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On the Analysis and Synthesis of Wind Turbine
Side–Side Tower Load Control via Demodulation

Atindriyo K. Pamososuryo , Sebastiaan P. Mulders , Member, IEEE, Riccardo Ferrari , Senior Member, IEEE,
and Jan-Willem van Wingerden , Senior Member, IEEE

Abstract— As wind turbine power capacities continue to rise,
taller and more flexible tower designs are needed for support.
These designs often have the tower’s natural frequency in
the turbine’s operating regime, increasing the risk of reso-
nance excitation and fatigue damage. Advanced load-reducing
control methods are needed to enable flexible tower designs
that consider the complex dynamics of flexible turbine towers
during partial-load operation. This article proposes a novel
modulation–demodulation control (MDC) strategy for side–side
tower load reduction driven by the varying speed of the turbine.
The MDC method demodulates the periodic content at the once-
per-revolution (1P) frequency in the tower motion measurements
into two orthogonal channels. The proposed scheme extends
the conventional tower controller by augmentation of the MDC
contribution to the generator torque signal. A linear analysis
framework into the multivariable system in the demodulated
domain reveals varying degrees of coupling at different rotational
speeds and a gain sign flip. As a solution, a decoupling strat-
egy has been developed, which simplifies the controller design
process and allows for a straightforward (but highly effective)
diagonal linear time-invariant (LTI) controller design. The high-
fidelity OpenFAST wind turbine software evaluates the proposed
controller scheme, demonstrating effective reduction of the 1P
periodic loading and the tower’s natural frequency excitation in
the side–side tower motion.

Index Terms— Modulation–demodulation control (MDC), peri-
odic load cancellation, side–side tower load control, wind turbine
fatigue reduction.

I. INTRODUCTION

THE improvements in the cost-effectiveness of wind tur-
bines can be traced back to the adoption of the upscaling

strategy, in which the sizes of the turbine components are made
larger [1]. Turbine rotors are made larger and can capture more
energy by the increased swept area and towers are built taller
to support such larger rotors. Moreover, at higher altitudes,
the wind energy resource is of higher quality as the influence
of surface friction is less prominent, resulting in more power
production by a single machine.

Conventional tower upscaling, however, is not desirable as
merely increasing tower heights and diameters while keeping
the same wall thickness results in much heavier and more
expensive structures. In addition, transportability constraints,
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e.g., on tower base diameter, limit the size of which the
towers can be designed, especially for onshore installations [2].
While satisfying the transportability requirements, reducing
the tower wall thickness is a compelling solution to lower the
needed amount of mass and thus manufacturing costs of tall
towers. In contrast to conventional soft–stiff tower designs,
resulting soft–soft designs lower the tower’s (first) natural
frequency into the turbine operational range. Consequently, the
risk of resonance by excitation of the time-varying rotor speed,
also known as the once-per-revolution (1P) frequency, is thus
becoming ever greater. Rotor imbalance could even further
exacerbate this effect [3], [4]. Tower resonance excitation is
even more concerning for the side–side tower oscillations
than for the fore-aft due to the negligible contribution of the
aerodynamic damping in the formerly mentioned direction [5].
So, reliable and advanced control solutions capable of fatigue
load mitigation are of utmost importance to improve the
viability of soft–soft tower designs.

Different control implementations have been made available
in the literature for tower periodic load control and are
generally classified as passive and active methods. Passive
methods prevent prolonged turbine operation near the tower
resonance frequency, usually by decreasing or increasing gen-
erator torque demand to accelerate or decelerate the rotor,
depending on whether its speed is above or below the reso-
nance frequency. This method is often referred to as frequency
skipping by speed exclusion zones. Bossanyi [6] introduced
the approach for avoiding tower resonance by blade passing
frequency at three-times-per-revolution (3P) for three-bladed
wind turbines. Licari et al. [7] studied the effects of the speed
exclusion zone’s width tuning for 1P excitation in terms of
load reduction and power quality. Smilden and Sørensen [8]
later adopted this algorithm for preventing resonance of
fore-aft tower motion by the 3P thrust oscillations. However,
such conventional implementations are nontrivial due to the
intricate logic that needs to be incorporated, resulting in not
knowing whether the control solution is dynamically optimal.
Therefore, a state-of-the-art quasi-linear parameter varying
model predictive control (qLPV-MPC) method was developed
to tackle the shortcomings and challenges of conventional
methods [9].

Active control methods, on the other hand, feed tower
measurements into a controller to generate counteracting
forces through provided actuators so as to dampen the tower
vibration [6], [10]. The controller, typically an integrator when
acceleration is measured and is designed to increase tower
damping. Depending on whether the fore-aft [6], [10], [11]
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or side–side direction [10], [12] is targeted for damping,
respectively, the collective pitch or generator torque demand
is utilized as the control input. Such a conventional approach
was originally devised to reduce tower vibration at its natural
frequency. Nonetheless, a tower load controller specifically
aiming at the time-varying 1P periodic loading has received
little to no attention in the literature and would be an attractive
complement to the conventional method.

This article extends the conventional control method by a
modulation–demodulation setup to further improve side–side
tower load reduction performance. Such a controller design
additionally provides a reduction of the rotational-speed-driven
load and allows for comprehensive system analysis and con-
troller synthesis. To the best of the authors’ knowledge, such
an approach has not yet received any attention in the wind
turbine control literature.

In the control engineering field, an approach known as
the modulation-demodulation control (MDC) is considered an
effective solution to periodic disturbance cancellation prob-
lems [13], [14], [15]. MDC is able to adapt its control input’s
frequency to reject a time-varying disturbance frequency and
can handle the changes in the dynamics of the plant due
to the variation of the disturbance frequency. A large body
of literature has been dedicated to further studying MDC’s
potential, which includes applications in diverse fields. For
instance, Byl et al. [14] focuses on MDC tuning from the
perspective of the frequency-domain loop-shaping method for
the application of a diamond turning machine. The work
of [16] analyses the feedback limitations of MDC by poles,
zeros, and delays investigation. In [15], vibration control
of flexible piezoelectric structures by MDC was conducted.
Other applications include digital data storage system [17],
helicopter [18], flexible web winding system [19], and tape
system [20], just to mention a few.

The MDC control method bears similarities with a
highly-anticipated and industrially applied periodic blade
load alleviation technique known as individual pitch control
(IPC) [21]. For most IPC implementations, the Coleman
transformation [22] is employed to project measured individual
blade moments containing periodic content from the rotating
frame into a static nonrotating frame. The scheme can be
thought of as a modulation–demodulation framework where
structural analysis and controller design are simplified in the
nonrotating domain. However, it has been known that larger
and more flexible rotor structures create severe coupling of
the considered multivariable system. Therefore, for single-
input single-output (SISO) controller designs to be justified
in the transformed domain, decoupling strategies must be
taken into account [23], [24]. In MDC, identical and rather
simple diagonal SISO controllers can also be designed onto
low-frequency, orthogonal quadrature and in-phase channels
resulting from the demodulation of the plant’s measurements.
This operation is similar to the forward Coleman transforma-
tion in the conventional IPC. The computed control actions on
these orthogonal channels are then converted into the actual
usable input at the disturbance frequency by the modulation
operation, similar to the reverse Coleman transformation.
Nevertheless, despite its demonstrated effectiveness in wide

applications, little attention has been paid to adapting MDC for
mitigating periodic loading affecting wind turbine side–side
tower motion.

This article focuses on the development of MDC for the
rejection of 1P periodic loading on wind turbine side–side
tower motion. The proposed MDC results in a periodic gen-
erator torque control input with time-varying 1P frequency,
which, given the measurements of the rotor speed, is able
to track the disturbance’s frequency. However, frequency-
domain analysis of the demodulated system shows that the
quadrature and in-phase channels are not fully decoupled.
Moreover, changing rotational speed induces a gain sign flip,
which may cause instability in the closed-loop operation.
Therefore, a decoupling strategy by phase offset inclusion,
similar to that in the conventional IPC [24], is developed to
arrive at fully decoupled quadrature and in-phase channels and
simultaneously remove the gain sign flip.

