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Chapter 16 
Outlook to the Future of Reliability 

W. D. van Driel , K. Pressel, M. Soyturk , H. Knoll, and P. Hille 

16.1 The (Reliability) Future Is Bright 

Reliability is often said to be the “quality over time,” but this is not correct. 
Reliability has its own measures, so-called critical to reliability parameters (CTR), 
that can have a relation to the critical to quality parameters (CTQ). The link between 
those two parameters is hidden within two available measures: 

1. The number of product recalls 
2. The cost of non-quality [CoNQ] 

A product recall is a request to return to the maker a batch or an entire production 
run of a product, usually due to the discovery of safety issues. The recall is an effort 
to limit liability for corporate negligence (which can cause costly legal penalties) 
and to improve or avoid damage to publicity. Recalls are costly to a company 
because they often entail replacing the recalled product or paying for damage caused 
by use, although possibly less costly than consequential costs caused by damage to 
brand name and reduced trust in the manufacturer. In the USA, the best source 
for recalls is http://www.recalls.gov [1]; in Europe it is RAPEX [2]. Both sources 
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report a significant increase in the number of recalls over the past 20 years. Even 
more, in 2022, for the second consecutive year, more than 1 billion units of food, 
drugs, medical devices, automobiles, and consumer products were recalled in the 
USA [3]. According to Sedgwick’s latest state of the nation recall index report, 
2022 was a record-breaking year for the number of units recalled, reaching nearly 
1.5 billion [3]. The number of (electronic) consumer product recalls increased 
by nearly a third (31.2%) in 2022 over 2021, with 23.4 million units recalled 
in 2022. These are devastating numbers which, if managed poorly, often wreak 
devastating consequences on a company’s reputation, market share, and bottom line. 
The biggest costs of a product recall event are business interruption, loss of sales, 
and reputational damage. 

The first major recall occurred in the USA in 1959 when General Motors 
Cadillac’s car suffered from a steering linkage (pitman arm) that failed on many 
cars while making a 90-degree turn at 10 to 15 mph (24 km/h). It turned out to 
originate from a reliability issue; the arms were made of metal somewhat softer 
than that usually employed to withstand the stresses of low-speed turns. The most 
famous recall occurred worldwide in 2006, when all large notebook manufacturers 
had to recall their computer batteries. Over 7 million batteries were recalled, after 
several instances where the batteries overheated or caught fire. The root cause turned 
out to be a short-circuit failure which becomes apparent as the batteries age and 
perform repetitive charging cycles, a clear example of reliability issue. One of the 
most recent recalls concerns the grounding of the Boeing 737 MAX passenger 
airliner worldwide between March 2019 and December 2020—longer in many 
jurisdictions—after 346 people died in 2 crashes: Lion Air Flight 610 on October 
29, 2018, and Ethiopian Airlines Flight 302 on March 10, 2019 [4]. Eventually, 
a design flaw was discovered in its Maneuvering Characteristics Augmentation 
System (MCAS), which led to these crashes [5]. It is currently considered as one 
of the largest recalls as of today, accounting for over $1.0 billion. But brand damage 
exceeds this amount, as the company estimated a loss of $18.4 billion for 2019 and 
it reported 183 canceled MAX orders for the year. It is an example of reliability 
flaws; note there are many examples that have much higher cost values, e.g., the 
NOx emission scandal accounting for $14.6 billion costs. 

Cost of non-quality (CoNQ), also denoted by cost of poor quality (COPQ) 
or poor-quality costs (PQC), is defined as costs that would disappear if systems, 
processes, and products were perfect. The term was popularized by IBM quality 
expert H. James Harrington [6]. The CoNQ has several origins, being yield loss 
during manufacturing, scrapping costs of parts, costs for rework in manufacturing, 
repair and/or recall cost, and product liability costs. Warranty Week [7] reports 
the warranty reserve funds of all semiconductor manufacturers at the end of each 
calendar year. Warranty reserves for the semiconductor industry exceeded $800 
million for the first time in 2022, framing the US-based semiconductor and printed 
circuit board industry. This is the second year in a row that total claims have risen 
by around $150 million; in 2020, the industry paid $500 million and, in 2021, $650 
million [7]. Figure 16.1 depicts the industry average warranty claims and accrual 
rates as a % of product sales in the period 2003–2022. Over a period of 20 years,
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Fig. 16.1 US-based semiconductor industry average warranty claims and accrual rates (as a % of 
product sales, 2003–2022). (Taken from [7], with permission) 

