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Abstract 13 

A method of combining 3D Kriging for geotechnical sampling schemes with an existing random field 14 

generator is presented and validated. Conditional random fields of soil heterogeneity are then linked 15 

with finite elements, within a Monte Carlo framework, to investigate optimum sampling locations and 16 

the cost-effective design of a slope. The results clearly demonstrate the potential of 3D conditional 17 

simulation in directing exploration programmes and designing cost saving structures; that is, by 18 

reducing uncertainty and improving the confidence in a project’s success. Moreover, for the problems 19 

analysed, an optimal sampling distance of half the horizontal scale of fluctuation was identified. 20 
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uncertainty reduction 22 
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1. Introduction 23 

Soil properties exhibit three dimensional spatial variability (i.e. heterogeneity). In geotechnical 24 

engineering, a site investigation may be carried out, and the data collected and processed in a 25 

statistical way to characterise the variability [1–10]. The outcomes of the statistical treatment, e.g. the 26 

mean property value, the standard deviation or coefficient of variation, and the spatial correlation 27 

distance, may be used as input to a geotechnical model capable of dealing with the spatial variation 28 

(e.g. a random field simulation). However, when it comes to making use of the field data, there arises 29 

the question: How can we make best use of the available data? The idea is to use the data more 30 

effectively, so that it is worth the effort or cost spent in carrying out the investigation, as well as the 31 

additional effort in post-processing the data. The aim of this paper is to contribute towards answering 32 

this question. 33 

For example, cone penetration tests (CPTs) are often carried out in geotechnical field investigations, in 34 

order to obtain data used in implementing the design of a structure. The amount of data from CPT 35 

measurements is often larger than from conventional laboratory tests. This is useful, as a large 36 

database is needed to accurately estimate the spatial correlation structure of a soil property. For 37 

example, Fenton [3] used a database of CPT profiles from Oslo to estimate the correlation statistics in 38 

the vertical direction, and Jaksa et al. [5] used a database from Adelaide to estimate the correlation 39 

distances in both the vertical and horizontal directions. 40 

In geotechnical engineering, a substantial amount of numerical work has been done using idealised 2D 41 

simulations based on collected in-situ data (e.g. [4]), although a 3D simulation would be preferable 42 

due to site data generally being collected from a 3D space. However, there are relatively few studies 43 

simulating the effect of 3D heterogeneity due to the high computational requirements. Examples 44 

include the effect of heterogeneity on shallow foundation settlement [11–13], on steady state seepage 45 

[14–16], on seismic liquefaction [17] and on slope reliability [18–27]. 46 

The above investigations all used random fields to represent the soil spatial variability and the finite 47 

element method to analyse geotechnical performance within a Monte Carlo framework, a form of 48 
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analysis sometimes referred to as the random finite element method (RFEM) [28]. However, they did 49 

not make use of the spatial distribution of related measurement data to constrain the random fields. In 50 

other words, for those applications that are based on real field data, many realisations not complying 51 

with the field data at the measurement locations will be included in the simulation, which, in turn, will 52 

result in an exaggerated range of responses in the analysis of geotechnical performance.  53 

Studies on conditional simulations are available in geostatistics in the field of reservoir engineering 54 

[29]. However, there are not many studies dealing with soil spatial variability in geotechnical 55 

engineering that utilise conditional simulation (some 2D exceptions include, e.g., [6, 30–32]). This is 56 

partly due to the smaller amount of data generally available in geotechnical engineering, and partly 57 

due to there often not being a computer program specially implemented for those situations where 58 

there are sufficient data (e.g. CPT, vane shear test (VST)), especially in 3D. However, unconditional 59 

random fields can easily be conditioned to the known measurements by Kriging [29, 33]. Hence, 60 

following the previous 2D work of Van den Eijnden and Hicks [31] and Lloret-Cabot et al. [30], this 61 

paper seeks to implement and apply conditional simulation in three dimensional space, in order to 62 

reduce uncertainty in the field where CPT measurements are carried out. 63 

Usually, site investigation plans are designed to follow some regular pattern. For example, a 64 

systematic grid of sample locations is generally used, due to its simplicity to implement [5]. Moreover, 65 

although there are various sampling plans in terms of layouts, it is found that systematically ordered 66 

spatial samples are superior in terms of the quality of estimates at unsampled locations [34]. Therefore, 67 

this paper will be devoted to implementing a 3D Kriging algorithm for sampling schemes following a 68 

regular grid. This will then be combined with an existing 3D random field generator to implement a 69 

conditional simulator. However, extension to irregular sampling patterns is straightforward based on 70 

the presented framework. 71 

The implemented approach has been applied to two idealised slope stability examples. The first 72 

demonstrates how the approach may be used to identify the best locations to conduct borehole testing, 73 

and thereby allow an increased confidence in a project’s success or failure to be obtained. While it is 74 
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very important to pay sufficient attention to the required intensity of a site investigation (i.e. the 75 

optimal number of boreholes) with respect to the site-specific spatial variability, as highlighted by 76 

Jaksa et al. [12], the first example starts by focusing on the optimum locations for carrying out site 77 

investigations for a given number of boreholes, before moving on to consider the intensity of testing. 78 