The contribution of this work is fourfold:

1) formulating MDC for the mitigation of periodic load
affecting wind turbine side–side tower motion induced
by the time-varying 1P rotor excitation;

2) providing frequency domain frameworks for the analysis
of the system coupling and controller behavior in their
(de)modulated representations;

3) decoupling the multivariable system and correcting the
gain sign flip by the inclusion of a phase offset, as well
as illustrating the offset’s influence on the controller;

4) showcasing the performance of MDC in both simplified
and high-fidelity computer-aided wind turbine simula-
tion environments along with a conventional active tower
damper.

The remainder of this article is structured as follows.
Section II describes the nominal wind turbine dynamics and
conventional tower damping controller. In Section III, the
derivation of the proposed MDC framework in the frequency
domain is presented. Section IV elaborates on controller
and system analysis in the MDC framework, in which
the cross-coupling phenomenon and gain sign flip in the
quadrature and in-phase MDC channels are discussed. Then,
in Section V, the phase offset inclusion for the channel
decoupling and gain sign flip correction on the tower dynam-
ics, as well as influence on the controller, is explained.
In Section VI, the effectiveness of the proposed controller is
demonstrated using low- and high-fidelity simulations. Con-
cluding remarks are drawn in Section VII.

II. WIND TURBINE DYNAMICS AND CONVENTIONAL
TOWER DAMPING CONTROLLER

To form the basis for controller design and analysis in
this article, wind turbine aerodynamic and tower models are
derived in Section II-A. As the goal of this article is to
augment the proposed controller to that of the conventional
active tower damping controller, the latter’s design is discussed
in Section II-B and is combined with the tower dynamics.
Section II-C derives the frequency domain representation of
the combined tower dynamics for later uses in the MDC
framework.
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A. Tower and Aerodynamic Models

The model used for analysis and synthesis considered in
this study consists of side–side tower dynamics and rotor
aerodynamics. The tower dynamics are approximated as a
second-order system, representing the first structural mode as
follows:

ẍ(t) =
1
m

(
−dẋ(t)−kx(t)+ Fsd(t)

+sf
(
Tg(t)+1Tg,damp(t)+1Tg(t)

))
(1)

where m denotes the tower modal mass, d its damping,
and k the modal stiffness. The notation t indicates a time-
domain signal, which, for the sake of brevity, is omitted in
the text unless necessary. Tower-top acceleration, velocity, and
displacement are represented by ẍ , ẋ , and x , respectively. The
motion of the tower is affected by generator torque activities
Tg, 1Tg,damp, and 1Tg through the generator stator reaction,
all of which are the considered control actions in this article.
The torque Tg is used mainly in power production, whereas the
additive torques 1Tg,damp and 1Tg are utilized to, respectively,
increase the effective tower damping and mitigate the periodic
loading Fsd. The factor sf = 1.5/H , with H being the tower
height, is the ratio between the rotational and translational
displacements of the tower motion under the assumption that
the tower is a prismatic beam [25].

The periodic loading aforementioned may develop on the
rotor due to, e.g., a mass or aerodynamic imbalance and
transferred to the fixed structure, which is modeled as the
following sinusoidal force [26]:

Fsd(t) = asd cos (ωr(t)t + φsd) (2)

where its amplitude and phase offset are denoted as asd and
φsd, respectively, in which the former can be considered a
centrifugal force [7]. Fig. 1 illustrates how this force affects
the tower.

Remark 1: Although the main focus of this work is on the
side–side tower loading, the proposed method explained later
in Section III can also be applied to fore-aft tower loading.
This is done by replacing (1) with that of the fore-aft tower
dynamics, where thrust force is acting on the tower top,
manipulable by collective blade pitching.

The frequency of Fsd varies in time as the rotor speed
ωr changes according to the following rotor aerodynamics,
resembling a first-order rotational mass system:

ω̇r(t) =
1
Jr

Ta(t)−
G
Jr

(
Tg(t)+1Tg,damp(t)

+1Tg(t)
)
. (3)

In the above equation, Jr represents the equivalent inertia at
the low-speed-shaft (LSS) side and G is the gearbox ratio. The
aerodynamic torque is given by

Ta(t) =
1

2ωr(t)
ρaπR2Cp(ωr(t), v(t), β(t))v(t)3

with the air density denoted by ρa, rotor radius R, and
aerodynamic power coefficient Cp, being a function of ωr,
wind speed v and pitch angle β. To achieve maximum power

Fig. 1. Wind turbine is excited at the side–side direction by a periodic load
due to the rotor imbalance at the 1P frequency Fsd(t) = asd cos (ψ(t) + φsd),
with the azimuth ψ(t) = ωr(t)t . The tangential speed of the periodic load is
indicated by vt(t), and x(t) denotes tower top displacement in the horizontal
direction.

extraction at the below-rated operating regime, as considered
in this work, the so-called Kω2

r control law [27] is employed
for the torque controller

Tg(t) =
1

2λ⋆3 ρaπR5C⋆
p︸ ︷︷ ︸

K

ωr(t)2 (4)

where K is the optimal gain, λ⋆ as the design tip-speed ratio
corresponding to the optimal power coefficient C⋆

p at fine
pitch position. This work employs only a simple maximum
power tracking controller, as load mitigation is the main focus.
However, a more advanced method is available in the literature
for the interested reader (e.g., [28]).

B. Conventional Active Tower Damping Controller

With the wind turbine model at hand, a side–side tower
damping controller is added to obtain the nominal system con-
sidered in the remainder of this article. The wind turbine tower
dynamics (1) commonly possess only negligible damping d
such that additional damping is required to mitigate fatigue
loads at the tower’s natural frequency. Conventionally, for the
side–side direction, the extra damping is created by additional
generator torque demand, being negatively proportional to the
tower-top velocity (also taking into account sf) as follows [10]:

1Tg,damp(t) = −Kconv ẋ(t) (5)

with

Kconv =
dadd

sf
(6)
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as a constant gain where dadd is the additional, desired modal
damping. Note that since ẍ is often measurable, it is necessary
to perform integration of this signal to obtain ẋ ; thus, this
controller is essentially an integral controller.

The increase in the effective modal damping coefficient is
now evident by substituting 1Tg,damp in (1) with (5), such that
the tower dynamics are rendered into

ẍ(t) =
1
m

(
−deff ẋ(t)−kx(t)+ Fsd(t)

+sf
(
Tg(t)+1Tg(t)

))
(7)

with deff = d +dadd being the effective damping. However, the
conventional tower damper does not focus on the mitigation of
1P periodic loading posed by Fsd. Later on in this article, the
development of MDC for alleviating this rotor-speed-driven
load is discussed further as an extension to this conventional
controller, making use of (7).

C. Frequency Domain Representation

For a significant part of Sections III–VI, MDC design and
analysis are done in the frequency domain. This requires
the dynamics (7) to be expressed in this domain as well,
where the transfer from 1Tg to ẋ is considered. The Laplace
transformation of the tower dynamics gives the following
transfer function:

G(s) =
Ẋ(s)
1Tg(s)

=
sfs

ms2 + deffs + k
(8)

where s is the Laplace operator. The notations Ẋ(s) and
1Tg(s) are the tower-top velocity and additive generator
torque in their frequency domain representation. Also useful
is to define N(s) and D(s) to denote the numerator and
denominator of G(s).

III. MODULATION-DEMODULATION CONTROL SCHEME

This section provides an elaboration on the MDC archi-
tecture, which is based on the approach proposed by
Lau et al. [15]. The MDC architecture and accompanying
analysis methods are utilized to provide a control-oriented
analysis of the controller and wind turbine system. As a
prerequisite for subsequent derivations, the following Laplace
transforms of signal modulations at the disturbance frequency
ωr are defined:

L{r(t) cos(ωrt)} =
1
2
(R(s−)+ R(s+)) (9a)

L{r(t) sin(ωrt)} = −
j
2
(R(s−)− R(s+)) (9b)

with r(t) as an arbitrary time-domain signal and R(s) its
Laplace-transformed analog. For this linear analysis, ωr is
assumed to be constant over a single period. The notation
s± = s ± jωr is introduced to indicate ωr-shifted frequency
content. Another useful relation for the derivations that follow
is the following Euler’s formula:

ejφ
= cos (φ)+ j sin (φ) (10)

with φ as an arbitrary angle.

The MDC methodology follows the depiction in Fig. 2,
where modulation and demodulation involve signal multiplica-
tions with trigonometric functions at the disturbance frequency
ωr. In contrast to the work of [15], any filtering in the
demodulation stage is omitted and is relocated to the controller
block/stage for the sake of generalization.

