function onehot(·) transforms amino acid types into

20 dimensional one-hot vectors, Mt(·) represents a multinomial

distribution, and 1 denotes a 20 dimensional vector with all

elements set to one. Similar to the diffusion process defined for

amino acid coordinates, 𝛽𝑡
type

follows the cosine noise schedule

used by Luo et al. [19]. Given theMarkovian nature of this process,

we can efficiently transition from 𝑡 = 0 to any timestep:

𝑞(𝑠𝑡𝑗 |𝑠
0

𝑗) = Mt

(
𝛼𝑡
type

· onehot(𝑠0

𝑗) + (1 − 𝛼𝑡
type

) · 1

20

· 1
)
, (13)

where 𝛼𝑡
type

=
∏𝑡
𝜏=1

(1 − 𝛽𝜏
type

).

Based on Eq. 12 and Eq. 13 we derive the following poste-

rior [38]:

𝑞(𝑠𝑡−1

𝑗 |𝑠𝑡𝑗 , 𝑠
0

𝑗) = Mt

([
𝛼𝑡
type

· onehot(𝑠𝑡𝑗) + (1 − 𝛼𝑡
type

) · 1

20

· 1
]
⊙[

𝛼𝑡−1

type
· onehot(𝑠0

𝑗) + (1 − 𝛼𝑡−1

type
) · 1

20

· 1
])
. (14)

We establish a reverse generative process for multinomial

distributions, specifically tailored to the amino acid type of a single

node conditioned on the entire graph, similar to Eq. 5, defined

as follows:

𝑝 (𝑠𝑡−1

𝑗 |G𝑡) = Mt
(
Dzyn[h](G𝑡) [𝑗]

)
, (15)

where Dzyn[h](·) [𝑗] is a part of the neural network defined in

Section 4.5. It takes in the entire protein graph at timestep 𝑡 and

predicts the amino acid type for the 𝑗𝑡ℎ amino acid in the protein

at timestep 𝑡 − 1.

To effectively denoise the amino acid types, the reverse gen-

erative process, as described by 𝑝 (𝑠𝑡−1

𝑗
|G𝑡), should approach the

posterior 𝑞(𝑠𝑡−1

𝑗
|𝑠𝑡
𝑗
, 𝑠0

𝑗
), defined in Eq. 14. Hence, to train the

neural network we minimize the expected Kullback–Leibler (KL)

divergence between these distributions, as shown below:

𝐿𝑡
type

=
1

𝑛

∑︁
𝑗

𝐷𝐾𝐿

(
𝑞(𝑠𝑡−1

𝑗 |𝑠𝑡𝑗 , 𝑠
0

𝑗)

𝑝 (𝑠𝑡−1

𝑗 |G𝑡)
)

(16)

4.3 Training

The loss function used to train the neural network is expressed

as an expectation with respect to 𝑡 over the weighted sum of the

losses defined in Eq. 16 and Eq. 11.

6

Figure 2. A high-level overview of the training process showcasing how the Gaussian and multinomial diffusion processes work simultaneously. First,

the forward noising processes are used to add noise to the amino acid (AA) coordinates and the AA types. Then the neural network is trained to

approximate the reverse generative processes by denoising the noisy coordinates and types. The neural network consists of two parts that work

concurrently, exchanging information with each other. Dzyn[c] approximates the reverse Gaussian diffusion process and Dzyn[h] approximates the

reverse multinomial diffusion process.

𝐿 = E𝑡∼Uniform(1...𝑇)
[
𝑤type · 𝐿𝑡type +𝑤pos · 𝐿𝑡pos

]
(17)

The diffusion model is trained by randomly sampling 𝑡 from

1 to 𝑇 , where we set 𝑇 = 1000. The neural network takes the

noisy protein G𝑡 , obtained using Eq. 13 and Eq. 8, as the input.

It produces 𝝐𝑝𝑟𝑒𝑑 and 𝑠𝑝𝑟𝑒𝑑 as the output, which are then used

to calculate the loss defined in Eq. 17 and update the networks

parameters. 𝝐𝑝𝑟𝑒𝑑 and 𝑠𝑝𝑟𝑒𝑑 can also be used to calculate G𝑡−1

which is used in the generation process described in Section 4.4.

The training process is illustrated in Fig. 3.

4.4 Sampling

To generate a novel protein sample, we begin by randomly

selecting a length, denoted as 𝐿, from the distribution of protein

lengths within our training set. With this length determined, we

construct a fully connected graph comprising 𝐿 nodes. Each node

in this graph represents an amino acid in the new protein. These

nodes are then initialized with an amino acid type, chosen from

a uniform distribution over the 20 types. Additionally, for each

node, the positions for the 𝐶𝛼 , 𝐶 , and 𝑁 atoms are also initialized

by sampling from the standard normal distribution. This new

graph is denoted as G𝑇 , where G𝑇 = {(𝑠𝑇
𝑗
∼ Uniform(20), x𝑇

𝑗
∼

N(0, I) | 𝑗 = 1, ..., 𝐿}.

Dzyn is then iteratively utilized to sample G𝑡−1
from G𝑡 ,

beginning at time step 𝑡 = 𝑇 with input G𝑇 , and continuing until

𝑡 = 0. This process results in the generation of a novel protein G0
.

The sampling process is illustrated in Fig. 4.

4.5 Neural Network Architecture

The neural network utilized to model the reverse generative

process is a modified adaptation of the Equivariant Graph Neu-

ral Network (EGNN) introduced by Satorras, Hoogeboom, and

Welling [32]. They operate by partitioning node features from

a standard Graph Convolution Network (GCN) into two separate

categories: node features and coordinate features. Node features

are dedicated to features that do not require equivariance, like

the amino acid sequence in our case, while coordinate features

are used for features that require rotational and translational

equivariance, such as the 𝐶𝛼 , 𝐶 , and 𝑁 atom coordinates. The

network achieves equivariance by utilizing the distance between

the coordinate features of nodes rather than directly incorporating

the coordinate features within the network.