the average claims rate was 0.73%, with a standard deviation of 0.24%, and the 
average accrual rate was 0.77%, with a standard deviation of 0.24% as well. On the 
one hand, this is respectful low number accomplished by an industry that is really 
defined by new and innovative technology. On the other hand, the semiconductor 
market size was valued at $573 billion in 2022 and will grow to $1380 billion in 
2029. With a claims rate of around 1.0%, the semiconductor industry is facing a 
CoNQ as large as $5 to $10 billion. 

It is not straightforward to retrieve that part of the CoNQ that is related to the 
loss and/or lack of reliability. Repair and/or replacement of products may well be 
because the product did not perform its intended function within the warrantee 
period. But manufacturing errors and scrapping parts are not related to reliability. A 
rough estimate reveals that approximately 40% of the CoNQ are purely reliability 
related [8]. Of course this differs from industry to industry and strongly depends on 
the technology used. Still, with the CoNQ as large as $5 to $10 billion, this would 
give a reliability-related value of approximately $1 billion on annual basis. So truly, 
the (reliability) future is bright. Bringing down these huge expenses with only 25% 
would bring a substantial benefit for each company as it impacts directly on the 
profit.
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16.2 Applying Multi-scale and Multi-physics Simulations for 
Physics of Degradation 

Multi-scale and multi-physics applications are now commonplace. A significant 
number of studies have used and/or are using state-of-the-art simulation techniques 
for first-time-right development and/or physics-of-failure purposes [9–19]. Different 
levels of abstraction can define modeling and simulation tools, from circuit sim-
ulators such as SPICE to computationally complex models using computational 
fluid dynamics [9, 10], molecular dynamics [11–13], and finite elements [14– 
18]. As such, simulation experts undertake these complex analyses, passing on 
the requirements/constraints to product designers. A mesh-based model such as 
finite element or computational fluid dynamics cannot be used to address the 
multi-physics interactions spanning these scales. This is also the case in the 
time domain, where key electrical effects can take place at ns scales, whereas 
thermal and mechanical issues can take seconds or even years (in the case of 
reliability) to appear. To address the issue of dimension and time scaling, modeling 
techniques based on sub-modeling, compact models, or response surface models are 
available. For heterogeneous integrated systems, what level of model abstraction is 
appropriate, and how we exchange data effectively between these is a key challenge. 
Figure 16.2 details examples of models of different levels of abstraction that are used 
for electronic systems. 

The 2021 edition of the Heterogeneous Integration Roadmap (HIR) modeling 
and simulation chapter details the key challenges and potential solutions over 5-, 

Fig. 16.2 Modeling and simulation landscape for electronic systems
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10-, and 15-year horizons and details how these tools will support the knowledge 
base for electronic systems [20]. Although a lot has been accomplished, still 
many simulation items are yet impossible, such as (i) accurate, within ±10%, 
predictions of failure modes; (ii) timely simulations, within 1 h, of multiple failure 
mode occurrence; and/or (iii) full understanding of all possible failure mechanisms 
that can occur in microelectronic devices. To accomplish this, we will need 
breakthrough developments in how engineers are currently using multi-scale and 
multi-physics tools for predicting electronics reliability. It is not just continuing 
current improvements; it needs a breakthrough in the way currently these simulation 
techniques are used. It will need cooperations between tooling vendors, academia, 
and electronic companies to establish such a breakthrough. Open innovation projects 
funded by national and international authorities are the only opportunities available 
that will drive it, with iRel40 an outstanding example. 