Demodulation is the first stage of the MDC scheme, where
ẋ , being the output of the plant G(s) perturbed by disturbance
Fsd, is multiplied by cosine and sine of the disturbance
frequency ωr. The cosine and sine multiplication of ẋ results
in [

ẋc(t)
ẋ s(t)

]
=

[
2 cos (ωrt + ψoff)

2 sin (ωrt + ψoff)

]
ẋ(t) (11)

with ẋc and ẋ s being the quadrature and in-phase components
of the output and ψoff as a phase offset. It needs to be remarked
that the factor of 2 in (11) follows the convention of [15]
and that ψoff is plant-specific and dependent on its dynamics,
as detailed later on in Section V-B.

By making use of (9) and (10), the relation (11) results in
the following frequency-domain representation:[

Ẋc(s)
Ẋs(s)

]
=

(
ejψoff

[
1
−j

]
Ẋ(s−)+ e−jψoff

[
1
j

]
Ẋ(s+)

)
.

(12)

For each of the quadrature and in-phase channels, a lin-
ear time-invariant (LTI), SISO demodulated controller C(s)
is implemented and forms a diagonal decoupled structure,
as shown in the following:[

1Tg,c(s)
1Tg,s(s)

]
= C(s)

[
Ẋc(s)
Ẋs(s)

]
(13)

where C(s) = C(s)I2×2. The diagonal controller structure
is intended for equal load reduction performance on both
channels of the multivariable demodulated system and is valid
if both channels have negligible interaction/coupling. As will
be shown in Section IV, this condition is generally not met
for all operating points. The phase offset earlier introduced
in (11) plays an important role in the decoupling of the system
throughout varying operational conditions.

Transforming back the quadrature and in-phase control
signals 1Tg,c and 1Tg,s from the demodulated domain back
to the additive torque signal 1Tg is accomplished by the
modulation operation

1Tg(s) =
1
2

([
1 − j

][1Tg,c(s−)

1Tg,s(s−)

]
+

[
1 j

][1Tg,c(s+)

1Tg,s(s+)

])
(14)

which is the frequency domain equivalence of

1Tg(t) =
[
cos (ωrt) sin (ωrt)

][1Tg,c(t)
1Tg,s(t)

]
. (15)

The equation above completes the derivation for the MDC
framework.
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Fig. 2. MDC scheme for the cancellation of a side–side periodic load Fsd = asd cos (ωrt + φsd) affecting wind turbine tower G(s). The demodulation operation
is driven by the disturbance frequency ωr and creates a separation of the output signal ẋ into quadrature and in-phase signals, ẋc and ẋ s, respectively. On these
channels, two identical SISO controllers C(s)I2×2 are designed, generating the control inputs 1Tg,c and 1Tg,s. Finally, modulation at ωr combines these
two control inputs into a single signal 1Tg that is fed into G(s) to alleviate the periodic loading. The phase offset ψoff can be added to the demodulator to
influence the system’s behavior, such as channel decoupling. Note that the negative sign preceding C(s) indicates the negative feedback convention used in
the framework and the inverse of the scaling factor sf follows Fsd for consistency with (7) and (8). This diagram only considers the proposed control solution
with the tower dynamics G(s); the complete wind turbine is also torque-controlled using the Kω2

r controller strategy (4).

Fig. 3. (a) SISO modulated controller Cm(s, ωr) and (b) MIMO demodulated
plant H(s, ωr) in the MDC scheme.

IV. MDC CONTROLLER AND SYSTEM ANALYSIS

The established MDC framework allows for analysis of the
system and controller, as depicted in Fig. 3. Fig. 3(a) shows
the combination of the (de)modulators with the controller
C(s), forming a SISO modulated controller representation
from ẋ to 1Tg. This transformed controller possesses several
beneficial properties, as further demonstrated in Section IV-
A. Presented in Fig. 3(b) is the multiple-input multiple-output
(MIMO) demodulated plant realization in the quadrature and
in-phase channels from [1Tg,c,1Tg,s]

⊤ to [ẋc, ẋ s]
⊤, resulting

from the combination of G(s) and the (de)modulators. Of par-
ticular importance is the knowledge of potential cross-coupling
between the demodulated channels of the MIMO plant pre-
sented in Section IV-B. Section IV-C provides insights into
the properties of the demodulated multivariable system toward
the justification of a decentralized controller C(s).

In Sections IV-A and IV-B, theoretical results for trans-
formed controllers and systems are provided, which are
subsequently leveraged for the analysis of a linear wind
turbine model in Section IV-C. The phase offset ψoff plays
a remarkably important role in decoupling the demodu-
lated system; however, to provide a clearer analysis, this
variable will be included in the derivations after this
section.

A. SISO Modulated Controller Representation

As previously indicated and shown in Fig. 3(a), the
derived frequency-domain framework allows for a differ-
ent perspective in analyzing the LTI controllers C(s) in
the modulation–demodulation scheme. This section shows a
remarkable property of the MDC scheme in that the LTI con-
trollers are transformed into a SISO linear time-varying (LTV)
controller structure when the modulation and demodulation
stages are accounted for.

The SISO modulated controller representation from Ẋ(s) to
1Tg(s) is derived by first substituting (12) to (13) to obtain
the following expression:[

1Tg,c(s)
1Tg,s(s)

]
= C(s)

([
1
−j

]
Ẋ(s−)+

[
1
j

]
Ẋ(s+)

)
(16)

which is subsequently combined with (14), resulting in

1Tg(s) = Cm(s, ωr)Ẋ(s) = (C(s−)+ C(s+))Ẋ(s)
(17)

being scheduled by ωr. The above relation in (17) shows that
simple LTI controllers in the demodulated system become LTV
if the (de)modulators are included. Under the assumption that
ωr is slowly varying and does not (significantly) change within
its period, as stated previously, the results from the linear
analysis framework in this section generalize to the nonlinear
implementation.

Using the derived relation between C(s) and Cm(s, ωr)

in (17). This section shows three, n = {1, 2, 3}, controller
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types of interest Cn(s), for which a convenient analytical
expression Cm,n(s, ωr) exists.

1) The first LTI controller is a proportional controller

C1 = KP (18)

with KP ∈ R as a constant gain, produces 1Tg,c and
1Tg,s that scale ẋc and ẋ s. This controller is transformed
into

Cm,1 = 2KP (19)

independent of ωr—thus, retains the LTI characteristic
of C1.

2) The second LTI controller is an integral controller

C2(s) =
KI

s
(20)

with KI ∈ R as an integral gain, which has infinite gain
for steady-state deviations and alleviates high-frequent
components of ẋc and ẋ s. Transformation of the consid-
ered controller results in

Cm,2(s, ωr) =
2KIs

s2 + ω2
r

(21)

being an undamped inverted notch filter with a complex
pole pair at ±jωr and, thus, infinite gain at ωr [13]. This
also means that full cancellation of periodic load at this
frequency is possible by this type of controller. Also, it is
worth mentioning that this controller structure bears a
similarity with that of repetitive control. However, both
controllers differ in that (21) only tackles the funda-
mental disturbance frequency, whereas repetitive control
also inherently accounts for the higher harmonics. Thus,
the former is more advantageous in terms of reduced
actuator wear and tear. The interested reader is referred
to the literature (e.g., [29], [30]) for more details on
repetitive control.

3) The last LTI controller is a first-order low-pass filter

C3(s) =
KL

s + ωLPF
(22)

with a constant gain KL ∈ R and ωLPF ∈ R+ as the cut-
off frequency. This controller is similar to the previous
two LTI controllers in that it proportionally scales ẋc and
ẋ s but also alleviates high-frequent components in the
demodulated measurement signals. The introduction of
ωLPF moves the pole away from the origin, resulting in a
noninfinite steady-state gain, in contrast to the integrator
controller. Its SISO-modulated expression

Cm,3(s, ωr) =
2KL(s + ωLPF)

s2 + 2ωLPFs + ω2
LPF + ω2

r

(23)

interestingly, is also an inverted notch but with a ben-
eficial property in that it contains a damping term in
the denominator (2ωLPFs), tunable via the selection of
ωLPF. This means that, in contrast to Cm,2(s, ωr), the
gain of the controller at ωr can be limited, which can be

Fig. 4. Bode magnitude plots of the demodulated controller Cn(s) (top) and
the resulting SISO modulated controller Cm,n(s, ωr) (bottom), n = {1, 2, 3}.
The proportional controller C1 is mapped into Cm,1, being the same propor-
tional controller but with an additional factor of 2. The integral controller
C2(s) is rendered into an undamped inverted notch filter Cm,2(s, ωr) with
infinite gain at ωr = 0.5 rad/s. The low-pass filter C3(s) with a cut-off
frequency of ωLPF = 0.01 rad/s results into a damped inverted notch filter
Cm,3(s, ωr).

desirable in terms of actuation activity needed to dampen
periodic loading and added robustness.