The second example compares different candidate slope designs, in order to choose the best (most 79 

cost-effective) design satisfying the reliability requirements.  80 

For simplicity, this paper focuses on applications involving only a single soil layer (i.e. a single layer 81 

characterised by a statistically homogeneous undrained shear strength), although the extension to 82 

multiple soil layers is straightforward. Moreover, the effect of random variation in the boundary 83 

locations between different soil layers can also be easily incorporated by conditioning to known 84 

boundary locations (e.g. corresponding to where the CPTs have been carried out). 85 

2. Theory and Implementation 86 

2.1 Conditioning 87 

A conditional random field, which preserves the known values at the measurement locations, can be 88 

formed from three different fields [28, 35–36]: 89 

( )( ) ( ) ( ) ( )rc ru km ksZ Z Z Z= + −x x x x                                                          (1) 90 

where x denotes a location in space, ( )rcZ x is the conditionally simulated random field, ( )ruZ x is the 91 

unconditional random field, ( )kmZ x is the Kriged field based on measured values at ( 1, 2, , )i i N=x 2 ,92 

( )ksZ x is the Kriged field based on unconditionally (or randomly) simulated values at the same 93 

positions ( 1, 2, , )i i N=x 2 , and N is the number of measurement locations. 94 

The unconditional random field can be simulated via several methods [37]; for example, interpolated 95 

autocorrelation [38], covariance matrix decomposition, discrete Fourier transform or Fast Fourier 96 

transform, turning bands, local average subdivision (LAS), and Karhunen–Loeve expansion [39], 97 

among others. The LAS method [40] is used in this paper. The Kriged fields are obtained by Kriging 98 

4 
 



[41], which has found extensive usage in geostatistics [42–43]. The LAS and Kriging methods are 99 

briefly reviewed in the following sections. 100 

2.2 Anisotropic random field generation using 3D LAS 101 

The LAS method [40, 44] is used herein to generate the unconditional random fields, using statistics 102 

(i.e. mean, variance and correlation structure) based on the observed field data.  The LAS method 103 

proceeds in a recursive fashion, by progressively subdividing the initial domain into smaller cells, until 104 

the random process is represented by a series of local averages. The major advantage is its ability to 105 

produce random fields of local averages whose statistics are consistent with the field resolution; that is,  106 

it maintains a constant mean over all levels of subdivision, and ensures reduced variances as a function 107 

of cell size based on variance reduction theory [45], taking account of spatial correlations between 108 

local averages within each level and across levels. 109 

The following covariance function is used in the subdivision process: 110 

( ) ( )
22

12 32
1 2 3

1 2 3

2 22, , expC C
τ τττ τ τ σ

θ θ θ

    = = − − +        

τ                                (2) 111 

where 2σ is the variance of the soil property, τ is the lag vector, and θ1, θ2 and θ3, and τ1, τ2 and 112 

τ3 are the respective scales of fluctuation and lag distances in the vertical and two lateral coordinate 113 

directions, respectively. Herein, an isotropic random field is initially generated by setting θ1 = θ2 = θ3 114 

= θiso; i.e. so that θiso equals the horizontal scale of fluctuation, θh. This field is then squashed in the 115 

vertical direction to give the target vertical scale of fluctuation, θv. The 3D LAS implementation of 116 

Spencer [25] has been used in this paper, and the reader is referred to Spencer [25] and Hicks and 117 

Spencer [19] for more details. Note also that a truncated normal distribution has been used to describe 118 

the pointwise variation in material properties [19]. 119 

2.3 Kriging 120 

In contrast to conventional deterministic interpolation techniques, such as moving least squares and 121 

the radial point interpolation method, Kriging incorporates the variogram (or covariance) into the 122 
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interpolation procedure; specifically, information on the spatial correlation of the measured points is 123 

used to calculate the weights. Moreover, standard errors of the estimation can also be obtained, 124 

indicating the reliability of the estimation and the accuracy of the prediction. Kriging is a method of 125 

interpolation for which the interpolated values are modelled by a Gaussian process governed by prior 126 

covariances and for which confidence intervals can be derived. While interpolation methods based on 127 

other criteria need not yield the most likely intermediate values, Kriging provides a best linear 128 

unbiased prediction of the soil properties (Z) between known data [43, 46] by assuming the stationarity 129 

of the mean and of the spatial covariances, or variograms. A brief review is first given to facilitate 130 

understanding of the implementation. 131 

 Suppose that 1 2, , , NZ Z Z2 are observations of the random field ( )Z x at points 1 2, , , Nx x x2 (i.e. 132 

( ) ( 1, 2, , )i iZ Z i N= =x 2 ). The best linear unbiased estimation (i.e. Ẑ ) of the soil property at some 133 

location 0x is given by 134 

0 0
1 1

ˆ ( ) ( ) ( )
N N

i i i i
i i

Z Z Zλ λ
= =

= =∑ ∑x x x                                                     (3) 135 

in which N denotes the total number of observations and iλ denotes the unknown weighting factor 136 

associated with observation point ix , which needs to be determined. 137 

The weights in equation (3), for the estimation at any location 0x , can be found by minimising the 138 

variance ( 2
eσ ) of the Kriging error Ẑ Z− , which is given as 139 

( ) ( )

( )( ) ( )( ) ( )( )

( ) ( ) ( )