16.3 Smarter Testing and Characterization 

When they were first mass produced, manufacturers expected electronics to last 
roughly 40 years. By the 1990s, their lifespan was halved. Today, electronics are 
typically only used for 1.5 to 13 years, with most averaging 4.5 years. Testing 
schemes started with test-to-failure approaches based on standardized stress-based 
tests. Examples are thermal cycling, moisture testing, and/or operational tests under 
combined conditions. Each of these tests got standardized in the semiconductors 
industry by dedicated bodies, e.g., JEDEC [21], to enable smooth comparison 
between suppliers and test houses. But as time evolved and qualification costs 
became substantial, the industry moved over to knowledge-based qualification [22] 
and application-based qualification [23]. All these developments considered fixed 
product lifetime requirements, be it in consumer, professional, solid-state lighting, 
and/or automotive application. But this is changing, mostly driven by the demand 
for sustainable products. For example, electronics in automobiles are expected to 
last over 10 years or in terms of milage: 100,000 km or more. In that field period, 
these electronics exhibit different temperature bins as indicated in Fig. 16.3: 35% of 
the time, a temperature of 75 ◦C is felt, 8% a temperature of 60 ◦C, etc. It is not a 
continuous loading, rather a variation of loads. 

To cover high lifetimes, under variable loads, the current way of testing is not 
sufficient. As Fig. 16.4 depicts, conventional testing is either stable in temperature 
(e.g., temperature cycling (TMCL) or temperature shock (TMSK)) or slightly 
variable by powering the device (power temperature cycling (PTMCL)). Step-stress 
testing and variable temperature accelerated testing (VTAT) are possible alternative 
ways of testing. Step-stress testing is a combination of traditional reliability testing 
and overstress testing [24]. The purpose of step-stress testing is to demonstrate one 
life of a product and then overstress the product in incremental levels to find failure 
modes. VTAT is a testing approach that covers the temperature bins as exhibited in
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Fig. 16.3 Typical temperature occurrences (frequencies) in electronics 

Fig. 16.4 Conventional temperature cycling (TMCL) or temperature shock (TMSK) and power 
temperature cycling (left) versus alternative temperature testing: step-stress or variable temperature 
accelerated testing 

field application. If combined with monitoring the actual degradation of the product, 
these alternative approaches should be able to cover high lifetimes. 

Accurate materials data and characterization are critical for applying multi-scale 
and multi-physics simulations for physics of degradation. However, there is a lack of 
consensus on accurate constitutive models used, for example, for nonlinear materials 
such as solders. For accurate reliability predictions, processing, miniaturization, and 
temperature-dependent nonlinear material properties must be used for almost all 
electronic materials. But, here, neither standard testing nor agreed material models 
are rarely able to provide the materials data needed for reliability predictions. 
Alignment between material suppliers, semiconductor manufacturers, test houses, 
standardization bodies, and academia is a future requirement to achieve accurate 
materials data in the possession of the simulation experts, just a matter of the right 
open innovation consortium under national and international funding.
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16.4 ML/AI Embedding in Design for Reliability 

Machine learning (ML) involves the use of artificial intelligence (AI) theory 
combined with big data to guide computers for training and learning, with the 
final goal of developing a prediction model to help researchers make decisions 
[25]. Machine learning can be applied for regression or classification models using 
either supervised or unsupervised learning. For electronic reliability predictions 
where the input datasets are labeled, the learning algorithm for predicting the 
reliability life is considered supervised and belongs to regression-type model [26– 
29]. AI knowledge is needed for new degradation physics in complex electronic 
architectures that are based on advanced semiconductor systems and new emerging 
packaging material systems [30]. Several machine learning algorithms are suitable, 
such as artificial neural network (ANN), support vector regression (SVR), K-nearest 
neighbor (KNN), kernel ridge regression (KRR), recurrent neural network (RNN), 
random forest (RF), Gaussian process regression (GPR), polynomial regression 
(PR), and convolutional neural network (CNN). First examples of AI-based design 
for reliability (DfR) predictions are reported in the literature for wafer-level 
packages [26, 27, 29] and solid-state lighting devices [28]. The aim of the AI model 
is to learn and establish a regression model for the relationship between electronics 
design (input) and the potential failure mode (output). With a trained AI model, it 
is possible to predict the lifetime of the electronics device for each possible design. 
Figure 16.5 depicts the process of AI-embedded DfR. 