Fig. 4 depicts the Bode magnitude plots of the considered
nominal and transformed controllers, which are, respectively,
shown by the top and bottom plots to support the discussed
observed conclusions. The plots are created with arbitrary
choices for ωr = 0.5 rad/s, ωLPF = 0.01 rad/s and KP = 2.
For the gains in C2(s) and C3(s), KI = KL = 2ωLPF is chosen
such that its crossover frequency matches with that of C3(s),
which results in a clearer comparison.

In addition to the aforementioned presented LTI con-
trollers Cn(s), alternative controller configurations, poten-
tially of greater complexity, could be suggested and their
SISO modulated (LTV) counterparts could be derived by
using (17). Please refer to [15] for controller selection
guidelines.

B. MIMO Demodulated Plant Representation

The incorporation of the (de)modulators in the proposed
framework enables the plant dynamics to be represented
as an MIMO system, as shown in Fig. 3(b), with which
the presence of cross-coupling between channels can be
investigated. To render the plant dynamics into their demod-
ulated, MIMO representation, the SISO plant G(s) is
substituted into (12) such that the following equation is
obtained:[

Ẋc(s)
Ẋs(s)

]
=

[
1
−j

]
G(s−)1Tg(s−)+

[
1
j

]
G(s+)1Tg(s+)

(24)
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and substituting (14) into (24) gives rise to the 2P (i.e., twice-
per-revolution) terms indicated by s2± = s ± 2jωr as follows:

[
Ẋc(s)
Ẋs(s)

]
=

G1(s, ωr)
⊤

G2(s, ωr)
⊤

G3(s, ωr)
⊤

⊤

︸ ︷︷ ︸
H(s,ωr)

⊤


1Tg,c(s2−)

1Tg,s(s2−)

1Tg,c(s)
1Tg,s(s)
1Tg,c(s2+)

1Tg,s(s2+)

 (25)

with H(s, ωr) as the concatenation of the following transfer
matrices:

G1(s, ωr) =
1
2

[
G(s−) − jG(s−)

−jG(s−) − G(s−)

]
(26a)

G2(s, ωr) =
1
2

[
G(s−)+ G(s+) j(G(s−)− G(s+))

j(−G(s−)+ G(s+)) G(s−)+ G(s+)

]
(26b)

G3(s, ωr) =
1
2

[
G(s+) jG(s+)

jG(s+) − G(s+)

]
. (26c)

The higher harmonic terms add complexity to the control
design and analysis since all the contributions G1(s, ωr),
G2(s, ωr), and G3(s, ωr) need to be accounted for. Therefore,
the relation above is simplified by selecting an appro-
priate controller structure that filters out 2P frequency
components such that several terms can be omitted, i.e.,
[1Tg,c(s2±),1Tg,s(s2±)]

⊤
≈ 0. Among the LTI controllers

presented in Section IV-A, either C2(s) or C3(s) is a viable
candidate due to the roll-off at high frequencies. Therefore (25)
simplifies into [

Ẋc(s)
Ẋs(s)

]
≈ G2(s, ωr)

[
1Tg,c(s)
1Tg,s(s)

]
(27)

representing an approximation of the demodulated multivari-
able plant.

C. Application of MDC on a Simplified Wind Turbine

Now, with the tower dynamics transfer function G(s) at
hand, the definition of G2(s, ωr) in (26) is used to transform
the nominal dynamics into its demodulated counterpart. It is
compelling to investigate their relations by studying Bode plots
of both their dynamics. To this end, rather arbitrary wind tur-
bine modal parameters m = 3 × 104 kg, deff = 3 × 103 Ns/m,
and k = 1.5 × 104 N/m are considered. The chosen parameters
resemble a soft–soft wind turbine tower with its natural
frequency being ωn = (k/m)1/2 = 0.7071 rad/s and the rotor
operates in ωr ∈ � = [ωr,min, ωr,rated], with ωr,min = 0.5 rad/s
and ωr,rated = 1.2 rad/s.

Fig. 5 shows the Bode plots of both G(s) and G2(s, ωr),
in which the former and latter transfer functions are repre-
sented, respectively, in Fig. 5(a) and (b). As G2(s, ωr) is a
2 × 2 Hermitian transfer function matrix, its main and off-
diagonal elements

G2,11(s, ωr) = G2,22(s, ωr)

=
1
2

N(s−)D(s+)+ N(s+)D(s−)

D(s−)D(s+)
(28)

and

G2,12(s, ωr) = −G2,21(s, ωr)

=
j
2

N(s−)D(s+)− N(s+)D(s−)

D(s−)D(s+)
(29)

are shown in the respective first and second columns of
Fig. 5(b). Since G2(s, ωr) is parameterized by the 1P fre-
quency, its Bode plot is evaluated for different ωr values.
Specifically, in this case, three frequencies are considered to
understand the system’s behavior before, at, and after the
tower’s resonance frequency, i.e., ω(i)r = {ωr,min, ωn, ωr,rated},
where i = {1, 2, 3}.

The modulation–demodulation of G(s) at s = jω(i)r maps its
magnitude, |G(jω(i)r )|, into the steady-state magnitude of the
demodulated plant, |G2(0, ω(i)r )|. Roughly speaking, for the
diagonal LTI SISO controller C(s) to be justified for the entire
turbine operating range, it is desirable to have the steady-state
magnitudes of the main diagonal be more dominant than the
off-diagonal counterparts, that is,

|G2,11(0, ωr)| ≫ |G2,12(0, ωr)| ∀ωr ∈ � . (30)

When the above condition is met, the quadrature and in-phase
channels are well decoupled and thus, no significant interaction
at low-frequency region and steady-state between channels is
present [15].

In Fig. 5(b), it is shown that this is the case for G2(0, ω(2)r ),
with ω(2)r = ωn. The reason behind such main-diagonal
dominance at this operating point is partly due to the presence
of a pair of zeros (differentiators) at the origin of G2,12(s, ω(2)r ).
Consequently, |G2,12(s, ω(2)r )| is 0 at steady-state and increases
with a 40-dB/decade slope as frequency goes higher, also
indicated in Fig. 5(b). Moreover, as |G2,11(s, ω(2)r )| has a
maximized steady-state contribution, shown by the flat-line
region at low frequencies, it can be directly concluded that (30)
is satisfied in this case. This is not necessarily the case
when ωr ̸= ωn, as exemplified by ω(1)r and ω(3)r . In both
cases, the absence of any differential and integral actions
in G2,12(s, ωr) results in flat magnitudes at low frequencies
but with higher gains compared to G2,11(s, ωr); thus, cross-
coupling is present for the lower frequency region of interest.
Hence, it may be preferred to utilize G2,12(s, ωr) for con-
trol due to these higher gains at these operating conditions.
Nevertheless, additional complexity arises in doing so as a
180◦ of phase difference presents in ̸ G2,12(0, ωr) [shown by
arrows 1 and 3 in Fig. 5(b)]. This infers that a gain sign
flip occurs when the turbine switches operating regime from
ωr < ωn to ωr > ωn and vice versa, which may result in
instability.