22 2 2 2
0 00

1 1 1

2 2 2
0 0 0

1 1 1

0 0 0
1 1 1

ˆ ˆvar ( ) 2 ( ) ( )

2

2

N N N

e i j ij i i
i j i

N N N

i j i j i i
i j i

N N N

i j i j i i
i j i

Z Z E Z Z c c c

C C C

σ λ λ σ λ σ σ

λ λ σ λ σ σ

λ λ γ λ γ γ

= = =

= = =

= = =

 = − = − = − − − + −  

= − − − − − + − −

= − − + − − −

∑∑ ∑

∑∑ ∑

∑∑ ∑

x x x x x x

x x x x x x

       (4) 140 
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where var() denotes the variance operator and E[] is the expectation operator, ( )ij i jc C= −x x  is the 141 

covariance between ( )iZ x and ( ),jZ x ( )0 0i ic C= −x x  is the covariance between ( )iZ x and 0( )Z x , 142 

and ( )00 0 0 (0)c C C= − =x x 2σ=  is the variance of 0( )Z x , which is estimated at the target location 143 

0x . The rearrangement in equation (4) makes use of the relationship between a variogram ( )γ τ  and a 144 

covariance function ( )C τ  ( i.e. ( ) ( ) ( ) ( )20C C Cγ σ= − = −τ τ τ ) and the condition 
1

1
N

i
i

λ
=

=∑ (in 145 

order to ensure that the estimator is unbiased, i.e. ( )ˆ 0E Z Z− = , the weights must sum to one).  146 

To minimise the error variance (i.e. equation (4)), the Lagrange method is used [43]. The weights can 147 

then be found by solving the system of equations of size N + 1, for a constant mean: 148 

1 1 1 1 1 0

1 0

( ) ( ) 1 ( )

( ) ( ) 1 ( )
1 1 0 1

N

N N N N N

γ γ λ γ

γ γ λ γ
µ

− − −    
    
    =
    − − −
    
    

x x x x x x

x x x x x x



     





                              (5) 149 

in which µ is the Lagrangian parameter. For a mean following some trend, the modification to 150 

equation (5) is straightforward and interested readers are referred to Fenton [46]. 151 

Equation (5) may be expressed as  152 

lhs x rhs=γ λ γ                                                                      (6) 153 

Once equation (5) is solved, the estimated error variance can be expressed by 154 

( ) ( )T2 1
0

1

N

e i i lhs rhs rhs
i

s µ l γ −

=

= + − =∑ x x γ γ γ                                            (7) 155 

where iλ is a function of the relative positioning of points ix and 0x .  156 

Note that the left-hand-side matrix lhsγ is a function of only the observation point locations and 157 

covariance between them. Therefore, it only needs to be inverted once, and then equations (5) and (3) 158 
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used repeatedly for building up the field of best estimates at different locations in space. In contrast, 159 

the right-hand-side vector rhsγ changes as a function of the spatial point 0x , resulting in different 160 

weight vectors xλ that are used in equation (3) to get the estimates (point by point) in the domain of 161 

interest.  162 

In geotechnical engineering, a sampling strategy following some pattern is generally adopted [1]. For 163 

example, CPT sampling is often planned in the form of a regular grid on the ground surface [5]. It is 164 

therefore desirable to implement the above Kriging algorithm in the context of some sampling design 165 

with a regular pattern. While it is straightforward to implement in 2D, it is less so when implemented 166 

in 3D. The most fundamental part is how the left-hand-side matrix of equation (6) is formed. The 167 

authors have implemented 3D Kriging for the regular grid sampling strategy shown in Figure 1. The 168 

way to set up the left-hand-side matrix and the right-hand-side vector is presented in the Appendix. 169 

2.4 Computational efficiency 170 

There are two aspects involved in the computational efficiency of the above Kriging implementation. 171 

One is the total number of equations, which depends on the total number of data points (N = k×m×n, 172 

where k and m are the number of CPT rows in the x and y directions respectively, and n is the number 173 

of data points for each CPT profile, see Figure 1) contributing to the left-hand-side matrix; the other is 174 

the number of points in the field (nf = nx×ny×nz, where nx, ny and nz are the number of points in the 175 

three Cartesian directions) that need to be Kriged (i.e. how many times the algorithm will need to be 176 

repeated, except for inverting the left-hand-side matrix). The higher the required field resolution (nf) 177 

and the greater the total number of known data points (N), the longer the Kriging will take. In the case 178 

of the CPT arrangement in Fig. 1, the size of matrix lhsγ  (see equation (5) or equation (A1)) and the 179 

size of vector rhsγ (see equation (5) or equation (A3)) in 3D are m2 and m times larger than those in 2D 180 

(i.e. a cross-section in the x–z plane) respectively. The time it takes to Krige a full 3D field depends on 181 

the processing time of each individual step and the number of times each step has to be performed. To 182 

Krige a field of size nf, conditional to N measurement points, the total time may be approximated by 183 
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2 3
1 2( , )f ft N n c n N c N≈ +                                                         (8) 184 

where the first term represents the time needed for solving the system of equations for all field points 185 