However, machine learning requires big data for training; the main challenge of 
this AI-assisted DfR technology is the lack of data, e.g., reliability life cycles of 
packages. There is not a lot of experimental data available to researchers, which 
makes it difficult to apply the AI-assisted technology. Experimental data mainly 
lies protected at electronic companies, not willing or not able to share that with 
academia. As mentioned again, it will need open innovation projects to open a 
Pandora’s box. 

Fig. 16.5 Starting from a failure mode, a finite element analysis will be set up, and results are fed 
into the AI model which on its turn creates value as it enables lifetime prediction of each possible 
design
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16.5 More Data, More PHM, and More Digital Twin 

Today, the volume of remote sensing data has grown considerably. Analyzing, 
modeling, and interpreting big data through descriptive, predictive, and prescriptive 
analytics will aid users to make correct decisions in electronic product design. 

Prognostics and health management (PHM) is crucial in the life cycle moni-
toring of a product, especially for, e.g., complex equipment working in a harsh 
environment and/or products that require long lifetimes (≥10 years). PHM is not 
just about creating a more reliable product: it is about creating a more predictable 
product based on real-world usage conditions [31]. Data analytics is a necessary 
part of this but is not enough. To add value, product insights need to be leveraged 
into the technologies that are used to differentiate from others. PHM is not about 
troubleshooting reliability issues; rather, it is a new control point enabled by the 
transition to a services business. It is the combination of data and deep physical 
(and technological) insight that will give a unique “right to win” in the industry 
[32]. The future possibilities for using connected data in reliability applications are 
unbounded. Lifetime models that are based on this data have the potential to explain 
much more variability in field data than has been possible before. As of today, 
rarely any solutions on component or system level are available except from high-
end products (e.g., in avionics and energy infrastructure). Search for early warning 
failure indicators is still at a basic research stage. 

Digital twins (DT) have become a groundbreaking concept in the field of 
electronics packaging and electronic systems [33, 34]. In an era characterized by 
rapid technological advances and increasing complexity in electronics packaging 
products, digital twins offer a revolutionary approach. To improve the accuracy and 
efficiency of PHM, digital twin (DT) is proposed for complex equipment and/or 
products that require long lifetimes (≥10 years). The combination of PHM with 
DT by itself should accurately describe the (failure) behavior of the electronic 
product/device or, from a sustainability perspective, determine its remaining useful 
life (RUL). The next paragraph presents a use case for this technique. 

16.6 Use Case: RUL Estimation for Electronic Devices 

Prognostics and health management (PHM) is commonly applied to more com-
plex electronic systems consisting of multiple components including sensors that 
measure the environmental loads, e.g., temperature, humidity, voltage, current, 
etc. However, PHM of the sensors measuring these loads is typically reduced to 
detection of faulty sensors as these do not commonly implement any form of 
intelligence which is so far left to the higher-level systems that incorporate the 
sensors. In the worst case, faulty sensors are not detected and provide wrong 
readouts, e.g., because their sensitivity changes over lifetime. Overall increased
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wear out or system failures may be the consequence. Therefore, imminent device 
failure needs to be reliably detected to exchange sensors before they fail. 