Also noticeable in Fig. 5(b) is the presence of two resonance
peaks in |G2(s, ωr)| for ω(1)r and ω(3)r with their magnitudes
being −6 dB lower than that of |G(jωn)|. These two peaks
originate from the shift of the nominal plant’s natural fre-
quency into |ωn±ω

(i)
r | due to the D(s±) terms in (28) and (29),

which also explains why only a single peak presents for ω(2)r
case [15]. Although there is significant coupling in higher
frequencies in the off-diagonal, only the low-frequent region
is of interest for the controller design.
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Fig. 5. Bode magnitude and phase plots of (a) nominal and (b) demodulated wind turbine models. In (a), vertical dashed lines indicate the operating range
of a soft–soft wind turbine G(s), where a resonance peak at about ω = ωn = 0.7071 rad/s is apparent in the magnitude plot. A 180◦ phase shift occurs
due to the presence of this resonance, as shown in the corresponding phase plot. The points indicated by labeled arrows i = {1, 2, 3} represent three sample
points ω(i)r = {ωr,min, ωn, ωr,rated}, with ωr,min = 0.5 rad/s and ωr,rated = 1.2 rad/s, to evaluate the mapping from G(s) into the steady-state components of
G2(s, ωr), as shown in (b), before, during, and after the resonance. Note the 40-dB/decade slope in the magnitude plot of G2,12(s, ω

(2)
r ) at low frequencies,

which indicates the presence of two zeros at the origin.

The above observation on the magnitude and phase mapping
between both plant representations can be understood better
by taking another look at (28) and (29). First, since both
G2,11(s, ωr) and G2,12(s, ωr) are constituted by the same poles,
whether or not (30) is satisfied depends only on the zeros of
these transfer functions. Second, as these zeros are located
at z1,2 = ±(ωn − ωr)

1/2, they can be either purely on the
imaginary axis, origin, or real axis, depending on the value of
the rotational speed of the turbine with respect to the tower’s
natural frequency. This creates different (steady-state) phase
behavior for ωr < ωn and ωr > ωn because the latter pro-
duces a right-half-plane (RHP) zero at the dominant channel
such that the aforementioned 180◦ phase difference/sign flip
occurs. Therefore, to ensure main-diagonal dominance for the
entire turbine operating range and elimination of the phase
drop in the dominant channels, it becomes compelling to
manipulate the zero locations of G2,11(s, ωr) and G2,12(s, ωr).
In Section V, both goals can be achieved simultaneously by
the inclusion of an offset in the MDC scheme.

Remark 2: Whether ẍ , ẋ , or x is used as the output of
the plant affects the numerator of G(s) and thus the zeros
of (28) and (29). This also determines how (30) is satis-
fied for different operating points. Nevertheless, regardless
of the selected output signal, channel cross-coupling and a
180◦ phase shift in the dominant channel of G2(s, ωr) still
exists, which necessitates their compensation by phase offset
inclusion.

V. QUADRATURE AND IN-PHASE CHANNELS DECOUPLING
BY PHASE OFFSET INCLUSION

The MIMO demodulated plant channel cross-coupling,
as well as the gain sign flip examined earlier, has uncovered
potential challenges in the proposed MDC design. To gain
more knowledge on the degree of this coupling for the entire
turbine operating range, a more reliable metric, namely the

relative gain array (RGA), is used in Section V-A. As inferred
in Section IV, the inclusion of the phase offset ψoff in the MDC
plays a key role in the decoupling of the MIMO demodulated
plant. In Section V-B, the optimal phase offset value, by which
the highest degree of decoupling and gain sign flip correction
can be achieved, is discussed.

A. Relative Gain Array Analysis

RGA, denoted 3(·), is a measure of interaction between
multiple control channels [31]. The RGA is used to assess the
coupling of the MIMO demodulated system at steady-state
G2(0, ωr) as follows:

3(G2(0, ωr)) = G2(0, ωr) ◦ G2(0, ωr)
−⊤ (31)

where “◦” denotes an element-by-element multiplication
known as the Hadamard or Schur product.

Fig. 6 shows the evaluation of 3(G2(0, ωr)) for an extended
range of rotor operation ωr ∈ �′

= [0, 1.5] rad/s, where
the magnitude of the main diagonal elements |311| = |322|

is shown by the blue lines and that of the off-diagonal
|312| = |321| is represented by the red lines. As the rows and
columns of 3(G2(0, ωr)) sum to 1, it is sufficient to mention
only |311| for the following discussion.

Fig. 6(a) depicts the current case where the main diagonal
pairings are dominant with |311| = 1 only about ω(2)r = ωn.
Also evident is the increasing off-diagonal dominance as
ωr deviates from ωn with |311| ≈ 0 at ω(1)r and ω(3)r . This
shows agreement with the previous Bode plot observations
in Fig. 5(b) and hints that the current input–output pairings
preference is not suitable for the entire operating range [31].
Swapping the input–output pairings to the off-diagonal may
be preferable but insufficient to account for the negative
gain resulting from the 180◦ phase difference in ̸ G2(0, ωr)

indicated by the red-shaded region. Fig. 6(b) shows an ideal
case where |311| = 1 for the entire operating regime without
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any gain sign change, as opposed to Fig. 6(a). In Section V-B,
such a condition is shown to be achievable by means of phase
offset inclusion in the proposed MDC framework.

B. Phase Offset Inclusion

In Section IV-C, it has been shown that the value of ωr
plays a role in the positioning of the zeros of G2,11(s, ωr) and
G2,12(s, ωr), resulting in both channel cross-coupling and gain
sign flip. The previously omitted phase offset ψoff, however,
may play a critical role in tackling both issues at the same time
by influencing these zero locations. In particular, the optimal
phase offset value, defined by

ψ⋆
off(ωr) = −̸ G(jωr) (32)

can be chosen. As the plant’s dynamics vary according to the
frequency of the periodic excitation, ψ⋆

off varies according to
ωr. In the remainder of this article, the notation ωr is dropped
when referring to ψ⋆

off for brevity’s sake. This offset value
has been rigorously studied in the literature, where methods
such as averaging theory, root locus, and loop-shaping have
been employed. The interested reader is referred to [14],
[32], and references therein for more detailed analysis. The
effects of ψoff inclusion on the MIMO demodulated plant and
SISO modulated controller are discussed in Sections V-B1
and V-B2.

1) Effects of ψoff on MIMO Demodulated Plant: To under-
stand the effects ψoff creates on G2(s, ωr), the derivation done
in Section IV-B is repeated by including this offset, which
results in the following relation:

G2
(
s, ωr, ψ

⋆
off

)
=

 ejψ⋆off G(s−)+e−jψ⋆off G(s+)

2 j ejψ⋆off G(s−)−e−jψ⋆off G(s+)

2

j

(
−ejψ⋆off G(s−)+e−jψ⋆off G(s+)

)
2

ejψ⋆off G(s−)+e−jψ⋆off G(s+)

2


(33)

in which ψoff = ψ⋆
off is applied. In comparison with the

original definition of G2(s, ωr) in (26b), e±jψ⋆off terms appear
in (33) after the inclusion of ψ⋆

off into the MDC scheme. These
terms play a role in zero positioning of both G2,11(s, ωr, ψ

⋆
off)

and G2,12(s, ωr, ψ
⋆
off), thereby affecting their (steady-state)

gains and phases.
Fig. 7 depicts the Bode plot of the MIMO demodulated

wind turbine model including ψ⋆
off (33). It is apparent that in

comparison with the previous case in Fig. 5(b), the transfer
function matrix has now become diagonally dominant, with
their phases starting from zero at the steady state and not
exhibiting 180◦ phase difference anymore. This main-diagonal
dominance is made clearer by investigating the analytical
expressions for the main and off-diagonal elements of the
MIMO demodulated plant at steady-state by substituting (8)
into (33) and setting s = 0 rad/s, that is (34) and (35), as
shown at the bottom of the next page, respectively.

Then, the steady-state magnitudes of both the main and
off-diagonal elements can be computed for all operating
points, where the main diagonal’s magnitude equals that of

the nominal plant at the excitation frequency

|G2,11
(
0, ωr, ψ

⋆
off

)
| = |G(jωr)| (36)

whereas

|G2,12
(
0, ωr, ψ

⋆
off

)
| = 0. (37)

This means that (30) is always fulfilled.
Steady-state RGA evaluation of the MIMO demodulated

plant after the optimal offset inclusion 3(G(0, ωr, ψ
⋆
off))

also confirms the above observation. This is depicted in
Fig. 6(b), where |311| = 1 for the entire (extended) operating
range.

The above observations conclude that under the inclusion of
ψ⋆

off, the main diagonal dominance is asserted and no gain sign
flip is experienced as the rotational frequency sweeps through
the tower’s natural frequency. Therefore, the use of diagonal
controller C(s) is now justified.