(i.e. nf  times) (O(N2)) and the second represents the time needed for inverting the matrix lhsγ  (i.e. only 186 

once) (O(N3)). The constants c1 and c2 are functions of the CPU speed and the operation, and in this 187 

case are in a ratio of approximately 4:1. Additionally, in all practical cases, nf >> N, so that the 188 

calculation time depends mainly on the first term in the above equation; that is, on the number of times 189 

(i.e. nf times) that the matrix–vector multiplication operation, 1
x lhs rhs

−=λ γ γ , needs to be performed. 190 

Note that nf = nx×ny×nz in 3D is ny times nf = nx×nz in 2D and N = k×m×n in 3D is m times N = k×n in 191 

2D. In the examples reported in Section 4, all problems investigated are very long in the third 192 

dimension compared to the cross-section. Therefore, the time consumed in a 3D analysis is 193 

theoretically ny×m2 times that of a 2D analysis, when neglecting the relatively fast, one-off matrix 194 

inversion operation and other computation overheads, such as reading/writing and memory operations.  195 

However, despite the significantly greater run-time requirements for Kriging in 3D (as compared to 196 

2D), it is still far less than the time consumed in a nonlinear finite element analysis where plasticity 197 

iterations are needed. For Example 1 in Section 4, where nx = 20, ny = 100 and nz = 20, it took, in serial 198 

and on average, 134 hours in total for the 500 finite element analyses forming each Monte Carlo 199 

simulation (3.0 GHz CPU), whereas Kriging 500 times took about 2.4 hours. In contrast, 500 Kriging 200 

interpolations for a 2D cross-section analysis took approximately 8.5 seconds. It is noted that the 201 

computation time used for Kriging 500 times is significant in comparison with a single finite element 202 

analysis, and therefore should not be considered a pre-processing step if utilising parallel computation 203 

for the finite element analyses. Therefore, the computing strategy developed to carry out the analyses 204 

for Examples 1 and 2 in Section 4 (comprising around 30,000 realisations in total, and involving 205 

30,000 3D Kriging interpolations) was to run the analyses in parallel (each Kriging and finite element 206 

analysis serially on a single computation node) on the Dutch national grid e-infrastructure with high 207 

performance computing clusters.  208 
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Note that it is possible to prescribe an appropriate neighbourhood size in the algorithm to reduce the 209 

computational burden for 3D Kriging. For example, a neighbourhood size of 5×7×n may be used to 210 

construct the left-hand-side matrix (see the neighbourhood denoted as a rectangle in Figure A.1(a), i.e. 211 

by using only the nearest 4 CPT profiles). That is, only those CPT profiles that have a significant 212 

influence (i.e. a lag distance within the range of the scale of fluctuation in equation (2)) on the point to 213 

be estimated are used to construct the left-hand-side (LHS) matrix. However, using this strategy, for 214 

each point (or each subset of points) to be estimated, the left-hand-side matrix is different and will 215 

need to be inverted accordingly, so this could increase the computational time if there are a large 216 

number of points or cells to be estimated. Therefore, a choice has to be made, to make sure that the 217 

time saved by inverting a smaller matrix, instead of a bigger one, outweighs the time consumed by 218 

inverting the left-hand-side matrices for all the (subgroups of) cells to be estimated for the case in 219 

which a neighbourhood is used. And, of course, there is a trade-off between the estimation accuracy 220 

and time saved when such a neighbourhood approach is used. The accuracy will increase as more 221 

available data are used to do the Kriging estimation, and so the neighbourhood size depends on the 222 

required accuracy and the scales of fluctuation.  223 

Due to the relatively fast inversion of the LHS matrix in the current investigation (the maximum size 224 

investigated is N = 500), all CPT profiles have been used for the Kriging in the examples in Section 4. 225 

However, one neighbourhood strategy was investigated by using the 4 nearest CPT profiles, and the 226 

following uncertainty reduction ratio (a 3D extension to the 1D definition in [31]) has been used to 227 

assess the approximation error: 228 

( )
1 1 1

, ,
yx znn n

e
i j k

x y z

i j k
u

n n n

σ

σ
= = ==
∑∑∑

                                                     (9) 229 

The approximation error may be evaluated by 230 

n a
u

a

u u
E

u
−

=                                                             (10) 231 
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where un and ua are the uncertainty reduction ratios when using a neighbourhood and when all CPT 232 

profiles have been used, respectively. 233 

One of the sampling strategies from Example 1 (Section 4, Fig. 9(b)) was used to evaluate the 234 

approximation error and the results are listed in Table 1. It can be seen that using a neighbourhood of 235 

the 4 nearest CPT profiles has been sufficient in this case. 236 

3. Validation 237 

The conditional simulation of a 5 m high (z), 5 m wide (x) and 25 m long (y) clay block, characterised 238 

by a spatially varying undrained shear strength, is presented in this section to demonstrate the 239 

procedure and the validity of the implementation described in Sections 2.1–2.3 (and the Appendix). 240 

The idea is to show how the measured values are honoured, and to check whether or not the statistical 241 

properties (e.g. covariance) of the random fields are maintained after conditioning. 242 