16.6.1 Mission Profiles and Acceleration Factors 

Mission profiles from the robustness validation approach commonly used during 
part qualification, especially, in an automotive context are one building block of 
the remaining useful life (RUL) model and system status assessment concept. In 
robustness validation, the mission profile is used to define standardized testing 
times and conditions based on different, temperature-induced failure mechanisms 
[35, 36]. For this approach, the critical failure mechanism that most likely causes 
a part to fail has to be identified together with the critical environmental load 
parameters (temperature, humidity, etc.). A range of operating temperatures is 
defined for each mission profile which is required to cover the whole temperature 
range the part is subjected to in the later application as well as the times the part 
experiences these temperatures. Higher temperatures will lead to an earlier failure of 
the device because the failure mechanism is temperature driven. Hence, the highest 
temperature of the mission profile is used as the temperature for accelerated part 
testing and acceleration factors have to be calculated for all other temperatures [35]. 
For example, the testing temperature is 155 ◦C, and the part spends 100 h at a 
temperature of 125 ◦C, with an acceleration factor of 10, according to the mission 
profile. Then the equivalent test time of the part at 155 ◦C is 10 h.  

16.6.2 Concept: Remaining Useful Life Estimation and System 
Status Assessment 

The model aims at the assessment of the part (system) health status by a correlation 
of a consumed time budget to critical system parameters that serve as indicators for 
failing devices. At least two classifiers are defined for this purpose, one to classify 
the consumed temperature-time budget, cTT, and further classifiers to assess the 
critical system parameter(s), ccsp, i, with i ϵ [1, . . . ,N]. With this approach, the 
purely temperature-driven device failure mode taken from the robustness validation 
approach is complemented by system-specific device health indicators to obtain an 
overall system status. 

Calculation of cTT is carried out by comparison of the total equivalent operational 
time, to, to the available time budget, tb: 

.cTT = to

tb
(16.1)
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Both times are derived based on the calculation specifications for equivalent 
test times used, e.g., for qualification of parts/systems according to the AEC-Q100 
standard [37]. Hence, the model applies to temperature-induced device failures, and 
it is crucial for the accuracy of the model to precisely determine the activation 
energy Ea of the relevant failure mechanism. The reference mission profiles defined 
during product development yield tb for a budget temperature Tb which is the 
highest temperature of the mission profile. Equivalent operational times .t 'o,T are 
calculated for the time t spent at temperature T measured during operational time of 
the part/system using the same acceleration model and factor, Af, used to determine 
tb: 

.t 'o,T = tT

Af(T )
(16.2) 

The total operational time is the sum over all .t 'o,T : 

.to =
⎲

T
t 'o,T (16.3) 

Hence, calculation of cTT requires logging of the temperature of the part/system 
over its lifetime. Care must also be taken when choosing the minimum/maximum 
temperatures defined in the reference mission profile which need to be lower/higher 
than the temperatures the device exhibits in the field to ensure the assumed failure 
mechanism is valid. An estimation of the remaining useful life (RUL) can be directly 
carried out with tb and to available: 

.tRuL = tb − to (16.4) 

The second classifier ccsp, i, required to assess the system status, cannot be 
generalized as it is use case-specific. It just needs to be accessible during device 
operation. An example is given in Sect. 16.6.3 where the signal offset change of a 
current measurement device is used as an ccsp, i. 

A system status S(cTT, ccsp, i, . . . , ccsp, N) is defined for distinct combinations of 
cTT and the ccsp, i. If, e.g., stored in the form of a look-up table (LUT) on the device 
hardware, a computationally efficient readout of the system status is feasible. 

16.6.3 Use Case: Current Measurement Module 

The Current Measurement Module (CMM) prototype shown in Fig. 16.6 holds 
a PCB with a SO16 current measurement device, in situ condition monitoring 
circuitry to test the sensor’s output signal and a temperature sensor. 

Two examples for class III and class IV mission profiles with an operating time 
of 8000 h are given in Fig. 16.7 (top and bottom, respectively). Time budgets of
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Fig. 16.6 Current 
Measurement Module 

Fig. 16.7 Time budgets for (top) class III and (bottom) class IV mission profiles for an operating 
time in the field of 8000 h 

tb = 871 h and tb = 908 h are calculated for Tb = 125 ◦ C and Tb = 155 ◦ C, 
respectively. 