2) Effects of ψoff on SISO Modulated Controller: Sim-
ilar to Section V-B1, the effects of the ψoff inclusion on
the SISO modulated controller requires Cm(s, ωr) derived in
Section IV-A to be reformulated into

Cm(s, ωr, ψoff) = e−jψoff C(s−)+ ejψoff C(s+) . (38)

Effectively, the LTI controllers (18), (20), and (22) previously
proposed are transformed by (38) [also by making use of (10)]
into the following respective (LTV) controllers:

Cm,1(ψoff)

= 2KP cos (ψoff) (39)
Cm,2(s, ωr, ψoff)

=
2KI(cos (ψoff)s + sin (ψoff)ωr)

s2 + ω2
r

(40)

Cm,3(s, ωr, ψoff)

=
2KL(cos (ψoff)(s + ωLPF)+ sin (ψoff)ωr)

s2 + 2ωLPFs + ω2
LPF + ω2

r
. (41)

From (39)–(41), it can be seen that the phase offset
ψoff influences the modulated controllers in the following
ways. First, for Cm,1(ψoff), the phase offset affects the gain
of the controller. However, in Section IV-B, it has been
stated that this controller structure cannot filter out the 2P
frequency components; therefore, it is not considered any
further during the time-domain demonstration in Section VI.
For Cm,2(s, ωr, ψoff), its zero location becomes

zm,2 = −ωr tan (ψoff) .

In the original formulation (21), Cm,2(s, ωr) has a pure zero at
the origin but the offset enables relocation of this zero into the
left-half plane (LHP) or RHP. Similarly, for Cm,3(s, ωr, ψoff),
its zero is relocated from −ωLPF into

zm,3 = −ωLPF − ωr tan (ψoff) .

An in-depth analysis of the controller zero positioning by this
offset is discussed in [14].

Fig. 8 illustrates the Bode plots of the SISO modulated
controllers, similar to that of Section IV-A, without and with
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Fig. 6. Steady-state RGA of G2(s, ωr) over the operating regime of a simple wind turbine model (a) without and (b) with phase offset ψoff. The inclusion of
optimal phase offset ψ⋆off into the MDC results in decoupled quadrature and in-phase input–output channels at steady-state, as well as eliminating the need for
control gain swapping. Please note that for the figures, ẋ is measured. In case of x or ẍ , these results, in particular that of (a) will be different (see Remark 2).

Fig. 7. Bode plot of the demodulated wind turbine model with the optimal
phase offset included G2(s, ωr, ψ

⋆
off). It is evident that the steady-state off–

diagonal contributions are attenuated and that the main diagonal components
become dominant.

ψoff. Compared to the inverted notch filters without ψoff, those
with the optimal offset included exhibit increased magnitude
at the low frequencies due to the introduction of a zero [for
Cm,2(s, ωr, ψoff)] or relocation of an existing zero to a high
frequency [for Cm,3(s, ωr, ψoff)]. For both controllers, the same
ψoff is chosen.

VI. SIMULATION RESULTS

In this section, simulations demonstrating the performance
of the proposed control scheme are carried out. The control
scheme consists of the conventional active tower damping
controller for increasing the effective damping of the side–side
tower motion, as explained in Section II-B. This conventional

Fig. 8. Bode plots of SISO modulated controllers, without (dashed lines)
and with (solid lines) ψoff, Cm,n(s, ωr) and Cm,n(s, ωr, ψoff), respectively,
n = {1, 2, 3} and ωr = 0.5 rad/s.

controller is augmented by the MDC studied earlier in Sec-
tions IV and V to alleviate the periodic 1P fatigue load.

Time-domain simulations at two fidelity levels are con-
sidered, where the lower fidelity simulations, discussed in
Section VI-A, show the proof-of-concept of the MDC frame-
work with the simplified wind turbine model derived earlier.
Afterward, high-fidelity simulations employing the National
Renewable Energy Laboratory (NREL) OpenFAST software
package [33] are covered in Section VI-B.

A. Simplified Turbine Simulations

For the simulations presented here, the wind turbine model
derived in Section II is employed. The synthetic tower
properties used in Section IV-C are utilized for the tower
dynamics (1). The parameters of NREL 5-MW reference

G2,11
(
0, ωr, ψ

⋆
off

)
= sf

m sin
(
ψ⋆

off

)
ω3

r + d cos
(
ψ⋆

off

)
ω2

r − k sin
(
ψ⋆

off

)
ωr

d2ω2
r + k2 − 2kmω2

r + m2ω4
r

(34)

G2,12
(
0, ωr, ψ

⋆
off

)
= sf

−m cos
(
ψ⋆

off

)
ω3

r + d sin
(
ψ⋆

off

)
ω2

r + k cos
(
ψ⋆

off

)
ωr

d2ω2
r + k2 − 2kmω2

r + m2ω4
r

(35)
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TABLE I
PARAMETERS OF THE (MODIFIED) NREL 5-MW REFERENCE WIND TUR-

BINE AND ENVIRONMENT CONDITION

wind turbine [34], as shown in Table I, are used for the
rotor dynamics (3) and to determine the below-rated torque
controller gain according to (4).

A steady, uniform, staircase wind inflow from v = 5 m/s to
v = 10 m/s with 1.25 m/s of speed increment is generated for
the simulations. Each wind speed lasts for 250 s, resulting in
1250 s of total simulation time. The choice of this wind speed
condition is made such that the rotor starts about ωr,min at
ωr = 0.58 rad/s and ends near ωr,rated at ωr = 1.128 rad/s, thus
covering most of the operating range � and that resonance is
experienced when v = 6.25 m/s at t = 250−500 s. To model
a rotor imbalance, Fsd with asd = 150 N and φsd = π/4 rad
is selected, equivalent to asd/sf = 9 kNm of torque amplitude
at the tower-top.

Figs. 9 and 10 depict the performance of the controllers in
the MDC scheme, where only the (damped) inverted notch
filters are of interest, without and with ψ⋆

off included. The
respective blue and red lines show the former and latter MDCs,
whereas the gray lines show the uncontrolled wind turbine
responses. In Figs. 9 and 10, ẋ and 1Tg measurements are
depicted by the top and bottom plots, respectively. For MDCs
without ψ⋆

off, ψoff = −90◦ is used for the whole operating
range � to swap the input–output pairings to the more
dominant off-diagonal pairs (see Section V-A). For brevity’s
sake, the notation Cm,n(s, ωr) is kept for referring to the
pair-swapped MDCs in this section.

The tuning gains for the controllers are chosen to be
KI = KL = 1500 and ωLPF = 0.025 rad/s by loop-shaping
while ensuring stability. During the simulations, the value of
ψ⋆

off, used to decouple the control channels, is determined
by means of a lookup table (LUT), fed by filtered rotor
measurements where a first-order LPF with a cut-off frequency
of 0.2 rad/s is employed.

Fig. 9 compares the performance of the undamped inverted
notch filters Cm,2(s, ωr) and Cm,2(s, ωr, ψ

⋆
off). It is observed

from Fig. 9 that Cm,2(s, ωr) does not cancel the 1P periodic
loading at the tower as shown in the measurements of ẋ .

Fig. 9. Time series response of tower velocity (top) and additive generator
torque (bottom) under staircase wind v = 5 − 10 m/s where the performance
of Cm,2(s, ωr) and Cm,2(s, ωr, ψ

⋆
off) are demonstrated. Horizontal dashed

lines of ±9 kNm in the bottom plot indicate the periodic load magnitude’s
equivalence in terms of torque. A zoomed-in plot depicts control action
behavior at the end of the simulation.

During resonance, tower oscillation starts to grow due to
the strong coupling at this frequency as the main-diagonal
pairings gain dominance [see Fig. 6(a)]. After the resonance,
the controller enters the negative gain region (i.e., sign flip
occurs) and the growth of 1Tg becomes unbounded. On the
other hand, Cm,2(s, ωr, ψ

⋆
off) does not exhibit instability and

fully cancels the 1P load. The full cancellation of the periodic
load is attributed to the infinite gain of the controller at the
disturbance frequency. Notice the convergence of the control
action’s amplitude to 9 kNm (equal to asd/sf) as indicated
by the horizontal dashed lines and a zoomed-in plot for
t = 1200 − 1250 s.

