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SUMMARY

AUTONOMOUS L ANDING OF MICRO AIR VEHICLES
THROUGH BIO-INSPIRED MONOCUL AR VISION

Hann Woei HO

Autonomous flying vehicles – especially the small and light-weight Micro Air Vehicles

(MAVs) – are currently not capable of finding a safe landing site by themselves and per-

forming smooth landings. The main reason is that most of the state-of-the-art solutions

are computationally expensive and thus restrict their application on MAVs which have

severely limited processing power and sensors available. Hence, this kind of vehicles

requires an energy-efficient landing solution using a light-weight sensor.

A promising option for MAV landing is to draw inspiration from tiny flying insects.

The motivation comes from the fact that these insects have very limited neural and

sensory resources, yet they can perform complex tasks, such as navigating in a dense,

obstacle-rich environment and carrying out smooth landings. This means that they pos-

sess efficient and robust approaches to perception and control problems, and these ap-

proaches could be ideal for designing the control strategies for MAV landing. Research

shows that, to realize many of these complex tasks, flying insects use control strategies

which heavily rely on optical flow.

However, there are many challenges when using solely optical flow for MAV landing.

Optical flow is ‘scaleless’ and does not provide the distance to an object or the observer’s

velocity, but only the ratio of them. The scaleless property of optical flow can lead to

various stability problems of MAV landings. For instance, for landing on a flat surface,

optical flow control causes instabilities at some points in the phase of the landing when

the control gains are not adapted to the height. Thus, height information is important

in optical flow landings. Besides, for a fully autonomous MAV, being able to land on a

flat surface is not sufficient. The MAV must also be able to find a suitable landing site

by itself. In fact, optical flow information obtained from a single camera is sparse and

needs to be further interpreted to understand what the flow pattern actually represents.

Therefore, MAVs need efficient algorithms which can analyze the optical flow to search

for a ground surface that is relatively flat and also – perhaps even more important – free

of obstacles.
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viii SUMMARY

This thesis aims to overcome the optical flow related control problems in MAV land-

ings, and has the following main problem statement:

How can Micro Air Vehicles utilize bio-inspired monocular vision

to land fully autonomously?

The problem statement can be divided into a low-level and a high-level landing control

part, both using bio-inspired monocular vision methods. The low-level landing control

part ensures a smooth landing trajectory by solving the scaleless problems when using

only optical flow for landings, whereas the high-level landing control part searches for

a suitable landing site for the MAV using monocular vision. This leads to the following

research questions:

1. How can MAVs cope with the scaleless property of optical flow from a single cam-

era for optical flow landing?

2. How can MAVs autonomously find a suitable landing site with monocular vision?

To address the first research question, two approaches are proposed. The first ap-

proach directly tackles the problem by introducing an extended Kalman filter (EKF) al-

gorithm that estimates the height and vertical velocity of an MAV during landings. The

algorithm utilizes the knowledge of the control input, the so-called efference copy, and

the observed flow divergence resulting from this input. For the prediction step in the

EKF, the efference copy is used to predict the states, i.e., the height and vertical velocity,

while for the correction step in the EKF the observed flow divergence is used to correct

the predicted states. By doing that, the height and vertical velocity of an MAV can be

estimated.

To check the observability of the system, a nonlinear observability analysis was car-

ried out. The analysis shows that with the knowledge of the control input and flow di-

vergence the system is observable. The algorithm was tested in computer simulation

as well as in multiple flight tests in indoor and windy outdoor environments. Results

show that the algorithm manages to estimate the height and velocity of the MAV during

landing accurately, compared to the ground truth provided by a motion tracking system

for the indoor flights or a sonar for the outdoor flights. After obtaining the height esti-

mate, several flight tests also demonstrate that either the control gain can be adapted to

the height during constant flow divergence landings, or a linear control with the height

estimate feedback can be used to land the MAV smoothly.

The second approach solves the scaleless problem of optical flow landing by propos-

ing a control strategy that automatically adjusts the control gain during landing. This

strategy has two phases which intend to achieve a smooth landing trajectory using con-

stant flow divergence. In Phase I, the MAV detects its height in hover using an oscillating

movement and sets the gains accordingly. In Phase II, the constant flow divergence land-

ing is activated, and the gains are reduced exponentially during descent and adjusted

properly when the actual trajectory deviates too much from the expected constant flow

divergence landing. In this strategy, Phase I ensures that proper initial gains are selected

to maximize the control performance and thus avoid the MAV to descend too fast, while

Phase II prevents self-induced oscillations when descending.
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To realize Phase I, a novel way to detect self-induced oscillations in real-time was

developed based on the observation of the flow divergence. This method detects oscilla-

tions experienced by the MAV by examining the covariance function of a windowed flow

divergence and a time-shifted windowed flow divergence. This function is computation-

ally efficient and can capture both the relative phase and the magnitude of deviations in

the signal. Both simulation examples and flight tests show larger covariances of the sig-

nal at the instance when the oscillations occur. By detecting oscillations, the MAV can

select proper initial gains. To examine the feasibility of Phase II, a stability analysis of

the adaptive control strategy was performed. This analysis proves that the system is not

subjected to self-induced oscillations when the adaptive controller is used during the

constant flow divergence landing. In addition, multiple flight tests demonstrate smooth

landings in both indoor and windy outdoor environments using the adaptive control

strategy.

To answer the second research question, this thesis discusses an efficient algorithm

that uses the optical flow information to search for safe landing sites. These are defined

as relatively flat surfaces that do not have a too large inclination and, most importantly,

are free of obstacles. To find a safe landing site, the proposed algorithm fits the optical

flow field using RANdom SAmple Consensus (RANSAC). This algorithm assumes that the

landing surface is planar. The results of the fitting provide two important estimates, i.e.,

the surface slope, which shows the inclination of the ground surface, and the surface

roughness, which indicates the presence of obstacles. When the fit is bad, the surface

roughness is high, and thus the plane is likely to include some obstacles. In contrast,

when the fit is good, the surface roughness is low, and thus there are no obstacles of any

size.

To first evaluate the accuracy of the slope estimate, artificial images, hand-held

videos, and images from an MAV were tested. The results show that the algorithm is

able to estimate the slope angles of a landing surface accurately when the camera is

calibrated, and the MAV rotation is compensated. Additionally, a landing experiment

was performed to show that the algorithm can distinguish between a stairway and a flat

surface and land on a flat surface. To evaluate an obstacle detection method based on

surface roughness, multiple on-board image sets taken in nine different indoor and out-

door scenes were tested. In fact, the success of finding a safe landing site depends on

the obstacle detection performance with a reasonable false alarm. The obstacle detec-

tion performance is measured by the true positive rate, i.e., the percentage of obstacles

which are correctly identified, while the false alarm is given by the false positive rate,

i.e., the percentage of empty landing areas wrongly classified as containing an obstacle.

The classification tests show that for the performance measure the true positive rates are

higher than 90% for all scenes, while for the false alarm measure the false positive rates

are less than 25% for all scenes. These results show high proportions of correct identi-

fication of obstacles and non-obstacles images. Most of the undetected cases occurred

because only a small part of the obstacles appears at the edge of the images. This makes

them difficult to be detected as the surface roughness measures the presence of obsta-

cles in the global image. Multiple flight tests demonstrate the success of identifying the

safe landing sites.

In addition, this research attempts to ‘go beyond’ optical flow approaches for the safe
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landing site selection. A novel setup of self-supervised learning is introduced, in which

optical flow serves as a ‘scaffold’ to learn the visual appearance of obstacles. This setup

is to deal with the main problem of using monocular motion cues, i.e., their requirement

of significant camera movement. By first using the surface roughness to detect obstacles,

a function is learned that maps the appearance features represented by texton distribu-

tions to the surface roughness. This approach allows the MAV to select a suitable landing

site while hovering. In addition, despite the fact that the surface roughness represents

the global value for the presence of obstacles, this appearance learning allows for the

pixel-wise segmentation of obstacles when analyzing local image patches.

To evaluate the classification performance of this approach, similar image sets as

mentioned above were used. Results show that the true positive rates are slightly better

than the classification using the surface roughness from optical flow. Similar undetected

cases were found using this approach. However, the false positive rates are higher for

some complex indoor scenes. This can also be seen from the larger normalized root

mean square errors in more challenging indoor scenes where the appearance variation

is larger. Based on the analysis, this approach is able to detect most of the obstacles and

find the possible safe landing sites. Additionally, using this approach also resulted in

successful landings in both indoor and outdoor experiments.

In conclusion, the bio-inspired monocular vision is a promising approach to achieve

autonomous landings of an MAV. It is shown that the bio-inspired control strategies as

practiced by flying insects, such as constant flow divergence landing, can only be suc-

cessfully implemented on MAVs by solving some fundamental problems of optical flow.

In addition, learning the obstacle appearance from optical flow can further improve the

landing capabilities of MAVs. This thesis proposes several solutions which lead to novel

insights that are not only important to a tiny drone but may also prove their value to

biology.

Future work on adapting the bio-inspired approach to novel sensors that mimic in-

sects’ eyes is recommended. These novel sensors are small and can directly measure op-

tical flow. Hence, the sensing efficiency and the performance of the methodology can be

further improved. For height estimation, it is recommended to augment the state vector

in the extended Kalman filter with the wind disturbance as an additional state. Although

the outdoor flight test showed that the wind factor might not be a problem, compensat-

ing for the wind disturbance might further improve the accuracy of the height estimate.

Additionally, for the self-supervised learning of obstacle appearance, it is also interesting

to try out advanced learning methods, such as deep learning. The proposed future work

would be of great help in enhancing the flying capabilities of MAVs, and ideally moving

towards the remarkable capabilities of flying insects.
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1
INTRODUCTION

1.1. AUTONOMOUS FLIGHT OF MICRO AIR VEHICLES

U
NMANNED Aerial Vehicles (UAVs) have become very popular since many years ago.

At that time no one could imagine that one day these vehicles would be operated so

close to our daily life. Recently, the use of UAVs in the civilian field has rapidly grown as

they provide inexpensive and more effective solutions to our day-to-day problems com-

pared to manned aircraft. These vehicles, without a pilot on-board, can be controlled

remotely by ground crews or fly autonomously.

Remotely-controlled civilian UAVs are mostly used by hobbyists or aerial photogra-

phers. Autonomous UAVs have wider applications, ranging from cost-effective mail and

package delivery [1, 2] to life-saving ambulance UAVs [3]. Autonomous UAVs do not

only significantly reduce the workload of the ground crews, but also save time, money,

and effort to recruit and train human pilots. Most importantly, autonomous UAVs have

tremendous potential capabilities to perform tasks in dangerous areas where the risk to

humans would be unacceptable, such as wildlife monitoring, civil security, fire scene

inspections, and search and rescue missions after a nuclear plant disaster.

In many of these applications, the UAVs will have to fly in narrow environments and

even close to people. This has led to a huge interest in smaller UAVs, the so-called Mi-

cro Air Vehicles (MAVs). Due to their small size and light weight, they are often safer

and more practical to be operated in urban and indoor environments. The US Defense

Advanced Research Projects Agency (DARPA) defined the physical size of an MAV to be

smaller than 15 centimeters, and maximum take-off weight to be less than 100 grams in

an MAV program in 1997 [4]. Recently, due to the exponential growth in drone industry,

this term has generally referred to smaller and man-portable UAVs. Some examples of

MAVs are presented in Fig. 1.1. They range from a 700 g commercially available, tail-

sitter quadrotor [5] to a 60 mg research-based, insect-like MAV [6]. Since they are so

small, these vehicles are barely visible in the sky and thus hard to be operated by hu-

man pilots in a line-of-sight operation. Furthermore, for some missions, more than one

MAV is often required to operate together, i.e., in a swarm of MAVs. Here, it is absolutely

necessary to enable them to fly completely by themselves.

1
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2 1. INTRODUCTION

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 1.1: Examples of different types of Micro Air Vehicles (MAVs). Flapping wing: (a) RoboBee [6] , (b) Delfly

Micro [7], (c) Nano Hummingbird [8]; Fixed wing: (d) BATCAM [9] (e) Black Widow [10]; Hybrid: (f) Quadshot

[5]; Rotary wing: (g) Black Hornet PD-100 [11], (h) Ladybird [12], (i) Parrot AR.Drone 2.0 [13]

1.2. LANDING PROBLEMS OF MICRO AIR VEHICLES

Any flying vehicle will need to land eventually, so will the MAVs. Since these vehicles

need to fly autonomously, the autonomous landing capability is indispensable. For ex-

ample, in emergency situations where the vehicle detects a serious problem, the vehicle

could be forced to land by itself as quickly as possible by overriding all other commands.

Moreover, when these vehicles operate outside the line-of-sight, they need to have the

autonomous landing capability, without the help of ground pilots or other external sys-

tems.

A major concern of the current landing systems is that they do not have reliable

methods that would allow them to decide by themselves which areas are safe to land

and how to approach the desired landing target. For instance, the recent demonstration

of package delivery using an MAV by Amazon shows the feasibility of an MAV sending a

package to its consumer [14]. A marker which is placed by the consumer on the ground

is used to allow the MAV to land safely. In some circumstances in which the marker is

unavailable, these vehicles need to be able to sense and avoid the surrounding objects in

the environment and perform a smooth descent, all by themselves. Without this capa-

bility, the safety of the surrounding animals, humans, and property cannot be ensured.

As a result, the use of these vehicles will definitely be prohibited by the regulations.

Compared to larger UAVs, MAVs face greater challenges in performing autonomous

landing. The main problem for MAVs lies in the restriction of their size and weight. In

other words, the sensors they can carry on-board and the processing power available

are severely limited. Unlike larger UAVs, many intelligent algorithms which require large

sensor(s) and heavy processing are not available to MAVs to perform autonomous land-
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ing. Hence, they need a computationally much more efficient landing solution, using

much smaller and lighter sensors which are also much less accurate than their larger

counterparts.

1.3. VISUAL LANDING SOLUTIONS FOR MICRO AIR VEHICLES

MAVs are typically equipped with some conventional, yet miniaturized, sensors on-

board, such as Inertial Measurement Unit (IMU), barometer, magnetometer, and Global

Positioning System (GPS). These sensors are mainly used in basic functionalities, such

as self-stabilization, waypoint guidance and navigation. For navigation, GPS is the most

commonly used sensor in MAVs. Recent developments of GPS navigation techniques

(e.g., real-time kinematic, RTK, and Differential GPS, DGPS) have improved GPS accu-

racy and allow for more precise positioning of MAVs. However, GPS is only reliable for

high altitude navigation. When flying at low altitudes, it can only be used when a very

detailed map of the ground, where the locations of all obstacles are available, is known

in advance. In addition, due to its weak signal, GPS is not applicable to indoor environ-

ments and also urban areas with surrounding tall buildings.

Modern auxiliary sensors play a vital role to provide additional information to MAVs.

Active sensors, such as laser rangefinders, measure the distance to a target using a

method called Light Detection and Ranging (Lidar) which emits a laser light and mea-

sures its deflection time. This method is often used to build a 3D map [15, 16]. Although

this sensor can provide accurate measurements, it is not suitable for MAVs due to the

size and weight which is typically more than 100 g . In contrast, visual sensors are pas-

sive sensors which can provide rich information about the surroundings and the MAV’s

self-motion. Multiple cameras used in stereo vision can also measure the distances to

many points in an image [17–19]. However, stereo vision is limited in range. Further-

more, having two cameras is less energy or weight efficient than a single camera. Thus,

for MAVs, single cameras are preferable to be installed and used on-board.

Intelligent algorithms which utilize this visual sensory information from a single

camera are needed to perform the autonomous landing task. If a visual landing target is

known, object detection and tracking is often used with a downward-looking camera for

locating a static or dynamic landing platform over time [20, 21]. The image position of

an MAV with respect to the target can be determined and used to control the MAV. More-

over, with the known target size, the distance to the target and its velocity can be esti-

mated. Some common designated markers used as landing targets are shown in Fig. 1.2.

Although one of the real world applications [14] mentioned in the previous section relies

on a designated marker for landing, using this approach restricts the autonomy of MAVs.

For example, when the marker is wrongly placed or unavailable, the MAV might be mis-

led, or it cannot decide where to land. Additionally, in some emergency situations, the

MAV needs to land as quickly as possible. Therefore, it is essential that these vehicles

know how to select a safe landing spot all by themselves, without depending on external

systems.

In an unknown environment, where no known landing target is present, a standard

approach in robotics is visual Simultaneous Localization and Mapping (SLAM). It lo-

cates and tracks all features in the field of view of the camera and constructs a 3D map

of the surrounding environment. Visual SLAM is currently the most popular method
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Figure 1.2: Examples of designated markers used as landing targets. In the current applications, Amazon

Prime Air [14], for example, needs one of these specific markers to know where to land. It would be more

practical if the autonomous UAVs could find a suitable landing spot all by themselves, without any markers.

used in robotics and can be categorized into feature-based and direct methods. In the

feature-based method, the SLAM problem consists of features extraction, and compu-

tation of camera pose and scene geometry using these features [22–24]. The reliability

of this method depends on the detected features and it is insufficiently robust to some

scenes in which the features are hardly visible. The direct method solves this limitation

by directly using image intensities to generate (semi-) dense maps [25–27]. Although

the computational efficiency and accuracy of this method have been improved over the

years [28–32], it still uses much more computational resources than strictly required and

is not available on smaller platforms.

1.4. BIO-INSPIRED SOLUTIONS FOR AUTONOMOUS LANDINGS

MAVs are limited in their size and weight. These constraints make MAVs challenging for

achieving fully autonomous landing. For instance, they are restricted in the amount of

payload and the processing capability. MAVs need very efficient algorithms that use a

small and light-weight sensor, such as a single camera.

A promising option for MAV landing is to draw inspiration from biological systems.

Flying insects can perform complex tasks using very limited neural and sensory re-

sources [33]. Honeybees, for example, weigh only about one tenth of a gram on average

and have a tiny brain of 1 mm3, which contains only around 960,000 neurons [34] (for

comparison: the human brain has about 100 billion neurons [35]). They primarily rely

on their eyes to perform safe and smooth landings [36, 37]. Research shows that these

insects have incredibly efficient and robust solutions to undertake these perception and

control problems. These solutions can serve as the bio-inspired design principles for

MAV control strategies [38, 39].
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For knowing their movements and sensing objects in the surroundings while flying,

the main visual cue used by flying insects is optical flow. Optical flow refers to the ap-

parent motion of objects in a scene perceived by an observer during his/her movement

through the world [40, 41]. Flying insects perform amazing maneuvers by heavily re-

lying on optical flow. For instance, honeybees can use this information to center their

positions when they are flying through a narrow space and to avoid obstacles [42].

Flying insects also perform approach and landing using optical flow. For example,

honeybees keep the ventral flow constant to carry out a grazing landing, in which the

direction of motion is nearly parallel to the landing surface [36, 37, 43]. Ventral flow as

shown in Fig. 1.3a can be defined as a measure of the lateral velocity divided the height.

Many studies on autonomous landings of MAVs and spacecraft have focused on using

this strategy [33, 38, 44–46]. In fact, the success of these landings is governed by a pitch-

ing law profile [45, 46]. This profile is designed in such a way that the vehicles can re-

duce their lateral velocity while maintaining the ventral flow at a desired set point and

thus automatically decrease the height. However, to achieving a certain descent profile,

for instance, an exponential decay of the height, the design of the pitching profile re-

quires the estimates of the height and vertical velocity of these vehicles. Additionally, for

vertical landings, ventral flow is not dominant, and its value is (close to) zero.

On the other hand, flow divergence as shown in Fig. 1.3b or time-to-contact (i.e., the

reciprocal of flow divergence) can provide the vertical motion of an observer relative to

the ground [47–49]. A series of experiments shows evidence that bees land with constant

flow divergence [49]. By keeping flow divergence constant, honeybees reduce their ver-

tical velocities to almost zero at touchdown. Since flow divergence is a measure of the

vertical velocity divided by the height, it is straightforward to show that when the flow

divergence is held constant, the vertical velocity will decay exponentially to zero and so

does the height.

(a) Ventral flow. (b) Flow divergence.

Figure 1.3: Different patterns of optical flow resulted from different movements.

Optical flow strategies followed by honeybees are typically praised, as they seem to

guarantee a smooth landing by only using optical flow. This is remarkable because the

optical flow is ‘scaleless’ and provides the ratio of velocity to distance but not velocity and

distance separately. This means that honeybees land without any knowledge of velocity

and distance but some observables of their ratio. The scaleless property of optical flow

can be seen from Fig. 1.4. In this figure, an MAV which hovers at a fixed position uses

a downward-looking camera to measure the optical flow from a moving object on the
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h1

h2

v

Figure 1.4: ‘Scale-less’ property of optical flow. This property can be clearly seen from the case that the same

amount of optical flow v can be perceived by a stationary observer from a near, slow-moving object and a

distant, fast-moving object. For instance, if v = 1s−1, it could be perceived from an object that moves at 1ms−1

at h1 = 1m or at 10ms−1 at h2 = 10m.

ground at different heights. The same amount of the optical flow can be observed from

a closer object which moves slower and a distant object which moves faster. Using the

optical flow, i.e., the ratio of velocity to distance, would be contrary to typical engineering

solutions that opt to separate these physical quantities. For instance, using additional

information from other sensors, such as accelerometers and sonar, can help to dissect

the optical flow and estimate its distance and velocity components. However, minimal

sensor solutions, e.g., using a single camera, are preferable for MAVs which have limited

weight and size.

Using only a single camera (the optical flow) for landing on a flat surface is still a

huge challenge for MAVs. Optical flow control causes instabilities at some points in the

phase of the landing when the MAV control gain is not adapted to the height [50]. Several

studies, therefore, use a gain-scheduling technique based on time-to-contact or a hybrid

strategy which switches between the control of time-to-contact and flow divergence to

achieve successful landings [51, 52]. In fact, these solutions require the knowledge of the

height. For instance, those control gains are scheduled to a range of certain heights and

velocities (or time-to-contact) for a landing profile which has a specific initial height and

velocity. If the initial height and velocity deviate too much from the designed values, a

smooth landing cannot be achieved. Therefore, the height information plays a major

role in optical flow landings.

Using bio-inspired vision solutions in landing an MAV involves the feedback control

of often very noisy visual cues (i.e., optical flow estimates). Some studies have shown

the feasibility of using optical flow for autonomous landing of MAVs [52–54]. However,

the landings were either performed at a relatively slow pace, or only a few successful

landings using visual feedback were presented [53, 54]. The only study which performed
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many flight tests did not use any visual sensor but used other sensors for control [52].

Solving the problem of landing on a flat surface is not sufficient for a fully au-

tonomous MAV. Namely, the MAV also has to select a suitable, flat landing surface by

itself. From the literature, many studies use optical flow observed from a forward-

looking camera for avoiding obstacles while navigating in an indoor or urban environ-

ment [55, 56], but it seems none of them has a solution which uses optical flow from a

downward-looking camera to select landing sites. To utilize optical flow, MAVs need an

efficient algorithm which can interpret optical flow to search for a relatively flat ground

surface that is also, and most importantly, free of obstacles.

1.5. PROBLEM STATEMENT AND RESEARCH QUESTIONS

Based on the challenges mentioned in the previous section, the main problem state-

ment of this thesis can be formulated as follows:

Problem statement

How can Micro Air Vehicles utilize bio-inspired monocular vision to land fully

autonomously?

The problem statement can be divided into two parts: (I) low-level landing control,

and (II) high-level landing control, both using bio-inspired monocular vision methods.

Low-level landing control is responsible for ensuring a smooth landing trajectory

using for instance the constant flow divergence strategy. By controlling the upward

thrust of the vehicle to keep the observed flow divergence constant, both height and

velocity of an MAV decay exponentially during landing. However, the scaleless property

of optical flow leads to a problem of optical flow control in MAV landings. For instance,

a fixed-gain control cannot guarantee a desired landing trajectory [50]. In fact, the

height information plays an important role in optical flow control. For instance, the

height dictates how strongly the MAV has to react for maintaining a stable constant flow

divergence landing [50]. This leads to the first research question (RQ):

RQ1: How can MAVs cope with the scaleless property of optical flow from a single

camera for optical flow landing?

High-level landing control relates to searching for a suitable landing site for the MAV.

A desired landing site is free of obstacles and should not have a too large inclination.

Flying insects are good at avoiding obstacles using optical flow. However, optical flow

information obtained from a single camera is sparse and needs to be further interpreted

to understand what the flow pattern actually represents in the real world. Therefore, the

second research question is formulated as:
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RQ2: How can MAVs autonomously find a suitable landing site with monocular

vision?

These two research questions are formulated based on the challenges encountered

in the two-level architecture defined above. In general, guidance, navigation, and con-

trol (GNC) is a framework of flight control. In that definition, navigation is finding the

vehicle’s position and velocity along the route. Guidance is comparing positions with

desired positions along the route and finding the best trajectory to fly from the current

waypoint to the designated waypoint. Control is the way which the vehicles try to fol-

low the guidance trajectory. The relationship to the framework adapted in this thesis is

as follows: The low-level control involves the vertical guidance and control of the MAV

landing. The vertical guidance is tightly integrated with the vertical control because by

just keeping flow divergence constant (i.e., the control) a desired exponential landing

trajectory of the MAV (i.e., the guidance) can be achieved. The high-level control relates

to a navigation task, i.e., searching for a suitable landing site for the MAV.

1.6. SCOPE OF THE THESIS

To focus on the main goal of this thesis, reflected by the problem statement stated above,

the scope of this thesis is defined as follows:

• MAV type: This research tests with the most common type of MAV, which is a

quadrotor, as shown in Fig. 1.5. This platform is chosen because it has a hover-

ing capability, which is suitable for the flight tests in both indoor and outdoor en-

vironments. However, in principle, the algorithms are portable to other types of

MAVs.