We designate the neural network as Dzyn, comprising two pri-

mary components: Dzyn[h] and Dzyn[c]. Dzyn[h] is tasked with

denoising the node features (amino acid types), while Dzyn[c]

focuses on denoising the coordinate features (amino acid coor-

dinates). Although we simplify our explanation by splitting the

network into these two components, it is important to emphasize

that both Dzyn[h] and Dzyn[c] utilize all the information from

7

Figure 3. An overview of the neural network training procedure. First the protein is converted to a graph G0
which consists of the𝐶𝛼 ,𝐶 , and 𝑁 atom

coordinates (𝑥0
) and amino acid types (𝑠0

) for each node. Noise is added to 𝑥0
and 𝑠0

for 𝑡 timesteps to get 𝑥𝑡 and 𝑠𝑡 , respectively. The neural network is

then trained to predict 𝝐𝑝𝑟𝑒𝑑 (the noise added to 𝑥0
to get 𝑥𝑡) and 𝑠𝑝𝑟𝑒𝑑 (a prediction for 𝑠0

).

Figure 4. An overview of the generation procedure. First an arbitrary length is chosen and a graph, G𝑇
, of this length is created. For each node in the

graph, coordinates are sampled from a Gaussian distribution and an amino acid type is sampled from a uniform distribution over the 20 types. G𝑇
is then

iteratively refined using the trained neural network (Dzyn) to generate G0
, a novel protein.

node and coordinate features, as well as exchange information

with each other.

In accordance with the methodology proposed by Kingma et

al. [39], we concatenate the sinusoidal encoding of the diffusion

timestep and the sequence position to the node features before

they are fed into the neural network. We use sinusoidal encodings

of the diffusion timestep because they provide a structured and

interpretable way for the model to understand temporal patterns

and dependencies, essential for effectively capturing the evolution

of data distributions over time in diffusion models. Additionally,

we use sinusoidal encodings of the sequence position to represent

the sequence order allowing the model to capture positional

dependencies within the data, ensuring that the model can ef-

fectively process protein sequences and understand relationships

between the nodes. These encodings are also concatenated to

the intermediate output node features of each Equivariant Graph

Convolution layer (EGCL) before they are fed into the next EGCL.

Dzyn consists of 8 EGCLs, with linear layers between each layer to

encode and decode the concatenated node features to and from the

hidden dimension. A visual representation of the overall neural

network architecture is shown in Fig 5.

The neural network was trained for 500 epochs over a twoweek

period on a NVIDIA A40 GPU. The hyperparameter configuration

used and the hyperparameter tuning performed is described

in Section 4.7.

4.6 Modification to EGNNs

In the original EGNN proposed by Satorras, Hoogeboom, and

Welling [32] the equations used to compute the output of the

network are as follows:

𝑚𝑖 𝑗 = 𝜙𝑒

(
ℎ𝑙𝑖 , ℎ

𝑙
𝑗 ,

𝑐𝑙𝑖 − 𝑐𝑙𝑗

2

, 𝑎𝑖 𝑗

)
, (18)

𝑐𝑙+1

𝑖 = 𝑐𝑙𝑖 +𝐶
∑︁
𝑗≠𝑖

(
𝑐𝑙𝑖 − 𝑐

𝑙
𝑗

)
𝜙𝑥

(
𝑚𝑖 𝑗

)
, (19)

𝑚𝑖 =
∑︁
𝑗≠𝑖

𝑚𝑖 𝑗 , (20)

ℎ𝑙+1

𝑖 = 𝜙ℎ

(
ℎ𝑙𝑖 ,𝑚𝑖

)
, (21)

where 𝑐𝑙
𝑖
and ℎ𝑙

𝑖
represent the coordinate and node features for 𝑖𝑡ℎ

amino acid at layer 𝑙 , respectively. The term𝑚𝑖 𝑗 signifies the edge

embedding message from node 𝑗 to node 𝑖 . 𝑎𝑖 𝑗 represents the edge

attributes. 𝜙𝑒 , 𝜙𝑥 , 𝜙ℎ are edge, coordinate and node operations

approximated by MLPs.

The term𝐶
∑
𝑗≠𝑖

(
𝑐𝑙
𝑖
− 𝑐𝑙

𝑗

)
𝜙𝑥

(
𝑚𝑖 𝑗

)
in Eq. 20 is a weighted sum

of the relative distances (𝑐𝑙
𝑖
− 𝑐𝑙

𝑗
) for all nodes 𝑗 ≠ 𝑖 . Here, 𝜙𝑥 :

R𝑓 → R1
is anMLP that outputs a scalar weight based on the edge

embedding message,𝑚𝑖 𝑗 of dimension 𝑓 , between the two nodes.

𝐶 is an arbitrary constant.

Using a single scalar weight as the output of 𝜙𝑥 restricts the

8

Figure 5. The architecture of the neural network used. Here, x𝑡 and 𝑠𝑡 represent the amino acid coordinates and types at timestep 𝑡 respectively. 𝑝 and 𝑡

represent the sinusoidal positional and timestep encodings. 𝝐pred represents the neural network’s prediction for the noise added to the amino acid

coordinates. 𝑠pred represents the neural networks prediction for the amino acid types at timestep 0.

network’s ability to capture complex patterns, as it forces the

model to apply the same weight to all coordinates in vector 𝑐 .

This may work well for straightforward models where each node

represents just one particle in 3D space. However, this approach

becomes limiting when nodes need to represent multiple particles,

like in our task where each node encapsulates three particles in

the 3D space. To overcome this limitation, we propose updating

𝜙𝑥 : R𝑓 → R1
to 𝜙𝑥 : R𝑓 → R𝑐𝑑𝑖𝑚×𝑐𝑑𝑖𝑚

. In this context, 𝑐𝑑𝑖𝑚
refers to the number of coordinate features per node. For our task,

𝑐𝑑𝑖𝑚 = 9, since we have 9 coordinate features in total: 3 (x, y,

and z) for each of the 3 atoms (𝐶𝛼 , 𝐶 , and 𝑁) in a node. This

modification transforms𝜙𝑥 into amatrix that serves as theweights

for the weighted sum operation.

By transitioning to a matrix output, we not only preserve the

dimensionality of the input vector but also improve the networks

capability to discern and learn intricate patterns within the data.