Fig. 10 depicts the performance of the damped inverted
notch filters Cm,3(s, ωr) and Cm,3(s, ωr, ψ

⋆
off). The differences

in both controllers’ performance are evident once the wind
speed reaches v = 6.25 m/s, where resonance starts to occur.
The former is shown to dampen the tower’s oscillation at about
t = 400 − 450 s (and slightly beyond when v = 7.5 m/s is
reached), however, not as effective as the latter, shown by
the greater reduction in ẋ with lower control action. An inset
plot at the top highlights that after the resonance, exemplified
for t = 725 − 750 s, a slight increase in tower oscillation is
caused by Cm,3(s, ωr). On the other hand, evident tower motion
reduction is performed by Cm,3(s, ωr, ψ

⋆
off). In comparison

to Cm,2(s, ωr, ψ
⋆
off) in Fig. 9, Cm,3(s, ωr, ψ

⋆
off) does not fully

cancel the 1P periodic loading due to limited gain at ωr.
Nonetheless, maximum 1Tg magnitude of only ≈ 4.5 kNm
is observed in Cm,3(s, ωr, ψ

⋆
off) contrast to aggressive 9 kNm

exhibited by Cm,2(s, ωr, ψ
⋆
off).

From these simplified wind turbine simulations, it is con-
cluded that ψ⋆

off is crucial in the load-mitigating performance
of the proposed MDCs and in preventing closed-loop insta-
bility. Second, it can be observed that MDCs perform best in
terms of 1P load reduction when ωr = ωn as their gains are
highest at this frequency. This motivates a gain-scheduling



1876 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 5, SEPTEMBER 2024

Fig. 10. Time series response of tower velocity (top) and additive generator
torque (bottom) under staircase wind v = 5 − 10 m/s where the performance
of Cm,3(s, ωr) and Cm,3(s, ωr, ψ

⋆
off) are demonstrated. A zoomed-in plot

depicts tower velocities at t = 725 − 750 s.

strategy to be incorporated into the framework, done in the
higher fidelity simulations of the following section.

B. OpenFAST Simulations

In the high-fidelity OpenFAST simulations presented in this
section, the NREL 5-MW reference wind turbine is again used.
However, since this reference turbine’s tower was originally
classified as soft–stiff, its wall thickness is downscaled by
a factor of 7.5 to recast it into a soft–soft tower design.
This consequently reduces tower mass so that its first natural
frequency approximates ωn = 0.7071 rad/s of the soft–soft
tower in the simplified wind turbine setting. The tower modal
mass, damping, and stiffness for this scaled tower are denoted,
respectively, as ms, ds, and ks in Table I and the tower’s natural
frequency is denoted ωn,s.

For controller design, the reference wind turbine is
linearized at the below-rated wind speeds, ranging from
v = 4 m/s to v = 10 m/s with 1-m/s increment. Fig. 11 shows
the Bode plots of the linearized wind turbine (gray lines) for
the different operating points, where the transfer from the
generator torque to tower velocity is taken. Also plotted is
the second order tower model G(s) (black lines), in which
modal properties of the scaled reference wind turbine’s tower
are employed, as well as gain adjustment to fit the linearized
wind turbine plots. The gain adjustment is made by setting
sf to 1.667 m−1, which from the physical point of view may
infer that, for the employed reference turbine, the prismatic
beam assumption as used in (1) might be inaccurate. Note
that numerical artifacts present in the linearized wind turbine
at frequencies lower than 0.01 rad/s, which makes the use of
the fit model G(s) more convenient.

Additional damping is added to the lightly-damped G(s) by
the conventional active tower damper explained in Section II-
B. The gain of the conventional controller is chosen to be
KI,conv = −10 000, which is equivalent to increasing the modal
damping into deff,s = 1.9125 · 104 Ns/m. The negative sign of
KI,conv is needed to account for the difference in the coor-

Fig. 11. Bode plot of linearized NREL 5-MW reference wind turbine and fit
simple model G(s) and closed-loop model with the conventional active tower
controller. Vertical dashed lines indicate the operating range of the turbine.

dinate convention used in the simple model and OpenFAST.
In Fig. 11, the Bode plot of the fit plant G(s) in closed-loop
with this conventional controller is shown by the red, dashed
lines and denoted G′(s).

Having a damped tower, the next step is to cascade MDCs
on top of the conventional controller. One needs to be
reminded that the conventional controller and MDCs serve
different purposes and are fundamentally different in that the
former increases the effective damping of the tower structure
whilst the latter cancels rotational-speed-driven load at the
tower. Stated differently, the MDCs can be treated as gen-
eralized tower dampers in that they can add more damping to
the tower motion not only at a fixed (natural) frequency (such
as exemplified in [15]) but also at a varying one, such as used
in this work.

Similar to the simple wind turbine simulations, the
(damped) inverted notch filters Cm,2(s, ωr, ψ

⋆
off) and

Cm,3(s, ωr, ψ
⋆
off), with ωLPF = 0.01 rad/s used in the

latter, are employed. To cast similar 1P load-reducing
performance of MDCs for the entire operating regime,
gain-scheduling is implemented by setting the controller gains
KI = KL = 0.022γ with the inverse of the plant’s magnitude
at the disturbance frequency γ = 1/|G′(jωr)| [35] while
ensuring stability. Fig. 12 depicts the resulting Bode plots of
the SISO [see Fig. 12(a)] and MIMO loop transfer functions
[see Fig. 12(b)]

Lm,n
(
s, ω(i)r , ψ

⋆
off

)
= G(s)Cm,n

(
s, ω(i)r , ψ

⋆
off

)
and

Ln
(
s, ω(i)r , ψ

⋆
off

)
= G2

(
s, ω(i)r , ψ

⋆
off

)
Cn(s)

respectively, where ω(i)r = {ωr,min, ωn,s, ωr,rated}. During the
constant and turbulent wind cases that follow, the informa-
tion of γ and ψ⋆

off = ̸ G′(jωr) (for decoupling the control
channels) are fed into the MDCs by LUTs, making use of low-
pass-filtered rotor speed measurements with the same cut-off
frequency as used in the simple wind turbine simulations.
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Fig. 12. Bode plots of SISO and MIMO loop transfer functions for
ω
(i)
r = {ωr,min, ωn,s, ωr,rated}. (a) SISO loop transfers with an undamped

inverted notch filter and a damped inverted notch filter are depicted with
the respective solid and dashed lines. (b) Corresponding transformed MIMO
transfers are shown, where the solid lines illustrate the MIMO demodulated
plant with an integral controller and dashed lines with a low-pass filter.

1) Constant Wind Simulations: Steady, uniform constant
wind cases at v = {5, 6.25, 10} m/s, each lasting for 1000 s,
are employed for simulations in this section, which produce
rotor speeds being lower, equal, and higher than the resonance
frequency at steady-state. To induce a 1P excitation to the fixed
structure by a rotor mass imbalance, a blade’s mass density is
lowered by 2% with respect to the original value [9] such that
two blades are equally heavier than one other blade.

Fig. 13 shows the wind turbine tower velocity
and total additive generator torque measurements
1Tg,total = 1Tg,damp +1Tg for these cases, shown during
the steady-state at t = 900 − 1000 s. The uncontrolled
wind turbine signals are shown by the gray lines and those
with only the conventional controller Cconv = Kconv are
shown by the blue lines. The conventional tower damper
targets fatigue loading at the tower’s natural frequency, while
tower excitations at other frequencies are not alleviated as
effectively, especially the 1P-driven load. This is evident in

Fig. 13. OpenFAST time series results in constant wind cases
v = {5, 6.25, 10} m/s. During the steady-state at t = 900 − 1000 s, a large
portion of the tower load is mitigated by the conventional controller cascaded
with MDCs where Cm,2(s, ωr, ψ

⋆
off) yields the most reduction. Increased

controller input at higher wind speeds is caused by the greater amplitude
of the 1P periodic load.

Fig. 13, where the conventional controller performs well only
in the second steady wind case where ωr = ωn.

Nevertheless, some residual oscillations are still shown. The
performance of Cconv is improved by cascading it with the
MDCs Cm,2(s, ωr, ψ

⋆
off) and Cm,3(s, ωr, ψ

⋆
off), illustrated by

the respective red and green lines. Similar to the simplified
wind turbine simulations in Section VI-A, the infinite gain
of Cm,2(s, ωr, ψ

⋆
off) at the 1P frequency creates the most

control effort in every case compared to other settings. This
consequently allows the controller to mitigate most of the
periodic loads while still providing damping at the tower’s
natural frequency. Less 1P load reduction due to the less
aggressive control action at this frequency is demonstrated
when Cconv is combined with Cm,3(s, ωr, ψ

⋆
off), while still

outperforming Cconv without MDCs. Also noticeably different
than the simplified wind turbine simulations is the effect of the
gain-scheduling of the MDCs, such that the effectiveness of the
1P load reduction is not only observed during the resonance
but also when ωr < ωn at v = 5 m/s and ωr > ωn at
v = 10 m/s.

