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Abstract
The concept of ecosystem services is gaining attention in the context of sustainable resource management. However, it is 
inherently difficult to account for tangible and intangible services in a combined model. The aim of this study is to extend 
the definition of ecosystem service trade-offs by using Bayesian Networks to capture the relationship between tangible and 
intangible ecosystem services. Tested is the potential of creating such a network based on existing literature and enhance-
ment via expert elicitation. This study discusses the significance of expert elicitation to enhance the value of a Bayesian 
Network in data-restricted case studies, underlines the importance of inclusion of experts’ certainty, and demonstrates how 
multiple sources of knowledge can be combined into one model accounting for both tangible and intangible ecosystem ser-
vices. Bayesian Networks appear to be a promising tool in this context, nevertheless, this approach is still in need of further 
refinement in structure and applicable guidelines for expert involvement and elicitation for a more unified methodology.

Keywords Bayesian Network · Ecosystem services · Expert elicitation · Curonian Lagoon

1 Introduction

Ecosystem Services (ESs) are described as a combination of 
ecosystem goods and services derived from ecosystems and 
their subsequent utilization, which support the process and 
conditions necessary to perpetuate the existence of humans 
(human well-being) and other species. ESs thereby result in 
direct benefits for humans and society (Costanza et al. 1997; 
MA 2005). Managers and decision-makers dealing with ESs 
are often forced to make decisions within restricted time 
frames and under limited resources (Douglas and Newton 
2014). To counteract the loss of biodiversity (UNEP-WCMC 
2014) and safeguard the perpetuity of ESs, the need for a 
meaningful approach of accounting for tangible and intangi-
ble values provided by ecosystems has been identified (e.g., 
Douglas and Newton 2014). One concept which is gaining 
attention in the field of Ecosystem Service (ES) assessment 
and scenario development is the Bayesian Network (BN) 

approach (Marcot et al. 2006; Haines-Young 2011; Lan-
duyt et al. 2013b). Previous work of Uusitalo et al. (2015) 
describes the advantage for decision-makers of using models 
readily incorporating uncertainties in order to draw a more 
realistic picture. A fact on which this work is moving for-
ward by taking advantage of Bayesian Networks (BNs) being 
able to propagate uncertainties through the network. Hence, 
this study aims to further advance in the practical application 
of BNs in Environmental Sciences, and particularly in ESs 
trade-off analysis, by performing a case study.

1.1  The study area

The Curonian Lagoon in Lithuania is utilized as a case study. 
It is situated at the south-eastern edge of the Baltic Sea mak-
ing it a shared water body between Lithuania (North) and the 
Russian Federation (South). Its eastern shoreline is domi-
nated by the Nemunas Delta and the western edge is formed 
by the Curonian Spit (Fig. 1). Generally, the lagoon’s edges 
are predominantly covered by reed beds (Breber et al. 2008; 
Gasiūnaitė et al. 2008; Razinkovas-Baziukas et al. 2016). 
The Curonian Lagoon is one of the several protected areas 
included into the ECOPOTENTIAL project (http://ecopo 
tenti al-proje ct.eu/2016-05-24-14-52-12/prote cted-areas /16-
curon ian-lagoo n) and is well known to tourists and locals 
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alike for the natural aesthetic, cultural values, and environ-
mental richness. Previous investigations by the ECOPO-
TENTIAL working group have subdivided the lagoon into 
different habitats and identified numerous ESs provided by 
each habitat (El Serafy et al. 2016). This study focuses on 
the lagoon fringes, more specifically, on the issue of unregu-
lated, continuous overgrowth of the fringes by extensive reed 
beds which is perceived to be the driving force behind the 
homogenization or degradation of ESs within these fringes. 
In short, a competition between open spaces versus reed 
belts.

Reed beds, both in general and specifically in relation to 
the Curonian Lagoon, are known to provide valuable ESs 
which can be divided into two categories. The first category 
entails ESs linked to the continuous presence of reed beds 
including, but not limited to habitat provision (e.g., as key 
breeding habitat for birds and fishes), coastal protection/sta-
bilization, biodiversity, and scenery (Mal and Narine 2004; 
Breber et al. 2008; Iital et al. 2012; Fogli et al. 2014; ECO-
POTENTIAL 2015; Razinkovas-Baziukas et al. 2016). The 
second category encompasses ESs derived from utilizing 
reed as raw material: for agricultural use (e.g., fodder), as 
industrial material (e.g., thatching material), and for energy 
production (Breber et al. 2008; Iital et al. 2012; Köbbing 
et al. 2013). The utilization of winter harvested reed as raw 
material for thatching and biofuel is experiencing a revival. 
However, the impacts of reed harvesting as a management 

intervention on other ESs are largely unknown. Research 
investigating the impact of such management measures on 
reed bed morphology suggests the chance of the reed bed’s 
morphology being altered, and threats to biodiversity, the 
ecosystem, and its services might arise (Iital et al. 2012; 
Huang et al. 2014). These results are still subject to uncer-
tainty and require further research (Iital et al. 2012).