With 𝜙𝑥 now outputting a matrix, each element in the vector

𝑐 can influence others, fostering a richer interaction among the

coordinates. Moreover, considering that each node represents

three atoms, this approach enables specific atoms to directly

influence the coordinates of other atoms, thereby enhancing the

model’s capacity to capture atomic interactions. This enhanced

capability was previously unattainable when utilizing a scalar

weight as the output of 𝜙𝑥 . Importantly, this adjustment ensures

that the network retains its equivariance properties.

An ablation study was conducted to verify whether the modifi-

cation improved the performance of the EGNN. The network used

in the ablation study was trained for only one week instead of the

intended two weeks due to time constraints. The results of this

study are presented in Fig. 6. These results clearly indicate that

the modification significantly reduces the loss on the coordinate

features (𝐶𝛼 , 𝐶 , and 𝑁 positions) while having no substantial

effect on the node features (amino acid sequence). Overall, this

modification improves the EGNN’s performance, enabling it to

learnmore complex patterns from the data in the coordinate space.

4.7 Hyperparameter Tuning

EGNNs have numerous hyperparameter options, along with sev-

eral other hyperparameters that govern the training process. Each

of these parameters can influence the network’s performance,

thereby directly affecting the quality of the generated proteins.

Consequently, hyperparameter tuning is essential to optimize the

performance of the denoising neural network and generate high

quality proteins.

However, due to the considerable time and resources required

for exhaustive hyperparameter tuning via grid search, with each

combination of the many hyperparameters taking two weeks

to fully converge, such an approach was deemed impractical.

Instead, ablation studies were conducted to assess the impact of

specific hyperparameters on models trained for 100 epochs to

accommodate time constraints. For each run, one hyperparameter

was modified, and the lowest validation loss value throughout

the run was documented. Hyperparameters yielding reduced loss

were selectively integrated into the final model. Table 1 details

the hyperparameter configurations for both the baseline model

used in the ablation study and the final model with the best

hyperparameters found.

9

Figure 6. Comparison of validation loss values for the Original EGNN (purple) and the Modified EGNN (red). The charts illustrate the overall loss (left),

the loss on the𝐶𝛼 ,𝐶 , and 𝑁 positions (center), and the loss on the amino acid sequence (right). The Modified EGNN demonstrates significantly better

performance in predicting the positions, while its performance on the sequence remains largely unchanged compared to the Original EGNN.

Table 1
Hyperparameter configurations for the baseline model utilized in the ablation study and for the final model with the best hyperparameters found.

Hyperparameter Baseline Final
EGNN layers 4 8

MLP layers 0 0

Optimizer Adam Adam

Learning rate 1.0 × 10
−5

1.0 × 10
−5

Diffusion timesteps 100 1000

Batch size 2 2

Positional weight (𝑤pos) 1.0 1.0

Sequence weight (𝑤type) 1.0 1.0

EGNN Hidden dimension 1024 1024

EGNN Edge weight prediction False True

EGNN Residual connections True False

EGNN Coordinate aggregation method mean mean

EGNN tanh activation for coordinate MLP False False

EGNN Activation function Sigmoid Linear Unit (SiLU) SiLU

Numerous models were created, each altering one of these

hyperparameters to assess its impact on the model’s performance.

These adjusted models were subsequently compared with the

baseline model, and the alterations were either incorporated for

enhanced performance, or rejected due to diminished perfor-

mance, prolonged convergence time or instability. Table 2 presents

the hyperparametersmodified for the ablation study, alongside the

resulting best validation loss and whether they were included or

rejected (and the reason for rejection if they were rejected).

In Table 2, we observe that the final model, optimized with

the best hyperparameters, performs significantly better than the

baseline model. Consequently, this model is expected to produce

proteins of much higher quality.

4.8 Dataset And Preprocessing

The dataset utilized comprises protein structures and sequences

of short monomers (single-chained proteins). Due to the limited

availability of experimentally obtained protein structures, Al-

phaFold predictions are used for protein sequences sourced from

the Swiss-Prot dataset [40]. The protein sequences are sourced

from the Swiss-Prot dataset because it provides high-quality

sequences meticulously annotated by experts. An advantage of

using structures predicted by AlphaFold is that it exclusively

predicts monomers, simplifying the problem. This eliminates the

need to manage the complexity of multiple chains within the

protein structure, allowing for more straightforward training and

analysis process.

We refine our dataset by filtering based on two criteria: the

number of amino acid residues in each protein and the confidence

level of the AlphaFold prediction, indicated by the predicted

Local Distance Difference Test (pLDDT) score [24]. We focus

on proteins with 50 to 100 residues, balancing computational

feasibility with utility. Additionally, we exclude structures with

an average pLDDT score below 70, as scores above this threshold

typically indicate well-modeled backbone structures [24]. This

process yields 38,595 proteins, which are then divided into training

and validation sets using a 90:10 split ratio.

5 Experiments

This study aims to answer the following research questions:

How effectively can graph-based diffusion models facilitate the

co-design of protein structures and sequences?

• Do the protein sequences generated using graph-based

diffusion models exhibit high foldability and similarity to

natural sequences?

10

Table 2
A list of all the hyperparameters modified for the ablation study, including the Best Validation Loss and Outcome (Included/Rejected), along with the reason

for rejection.

Hyperparameter Val Loss (↓) Outcome
Baseline 0.7484 -

Final 0.6343 -

EGNN layers = 8 0.7159 Included

EGNN layers = 16 - Rejected (Runtime)

MLP layers = 4 0.7514 Rejected (Runtime & Performance)

Learning rate = 5.0 × 10
−5

- Rejected (Instability)

Diffusion timesteps = 1000 0.6939 Included

Batch size = 1 0.7203 Rejected (Instability)

Hidden dimension = 2048 0.7172 Rejected (Runtime)

Hidden dimension = 512 0.7883 Rejected (Performance)

EGNN Edge weight prediction = True 0.7111 Included

EGNN Residual connections = False 0.7038 Included

EGNN Coordinate aggregation method = sum - Rejected (Instability)

EGNN tanh activation for coordinate MLP = True 0.7786 Rejected (Performance)

• Are the protein structures generated using graph-based

diffusion models designable and novel?