Remark 3: The rotor mass imbalance creates greater cen-
trifugal force when the rotor spins faster, resulting in greater
1P loading amplitude at higher rotational speeds, in contrast
to the constant amplitude assumed in simplified wind turbine
simulations. This explains the need for larger control action
of the cascaded controllers for higher rotor speeds.

2) Turbulent Wind Simulations: Two Kaimal turbulent cases
are chosen based on the International Electrotechnical Com-
mission (IEC) 61400-1 standard [36] with vh = 6.25 m/s of
mean wind speed at hub height. Turbulence intensities of
IT = 4% and IT = 12% are selected to represent low and
high turbulence, respectively. For these wind cases, 2000 s of
simulations are run, where the first 200 s is not accounted for
to exclude transient effects from the analysis. The same rotor
mass imbalance from the steady wind simulations is used here
to induce 1P loading.
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Results of these turbulent cases are presented in Fig. 14.
Fig. 14(a) depicts the time series results, where records at
t = 875 − 1075 s and t = 1575 − 1775 s are shown for
the respective low and high turbulence cases. In Fig. 14(a), v,
ωr, ẋ , and 1Tg,total measurements are shown from the first
to the fourth rows, respectively. Also indicated by the red
dashed lines in the measurements of v and ωr are vh and ωn.
Fig. 14(b) depicts the corresponding power spectral density
(PSD) plots of ẋ and 1Tg,total, post-processed from the time
series measurements. In low turbulence where v varies closer
to vh, ωr tends to cause tower resonance more frequently
compared to when turbulence is higher. This explains the
higher PSD magnitude of ẋ about ωn (gray dashed lines)
during low turbulence with respect to its higher turbulent
counterpart. Regarding controllers’ activity, results consistent
with the previous steady wind simulations are observed in the
two turbulence cases. In the time series, Cconv is shown to per-
form less effectively than when operated in conjunction with
MDCs. In terms of load reduction, Cconv with Cm,2(s, ωr, ψ

⋆
off)

performs best. More benign control action is exercised when
Cm,3(s, ωr, ψ

⋆
off) is incorporated but resultingly, slightly less

reduction in tower fatigue load is performed.
The capabilities of the MDCs to follow and cancel the

varying 1P periodic load frequency are shown best by the
high turbulence case, where 1P frequency varies more and
covers a wider range than in low turbulence. This is most
evident in the PSD result of ẋ , lower frequency content
with respect to Cconv is evident not only at ωn but also at
the surrounding frequencies. In the PSD plot of 1Tg,total in
Fig. 14(b), multiple peaks at 0.6, 0.63, 0.74, and 0.78 rad/s
are seen for the cascaded controller settings, apart from that
at ωn. This indicates intensive 1P load reduction activity at
the said frequencies, which are virtually nonexistent except at
0.74 rad/s for the Cconv setting.

A statistical evaluation of the measurement data from the
simulations is done in terms of standard deviations. Table II
summarizes those of the side–side tower velocity σẋ , total
additive generator torque σ1Tg,total , and generated power σPg .
Respectively, these values indicate changes in the side–side
tower fatigue load, controller activity, and power fluctua-
tion. While the tower load control methods aim to mitigate
side–side tower load, its influence on the fore-aft tower load
is also of interest; therefore, the standard deviation of the
fore-aft tower velocity σẋ fa

is also computed. For the sake
of completeness, the mean generated power µPg is used to
assess changes in the average power production due to the
controllers’ activities. Upward (↑) and downward (↓) arrows
are used to indicate standard deviation and mean values that
are higher and lower with respect to the uncontrolled turbine.
The overall computed σẋ and σ1Tg,total for both turbulent cases
point to the same conclusion as the time series and PSD
results. Best fatigue load reduction, shown by the least σẋ
values, is achieved by Cconv and Cm,2(s, ωr, ψ

⋆
off), the control

action of which is also the most active, as indicated by the
corresponding σ1Tg,total . With respect to this configuration, Cconv
and Cm,3(s, ωr, ψ

⋆
off) are able to compromise between the

actuation effort and load mitigation, shown by their milder

Fig. 14. (a) Time series and (b) PSD results of the turbulent wind
cases. Cascaded conventional tower damper and MDCs outperform the
conventional controller without MDCs in both low and high turbulence.
For vh = 6.25 m/s, different turbulence intensities influence the prevalence
of resonances, as shown in (a), thereby affecting the PSD content about
ωn,s = 0.6963 rad/s (gray dashed lines) in (b). Greater variation in the 1P
frequency during high turbulence results in the cascaded controllers actively
operating in a wider frequency range to mitigate the periodic load, shown
clearly in the PSD of 1Tg,total.

σ1Tg,total from which slightly lower σẋ is obtained. Again,
Cconv shows the least increase in σ1Tg,total with respect to the
uncontrolled case, but also the least load reduction among
other controller setups. Results from σẋ fa

computation indicate
that the side–side tower load controllers only affect slightly the
fore-aft tower motion, in contrast to σẋ . As torque fluctuation
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TABLE II
STANDARD DEVIATIONS OF SIDE–SIDE TOWER VELOCITY σẋ , FORE-AFT TOWER VELOCITY σẋ fa

, TOTAL ADDITIVE GENERATOR TORQUE σ1Tg,TOTAL ,
AND GENERATED POWER σPg , AS WELL AS MEAN GENERATED POWER µPg FOR THE TURBULENT WIND CASES

affects the generator power due to their proportional relation,
the trend of σPg follows that of σ1Tg,total . Important to note here
is during the high turbulence, generated power fluctuates more
due to the high variation in the wind, thus the much higher
overall standard deviation with respect to the low turbulence
case. Improvements in terms of power fluctuation may be
achieved by utilization of individual blade pitching in place
of additive generator torque due to the less coupling with
the generator power [37]. However, implementing side–side
tower periodic load cancellation by individual blade pitching
methods is outside the scope of this article and is a subject
of future work. That said, the computed µPg shows that the
controllers do not lead to significant changes in the average
power production, which indicates that the proposed method
can still be desirable. Having the simulation results analyzed,
the conclusions of this work are drawn in Section VII.

VII. CONCLUSION

In this article, an MDC framework for the cancellation of
1P periodic loading acting on wind turbine side–side tower
motion has been proposed. The framework relies on the
modulation of input and demodulation of output signals at
the periodic load frequency, resulting in each signal being
representable in its quadrature and in-phase components. Con-
venient yet effective diagonal LTI controllers are designed
onto these channels, representable as an LTV when combined
with the modulation–demodulation. MIMO representation of
the plant has also been rendered in terms of the quadrature
and in-phase channels, which, by frequency-domain analysis,
has been shown to contain cross-coupling at steady-state and
instability-inducing gain sign flip. A phase offset, the optimal
value of which is defined as the negative of the nominal plant’s
phase at the 1P frequency, has been shown to be a remedy for
both the cross-coupling and gain sign flip issues. Simulations
at two different levels of fidelity have been conducted to
demonstrate the effectiveness of two proposed MDC designs,
being undamped and damped inverted notch filters centered
at the 1P frequency. Low-fidelity simulations exhibited the
controllers’ performance deterioration and instability when
the optimal phase offset was not incorporated. OpenFAST
was employed to simulate steady and turbulent wind cases
in a higher-fidelity setting, in which the MDCs are cascaded
with a conventional tower damping controller. Results have

indicated a performance improvement of the conventional
controller in fatigue load reduction when the MDCs are
operated synergetically. The conventional tower damper has
been shown to mitigate only the tower’s natural frequency,
while the MDCs target the 1P periodic loading caused by a
mass imbalance in the rotor disk. Suggestions for future work
include combining MDC and frequency-skipping methods,
incorporating individual blade pitching for periodic side–side
tower load cancellation, and implementation for canceling
higher harmonic structural loads such as 3P for three-bladed
turbines.
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