• Visual perception: A small downward-looking camera sensor, which is fixed to the

bottom of the MAV, is used for the visual perception. The use of this camera limits

the field of view of the vehicle and provides a relatively low image quality. In addi-

tion, the camera is a traditional frame-based CMOS camera. However, all findings

are also relevant to neuromorphic sensors [57, 58]. This research also assumes that

the environment is stationary, and thus, the optical flow is solely generated by the

self-motion of the MAV.

• Information processing: A feature-based method is used to compute optical flow

from the image sequence captured by the camera. This method detects features

on images and tracks them over multiple images. It is computationally efficient

and can be easily adapted to other common miniature cameras. However, it only

provides sparse motion fields. A direct method, on the other hand, gives more

dense motion fields by recovering image motion at all pixels with contrast. This

method is more computationally expensive and sensitive to appearance variations

compared to the feature-based method. Both optical flow computation methods

work in textured environments. Since this research focuses on how to use optical

flow for autonomous landing of the MAV, the proposed algorithm generalize to

direct and other methods of determining optical flow.
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• Lateral control: The current approach used in this research to perform lateral

maneuvers is based on (1) the standard navigation techniques, i.e., using a GPS

(outdoor flights) or a motion capture system (indoor flights), for knowing the ve-

hicle position and computing the position of the selected landing site, and (2) the

stabilization using optical flow, for hovering control. After the landing position is

known, the MAV first navigates to the desired landing position using the standard

navigation techniques and then stabilize itself laterally using optical flow during

the vertical descent. The lateral control has not yet been discussed in this chap-

ter because it is not the main focus of this research. However, the step to lateral

control without a GPS or motion tracking system is not a big one.

Figure 1.5: A quadrotor is used as a testing platform in this research.

1.7. RESEARCH APPROACH

In this thesis, four methods are proposed to answer the two research questions stated

above (two methods for each question). These methods can be summarized as:

1. The scaleless property of optical flow (RQ 1) in low-level landing is tackled with:

(a) A monocular distance estimation using knowledge of the applied control in-

put to ‘scale’ the optical flow, in order to obtain the height and the velocity of

the MAV and further use these estimates for landing.

(b) An adaptive control strategy which automatically adjusts the control gain

which is implicitly adapted to the height information to achieve a smooth

and high-performance landing.

2. A suitable landing site (RQ 2) in high-level landing can be identified using:

(a) Surface slope and roughness estimated using optical flow field fitting, to

know the inclination of a landing surface and to detect obstacles on the

ground.
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(b) A novel setup of self-supervised learning (SSL) of obstacle appearance using

the surface roughness obtained from optical flow, to efficiently detect obsta-

cles by just looking at still images.

These four items are further discussed in detail as follows.

First, to directly tackle the scaleless problem of optical flow control, an algorithm that

uses an Extended Kalman Filter (EKF) is introduced to estimate the height and velocity

of an MAV from optical flow. In fact, it is challenging to use only the flow divergence (the

ratio of velocity to height) observed from a single camera to estimate the height. The

proposed concept is to utilize the knowledge of the control input, the so-called efference

copy, and the observed flow divergence that results from this input. In the algorithm, the

efference copy predicts the effect of an action (the prediction step in EKF), while the flow

divergence observes the movement of the MAV (the update step in EKF). By doing that,

the height and velocity of an MAV can be estimated.

Second, an adaptive control strategy for constant flow divergence landing is pro-

posed. This strategy allows for a smooth and high-performance landing of the MAV by

automatically adjusting the control gains during landing. There are two phases involved

in this strategy. The first phase is to determine near-optimal initial control gains in hover

by gradually increasing the control gain until an oscillation is detected. The stable gain

just before the oscillation is used as the initial gain for the second phase. Here, the con-

stant flow divergence landing is activated with an exponential decay of the control gains,

with mechanisms in place to adjust the gains when the actual trajectory deviates from

the expected constant flow divergence landing.

Third, optical flow is utilized to search for safe landing sites. These are defined as

relatively flat surfaces that do not have a too large inclination and, most importantly, are

free of obstacles. To find a safe landing site, an algorithm that fits the optical flow field

using RANdom SAmple Consensus (RANSAC) is proposed. This algorithm assumes that

the landing surface is planar. The results of the fitting provide two important estimates,

i.e., the surface slope which shows the inclination of the ground surface and the surface

roughness which indicates the presence of obstacles. When the fit is bad (=high rough-

ness), the plane is likely to include some obstacles. On the other hand, when the fit is

good (=low roughness), there are no obstacles of any size.

Finally, an attempt is made in this thesis to ‘go beyond’ optical flow approaches for

the safe landing site selection. Obviously, using optical flow requires the MAVs to move.

When there is hardly any vehicle movement, there is not enough visual input to the com-

puter for further interpretation. Optical flow can also be sparse and less informative,

e.g., in environments which have a little texture. And also, by only relying on optical

flow for obstacle detection, the MAV needs to repeat its optical flow based estimation

also for objects that are the same and that have been experienced (perhaps many times)

before. A novel setup of self-supervised learning (SSL) is introduced, in which optical

flow provides the target for supervised learning of some function. This function maps

appearance features to a surface roughness measure. The MAV first uses optical flow

to determine the surface roughness, and then simultaneously extracts appearance fea-

tures represented by texton distributions from each image. Then, it learns a function

that maps appearance features to the surface roughness. After learning, the MAV can

detect obstacles by just examining appearance features in still images. In this way, the



1.8. OUTLINE OF THE THESIS

1

11

MAV can find a safe landing site without moving.

1.8. OUTLINE OF THE THESIS

A schematic diagram showing the main content of each chapter is presented in Fig-

ure 1.6. The body of this thesis focuses on bio-inspired landing control of an MAV, which

is divided into two parts.

The first part, Chapters 2 and 3, presents the low-level landing control of the MAVs

which intends to deal with scaleless property of optical flow RQ 1. Chapter 2 presents a

monocular distance estimation of an MAV using the knowledge of control input and flow

divergence. Chapter 3 describes an adaptive control strategy to solve the fundamental

problem of gain selection for optical flow landing.

The second part, Chapters 4 and 5, investigates the high-level landing control of the

MAVs which aims to find a suitable landing site for an MAV RQ 2. Chapter 4 shows an

optical flow algorithm to estimate slope and roughness of the landing surface for landing

site selection. Chapter 5 introduces a novel setup of self-supervised learning (SSL) of

obstacle appearance using surface roughness from optical flow.

Chapter 6 summarizes and concludes the results obtained and gives recommenda-

tions for future work.
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Chapter 1

Chapter 2 Chapter 3

Chapter 4 Chapter 5

Chapter 6

Part I: Low-level landing control (RQ 1)

Part II: High-level landing control (RQ 2)

Introduction

Surface slope estimation

using optical flow

Self-supervised learning

of obstacles appearance

Adaptive control strategy for

constant flow divergence landing

Monocular distance estimation

for MAV landing

Conclusions and

Recommendations

Figure 1.6: Outline of the thesis.
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2
MONOCULAR DISTANCE

ESTIMATION FOR MAV LANDING

Previous studies have reported that flying insects, such as honeybees and dragonflies,

heavily rely on optical flow for avoiding obstacles while navigating and performing

smooth landings [43, 59]. This method is particularly suitable for MAVs, which have lim-

ited processing capabilities and payloads. One of the greatest challenges of using optical

flow is the fact that optical flow does not directly provide us the distance to an object or

velocity, but the ratio of them. This scaleless property of optical flow can lead to various

problems of optical flow control. To directly tackle this issue, this chapter introduces an

algorithm that estimates the height and vertical velocity of an MAV from the optical flow

and the knowledge of the control input, the so-called efference copy.

This chapter begins by providing some knowledge about the flow divergence and the

constant flow divergence guidance and control strategy in Section 2.2. After that, Sec-

tion 2.3 describes the proposed EKF-based height and velocity estimation using the flow

divergence and the applied control inputs, the nonlinear observability analysis of the

system, and the vision algorithm used to estimate flow divergence with a single camera.

Then, Section 2.4 and 2.5 shows the simulation results of the estimation and the results

of several landings of an MAV, respectively. Lastly, a conclusion with future work is drawn

in Section 2.6.

This chapter is based on the following article.

H. W. Ho, G. C. H. E. de Croon, and Q. P. Chu, Distance and velocity estimation using optical flow from a

monocular camera, International Journal of Micro Air Vehicles (accepted) [60]

15
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2.1. INTRODUCTION

Micro Air Vehicles (MAVs) have gained in popularity in recent years. Due to their small

size, they are easier and safer to use than large Unmanned Aerial Vehicles (UAVs). How-

ever, the size and weight constraints make the MAVs more challenging to be deployed

for autonomous missions. To deal with the problems, it requires reducing the amount of

payload or sensors and developing more intelligent and efficient algorithms.

Optical flow, which can be extracted from a monocular camera, provides a very

promising solution for miniaturization. Optical flow refers to the apparent visual mo-

tion of objects in a scene relative to an observer [40]. This information tells us not only

how fast the camera moves, but also how close it is relative to the things it sees. Flying

insects use it as the main visual cue for sensing their own movements and surrounding

objects while flying. They can perform complex tasks, such as landing, by only relying

on this visual input and using limited neural resources. For instance, honeybees heavily

use optical flow to perceive the environment and avoid dangerous objects while flying

[43, 59].

To accomplish vertical landings, honeybees use a divergent pattern of optical flow or

the so-called flow divergence. By keeping the flow divergence constant, honeybees can

perform smooth landings. This strategy leads to exponential decay of both height and

velocity to zero at touchdown, and it is ideal for MAVs landings [44, 53, 54, 61]. Often,

a straightforward proportional or proportional integral (P or PI) feedback controller is

used for MAVs to perform constant flow divergence landing.

However, in our previous studies, we found that fixed-gain controls used in constant

flow divergence can lead to instability of the landing [50, 62]. This is because the critical

control gain is directly proportional to the height [50]. Most of the current approaches to

solving this problem are to use a gain-scheduling technique which is actually designed

according to the knowledge of an initial height [51, 52]. However, if no additional sensor

is installed, the height is unknown. Besides, if the initial height deviates too much from

the one which is used to design the gain-scheduling structure, this method will not work

properly. Thus, the knowledge of the height is important for optical flow control.

In fact, optical flow does not give us the absolute distance to a surface or velocity of

the camera directly. There are four known methods to estimate distances from optical

flow. First, one can add sensors that directly or indirectly measure distance, velocity, or

accelerations. The right type of filtering and fusion can then give distance estimates.

For instance, some studies include an Inertial Measurement Unit (IMU), a camera sen-

sor, and a pressure sensor, and use a Kalman-based sensor fusion technique to estimate

distances [63, 64].

Second, when performing a perfect constant flow divergence landing, the control in-

put (the thrust) or so-called efference copy follows a specific monotonously decreasing

function over time, which can be used to estimate distances [65]. They demonstrated

this approach by moving a camera along a track toward an image scene to first estimate

an initial distance. Since the constant flow divergence control will result in an exponen-

tial decay of distances, they simplified the estimation problem to an exponential propa-

gation of distances after obtaining the initial value.

Third, a stability approach that detects self-induced oscillation caused by high con-

troller gains and uses these gains to estimate distances was introduced [50]. It was shown
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analytically that there exists a directly proportional relationship between the critical con-

trol gain, i.e., the gain which causes instability, and the height. Based on this relationship,

the MAV detects self-induced oscillation and uses these gains to estimate the height.

Fourth, by knowing the effect of the control inputs, one can “scale” the optical flow to

obtain the distance and velocity. An early study on the dynamic effects in visual servoing

showed that the control gain is a function of the distance [66]. It was used in an adaptive

control scheme for visual servoing [67]. The relationship also implies that the closed-

loop response depends on the distance which opens up the possibility of estimating the

distance to a target from closed-loop dynamics.

In this paper, we build upon the principle presented in the fourth method to esti-

mate the height (distance to the ground) and vertical velocity of an MAV applying it for

the first time to optical flow landing. An extended Kalman filter (EKF) is used to esti-

mate the height and vertical velocity of an MAV using the knowledge of the control input

in combination with the flow divergence observed from a monocular camera. This al-

gorithm uses the efference copy to predict the effects of an action, and the observed

flow divergence to correct the prediction. The significant advantage of this method is

that we simplify the nonlinear control of the constant flow divergence to a linear control

that uses height and velocity estimates. Thus, this provides the possibility of using some

optimization techniques with vision output from a monocular camera to improve the

performance of the control.

The remainder of the paper is set up as follows: In the first section, we provide some

knowledge about the flow divergence and the constant flow divergence guidance and

control strategy. The following section describes the proposed EKF-based height and

velocity estimation using the flow divergence and the control inputs, the nonlinear ob-

servability analysis of the system, and vision algorithms used to estimate flow divergence

with a monocular camera. Then, the next section shows the results of estimation in com-

puter simulation while in the succeeding section we also show the results of multiple

landings of an MAV. Finally, a conclusion with future work is drawn.

2.2. BACKGROUND

2.2.1. FLOW DIVERGENCE

For vertical landing of an MAV, flow divergence (D) or visual looming as shown in Fig. 2.1

can be computed as follows:

D =
VZ

Z
. (2.1)

where Z is the distance to the MAV from the ground in the direction of Z w and VZ is the

rate of change of Z . When the MAV is approaching the ground, we measure positive Z ,

negative VZ , and thus D < 0 according to the coordinate systems shown in Fig. 2.2. The

camera coordinate system is assumed to coincide with the body coordinate system.

2.2.2. CONSTANT FLOW DIVERGENCE GUIDANCE AND CONTROL

Constant flow divergence approach has been used for vertical landing of the MAVs. This

approach controls the vertical dynamics of the MAVs by tracking a constant flow diver-

gence. When |D| equals a positive constant c, we can derive from Eq. 2.1 the height
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Figure 2.1: Divergence of optical flow vectors (flow

divergence) when the observer is approaching a

surface.
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Y b

Z b

X w

Y w
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b: body

w : world

Figure 2.2: MAV body (Ob X bY b Z b ) and world

(Ow X w Y w Z w ) coordinate systems.

Z = Z0e−ct , and velocity VZ = −cZ0e−ct , where Z0 is the initial height. This shows that

both height and velocity will decrease exponentially and eventually become zero when

touching the ground.

A proportional feedback controller is used to track the desired flow divergence D∗ as

shown in Eq. (2.2):

µ= Kp (D∗
−D), (2.2)

where Kp is the gain of the proportional controller.

A double integrator system is used to model the dynamics of an MAV towards the

ground in one-dimensional space. The continuous state space model can be written as:

ṙ(t)= f
(
r(t),µ(t)

)
= A ·r(t)+B ·µ(t)

=

[
0 1

0 0

]
r(t)+

[
0

1

]
µ(t), (2.3)

y(t) = h
(
r(t)

)
= [r2(t)/r1(t)]= D, (2.4)

where r = [r1,r2]T = [Z ,VZ ]T and µ is the control input.

It is clear that the model dynamics in Eq. (2.3) are linear but the observation in

Eq. (2.4) is nonlinear. Fig. 2.3 shows a time response of the system when tracking a con-

stant flow divergence. In this figure, we can see that the MAV accelerates in the first 2.5 s

and then decelerates to zero velocity to touch the ground. Both height and velocity of

the MAV decrease exponentially to zero in the end.

2.3. EKF-BASED HEIGHT AND VELOCITY ESTIMATION USING

FLOW DIVERGENCE AND CONTROL INPUT

An overview of the methodology is presented in Fig. 2.4. Images captured by a camera

are served as the inputs to the software while the control input commands the actua-
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Figure 2.3: Height Z , velocity VZ , and flow divergence D of an MAV during landing using constant flow

divergence strategy (D∗ =−0.3 s−1) with control input µ.

tor to control the MAV. In this section, we describe: (1) an extended Kalman filter (EKF)

algorithm using the flow divergence and efference copies to estimate the height and ve-

locity of an MAV during landing, (2) a nonlinear observability analysis of the system, (3)

a vision method to compute the flow divergence.

2.3.1. EXTENDED KALMAN FILTER

In practice, the flow divergence is computed using an on-board processor. Therefore,

we used a discrete-time extended Kalman filter to estimate the height and vertical veloc-

ity of the MAV. The system model and observation model are shown in Eq. 2.5 and 2.6,

respectively.

ẋ(t)= f
(
x(t),µ(t)

)
+w(t). (2.5)

zk = h
(
xk

)
+vk . (2.6)

where f (·) and h(·) are the system matrix and the observation matrix which are obtained

from Eq. 2.3 and 2.4, respectively. w(t) and vk are the system noise and observation noise

which are both assumed to be zero mean multivariate Gaussian process with covariance

Q and R, respectively.

Several computational steps taken in EKF when the update of flow divergence is ob-

tained are shown below:

a) One-step ahead prediction:

x̂k |k−1 = x̂k−1|k−1+

tk∫

tk−1

f
(
x(τ),µ(τ)

)
dτ (2.7)
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Figure 2.4: An overview of the methodology.

b) Covariance matrix of the state prediction error vector:

Pk |k−1 =Φk Pk−1|k−1Φ
T
k +Γk QΓ

T
k (2.8)

where Φ and Γ are the discretized matrices of A and B, and can be computed as below

(their derivations can be found in the appendix A):

Φk =

[
1 tk − tk−1

0 1

]
, Γk =

[
(tk − tk−1)2/2

tk − tk−1

]
(2.9)

c) Kalman gain:

Kk = Pk |k−1H⊤
k

(
Hk Pk |k−1H⊤

k +R
)−1

(2.10)

where

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

=
[
−

x̂2k|k−1

x̂2
1k|k−1

,
1

x̂1k|k−1

]T
(2.11)

d) Measurement update:

x̂k |k = x̂k |k−1+Kk

(
zk −h(x̂k |k−1)

)
(2.12)

where zk −h(x̂k |k−1) is called the innovation of EKF.

e) Covariance matrix of state estimation error vector:

Pk |k = (I−Kk Hk )Pk |k−1(I−Kk Hk )T
+Kk RKT

k (2.13)
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2.3.2. NONLINEAR OBSERVABILITY OF THE ESTIMATION

In this subsection, we show that with the flow divergence and the efference copy/control

input the system is observable, i.e., any distinct states are distinguishable by applying a

bounded measurable input (e.g., a piecewise constant input). To check the observability

of the nonlinear system, the observability rank condition can be used ([68]).

We first construct the observability algebra which consists of repeated Lie deriva-

tives of the observation model in Eq.2.4, h
(
r(t)

)
= r2(t)/r1(t), with respect to the model

dynamics in Eq.2.3, f
(
r(t),µ(t)

)
= [r2(t),µ]T . The system is observable if and only if the

Jacobian of the observability algebra is full rank. In our case, the observability algebra O

can be written as:

O =

[
L0

f
h
(
r(t)

)

L1
f

h
(
r(t)

)
]

=

[
h
(
r(t)

)

∂h
(

r(t )
)

∂r(t ) · f
(
r(t),µ(t)

)

]

=

[
r2(t)/r1(t)

−(r2(t))2/(r1(t))2 +µ/(r1(t))

]
(2.14)

Next, we analyze O to see whether its Jacobian is full rank. The first function of

the observability algebra is y(t) = h
(
r(t)

)
= [r2(t)/r1(t)] = D from Eq.2.4 while its sec-

ond function is the first Lie derivative with respect to the dynamics which equals to

−(r2(t))2/(r1(t))2 +µ/(r1(t)) = −(h
(
r(t)

)
)2 +µ/(r1(t)). From this result, we can clearly

see that the system is (locally) observable (i.e., a full rank Jacobian of O) if and only if

the control input, µ 6= 0, r1(t) 6= 0, and r2(t) 6= 0. In other words, we are able to estimate

the distinct states, i.e., Z and VZ , by using both flow divergence and control input in the

algorithm.

2.3.3. FEATURES-BASED FLOW DIVERGENCE ESTIMATION

In computer simulation, we used Eq. 2.1 to compute flow divergence, while in flight tests,

we estimated flow divergence based on Eq. 2.15 (Proof can be found in [62].). For each

image captured by an on-board camera, corners were detected using the FAST algorithm

[69, 70], and tracked in the next image using the Lucas-Kanade tracker [71]. Then, the

image distances between every two corners at one image, d(t−∆t ),i and at the next image,

dt ,i were computed. By further computing the ratio of d(t−∆t ),i −dt ,i to d(t−∆t ),i , we can

measure the expansion and contraction of the flow. We took the average of these ratios,

and with a known time interval between these two images ∆t , we estimated divergence

using Eq. 2.15:

D̂ =
1

n
·

1

∆t

n∑

i=1

[
d(t−∆t ),i −dt ,i

d(t−∆t ),i
], (2.15)

where n is the total number of tracked corners. In practice, the vision output is often

noisy. Therefore, we used a low pass filter to reduce the noise in the estimation.

2.4. COMPUTER SIMULATION

Before performing flight tests, we simulated the proposed algorithm presented in the

previous section in MATLAB to show the feasibility of the algorithm.
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2.4.1. LANDING SIMULATION WITH SIMULATED CONTROL INPUTS

In the simulation, we generated the height and velocity with a timestamp of 0.05 s using

a set of control inputs, µ as shown in Fig. 2.5e. These data served as ground truth for

validation. The flow divergence measurement was generated using Eq. 2.1 with a mea-

surement noise standard deviation of 0.001 s−1 as illustrated in Fig. 2.5d.
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Figure 2.5: EKF-based height and vertical velocity estimation from flow divergence for landing control.

By using the control input, µ and the flow divergence measurement, D, we estimated

the height, Z and the velocity, VZ with the proposed EKF algorithm. Fig. 2.5 shows esti-

mated states (Z and VZ ) and their ground truth, innovation of the EKF, flow divergence

measurement, and the control inputs. In this simulation, we can observe that the es-

timated height and velocity converge and follow the ground truth after a few seconds,

even with different initial conditions (Z0 and VZ0 ) than the actual values. In addition,

the innovation of EKF has zero mean implying that the filter is working correctly. Sim-

ulation results show that the proposed algorithm is able to estimate the distance to the

ground and velocity accurately.
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2.5. EXPERIMENTS RESULTS AND DISCUSSION

We implemented the EKF algorithm and vision algorithms in Paparazzi Autopilot, an

open source autopilot software [72]. A Parrot AR.Drone 2.0 equipped with a downward-

looking camera was used as a testing platform, and all algorithms were running on-

board the MAV. We used an OptiTrack system to track the position of the MAV in order to

provide the ground truth of its height and velocity only for validation purposes, and these

measurements were not used in the estimation. In this section, we show the feasibility

of the algorithm by performing three different control strategies for MAVs landings.

Before executing the algorithm in real-world experiments, we need to check the rela-

tionship between the control input µ (which is assumed to be the acceleration in the

model) and the resulting acceleration aZ imposed on our platform, e.g., aZ = f (µ).

Fig. 2.6 shows the vertical acceleration aZ resulted from the control input µ used in

performing a constant flow divergence landing. The acceleration measurement was ob-

tained from the on-board IMU but was not used in the following flight tests. Knowing

that the variation of the control input µ from the hovering command µg is small (total

command to motors µT = µg +µ), a linear function is used to map the control input to

the acceleration. From the mapping, we obtained az = 9.906µ+0.047 plotted as a dashed

line in the figure.
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Figure 2.6: Mapping of the control input µ to the vertical acceleration aZ using a linear function

(az = 9.906µ+0.047).

2.5.1. LANDING USING CONSTANT FLOW DIVERGENCE WITH FIXED-GAIN

CONTROL

The first strategy we used in the flight tests is the constant flow divergence. A flow diver-

gence set point was tracked for the entire landing. During the landing, the EKF algorithm

was running in real-time to estimate the height and velocity of the MAV.

Fig. 2.7 shows the estimation results of the landing with a constant divergence of

−0.3 s−1 using a fixed-gain control. The initial value of the height for EKF was set to be

Ẑ0 = 3m which was different from the true initial height, i.e., Z0 ≈ 2m. In the figure,

we can see that the height estimate converges to the true height, even though the ini-

tial value is different. In addition, the velocity estimate also matches well with the true

velocity.

From the landing results, we can observe that this strategy exponentially decreases

both height and velocity to nearly zero by only tracking a constant flow divergence. In

fact, the drawback of vision algorithms is that when the image is too dark, the algorithms
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Figure 2.7: Fixed-gain landing with constant flow divergence (D∗ =−0.3 s−1) with EKF-based height and

velocity estimation.

will not work properly. For instance, when the camera is too close to the ground, the

flow divergence estimate becomes incorrect. To deal with that, we constantly decrease

the trim throttle when the MAV is very close to the ground (Z < 0.2m) to allow the MAV

for touchdown. Another fact is that a fine-tuned control gain or gains adapted with the

height are needed to solve the instability issue [62]. This issue can be seen from the

measured flow divergence in Fig. 2.7d when the MAV is close to the ground.

To show the reliability of the proposed algorithm, we performed multiple landings

with different flow divergence set points (D∗ = −0.1,−0.2,−0.3 s−1) at different initial

heights (Z0 ≈ 2,3m). The same initial guess of the height (3m) was used in the EKF al-

gorithm for these flight tests. Fig. 2.8 shows the height and velocity estimates using EKF

algorithm in different landings. In this figure, we can see that both height and velocity

estimates match well with the true values. With a larger set point, the MAV landed faster

with the exponential decrease in both height and velocity. Besides, these results also

show that a good guess of the initial height has a faster convergence of the estimates.

The height and velocity estimated from EKF can then be adapted to tune the con-

troller gain in real-time for the constant divergence landing. This will be discussed in
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Figure 2.8: Fixed-gain multiple landings with different flow divergence set points (D∗ =

−0.1 s−1,−0.2 s−1,−0.3 s−1) at different initial heights (Z0 = 2m,3m). The estimates are shown with

blue lines while their true values are represented by red lines.

the coming section. By doing that, oscillations can be reduced, and thus a smooth land-

ing can be achieved by only using a monocular camera.