• To what extent do the protein structures and sequences co-

designed using graph-based diffusion models correlate with

each other?

To address these research questions, we employed a sampling

strategy consistent with Trippe et al. [10], whereinwe sampled 500

proteins ranging in length from 50 to 99 residues, with 10 proteins

sampled for each length. Following this established sampling

procedure allows for a direct comparison of structure designability

with LatentDiff [2] and ProtDiff [10].

In the following subsections, we explain our evaluation objec-

tives, discuss their importance, and describe the metrics used to

assess the generated proteins.

5.1 Sequence Foldability

To evaluate the quality of the generated sequences, it is essential

to thoroughly assess their foldability. Foldability, the ability of a

protein sequence to adopt a stable three-dimensional structure,

is a fundamental characteristic of proteins. A protein sequence

that cannot fold into a stable structure cannot be regarded as

a true protein sequence. Therefore, ensuring high foldability is

crucial for generating protein sequences that are both biologically

meaningful and functionally useful.

A common approach to assess the foldability of a generated

sequence involves employing deep learning based structure pre-

diction models [24, 25, 41, 42] to predict its structure. The

predicted local distance difference test (pLDDT) score provided by

these models indicates their confidence in the predicted structure.

In line with previous studies by Meshchaninov et al. [16] and

Alamdari et al. [26], where this metric was employed to assess

protein sequence foldability, we also adopt it in our research.

Various deep learning-based structure prediction models, in-

cluding OmegaFold, AlphaFold, ESMFold, and RoseTTAFold, can

be used to evaluate the foldability of the generated sequence.

However, we opt to utilize OmegaFold over AlphaFold because of

its faster runtime, and over ESMFold and RoseTTAFold due to its

superior accuracy, thus achieving a balanced compromise between

speed and precision [41, 43].

5.2 Sequence Similarity to Natural Sequences

Assessing the similarity of generated sequences to natural se-

quences provides valuable insights into the fidelity of the model’s

outputs. Natural protein sequences have evolved over time to

fulfill specific biological functions, and they exhibit characteristic

patterns and features [44]. Therefore, if the generated sequences

closely resemble natural sequences, it suggests that the model has

successfully captured the underlying distribution of protein se-

quences in nature. Such similarity enhances the likelihood that the

generated sequences are biologically plausible and functionally

relevant, contributing to our confidence in their utility for further

analysis and experimentation.

To assess the similarity of generated sequences to natural

protein sequences, we employ the pseudo perplexity metric

defined by Meshchaninov et al. [16]. The pseudo perplexity is

calculated using ESM-2 [34], a language model trained on protein

sequences. This involves masking each token (amino acid) in the

sequence and subsequently predicting it using ESM-2 based on

all the other tokens, then computing the average loss for each

prediction to determine the pseudo perplexity. The ESM-2 pseudo

perplexity (ESM-2 pppl) score of a generated protein sequence

gauges how effectively it aligns with the learned patterns of the

ESM-2model based on its training set (UniRef50, a clustered subset

of UniProt [40]).

5.3 Structure Designablity

A protein structure is considered designable if a corresponding

sequence that folds into it can be identified. The significance of

ensuring the designability of a generated protein structure lies

in the fact that a protein structure lacking a sequence that folds

into it cannot be considered a true protein structure. Therefore,

it is crucial to ensure that the generated protein structures

are designable.

Awidely usedmethod to evaluate the designability of generated

11

protein structures is to compute and analyse the Self Consistency

Template Modeling (scTM) score [2, 7, 9, 10]. To calculate the

scTM score for each protein structure generated by our model

Dzyn, we first predict 8 sequences for the generated protein

structure. These sequences are predicted using Protein MPNN

[23], a deep learning-based inverse folding method that takes a

protein structure and predicts sequences that could fold into that

structure. Subsequently, we employ OmegaFold [41] to predict

protein structures for these inverse folded sequences. These

OmegaFold predicted protein structures are then compared to our

Dzyn generated protein structure using the Template Modeling

(TM) score [45], which is calculated by aligning the 𝐶𝛼 atom

positions in protein structures, serving as a measure of their

structural similarity. This yields a list of 8 TM scores, from

which we select the maximum as the scTM score. The formula

to compute the scTM score is shown below:

scTM = max

(
{TM(OmegaFold(PMPNN(𝑋)𝑖), 𝑋)}8

𝑖=1

)
, (22)

where 𝑋 represents a protein structure generated using Dzyn and

PMPNN(𝑋)𝑖 represents the 𝑖𝑡ℎ protein sequence inverse folded for
it using Protein MPNN.

A TM score greater than 0.5 suggests that two structures share

the same fold [45]. Thus, we consider a structure designable if

scTM > 0.5 [10]. The fact that OmegaFold can generate a similar

structure suggests the existence of a corresponding sequence for

the Dzyn generated structure, thereby confirming its designability.

5.4 Structure Novelty

In the context of protein structure generation, novelty is a

critical requirement. Specifically, the generated protein structures

should differ from those present in the training dataset. This

emphasis on novelty stems from the fact that a model that merely

memorizes training data without grasping the underlying patterns

and producing new data lacks practical utility. Consequently,

ensuring the novelty of generated structures becomes essential.

We assess the similarity between each generated structure and

any training structure by computing the maximum TM score

across the entire training dataset. This metric, known as the

Training TM score [7], enables us to evaluate the structural

similarity of the generated protein structures to those in the

training set. Subsequently, we analyze the distribution of these

Training TM scores for all the generated structures. If this

distribution closely approaches a value of 1, it indicates that the

model is essentially memorizing the training set. The formula to

compute the Training TM score is given below:

TrainingTM = max

𝑋train∈Training Set

(TM(𝑋,𝑋train)) , (23)

where𝑋 represents a protein structure generated using Dzyn, and

𝑋train represents a protein structure in the training set.

5.5 Co-Design Correlation

The task of protein structure and sequence co-design is a rela-

tively new frontier, lacking established metrics to evaluate the

correlation between generated protein sequences and structures.

While models may produce high-quality structures and sequences,

ensuring that the generated sequences indeed fold into the

corresponding structures remains a challenge. Hence, there’s a

critical need to assess the correlation between generated protein

sequences and structures.