The Curonian Lagoon is also an area which is rich in 
fish stocks (Repečka 2003) and provides essential spawn-
ing, feeding, and nursery grounds for various fish species 
(Repečka 2003; Breber et al. 2008; Iital et al. 2012; Zolubas 
et al. 2014). There is very little literature published on how 
exactly fish utilize reed belts as spawning grounds; particu-
larly in the case of the Curonian Lagoon. Mostly, the stated 
consensus is that reed beds are essential habitats for fish pro-
viding feeding, spawning, and nursery grounds (Žiliukienė 
and Žiliukas 2000; Žiliukas 2003; Žiliukas and Žiliukienė 
2009; Iital et al. 2012; Zolubas et al. 2014). Breber et al. 
(2008) contradicts this opinion, stating that reed beds reduce 
valuable spawning, and nursery areas since dense reed beds 
are unsuitable habitats. A proposed solution by Breber et al. 
(2008) is to restore and increase areas suitable for fish to 
dwell and spawn and to reinstate natural hydrological and 
ecological processes by commercially exploiting reed belts 
to sell as thatching material, thereby benefiting the local 
communities by creating additional income. However, there 
is still a lack on research about the optimal density of reed 
beds, therefore the question remains, how winter reed har-
vesting influences the ability of reed beds to provide essen-
tial spawning, feeding, and nursery grounds for fish and their 
juveniles. The above-stated situation is deemed suitable to 
be utilized as case study on the concept of BN.

1.2  The Bayesian Network

A BN is a statistical model functioning on the basis of 
causal dependencies between considered system elements. 
To predict these causal dependencies, BNs make use of two 
structural model components: (1) a directed acyclic graph 
(Bayesian diagram), which depicts the current knowledge of 
causal inter- and independence of all elements included in 
the model (qualitative) (Aguilera et al. 2011; Haines-Young 
2011; Kjærulff and Madsen 2013; Landuyt et al. 2013); (2) 
the conditional probability tables (quantitative), quantifying 
the strength of the links depicted in the Bayesian diagram. 
The strength of those defined causal relations is expressed 
as probabilistic dependencies. For a more comprehensive 
explanation also see e.g., Bromley (2005); Aguilera et al. 
(2011); Chen and Pollino (2012); Kjærulff and Madsen 
(2013); Landuyt et al. (2013). BNs represent a means of 
investigating the likelihood of various future states given 
past and present experience (Kuhnert et al. 2010). This meth-
od’s attributes make it popular in various fields, i.e., medical 

Fig. 1  Map of the Lithuanian and Russian segments of the Curonian 
Lagoon including identification of reed bed locations (Breber et  al. 
2008)
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diagnoses, classification problems, and environmental man-
agement (Landuyt et al. 2013; Ban et al. 2014). It has been 
applied in projects such as habitat suitability models, risk 
assessments, management evaluation, and decision support. 
Previous work by Aguilera et al. (2011) further provides a 
list of reviewed papers that have tackled various problems 
utilizing BNs. Lately, its potential to be used in ES modeling 
has been acknowledged, though published research on the 
matter is scarce (Landuyt et al. 2013; Ban et al. 2014). BNs 
may be used when quantitative data are readily available, as 
well as in cases with incomplete or unavailable data; they are 
particularly beneficial in the latter situations, as they are able 
to be developed on expert’s system knowledge, a benefit also 
discussed by Aguilera et al. (2011), Schmitt and Bruggere 
(2013), and Uusitalo et al. (2015).

Advantages of including expert knowledge in construct-
ing BNs to overcome data limitations, to strengthen and/or 
adjust networks based on empirical data, to fine-tune con-
ceptualization of causal relationships, and to break down 
the complexity of the system easing the ascription of prob-
abilities are widely discussed in the literature (e.g., Uusi-
talo 2007; Landuyt et al. 2013; Ban et al. 2015). Landuyt 
et al. (2013) furthermore describe that integrating expert 
knowledge during the individual steps of constructing a BN 
improves the process flexibility, allowing for integrating 
causal relations that might otherwise not be supported by the 
available data. However, this must be done with care. Previ-
ous research on utilizing expert elicitation has identified dif-
ficulties during data elicitation. Most ecological researchers 
are accustomed to work with real data and/or use classical 
statistical analysis. As the concept of BN is only starting 
to advance in this area of research, reservation and even 
distrust towards the approach of BN has been reported as a 
potential issue for slow adoption. Experiences described in 
the literature (Uusitalo 2007; Landuyt et al. 2013; Ban et al. 
2014, 2015) state that experts may perceive it as rather diffi-
cult to assign prior probabilities. All these factors may cause 
the expert providing biased prior probabilities. Even if the 
expert is familiar with the concept of BN, O’Hagan (2019) 
found that they are still prone to have difficulties and inad-
vertently incorporate biases in their estimates. Therefore, a 
thorough introduction to the topic and methodology must be 
provided, counteracting any distrust towards the methodol-
ogy based on a lack of knowledge and to minimize biases 
(Uusitalo 2007; Landuyt et al. 2013; Frank et al. 2014; Ban 
et al. 2014, 2015; O’Hagan 2019).

BNs have been utilized for trade-off analysis to inform 
policy- and decision-makers on possible consequences of 
their policy strategies. The BN, thereby, aimed to function 
as a decision support system, mediating multiple trade-offs 
in complex socio-economic and natural systems interactions 
(Schmitt and Brugere 2013; Frank et al. 2014). Schmitt and 
Brugere (2013) build their BN in cooperation with experts 

via interviews, to define the models’ purpose, and three 
workshops, on the network structure, parameterization, and 
discussion of the final output. This study resulted in a BN 
able to visualize trade-offs between different types of ESs. 
The work of Frank et al. (2014) builds on the fact that BNs 
can handle uncertainty and non-linear relationships cover-
ing both ecological and economical qualitative and quantita-
tive data. Experts were involved to populate the conditional 
probability tables of chance nodes, lacking data. With the 
help of the experts they managed to develop a BN able to 
mediate trade-offs, while simultaneously acknowledging the 
effect of stakeholder’s diverse interest on the magnitude of 
uncertainty for different scenarios.