2.5.2. LANDING USING CONSTANT FLOW DIVERGENCE WITH HEIGHT-

ADAPTED CONTROL

Experiments presented in the previous subsection were performed using a manually-

tuned control gain in order to achieve stable landings. In fact, the critical control gain,

i.e., the control gain which causes instability, is directly proportional to the height [50].

This means that if a fixed gain is used in constant flow divergence landing, oscillation

will occur at a certain height. When the height is known from the proposed algorithm,

it can be used to automatically adjust the control gain in such a way that the oscillation

is eliminated [62]. This second strategy is used to keep the advantages of using constant

flow divergence landing, i.e., achieving an exponential landing profile by just tracking a

desired flow divergence set point, and avoid the instability due to a fixed-gain control.

By letting Kp = f (Z )= k ·Z where k is a positive constant, the proportional controller

in Eq. 2.2, µ= Kp (D∗−D) becomes:

µ= k ·Z (D∗
−

VZ

Z
)

= kD∗Z −kVZ

=−k ·r(t), (2.16)

where k= [k1 k2]= [−kD∗ k].
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This controller simplifies the problem to a linear control problem. To find k, we can

first solve this linear control problem using the pole-zero analysis. From Eq. 2.3, the

model dynamics becomes:

ṙ(t)= A ·r(t)+B · (−k ·r(t))

= (A−B ·k) ·r(t)

=

[
0 1

−k1 −k2

]
·r(t). (2.17)

To achieve stable conditions, all the poles should lie in the left half of the s-plane.

The poles of the system are obtained as shown below:

λ1,2 =

−k2 ±

√
k2

2 −4k1

2
. (2.18)

Therefore, for a stable system, k2
2 ≥ 4k1. By substituting k1 = −kD∗ and k2 = k, we

get k2 ≥−4kD∗ and thus k(k −4c) ≥ 0, where c =−D∗. Since k > 0, k ≥ 4c.

Three flight tests were performed at different flow divergence set points (D∗=−0.1,

−0.2, −0.3 s−1) shown in Fig. 2.9. The initial guess of the height for EKF was set to be

different from the true height in order to test the convergence of the estimates. When the

landing was activated, the control gain was adapted to the height according to Kp = k · Ẑ .

Note that the value of Kp used in the real flight needs to be mapped according to the

result shown in Fig. 2.6. Since the initial height was selected to be much higher than

the true height, it was expected that a slight oscillation occurred at the beginning of the

landing. After the height estimate converged to the true height, the landing was smooth

as the correct gain was used. In addition, it can be seen from the last column of Fig. 2.9

that the tracking of these three different D∗ is good. This strategy ensures a stable and

high-performance landing.

2.5.3. LANDING USING HEIGHT AND VELOCITY FROM EKF
The third strategy we used for landing is tracking a height profile using the estimates

from EKF. To this end, the landing begins by (1) giving an initial excitation to the MAV, or

(2) using constant divergence strategy, for the first few seconds. This can ensure that the

EKF converges and the controller tracks the right height estimate.

This first initialization was performed in an indoor flight test by giving a block input

as the excitation as shown in Fig. 2.10e to the MAV for the first 0.5 s. This allowed the

MAV to go down or move in order to ‘observe’ flow divergence and initialize the EKF

algorithm. After that, the controller used the estimates from the EKF to track a desired

profile or set points for landing.

Fig. 2.10 shows the height and velocity estimates from EKF compared with their

ground truth, the innovation of EKF, the flow divergence from the vision algorithms

and the ground truth, and the control input. After giving the initial excitation, the MAV

started to track a height profile represented by the black dash-dot line. This profile was

generated using x∗
1,k

= x∗
1,k−1

+x∗
2 ·∆t with x∗

1,0 = Ẑ0 and x∗
2 =−0.2ms−1. The results show
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Figure 2.9: Height-adapted control for constant flow divergence landings with different flow divergence set

points (D∗ =−0.1,−0.2,−0.3 s−1).

that the height and velocity can be estimated accurately using the proposed EKF algo-

rithm and further used in the controller for landing. The zero mean innovation of the

EKF also tells us that the filter was working properly.

The second initialization was conducted in an outdoor flight by tracking a desired

divergence for the first few seconds as shown in Fig. 2.11. Since the OptiTrack system is

not available for outdoor flight, we can only use the onboard sensor, such as sonar, to

provide the true height and velocity (d Z /d t) for accuracy comparison.

The landing started at 5 m, and the desired divergence of −0.2 s−1 was tracked. Af-

ter 2 s, the controller was switched to track a height profile as presented in Fig. 2.11a

which was generated based on the velocity estimate at the instance when the controller

was switched (≈−0.8 ms−1). In fact, the height profile can also be created based on the

desired velocity (see Fig. 2.10). The results show that both height and velocity estimates

are accurately estimated, compared to the measurements from sonar. In addition, the

height estimate can also be used in landing control. It can also be observed from Fig. 2.11

that the estimates converge soon after the landing starts. Thus, the time interval for ini-

tialization can also be shortened. Note that the previous indoor flights were performed

to validate the proposed algorithm using the highly accurate OptiTrack system while the

outdoor flight was conducted to show the robustness of the algorithm to a windy out-

door environment. Some videos of the flight tests are available online 1.

In this paper, we presented three landing strategies using: (1) constant flow diver-

1Experiment videos: https://goo.gl/KiJurr
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Figure 2.10: Landing with a linear controller using estimates from EKF (Indoor Flight).

gence with fixed-gain control, (2) constant flow divergence with height-adapted control,

and (3) height and velocity estimates. All these strategies can provide a smooth land-

ing solution for MAVs. The first strategy, however, is likely to cause instabilities at some

points during the landing. The second strategy solves this problem by adapting height

estimate from EKF to the control gain. This allows stable landings without affecting the

tracking performance. Due to fast convergence of height, we only observe a slight oscil-

lation at the start of the landings. Lastly, the third strategy uses the height and velocity

from EKF directly for landing. Although it requires an initial excitation for observing op-

tical flow, this strategy lands the MAV by following a desired landing profile and allows

further performance improvement using gain optimization techniques.

2.5.4. DISCUSSION ON WIND EFFECT AND REJECTION

In principle, external disturbance, such as wind, has no problem in control as it can be

rejected easily. For instance, when using a proportional feedback control with height

estimates, the steady-state error due to wind can occur, but it can be eliminated using

the analysis of final value theorem on our model with the wind. From this analysis, we
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Figure 2.11: Landing with a linear controller using estimates from EKF (Outdoor Flight).

found that in order to reject for instance a constant wind, the proportional control gain

should be KP = d0/x(∞), where x(∞) is the required steady state error, and d0 is the wind

disturbance estimate.

However, for state estimation, the wind as the external force is not accounted for in

our model at the moment. The practical experiment performed in a windy outdoor en-

vironment shows that this factor might not be problematic. However, a more thorough

investigation and a solution for this problem might be necessary. For instance, we can

augment the state vector in Eq.2.3 with the wind disturbance as an additional state, i.e.,

ḋwind = w (w can be modeled by the random walk [73, 74]) and modify the second state

to be V̇Z = µ+dwind . By doing that, the wind factor is included in the model, and thus

the estimation can be improved in the presence of the wind [75]. Both discussions to

deal with external disturbance will be the future work of this study.
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2.6. CONCLUSION

In conclusion, we proposed an algorithm to use an extended Kalman filter (EKF) to esti-

mate the height and vertical velocity of an MAV from the flow divergence and the knowl-

edge of the control input while approaching a surface and use these estimates for landing

control. This algorithm was tested in computer simulation as well as in multiple flight

tests in indoor and windy outdoor environments. The results show that the proposed

EKF approach managed to estimate the height and velocity of the MAV accurately com-

pared to the ground truth provided by the external cameras. In addition, the estimates

were used in the controller to smoothly land the MAV. The proposed approach avoids

the complexity of having nonlinearity in the constant flow divergence based landing by

‘splitting’ the flow divergence into the height and velocity which allows the use of a linear

controller. For future work, an augmented state Kalman filter can be used to improve the

estimation when strong external disturbances are involved. Also, the algorithm opens

up the possibilities to use gain optimization techniques to improve the control perfor-

mance.



3
ADAPTIVE CONTROL STRATEGY

FOR CONSTANT FLOW DIVERGENCE

LANDING

In the previous chapter, knowledge of the thrust is used to deal with the scaleless prob-

lem of optical flow control. In this chapter, a novel control strategy is introduced to au-

tomatically adjust the control gain during the constant flow divergence landing. This

strategy has two phases. At the beginning of a landing, the MAV detects the height using

an oscillating movement and set the gains accordingly (Phase I). After that, the gains are

reduced exponentially during descent and adjusted properly when the actual trajectory

deviates too much from the expected constant flow divergence landing (Phase II). This

strategy allows for a stable and high-performance landing of the MAV with optical flow.

It does not rely on knowledge of the thrust or any additional sensor.

This chapter first gives some background on the constant flow divergence guidance

strategy, and show results of computer simulations with a conventional control scheme

assuming a perfect flow divergence estimate in Section 3.2. After that, Section 3.3 shows

a characterization of the flow divergence estimates as obtained with a single camera.

Then, Section 3.4 analyzes the conventional closed-loop control with the delay and noisy

estimates in both computer simulation and flight test. Next, Section 3.5 introduces the

adaptive control scheme to deal with the instability problems encountered with the con-

ventional control scheme. In Section 3.6 demonstrates the real-world experiments. Fi-

nally, conclusions and recommendations are given in Section 3.7.

This chapter is based on the following articles.

H. W. Ho and G. C. H. E. de Croon, Characterization of flow field divergence for MAVs vertical control landing,

in AIAA Guidance, Navigation, and Control Conference (San Diego, California, USA, 2016) p. 0106. [76]

H. W. Ho, G. C. H. E. de Croon, E. van Kampen, Q. P. Chu, and M. Mulder, Adaptive control strategy for constant

optical flow divergence landing, IEEE transactions on robotics (submitted). [62]
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3.1. INTRODUCTION

Autonomous landing is challenging for Micro Air Vehicles (MAVs), which have payload

constraints and limited computing capability. Many earlier studies have used traditional

methods of sensing and navigating involving active sensors, such as a laser range finder

[15, 77], or a stereo camera [17, 19]. Although they give accurate and redundant mea-

surements, they are costly and heavy for MAVs. In addition, methods using stereo cam-

era are limited in their perception range. A monocular camera would be preferred for

MAVs, also due to its light weight and low power consumption [78, 79].

Visual Simultaneous Localization and Mapping (SLAM) is the most commonly used

method for navigating using a monocular camera. This method locates all the de-

tected features in the camera field of view and determines the vehicle’s location and

3D-structure of the landing surface at these points [22, 80]. Although its computational

efficiency and accuracy has been improved over the years [23, 24, 81], visual SLAM still

requires more computational resources than strictly necessary for landing.

Besides SLAM, another method is inspired by tiny flying insects, which accom-

plish complex flight control tasks using limited neural and sensory resources [33]. For

instance, honeybees mainly rely on their eyes to perform smooth landings [36, 37].

They possess extremely efficient and robust solutions to landing problems. These bio-

inspired solutions could provide design principles for flight control strategies in MAVs

[38, 39].

In flying insects, optical flow is probably the mostly used source of visual informa-

tion. When approaching a ground surface, the expansion of the flow (flow divergence)

provides a perception of the observer’s relative motion to the ground. Honeybees reduce

their speeds to almost zero at touchdown by keeping flow divergence constant [44, 49].

This strategy is typically praised, since it does not seem to rely on knowledge about the

height and approaching speed. Optical flow only captures the ratio of height and veloc-

ity. Several studies have implemented a constant flow divergence strategy with a fixed-

gain controller, e.g., on an MAV for landing [53, 54]. Additionally, time-to-contact (the

reciprocal of flow divergence) based landing strategies have been performed on rotor-

craft, such as the TauPilot [52], which implemented the guidance and control scheme as

proposed by Tau theory [82, 83].

However, there is a fundamental problem when actually controlling a constant flow

divergence landing, i.e., the controller gain(s) depends on the height. No true solution

has been presented for this problem. A few studies, focusing on decreasing time-to-

contact landings, schedule the gains according to the time-to-contact [51, 52]. However,

the initial gain depends on the height and velocity. Deviating significantly from these

assumed initial conditions leads to severely hampered performance or even a crash. In

addition, such gain-scheduling is not possible for constant flow divergence (or constant

time-to-contact) landings.

A recent theory developed by one of the authors shows the relationship between the

height and the controller gain [50]. It was shown analytically that for a specific fixed gain,

optical flow control becomes unstable at a specific given height. Instead of regarding this

as a problem, it was proposed that the MAV can detect oncoming self-induced oscilla-

tions and use these for estimating the height. One of the uses of this theory is to detect

self-induced oscillations close to the landing surface for landing triggering.
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The main contribution of this paper is that we leverage this theory to propose a strat-

egy that solves the fundamental problem of gain selection for optical flow landing. This

strategy allows for a smooth and high performance landing of the MAV, by adjusting the

controller gains during landing. Two other, smaller, contributions of this paper are: 1)

to develop a novel way to detect oscillations in real-time based on observation of the

flow divergence, and 2) to characterize the flow divergence measured from a single cam-

era mounted on a quadrotor MAV (this part of the work is partly based on a conference

paper [76]).

The remainder of the article is structured as follows. In Section 3.2 we provide some

background on the constant flow divergence guidance strategy, and show results of com-

puter simulations with a conventional control scheme assuming a perfect flow diver-

gence estimate. Section 3.3 presents a characterization of the flow divergence estimates

as obtained with a monocular camera. Section 3.4 then shows the analysis of the con-

ventional closed-loop control with the delay and noisy estimates in both computer sim-

ulation and flight test. In Section 3.5 the adaptive control scheme is introduced to deal

with the instability problems encountered with the conventional control scheme. Sec-

tion 3.6 demonstrates the real-world experiments. Conclusions and recommendations

are given in Section 3.7.

3.2. BACKGROUND

3.2.1. FLOW DIVERGENCE

The definition of axes used in this paper is illustrated in Fig. 3.1. In this figure, the body

reference frame is denoted as Ob X bY b Z b , where Ob is located at the center of gravity of

an MAV, X b points forward, Y b is starboard, and Z b points downward. World reference

frame is a fixed frame on the ground and uses North-East-Up (X w -Y w -Z w ) system.

Y b
X b

Z b

X w

Y w

Z w

Ob

Ow

b: body

w : world

Figure 3.1: MAV body (Ob X bY b Z b ) and world (Ow X w Y w Z w ) reference frames.

Since a camera is attached to the body of the MAV, the camera reference frame

(Oc X c Y c Z c) can be assumed to be aligned with the body reference frame, where the

camera is facing downward or in the positive Z c direction. When the MAV is approach-

ing a flat ground surface, the camera observes a divergent pattern of optical flow, the

so-called flow divergence shown in Fig. 3.2. Flow divergence of a feature point in an im-
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Oc

Y c

X c

v
u

c: camera

x

y

Figure 3.2: Divergence of optical flow (flow divergence) when an observer is approaching a surface.

age is defined as the partial derivatives of its velocities (u and v) at its position (x and y)

in the camera image coordinates system [61]:

D(x, y) =
∂u(x, y)

∂x
+
∂v(x, y)

∂y
. (3.1)

This is illustrated on the right side of Fig. 3.2 in which one of optical flow vectors is en-

larged and shown in an image. By examining all D(x, y) of the available features in an

image, a ‘global’ flow divergence, D which is of particular interest in this paper can be

obtained. For vertical landings, flow divergence can be defined as the ratio of the vertical

velocity, VZ to its height from the ground, Z :

D =
VZ

Z
. (3.2)

Flow divergence can be used to determine the time-to-contact, τ which is reciprocal to

D. For vertical landing of an MAV, Z > 0, VZ < 0, and thus D < 0.

3.2.2. CONSTANT FLOW DIVERGENCE GUIDANCE STRATEGY

The common guidance strategy using flow divergence for vertical landing is the constant

flow divergence approach [53]. By keeping the flow divergence constant, D =−c, we can

control the dynamics of the landing with a suitable c. To examine the influence of c on

this strategy during a landing maneuver, the equations of motion describing the height

Z , vertical velocity VZ , and vertical acceleration AZ of the MAV are:

Z = Z0e−ct , VZ =−cZ0e−ct , AZ = c2Z0e−ct , (3.3)

where Z0 is the initial height above the landing surface.

Fig. 3.3 shows the effect of c on the height, velocity, and acceleration time histories

with the same initial height. It is clear that only flow divergence, c > 0 will lead to con-

vergence of the states to zero. With different positive values of c, we can manipulate the

dynamics of the maneuver. For example, the larger the c is, the faster the states con-

verge to zero. The practical feasibility of these maneuvers, however, also depends on the

vehicle limitations, such as the maximum vertical velocity that can be achieved.
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Figure 3.3: Constant flow divergence guidance with different desired flow divergence D∗ =−c .

3.2.3. CONVENTIONAL CONTROL SCHEME

To track the desired flow divergence D∗, a relatively straightforward proportional feed-

back controller can be used:

µ= Kp (D∗
−D), (3.4)

where Kp is the gain of the proportional controller.

To simplify the analysis, we model the dynamics of an object, moving towards a sur-

face in one dimensional space, using a double integrator. The state space model can

then be written as:

ṙ(t) =

[
0 1

0 0

]
r(t)+

[
0

1

]
µ(t), (3.5)

y(t) = [r2(t)/r1(t)]= D, (3.6)

where r= [r1,r2]T = [Z ,VZ ]T and µ is the control input.

Eqs. (3.5) and (3.6) show that the model dynamics are linear but its observation is

nonlinear. To visualize the feasibility of the proportional controller to track a constant

reference (e.g., D∗ = −0.3), a time response of the system is plotted in Fig. 3.4. In this

figure, both height and velocity are approaching zero in the end. During this maneuver,

the vehicle accelerated in the first 2s and then decelerated to zero velocity to touch the

ground.

3.3. CHARACTERIZATION OF FLOW DIVERGENCE

In the previous section we showed that, with a simple proportional controller and ‘per-

fect’ estimate of flow divergence, the vehicle can be landed smoothly with zero velocity

touching the ground. However, in a real scenario, we cannot avoid having delays and
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Figure 3.4: Fixed-gain closed-loop landing control using a constant flow divergence strategy.

noise in the sensor measurements. For this reason, we will need to characterize the in-

accuracies induced in estimating the flow divergence, to investigate the effects of these

sensor inaccuracies on the feasibility of using a simple controller in practice. In this pa-

per, we use two different methods to estimate the flow divergence. One is based on flow

field fit, the other uses a more direct method to compute the expansion and compression

of the optical flow vectors.

3.3.1. FLOW FIELD DIVERGENCE ESTIMATOR

We first need to estimate the ‘raw’ flow divergence from a camera sensor. In this study,

optical flow vectors are computed based on a sparse corner tracking method using Fea-

tures from Accelerated Segment Test (FAST) [69, 70], integrated with a Lucas-Kanade

tracker [71]. The first vision algorithm that estimates the flow divergence of the optic

flow field [84] is based on early findings by Longuet-Higgins and Prazdny [85]. The al-

gorithm assumes that (a) a pinhole camera model pointing downward is used, (b) the

surface in sight is planar, and (c) the angular rates of the camera can be measured and

used to de-rotate the optical flow. Under these assumptions, the optical flow equation

can be expressed as follows:

u =

pu1︷︸︸︷
−ϑx +

pu2︷ ︸︸ ︷
(ϑx a +ϑz )x+

pu3︷︸︸︷
ϑx b y−

pu4︷︸︸︷
aϑz x2

−

pu5︷︸︸︷
bϑz xy, (3.7)

v =

pv1︷︸︸︷
−ϑy +

pv2︷︸︸︷
ϑy a x+

pv3︷ ︸︸ ︷
(ϑy b +ϑz )y−

pv4︷︸︸︷
bϑz y2

−

pv5︷︸︸︷
aϑz xy, (3.8)

where ϑx = VX /Z , ϑy = VY /Z , and ϑz = VZ /Z are the velocities in xb , yb , and zb direc-

tion scaled with respect to the height Z . a and b are the gradient of the ground surface.

By re-writing Eqs. (3.7) and (3.8) into matrix form, as shown in Eq. (3.9), the param-

eter vectors pu = [pu1, pu2, pu3, pu4, pu5] and pv = [pv1, pv2, pv3, pv4, pv5] can be esti-

mated using a maximum likelihood linear least squares estimate within a robust random

sample consensus (RANSAC) estimation procedure [86]:

u = pu[1, x, y, x2 , x y]T , v = pv[1, x, y, y2 , x y]T . (3.9)
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The estimated parameters provide important information for bio-inspired navigation,

such as ventral flow, surface slope [84], flow divergence, time-to-contact, etc. In this

study, we are primarily interested in estimating the flow divergence:

D̂ = pu2 +pv3. (3.10)

Note that Eqs. (3.7) and (3.8) can be simplified by neglecting the second-order terms, as

in this study we focus on landing upon flat surfaces without any inclination (a = 0 and

b = 0). Therefore, a linear fit of the optical flow field can be obtained.

3.3.2. SIZE DIVERGENCE ESTIMATOR

We propose a more straightforward way to estimate flow divergence by measuring the

size of the lines connecting between features in consecutive image frames. The left side

of Fig. 3.5 is a pinhole camera model showing the actual and image size of the lines con-

necting two features indicated by L and d , respectively. On the right side of this figure,

the geometry illustrates the change of the size of the projected lines in the image plane,

from dt−∆t to dt when the MAV is moving towards the ground, from Zt−∆t to Zt . Using

Focal point

Image plane

Ground

Ground

Ground

Features

f̃d

L

L
L

Z
Zt−∆t

Zt
dt−∆t

dt

Figure 3.5: Pinhole camera model (left) and projected lines on image plane when approaching ground (right).

similar triangles, we can write the following relationships:

L

Zt−∆t
=

dt−∆t

f̃
,

L

Zt
=

dt

f̃
, (3.11)

where f̃ is the focal length of the camera while ∆t is the timestamp between two consec-

utive images. By substituting L, we can obtain:

dt

Zt−∆t
=

dt−∆t

Zt
. (3.12)

From the geometry in Fig. 3.5 and Eq. (3.12), it is reasonable that when the MAV moves

closer to the ground, i.e., Zt < Zt−∆t , the size of the line in the image plane becomes

larger, i.e., dt > dt−∆t . By recalling Eq. (3.2), flow divergence can also be expressed as

follows:

Dt =
1

∆t
[1−

Zt−∆t

Zt
]. (3.13)
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By substituting Eq. (3.12) into Eq. (3.13), we can obtain the size divergence of one feature

line:

Dst =
1

∆t
[

dt−∆t −dt

dt−∆t
]. (3.14)

To obtain a more reliable estimate of size divergence, we can use the average of all de-

tected feature lines, D̂s in our computation:

D̂s =
1

n

n∑

i=1

Dsti
. (3.15)

When the MAV moves towards the ground surface, the lines connecting features extend

leading to D̂s < 0, and vice versa.

3.3.3. TESTING PLATFORM AND DATA LOGGING

A Parrot AR.Drone 2.0 is used as our platform for performing flight tests. The downward-

facing camera on this MAV is of particular interest here. We implemented aforemen-

tioned algorithms to estimate the flow divergence in Paparazzi Autopilot, an open-

source autopilot software1. Fig. 3.6 shows the overview of the control architecture of

Paparazzi and the integration of the computer vision module. All the computer vision

and control algorithms are run on-board the MAV.

In Fig. 3.6, images are captured from the downward-looking camera in the vision

module. These images are processed using the computer vision algorithms presented in

the subsections above. The angular rates (p, q , r ) from the IMU are used in the optical

flow computations to reduce the effects of MAV rotation on the optical flow vectors. One

of the flow divergence estimates, D̂ or D̂s , is used in the vertical guidance loop to perform

automatic landings.

MAV

Hardware Software (Paparazzi Autopilot)

Vision Module

Camera

IMU

Actuator

Image

Capturing

Optical Flow

Computation
Divergence

Estimator

Vertical

Guidance

Control Loop

(Rotorcraft)

p, q,r

x, y

u, v

D̂ ,D̂s

µ

Figure 3.6: Control architecture of Paparazzi Autopilot and the integration of the computer vision module.

1Paparazzi Autopilot: http://wiki.paparazziuav.org/wiki/Main_Page
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In our experiments, we start logging the data while the MAV is hovering at a height

around 1.5m. By only controlling the climb rate, we measure the variation of estimated

flow divergences D̂ and D̂s , the height above the ground Z , and the vertical velocity VZ .

Note that in order to guarantee good measurements of Z and VZ , which will serve as our

ground truth for flow divergence D, we use an external motion tracking system (Optic-

Track), to provide these measurements.

Fig. 3.7 shows the measurements log for estimating the delay model and noise model

of the flow divergence estimates. We deliberately varied the vehicle climb rate to obtain

a wide range of D̂, D̂s , Z and VZ measurements.
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Figure 3.7: Log of flow divergence estimates, height, and vertical velocity during a vertical maneuver of an

AR.Drone 2.0.

3.3.4. DELAY ESTIMATION AND NOISE MODEL

After obtaining flow divergence estimates, this subsection describes how to characterize

their properties. There are two steps proposed: 1) to estimate the delays in the estimates,

and 2) to model the noise using the delay-corrected data.