To address the current limitations in evaluating co-design cor-

relation, we introduce two novel metrics: the Cross Consistency

TM (ccTM) score and Amino Acid Consistency (AAC). The ccTM

score assesses how well the designed amino acid sequence folds

into the predicted protein structure, whereas AAC evaluates how

well the predicted structure predicts the original sequence. By

introducing these metrics, we pave the way for robust evaluation

and advancement in protein co-design research.

5.5.1 Cross-Consistency TM Score

To assess whether the generated sequence folds into the generated

structure, we introduce a new metric called Cross-Consistency

TM (ccTM) score, drawing inspiration from the widely used scTM

score metric. Unlike scTM, which generates eight sequences

using Protein MPNN, we directly utilize the sequence generated

by Dzyn. Subsequently, a protein structure is predicted for the

sequence using OmegaFold. Following this, we calculate the TM

score between the OmegaFold generated protein structure and the

Dzyn generated protein structure, termed the ccTM score. The

formula to compute the ccTM score is given below:

ccTM = TM(OmegaFold(𝑆), 𝑋), (24)

where where 𝑋 represents the protein structure generated using

Dzyn and 𝑆 represents the protein sequence generated using Dzyn.

Similar to the scTM threshold, a ccTM score exceeding 0.5

suggests that both the OmegaFold generated protein structure and

the Dzyn generated protein structure share the same fold. This

implies that the Dzyn generated sequence indeed folds into the

Dzyn generated structure, indicating correlation.

5.5.2 Amino Acid Consistency

To determine whether the generated structure inversely folds

into the generated sequence, we introduce the Amino Acid

Consistency (AAC) metric. To compute the AAC we first use

Protein MPNN to predict a single sequence for the Dzyn generated

structure. We then compute the similarity of the Dzyn generated

sequence to the Protein MPNN predicted sequence. Specifically,

we calculate the percentage of amino acids that match at each

position. This similarity percentage is denoted as AAC. The

formula for calculating AAC is given below:

𝐴𝐴𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠
× 100%. (25)

6 Results and Discussion

This section presents the results of our experiments evaluating the

co-design of protein structures and sequences using graph-based

diffusion models. We used various metrics to comprehensively

assess the generated sequences, structures, and the correlation

between them. The following subsections detail the findings and

12

discuss their implications for the performance and reliability of

our model.

6.1 Sequence Quality

To evaluate the quality of the generated sequences, we used the

average OmegaFold pLDDT and the average ESM-2 pppl over the

set of sequences generated using Dzyn. We compared our model

with several other protein sequence generation models [13, 16, 26,

34, 46–48]. We also compared it with a set of 500 protein sequences

generated by random sampling from a uniform distribution over

the amino acids and a set of 500 protein sequences chosen from the

training set. Both of these sets were curated following the same

length sampling strategy described in Section 5. Additionally, to

evaluate the effect of varying the number of diffusion timesteps

(𝑇), we also assessed a version of Dzyn with only 100 timesteps

instead of 1000.

Table 3 presents the comparison of Dzyn to various protein

sequence generation models using the average pLDDT (along

with the protein structure prediction model used to compute the

pLDDT score) and the average ESM-2 pppl scores over the gen-

erated sequences. The scores for the other sequence generation

models used for comparison were obtained fromMeshchaninov et

al. [16] and Alamdari et al. [26]. Meshchaninov et al. [16] utilize

ESMFold to compute the pLDDT scores, while Alamdari et al. [26]

use OmegaFold (same as us). Therefore, a direct comparison to the

results of Meshchaninov et al. [16] might be unfair, but it provides

a rough indication of how the models compare.

We found that out of the 500 sequences generated using Dzyn,

153 (approximately 30%) had an OmegaFold pLDDT score greater

than 70, suggesting they are highly foldable. In Table 3, we observe

that the quality of the protein sequences generated using Dzyn

is second only to DiMA [16], the current state-of-the-art model

for protein sequence generation. However, it is important to

note that DiMA was trained solely to design protein sequences,

whereas Dzyn was trained to co-design both the protein sequence

and structure, which is a significantly harder task. Since the

average ESM-2 pppl of the sequences generated using Dzyn is

close to that of the training set, we can infer that they are very

similar to natural sequences. This suggests that Dzyn can be

used to generate high-quality protein sequences that are highly

foldable and similar to natural sequences. Another noteworthy

observation from the results presented in Table 3 is the significant

improvement in the quality of generated sequences when we use

the final hyperparameter configuration with 𝑇 = 1000 instead

of the baseline hyperparameter configuration with 𝑇 = 100

(See Section 4.7).

Fig. 7a shows the scatter plot of the OmegaFold pLDDT scores

versus the sequence length. Fig. 7b displays a scatter plot of ESM-

2 pppl scores against sequence length. Lastly, Fig. 7c exhibits a

scatter plot of the OmegaFold pLDDT scores versus ESM-2 pppl

scores. Based on Fig. 7a, we can say that there is no correlation

between the length and the foldability of the generated protein

sequences. Fig. 7b indicates that the ESM-2 pppl decreases as

the size of the protein increases, possibly due to inherent biases

in the ESM-2 model. This is because longer protein sequences

are more frequently present in both the training set used to

train ESM-2 and in nature. Fig. 7c suggests there is no direct

correlation between the OmegaFold pLDDT and the ESM-2 pppl

of the generated sequences. Therefore, the analysis reveals that

while certain biases exist in the ESM-2 model, there is no clear

relationship between sequence length and foldability, or between

foldability and similarity to natural sequences for the generated

protein sequences.

6.2 Structure Quality

To evaluate the designability and novelty of the generated protein

structures, we computed the scTM and Training TM scores,

respectively. The distribution of the scTM scores of the generated

structures is shown in Fig. 9a, and the distribution of the training

TM scores is shown in Fig. 9b. Fig. 8 shows some of the generated

protein structures alongside samples from the dataset.