The objective of this study is to investigate the suitability 
of BNs in quantifying the ramifications of ES management 
and/or how their utilization affects interventions within the 
ecosystem, utilizing the Curonian Lagoon in Lithuania as a 
case study, by answering the following questions: (i) How 
can trade-offs between ESs, associated with the lagoon 
fringe reed beds of the Curonian Lagoon be depicted most 
realistically by using a Bayesian Network? (ii) What are 
the advantages and constraints associated with using a BN 
developed based solely on available literature in contrast to 
a network developed in cooperation with experts? To do so, 
a selection of exemplar ESs identified during this process is 
used to generate the final nodes in the BN. This is resultant 
of an extensive literature review and is subsequently vali-
dated and modified with a panel of experts, building on sug-
gestions by previous work (e.g., Aguilera et al. 2011), and 
lastly quantified using the developed BN. The final output 
is an alpha-level BN model, not intended to readily reflect a 
real-world situation but to structure knowledge and provide 
a base for further development.

2  Methodology

The methodology used for this research can be subdivided 
into three stages, Knowledge Acquisition, Design Phase, and 
Site Application. Each stage is comprised of several sub-
elements which can be considered stepping stones (Fig. 2). 
During the Knowledge Acquisition, a general overview of 
the case study area is gained. This is achieved via extensive 
literature review which is organized in a Driver-Pressure-
State-Impact-Response (DPSIR) (Atkins et al. 2011; Newton 
et al. 2014; Lupp et al. 2015) styled structure of the collected 
knowledge. Creating a DPSIR model implies thorough 
research on a variety of issues associated with the study 
area and aids the identification of key elements and their 
subsequent relation within. Resulting in a generic overview 
of some key issues affecting the provision of ES’s in the 
Curonian Lagoon, it allows the user to visually structure the 
acquired knowledge which is beneficial in the later process 
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where the BN diagram has to be developed. Afterwards, 
the DPSIR is used to develop a conceptual model, further 
narrowing down on the key elements to be considered in the 
BN, and building the foundation for the BN diagram (Marcot 
et al. 2006; Chen and Pollino 2012). This allows for the clear 
definition of the model’s purpose, scale, essential elements 
needed for creating a meaningful BN (Jakeman et al. 2006; 
Marcot et al. 2006; Uusitalo 2007; Chen and Pollino 2012), 
and paves the way for subsequent stages.

The Design Phase represents the active creation of the 
BN. Used is the program GeNIe Academic 2.1 (http://www.
bayes fusio n.com/) (BayesFusion, LLC, 2016). This stage 
is further subdivided into two parts, consisting of steps 
performed only by the modeler, and steps used to work in 
cooperation with the panel of experts. Guidelines, on how to 
define nodes and ascribe links, discussed in the literature, are 
followed with the most important ones listed below (Brom-
ley 2005; Marcot et al. 2006; Pollino and Henderson 2010; 
Aguilera et al. 2011 Haines-Young 2011; Chen and Pollino 
2012; Landuyt et al. 2013; Ban et al. 2014):

• Each node should have three parents at maximum, prefer-
ably less

• The number of states assigned to each node should be 
kept to a minimum (five or fewer)

• No feedback loops (cyclic loops) may be included in the 
BN diagram

• If possible, all nodes should be either quantifiable, 
observable, manageable, or testable

• The depth of the model represented by number of sequen-
tial layers and intermediate nodes should be kept to a 
minimum (four or fewer)

• As far as feasible, the model should be symmetric
• To reduce the number of parent nodes, the so-called 

divorcing of the nodes can be performed

The basic components of a BN model are represented in 
Fig. 3. In a BN, system elements are called nodes. Nodes are 
categorized in an ancestral manner with (i) parent nodes; 
a node solely depicting a cause within the network and no 

Fig. 2  Step-wise Methodology flowchart for developing, enhancing, populating, and validating a Bayesian Belief Network (BBN) constructed 
through combined literature and expert development

Fig. 3  Example BN

http://www.bayesfusion.com/
http://www.bayesfusion.com/
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other nodes feed into a parent node; (ii) child nodes; repre-
senting the effects of their parent nodes (causes). The causal 
relationship between a parent and its child node is indicated 
via an arc (also referred to as link). Besides the ancestral 
categorization, all nodes are cataloged compliant with their 
role within the BN. A node can either be (a) an input node; 
(b) an intermediate node; (c) an output node (Bromley 2005; 
Chen and Pollino 2012; Kjærulff and Madsen 2013; Landuyt 
et al. 2013; Ban et al. 2014.)

The BN then functions based on the underlying condi-
tional probability tables holding prior probabilities. Prior 
probabilities are probability distributions indicating what is 
known about a node in the context of a given scenario, and 
used to generate posterior probabilities, indicating the prob-
ability of the node being in any of its assigned states. These 
priors can be derived from various sources like experts, lit-
erature, or a variety of other data sources (Kuhnert et al. 
2010). The network’s ability to incorporate a variety of 
information types (qualitative, categorical and/or quantita-
tive) from differing sources gives BNs an advantage over 
complex quantitative models, allowing for modeling systems 
subjected to high uncertainty and/or lack of data (Marcot 
et al. 2006; Uusitalo 2007; Aguilera et al. 2011; Chen and 
Pollino 2012; Landuyt et al. 2013; Ban et al. 2014; Hamilton 
et al. 2015).Those uncertainties are propagated through the 
model and can be analyzed based on the computed posterior 
probabilities. Due to data scarcity, using experts as a data 
source is deemed appropriate.