DELAY ESTIMATION

We estimated the delay Lagi of every sample i = 1,2, ..., N by comparing the datasets of

flow divergence estimates D̂ and D̂s with the ground truth D. First, W windowed sam-

ples, f (i , i +W ) and g (i +m, i +W +m) of ground truth and flow divergence estimates,

respectively, were selected, where m is the moving index. Second, the sums of square er-

ror between both samples sets were computed. Then, by repeating the aforementioned

steps with different sample sets of flow divergence estimates (from m = 0 to m = M), we

looked for the sample set with minimum error. The number of estimates lagging behind

the ground truth can then be estimated as:

Lagi = arg min
m

W∑

j=0

( f (i , j )− g (i , j ,m))2. (3.16)
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Based on observation of the estimates compared with the ground truth, the delays

are expected to be consistent. Multiplying the average of Lag with the sampling time

∆t , we can obtain the time delay of each data set. The estimates have, on average, a

lag of 2 and 1, which are equivalent to 0.1s and 0.05s for D̂ and D̂s , respectively (∆t ≈

0.05s). These lags are used to correct the flow divergence estimates. Fig. 3.8 illustrates

that the corrected flow divergence D̂cr , and the corrected size divergence D̂scr , indeed

better match the ground truth D. In this figure, the bottom left plots show the enlarged

view of flow divergence estimates with the ground truth from 2200s to 2400s while their

corresponding plots which are corrected for the delay are presented on the bottom right.
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Figure 3.8: The estimated and delay-corrected flow divergences, together with their ground truth.

Note that to avoid the estimate of Lag to be driven by noise and outliers, the flow diver-

gence estimates were pre-filtered using a moving median filter. The delay caused by this

filter (i.e., (Nwin−1)/2, where Nwin is its window size) was subtracted from the estimated

Lag to obtain the actual lag.

NOISE MODEL

After correcting for the delay, we can proceed to model the noise of the flow divergence

estimates. Fig. 3.9 plots the flow divergence estimates D̂ and D̂s against the correspond-

ing ground truth D. This figure illustrates the deviation of the estimated flow divergence

from its ideal condition. There are two groups of estimated flow divergence plotted in the

figure, i.e., the flow divergence without (circles) and with delay correction (asterisks), re-

spectively. The root mean square errors (RMSEs) of D̂cr and D̂scr with delay correction

(≈ 0.6059 1/s and ≈ 0.1469 1/s) are smaller than their corresponding RMSEs without de-

lay correction (≈ 0.6206 1/s and ≈ 0.1526 1/s). Overall, both are noisy signals and slightly

deviate from their ideal condition, especially when the flow divergence becomes more

negative and more positive. This could happen when the ground features can hardly be

tracked due to, e.g., an aggressive maneuver, or when the vehicle is either very close to

the ground or far away from the ground.
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Figure 3.9: Deviation of the estimated flow divergences D̂ (left) and D̂s (right) from their ground truth D .

To take into account this condition in the noise model, we fitted a linear function, as

shown in Eq. (3.17) to the delay-corrected estimates using a bisquare weights regression.

This method is preferable as it minimizes the influence of outliers on the fit by giving

less weight to the data far away from the fitted line. The fitted models are drawn in as a

dashed line in Fig. 3.9:

f1(D) = e1 ·D +e2, (3.17)

where e1 and e2 are the fit coefficients. The fitted models for D̂ and D̂s are given as D̂ f i t

and D̂s f i t
.

The next step is to estimate the variances of the estimates with respect to the fitted

models. Fig. 3.10 shows the absolute errors of the estimates versus ground truth flow

divergence. The circles represent the absolute errors of the estimate with respect to the

fitted model. Since we can observe (also from Fig. 3.9) that the errors are higher for larger

values of D, a quadratic fit function is more suitable:

f2(D) = e3 ·D
2
+e4 ·D +e5, (3.18)

where e3, e4, and e5 are the fit coefficients. The solid line in Fig. 3.10 is the fitted line of

these absolute errors which represents the variance. Table 3.1 lists the fit coefficients of

the noise models (e1, e2, e3, e4, and e5) for both D̂ and D̂s that are used in the computer

simulations and the controller design.

Fig. 3.11 presents the probability density functions of the models errors, er rD̂ and

er rD̂s
. These model errors are computed by subtracting the data generated based on

Eqs. (3.17) and (3.18) from the corresponding flow divergence estimates. In this fig-

ure, we fitted a Gaussian model (solid lines) to each distribution, we obtain er rD̂ =

N (0.0173,0.1292) and er rD̂s
= N (6.1979×10−4 ,0.0937). This shows that both estimated

noise models are quite accurate.

To validate the noise model, we plotted generated data with estimates of D̂ and D̂s as

shown in Fig. 3.12. In this figure, the generated data sets show that the errors are higher

for larger values of D, which are similar to the observation in Fig. 3.10. However, some

inevitable outliers in the estimates remain, as there are neglected in both noise models.
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Figure 3.10: Absolute errors of the flow divergence estimates D̂ (left) and D̂s (right) versus their ground truth

D .

Table 3.1: Fit coefficients of noise models for D̂ and D̂s .

Coefficients D̂ D̂s

e1 0.8519 0.8393

e2 −0.0655 −0.0060

e3 0.5766 0.1841

e4 0.1918 −0.0043

e5 0.0412 0.0455
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Figure 3.11: Probability density functions of the estimate errors of D̂ (left) and D̂s (right) with respect to the

fitted model.
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Figure 3.12: The flow divergence estimates D̂ (left) and D̂s (right) and the data generated using the noise

models.

Note that since D̂s has less delay and noise, we use it for the following simulations

and flight tests. Additionally, the term ‘flow divergence’ and the symbol D̂ will be used,

instead of size divergence and its symbol D̂s , in order to have a more general expression

and to maintain consistency.

3.4. INFLUENCE OF DELAY AND NOISE ON FIXED-GAIN CON-

STANT FLOW DIVERGENCE LANDING

In the previous section, we estimated the delay and noise in the vision measurement

obtained from an on-board camera. This section investigates the effects of the delay and

noise on the constant flow divergence landing using the conventional control scheme as

described in Section 3.2. This is performed in both computer simulations and real-world

experiments.

3.4.1. SIMULATION RESULTS

The same model and controller described in Section 3.2 are used in this simulation. For

a fair comparison, the settings including D∗, Kp , and the initial conditions of Z and

VZ are set to be the same. The control analysis of the system is performed in sequence

by adding: (1) a delay, (2) a noise model, and (3) both delay and noise model into the

observation model in Eq. (3.6). Their results are presented in Fig. 3.13.

ADDING DELAY

In Section 3.3, we estimated a delay of 2 samples, i.e., a time delay of 0.1s, in the flow di-

vergence measured from the vision system. This delay is added to the observation model

in the simulation. Fig. 3.13a plots the time response of the states using the flow diver-

gence based control. The result shows that with this delay both Z and VZ converge to

almost zero quicker than the response of the perfect observation, but the MAV becomes

unstable when it is very close to the ground.
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(c) Adding delay and noise model.

Figure 3.13: Adding delay and noise to constant flow divergence landing using fixed-gain controller leads to

self-induced instability at a low height.
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ADDING NOISE

Next, only the noise model is added to the observation model. Fig. 3.13b shows the ef-

fects of noise to the time response of the states. Similar to adding delay, the MAV be-

comes unstable when both height and velocity are very small. In practice, for both cases

the oscillations can be avoided by throttling down or completely switching off the en-

gine when the MAV is very close to the landing surface; also, in a real-world scenario a

sufficiently low gain can be selected so that the MAV’s landing gear touches the ground

before oscillations occur.

ADDING DELAY AND NOISE

In reality, we have both delay and noise in the estimate of flow divergence from the vi-

sion system. Therefore, we also examine the effects of both delay and noise on the con-

trol scheme performance. Fig. 3.13c shows that large oscillations occur sooner and are

amplified further when the MAV moves close to the landing surface.

3.4.2. FLIGHT TEST RESULTS

In this subsection, we present the flight test results for vertical landing controls using

the conventional control scheme (e.g., a fixed gain). For the experiments, a proportional

and integral (PI) controller is used to reject external disturbances and thus minimize the

steady-state errors:

µ= Kp

[
(D∗

−D)+
1

κ

∫
(D∗

−D)d t

]
(3.19)

κ=
Kp

Ki
is the integral time constant and Ki is the integral gain.
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Figure 3.14: Constant flow divergence landing of the MAV using a fixed-gain controller.

The same MAV platform as described in Section 3.3.3 is used for the experiments

with all vision and control algorithms running on-board. Fig. 3.14 shows the experiment



3

46 3. ADAPTIVE CONTROL STRATEGY FOR CONSTANT FLOW DIVERGENCE LANDING

results of constant flow divergence landing using the basic, fixed-gain, controller (e.g.,

Kp = 0.6,Ki = 0.1). Clearly, large oscillations occur for flow divergence, height, and ve-

locity due to the delay and noise of the flow divergence estimate, even though the height

and velocity exponentially decay to zero. We used a slightly smaller desired flow diver-

gence than the one used in the simulations, i.e., D∗ = 0.1s−1 in order to obtain a better

view of the oscillations before touching the ground surface.

3.5. ADAPTIVE GAIN STRATEGY FOR CONSTANT DIVERGENCE

LANDING

In the previous section, we observed that the presence of time delay and measurement

noise leads to instability of constant flow divergence landings when the basic, fixed-gain,

controller is used. The oscillations can be further amplified when the vehicle is getting

closer to the ground or can even happen at an earlier stage of the landing when a large

gain is used. This section introduces a novel way to reject oscillations in constant flow

divergence landings.

3.5.1. ADAPTIVE CONTROL STRATEGY

Fig. 3.15 shows the proposed adaptive control strategy for constant divergence landings.

There are two phases in this strategy: (I ) Determination of near-optimal initial controller

gains, and (I I ) Landing with an adaptive gain.

Z

T i me

I I I

Figure 3.15: Two-phase adaptive control strategy for constant flow divergence landing. In phase I , the MAV

increases the gain until it starts to oscillate. This allows the MAV to select a suitable gain for phase I I , in which

it lands while reducing the gain exponentially.

DETERMINATION OF NEAR-OPTIMAL INITIAL GAINS

The initial controller gains K0 are the important parameters that we need to determine

for the PI controller before starting the landing. If these initial values are too small, track-

ing of D∗ will not be accurate. In contrast, if they are too large, self-induced oscillations

can happen at the beginning of the landing. To deal with both cases, the MAV hovers by

tracking D∗ = 0 using a PI controller while small initial values of K0, which are gradually

increased until an oscillation is detected. Then, the stable gain just before the oscillation
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is used as the initial K0 for phase I I . Both gains from P and I controllers undergo this

process.

LANDING

Once the stable initial gains are obtained, the constant flow divergence landing is acti-

vated by tracking D∗ =−c. We know that the value of the gain at which instability starts

to occur depends linearly on the height [50], and that during a constant divergence land-

ing the height decays exponentially. Therefore, we have the gains decay exponentially to

mitigate and, if possible, eliminate the oscillations when moving close to the ground. In

this strategy, phase I ensures that proper initial gains are chosen to have a good perfor-

mance of the tracking, while phase I I prevents self-induced oscillations when descend-

ing. In the following subsections, the stability analysis of the adaptive controller and the

real-time oscillation detection method used in this strategy are described in details.

3.5.2. STABILITY ANALYSIS OF THE ADAPTIVE CONTROLLER

In this subsection, we show that the linearized system is not subject to self-induced os-

cillations when the adaptive controller is used for constant flow divergence landings. In

fact, we know from Eq. (3.3) that Z = Z0eD∗t when D = D∗. As mentioned, to cope with

the instability problem, we introduce:

Kp = Kp0 eD∗t , Ki = Ki0 eD∗t (3.20)

where Kp0 and Ki0 are the initial gains of the PI controller which relates to the initial

height (K0 = f (Z0)) and can be obtained using the method presented in Subsection 3.5.1.

By recalling Eqs. (3.5) and (3.6), ṙ = [r2,µ]T and y(t) = [r2/r1], where r = [r1,r2]T =

[Z ,VZ ]T .

To understand the dynamical behavior of this system, we first analyze the phase por-

trait of the system. Fig. 3.16 shows the system’s trajectories with arrows and three cases

with different initial states. All states of these cases converge to zero in the end. Most

importantly, we can observe that positive VZ , which could happen due to external dis-

turbances, will eventually become negative (i.e., the MAV descends). This can also be

seen from Eq. (3.19) that when VZ becomes positive, the controller will further reduce

the thrust and lead to VZ < 0.

Here, we study the stability of the discrete system. We will see that even introducing

just a zero-order hold form in which it has a discrete sample time and thus a small delay

in the system already suffices to get self-induced instability. By linearizing and discretiz-

ing the system model, we obtain:

Φ=

[
1 ∆t

0 1

]
, Γ=

[
∆t 2

2
∆t

]

, C =

[
−

VZ

Z 2
1
Z

]
, D = [0]. (3.21)

The open-loop transfer function of the discrete system can be determined to be:

G(σ)=C (σI −Φ)−1
Γ

=
∆t [(2Z −∆tVZ )σ− (2Z +∆tVZ )]

2Z 2 (σ−1)2
,

(3.22)
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Figure 3.16: Phase portrait of the constant flow divergence landing.

whereσ is the discrete frequency domain operator (variable z typically used for this term

could be confused with the height Z , thus σ is used to avoid confusion).

The discrete form of the PI controller can be written as:

FP I (σ) = Kp

[
1+

∆t

2κ

(
σ+1

σ−1

)]
. (3.23)

The closed-loop transfer function of the discrete system is:

H(σ) =
G(σ) ·FP I (σ)

1+G(σ) ·FP I (σ)

=
N (σ)

D(σ)
,

(3.24)

where

N (σ) =Kp∆t [(∆t −2κ)+ (∆t +2κ)σ] [(∆tVZ +2Z )

+ (∆tVZ −2Z )σ] ,

D(σ) =Kp∆t
[
VZ∆t 2(σ+1)2

+2∆t(κVZ −Z )(σ2
−1)

− 4Zκ(σ−1)2
]
−4κZ 2(σ−1)3.

The zeros of the system can be obtained to be:

σ01 =
2Z +∆tVZ

2Z −∆tVZ
or σ02 =

2κ−∆t

2κ+∆t
. (3.25)
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We know that due to a relatively small and positive ∆t , Z > 0 and VZ < 0, thus 0 <σ01 < 1.

In contrast, σ02 depends on κ. For a stable discrete system, all poles should lie inside a

unit circle in σ-plane. From Eq. (3.24), we know that all poles are located at σ= 1 when

Kp = 0. As the gain increases, two poles move toward the two finite zeros presented in

Eq. (3.25) and the third pole moves toward the negative infinite zero. From this obser-

vation, there are two factors which can affect the stability of the system: (1) the gain at

σ=−1, the so-called critical P-gain, Kcr , and (2) the influence of κ on σ02 . For the reader

to understand the first case, we plot a root locus of the closed-loop discrete system for

Z = 100m and Z = 10m with ∆t = 0.03s in Fig. 3.17. In this figure, both results of the

different heights lead to the same root locus plot, but with different values of the gain

(see Eq. (3.26)). Let σ=−1 in Eq. (3.24), we obtain:
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Figure 3.17: Root locus of the closed-loop discrete system for two different heights.

Kcr =
2Z

∆t
. (3.26)

This relation is exactly the same as the one found in [50] for a pure P-controller. It shows

that the critical gain depends on the sample time ∆t , and - importantly - on the height

Z . From this result, the controller gain should be 0 < Kp < Kcr in order to have a stable

system. If K0 is set to be < 2Z /∆t and Kp scales with the same exponent as Z , it will stay

below that threshold for the rest of the trajectory.

For the second case, we investigate the influence of κ on σ02 , and thus the stability

of the system. Fig. 3.18 shows three root loci of the closed-loop discrete system for three

different values of κ. As mentioned above, one pole moves to σ02 , and another pole

moves to negative infinite zero. We will prove that a part of this root locus is a circle with

center located at σ02 . Since we know that these two poles are 1 and the finite zero is σ02 ,

we can write the system characteristic equation for this specific case to be approximately

[87]:

1+
Kp

(
σ−σ02

)

(σ−1)2
= 0 (3.27)

By substituting σ = ̺+ jχ where ̺ and χ are the real and imaginary part of σ into
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Figure 3.18: Root locus of the closed-loop discrete system for three different integral time constants.

Eq. (3.27), we obtain:

Kp

(
̺−σ02 + jχ

)

(
̺−1+ jχ

)2
=−1 (3.28)

We know that for every point on root locus, the angle condition must be satisfied:

tan−1

(
χ

̺−σ02

)
− tan−1

(
χ

̺−1

)
− tan−1

(
χ

̺−1

)
= 180o (3.29)

By solving Eq. (3.29), we get the following:

(
̺−σ02

)2
+χ2

=
(
1−σ02

)2
(3.30)

Eq. (3.30) shows that this part of the root locus is a circle centered at (σ02 ,0) with radius

1−σ02 in the σ-plane. Since this circle is tangent to the unit circle at 1, it will coincide

with the unit circle if σ0,2 = 0. From this result, the system is stable if σ0,2 ≥ 0 and hence

κ ≥
∆t
2 obtained from Eq. (3.25). In fact, in practice, the value of κ is usually set to be

much greater than 1, meaning that Kp >> Ki . Still, since Kp has to decrease when going

down, it means that Ki needs to decrease exponentially as well in order to prevent Ki >

Kp and keep κ constant.

To summarize, for the discrete system which possesses a small delay, instability of

the closed-loop system will happen if Kp > Kcr or κ<∆t/2. With the proposed adaptive

controller shown in Eq. (3.20), Kp and Ki are kept small enough to prevent self-induced

instability, while always being as high as possible to maximize control performance.

3.5.3. REAL-TIME OSCILLATIONS DETECTION

In the first phase of our landing strategy, the MAV has to increase its control gains until

it starts to self-induced oscillations. In addition, in phase I I it can happen that the MAV

is not able to keep the flow divergence constant, and that it descends too fast. In that

case, the exponentially decreasing gains Kp and Ki may cause self-induced oscillations

that have to be detected and dealt with (by resetting the gains to appropriate values). For

both these cases, we need a method to detect self-induced oscillations experienced by

the vehicle in real-time.
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There are a few methods in the literature to detect self-induced oscillations, typically

relying on a fast Fourier transform (FFT) [88, 89]. The reason an FFT is used, is that self-

induced oscillations are a “resonance” property of the control system and hence have

a typical frequency. However, FFT methods are computationally expensive. Therefore,

we detect self-induced oscillations by examining the covariance function of a windowed

flow divergence D̂ and a time-shifted windowed flow divergence D̂ ′:

cov(D̂ ,D̂ ′) = E [(D̂ −E (D̂))(D̂ ′
−E (D̂ ′)T )], (3.31)

where E (∗̂) is the expected value of windowed flow divergence. The covariance is chosen,

since it is much faster to compute than an FFT, while capturing both the relative phase

and the magnitude of deviations in the signal. The “price paid” is that it will only react

to a single frequency, but this is exactly what we want for the detection of self-induced

oscillations.

Fig. 3.19 illustrates the oscillations detection method using the covariance function. The

D̂ samplesD̂ ′ samples

1
2
P

Figure 3.19: Oscillations detection method using the covariance function, cov(D̂ ,D̂ ′).

D̂ ′ samples set is the previous samples set of D̂, which is 1
2
P lagging behind the current

samples set of D̂ , where P is the period of one full oscillation.

To show the feasibility of this method, consider the signals which are generated with

oscillations of different magnitudes (0.1, 0.3, 0.2) and frequencies (2, 1, 5 Hz), and noise

is added to these signals as shown in Fig. 3.20a. By computing their discrete Fourier

Transforms (DFT), the frequency of the oscillation in each signal can be found as pre-

sented in Fig. 3.20b. Then, the proposed covariance function of the generated signals

can be computed, based on the period of the oscillation known from the DFT. Fig. 3.20c

clearly shows that the covariances of the generated signals are large at the instance when

the oscillations occur.

This method is implemented on the MAV and tested in the same experiment pre-

sented in Fig. 3.14. Fig. 3.21 shows the covariance of the flow divergence, indicating that

we can successfully detect the oscillations in a real flight. For instance, in Fig. 3.14, we

observe that strong oscillations happen from 8s to 10s and from 12s to 20s, and this leads

to highly negative covariance values at these time instances as shown in Fig. 3.21. Thus,

this method provides a new way to detect oscillations in real-time.

3.6. FLIGHT TESTS

In this section, we present the flight tests results for vertical landing control using the

adaptive controller. The same MAV platform as described in Section 3.3.3 is used for

the experiments, with all vision and control algorithms running on-board. To show the
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(b) Discrete Fourier Transform of the generated signals.
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Figure 3.20: Generated signals with different magnitudes (0.1, 0.3, 0.2) and frequencies (2, 1, 5 Hz) of

oscillations and noise, and the corresponding Discrete Fourier Transform and covariances.
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Figure 3.21: Covariance of the flow divergence obtained from the experiment presented in Fig. 3.14.

robustness of the proposed method in the face of external disturbances, flight tests are

performed not only in indoor but also in outdoor environments as shown in Fig. 3.22. 2

Figure 3.22: Indoor and outdoor environments for the flight tests.

3.6.1. INDOOR FLIGHT TESTS

For indoor landing tests, the vertical control is performed using the flow divergence from

an on-board camera while the horizontal control is executed using the position and ve-

locity provided by the OptiTrack system. Fig. 3.23 shows the experiment results of the

landings at different desired flow divergence values (D∗ =−0.1,−0.2,−0.3).

From the results shown in this figure, the controller gains are gradually increased

until the first oscillation is detected while hovering, i.e., by tracking D∗ = 0. After ob-

taining the initial gains, the landing starts by tracking D∗ = −0.1, −0.2, or −0.3. There

are two important observations from these results: 1) D̂ ≈ D∗, and 2) cov(D̂ ,D̂ ′) is small

2Explanatory video with experiments: https://goo.gl/ZDPP3m
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(a) D∗ =−0.1.
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(b) D∗ =−0.2.
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(c) D∗ =−0.3.

Figure 3.23: Constant flow divergence landing using the adaptive controller (indoor environment).
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and bounded (≈ 10−3). This means that the tracking performance is good, and the self-

induced oscillations are prevented (see Figs. 3.14 and 3.21 for comparison). Additionally,

the adaptive control scheme performs well for the three desired flow divergences.

3.6.2. OUTDOOR FLIGHT TESTS

Outdoor flight is more challenging, due to the presence of wind. In outdoor experiments,

the vertical dynamics are also controlled using flow divergence, while the horizontal dy-

namics are stabilized using translational optical flow estimates. The wind speed during

the flights was reported to be around 8 knot s, and the maximum gust was approximately

10 knot s3. Fig. 3.24 shows the results of the outdoor landing tests at different desired

flow divergences (D∗ =−0.1,−0.2,−0.3).

From the outdoor flight results, the adaptive controller tracks the desired flow diver-

gences well, and the self-induced oscillations are prevented. Because of the unknown

wind disturbances, it can be observed that slight perturbations exist, but the controller

is sufficiently robust to deal with wind. Note that in the figure the height is obtained

from an ultrasound sensor, while the vertical velocity is provided from a GPS which has

an accurate of < 3m and has a relatively low update rate, i.e., 5H z. Both these sensors

have only been used for logging purposes, and not in the control.

3.7. CONCLUSIONS

A control strategy has been developed to solve the fundamental problem of gain se-

lection for constant flow divergence landings. The delay and noise models of the es-

timates were first obtained, and their effects on closed-loop control performance were

investigated. In the presence of the delay and noise, computer simulations as well as

real flight tests show that oscillations occur during the landings when a fixed-gain con-

troller is used. We propose an adaptive controller which first initializes a near-optimal

gain by means of an oscillating movement and then exponentially reduces this gain dur-

ing descent. A stability analysis shows that the adaptive gain strategy indeed prevents

self-induced oscillations and instability. This strategy was implemented on a Parrot

AR.Drone 2.0 with all vision and control algorithms running on-board. Multiple success-

ful landing flight tests, in both indoor and windy outdoor environments, were performed

using the adaptive gain strategy.

3Wind speed reference: https://www.windfinder.com/
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(a) D∗ =−0.1.
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(b) D∗ =−0.2.
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(c) D∗ =−0.3.

Figure 3.24: Constant flow divergence landing using the adaptive controller (outdoor environment).
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4
SURFACE SLOPE ESTIMATION

USING OPTICAL FLOW

Previous chapters show the low-level landing control of the MAV, which aims to deal

with the scaleless property of optical flow. This chapter investigates the high-level land-

ing control of the MAV which intends to search for suitable landing sites for an MAV.

The safe landing sites are defined as relatively flat surfaces that do not have a too large

inclination and, most importantly, are free of obstacles. To find a suitable landing site,

this chapter proposes an algorithm that fits the optical flow field using RANdom SAm-

ple Consensus (RANSAC). The results of the fitting provide two important estimates, i.e.,

the surface slope that represents the inclination of the ground surface and the surface

roughness which indicates the presence of obstacles. This chapter presents the landing

site selection using the surface slope for autonomous landing of an MAV.

This chapter begins by describing the vision algorithm that uses optical flow to esti-

mate useful information for MAV landing in Section 4.2. After that, Section 4.3 examines

the accuracy of the slope estimation by testing it on artificial images, hand-held videos,

and images from an MAV. Then, Section 4.4 discusses the results of a landing experiment

with an MAV. Lastly, conclusions are drawn in Section 4.5.

This chapter is based on the following article.

G. C. H. E. de Croon, H. W. Ho, C. de Wagter, E. van Kampen, B. D. W. Remes, and Q. P. Chu, Optic-flow based

slope estimation for autonomous landing, International Journal of Micro Air Vehicles 5, 287 (2013). [84]
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4.1. INTRODUCTION

Autonomous landing is an important capability for Micro Air Vehicles (MAVs), especially

if they have to operate outside line-of-sight. While a barometer provides information on

altitude, it does not provide information on the height of the MAV above the terrain, nor

on the suitability of the terrain for landing. Active sensors such as a laser scanner [15]

or multiple cameras as in stereo vision [77] do offer such information. They instanta-

neously estimate distances to many points on the landing surface. However, such sen-

sor setups only work at lower heights and are not energy or weight efficient. Since such

efficiency is important for MAVs, it would be beneficial to have a robust landing strategy

based on a single downward-pointing camera.