From Fig. 9a we can see that none of the protein structures gen-

erated using Dzyn have an scTM score greater than 0.5, suggesting

that they are not designable. Protein structure generation models

like ProtDiff [10] and LatentDiff [2] that also utilize EGNNs,

report that 17.1% and 64.7% of the structures generated by them

were considered designable, respectively. A possible reason for

this difference in performance could be that both ProtDiff and

LatentDiff only model the 𝐶𝛼 atom. Whereas, Dzyn models the

𝐶𝛼 , 𝐶 , and 𝑁 atoms and the amino acid type, which greatly

increases the complexity of the task. To gain a comprehensive

understanding of the strengths and limitations of EGNNs in

designing protein backbones, which include the 𝐶𝛼 , 𝐶 , and 𝑁

atoms, further experimentation is essential. Two primary avenues

warrant exploration. Firstly, adapting the graph representation to

incorporate distinct nodes for each of these atoms and assessing

the potential enhancement in designability. Secondly, examining

whether EGNNs are more effective in designing particular protein

regions as opposed to the entire structure holds promise. This

entails training EGNNs on datasets tailored to focus on designing

specific functional or structural elements of proteins, offering

valuable insights. The findings from these experiments can in-

form the refinement of protein co-design methodologies utilizing

EGNNs as denoising neural networks.

The protein structures generated using Dzyn, as depicted in

Fig. 8, exhibit similarities to protein structures from the dataset,

especially in the presence of helix segments. However, despite

these similarities, some discrepancies are evident in the Dzyn

generated structures. These include deviations in overall shape

and slight deformations within the helices themselves. Notably,

while the generated structures contain helix segments, they may

not be as well-formed or evenly spaced as those in the dataset.

This observation aligns with the scTM scores of the generated

structures, indicating that while certain features are replicated,

the overall designability and plausibility of the generated protein

structures is limited.

Based on the distribution shown in Fig. 9b, we observe that

none of the training TM scores approach one, suggesting that the

protein structures generated using Dzyn are novel, and the model

is not memorizing the training set. However, despite the novelty

of the generated protein structures, their lack of designability

indicates that Dzyn cannot be successfully used to generate quality

13

Table 3
A comparison of Dzyn to various protein sequence generation models using the average pLDDT and the average ESM-2 pppl scores over the generated

sequences. ‘Source Data’ refers to 500 sequences sampled from the training set, while ‘Random’ signifies sequences sampled from a uniform distribution

over the amino acids. Our results are shaded in gray, while the best results are highlighted in bold.

Model Average pLDDT (↑) Structure Prediction Model Average ESM-2 pppl (↓)
ESM-1b (Rao et al. [46], 2021) 58.0 OmegaFold -

proteinGAN (Repecka et al. [13], 2021) 30.4 ESMFold 16.48

SeqDesign (Shin et al. [47], 2021) 43.1 ESMFold 11.89

ESM-2 (Lin et al. [34], 2023) 50.7 OmegaFold -

EvoDiff-OADM (Alamdari et al. [26], 2023) 44.4 OmegaFold 15.77

nanoGPT (Karpathy [48], 2023) 61.0 ESMFold 8.18

DiMA(Meshchaninov et al. [16], 2024) 80.8 ESMFold 5.20
Dzyn (Ours, Final, T = 1000) 64.4 OmegaFold 5.51
Dzyn (Ours, Baseline, T = 100) 42.9 OmegaFold 16.38

Source Data 71.2 OmegaFold 5.20

Random 32.0 OmegaFold 20.14

(a) (b) (c)

Figure 7. The results from the experiments to evaluate the foldability and similarity to natural sequences for the generated sequences. (a) A scatter plot

of the OmegaFold pLDDT scores vs the length of the generated sequences. (b) A scatter plot of the ESM-2 pppl scores vs the length of the generated

sequences. (c) A scatter plot of the ESM-2 pppl scores vs OmegaFold pLDDT scores of the generated sequences.

protein structures.

6.3 Co-Design Correlation

The ccTM scores and AAC scores were used to evaluate the cor-

relation between the generated protein sequences and structures.

The distributions of the ccTM scores and AAC scores over the

generated proteins are shown in Figures 10a and 10b, respectively.

We found that the average ccTM score over the set of generated

proteins was 0.17, and none of the generated proteins had a

ccTM score greater than 0.5 (See Fig. 10a). We also found that

the average AAC score was 4.78% (See Fig. 10b). For protein

structures and sequences that are correlated, we expect the AAC

scores to be much higher and the ccTM scores to be greater than

0.5. These results suggest that the generated protein structures

and sequences do not correlate with each other. However, this

was expected because the generated protein structures are not

designable and, therefore, do not have a sequence that folds into

them. Due to the lack of designability of the protein structures, we

cannot draw meaningful conclusions on the correlation between

the generated structures and sequences.

7 Conclusion

In conclusion, our study has introduced Dzyn, a novel diffusion

model tailored for protein structure and sequence co-design,

leveraging EGNNs as the denoising neural network. Additionally,

we have proposed a modification to the EGNN architecture,

enhancing its performance as demonstrated through an ablation

study. Through rigorous experimentation and evaluation, we have

assessed the quality of both generated sequences and structures,

as well as the correlation between them.

To address the key question of how effectively graph-based

diffusion models facilitate the co-design of protein structures and

sequences, we designed experiments that evaluate the quality

of the generated sequences and structures, and the correlation

between them. Our analysis highlights Dzyn’s ability to generate

high-quality protein sequences that are both highly foldable and

closely resemble natural sequences. We also find that the quality

of the sequence generated by Dzyn is second only to the current

SOTA model, DiMA, which was trained exclusively on protein

sequence generation, a much simpler task. However, despite

the visual similarities between the protein structures generated

by Dzyn and those in the dataset, we observed that these Dzyn

generated structures were not designable. Furthermore, our

findings indicate that the generated structures exhibit novelty,

indicating that the model does not merely memorize the training

set but rather explores diverse solutions within the design space.

Despite this, we have observed a lack of correlation between the

generated sequences and structures, primarily due to issues with

the quality of the generated structures. While our findings cannot

definitively conclude whether current graph-based diffusion mod-

14

(a) (b)

Figure 8. Qualitative comparison of a few selected protein structures sourced from the dataset and those generated using Dzyn. Variations in scale are

observed due to the differing lengths and spatial requirements of the protein structures. (a) Protein structures sourced from the dataset. (b) Protein

structures generated using Dzyn.