The subsequent expert elicitation is twofolded. First, for 
the Design phase, the expert elicitation focuses on introduc-
ing the panel of experts to the concept of BN and their role 
within the study, defining nodes, their states, and the BN dia-
gram (Bromley 2005; Uusitalo 2007; Landuyt et al. 2013). 
This elicitation process has two possible outcomes. Either 
all experts readily agree on the proposed BN diagram, and 
states, allowing to directly proceed towards the Site Appli-
cation; or the experts suggest changes, requiring a review 
of the proposed BN diagram. If the latter case occurs, all 
changes made must be subjected to the experts again until a 
final consensus is reached. In this particular study, this first 
elicitation round is done via a virtual roundtable meeting. 
The panel involved consists of four experts, all affiliated with 
the University of Klaipeda, which have extensive knowledge 
and working experience within the Curonian Lagoon, and 
are working within the ECOPOTENTIAL working group. 
During this meeting the experts are introduced to the con-
cept of BNs, followed by a presentation of the BN generated 
through literature revision, i.e., the nodes, links, and ration-
ales. The expert panel then provides additional information 
and suggests changes to the structure and rationales during a 
discussion round. The comments and changes are noted and 
utilized to update the BN diagram. The updated version is 
then sent to all experts for final confirmation.

The second part of the expert elicitation and last stage 
is the Site Application, in which the BN diagram is trans-
formed into a fully functional BN model by populating the 
conditional probability tables (Pollino and Henderson 2010). 
Again, there is no widely accepted method to elicit prior 
conditional probabilities from experts (Kuhnert et al. 2010). 
An expert survey is compiled aiming to create a balanced 
mix of data precision while simultaneously trying to avoid 
expert fatigue. The most influential examples for the sur-
vey are Renooij and Witteman (1999), Speirs-Bridge et al. 
(2010), Kuhnert et al. (2010), Ban et al. (2014, 2015), and 
Hamilton et al. (2015). Combined are aspects described as 
beneficial by the before-mentioned studies. For the survey, 
all links between the nodes are translated into a short sce-
nario, resulting in one scenario per possible combination 
of the input nodes state. Each scenario is aided by a scale 
providing a written description to percentage intervals. In 
this study, the questionnaire is send via mail to the experts, 
together with an extensive explanation and example cases. 
All experts are encouraged to ask questions. Any points for 
clarification were immediately addressed and shared with all 
experts. Additional meta-data of the experts are collected to 
ensure full documentation and transparency of the sources 
used (Chen and Pollino 2012). This is important to account 
for potential biases (motivational or cognitive), and research 
duplication (Pollino and Henderson 2010; Douglas and 
Newton 2014). All surveyed prior probabilities are used to 
parameterize the conditional probability tables. Prior prob-
abilities further function as a measure of uncertainty (e.g., 
Chen and Pollino 2012).

Uncertainty in this context is defined as “a lack of 
knowledge about the accuracy of a measure of a system 
and is an inherent property of the limitations of observ-
ing or understanding a system” (Chen and Pollino 2012). 
In other words, the chances that a variable takes certain 
values are represented in the form of probability distribu-
tions. Posterior probability distributions are computed for 
each node based on the prior probabilities hold by the con-
ditional probability tables. The wider these probabilities 
are distributed over the states the larger is the uncertainty 
associated with them (Uusitalo 2007). Updating of the BN 
network via evidence usually reduces initial uncertainty, 
reflected by the posterior probabilities growing narrower 
(Bromley 2005; Uusitalo 2007). Measures of uncertainty 
allocated to expert-elicited prior probabilities, in this 
study, are recorded using the 95% Bayesian Credible Inter-
val (BCI) (Kuhnert et al. 2010; Hamilton et al. 2015). The 
95% BCI is a means of measuring the certainty assigned 
to an elicited prior probability. It refers to the highest and 
lowest possible prior probability for a given scenario of 
which the expert is 95% certain of the true value lying in 
between these limits. The larger the 95% BCI, the lower 
the certainty an expert has into the provided best guess 
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estimate. Uusitalo et al. (2015) provide a great definition 
of uncertainty and further elaborate on the various types, 
and approaches to account for uncertainty in decision sup-
port models. Eliciting for the 95% BCI entails that the 
expert is asked to assign three possible values for each 
prior probability (3-point elicitation) (1) the best guess, 
value referring to the value being most likely true in the 
opinion of the expert; (2) the 5% BCI limit (the lowest 
likely estimate for the given scenario the expert is 95% 
sure of); (3) the 95% BCI (the upper most likely estimate 
the expert assign with a 95% certainty). A more detailed 
explanation of how these values are elicited is provided 
later on in Sect. 3.3.