The block is discretised into 20×100×20 cubic cells, with each cell of dimension 0.25 m. The mean of 243 

the undrained shear strength is 40 kPa, and the standard deviation is 8 kPa. The degree of anisotropy 244 

of the heterogeneity is ξ = 3, in which ξ = θh/θv and θv = 1.0 m. Five CPT measurement locations in 245 

the y direction (at x = 2.5 m) are available, each comprising n = 20 data points at 0.25 m spacing in the 246 

vertical direction. These ‘measured’ data have been obtained by sampling from a single independent 247 

realisation of the spatial variability (i.e. representing the ‘actual’ in-situ variability). The interval 248 

distance between the CPTs in the horizontal direction is Δy = 5 m, and the first CPT is located at y = 249 

2.5 m. 250 

Figure 2 shows an example realisation, to illustrate the stages involved in constructing the conditional 251 

random field. It shows (a) the unconditional field generated using LAS,  (b) the Kriged field based on 252 

the unconditionally simulated cell values at the measurement locations, (c) the Kriged field based on 253 

the measured data (taken from the reference field), and (d) the conditional random field. It can be seen 254 

that the conditional field eliminates unrealistic values from the unconditional simulation by honouring 255 

the measurement data at the measurement locations (e.g. corresponding to the centre of the dashed 256 

circle in the case of the first CPT). The cross-section from which the CPTs were taken is also shown in 257 
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Figures 2(e) and 2(f), together with the known CPT profiles. It is seen that the known CPT profiles are 258 

honoured in the conditional random field. Note that, in order to better visualise the fields, a local 259 

colour scale is used for all sub-figures in Figure 2.  260 

In order to validate the consistency of the conditioning, the following estimator of the correlation 261 

structure along the vertical or horizontal directions of the random field is used to back-figure the 262 

covariance structure: 263 

( )( )
1

1ˆ ˆ ˆ( )
n j

j i Z i j Z
i

C j Z Z
n j

τ τ µ µ
−

+
=

= ∆ = − −
− ∑                                    (11) 264 

where j = 0, 1, …, n-1, n is the number of data points in the vertical or horizontal direction, jτ is the 265 

lag distance between ix and i jx + , τ∆ is the distance between two adjacent cells vertically or 266 

horizontally, ˆZµ is the estimated mean, Z is the random soil property and Zi is the sample of Z. The 267 

correlation function is then ˆ ˆˆ ( ) ( ) (0)j jC Cρ τ τ= , where 2ˆ ˆ(0) ZC σ= and 2ˆ Zσ is the estimated variance 268 

[3]. 269 

Figure 3 shows the back-figured (a) vertical and (b) horizontal covariances for the unconditional and 270 

conditional random fields averaged over 200 realisations, as well as the sample (i.e. CPT) covariances 271 

and exact covariances (i.e. equation (2) with only those terms that are associated with the vertical or 272 

horizontal direction in 1D). It can be seen that the conditional random field preserves the covariance 273 

structure reasonably well in both the horizontal and vertical directions, and that the correlation 274 

function fits well the sample correlation for the first quarter of the data points (i.e. n/4) [5, 9]. It is also 275 

seen that the covariance for the conditional field lies in between those for the unconditional field and 276 

the sampling points. 277 

4. Applications 278 

Two simple examples concerning slope stability are presented in this section, to illustrate how the 279 

technique presented in this paper may be used as an aid to geotechnical design. The first involves 280 

finding the optimum locations for CPT profiles, in order to minimise the uncertainty in assessing the 281 
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reliability of a slope. The second involves a cost-effective design with regard to the slope angle when 282 

field measurements have already been made (i.e. the positions where the CPT data were taken are 283 

already known). 284 

Both examples are presented in terms of the uncertainties in the slope response (with respect to factor 285 

of safety). The factors of safety are calculated by 3D finite elements using the strength reduction 286 

method [47], with the analyses being undertaken within a probabilistic (RFEM) framework; a 287 

flowchart for carrying out such a simulation is shown in Figure 4. The undrained clay behaviour has 288 

been modelled using a linear elastic, perfectly plastic Tresca soil model. The clay has a unit weight of 289 

20 kN/m3, a Young’s modulus of 100 MPa and a Poisson’s ratio of 0.3. With reference to Figures 5 290 

and 13, the finite element boundary conditions are: a fixed base, rollers on the back of the domain 291 

preventing displacements perpendicular to the back face, and rollers on the two ends of the domain, 292 

allowing only settlements and preventing movements in the other two directions (i.e. the out-of-slope-293 

face and longitudinal directions). A full explanation of these boundary conditions is given in Spencer 294 

[25] and Hicks and Spencer [19].  295 

The random field cell values are mapped onto the 2×2×2 Gauss points in each 20-node finite element, 296 

in order to simulate the spatial variability more accurately [19, 48]. Note that the random fields (both 297 

conditional and unconditional) have been mapped onto a finite element mesh with an element aspect 298 

ratio equal to 2.0 (see Figure 5) to save time for the finite element analyses [25]. A detailed description 299 

of how the random field cell values, in this case based on a cell size of 0.25×0.25×0.25 m, are mapped 300 

onto the larger non-cubic finite elements is given in Hicks and Spencer [19]. 301 

Note that field test (e.g. CPT) data are not directly used in the following examples. That is, the direct 302 

measurements from geotechnical tests are typically not directly applicable in a design. Instead, a 303 

transformation model is needed to relate the test measurement (e.g. tip resistance from a CPT test) to 304 

an appropriate design property (e.g. the undrained shear strength) [49]. The uncertainty involved in the 305 

transformation model is not considered in this paper. 306 
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4.1 Example 1 307 