(a) (b)

Figure 9. The results from the experiments to evaluate the designability and novelty of the generated structures. (a) A histogram showing the distribution

of the scTM scores for the generated structures. (b) A histogram showing the distribution of the TrainingTM scores for the generated structures.

els are suitable for co-design, Dzyn’s success in generating high-

quality sequences warrants further exploration to unlock their full

potential in this domain.

For future endeavors, it is crucial to address the limitations

encountered by EGNNs in designing protein structures, partic-

ularly their challenge in accurately modeling multiple atoms

(𝐶𝛼 , 𝐶 , and 𝑁 atoms) within a single node. To address this

limitation, we recommend exploring three approaches. First,

we suggest representing the 𝐶𝛼 , 𝐶 , and 𝑁 atoms as individual

nodes, simplifying the representation for the neural network by

reducing the dimensionality of the coordinate features from 9 to

3 per node. However, this approach comes at the cost of tripling

graph size and computation time, making it harder to scale for

larger proteins. Utilizing GNN architectures like GraphSage [49],

designed for large graphs, might be advantageous in this case.

Second, we propose simplifying the task by training the network

to design only a specific part of the protein while conditioning

on the remaining structure, similar to the work of Luo et al.

[19]. This approach could provide valuable insights into whether

EGNNs can be utilized for a smaller sub-problem of the co-design

task. Third, we suggest exploring alternative neural network

architectures, particularly transformers. This approach would

utilize the coordinates of the 𝐶𝛼 , 𝐶 , and 𝑁 atoms. This stands in

contrast to most current co-design methods using transformers,

which focus utilize the amino acid orientation instead. By

incorporating atomic coordinates, we can not only gain valuable

insights into protein structure design with transformers but also

discern if the 𝐶𝛼 , 𝐶 , and 𝑁 coordinate representation itself is a

limiting factor. The success of transformers in other tasks using

different representations suggests this is a worthwhile avenue

for exploration.

In summary, our study explores a novel approach for protein co-

design, investigating the effectiveness of both a graph representa-

tion and EGNNs as a denoising neural network. While approach

15

(a) (b)

Figure 10. The results from the experiments to evaluate the correlation between the generated structures and sequences. (a) A histogram showing the

distribution of the ccTM scores for the generated proteins. (b) A histogram showing the distribution of the AAC scores for the generated proteins.

successfully generates protein sequences, challenges remain in

structure generation and sequence-structure correlation. We

further establish a robust evaluation pipeline for co-design models

and introduce two new metrics specifically designed to evaluate

the critical, yet previously unexplored, aspect of correlation

between generated structures and sequences. Our work paves the

way for promising future advancements in protein co-design, but

also highlights the need for further exploration to fully unlock the

potential of this approach.

References

[1] Po-Ssu Huang, Scott E Boyken, and David Baker. “The coming of age of de

novo protein design”. In: Nature 537.7620 (2016), pp. 320–327.

[2] Cong Fu et al. “A latent diffusion model for protein structure generation”. In:

The Second Learning on Graphs Conference. 2023.

[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic

models”. In: Advances in neural information processing systems 33 (2020),

pp. 6840–6851.

[4] Namrata Anand, Raphael Eguchi, and Po-SsuHuang. “Fully differentiable full-

atom protein backbone generation”. In: (2019).

[5] Sari Sabban and Mikhail Markovsky. “RamaNet: Computational de novo

helical protein backbone design using a long short-term memory generative

adversarial neural network”. In: BioRxiv (2019), p. 671552.

[6] Raphael R Eguchi, Christian A Choe, and Po-Ssu Huang. “Ig-VAE: Generative

modeling of protein structure by direct 3D coordinate generation”. In: PLoS
computational biology 18.6 (2022), e1010271.

[7] Kevin E.Wu et al. Protein structure generation via folding diffusion. 2022. arXiv:
2209.15611 [q-bio.BM].

[8] Joseph LWatson et al. “De novo design of protein structure and function with

RFdiffusion”. In: Nature 620.7976 (2023), pp. 1089–1100.

[9] Jason Yim et al. “Se (3) diffusion model with application to protein backbone

generation”. In: arXiv preprint arXiv:2302.02277 (2023).

[10] Brian L Trippe et al. “Diffusion probabilistic modeling of protein backbones

in 3d for the motif-scaffolding problem”. In: arXiv preprint arXiv:2206.04119
(2022).

[11] Alex Hawkins-Hooker et al. “Generating functional protein variants with

variational autoencoders”. In: PLoS computational biology 17.2 (2021),

e1008736.

[12] Emre Sevgen et al. “ProT-VAE: protein transformer variational autoencoder

for functional protein design”. In: bioRxiv (2023), pp. 2023–01.

[13] Donatas Repecka et al. “Expanding functional protein sequence spaces using

generative adversarial networks”. In: Nature Machine Intelligence 3.4 (2021),

pp. 324–333.

[14] Ali Madani et al. “Progen: Language modeling for protein generation”. In:

arXiv preprint arXiv:2004.03497 (2020).

[15] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. “ProtGPT2 is a deep

unsupervised language model for protein design”. In: Nature communications
13.1 (2022), p. 4348.

[16] ViacheslavMeshchaninov et al. “Diffusion on languagemodel embeddings for

protein sequence generation”. In: arXiv preprint arXiv:2403.03726 (2024).

[17] Wengong Jin et al. “Iterative refinement graph neural network for antibody

sequence-structure co-design”. In: arXiv preprint arXiv:2110.04624 (2021).

[18] Ivan Anishchenko et al. “De novo protein design by deep network hallucina-

tion”. In: Nature 600.7889 (2021), pp. 547–552.

[19] Shitong Luo et al. “Antigen-specific antibody design and optimization with

diffusion-based generative models for protein structures”. In: Advances in
Neural Information Processing Systems 35 (2022), pp. 9754–9767.

[20] Jue Wang et al. “Deep learning methods for designing proteins scaffolding

functional sites”. In: BioRxiv (2021), pp. 2021–11.

[21] Chence Shi et al. “Protein sequence and structure co-design with equivariant

translation”. In: arXiv preprint arXiv:2210.08761 (2022).