The issue of uncertainty is further addressed by test-
ing different versions of the model. Each BN model is 
populated using varying combination of the input nodes’ 
elicited prior probabilities (best guess estimate; different 
combinations according to the upper (95% bound) and 
lower (5% bound) of the 95% BCI, as done by Hamil-
ton et al. (2015). Reason for using the 5% and 95% BCI 
bound is that they represent a “reasonable range” (Uusitalo 
et al. 2015) of the available parameters. Comparison of the 
results of the BNs parameterized with the upper and lower 
95% BCI allows to test for the level of certainty assigned 
to the estimates provided. The bigger the difference the 
larger the uncertainty (Hamilton et al. 2015). Addition-
ally, models are populated by merging the surveyed prior 
probabilities of all four experts into a combined BN. This 
is done via, i.e., applying a weighting factor based on the 
95% BCIs. The 95% BCI in this case, denotes the range 
of probabilities between which the expert is 95% confi-
dent the correct probability occurs. Meaning the larger the 
assigned 95% BCI, the smaller the assigned weight. Aver-
aged was a percentage, the point estimate (Best Guess) 
of each expert. See Appendix 1 for the formula used. The 
performance of the BN in context of the elicited priors 
is tested via a sensitivity analysis. There are different 
approaches available. In this study, it is looked at how 
the model outputs respond to changes in the input nodes. 
Changes in the model input are achieved by using differ-
ent combinations of the input node’s elicited prior prob-
abilities by utilizing the best guess, 5% BCI, and 95% BCI 
provided by each experts, these experiments are elaborated 
upon in Table 2 within Sect. 3.3. All results are then com-
pared against each other, investigating if the produced pos-
terior probabilities of the output nodes change markedly in 
regard to their input, following one approach described in 
the previous work of Uusitalo et al. (2015). Initial model 
validation is done by investigating different scenarios for 
their outcome in relation to the model’s initial purpose and 
propagated uncertainties (Uusitalo 2007; Ban et al. 2014, 
2015; Hamilton et al. 2015). Lastly, the BN outputs are 
translated into example narratives. All computed results 

are then used to evaluate the chance of trade-offs between 
the example ESs induced by winter reed harvesting.

3  Results desk study

3.1  The literature‑based BN

During the first part of this twofold study, a literature-based 
BN is constructed. Literature providing information on the 
directional correlation between reed beds, fish dynamics, 
and effects of reed harvesting on any of these two is used 
and structured in a DPSIR model. Then, a clear definition of 
the model’s purpose is decided upon. The model’s purpose 
can be described as the intent to depict potential trade-offs, 
arising from winter reed harvesting as anthropogenic ES 
management measure, between

(1) Reed beds providing essential spawning and nursery 
habitats for fish;

(2) Reed harvest providing raw material to be utilized as 
thatching material; and

(3) Fish migration corridors loss caused by reed bed over-
growth.

The spatial scale is set to include all lagoon fringes and 
reed beds of the Lithuanian part of the Curonian Lagoon, 
excluding the Nemunas river delta. For the temporal scale, 
it is decided to envision a 3-year time span, believed to be 
adequate to capture the initial impacts of trade-offs arising 
from winter reed harvesting. Quantification of the likelihood 
of trade-offs between ESs is deemed important to stress the 
implications such a management intervention could have on 
the ecosystem. Due to restricted data and knowledge avail-
ability, this first proposal of a literature-based BN is limited 
to the qualitative component. All the results found during 
this desk study and developed literature-based BN diagram 
(Appendix 2) serve as a foundation for the second part, the 
expert elicitation process.

3.2  Expert elicitation

During the second part of the research, the previously pro-
posed literature-based BN diagram is further improved and 
enhanced to become a fully functional BN model. This 
was done in close cooperation with a panel of four experts, 
all affiliated with the University of Klaipeda in Lithuania, 
who volunteered to participate in this study. Those experts 
worked with the Curonian Lagoon for a period spanning 
4 to 33 years. Their fields of specialization range from 
ichthyology, aquatic ecology, ecological modeling, to food 
webs. See Appendix 3 for a list of the specific expert’s 
meta-data. The first round of expert elicitation focused 
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on a discussion of the proposed literature-based BN dia-
gram in order to determine the suitability of the design in 
cooperation with the experts. This was accomplished via 
a virtual roundtable discussion.

This first discussion is used to provide an introduction to 
the case study, the methodology of BN, and clearly define 
the role of the experts, and resulted in the identification of 
superfluous nodes, deemed inappropriate in the context of 
the Curonian Lagoon which were in turn changed, elimi-
nated, or redefined in accordance with the expert panel’s 
judgements. All nodes, their fate, and the experts’ ration-
ale are provided in Table 1. The feedback provided by the 
experts’ clarified erroneous conclusions derived from the 
previous literature review.

An expert-enhanced BN diagram (Fig. 4) is the final out-
put. This BN diagram was re-sent via e-mail to the experts to 
ask a final confirmation on the applied changes. Simultane-
ously, a list of proposed states and their definition (for a full 
description of the states see Appendix 4), for every node, 
was sent. All changes and proposed states were accepted 
by the experts.

Next, the conditional probability tables must be popu-
lated to transform the BN diagram into a fully functional 
BN. Therefore, a questionnaire is developed to survey prior 
probabilities from the same panel of experts involved ear-
lier. The questionnaire combines various approaches derived 
from the prior examples from literature (Renooij and Witte-
man 1999; Speirs-Bridge et al. (2010); Kuhnert et al. 2010; 

Table 1  Node enhancement by expert elicitation

Original node Expert decision New node Rationale

Physical disturbances Eliminated – The fact that during winter harvesting, the physical disturbance is minor
Reed morphology Changed Mosaic nature of lagoon 

fringe vegetation
key determining factor for the biodiversity of the lagoon fringes; more 

powerful and meaningful way of propagating information from the 
input to the output

Reed bed density Changed Reed bed perimeter The length of the reed belt perimeter determines the size of spawning 
grounds