Operational times are calculated from logged temperatures according to Eqs. 
16.2 and 16.3. Exemplary RUL estimations based on the proposed model for a 
“Normal” and “Hot” application case are given in Fig. 16.8. The “Normal” case’s 
total operating time adds up to 20,320 h with to = 190.2 h resulting in an estimated 
tRuL = 709, 8 h. 

On the other hand, the total operating time of the CMM in the “Hot” case 
only adds up to 6120 h; however, the equivalent operational time is already at 
to = 561.2 h yielding tRuL = 338, 8 h due to the longer time spent at higher 
temperatures compared to the “Normal” case. Even without definition of a critical 
system parameter and the correlation to a system status, this approach already allows
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Fig. 16.8 Examples of use 
cases with different 
temperature loads 

a first indication of the device’s health by evaluating exhibited mission profiles 
rather than just relying on theoretical values defined during product development. 

System status assessment relies on only one critical system parameter, the offset 
change over lifetime, in the discussed use case. The corresponding classifier ccsp, 1 
is calculated from the initial signal offset Voff, 0 and the offset voltage at the time of 
interest: 

.ccsp,1 = Voff,t − Voff,0

Voff,0
(16.5) 

An exemplary system status table is shown in Fig. 16.9. In the illustrated 
example, four classes are defined for cTT and three classes are defined for ccsp, 1. 
The system status ranges from 1 to 10 with low numbers indicating a healthy system 
and high numbers indicating a system close to its end of life requiring maintenance, 
e.g., recalibration and/or replacement. 

In the case of the investigated CMM, the offset change is the most critical value 
that indicates a faulty system. Hence, even if all the time budget is consumed and 
ccsp, 1 is below 0.1%, the device status is 1. The lower the CMM’s life value, i.e., 
the lower cTT is, the more critical a change of the offset voltage is which leads to



16 Outlook to the Future of Reliability 397

Fig. 16.9 Exemplary system 
status tensor 

larger values of the system status for lower cTT values at a given ccsp, 1. Hence, the 
evaluation of the system status prevents the presumptuous exchange of devices that 
are still working within specified parameters but are at their end of life according 
to cTT. This prevents avoidable downtime of the product a CMM might be part of 
compared to an approach where devices are exchanged just based on the assessment 
of their operational time. Consequently, resources of the planet as well as customer’s 
money are saved because the exchange of sensor devices is carried out when device 
failure becomes imminent, not when device failure is expected. 

16.6.4 Conclusions 

Due to the increasing importance of device safety and responsible resource man-
agement, PHM becomes more and more important for any kind of electronic 
component/system. The proposed model enables RUL estimation and system health 
status monitoring directly on a sensor level which is the first step in bringing 
“intelligence” to these classes of devices. Complexity of the model implementation 
can be adapted to the use case requirements. A first estimation of the device’s RUL is 
enabled just comparing the overall temperature-time budget defined by the mission 
profile to the equivalent operational time the part/system spent at the budget temper-
ature. Temperature logging of the device is required for this approach. Additionally, 
device-specific critical system parameters, e.g., output signal characteristics like an 
offset change, sensitivity change, resistance thresholds, etc., may be defined and 
classified. A system status that is defined for distinct combinations of temperature-
time and critical system parameter classifiers allows a computational inexpensive 
and easy to implement way of assessing the device’s health. The status can be used 
as an input, e.g., for predictive maintenance applications. 

16.7 Final Remarks 

The future of reliability is bright, both from a financial and academic perspective. 
There are several future developments required to establish fully predictive DfR: 
(i) improve the simulation skills for physics-of-degradation purposes, (ii) develop 
smarter testing and characterization concepts, (iii) start embedding AI/ML concepts,
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and (iv) harvest field/application data and combine that with PHM and DT concepts. 
This chapter presents further directions for these developments and how it can 
improve electronic product reliability. A use case is presented that indicates the 
potential of PHM for remaining useful life prediction. 
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