The first example considers a proposed 45˚, 5 m high, 50 m long slope, that is to be cut from a 308 

heterogeneous clay deposit characterised by an undrained shear strength with the following statistics: 309 

mean, µ = 20 kPa; standard deviation, σ = 4 kPa; vertical scale of fluctuation, θv = 1.0 m; and 310 

horizontal scale of fluctuation, θh = 6.0 m. A question arises as to how to design the sampling strategy 311 

for the soil deposit. For example, if 5 CPTs are to be conducted in a straight line along the axis of the 312 

proposed slope, where is the best location to site the CPTs such that the designed slope will have the 313 

smallest uncertainty in the realised factor of safety F? Hence, this example first investigates the 314 

influence of the CPT locations on the standard deviation of the realised factor of safety, followed by 315 

the influence of CPT intensity. 316 

Figure 5 shows a cross-section through the slope, and 10 possible positions to locate the CPTs (i = 0, 317 

1, …, 9). Note that the CPTs are taken to be equally spaced (i.e. at 10 m centres) in the third 318 

dimension, and that the first and fifth CPTs are located at 5 m and 45 m along the slope axis (see 319 

Figure 9(a)). Furthermore, the CPTs are carried out before the slope is excavated, in a block of soil of 320 

dimensions 10×50×5 m as indicated in the figure. 321 

Both conditional and unconditional RFEM simulations were carried out, using 500 realisations per 322 

simulation, to investigate how the structure response (in this case, the realised factor of safety) 323 

changes as the conditioning location changes. Figure 6(a) shows that the uncertainty in the realised 324 

factor of safety reduces after conditioning, i.e. after making use of the available CPT information 325 

about the soil variability, as indicated by the narrower distribution of realised factor of safety for the 326 

conditional simulation. In this figure, the reduction in uncertainty is due to CPT data being taken from 327 

location i = 5. 328 

Figure 6(b) shows the sampling efficiency indices with respect to the different CPT locations, in which 329 

the sampling efficiency index is defined as 330 

u
se

i

I s
s

=                                                               (12) 331 
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where uσ is the standard deviation of the realised factor of safety for the unconditional simulation, and 332 

iσ is the standard deviation of the realised factor of safety for the conditional simulation based on 333 

column position i. Hence 1seI =  if the simulation is not conditioned. Clearly, there exists an optimum 334 

position (in this case, i = 5) to locate the CPTs; i.e. the uncertainty is a minimum if the CPTs are 335 

located along the crest of the proposed slope. In contrast, when i = 0 and i = 1, there is little 336 

improvement, because the potential failure planes (in the various realisations) generally pass through 337 

zones where the shear strength is, at most, only weakly correlated to values at the left-hand boundary 338 

(due to θh being only 6 m in this case). It is interesting to note that, although there is not much 339 

information included in the slope stability calculation when i = 9, i.e. for the CPTs at the slope toe, the 340 

reduction in uncertainty is still noticeable, due to the CPTs being located in the zone where slope 341 

failure is likely to initiate. This observation highlights that the location of additional information may 342 

matter more than how much additional information there is (e.g. contrast the large difference in the 343 

amount of directly utilised data between CPT locations i = 0 and i = 9). 344 

However, it should be remembered that Figures 6(a)-6(b) are for the case of ξ = 6 (corresponding to θh 345 

= 6 m) and that ξ often takes a larger value in practice. Figures 6(c)-6(f) show that, for ξ = 12 and ξ = 346 

24, the reduction in uncertainty relative to the unconditional case is greater. Moreover, improved 347 

values of Ise are obtained for CPT locations near the right and left boundaries, due to the higher 348 

correlation of soil properties in the horizontal direction. 349 

Figure 7 summarises the results as a function of the degree of anisotropy of the heterogeneity ξ . It is 350 

seen that the best locations for carrying out the 5 CPTs are at i = 5, 6 and 7. As the value of ξ351 

increases, the sampling efficiency indices increase due to the decreasing Kriging variance 2
eσ , as 352 

illustrated in Figure 8 for a y–z slice at i = 5 (i.e. corresponding to where the CPTs are located). It is 353 

seen that, for larger values of ξ , the Kriging variance between CPTs can drop well below the input 354 

variance of the shear strength (i.e. 2 216 kPaeσ ≤ ). Moreover, carrying out CPTs at some distance to 355 

the left or right of the slope crest for higher values of ξ  can have a similar effect to carrying out CPTs 356 
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near the crest for smaller values of ξ . For example, Figure 7 shows that the sampling efficiency index 357 

for 24ξ =  at 2i =  is approximately the same as that for 12ξ =  at i = 5, 6 and 7. 358 