With a monocular camera setup, two main approaches to autonomous landing can

be employed. The first approach is visual Simultaneous Localization And Mapping

(SLAM) [22, 23], in which the 3D locations of all features in sight are determined. Various

approaches to visual SLAM have been proposed over the years, which have consistently

improved with respect to accuracy and computational effort [24, 80]. Still, SLAM deliv-

ers a lot of detailed information on the environment that is not strictly required for the

landing task, and hence uses more computational resources than necessary.

The second approach is bio-inspired in the sense that it directly uses the optical flow

field for control. The earliest studies of this approach [33, 44] are based on the biolog-

ical finding that bees keep the ventral flow constant during a grazing landing [36, 37].

The ventral flow is equal to the translational velocity divided by the height, and keep-

ing it constant results in a soft touch down. Since the ventral flow cannot account for

the vertical dynamics, recent engineering studies [47, 48, 90] complement the ventral

flow with the time-to-contact, i.e., the height divided by vertical velocity. Interestingly,

biologists have now confirmed that one of the engineered strategies is also used by hon-

eybees: they keep the time-to-contact constant while landing on flat surfaces [49]. The

advantage of a bio-inspired approach is that light-weight neuromorphic sensors with

high sensitivity and update frequency can be used directly for controlling the landing

[90, 91].

The above-mentioned bio-inspired landing studies focus on autonomous landing

on a flat surface. However, many real-world missions for MAVs will involve unknown

landing sites that may be cluttered or have a slope. Indeed, bees can choose their landing

site and adapt their body attitude to the slope of the surface on which they are landing

[92]. For an MAV the detection of the landing surface’s slope would also be of interest,

either for adapting the MAV’s attitude or for evaluating the suitability of the surface for

landing.

In this article, a computationally efficient computer vision algorithm is proposed

that uses a bottom camera. First, optical flow vectors are determined and then a sec-

ond order fit of the entire optical flow field is made. The fit provides information on the

ventral flow, time-to-contact, roughness of the landing surface, and surface slope. The

algorithm is computationally efficient and robust to noisy optical flow vectors that are

likely to occur in a real MAV landing scenario. In addition, it lends itself well for transla-

tion to algorithms for novel sensors that mimick insect eyes [57, 93].

The remainder of the article is structured as follows. In Section 4.2, the vision algo-

rithm is explained. It is tested on image sequences in Section 4.3. The results of a landing



4.2. VISION ALGORITHM FOR SLOPE ESTIMATION

4

61

experiment with a Parrot AR drone are discussed in Section 4.4. Finally, conclusions are

drawn in Section 4.5.

4.2. VISION ALGORITHM FOR SLOPE ESTIMATION

4.2.1. OPTICAL FLOW EQUATIONS FOR A SLOPED PLANAR SURFACE

The vision algorithm proposed for the slope estimation is based on the early optical flow

work in [85]. In the explanation of the algorithm, a pinhole camera model is employed.

The algorithm assumes (1) the camera to point downward, (2) the rotation rates to be

known from the MAV’s state estimation (e.g., using gyros), and (3) the landing surface in

sight to be predominantly planar. Under these assumptions, the optical flow vectors in

the image follow the equations:

u = (−Vx + xVz )/Z , (4.1)

v = (−Vy + yVz )/Z , (4.2)

with u and v the (derotated) optical flow in the x- and y-direction of the image, and Vx ,

Vy , Vz the motion in X , Y , and Z direction, respectively. x and y are image coordinates.

Figure 4.1 shows the relevant coordinate axes. Please note that the Z -axis is aligned with

the camera’s optical axis and that the coordinate (X ,Y , Z ) = (0,0,0) is located at the inter-

section of the camera’s principal axis with the ground surface. The height of the camera

above the ground surface is represented with h. The surface height Z can be modelled

as a plane:

Z = h+aX +bY , (4.3)

with h the height above the surface at (x, y) = (0,0). The slope angles of the surface are:

α= atan(a) (4.4)

β= atan(b) (4.5)

By a transformation of coordinates, in [85], the surface height is rewritten as:

z = (Z −h)/Z = ax +by, (4.6)

, where x = X /Z and y = Y /Z . Please remark that the normalized x-coordinate in

Eq. (4.6) is related to the pixel coordinate x̃ by x = x̃/ f̃ , where f̃ is the focal length in

pixels. In order to keep the equations uncluttered, normalized coordinates will be used

for the remainder of the article. However, one should keep in mind that the actual slope

angle in degrees can only be retrieved in the case of a calibrated camera (with f̃ known).

In addition to the coordinate transformation, the velocities are scaled with respect to

the height h, i.e., ϑx =Vx /h, ϑy =Vy /h, and ϑz =Vz /h. This leads to:

u = (−ϑx + xϑz )(1− z) (4.7)

v = (−ϑy + yϑz )(1− z) (4.8)

Replacing z with ax +by (from Eq. (4.6)), leads to:

u =−ϑx + (ϑx a +ϑz )x +ϑx by −aϑz x2
−bϑz x y (4.9)

v =−ϑy +ϑy ax + (ϑy b +ϑz )y −bϑz y2
−aϑz x y (4.10)
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Figure 4.1: Left: the main coordinate axes involved in the optical flow calculations. Right: illustration of a

ground surface with a nonzero slope α.

4.2.2. OPTICAL FLOW FIELD PARAMETER ESTIMATION

In [85], the rotational optical flow terms were left in, and the discussion hence goes to-

ward how to find the Focus-of-Expansion (FoE) and determine the first and second or-

der spatial flow derivatives at that point. In that way, all terms can be identified (trans-

lational, rotational, and the slopes of the surface). However, determining the FoE is a

difficult task in itself, and errors in its location can have a large influence on the subse-

quent results. In addition, since MAVs typically have access to gyro measurements, the

rotational components do not have to be determined. So instead of finding the FoE, the

vision algorithm proposed in this article immediately determines the parameters of the

optical flow field:

u = pu[1, x, y, x2 , x y]T , (4.11)

v = pv[1, x, y, y2 , x y]T , (4.12)

The parameter vectors pu and pv are estimated separately with a maximal likelihood

linear least squares estimate within a robust random sample consensus (RANSAC) esti-

mation procedure [86], with 5 points per fit and 20 iterations. Figure 4.2 illustrates the

result of such a fit.

4.2.3. EXTRACTION OF VARIABLES RELEVANT FOR LANDING

The so-determined parameters can then be used to estimate the following variables of

interest for an autonomous landing. The ventral flow is set to (ϑx ,ϑy ) = (pu0, pv0). The

time-to-contact and slopes can be retrieved from the first order spatial derivatives at the

center of the image (x, y) = (0,0):

∂u

∂x

∣∣∣∣
x=0,y=0

=ϑx a +ϑz = pu1, (4.13)

∂u

∂y

∣∣∣∣
x=0,y=0

=ϑx b = pu2, (4.14)

∂v

∂x

∣∣∣∣
x=0,y=0

=ϑy a = pv1, (4.15)

∂v

∂y

∣∣∣∣
x=0,y=0

=ϑy b +ϑz = pv2, (4.16)
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Figure 4.2: Illustration of the vision process. Top left: the determined optical flow vectors. Top right: quadratic

fits for the flow in x-direction (circle markers) and y-direction (cross-markers). Bottom left: estimated flow

field in x-direction. Bottom right: estimated flow field in y-direction. The motion of the camera is straight

towards the wall, which has an angle of ∼ 45◦ to the camera axis.

The slopes can then be retrieved as a = pv1/ϑy and b = pu2/ϑx . However, these equa-

tions become ill-conditioned and hence sensitive to even the smallest of noise if ϑx or ϑy

are small. If there is insufficient motion in X and Y direction, then it may still be possible

to estimate the slopes on the basis of the second order derivatives:

∂u

∂x∂x
=−2aϑz = 2pu3, (4.17)

∂u

∂x∂y
=−bϑz = pu4, (4.18)

∂v

∂x∂y
=−ϑz a = pv4, (4.19)

∂v

∂y∂y
=−2bϑz = 2pv3, (4.20)

which leads to two formulas for a and two formulas for b. However, all of these formulas

depend on ϑz , the relative vertical velocity. When looking at the formulas for the first

order spatial derivatives, one will notice that ϑz cannot be determined without knowing

a or b - seemingly introducing a chicken-and-egg problem. The solution lies in remem-

bering that we only need these second order derivatives if the ventral flow estimate(s)

are small. If, for example, ϑx ≈ 0 then:

∂u

∂x
=ϑx a +ϑz ≈ ϑz , (4.21)
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and, similarly, for ϑy ≈ 0:

∂v

∂y
=ϑy b +ϑz ≈ϑz , (4.22)

In summary, when the horizontal flow is not sufficient, the relative velocity ϑz can be de-

termined. In turn, this leads to slope estimates a =−pu3/ϑz , a =−pv4/ϑz , b =−pu4/ϑz ,

and b =−pv3/ϑz . All these equations become ill-conditioned if ϑz becomes small. This

is intuitive, since if there is also little motion in the Z -direction, then no estimates of

slope are possible. The remaining question is then how to deal with cases in which an

MAV has velocities in multiple directions. For optimal estimation, one should fuse the

different a and b estimates on the basis of their certainties and possible prior probability

distributions. However, in this preliminary work slopes are determined on the basis of

the first-order optical flow derivatives if there is sufficient motion in the X ,Y -plane and

only on the basis of the second-order optical flow derivatives if there is not.

The time-to-contact τ is determined on the basis of the divergence:

D =
∂u

∂x
+
∂v

∂y
(4.23)

, with τ = 2/D. Hence, τ includes the ventral flow and the slopes (see Eqs. (4.13) and

(4.16)). This makes sense, because in the case of pure horizontal motion, the MAV can

still intersect the landing surface if it has a slope. However, if one is only interested in the

component in the Z -direction, τ= 1/ϑz could be used. In the current work the first def-

inition is employed. Please note that in contrast to the slope angle, the time-to-contact

can also be determined without knowledge of f̃ . Moreover, the time-to-contact is in

principle expressed in frames. Knowledge of the time interval between image frames is

necessary to transform it to seconds.

Finally, the roughness of the slope is related to how good the optical flow vectors fit

with the above-described quadratic model. The RANSAC procedure returns a number of

inliers and an error, which can both serve as measures for roughness.

4.2.4. IMPLEMENTATION

A main decision for the implementation of the vision algorithm described above is the

choice of optical flow algorithm. We employ a sparse optical flow setup with the method

of Shi and Tomasi [94] to find good features for tracking and Lucas-Kanade’s pyramid

method [95] for optical flow determination. We have made both an implementation in

MATLAB, for off-line experiments, and in C++ for online experiments on an MAV. The

MATLAB code of the vision algorithm is available at http://mavlab.lr.tudelft.nl/,

so that the reader can test it on his / her own image sequences. Please note that the open

source code involves our own implementation of Lucas-Kanade’s optical flow tracking,

while we used the implementation of [71] for the experiments. This code gives slightly

better results. The code from [71] is openly available, but copyrighted, so we chose not

to include it in our code package. However, readers can download it and incorporate it

easily into the code.
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4.3. EXPERIMENTS ON IMAGE SEQUENCES

In this section, a preliminary test of the vision algorithm is performed by applying it to

various image sequences. The algorithm is tested on three types of image sequences:

(1) image zooms, (2) manually made videos, and (3) images from the Parrot AR drone.

Figure 4.3 shows five example images.

Artificial

Image

Handheld

Video Images
Onboard

Image

Figure 4.3: Example images. From left to right: artificial image, images from manual videos (wall, flat scene,

structured scene), image from the drone’s bottom camera.

The test on artificial image sequences is motivated by the fact that in this setup the

ground-truth values are exactly known. The virtual camera used in these experiments

has a field-of-view of 50◦ and generates relatively small 256×256 pixel images. To test

the determination of time-to-contact, five image zooms were performed on a flat roof

texture. The ground-truth time-to-contact decreases at a constant rate from 200 to 5.

The results of the time-to-contact estimation are shown in Figure 4.4. The estimated

time-to-contact is very accurate, even up to 200 frames from contact.
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Figure 4.4: Results of time-to-contact estimation on five image zooms. The ground-truth time-to-contact

goes from 200 to 5.

In order to test the slope estimation, a virtual camera moves with respect to the

roof texture image, which is placed at various slope angles in the X -direction: α ∈

{0,15,30,45,60}◦ . Three types of movements are studied: horizontal movement in the

X -direction, horizontal movement in the Y -direction, and vertical movement towards

the artificial landing surface (Z -direction).

Figure 4.5 shows the results of the artificial movement sequences. The top left

plot shows the slopes estimated during a constant movement in the Y -direction (with

ϑy ∼ 3). Overall, the estimated slopes are rather close to the ground-truth values, with

errors in the order of a few degrees. There are a few outlier cases with errors of up to 15

degrees. The top right plot shows the more difficult case of a constant movement toward

the surface, in the Z -direction. Although the estimates rely on second-order derivatives,
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the slopes are still estimated rather accurately. During the last 10 time steps of the ap-

proach, the implemented optical flow algorithm has problems determining the correct

optical flow vectors. This leads to a degradation of the slope estimation. The bottom

left plot shows the slopes estimated during a constant movement in the X -direction. Al-

though the results are close to the ground-truth values at the start of the approach, after

40 frames a few of the estimates start to deviate from the ground-truth in the order of

tens of degrees. The cause of this phenomenon lies in the fact that the movement brings

the virtual camera further from the landing surface, reducing the magnitude of the ven-

tral flow ϑx . The bottom right plot shows ϑx over time during the movement. A smaller

ventral flow leads to less accurate slope estimates.

Time (frames)

S
lo

p
e
α

(o
)

0 10 20 30 40 50 60 70 80 90 100
-10

-5
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

Time (frames)

S
lo

p
e
α

(o
)

0 10 20 30 40 50 60 70 80 90 100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80
90

Time (frames)

S
lo

p
e
α

(o
)

0 10 20 30 40 50 60 70 80 90 100
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80

Time (frames)

V
e

n
tr

a
l

fl
o

w
u

0
(1

/s
)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.5: Slope estimation results on artificial movement sequences. The ground-truth values for the slopes

α are {0,15,30,45,60}◦ . Top left: slopes estimated during movement in the Y -direction. Top right: slopes

estimated during movement in the Z -direction. Bottom left: slopes estimated during movement in the

X -direction. Bottom right: ventral flow ϑx during movement in the X -direction.

For further testing, three sets of videos have been made of a textured wall. In the first

set the camera moves in the Y -direction (first up and then down), in the second set in

the X -direction (first left and then right), and in the third set the camera moves in the Z -

direction (in this case toward the wall). Put in a landing context, the first two sets cover

horizontal motion, while the third set covers vertical motion toward the landing surface.

Each set contains 5 image sequences in which the angle of the wall roughly iterates over

the angles {0,15,30,45,60} degrees. Please remark that the camera is moved in-hand, so

additional motions and even rotations are present in the images. Since there is no clear

ground-truth and the camera is uncalibrated, this experiment mainly serves the goal of
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verifying that the slope a increases with an increasing angle to the wall (the slope values

are not transformed to angles in this case). Figure 4.3 shows an example image from the

sequence at ∼ 45 degrees.
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Figure 4.6: Results of slope estimation on video sequences. Left: motion in Y -direction. Right: motion in

X -direction. The plots show the estimated slope a (y-axis) over time (x-axis). The brightness of the lines are

determined by the angle with the wall, with the darkest color corresponding to 0 degrees and the brightest

color corresponding to 60 degrees.

Figure 4.6 shows the results of this experiment for motion in the Y -direction (left

plot) and X -direction (right plot). The plots show the estimated slope a (y-axis) over

time (x-axis). The brightness of the lines are determined by the angle with the wall, with

the darkest color corresponding to 0 degrees and the brightest color corresponding to 60

degrees. The lines are somewhat noisy, especially when the motion gets small, e.g., at

reversal points of the movements. However, in both plots, a clear ordering can be seen

from dark to bright slopes, as desired.
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Figure 4.7: Results of slope estimation on video sequences with the camera moving in Z -direction. The plots

show the estimated slope a (y-axis) over time (x-axis). The brightness of the lines are determined by the angle

with the wall, with the darkest color corresponding to 0 degrees and the brightest color corresponding to 60

degrees.
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Figure 4.7 contains the results for motion in the Z -direction, illustrated in the same

manner. In this case, the results are much less clear. The lower degree slopes switch

between positive and negative values, while the higher degree slopes are constantly neg-

ative. The worse results may be explained by the rotations in the video not accounted

for by optical flow derotation. In addition, the second-order spatial derivatives of the

optical flow field are more difficult to determine than the first order ones.
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Figure 4.8: Results for estimation of landing surface roughness. Mean absolute error of the quadratic fits

(y-axis) over time (x-axis). The black lines illustrate the results for the flat surfaces, while the red lines

illustrate the results for the scenes with 3D structure.

Subsequently, the detection of roughness is tested with the help of two sets of each

three videos. The first set contains flat surfaces, while the second set contains consider-

able 3D structure. The videos are made by moving toward the ground surface, i.e., in the

Z -direction. The results are shown in Figure 4.8, which shows the mean absolute errors

of the quadratic fits. The black lines illustrate the results for the flat surfaces, while the

red lines illustrate the results for the scenes with 3D structure. The videos of flat sur-

faces have clearly a lower error than the videos of structured scenes. However, placing

a threshold is not straightforward, as the error also seems to depend on the time-to-

contact. In particular, lower time-to-contacts entail larger optical flow, which leads to

larger errors.

Finally, the slope estimation algorithm is run on the 160× 120 pixel images of the

Parrot AR drone’s bottom camera, while it moves down a stairs. The rotations of the

drone are not accounted for by derotation. Figure 4.9 shows the estimated slope a in

the x-direction (blue) and b in y-direction (green) during a part of the trajectory over

the stairs. The y-direction is in the direction of the stairs. Indeed, while a is reasonably

small and switches from positive to negative and back, b is larger and mostly negative,

as it should be. Please note that the slopes are not expressed in angles.

In summary, when the camera is calibrated and rotation is accounted for, the vision

algorithm is able to retrieve the angle of a landing surface rather accurately. In the case of

an uncalibrated camera and in the presence of small rotations, the slope estimates vary

clearly with the angle of the wall in the case of movements in the X ,Y -plane. The slope



4.4. LANDING EXPERIMENT

4

69

Time (frames)

S
lo

p
e

s
a

,
b

130 140 150 160 170 180 190 200 210
-20

-15

-10

-5

0

5

×10−3

Figure 4.9: Results for estimation of slope with the Parrot AR drone’s bottom camera. The plot shows a (blue)

and b (green) over time (x-axis).

angle estimation then depends only on the first order spatial derivatives of the optical

flow. A higher ventral flow leads to better slope estimates. The results on videos with

motion in the Z -direction give worse results. Finally, the vision algorithm provides a cue

for the detection of 3D structure below the MAV.

4.4. LANDING EXPERIMENT

The above-described vision algorithm is implemented in TU Delft’s SmartUAV ground

control station, and tested in real-time on a Parrot AR drone. The goal of the experiment

is to show that the vision algorithm can work in real-time, real-world conditions.

In order to show that the vision algorithm can be used in a generic way, a staircase

was chosen as the test environment. Stairs are challenging, since it is not a flat inclined

surface. The setup for the experiment is presented in Figure 4.10. The experiment started

with a forward motion of the drone (in the Y -direction) generated by a small pitch angle.

This forward motion was controlled by proportional controller using the feedback of the

velocity estimated from the AR drone optical flow measurement. The purpose of moving

the drone in forward direction was to generate ventral flow to estimate the slope in real-

time. The drone thus travels down the stairway and to a flat ground in the end. The

height of the drone was under control of the Parrot firmware, implying that it remained

at a fixed height above the steps of the stairs.

A simple landing strategy was used in this preliminary experiment, i.e. when the

value of the estimated slope was close to zero b ∈ [−0.0005,0.0005], a landing command

was given to land the drone immediately. The results of the estimated slope b from the

onboard images captured during the flight is shown in Figure 4.11. It is clearly seen that

the value of the slope was always negative when the drone was flying above the stairs. At

the instant when it reached the flat surface, the value of the slope changed its sign and

the autoland was activated to bring the MAV to the ground.

Please note that the drone moves forward by pitching forward. The experimental
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land flat

stairs

Figure 4.10: Landing experiment setup

results show that this considerably influences the estimated slope, which was not ac-

counted for in the code. This led to slightly less negative slope values above the stairs

and slightly more positive slope values above the flat floor1. If a camera calibration is

available, the angle of the surface can be estimated in degrees. The estimated attitude of

the MAV can then be subtracted from this angle.
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Figure 4.11: Real-time slope estimation results with the Parrot AR drone’s bottom camera. The plot shows the

estimated slope b and images taken from the onboard camera over time (x-axis)

4.5. CONCLUSION

The main conclusion is that the proposed vision algorithm is able to extract ventral flow,

time-to-contact, roughness, and slope of the landing surface beneath an MAV. A prelim-

inary landing experiment shows that the algorithm is computationally efficient enough

to run in real-time and can discriminate between the stairs and a flat surface. The exper-

iments show that it is important to take into account the pitch angle of the MAV while

determining the slope of the surface.

Future work will focus on a further investigation of how optical flow can be used

to best estimate the variables of interest. For example, the current maximal likelihood

estimation has its limitations, especially if there is a lot of noise or if the assumption is

violated that rotation is accounted for. A maximal a posteriori estimate probably would

1A video of the experiment can be found here: http://www.youtube.com/watch?v=TXIPb1NvUJY
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better cope with such situations. In addition, combining slope estimates in a Bayesian

fashion could considerably improve the estimates and allow for the exploitation of

translation in multiple directions. In order to create such a Bayesian estimation scheme,

we need to gain more insight into matters such as the relation between the magnitude

of the ventral flow and slope estimation accuracy. Finally, in this article we have not

studied the control-part of landing in detail. In future work, a more elaborate landing

procedure utilizing the estimated variables will be devised and tested in a more complex

environment.





5
SELF-SUPERVISED LEARNING OF

OBSTACLE APPEARANCE

In the previous chapter, the surface slope estimated from the optical flow is used to find

a suitable landing site for an MAV. However, using optical flow requires the MAV to move.

When there is hardly any vehicle movement, there is not enough visual information. To

solve this problem, this chapter attempts to ‘go beyond’ optical flow approaches for the

safe landing site selection. A novel setup of self-supervised learning (SSL) is introduced,

in which optical flow serves as a scaffold to learn the visual appearance of obstacles.

This chapter first discusses related works on self-supervised learning in Section 5.2.

After that, Section 5.3 describes the proposed concept to learn the visual appearance of

obstacles based on the surface roughness from optical flow. Then, Section 5.4 shows

the results of both optical flow- and appearance-based obstacle detection. Section 5.5

explains the generalization of the SSL approach to different environments. In Section 5.6

demonstrates landing experiments where the proposed algorithms run onboard an MAV.

Section 5.7 discusses the results and potential applications of the proposed approach.

Finally, conclusions are drawn in Section 5.8.

This chapter is based on the following articles.

H. W. Ho, C. De Wagter, B. D. W. Remes, and G. C. H. E. de Croon, Optical flow for self-supervised learning

of obstacle appearance, in Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on

(IEEE, Hamburg, Germany, 2015) pp. 3098–3104 [96].

H. W. Ho, C. De Wagter, B. D. W. Remes, and G. C. H. E. de Croon, Optical-flow based self-supervised learning

of obstacle appearance applied to MAV landing, The International Journal of Robotics Research (submitted).

[97]
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5.1. INTRODUCTION

To reduce the risk and cost of human intervention, autonomous flight of Micro Air Vehi-

cles (MAVs) is highly desired in many circumstances. In particular, autonomous landing

is a challenging, but essential task of the flight, as it needs to be done in a limited space

and time [78]. Hence, quickly searching for a safe landing spot is required during landing

in autonomous flights [98].

Many existing methods for finding a suitable landing spot use multiple cameras [17–

19] or active sensors such as a laser range finder [15, 77] to estimate the distance to many

points on the landing surface. While both methods can provide accurate measurements,

their perception range is limited and they are heavy and costly for small MAVs. Therefore,

use of a single camera is preferable as it is light-weight and has low power consumption

[79].

State-of-the-art algorithms for autonomous landing purely rely on motion cues.

There are two main approaches: (1) visual Simultaneous Localization and Mapping

(SLAM) and (2) bio-inspired optical flow control.

The first approach can be categorized into feature-based and direct methods to solve

the SLAM problems, i.e., to determine the vehicle’s location and 3D-structure of the sur-

rounding environment. The feature-based method [28, 80] decouples these SLAM prob-

lems into extraction of features and computation of camera pose and scene geometry

based on tracking these features [22–24]. However, this approach is not sufficiently ro-

bust to challenging scenes where the features are hardly detected. The direct method

tries to avoid this limitation by using image intensities directly to generate (semi-) dense

maps [25–27]. Although the computational efficiency and accuracy of visual SLAM have

been improved over the years [28–32], this approach still uses more computational re-

sources than are strictly necessary.

The second approach is inspired by flying insects, which heavily rely on optical flow

for navigation. Biologists first found that honeybees perform a grazing landing by keep-

ing the ventral flow (lateral velocities divided by height) constant [33, 36, 37, 44]. This

approach guarantees a soft landing but does not control its vertical dynamics. To deal

with that, recent studies proposed using time-to-contact (height divided by vertical ve-

locity) [47–49]. The optical flow field can also be used during landing to identify and

avoid obstacles [84, 99].