Reed distribution Redefined Reed bed coverage suggested to reduce the ambiguity of the initial name of the node
Migration corridor Changed Lagoon fringe biodiversity The structure and overall biodiversity of the lagoon fringes play a much 

more important role.
Fish fry diversity Redefined Juvenile fish diversity Allows for encompassing all development stages of fish; widens the 

potential sources for empirical data

Fig. 4  Expert informed BN showing the final agreed up on input, intermediate, and output nodes and states per node that was developed through 
consultation with experts at Klaipeda University
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Ban et al. 2014, 2015; Hamilton et al. 2015). To overcome 
potential difficulties of the experts not being accustomed 
to the methodology of BN and to minimize biases, a thor-
ough introduction to the concept of BNs is provided with the 
questionnaire together with a summary of the case study’s 
topic and detailed example of what is expected of the expert 
when assigning their best guess and 95% BCI. For eliciting 
the prior probabilities, all conditional probability tables are 
translated into short verbal scenarios, to facilitate the elicita-
tion process, for which the experts are asked to assign their 
best guess estimate, and 95% BCI. Figure 5 shows an excerpt 
of the questionnaire where the written descriptions linked 
to the percentage values are stylized after Renooij and Wit-
teman (1999) who developed such a scale based on experi-
ments. Using a scale linking a description to the percentage 
value is beneficial to provide a common understanding of 
what the percentage assigned represents, among the experts. 
Experts are further encouraged to contact the facilitator 
when in doubt or unsure about any part of the questionnaire.

Upon receipt of the completed questionnaires from the 
expert panel, all prior probabilities underwent a quality con-
trol and reviewed for peculiarities. It is found that in some 
cases, the experts indicated very similar beliefs into the like-
lihood of a node being in a certain state, however, this was 
not always the case. When comparing the expert responses, 
contradictory likelihoods were provided by members of the 
expert panel as well. The differences within the 95% BCIs 
were checked for diverging levels of certainty assigned to 
the best guess estimates. It is observed that in some cases, 
the 95% BCIs differed noticeably between the experts. 

No pattern regarding years or field of expertise could be 
detected, though this may be resultant of the small sample 
size. In some individual cases, the respondent assigned prior 
probabilities of which the sum exceeds 100%, contrary to 
the style of the questionnaire. In such circumstances, the 
expectations and requirements are clarified to the expert and 
estimates adjusted, respectively.

Different versions of the BN are tested. Rise to this 
decision gave the previously mentioned observed vari-
ance among the elicited expert’s 95% BCIs. The BN was 
run using different combination of the elicited priors as 
described in the methodology. By considering the various 
configurations of the BN derived from diversifying the elic-
ited data, an analysis was performed producing results that 
account for a wider picture. Consequently, five models per 
expert are tested. Each model utilizes a different combina-
tion of the elicited prior probabilities of each expert. In addi-
tion, three models are generated by merging all four expert’s 
prior probabilities via different methods. Table 2 provides an 
explanation of how the prior probabilities are configured for 
each model. All models were run using four different input 
scenarios. The input scenarios are defined by the four pos-
sible combinations of the states assigned to the input nodes 
as seen in Table 3.

3.3  Site application

Figure 6 depicts an example of the generated outputs. It rep-
resents the posterior probabilities computed for the node 
Lagoon fringe biodiversity using the information provided 

Fig. 5  Exemplar confidence 
interval questionnaire utilized 
for expert elicitation probabil-
ity query. A series of similar 
queries were developed for 
each of the nodes and states 
within the network and used for 
expert elicitation to populate the 
probabilities with confidence 
intervals
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by Expert 1 (E1). Indicated are the results for all four input 
scenarios of all five models. The input scenarios refer to each 
possible combination of the input nodes’ states (Table 3). 
The five models represent the different strategies of com-
bining the prior probabilities of each individual expert to 
populate the conditional probability tables. Lagoon fringe 
biodiversity has two states assigned, “High” (blue bars) and 
“Low” (yellow bars). Several observations are made. Four 
out of five models populated for E1, BG to 5–95%, compute 
a marginally greater posterior probability for the Lagoon 
fringe biodiversity (LFB) being in a “Low” state, only the 
95–5% Model predicts a slightly larger posterior probability 
of the node being in the state “High.” The almost equally 
dispersed posterior probability of the node being in either 

of its two states (~ 60/40% favoring “Low”), suggests high 
uncertainty into how the Lagoon fringe biodiversity will be 
impacted by winter reed harvesting. This uncertainty is fur-
ther highlighted by the fact that the 95–5% Model predicts a 
marginal higher posterior probability of the Lagoon fringe 
biodiversity being in a “High” state, thereby contradicting 
the findings of the other models. Only posterior probabil-
ity distributions calculated by the 5–95% Models showed 
more distinct tendencies, representing a large gap between 
the 5% and 95% interval estimates, which further signals 
uncertainty. Another observation is that the four input sce-
narios all result in nearly equal predictions. This suggests 
that under the current setup, the implications of winter reed 
harvesting are potentially the same.

Table 2  Different types of BBN models and their conditional probability tables

Name of the BBN model Conditional probability table

Best Guess (BG) model Best guess estimate of every expert
Lowest model 5% BCI estimate for all states
Highest model 95% BCI estimate for all states
5–95% model 5% BCI for the 1st state and 95% BCI for the 2nd state
95–5% model 95% BCI for the 1st state and 5% BCI for the 2nd state
Weighted average Best Guess (BG) model Best guess estimate of all experts weighted according to the assigned 95% BCI
Absolute minimum Best Guess (BG) model Absolute minimum Best Guess estimate of all experts for the 1st state and 

absolute maximum BestGuess estimate of all experts for the 2nd state
Absolute maximum Best Guess (BG) model Absolute maximum Best Guess estimate of all experts for the 1st state and 

absolute minimum Best Guess estimate of all experts for the 2nd state

Table 3  Combination of input 
node states for all scenarios, 
e.g., Best Guess (BG)

Input scenario State of the input node

BG1 Winter reed harvesting = sustainable; natural variation = high
BG2 Winter reed harvesting = sustainable; natural variation = low
BG3 Winter reed harvesting = unsustainable; natural variation = low
BG4 Winter reed harvesting = unsustainable; natural variation = high