Note that the same reference 3D random field is used to represent the ‘real’ field situation in 359 

conditioning the random fields in each RFEM analysis. The 3D random fields are conditioned before 360 

being mapped onto the finite element mesh, so that they are consistent with sampling the ground 361 

before the slope is cut. Hence, for i = 6, 7, 8 and 9, although the CPT measurements are directly used 362 

for fewer cells in the FE mesh, they nevertheless have an impact on all cell values via the lateral 363 

spatial correlation of soil properties in the original ground profile. 364 

If a second row of CPT tests (at position j) is to be performed in a second phase of the site 365 

investigation (e.g. as illustrated in Figure 9(b)), the above procedure can be repeated by changing j in 366 

the range 0–9 to locate the best positions for the new CPTs, assuming that the position of the first set 367 

of CPT profiles has been set to i = 5. This is shown in Figure 10 for the case of 6ξ = . Figure 10(a) 368 

shows the probability distributions of the realised factor of safety for the unconditional simulation, the 369 

conditional simulation for one row of CPTs at i = 5 and the conditional simulation for an additional 370 

row of CPTs at position j = 0. It is seen that the confidence level in the project has been further 371 

increased by the second phase of site investigation. Figure 10(b) shows the sampling efficiency indices 372 

for various locations j of the second row of CPTs. It suggests that the best location for carrying out the 373 

second phase of site investigation can be at either side of the slope crest (at a distance of 374 

approximately 3 m (i.e. θh/2) from the crest).  375 

To further investigate the influence of CPT intensity on the uncertainty in the realised factor of safety, 376 

conditional simulations involving different numbers of CPTs (and thereby different distances (Δ) 377 

between adjacent CPTs) have been carried out for the case of ξ = 6, 12 and 24. Figure 11 shows the 378 

plan views of CPT layouts for ncpt = 3, 5, 9, 17 and 25 (corresponding to CPT spacings of Δ = 20, 10, 5, 379 

3 and 2 m, respectively), with the locations of the CPTs in the x-direction being fixed at i = 5. Figure 380 

12 shows the influence of CPT intensity on the sampling efficiency indices for the three values of ξ . 381 

It is seen that there is only a marginal benefit in increasing the scope of the investigation by having 382 
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CPT spacings less than Δ ≈ θh/2, especially for the 6ξ =  and 12ξ = cases. For 24ξ = , the sampling 383 

efficiency index is as high as 4 when Δ ≈ θh/2, although more CPTs (i.e. Δ ≈ θh/4, ncpt = 9) may 384 

improve the sampling efficiency to a value of 4.5. However, the general finding from Figures 10(b) 385 

and 12 is that the optimal sampling distance is around θh/2 for the problem investigated, based on the 386 

assumed correlation function. 387 

4.2 Example 2 388 

In the second example, a soil deposit characterised by spatially varying undrained shear strength is to 389 

be excavated to form a slope of a certain angle. Site investigations have been conducted based on CPT 390 

tests. The question is: In order to satisfy a target reliability level of, for example, 95%, as suggested in 391 

Eurocode [50] and discussed in Hicks and Nuttall [51], how steep should the slope be designed? 392 

Figure 13 shows three possible slope angles, with the corresponding finite element mesh 393 

discretisations. The slope is 5 m high and 50 m long in the third dimension, and the left-hand boundary 394 

is taken to be 15 m from the slope toe. Five CPTs were taken along the length of the slope at 10 m 395 

centres, at the location of the column of Gauss points nearest the slope crest for the 1:1 slope, as seen 396 

in the figure. The clay soil has a mean undrained shear strength of 21 kPa, a coefficient of variation of 397 

0.2, a vertical scale of fluctuation of 1 m and a horizontal scale of fluctuation of 12 m. 398 

The three candidate slopes are (vertical:horizontal) 1:2, 1:1 and 2:1. Based on only the mean undrained 399 

shear strength, these three slopes have deterministic factors of safety Fd of 1.73, 1.29 and 1.07. Both 400 

conditional and unconditional simulations were carried out to investigate the reliability of each slope, 401 

and, for each simulation, 500 realisations were analysed. Note that, as in the previous example, one 402 

reference random field is generated first and assumed to represent the real field situation. The 403 

conditional random fields used in the RFEM analyses are therefore based on CPT measurements taken 404 

from this ‘real’ field. 405 

The stability of the slopes was calculated by the strength reduction method by applying gravitational 406 

loading. The probability density functions of the realised factor of safety are shown in Figure 14 for 407 

the three slopes, for both conditional and unconditional simulations. The deterministic factors of safety 408 
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Fd, i.e. the factors of safety based on the mean property values, are also shown. It is seen that, if 409 

unconditional simulation is used, there is a significant chance that the 2:1 slope will fail (the 410 

probability of failure is the area under the pdf for the realised factor of safety smaller than 1.0). 411 

Unsurprisingly, the gentlest (i.e. 1:2) slope has the lowest probability of failure. However, once again, 412 

conditional simulations significantly reduce the uncertainty in the structural response, as clearly 413 

demonstrated by the narrower probability distributions. In particular, the reliability of the steepest 414 

slope increases from 77% to 99% when the CPT measurements are taken into account. 415 