[22] Namrata Anand and Tudor Achim. Protein Structure and Sequence Generation
with Equivariant Denoising Diffusion Probabilistic Models. 2022. arXiv: 2205.
15019 [q-bio.QM].

[23] Justas Dauparas et al. “Robust deep learning–based protein sequence design

using ProteinMPNN”. In: Science 378.6615 (2022), pp. 49–56.

[24] John Jumper et al. “Highly accurate protein structure prediction with Al-

phaFold”. In: Nature 596.7873 (2021), pp. 583–589.

[25] Minkyung Baek et al. “Accurate prediction of protein structures and in-

teractions using a three-track neural network”. In: Science 373.6557 (2021),

pp. 871–876.

[26] Sarah Alamdari et al. “Protein generation with evolutionary diffusion: se-

quence is all you need”. In: bioRxiv (2023), pp. 2023–09.

[27] Zhangyang Gao et al. “DiffSDS: A geometric sequence diffusion model for

protein backbone inpainting”. In: ().

[28] Sitao Zhang et al. “PRO-LDM: Protein Sequence Generation with a Condi-

tional Latent Diffusion Model”. In: bioRxiv (2023), pp. 2023–08.

[29] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph

convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[30] Emiel Hoogeboom et al. Equivariant Diffusion for Molecule Generation in 3D.
2022. arXiv: 2203.17003 [cs.LG].

16

https://arxiv.org/abs/2209.15611
https://arxiv.org/abs/2205.15019
https://arxiv.org/abs/2205.15019
https://arxiv.org/abs/2203.17003

[31] Mengchun Zhang et al. “A survey on graph diffusion models: Generative ai in

science for molecule, protein andmaterial”. In: arXiv preprint arXiv:2304.01565
(2023).

[32] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E (n) equivari-

ant graph neural networks”. In: International conference on machine learning.
PMLR. 2021, pp. 9323–9332.

[33] Rebecca F Alford et al. “The Rosetta all-atom energy function formacromolec-

ular modeling and design”. In: Journal of chemical theory and computation 13.6
(2017), pp. 3031–3048.

[34] Zeming Lin et al. “Evolutionary-scale prediction of atomic-level protein

structure with a language model”. In: Science 379.6637 (2023), pp. 1123–1130.

[35] RA Engh and R Huber. “Structure quality and target parameters”. In: (2012).

[36] Zhiye Guo et al. “Diffusion models in bioinformatics: A new wave of deep

learning revolution in action”. In: arXiv preprint arXiv:2302.10907 (2023).

[37] Jianyi Yang et al. “Improved protein structure prediction using predicted

interresidue orientations”. In: Proceedings of the National Academy of Sciences
117.3 (2020), pp. 1496–1503.

[38] Emiel Hoogeboom et al. “Argmax flows and multinomial diffusion: Learning

categorical distributions”. In: Advances in Neural Information Processing
Systems 34 (2021), pp. 12454–12465.

[39] Diederik Kingma et al. “Variational diffusion models”. In: Advances in neural
information processing systems 34 (2021), pp. 21696–21707.

[40] “UniProt: the universal protein knowledgebase in 2023”. In: Nucleic acids
research 51.D1 (2023), pp. D523–D531.

[41] Ruidong Wu et al. “High-resolution de novo structure prediction from

primary sequence”. In: BioRxiv (2022), pp. 2022–07.

[42] Zeming Lin et al. “Language models of protein sequences at the scale of

evolution enable accurate structure prediction”. In: BioRxiv 2022 (2022),

p. 500902.

[43] Benchmark in Machine Learning Methods for Protein Folding. Accessed on 20-

July-2023. url: https://310.ai/2023/05/17/benchmarking-machine-
learning-methodsfor-protein-folding-a-comparative-study-of-
esmfold-omegafold-and-alphafold/ (visited on 07/20/2023).

[44] OG Righetti. Protein Structure. A Practical Approach. TE Creighton. 1989.

[45] Y Zhang and J Skolnick Tm-Align. “A protein structure alignment algorithm

based on the TM-score., 2005, 33”. In: DOI: https://doi. org/10.1093/nar/gki524.
PMID: https://www. ncbi. nlm. nih. gov/pubmed/15849316 (), pp. 2302–2309.

[46] Roshan M Rao et al. “MSA transformer”. In: International Conference on
Machine Learning. PMLR. 2021, pp. 8844–8856.

[47] Jung-Eun Shin et al. “Protein design and variant prediction using autoregres-

sive generative models”. In: Nature communications 12.1 (2021), p. 2403.

[48] Andrej Karpathy. nanoGPT. https://github.com/karpathy/nanoGPT. 2023.

[49] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation

learning on large graphs”. In: Advances in neural information processing
systems 30 (2017).

17

https://310.ai/2023/05/17/benchmarking-machine-learning-methodsfor-protein-folding-a-comparative-study-of-esmfold-omegafold-and-alphafold/
https://310.ai/2023/05/17/benchmarking-machine-learning-methodsfor-protein-folding-a-comparative-study-of-esmfold-omegafold-and-alphafold/
https://310.ai/2023/05/17/benchmarking-machine-learning-methodsfor-protein-folding-a-comparative-study-of-esmfold-omegafold-and-alphafold/
https://github.com/karpathy/nanoGPT

	Introduction
	Background
	Proteins
	Protein Sequence
	Protein Structure

	Roto-Translation Equivariance
	Denoising Diffusion Probabilistic Models (DDPMs)

	Related Work
	Protein Sequence Generation
	Protein Structure Generation
	Protein Co-Design
	Insights

	Methods
	Protein Representation
	Diffusion Processes
	Diffusion for Amino Acid Coordinates
	Diffusion for Amino Acid Types

	Training
	Sampling
	Neural Network Architecture
	Modification to EGNNs
	Hyperparameter Tuning
	Dataset And Preprocessing

	Experiments
	Sequence Foldability
	Sequence Similarity to Natural Sequences
	Structure Designablity
	Structure Novelty
	Co-Design Correlation
	Cross-Consistency TM Score
	Amino Acid Consistency

	Results and Discussion
	Sequence Quality
	Structure Quality
	Co-Design Correlation

	Conclusion