For sensing obstacles with motion cues, either the vehicle or the obstacle obviously

needs to move. This requirement is a drawback of motion cue approaches because it

would be both safer and more efficient for MAVs that have hovering capability to de-

tect the obstacles underneath the vehicle in hover. This would require MAVs to exploit

currently unused appearance cues - the information contained in still images. Human

pilots are very able to identify potential landing sites in still images, by recognizing ob-

stacles and flat landing areas in view. This is based on years of experience, to learn what

obstacles look like.

In this paper, we propose an approach that allows MAVs to learn about the appear-

ance of obstacles and suitable landing sites completely by themselves. The approach

involves a novel setup of Self-Supervised Learning (SSL), in which motion cues provide

the targets for the supervised learning of a function that maps appearance features to a

surface roughness measure (see Fig. 5.1 for an overview). We showed the feasibility of
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the proposed SSL concept in [96]. The current article significantly extends upon [96] by

means of a systematic analysis with experiments. This includes experiments in which

the learned appearance is used in the control loop and a study of the generalization of

the learned appearance to various indoor and outdoor environments.
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Figure 5.1: Overview of the novel self-supervised learning (SSL) setup. The MAV starts flying using a roughness

measure ǫ∗ extracted from optical flow algorithm (left). A function is learned that maps appearance features,

q from a still image to an estimate of the roughness measure ǫ̂ (right). After learning, the MAV can determine

whether there are obstacles below based on a still image, allowing landing site selection in hover.

The remainder of the article is set up as follows: In Section 5.2, we discuss related

work on self-supervised learning in more detail. In Section 5.3, we describe our pro-

posed concept to learn the visual appearance of obstacles based on surface roughness, ǫ∗

from optical flow. Section 5.4 presents the results of both optical flow- and appearance-

based obstacle detection, and Section 5.5 explains generalization of our SSL approach

to different environments. Then, Section 5.6 demonstrates landing experiments where

the proposed algorithms run onboard an MAV. In Section 5.7, we discuss the results and

potential applications of the proposed approach. Finally, we draw conclusions in Sec-

tion 5.8.

5.2. RELATED WORK

There are several remarkable achievements with SSL on autonomous driving cars, where

stereo vision, laser scanners, or bumpers provided supervised outputs to learn the ap-

pearance of obstacles on the road [100–102]. In [100, 101], a close-range map is gener-

ated by the laser scanners to identify a nearby patch of drivable surface. This patch is

used to train appearance models to extend the road detection range. In [102], terrain

classification obtained from 3D information using stereo camera is used for training a

convolutional neural network (ConvNet). The input image patches to the trained Con-

vNet need to be normalized based on the estimated distance so that the obstacles always

have the same size. Then, the trained model can be used to detect obstacles beyond the

range of stereo camera.

In [103], optical flow was used for tracing back the obstacles in time when they are

far away. The supervised outputs were still provided by stereo vision and bumpers. A

non-linear regression based depth estimation method using only a monocular camera
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was used for MAVs to learn a deliberate scheme for navigating through a cluttered en-

vironment [104]. However, the training set was made using a stereo vision system on a

ground robot and offboard image processing was done in the flight.

A major difference of the approach we propose and previous work on SSL is that

optical flow is used for generating the supervised outputs. To the best of our knowledge,

there is only one other SSL study that also used optical flow to provide the supervised

outputs. The study in [105] used optical flow from a camera mounted on a car to learn a

ground color model, assuming knowledge of the camera position relative to the ground.

The learned ground color model aided in filtering optical flow vectors in order to improve

the accuracy of the optical-flow based visual odometry.

In this article, we use the optical flow from a downward-looking camera mounted on

an MAV to learn the appearance of obstacles. In contrast to [105], we intend for the MAV

to be able to use the learned appearance of obstacles even in the absence of supervisory

cue of optical flow. This leads to a very interesting extension of the MAV’s autonomous

flight capabilities: while the robot initially only uses motion cues, and hence needs to

move significantly in order to see obstacles, after learning it is able to see obstacles with-

out moving.

5.3. METHOD

An overview of the proposed method is shown in Fig. 5.1. In the proposed setup of SSL,

the MAV first uses optical flow to determine the landing surface roughness ǫ∗. Simulta-

neously, the MAV extracts appearance features from each image, resulting in a feature

vector q. During operation, it uses the ǫ∗ as targets for the supervised learning of f (q),

a function that maps appearance features to the surface roughness. After learning, the

MAV can map q directly to an estimate of surface roughness ǫ̂.

In this study, we focus on computationally efficient methods for the real world appli-

cation to small MAVs which have limited computing capabilities. Therefore, we select a

fast computer vision method and straightforward learning model which are suitable for

real-time implementation. However, the proposed SSL setup does not preclude the use

of other advanced computer vision and learning methods which could give even better

results in terms of accuracy and generalization, at the cost of more computational effort.

We explain our method in three subsections. First, in Subsection 5.3.1 the optical

flow algorithm to estimate ǫ∗ is introduced. Second, in Subsection 5.3.2 the texton

method to represent appearance with q is explained. Finally, in Subsection 5.3.3 the

learning of the function f(q) is described.

5.3.1. SURFACE ROUGHNESS FROM OPTICAL FLOW

In this section, a computationally efficient method is proposed to extract information

from the optical flow field, which will allow the MAV to detect obstacles and determine

if a landing spot is safe. The optical flow algorithm used to determine a safe landing spot

is based on early findings in [85]. The algorithm was developed in previous research [84]

by assuming that (a) a pinhole camera model pointing downward is used, (b) the surface

in sight is planar, and (c) the angular rates of the camera can be measured and used to

de-rotate the optical flow. Under these assumptions, the equation of the optical flow
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vectors can be expressed as follows:

u =−ϑx + (ϑx a +ϑz )x +ϑx by −aϑz x2
−bϑz x y, (5.1)

v =−ϑy +ϑy ax + (ϑy b +ϑz )y −bϑz y2
−aϑz x y, (5.2)

where u and v are the optical flow vectors in x and y image coordinates system, respec-

tively (see Fig. 5.2). ϑx =Vx /h, ϑy =Vy /h, and ϑz =Vz /h are the corresponding velocities

in X , Y , and Z directions scaled with respect to the height h. Slope angles of the surface,

α and β are the arctangent of a and b, respectively in Eqs. (5.1), (5.2). In this work, we

compute optical flow using the sparse corner detection method with FAST [69, 70] and

Lucas-Kanade tracker [71] to reduce computation for on-board processing. Note that

since this proposed concept does not constrain the way to compute optical flow, other

methods computing optical flow, e.g. dense optical flow can also be used.
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Figure 5.2: Left: A pin hole model. Right: An inclined ground surface with slope α.

By re-writing Eqs. (5.1) and (5.2) into matrix form as shown below, the parameter

vectors pu = [pu1, pu2, pu3, pu4, pu5] and pv = [pv1, pv2, pv3, pv4, pv5] can be estimated

using a maximal-likelihood linear least-squares estimate within a robust random sample

consensus (RANSAC) estimation procedure [86]:

u = pu[1, x, y, x2 , x y]T , (5.3)

v = pv[1, x, y, y2 , x y]T . (5.4)

These fits using RANSAC returns the number of inliers and the fitting error. If there are

obstacles sticking out of the landing surface, their optical flow vectors will not fit with

the second assumption of a planar landing surface. This leads to a higher fitting error,

ǫ∗ which can thus be interpreted as a measure of average surface roughness of the entire

area in the field of view in Eq. (5.5):

ǫ∗ = ǫu +ǫv , (5.5)

with ǫu and ǫv sum of absolute errors of the RANSAC estimation in Eqs. (5.3) and (5.4) di-

vided by the number of tracked corners. Thus, we can use ǫ∗ to detect obstacles near the

ground surface by fitting the optical flow field. Note that Eqs. (5.1) and (5.2) can be sim-

plified by neglecting the second-order terms if the MAV only moves laterally. Therefore,

a linear fit of the optical flow field can be used.
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5.3.2. APPEARANCE FROM TEXTON DISTRIBUTION

In this study the visual appearance is described using the texton method [106], based

on the extraction of small image patches (see Fig.5.3). The advantage of using texton

method is that it not only encodes the color distribution of an image, but also their tex-

tures. This improves the accuracy of the appearance representation while maintaining

its efficiency for real-time application.

With this method, first a dictionary is created consisting of textons, i.e., the cluster

centroids of small image patches. For our implementation, we follow our previous work

in [107], and learn the dictionary with Kohonen clustering [108]. After creation of the

dictionary, image appearance can be represented as a texton distribution. To this end,

a number of image patches are randomly extracted from an image and per patch the

closest texton can be added to a corresponding bin in a histogram. By normalizing it

with the number of patches, a maximum likelihood estimate of the texton probability

distribution q is obtained. The texton method showed competitive results on texture

classification tasks [106] with respect to computationally much more complex methods

such as Gabor filter banks. In previous research, the texton method has been used to

calculate the appearance variation cue [109] and to learn how to recognize heights and

obstacles [107] but it was never applied to SSL.
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Figure 5.3: Texton Method: A number of image patches is randomly selected from an image. The patches are

then compared to textons in a dictionary to form a texton probability distribution of the image.

5.3.3. REGRESSION LEARNING OF SURFACE ROUGHNESS

In order to learn the visual appearance of obstacles on the landing surface, a regression

model is learned that maps a texton distribution to a surface roughness value. This func-
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tion is learned by using the optical flow based roughness estimate ǫ∗ as the regressand.

In this subsection, we choose one of the regression methods for SSL based on the pre-

liminary test results.

To show feasibility and reliability of the relationship, various regression methods

(such as Linear, Ridge, LASSO, Kernel smoother, Pseudo-inverse, Partial least squares, k-

nearest neighbor regressions) were tried out to perform the learning using prtools [110]

in MATLAB. Preliminary tests have shown little difference between the learning meth-

ods. For instance, the normalized Root Mean Square Errors (NRMSE) computed using

Eq. (5.6) on the test sets are ∼ 10% for the learning methods.

NRMSE =
1

ǫ∗max −ǫ∗
min

√∑n
t=1(ǫ̂t −ǫ∗t )2

n
, (5.6)

Since they all give reasonably good results, the linear regression method is used for

this study, due to its simplicity and computational efficiency. After obtaining the texton

distributions q of m number of visual words and the roughness ǫ∗ for n images, a linear

regression model expressed in Eq. (5.7) can be trained.

f (qi ) = ρ1qi1 + ...+ρm qim +Λ, i = 1, ...,n (5.7)

whereΛ is a bias and ρ are the regression coefficients, which are optimized so that f (q)≈

ǫ∗.

5.4. OBSTACLE DETECTION

In this section, we test how well the methods in Section 5.3 work to detect obstacles.

To this end, we made multiple image sets of onboard MAV images from a downward-

looking camera. Outdoors MAV flew at ≈ 15 meters high in 9 different environments,

ranging from a car parking lot to a park. Indoors MAV flew at ≈ 2 meters high in 9 dif-

ferent indoor environments, ranging from the canteen to office spaces. Both the indoor

and outdoor datasets show considerable variation in appearance of the landing surface

and obstacles, and hence represent a significant challenge for machine learning meth-

ods. Fig. 5.4 shows the onboard images without (left) and with (right) obstacle of each

environment.

S1 S2 S3

S4 S5 S6

S7 S8 S9

(a) Outdoor datasets

S1 S2 S3

S4 S5 S6

S7 S8 S9

(b) Indoor datasets

Figure 5.4: Image datasets collected from outdoor and indoor environments (Scenes S1-S9). For each environ-

ment, an image is shown without obstacle (left) and with obstacle (right).
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5.4.1. OBSTACLE DETECTION WITH SURFACE ROUGHNESS

To show that the proposed surface roughness, ǫ∗ can be used as a metric to detect ob-

stacles, images from the datasets were analyzed. Fig. 5.5 presents optical flow vectors

measured from the consecutive images, and their fits of the optical flow field. In this

figure, optical flow vectors are indicated by arrows in the image while the fit planes are

presented in green and the error thresholds are shown as the gray planes. The red ar-

rows in the images and red dots in the fits indicate which optical flow vectors contribute

to larger error of the fits, the so-called outliers. When there is no obstacle or 3D structure

in the images, the measured optical flow vectors are uniform, and thus most of them lie

on the fitted plane within the bound of error threshold. This can be seen from the fits of

the optical flow on the grass field in Fig. 5.5a. In contrast, irregular optical flow vectors

can be expected from the images containing obstacles. This leads to more outliers or

larger errors of the fits as shown in Fig. 5.5b (trees on the right), Fig. 5.5c (chair below the

table), and Fig. 5.5d (fence on the top).
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(a) Non-obstacle (grass field)
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(b) Obstacle (trees)
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(c) Obstacle (table and chair)
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(d) Obstacle (fence)

Figure 5.5: Outdoor and indoor images without and with obstacles, and their corresponding optical flow fits.

Non-obstacle: Consistent optical flow vectors (black) contribute to low fitting errors. Obstacle: Irregular opti-

cal flow vectors (red) lead to high fitting errors.

In addition, we analyzed for all 9 scenes in both outdoor and indoor environments

datasets the surface roughness, ǫ∗ estimated from the optical flow algorithm (black line)

when the MAV flew over areas without and with obstacles. Fig. 5.6 presents the results

of 2 scenes out of 9 for outdoor (S9 and S2) and indoor (S1 and S4) environments. This

figure clearly shows that the roughness value is higher when there is an obstacle than

when there is no obstacle on the landing surface. Note that we can see from this figure

that the scale of the surface roughness varies with heights in flights (outdoor ≈ 15 m and

indoor ≈ 2 m), and this observation is discussed in Section 5.7.

To evaluate the classification capability using ǫ∗, we labeled the test set using a

threshold of ǫ∗
th

= 0.3 and compared to manually labeled results using images. The true

positive (TP) rate (the portion of obstacles that are detected) and false positive (FP) rate

(the portion of empty landing areas wrongly classified as containing an obstacle) for all
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(d) Indoor scene II (S4)

Figure 5.6: Obstacle detection using roughness estimates ǫ∗ from optical flow algorithm and ǫ̂ from appear-

ance while navigating.

scenes shown in Fig. 5.6 are computed and shown in Table 5.1. In this table, most of

the classification results show high proportions of correct identification of obstacles and

non-obstacles images. However, the fence shown in Fig. 5.6b can sometimes be missed

by the feature point tracker set to only track 25 points. The undetected obstacles mostly

appear at the border of the images as shown in Fig. 5.7. For example, we can see that

from top left to bottom right images in this figure, the undetected obstacles appear ei-

ther on the top right (trees), top (fence), top (chairs), or left (chair). The result shows that

despite the sparseness of feature-based optical flow tracking, this algorithm generally

manages to detect the obstacles in the field of view and thus identify safe landing spots.

While results can be improved with more computational power, this work will show the

applicability of the method even in the case of severe computational limitations.

Table 5.1: Performance measure of a classification test using surface roughness, ǫ∗

Metrics Fig. 5.6a Fig. 5.6b Fig. 5.6c Fig. 5.6d

TP rate 0.99 0.95 0.96 0.91

FP rate 0.12 0.24 0.01 0.00

5.4.2. OBSTACLE DETECTION WITH VISUAL APPEARANCE

In this subsection, training and testing is done in the same scene, where training is done

on the first 80% of a dataset and testing on the remaining 20% of the data set. First, a
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Figure 5.7: Undetected obstacles with surface roughness, ǫ∗.

dictionary was trained, and an example dictionary for scene S5 in each indoor and out-

door dataset is shown in Fig. 5.8. As can be seen from this figure, some textons represent

a specific type of color while other textons represent a specific type of texture, such as

horizontal or vertical gradients.

(a) Outdoor dictionary (b) Indoor dictionary

Figure 5.8: Trained dictionaries used in texton method for scene S5 in outdoor and indoor datasets.

Then, a linear regression model was trained to map the texton distribution which

represents the appearance of the image to the roughness ǫ∗ estimated with the optical

flow algorithm. Table 5.2 presents the performance metrics of the learning and classi-

fication shown in Fig. 5.6. The NRMSE show that it is more challenging to learn the re-

gression model in more complex indoor environments where the appearance variation

is larger. Concerning the TP rates, overall results are comparable or slightly better than

the classification using ǫ∗. However, for indoor environments, the FP rates are higher

due to complexity of the indoor scenes. Fig. 5.9 shows some undetected obstacles with

visual appearance, ǫ̂. Although the TP rates are slightly higher than the TP rates of op-

tical flow approach, obstacles appearing at the border of the image can sometimes be

missed. The bottom right image is interesting, since the border of the table is the missed

“obstacle”. The objects on the table (like the closed laptop) are actually too flat to form
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a real obstacle to landing. Next, we are going to show that the learned model is able to

detect obstacles when there is a movement (while translating) and no movement (while

hovering), and also the results of pixel-wise obstacle segmentation.

Table 5.2: Normalized Root Mean Square Errors (NRMSE) on test sets

Metrics Fig. 5.6a Fig. 5.6b Fig. 5.6c Fig. 5.6d

NRMSE (%) 10.8 12.7 20.7 19.1

TP rate 0.96 0.96 0.97 0.96

FP rate 0.00 0.20 0.51 0.18

Figure 5.9: Undetected obstacles with visual appearance, ǫ̂.

WHILE TRANSLATING

To compare ǫ̂ with ǫ∗ from optical flow algorithm, we also plotted ǫ̂ (red line) on Fig. 5.6.

This figure clearly shows that both roughness estimates are higher when there is an ob-

stacle than when there is no obstacle on the landing surface. Thus, the results demon-

strate that the MAV can detect obstacles using ǫ̂ and thus identify safe spots to land upon.

WHILE HOVERING

Having to move close to obstacles in order to detect them takes time and represents a

risk. It would be more efficient and safer to detect obstacles without needing to move.

Fig. 5.10 and Fig. 5.11 show texton distributions for obstacles and non-obstacle images

and their corresponding ǫ̂ for outdoor and indoor scenes, respectively. From these fig-

ures, we can observe that the texton distribution is rather different for images with and

without obstacles. After learning this results in different surface roughness values ǫ̂.
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(b) Trees

Figure 5.10: Outdoor scene: Obstacle detection using roughness estimates ǫ̂ from appearance while hovering.
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Figure 5.11: Indoor scene: Obstacle detection using roughness estimates ǫ̂ from appearance while hovering.
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PIXEL-WISE OBSTACLE SEGMENTATION

The roughness value resulting from the optical flow algorithm is a global value for the

presence of obstacle in the entire image. This study shows, after SSL, that the MAV will

not only be able to detect the presence of obstacles, but will even be capable of pixel-

wise segmentation of obstacles. The basis for this capability is the local nature of the

image patches involved in the construction of the texton distribution.

To show this, a sub-image with a window size of 50×50 pixels of an image was moved

across x−axis of the image for each line in y−axis with increment of 4 pixels until it cov-

ered the whole image. For each sub-image, the texton distribution was formed using

50 image patches and mapped to a roughness value with the regression function dis-

cussed above. This creates a new image containing the roughness estimate for each area

of the scene. Fig. 5.12 shows two still images from outdoor and indoor scenes and their

corresponding regression maps which are color-coded using roughness values. In these

figures, the obstacles clearly have a higher value (marked with light yellow color) in the

regression maps while the safe landing area have lower value of roughness (marked with

dark red color) in the map. In Outdoor Scene 1, it can be seen that the trees in the image

on the right are seen as obstacle and marked as yellow. The same holds for the car in

the image on the right in Outdoor Scene II are seen as an obstacle and marked as yel-

low. In Indoor Scene I, the black chair (top left in the image) and the border of the table

(bottom right in the image) are detected as obstacles. The table itself is not seen as an

obstacle: When having only the table in view, it is considered sufficiently flat and hereby

offers an landing place for the MAV. The retractable tables and chairs (center and left in

the image) in Indoor Scene II are also detected as obstacles while the floor is found as a

safe place for landing. Note that this method with a moving window is used to show that

our approach can also segment the obstacles in an image. However, it is computation-

ally expensive since it processes almost every pixel in the image, and we actually do not

need all the detailed information unless we need to land on a narrow place.

(a) Outdoor Scene I (S9) (b) Outdoor Scene II (S6)

(c) Indoor Scene I (S6) (d) Indoor Scene II (S7)

Figure 5.12: Obstacle localization using roughness ǫ̂ from SSL method. The light yellow color in roughness

map represents the presence of obstacles.
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5.5. GENERALIZATION

5.5.1. GENERALIZATION OF SSL METHOD TO DIFFERENT ENVIRONMENTS

There is a main question remaining for the proposed method, i.e., how well the learned

mapping from visual appearance to roughness will generalize to different environments.

As in any learning scheme, this depends on the training and test distribution and on the

learning method. In order to be successful, the training and test distribution should be

sufficiently similar. In computer vision, this similarity does not only depend on the en-

vironment, but also on the visual features extracted from the images and how invariant

they are to for instance rotation, scaling, and lighting changes.

In the context of SSL of obstacle appearance, we expect that features and learning

methods can be found that generalize well over different environments and conditions.

For instance, when we humans look at a Google maps image, we can discern obstacles

such as trees and buildings rather well from areas that are more suitable for landing such

as grass fields. Such a classification performance is also within reach of computer vi-

sion methods [111]. Of course, the computationally efficient texton distributions and

straightforward learning methods used for onboard implementation on small MAVs are

quite limited. However, even a limited generalization to a visually very different envi-

ronment does not have to pose a problem in SSL method. Two strategies are available

to deal with this: (1) continuously learn the mapping when the MAV is moving enough

with respect to the visual scene, and (2) detecting when the learned mapping is receiv-

ing different inputs and hence producing uncertain outputs. If the estimated outputs are

uncertain, the MAV can rely again on optical flow and adapt its mapping to the new en-

vironment. In this section, we show that the uncertainty of outputs in a visually different

environment can be evaluated with a Naive Bayes classifier and Shannon entropy.

NAIVE BAYES CLASSIFIER

Given a distribution of n textons (q = (q1, . . . , qn)) to be classified, the Naive Bayes clas-

sifier for k possible classes is given as in Eq. (5.8). In this study, we have two classes

(k = 2), i.e., presence and absence of an obstacle, each of which can be represented by a

distribution of n = 30.

p(Ck |q1, . . . , qn)∝ p(Ck )
n∏

i=1

p(qi |Ck ) (5.8)

To create a Naive Bayes classifier, we first assign a roughness threshold, ǫ̂th (= 0.3)

to classify the distributions based on its corresponding roughness estimate, ǫ̂ into two

classes labeled C1 for obstacle or C2 for non-obstacle according to Eq. (5.9). Based on

this dataset, learning of the Naive Bayes classifier was performed using prtools [110] in

MATLAB.

Ck =

{
C1 if ǫ̂> ǫ̂th

C2 if ǫ̂< ǫ̂th
(5.9)

SHANNON ENTROPY

In information theory, Shannon entropy can be used to provide the amount of ‘disor-

der’or uncertainty of a system [112]. In this study, the entropy, H can also be imple-
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mented to detect the change of the environment online based on the outputs of Naive

Bayes classifier, as expressed in Eq. (5.10).

H =

2∑

k=1

p(Ck |q) log2(p(Ck |q)) (5.10)

ANALYSIS ON TWO DIFFERENT ENVIRONMENTS

The MAV was flown in two visually different environments (E1 and E2) in which one

different obstacle was placed as shown in Fig. 5.13. A linear regression model was trained

in E1 and then the texton distributions were logged for E1 and E2 by repeatedly flying

the MAV over the obstacles. Here, we investigate how well the regression model trained

in E1 performs in E2. Please note that despite the use of a similar object (a chair), the

environments are visually very different (the chair being dark in E1 and bright in E2, the

surface being grey in E1 and dark blue in E2).

(a) Environment 1 (E1)

(b) Environment 2 (E2)

Figure 5.13: Images of two different environments stitched using on-board images.

80% of the distributions in E1 were used to train the Naive Bayes classifier and the rest

of the distributions were used for testing purposes. Both test sets from E1 and E2 were

tested on the Naive Bayes classifier and the classification error, Er r is computed using

Er r = (F P +F N )/(ntest ), where F P and F N are the number of false positive and false

negative, respectively from a total number of the test data, ntest . The errors on test sets

for E1 and E2 are 4.67% and 11.37%, respectively. This error evaluates the dataset by the

classifier without considering the class prior. The error is higher for the test set in E2, thus

indicating that the generalization to E2 is indeed more difficult than the generalization

to E1’s test set.

In the top part of Fig. 5.14 and Fig. 5.15, the red line is the roughness estimate and

square boxes show ground truth position of the obstacle where black areas indicate full

visibility of the obstacle in the field of view of the camera while half visibility is shown

using gray areas. In the bottom part of these figures, the blue line shows the uncertainty
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of the outputs from the Naive Bayes classifier with the Shannon entropy. In Fig. 5.14,

the uncertainty can be observed at the edges of the obstacles. It is reasonable as only a

very small part of the obstacle was captured in the image and it can actually give a good

checking for the trained environment itself before making the decision. In Fig. 5.15, the

results of roughness estimate demonstrate that the SSL model actually remains quite ef-

fective even when flying in a different environment. Although these results show that the

generalization is achieved to some extent, there are some regions which were wrongly

classified (e.g. 15−20s and 35−40s). In fact, the entropy gives a more continuous un-

certainty of the outputs due to the difference in visual appearance in E2. There is one

part (e.g. 25− 30s) where they both agree with their outputs because the field of view

of the camera consists of largely the same gray ground on the right side of test field (see

Fig. 5.13). By using this information, the MAV is able to detect the change of environ-

ment and trigger the optical flow algorithm to re-train the linear regression model so

that it can adapt itself to the new environment.
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Figure 5.14: Uncertainty measure H (bottom) and roughness estimate ǫ̂ (top) in E1.
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Figure 5.15: Uncertainty measure H (bottom) and roughness estimate ǫ̂ (top) in E2.