The results show that, if unconditional simulations are used, the 1:1 and 1:2 slopes satisfy a target 416 

reliability level of 95%, whereas the 2:1 slope does not. However, when the additional information 417 

from the CPT profiles is used, all three cases meet the target reliability. This means that the 418 

embankment may be designed to a slope angle of 2:1 if the CPT measurements are used in the 419 

simulation, which is, if possible, a more logical thing to do. This has implications for the soil volume 420 

to be excavated and thereby cost, although the cost can be site and situation dependent (e.g. on 421 

whether there are nearby structures). A best design is a design that meets the requirements set by 422 

standards, while, at the same time, minimising the cost. In this case, the steepest slope is likely to be 423 

the most cost-effective design. 424 

5. Conclusions 425 

An approach for conditioning 3D random fields based on CPT measurements has been implemented 426 

and validated, and then applied to two numerical examples to illustrate its potential use for 427 

geotechnical site exploration and cost-effective design. It has been shown that conditional simulations 428 

based on CPT data are able to increase the confidence in a design’s success or failure. Indeed, the 429 

reliability from a conditional simulation can be thought of as a conditional reliability (or conditional 430 

probability of failure not occurring), i.e. based on a ‘posterior’ distribution of the structure 431 

performance after taking account of the spatial distribution of all the measured CPT data points. In 432 

contrast, the unconditional simulation based on random field theory only results in a ‘prior’ 433 

distribution of the structure response. This was clearly demonstrated by the updating of the probability 434 
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density distributions in the two numerical examples. Although Bayesian updating is not used in this 435 

paper, the effect is similar.  436 

If further CPT measurements are required, the approach can be repeated for updating the response 437 

probability density function. In this way, the confidence in the probability of failure or survival will be 438 

further increased. In fact, in many cases a multi-stage site investigation may be carried out, with the 439 

results of the initial analysis guiding further field tests. As demonstrated in the first example, if a 440 

second stage of site exploration were to be conducted, it is possible to find out the optimum location 441 

for the additional testing. This highlights the method’s potential use in directing site exploration 442 

programmes and thereby improving the efficient use of field measurements. For the first example 443 

considered in this paper, an optimal sampling distance of half the horizontal scale of fluctuation was 444 

identified when an exponential correlation function is used. For the second example, the conditional 445 

simulation led to a more cost-effective design. 446 
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 554 

Appendix 555 

A.1 Forming the left-hand-side matrix for Kriging 556 

Suppose there are k×m CPT locations that follow a rectangular grid at the ground surface. That is, 557 

there are k rows in the x direction and, within each row, m CPT profiles in the y direction (Figure 1). 558 

Assuming that there are n data points for each CPT profile, the global numbering scheme for all the 559 

CPT data points is shown in Figure A.1 for the case of k = 2. 560 

Following the basic equation (6), of size N + 1 = k×m×n + 1, the left-hand-side matrix is formulated 561 

as 562 

1,1 1,2 1,3 1, 1, 1 1, 2 1, 3 1,2

2,1 2,2 2,3 2, 2, 1 2, 2 2, 3 2,2

3,1 3,2 3,3 3, 3, 1 3, 2 3, 3 3,2
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             (A1) 563 

in which ,i jv is a matrix representing the correlation structure between CPTi  and CPTj (where each 564 

CPT has n data points), 565 
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     (A2)    566 

where (i, j) = 1, 2, 3, …, m, m+1, m+2, m+3, …, 2m, ……, (k-1)m+1, (k-1)m+2, (k-1)m+3, …, km and 567 

dr,s (r = (i-1)n+1, …, (i-1)n+n) (s = (j-1)n+1, …, (j-1)n+n) are the components of the submatrix ,i jv , 568 

which can be expressed in the form of a covariance function between data points r and s (equation (2)). 569 

A.2 Forming the right-hand-side vector for Kriging 570 

The right-hand-side vector is formulated as 571 
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in which pv is a vector representing the correlation structure between the estimation point and CPTp, 573 
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where p = 1, 2, 3, …, m, m+1, m+2, m+3, …, 2m, ……, (k-1)m+1, (k-1)m+2, (k-1)m+3, …, km and dt 575 

(t = (p-1)n+1, …, (p-1)n+n) are the components of the subvector pv , which can be expressed in the 576 

form of a covariance function (equation (2)) between data points t and the point at which the value is 577 

to be estimated (Figure A.1). 578 

The unknown weight vector is  579 
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in which qλ is the weight subvector for CPTq, 581 
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where q = 1, 2, 3, …, m, m+1, m+2, m+3, …, 2m, ……, (k-1)m+1, (k-1)m+2, (k-1)m+3, …, km.  583 
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Figure 3: Vertical and horizontal covariance functions averaged over 200 realisations (θv = 1.0 m, θh = 3.0 m)
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Figure 6: Simulation results for Example 1 (based on θv = 1.0 m and 500 realistions per simulation)
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Figure 8: Kriging variance for various values of ξ (y–z slice at i = 5)
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Figure 10: Influence of CPT location j during second phase of site investigation (based on θv = 1.0 m and 500 realistions per
simulation)



n
cpt

 = 3

∆ = 20 m

x

y

n
cpt

 = 5

∆ = 10 m

n
cpt

 = 9

∆ = 5 m

n
cpt

 = 17

∆ = 3 m

n
cpt

 = 25

∆ = 2 m
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Figure 12: Influence of number of CPTs (at i = 5) on sampling efficiency for various values of ξ and θv = 1.0 m (∆ denotes the
distance between CPTs)
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Figure 13: Finite element meshes for different slope geometries
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Figure A.1: Example CPT data grid (k = 2): (a) plan view showing CPT locations; (b) global numbering of data points at section
A1; (c) global numbering of data points at section A2
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