Fig. 6  Posterior probabilities 
derived from E1 for Lagoon 
Fringe Biodiversity (LFB) 
showing the probabilities for all 
four input scenarios (description 
see Table 2) for the five differ-
ent models, where each model 
represents a different strategy of 
populating the conditional prob-
ability tables of the input nodes 
(description Table 3)
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After performing this initial functional analysis, the 
results for all BG Models were investigated for trade-offs 
between the three output nodes. Figure 7 illustrates the 
probabilities for the BG Models of all four experts, and 
for all three output nodes. Each expert is indicated by one 
color and symbol. Every point indicates the computed pos-
terior probability per input scenario. It can be observed 
that the BG Model suggests trade-offs between the Lagoon 
Fringe Biodiversity (LFB) and Juvenile Fish Diversity 
(JFD) for two of the experts, E1 (blue dot) and E3 (black 
square). In contrast, for E2 (orange aster) and E4 (yellow 
triangle), the results suggest that harvesting reed during 
the winter does not result in trade-offs between the LFB 
and JFD. For trade-offs between Thatching Material (TM) 
and either of the other two nodes, no concrete statement 
can be made. This is because the posterior probabilities 
for the node itself suggest almost an equal probability for 
both states to occur. Thus, the produced results reveal a lot 
of uncertainty about the potential implications of winter 
reed harvesting on the three chosen ESs. There is also very 
little variation between the four input scenarios, indicating 
either high uncertainty about the effect of reed harvest-
ing, or very similar impacts of reed harvesting on the ESs 
regardless of the harvesting quantity.

The above-discussed results can be translated into the 
following exemplary narrative for the Curonian Lagoon, 
describing the first input scenario (BG1) of E1:

Given a situation in which winter reed harvesting is done 
sustainably and natural variation of the reed beds is low, the 
BN predicts a 57% posterior probability of the Lagoon fringe 
biodiversity being in a low state. The Juvenile fish diversity 
has a 70% posterior probability of being in a “High” state. 
This indicates a trade-off between the two ESs. For Thatch-
ing material, a posterior probability of 59%, indicating a 
“Good” state, was computed. According to this scenario, 
there is a small possibility of trade-offs to occur between 
the Lagoon fringe biodiversity and Juvenile fish diversity if 
winter reed harvesting would be implemented sustainably 
while the natural variation is low. Furthermore, a margin-
ally higher posterior probability is indicated for Thatching 
material and the Lagoon fringe biodiversity to experience 
trade-offs; however, the magnitude of it is very small forbid-
ding a concrete conclusion.

While the developed BN can respond to single expert 
inputs, its key ability is to combine and integrate multiple 
experts is of interest, as this could provide a more holis-
tic use of BNs. Keeping this in mind, this study further 
tested three different ways of merging the surveyed expert’s 

Fig. 7  Results of the Best Guess Model showing all four scenarios 
starting with Scenario 1 upper left graph, Scenario 2 upper right 
graph, Scenario 3 lower left graph, Scenario 4 lower right graph for 
all experts. Indicated are all three output nodes (Lagoon Fringe Bio-

diversity, LFB; Juvenile Fish Diversity, JFD; Thatching Material, 
TM) and the computed posterior probabilities for each output node 
being in either of its two pre-defined states
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priors into one joint BN. Combining the priors is achieved 
by applying a weighting approach based on the elicited 
95% BCI as described in Appendix 1. The computed out-
puts resemble much of the results found for E2 and E4, as 
introduced in Fig. 7. This finding indicates that applying 
a weighting method based on the assigned confidence lev-
els, results in outputs reflecting more the knowledge of the 
experts with higher confidence into their provided priors. 
In other words, weighing converges the knowledge of the 
individual experts and skews the results towards the view 
of the experts with the higher confidence in their estimates.

4  Discussion and conclusion

This study looked at the capacity of a BN in depicting trade-
offs between tangible and intangible ESs within one model 
in information-restricted environments. Such trade-offs are 
potentially influenced by ES management and/or utilization. 
It is demonstrated how expert knowledge greatly enhances 
the value of a BN solely created based on available literature.

4.1  Setting‑up of a BN

Building a BN based on existing literature as a preparatory 
exercise prior to expert involvement and elicitation has been 
deemed beneficial in facilitating the latter. Performing an 
extensive literature review to develop a BN helps to identify 
knowledge gaps; those gaps arise from a lack of informa-
tion, partially from the fact that certain research has yet to 
be published or made available in English, which is true for 
this study (personal communication, Adrasiunas et al. 2016). 
Identifying areas subject to a lack of (published) knowledge 
can be useful in defining future research priorities, and has 
also been suggested by Douglas and Newton (2014) and was 
done by Smith et al. 2017. Thus, it can be said that develop-
ing system understanding via a literature review is key for 
BN modeling, and facilitates expert elicitation. Also, it helps 
identifying future research priorities.

Though it is found that a BN diagram may be developed 
based solely on existing literature, expert elicitation high-
lights the necessity of validating any BN diagram to avoid 
false representation of the system under investigation, as 
is also described by Aguilera et al. (2011). Especially in 
information-restricted circumstances, literature-based BNs 
seem increasingly prone to misconceptions. A finding from 
this research in line with both Douglas and Newton (2014) 
and Landuyt et al. (2013) is the value added by including 
experts into the BN development process, particularly in 
regard to informing and refining the choice of nodes, also 
further supported by the findings of Marcot et al. (2006), 
Chen and Pollino (2012), Douglas and Newton (2014), Uusi-
talo et al. (2015), Marcot (2017), and Smith et al. (2017).