K-FOLD TEST ON MULTIPLE REAL SCENES

In order to evaluate the performance of our classification models in an unknown scene

or for an untrained dataset, we perform two K-fold cross-validations on multiple real



5.5. GENERALIZATION

5

89

scenes in both outdoor and indoor environments presented in Fig. 5.4. The border color

of each scene in the figure was used in plotting the results to distinguish different scenes.

Fig. 5.16 shows the K-fold tests where L indicates the learning sets and T represents the

test sets.

In the first K-fold validation, 8/9 ratio of samples from each scene were randomly

selected and used for training (L1+L2+ . . .+L9) while the remaining 1/9 ratio of samples

were tested (T1,T2, . . . ,T9). We iterated this process 9 times so that all data has been used

as test set. We performed this test to evaluate the learning capability of the proposed

SSL setup in which multiple scenes with different variation of appearance are included

in the training set.

In the second K-fold validation, we tested the exploration performance of our SSL

setup. This can be done by using datasets from 8 out of 9 scenes for training (L1+L2+. . .+

L8) and testing on the remaining dataset (T9). The remaining dataset can be completely

different or slightly similar to the training set. We iterated the process until all scenes

were tested. Therefore, in total we performed 9 tests for each K-fold cross-validation in

both outdoor and indoor environment and surface roughness ǫ∗ was used as the ground

truth in the validation.

Scene 1 Scene 2 Scene 9

L1 T1 L2 T2 L9 T9

(a) K-fold cross-validation 1

Scene 1 Scene 8 Scene 9

L1 L8 T

(b) K-fold cross-validation 2

Figure 5.16: Two K-fold cross-validations for evaluation of learning and exploration capabilities of the classifier.

To illustrate the performance of the classifier, we plot a receiver operating charac-

teristic (ROC) curve for each K-fold test in Fig. 5.17 and Fig. 5.18. In addition, the un-

certainty measure from Shannon entropy for the corresponding test is also presented.

Table 5.3 shows the Area Under ROC Curve (AUC ) and NRMSE for each test which is a

common metric used to evaluate the ROC curves and regression tests, respectively.

For landing, we would like to have a rather high true positive rate (≈ 0.9) in order

not to miss obstacles, while a rather high false positive rate may be acceptable - this will

just reduce the available landing locations but will not endanger the MAVs. In Fig. 5.17,

we can observe that to achieve a true positive rate of ≈ 0.9, we need to compromise with

≈ 0.5 false positive rate. Two examples in the second validation of untrained outdoor and

indoor test sets with a chosen threshold result in TP rate of ≈ 0.9 and FP rate of ≈ 0.5 are
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(b) Indoor scenes.

Figure 5.17: ROC curves and uncertainty measures for K-fold cross-validations 1. The results are given the

color of the test set.

False Positive Rate

T
ru

e
P

o
si

ti
v

e
R

a
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

o
si

ti
v

e
R

a
te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

H

T1 T2 T3 T4 T5 T6 T7 T8 T9
0

0.2

0.4

0.6

0.8

1

(a) Outdoor scenes.

H

T1 T2 T3 T4 T5 T6 T7 T8 T9
0

0.2

0.4

0.6

0.8

1

(b) Indoor scenes.

Figure 5.18: ROC curves and uncertainty measures for K-fold cross-validations 2. The results are given the

color of the test scene (see Fig. 5.4).
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Table 5.3: Performance measure of ROC curves using Area Under the Curve (AUC - higher is better) and NRMSE

(% - lower is better)

K-fold Environment Metrics T1 T2 T3 T4 T5 T6 T7 T8 T9

1 Outdoor AUC 0.79 0.77 0.83 0.84 0.80 0.81 0.81 0.80 0.80

NRMSE 15.4 17.5 16.4 16.1 16.2 18.9 14.0 14.4 12.9

Indoor AUC 0.72 0.75 0.81 0.67 0.77 0.78 0.80 0.75 0.64

NRMSE 13.0 13.6 17.7 14.8 12.8 15.2 15.9 13.9 13.4

2 Outdoor AUC 0.23 0.68 0.31 0.90 0.83 0.22 0.85 0.75 0.93

NRMSE 84.2 87.2 43.8 22.9 33.2 27.0 21.8 52.9 18.1

Indoor AUC 0.52 0.68 0.37 0.73 0.65 0.69 0.82 0.44 0.85

NRMSE 30.0 29.1 34.8 22.2 83.3 24.1 28.9 72.1 27.6

shown in Fig. 5.19 and 5.20, respectively. In these figures, l1 and l2 indicate the time steps

where the presence of obstacles are predicted using ǫ∗ and ǫ̂, and H is the uncertainty

measure of ǫ̂. The results in these figures show that the obstacles can be detected, but

many of the places considered safe by the optical flow algorithm are being classified by ǫ̂

as containing obstacles. In Fig. 5.19, we can observe that the false positive cases happen

mostly at at the beginning (≈ 0s−3s) and also at images in which obstacles appear partly

in the images (≈ 4s −6s). If we look at the uncertainty measure, it shows an uncertain

moment at the beginning and at the end of the image sequence. Similarly, in Fig. 5.20,

false positive happens at the beginning with high uncertainty measure. If aim for a low ǫ̂

estimate and H , we can still find a suitable landing place though.

The average AUC for outdoor and indoor scenes in the first validation are 0.81 and

0.74, respectively. These results are rather good and indicate that the SSL method does

not have difficulty of learning multiple scenes together, and it can predict scene with

obstacles quite accurately if similar or part of the scene was learned. In Fig. 5.17b, it

can be seen that the uncertainty measures are relatively small (≈ 0.1) indicating that

the test environment is not too different from the training environment. Comparing

outdoor and indoor environments, we can observe that learning of the indoor scenes

is more difficult. This is due to the fact that indoor scenes are typically more complex

than outdoor scenes. For instance, in an indoor scene, we can find many man-made

objects and floors which look very different in terms of colors and textures, and thus the

representation of these visual appearances can be more difficult.

In the second validation, for completely unknown scenes, the performance of the

classifier becomes worse. If we compare the results of NRMSE in Table 5.3, we can ob-

serve that test errors are mostly larger in validation 2. Although some ROC curves are

still acceptable (T4, T5, T7, and T9 outdoors for example), there are also ROC curves that

are even poorer than random (e.g. T1, T3, T6 in outdoor scenes, and T1, T3, T8 in indoor

scenes). However, the main observation is that the uncertainty measures for this K-fold

test are much higher than for the first one, especially for those which have ROC curves

worse than random. This indication allows the MAV to know when and where to re-train

the regression model to adapt to new changes in its surroundings.
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Figure 5.19: Classification of obstacles with ǫ∗ (l1) and ǫ̂ (l2) in an untrained outdoor scene (S3), and the

corresponding uncertainty measure, H. This example with a particular threshold of ǫ̂t h = 0.076 is chosen in

the K-fold validation 2 which resulted in TP rate of 0.9 and FP rate of 0.5.
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Figure 5.20: Classification of obstacles with ǫ∗ (l1) and ǫ̂ (l2) in an untrained indoor scene (S3), and the

corresponding uncertainty measure, H. This example with a particular threshold of ǫ̂t h = 1.225 is chosen in

the K-fold validation 2 which resulted in TP rate of 0.9 and FP rate of 0.5.

5.6. FLIGHT TESTS

5.6.1. EXPERIMENT PLATFORM

A Parrot AR.Drone 2.01 and Bebop2 are used as a testing platform for indoor and outdoor

experiments, respectively in this study. They are equipped with a downward-looking

camera which runs up to 60 F PS and is of particular interest to us for the landing pur-

pose. Instead of using the original Parrot AR.Drone program, an open-source autopilot

1http://ardrone2.parrot.com
2http://www.parrot.com/products/bebop-drone/
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software, Paparazzi Autopilot3 is used because it allows us to have direct access to the

sensors and control the MAV [72, 113]. We created a computer vision module in Pa-

parazzi Autopilot to capture and process images from the camera and test our proposed

algorithm in flight tests. Fig. 5.21 shows the overview of the control architecture of Pa-

parazzi and how it integrates the vision module. All the computer processing tasks in

this study are performed using the on-board processor of the MAV so that the MAV does

not rely on the ground control station (GCS). This can avoid mission failure due to loss

or delay of data transmission between MAV and GCS.

MAV

Hardware Software (Paparazzi Autopilot)

Vision Module

Control Loop

(Rotorcraft)

Camera

IMU

GPS

Sonar

Actuator

YUV Image

Capturing
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Figure 5.21: Integration of computer vision module in Paparazzi Autopilot. The left blue box shows the

hardware of the MAV while the right gray box indicates the software architecture used in the MAV. The process

flow guided by the dashed line can be neglected after the learning is complete.

In Fig. 5.21, images are captured from the downward-looking camera in the vision

module. These images are processed using the computer vision algorithms (presented

in Section 5.3), such as the optical flow and the texton methods, to detect obstacles and

find a suitable landing spot. The IMU from the MAV is used in the optical flow algorithm

to reduce the effect of MAV rotation on optical flow measurements. The output from the

vision module (e.g. the position where it is considered safe to land upon) is fed into the

control loop in Paparazzi autopilot to control the MAV. A GPS or motion tracking system

provides position measurements of the MAV for outdoor or indoor navigation purposes.

In this study, vision is purely used for the detection of obstacles on the landing surface.

5.6.2. PROCESSING TIME OF COMPUTER VISION ALGORITHMS

To examine the computational efficiency of the optical flow and SSL algorithms, we mea-

sured the times taken by each process of the algorithms. Table 5.4 shows the average

3http://wiki.paparazziuav.org
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processing time required for each stage of both algorithms. In our experiments, the max-

imum number of corners in optical flow algorithm and the number of samples used in

SSL are both set to 25. Note that this value can be tuned to include more or less informa-

tion from the images, however, a higher value requires more computational time. The

total processing times (see Table 5.4) show that both algorithms are computationally ef-

ficient and can be executed on-board the MAV. For instance, when both methods are

running during data acquisition for learning, it costs roughly 35 ms which is approxi-

mately 28 F PS. The processing time is even faster after learning as the SSL method runs

at the frame rate of ≈ 60 H z. This frame rate is sufficient to capture surrounding infor-

mation for fast moving MAVs.

Table 5.4: Average processing time for each stage of the vision algorithms

Optical Corner Corner Flow Total

Flow Detection Tracking Fitting

Time (ms) 14.04 4.01 2.01 20.06

SSL Distribution Regression Total

Extraction Function

Time (ms) 15.13 0.01 15.14

5.6.3. AUTONOMOUS LANDING STRATEGY USING ǫ∗ FROM OPTICAL FLOW

In this subsection, we first explain a landing strategy using ǫ∗ to guide the MAV to land

on a safe landing place. Then, we demonstrate the experiment results from the flight

tests we performed with the landing strategy.

LANDING STRATEGY

Here, we propose a straightforward landing strategy which allows the MAV to decide

where to land safely using ǫ∗ from optical flow algorithm. Since this method requires

movement of the MAV to detect obstacles, the MAV needs to fly over the potential land-

ing area in order to search for a suitable landing spot/ waypoint. In this strategy, we

define the safest landing spot as a waypoint in which it covers the largest area without

obstacles underneath the MAV. To determine this waypoint, we first classify on-board

images into safe (SF = 1) and unsafe (SF = 0) classes by thresholding ǫ∗ with an empiri-

cally determined constant, ǫth as shown in Eq. (5.11).

SF i =

{
1 if ǫ∗

i
< ǫth

0 if ǫ∗
i
> ǫth

(5.11)

Then, the largest area without obstacle can be found by choosing the largest value of

ASF =
∑i=L

i=1
SFi where i = 1 : L are a set of continuous images which are classified as safe

images. Once an obstacle is detected (SFi=L+1 = 0), ASF is reset to 0 and i = 1. Further-

more, the middle waypoint of the safest area, Pland is considered as the desired landing

spot and it is continuously updated when the largest ASF is found.
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EXPERIMENT RESULTS

The optical flow algorithm and landing strategy were implemented in a computer vision

module in Paparazzi Autopilot and ran in real-time on a Parrot AR drone as described

in Subsection 5.6.1. A motion tracking system, OptiTrack was used to serve as an indoor

GPS to allow the MAV to fly autonomously in the arena according to a simple flight plan

(see Fig. 5.22). The MAV took off from its HOME position, and followed a route starting

from waypoint 1 and ending at waypoint 8. After scanning the whole landing site using

its on-board camera, it navigated to a safe landing waypoint using the proposed landing

strategy and landed there.

Figure 5.22: Flight plan and landing waypoints of the MAV based on roughness estimate ǫ∗ from optical flow

algorithm. Black dashed line represents the flight path following waypoints 1 to 8 and HOME is the position

where the MAV take-off. Red markers indicate the landing spots Pland directed using the landing strategy.

We performed 11 landing tests with the Parrot AR drone. In each test, it first flew the

entire flight plan and then returned to the point it considered safest. Fig. 5.23 shows the

safety value SF along the flight path in one of the landing experiments. In this figure,

the longest stretch ASF is located between waypoints 7 and 8, and the landing spot Pland

(indicated as black cross) is selected in this area. The landing spots for all the experi-

ments are plotted with red markers in Fig. 5.22. All landings were successful and on flat/

non-obstacle ground. Still, we have indicated with circle markers in the figure 4 landing

spots that were rather close to obstacles in the environment. We expect that measure-

ment noise is the cause of landing on these locations rather than the safer area higher up

in the image.

5.6.4. AUTONOMOUS LANDING STRATEGY USING ǫ̂ FROM APPEARANCE

To utilize the advantage of SSL method, we switch to detecting obstacles using only the

appearance while the MAV is hovering.

LANDING STRATEGY

In the previous subsections, we used the whole image to determine whether the region

underneath the MAV was a safe landing place. However, it did not tell us where to go if
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Figure 5.23: Safety value SF along the flight path in one of the experiments. Green markers indicate the value

of SF equals to 1. Black cross shows where the landing spot is.

we found the obstacle(s). Therefore, we propose a straightforward method for allowing

the MAV to decide where to land using ǫ̂. In this strategy, the image is divided into nine

regions (grid of 3×3). Using the SSL method, we estimate ǫ̂ in each region and choose

the region with minimum ǫ̂ as the place we are going to land or reject them if they are

all higher than a threshold value (indicating the presence of an obstacle). To compute

the movement, we take the distance dc from the image center to the center of the re-

gion where it is considered safe and use the height h measured from the sonar sensor to

project this distance in pixels to physical distance in meters dp using Eq. (5.12).

dp =
dc ×h

f̃
(5.12)

where f̃ is the focal length of the camera in pixels.

EXPERIMENT RESULTS

The landing experiments were conducted in indoor and outdoor environments at the

heights above the ground of ≈ 3.5 m and ≈ 7 m, respectively. In the experiments, the

MAV hovered at waypoints where one or more obstacles were underneath it. Once the

landing strategy was activated, the MAV autonomously moved and landed at a place it

considered safe. Fig. 5.24 shows the results of the flight tests in an indoor environment

with the presence of single (first column) and multiple obstacles (second column). The

top row of this figure presents the images taken when the landing strategy was activated.

These images were divided into nine regions (separated by red lines) for ǫ̂ computation

and the minimum ǫ̂ (indicated with a green cross) was chosen as the landing spot. The

center row of the figure shows the ǫ̂ values for each region with colors representing the

degree of visibility of the obstacle scaled using ǫ̂. The yellow color indicates the presence

of an obstacle whereas the black color shows the absence of an obstacle. The bottom row

of the figure illustrates the flight path of the MAV from the position where the landing

strategy began to the position where the MAV landed. The results clearly demonstrate

that the proposed strategy manages to lead the MAV to a safe landing place. 4

4Experiment video: https://goo.gl/Le5HT2
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Figure 5.24: Indoor Experiment: Cross markers in the top row images show the chosen landing spot. Center

row presents ǫ̂ for all regions with color scaled according ǫ̂ (Yellow = obstacle; Black = non-obstacle). Bottom

row presents the flight path of the MAV from the time when the landing strategy activated until the time when

it landed.

Fig. 5.25 shows the results of the flight test in a windy outdoor environment (wind

speed ≈ 11 knots). The obstacles are a camp (center bottom of the image) and trees sur-

rounding it. In this figure, the top left shows the chosen landing spot according to the

position of the minimum value of the 9 ǫ̂ presented in the bottom left using SSL landing

strategy. The top right illustrates the flight path of the MAV while bottom right repre-

sents the mean value of the 9 ǫ̂ and the height of the MAV. Also, the instances when the

landing strategy was activated and when the landing was performed are indicated as the

black and blue vertical lines, respectively. Note that in this experiment, the training was

not done in this scene but in another, similar outdoor environment consisting of trees

and grass field. This illustrates that the learned appearance can allow MAVs to select a

landing spot from hover even in a different environment than the trained one.
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Figure 5.25: Outdoor Experiment: Cross marker in the top left images shows the chosen landing spot. Bottom

left presents ǫ̂ for all regions with color scaled according ǫ̂ (Yellow = obstacle; Black = non-obstacle). Top right

presents the flight path of the MAV from the time when the landing strategy activated until the time when it

landed. Bottom right shows the average of the roughness in 9 regions, ǫ̂m and height, Z

5.7. DISCUSSION

5.7.1. INFLUENCE OF HEIGHT ON ROUGHNESS ǫ∗ AND ǫ̂

One issue with the current implementation of the proposed SSL approach is that it does

not take the height and velocity of the MAV into account. In fact, the optical flow mea-

surements are dependent on the MAV’s velocity and the distance to the features. For

example, assuming the MAV is moving laterally at constant velocity, we measure smaller

optical flow at larger heights than at lower heights. Similarly, concerning obstacle ap-

pearance, the size of the obstacle looks smaller when we observe it further away. As a

consequence, something that seems like an obstacle at a low height may not be detected

as obstacle at a large height. This effect can be seen in Fig. 5.24 and 5.25; at 3.5 m indoors,

obstacles give a response of ǫ̂ > 0.3, while at 7 m outdoors, obstacles give a response of

ǫ̂> 0.15.

In order to investigate the influence of height on the surface roughness estimates,

we conducted experiments flying the vehicle at various heights (2m, 3m, and 4m) and

the same velocity (≈ 0.6 m/s) in the same structured environment. Fig. 5.26 shows the

effect of height on the results of the optical flow algorithm and SSL method. The rough-

ness value at a lower altitude corresponds better to the presence or absence of obstacles

than at a higher altitude, while flying at the same velocity. The results suggest that there

is a height at which the optical flow algorithm and the appearance-based method can

no longer detect the obstacle sizes used in the experiments. In an application scenario
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where the MAV will have to fly at a wide range of heights (e.g., in between 0 and 300 me-

ters), this phenomenon has to be taken into account. One solution avenue could be to

parameterize the appearance model of obstacles with the MAV’s height and velocity.
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Figure 5.26: Effect of height on roughness. Dark green and light green boxplots represent the roughness ǫ∗

and ǫ̂, respectively measured in the presence of obstacles. Black and gray boxplots represent the roughness ǫ∗

and ǫ̂, respectively measured in the absence of obstacles.

5.7.2. APPLICATIONS

It is common for learning methods that the results are best when the test data distribu-

tion is similar to the training data distribution. For the proposed setup of SSL, this means

that the results are best when the test environment is similar in appearance to the train-

ing environment (see Section 5.5). This implies that the approach will be most successful

on MAVs that operate in a limited variation of environments, such as indoor MAVs flying

in a warehouse for keeping track of stock or flying surveillance rounds in an industrial

plant. Also, the approach will work well for MAVs that are always flying over forest areas

for spotting live stock or flying over the same fields in an agricultural application. This

being said, the results in Section 5.5 show that if the test environment is dissimilar from

the training environment, this can be successfully detected by the MAV with uncertainty

measures that can be determined by machine learning methods. In such a case, the MAV

can decide to rely again on optical flow in order to adapt its mapping from appearance

to obstacle detection.

5.8. CONCLUSION

We have introduced a novel setup for SSL, in which optical flow provides the supervised

outputs. The surface roughness ǫ∗ from the optical flow algorithm allows obstacle de-

tection and safe landing spot selection with a straightforward landing strategy when the

MAV has lateral movement. A regression function is learned that maps texton distri-

butions to the roughness estimate ǫ∗ from optical flow algorithm. We have shown that ǫ̂

from SSL does not only manage to detect, but even segment obstacles in the image, with-

out having to move. A landing strategy analyzing ǫ̂ in nine regions in an image is able to

guide the MAV to land on an area without obstacle. Both methods using roughness esti-

mates led to successful landings in indoor experiments with a Parrot AR drone and out-
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door experiments with a Parrot Bebop, both running all vision and learning algorithms

on-board. In addition, we have investigated the generalization of the SSL method to

different environments. Although the results show that the generalization is achieved to

some extent, we recommend the use of uncertainty measures inherent to some machine

learning methods to detect when the appearance of the environment is significantly dif-

ferent from that of the training environment. We have shown that the Shannon entropy

of a Naive Bayes classifier can allow a robot to detect this and fall back on optical flow

again in order to re-adapt to the new environment. We conclude that the proposed ap-

proach to SSL has the potential to significantly extend the sensory capabilities of MAVs

with a single camera.



6
CONCLUSION AND

RECOMMENDATIONS

The main findings of the thesis are reviewed by first answering the two research ques-

tions presented in Chapter 1. Then, a final conclusion is drawn based on the main con-

tributions of this research. Lastly, some suggestions for future work are proposed.

6.1. DISCUSSION

This thesis has examined the use of bio-inspired monocular vision to perform au-

tonomous landing of MAVs. The main contribution of this thesis can be divided into two

parts: (I) low-level landing control ensuring a smooth landing with high performance,

and (II) high-level landing control to search for a safe landing site. These contributions

were considered essential in achieving the primary goal of this thesis, reflected by the

problem statement in Chapter 1:

Problem statement

How can Micro Air Vehicles utilize bio-inspired monocular vision to land fully

autonomously?

Two research questions (RQs) defined in Chapter 1 aim to answer the problem state-

ment. Those questions are answered within the content of four chapters in this thesis,

and the answers are summarized and discussed in each subsection below.

6.1.1. LOW LEVEL LANDING CONTROL

The first research question (RQ 1) relates to the scaleless problem of using optical flow

in low-level landing control. It was formulated as follows:

101



6

102 6. CONCLUSION AND RECOMMENDATIONS

RQ1: How can MAVs cope with the scaleless property of optical flow from a single

camera for optical flow landing?

This research question is answered through two approaches: monocular distance esti-

mation, and adaptive landing control strategy.

MONOCULAR DISTANCE ESTIMATION

Obtaining height estimates from optical flow alone is indeed challenging. The nonlinear

observability analysis presented in Chapter 2 shows that the model is observable if and

only if there exists a control input and non-zero states (i.e., height and velocity). Thus,

an Extended Kalman Filter (EKF) algorithm is proposed to estimate height and vertical

velocity of an MAV using the flow divergence and the control input, while approaching

a landing surface. In this algorithm, the control input is used to predict the effect of an

action, while the flow divergence observes the movement of the MAV. After obtaining

the height estimate, either the control gain can be adapted to the height during constant

flow divergence landings, or a linear control with the height feedback can be used to land

the MAV with a desired predefined landing profile.

The proposed algorithm was validated by comparing the estimation results of several

flight tests with the states obtained from (i) a highly accurate OptiTrack system for in-

door flights, and (ii) a sonar sensor for outdoor flights. Three different landing strategies

were presented to validate the estimation. The first strategy performed multiple land-

ings with constant flow divergence at different setpoints (D∗ = −0,1,−0.2,−0.3s−1 ) and

at different heights (Z = 2 and 3m). These flight tests demonstrate the feasibility of the

height estimation while performing a constant flow divergence landing. Since this strat-

egy used the optical flow feedback with fixed-gain control, instabilities happen at some

points during the landing. To cope with this problem, the second strategy adapted the

height estimate to the control gain. This strategy allows the MAV to land with an expo-

nential decay of both height and velocity, while maintaining stable conditions. The last

strategy used both height and velocity estimates directly in landing control. Although an

initial excitation is needed to measure optical flow, this strategy allows the MAV to follow

a desired predefined landing profile. All these flight tests show that the proposed algo-

rithm can estimate the height and velocity of the MAV accurately, and achieve smooth

landings with these estimates.

ADAPTIVE LANDING CONTROL STRATEGY

The fundamental problem of optical flow landing is that the control gain depends on

the height [50]. Chapter 3 solves this problem for a constant flow divergence landing, by

introducing a control strategy that automatically adjusts the gain during landing. This

strategy has two phases. At the beginning of a landing, the MAV detects height using

an oscillating movement and sets the gain accordingly (Phase I). Then, the gains are

reduced exponentially during descent and adjusted properly when the actual trajectory

deviates too much from the expected constant flow divergence landing (Phase II). In this

strategy, Phase I ensures that proper initial gains are chosen to have a good performance

of the tracking, while Phase II prevents self-induced oscillations when descending.
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To realize Phase I, a novel way to detect self-induced oscillations in real-time was de-

veloped based on observation of the flow divergence. This method detects oscillations

experienced by the MAV by examining the covariance function of a windowed flow di-

vergence and a time shifted windowed flow divergence. This function is chosen because

its computation is fast and it can capture both the relative phase and the magnitude of

deviations in the signal. Both simulation examples and flight tests presented in Chapter

3 show that the covariances of the signals are large at the instance when the oscillations

happen. This method helps the MAV to select proper initial gains to maximize the con-

trol performance and thus avoid the MAV to descend too fast.

To examine the feasibility of Phase II, a stability analysis of the adaptive controller

was made in Chapter 3. This analysis proves that the system is not subjected to

self-induced oscillations when the adaptive controller is used for the constant flow

divergence landing. This adaptive controller allows the control gains to be kept small

enough to prevent self-induced oscillations, while being as high as possible to maximize

control performance. Multiple flight tests were performed successfully in both indoor

and windy outdoor environments using the adaptive control strategy.

The main difference between the two approaches presented in this subsection is that

the first one estimates distance to the ground and uses it for landing control, whereas

the latter one does not need a distance estimate. Both have their own advantages and

limitations. For instance, by estimating the height and velocity, the first approach opens

up the possibilities to use gain optimization techniques to improve the control perfor-

mance. In addition, different landing strategies can be used with the height estimate as

presented in Chapter 2. One limitation of this approach at the moment could be the sim-

ple model used in the algorithm which does not take into account external disturbances.

For the second approach, height information is implicitly adapted to the control gain,

which allows a smooth landing of an MAV. This method is dedicated to solve the prob-

lem of optical flow landing, but this might not be the only solution for MAV landings.

Overall, both approaches lead to successful landings.

6.1.2. HIGH LEVEL LANDING CONTROL

The second research question (RQ2) corresponds to searching for a suitable landing site

in high-level landing control. It was defined as follows:

RQ2: How can MAVs autonomously find a suitable landing site with monocular

vision?

This research question is answered through the following two methods: obstacle detec-

tion using optical flow, and self-supervised learning of obstacles appearance.

OBSTACLE DETECTION USING OPTICAL FLOW

After achieving a stable landing with optical flow, the remaining problem is to search

for a safe landing site using optical flow. In this thesis, a safe landing site is defined

as a relatively flat landing surface which does not have a too large inclination and is,
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most importantly, free of obstacles. Chapter 4 and the first part of Chapter 5 aim to find

a safe landing site from the interpretation of optical flow fields. Chapter 4 estimates

the slope of the landing surface by fitting the entire optical flow field using RANdom

SAmple Consensus (RANSAC), while the first part of Chapter 5 uses the same approach

to estimate the surface roughness to detect obstacles. Based on the slope and roughness

estimates, a safe landing site can be found.

The proposed algorithm is computationally efficient to run in real-time with the on-

board processor, and can also extract useful information such as surface slope, surface

roughness, flow divergence, and ventral flow. To evaluate the accuracy of the slope esti-

mate, artificial images, hand-held videos, and images from an MAV were tested in Chap-

ter 4. From these results, we conclude that the algorithm manages to retrieve the slope

angles of a landing surface accurately when the camera is calibrated, and the MAV rota-

tion is accounted for. A landing experiment was also performed to show that the algo-

rithm is efficient enough to run in real-time and is able to distinguish between the stairs

and a flat surface.

In addition, the first part of Chapter 5 evaluates an obstacle detection method based

on surface roughness ǫ∗ estimated using optical flow. In fact, the success of finding a safe

landing site depends on the obstacle detection performance with a reasonable num-

ber of false alarms. The obstacle detection performance is measured by true positive

(TP) rate, i.e., the percentage of obstacles which are correctly identified, while the false

alarm is measured by false positive (FP) rate, i.e., the percentage of empty landing ar-

eas wrongly classified as containing an obstacle. In general, the MAV is not safe if the

analysis shows a low TP rate, and the MAV also cannot find a place to land if the FP rate

is found to be too high. In Chapter 5, multiple on-board image sets captured in nine

different indoor and outdoor scenes were tested. The performance measure of the clas-

sification tests shows that the TP rates are higher than 90% for all the scenes. For the

false alarm measure, the FP rates are less than 25% for all the scenes. From these results,

it can be concluded that most of the classification results show high proportions of cor-

rect identification of obstacles and non-obstacles images. Still, part of the obstacles can

sometimes be missed by the limited number of tracked features. Most of the undetected

cases happened because a small part of the obstacles appears at the edge of the images.

This makes them difficult to be detected because the surface roughness measures the

presence of obstacles in the global image. Several flight tests presented in Chapter 5

demonstrate the success of identifying the safe landing sites.

SELF-SUPERVISED LEARNING OF OBSTACLES APPEARANCE

To go beyond optical flow approaches, the surface roughness estimated using optical

flow is served as a scaffold to learn the visual appearance of obstacles. The second part

of Chapter 5 introduces this novel setup to deal with the main problem of using monoc-

ular motion cues, that is, their requirement of significant camera movement. By first

using the surface roughness to detect obstacles, a function is learned that maps the ap-

pearance represented by texton distributions to the surface roughness. After learning,

the MAV can detect obstacles based on static images. This approach allows the MAV to

select a suitable landing site while hovering. Additionally, despite the fact that the sur-

face roughness represents the global value for the presence of obstacles, this appearance
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learning allows for the pixel-wise segmentation of obstacles when analyzing local image

patches.

Similar image sets as mentioned in the previous subsection were used to test the

classification performance of appearance-based surface roughness ǫ̂. The results show

that the TP rates are comparable to or slightly better than the classification using only

ǫ∗. Similar to the optical flow method, the obstacles that appear partly on the border

of the image makes them nearly “invisible” and hard to be detected when the surface

roughness of the entire image is used. The FP rates are higher for complex indoor scenes.

This can also be seen from the larger Normalized Root Mean Square Errors (NRMSE) in

more challenging indoor scenes where the appearance variation is larger. Based on the

analysis, this approach manages to detect most of the obstacles and find the possible

safe places to land. In addition, using appearance-based surface roughness also led to

successful landings in both indoor and outdoor experiments.

One concern of the appearance learning, which is also one of the common learn-

ing problems, is how well the learned model will generalize to different environments.

Chapter 5 investigates this problem by performing K-fold tests in two different ways on

the image sets to evaluate the learning capability and the exploration performance, re-

spectively. The tests results on the learning capability show that the learning method

does not have any difficulty of learning multiple scenes together, and it can accurately

predict the scene with obstacles if similar or part of the scene was learned. On the other

hand, for completely unknown scenes (exploration evaluation), the performance of the

classifier becomes worse. To deal with that, an uncertainty measure provided by the

Shannon entropy of a Naive Bayes classifier is used to detect environment change. From

the observation of the tests, the uncertainty measures are, obviously, much higher for

the unknown scenes than for the scenes that have been learned. This uncertainty mea-

sure can be used to direct the MAV to return to the optical flow method to adapt to the

new environment.

6.2. FINAL CONCLUSION

In this thesis, bio-inspired monocular vision is utilized to achieve autonomous landings

of an MAV. It is found that the bio-inspired strategies as practiced by insects, such as

constant flow divergence landing, cannot be successfully used by MAVs without solving

some fundamental problems of optical flow. Several solutions are proposed in this the-

sis. These engineering solutions lead to novel insights that are not only important to a

tiny drone but may also prove their value to biology.

In the low-level landing control, a smooth landing of an MAV is achieved by either di-

rectly estimating the height or implicitly adapting the control gain to the height. Indeed,

height information allows the controller to know how light or strong the feedback loop

should be to perform a stable optical flow landing. In biology, it has been shown that

honeybees heavily rely on optical flow for landings [49]. It is not unlikely that they know

how much effort is required to flap their wings based on the object range which might

be perceptually connected to optical flow in order to have a smooth landing.

In the high-level landing control, a safe landing site is determined by estimating the

surface slope and roughness from the optical flow. That information is obtained from a

fit of the optical flow field. Although the biological relevance is not yet known, this al-
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gorithm works well in MAVs and perhaps fits with what we know from insects. Further-

more, the learning of obstacle’s appearance from optical flow allows the MAV to make a

quicker decision of selecting a safe landing site. This could actually happen in insects’

brains as well.

This possible biological relevance still needs to be investigated. Nevertheless, the

bio-inspired strategies are extremely useful for MAVs as the efficiency of these strate-

gies are ‘practically’ proven by tiny flying insects. Although the future development of

advanced sensors and processors might enable the use of heavy-processing solutions

and the integration of multiple sensors in the autonomous flight of MAVs, efficient algo-

rithms are still valuable as they save computing effort without affecting other payloads

performance. In addition, they are suitable for use during relatively fast maneuvers.

6.3. FUTURE WORK

The bio-inspired approach presented in this thesis uses a monocular camera from an

MAV to achieve autonomous landing tasks. Nonetheless, this approach can also be

adapted to different sensors, such as novel sensors that mimic insects’ eyes [57, 114].

These artificial compound eyes can be seen as comprised of many tiny cameras, each

with their own lens, which are all sensitive to motion. They are small and can provide

an energy-efficient solution to directly measure optical flow without going through sev-

eral processes needed from an ordinary camera, such as feature detection and tracking.

Thus, it is expected that using the artificial compound eyes can further improve the sens-

ing efficiency and the performance of the methodology presented in this thesis.

For height estimation, the current model used in the EKF does not take into account

any external disturbances, such as wind. The flight test performed in a windy outdoor

environment showed that this factor might not be a problem. However, a further inves-

tigation and a solution for compensating for wind effects might be necessary. For in-

stance, in the presence of wind, the accuracy of the height estimation can be improved

by augmenting the state vector with the wind disturbance as an additional state. The

dynamics of this augmented state can be modeled as the random walk [73, 74]. Ad-

ditionally, since a 3-axis accelerometer is commonly equipped in an MAV, the vertical

acceleration measurement can be integrated into the model to further improve the esti-

mation and to better deal with external disturbances.

The adaptive control strategy presented in this thesis is used to deal with the gain

selection of constant flow divergence landings. The stability of this control strategy was

proven using a linearized discrete model of a quadrotor moving in the vertical direc-

tion. It would be useful that a nonlinear stability analysis can be carried out to have a

more comprehensive stability solution. For instance, a Lyapunov stability theorem can

be used to analyze the stability conditions of the nonlinear model.

The surface slope estimated from the optical flow algorithm is currently used to eval-

uate the suitability of the landing surface. It is also possible to use the estimated slope

to adapt the MAV attitude to the inclined surface. This will require the knowledge of the

vehicle attitudes which can be known from an on-board IMU. By obtaining both surface

slope and vehicle attitudes, the relative angle of the vehicle to the inclined surface can

be estimated. Furthermore, a flight trajectory can be designed to safely land the MAV to

the inclined surface. This approach is suitable in some real-world emergency situations
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where only an inclined surface is available for landing, such as on a moving ship deck.

The self-supervised learning of obstacles appearance was done using a linear regres-

sion learning method. Although using this method is straightforward and computation-

ally efficient, it is also interesting to try out more advanced learning methods, such as

deep learning. Deep learning reduces the time-consuming feature engineering problem

and provides an architecture which can lend itself well to new problems. This learning

method can definitely outperform the statistical learning approach. However, a deep

learning approach requires a large amount of training data and expensive computation.

Thus, for now, it is only applicable for larger UAVs or off-board learning.

The proposed future work could further improve the autonomous flight capabilities

of MAVs, hopefully approaching more and more these capabilities of flying insects.





A
DISCRETIZATION OF LINEAR STATE

SPACE MODELS

The continuous state space model is given as:

ẋ(t)= Ax(t)+Bu(t), (A.1)

y(t)= Cx(t)+Du(t) (A.2)

The discretized state space model can be expressed below:

x[k +1] =Φx[k]+Γu[k], (A.3)

y[k] = Cd x[k]+Dd u[k] (A.4)

where

Φ= eA∆t , (A.5)

Γ=

(∫
∆t

τ=0
eAτdτ

)
B, (A.6)

Cd = C, (A.7)

Dd = D, (A.8)

∆t is the sampling time. We can find both Φ and Γ at the same time by computing the

matrix exponential:

exp(

[
A B

0 0

]
∆t) =

[
Φ Γ

0 I

]
(A.9)
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SAMENVATTING

AUTONOMOUS L ANDING OF MICRO AIR VEHICLES
THROUGH BIO-INSPIRED MONOCUL AR VISION

Hann Woei HO

Zelfstandig vliegende drones – en dan vooral de kleine en lichte varianten bekend

als microdrones – kunnen op het moment niet zelf een veilige landplek vinden, en ook

geen vloeiende landing maken. De hoofdreden hiervoor is dat de meeste huidige op-

lossingen nog teveel rekenkracht vereisen en dus niet toepasbaar zijn op microdrones,

die bijzonder weinig rekenkracht en sensoren aan boord hebben. Dit type drones vereist

daarom een energie-efficiënte oplossing om te landen, gebruikmakend maakt van een

lichte sensor.

Een veelbelovende oplossingsrichting voor het zelfstandig landen van microdrones

is om inspiratie te halen uit hoe kleine vliegende insecten dit doen. De reden hiervoor

is dat insecten zeer complexe taken uit kunnen voeren – zoals navigeren in omgevingen

met veel obstakels, en het uitvoeren van zachte landingen – terwijl ze maar erg weinig

neuronen hebben in hun brein en ook weinig en lichte sensoren. Dit betekent dat ze ef-

ficiënte en robuuste oplossingen hebben voor allerlei waarnemings- en besturingspro-

blemen, die wellicht ideaal geschikt kunnen zijn voor het besturen van microdrones, en

dus ook voor het zelfstandig landen. Onderzoek toont aan dat vliegende insecten voor

het uitvoeren van complexe navigatietaken veel gebruik maken van de manier waarop

objecten door hun visuele beeld bewegen, dat wil zeggen van de optische stroom.

Echter, er zijn veel uitdagingen wanneer een microdrone alleen optische stroom wil

gebruiken om te landen. De optische stroom is niet “geschaald”, en geeft dus noch in-

formatie over de afstand tot een object, noch over de relatieve snelheid van de camera

tot een object. Het geeft alleen informatie over de snelheid gedeeld door de afstand. De

ongeschaalde optische stroom kan tot verschillende stabiliteitsproblemen leiden tijdens

het landen van een microdrone. Bijvoorbeeld, als een microdrone op een plat oppervlak

wil landen, dan komt er een punt waarop de reacties van de microdrone te sterk worden

gegeven de hoogte: de microdrone gaat hierdoor oscilleren. Dus is hoogte-informatie

belangrijk voor optische stroom landingen. Bovendien, voor een volledig zelfvliegende
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drone is landen op een plat vlak niet genoeg. De microdrone moet zelf ook een ge-

schikte landingsplek kunnen bepalen. Aangezien optische stroom alleen bepaald kan

worden op plaatsen met textuur, geeft het altijd slechts gedeeltelijke informatie en moet

de stroom verder verwerkt worden voor interpretatie. Microdrones hebben efficiënte al-

goritmen nodig die, gegeven de optische stroom, kunnen bepalen of een oppervlak plat

is en vrij van obstakels.

Het doel van dit proefschrift is om de besturingsproblemen gerelateerd aan het lan-

den met optische stroom op te lossen. Dit leidt tot de volgende probleemstelling:

Hoe kunnen microdrones biologisch geïnspireerde monoculaire

waarneming gebruiken om volledig zelfstandig te landen?

De probleemstelling kan opgesplitst worden in een besturing op laag niveau en een be-

sturing op hoog niveau, beide aan te pakken met biologisch geïnspireerde methoden.

Het lage niveau verzekert een vloeiende landing door het schaalprobleem van optische

stroom op te lossen voor zelfstandig landen, terwijl het hoge niveau het zoeken naar een

geschikte landingsplaats betreft. Dit alles met een enkele camera. Dit leidt tot de vol-

gende onderzoeksvragen:

1. Hoe kunnen microdrones omgaan met het ontbreken van schaal van optische

stroom van een enkele camera voor zelfstandig landen?

2. Hoe kunnen microdrones autonoom een geschikte landingsplaats vinden met een

enkele camera?

Voor de beantwoording van de eerste onderzoeksvraag worden twee aanpakken

voorgesteld. De eerste aanpak benadert het probleem door een filter te introduceren,

een zogenaamd “extended Kalman filter”, of EKF. Dit filter schat de hoogte en de verticale

snelheid van een microdrone tijdens een landing. Het algoritme gebruikt voorkennis van

de stuursignalen, de zogenoemde “efference copy”, en de vervolgens geobserveerde ex-

pansie van de optische stroom. De voorspellingsstap in de EKF gebruikt de efference

copy om de toestand te voorspellen (hoogte en snelheid), terwijl voor de correctiestap

van het filter de geobserveerde beeldexpansie wordt gebruikt. Hiermee kunnen zowel

hoogte als snelheid geschat worden.

Om de observeerbaarheid van het systeem te bepalen, is er een non-lineaire waar-

neembaarheidsanalyse uitgevoerd. De analyse toont aan dat met de kennis van de stuur-

signalen en de beeldexpansie het systeem waarneembaar is. Het algoritme is zowel in

simulatie als op een echte vliegende robot getest, waarbij meerdere experimenten zowel

binnens- als buitenshuis zijn uitgevoerd. De resultaten laten zien dat het algoritme erin

slaagt om hoogte en snelheid nauwkeurig te schatten tijdens de landing. De geschatte

waardes worden vergeleken met zeer nauwkeurige metingen van een bewegingsvolgsys-

teem binnen en van een sonar buiten. De verkregen hoogteschattingen kunnen zowel

gebruikt worden voor het bepalen van de juiste stuurreacties tijdens een optische stroom

landing of in een lineair besturingssysteem dat de geschatte hoogte direct gebruikt voor

de besturing. Beide methodes resulteren in vloeiende landingen.

De tweede aanpak lost het schaalprobleem op door middel van een strategie die de

sterkte van de stuurreacties aanpast tijdens de landing. Deze strategie heeft twee es die
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een constante expansie van het beeld en een vloeiende landing nastreven. In fase I de-

tecteert de microdrone zijn hoogte tijdens het stilhangen in de lucht, door de stuurre-

acties te laten toenemen tot aan het punt waar oscillaties optreden. In fase II wordt

de constante beeldexpansie landing ingezet, en worden de stuurreacties over de tijd ex-

ponentieel teruggebracht. Ook worden aanpassingen gedaan als de microdrone afwijkt

van de gewenste beeldexpansie. In deze strategie zorgt fase I ervoor dat de goede initiële

stuurreacties gekozen worden, opdat er snel gereageerd kan worden op afwijkingen, ter-

wijl fase II ervoor zorgt dat zelf-geïnduceerde oscillaties voorkomen worden tijdens de

landing.

Om fase I te realiseren is er een nieuwe methode ontwikkeld om te detecteren wan-

neer de microdrone zelf oscillaties veroorzaakt, gebaseerd op de geobserveerde beeld-

expansie. Deze methode detecteert de oscillaties door het bepalen van de covariantie

tussen een sequentie van observaties, waarbij de sequentie tot aan het huidige moment

vergeleken wordt met een even lange sequentie van een aantal tijdstappen geleden. De

methode is rekentechnisch efficiënt en kan zowel de relatieve fase als de grootte van de

oscillaties van het signaal schatten. Zowel simulaties als echte experimenten laten gro-

tere negatieve covarianties zien wanneer er oscillaties optreden. Door het detecteren van

deze oscillaties kan de microdrone de juiste sterkte van de stuurreacties bepalen. Om de

mogelijkheid van fase II te onderzoeken, is er een stabiliteitsanalyse uitgevoerd van het

systeem. Deze analyse laat zien dat het systeem niet zelf oscillaties zal induceren als de

voorgestelde strategie wordt gebruikt tijdens een landing met constante beeldexpansie.

Bovendien tonen meerdere experimenten met de microdrone aan dat de strategie leidt

tot vloeiende landingen, zowel binnen als buiten.

Om de tweede onderzoeksvraag te beantwoorden, wordt in dit proefschrift een ef-

ficiënt algoritme voorgesteld dat optische stroom gebruikt om veilige landingsplaatsen

te identificeren. Zulke landingsplaatsen horen relatief vlak te zijn, niet te steil, en – ver-

uit het belangrijkst – geen obstakels te hebben. Om een veilige landingsplaats te vinden

gebruikt het algoritme eerst een RANdom SAmple Consensus (RANSAC) schatting, om

een lineaire parameterisatie te vinden van het optische stroomveld. De schatting bevat

een parameter die de steilheid van het oppervlak representeert en een parameter die de

“ruwheid”, en dus mogelijke aanwezigheid van obstakels, van het oppervlak represen-

teert. Als de lineaire schatting slecht past bij het optische stroomveld, dan is de ruwheid

en dus de kans op obstakels hoog. Als daarentegen de schatting goed past bij het stroom-

veld, dan is de ruwheid laag en zijn er waarschijnlijk geen significante obstakels voor het

landen.

Om de nauwkeurigheid van de steilheidsschatting te schatten zijn kunstmatige

plaatjes, met de hand gemaakte video’s, en plaatjes vanaf een microdrone gebruikt. De

resultaten laten zien dat het algoritme de steilheid nauwkeurig kan schatten als de ca-

mera gekalibreerd is en rotaties worden gecompenseerd. Bovendien is er een landings-

experiment uitgevoerd dat het verschil kan maken tussen een trap en een platte vloer,

waarbij de drone zelf besluit te landen pas als hij de trap af is. Om de ruwheidsschatting

te evalueren, zijn er testen uitgevoerd met plaatjes uit negen verschillende binnen- en

buitenomgevingen. Het succes van het vinden van een landingsplaats hangt af van een

obstakeldetectie mechanisme met een beperkte hoeveelheid “vals alarm”, dat wil zeggen

onnodige detecties als er geen obstakels zijn. Het succes van de methode wordt bepaald
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door middel van de “positieve detectieratio”, met andere woorden het percentage obsta-

kels dat ook daadwerkelijk gedetecteerd wordt, en de “vals alarmratio”, het percentage

van vlakke landingsplaatsen waar de methode toch onterecht obstakels ziet. De experi-

menten tonen aan dat de positieve detectieratio hoger dan 90% is voor alle omgevingen,

terwijl de vals alarmratio lager dan 25% is voor alle omgevingen. Deze classificatiepres-

tatie is meestal goed genoeg voor het vinden van een landingsplaats. De meeste van

de ongedetecteerde obstakels komen voor wanneer er slechts een klein stukje van het

obstakel in de rand van het beeld zichtbaar is. Dit maakt het obstakel moeilijk te detec-

teren, aangezien het algoritme de aanwezigheid van obstakels in een heel plaatje evalu-

eert. Meerdere experimenten waarin een microdrone het algoritme gebruikt, laten zien

dat de microdrone succesvol een landingsplaats kan kiezen.

Bovendien probeert dit onderzoek “voorbij” optische stroom te gaan voor het selec-

teren van een geschikte landingsplaats. Een nieuwe opzet wordt geïntroduceerd voor

“leren met zelf-supervisie”, waarin de schattingen van de optische stroom gebruikt wor-

den als een leraar die de microdrone vertelt wanneer er obstakels in zicht zijn. De mi-

crodrone kan dan associaties gaan maken tussen het voorkomen (kleuren en texturen)

van objecten in zicht, en de aanwezigheid van obstakels. Deze nieuwe opzet lost een be-

langrijk probleem van monoculaire optische stroom op, namelijk dat die vereist dat de

microdrone voldoende beweegt. Door de optische stroom gebaseerde ruwheid van het

oppervlak te gebruiken voor het detecteren van obstakels, wordt er een functie geleerd

die het voorkomen van objecten in zicht – gerepresenteerd als een distributie van “tex-

tons” – projecteert naar de bepaalde ruwheid. Na het leren kan de microdrone dan een

geschikte landingsplaats selecteren door gewoon stil te hangen in de lucht. Interessant

genoeg, ondanks het feit dat de ruwheid slechts oordelen geeft over een geheel plaatje,

kan de functie na het leren gebruikt worden om objecten op pixelniveau te segmenteren,

door het evalueren van lokale textondistributies.

Om de classificatieprestatie te bepalen van deze aanpak zijn dezelfde datasets ge-

bruikt als voor de optische stroom methode. De resultaten laten een licht betere posi-

tieve detectieratio zien dan met optische stroom. Echter, de vals alarmratio’s zijn wat

hoger voor de complexere binnen- omgevingen, waar het visueel voorkomen van obsta-

kels veel varieert. Dit leidt binnen ook tot een wat hogere genormaliseerde gemiddelde

kwadratische fout. Gebaseerd op de analyse kan geconcludeerd worden dat de aanpak

de meeste obstakels en geschikte landingsplaatsen kan vinden. Binnen- en buitenexpe-

rimenten leiden tot succesvolle landingen.

Samenvattend kan geconcludeerd worden dat biologisch geïnspireerde monoculaire

waarneming veelbelovend is voor het autonome landen van een microdrone. In het

proefschrift wordt aangetoond dat de op het gedrag van insecten geïnspireerde strate-

gieën, zoals het constant houden van de beeldexpansie voor landen, alleen succesvol

uitgevoerd kunnen worden door bepaalde fundamentele problemen op te lossen van

optische stroom besturing. Daarnaast kan het leren van het visuele voorkomen op basis

van optische stroom de landingsvaardigheden van microdrones nog verder verbeteren.

Dit proefschrift stelt verschillende oplossingen voor die tot nieuwe inzichten leiden die

niet alleen belangrijk zijn voor een microdrone, maar ook wellicht hun waarde kunnen

hebben voor de biologie.
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Het wordt aangeraden toekomstig werk te verrichten voor het aanpassen van de bi-

ologisch geïnspireerde aanpak aan nieuwe sensoren die insectenogen beter benaderen.

Deze nieuwe sensoren zijn klein en kunnen direct optische stroom meten. Daardoor

kan de efficiënte van waarnemen en rekenen nog verder verbeterd worden. Voor hoog-

teschatting wordt het aangeraden de toestandsrepresentatie van het EKF uit te breiden

met een variabele voor de windverstoring. Alhoewel buitenexperimenten aantoonden

dat de wind geen groot probleem hoeft te vormen, zou het toevoegen van zo’n varia-

bele de nauwkeurigheid verder kunnen verhogen. Tenslotte, voor het leren met zelf-

supervisie zou het interessant zijn om methoden van diepe neurale netwerken toe te

passen. Het voorgestelde toekomstig werk zou significant kunnen bijdragen aan de

vliegvaardigheden van microdrones, en ze in het ideale geval dichter bij de unieke vaar-

digheden van kleine vliegende insecten brengen.
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