In this study, experts were introduced to the case via 
a virtual roundtable discussion and later provided with a 
pre-defined BN diagram during the elicitation, an approach 
found beneficial as it shortens the overall development pro-
cess, and provides a common point of reference to seed 
the discussion. However, this approach appears to create a 
source of uncertainty during the elicitation process. Rea-
sons for this uncertainty might include ambiguity about the 
name, and definition of the states, potentially enhanced by 
only using verbal rather than numerical descriptions (Mar-
cot et al. 2006; Pollino and Henderson 2010; Uusitalo et al. 
2015; Marcot 2017). Also, limited communication exchange 
has the potential to exacerbate the ambiguity, as pointed 
out by Hamilton et al. (2015). Therefore, this study shows 
that pre-defining states may create high level of ambigu-
ity in contrast to the finding of Chen and Pollino (2012) 
and Ban et al. (2014); thus it has been found it is better to 
define states in close cooperation with the experts involved. 
This is particularly true when the model developer is not an 
expert either on the study area or the specific field of study 
wherein the BN is being applied. This issue could be over-
come both through in-person workshops or also a web front-
end, both being equally viable options (Smith et al. 2017). 
In summation, under the given experimental framework, the 
increased uncertainty outweighs the benefits of shortening 
the approach, though it did provide a basis for future work 
on the topic.

Insights into the layout of the expert survey are gained. 
As aforementioned, there is no one optimal method available 
for surveying experts on BN prior probabilities. In this case, 
an expert survey was compiled based on examples derived 
from Kuhnert et al. (2010), Speirs-Bridge et al. (2010), 
and Hamilton et al. (2015). It appears that the question-
naire’s phrasing and instruction can cause misunderstand-
ings. Ambiguity in the wording has been mentioned as one 
source of complication by Speirs-Bridge et al. (2010) and 
was found to also be an issue in this case. Further complica-
tions to this fact are a lack of a common language for BN 
application (Aguilera et al. 2011) or confusion over applied 
(statistical) terms (Marcot, 2017). Another issue arises from 
the overall survey’s length, potentially having caused expert 
fatigue (Ban et al. 2014). Therefore, simplified BNs not only 
ensure meaningful connections, but also serve to limit the 
demand placed on experts. These findings are in line with 
those of Chen and Pollino (2012) stressing the need to keep 
the number of elicited probabilities to a minimum, which 
can directly correspond to the complexity of the network. 
Performing expert elicitation in a more interactive way, e.g., 
during a workshop, could have helped to avoid the problems 
experienced. Marcot (2017) provides solutions to some of 
the problems experienced in this study, however, Smith et al. 
(2017) stress the importance of more guidelines, especially 
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for populating the conditional probability tables, which 
would also have benefitted this study.

It is concluded that, for information restricted applica-
tions, literature-based BNs are prone to contextual uncer-
tainty, especially when the modeler is unfamiliar with the 
study site and new to the methodology. Developing a BN 
is comparatively easy but not trivial, as also experienced 
by Smith et al. (2017). Including experts as an additional 
channel of system specific knowledge is found to be highly 
beneficial, as was evident from the need to adjust the lit-
erature-based BN given expert inputs in this study. Using 
literature-based BNs provides a great means of developing 
system understanding, and both opening and facilitating 
the subsequent expert elicitation processes. This study con-
cludes that it is of utmost importance to pay close attention 
to the length of the expert survey, and to use easily under-
standable, clear and ambiguity-free language, particularly 
when communicating in the non-native language of both 
surveyor and surveyee. There is still a need for the further 
refinement of proper structure and applicable guidelines in 
developing expert surveys and subsequent promotion of the 
wider uptake of such an approach in ES trade-off analysis.

4.2  Applicability of BN

During the site application, the expert-informed BN was 
populated using five different combinations of the elicited 
prior probabilities and ran by manipulating the state of the 
input nodes. The likelihood of trade-offs to appear between 
the output nodes for each input scenarios was investigated. 
The generated outputs reveal occasional variations between 
the results of the five different expert-specific models. This 
variance between the results suggests a high degree of uncer-
tainty allocated to the priors elicited from the experts. High 
levels of uncertainty are further identified by the contradict-
ing results of the models using a combination of the upper 
and lower 95% BCIs (Hamilton et al. 2015). One factor 
intensifying uncertainty may result from an under-confi-
dence of the experts as also suggested by Uusitalo (2007). 
Another reason might be a bias of the experts, particularly 
for nodes not falling directly into their field of expertise 
(Douglas and Newton 2014). To become aware of these 
uncertainties, it is found to be crucial to elicit also for the 
95% BCI in addition to the best guess estimates. Also, new 
research published strongly suggest starting with eliciting 
the outer boundaries rather than the best guess estimate. This 
finding agrees with Kuhnert et al. (2010) who described the 
utility of investigating intervals rather than point estimates. 
To avoid erroneous interpretation of the results produced 
by a BN, experts should always be surveyed for their cer-
tainty (e.g., Marcot 2017) about the point estimate, enabling 
executing a sensitivity analysis, also described by Uusitalo 
et al. (2015). New research by O’Hagan (2019) elaborates on 

a protocol of how to minimize expert’s biases recommending 
to elicit first the upper and lower limit of the total interval 
and only afterwards narrowing down on the median. Accord-
ing to O’Hagan’s (2019) findings, this strategy reduces the 
bias of anchoring. Bias of anchoring means that if the expert 
is asked to first give a best guess, this value acts as an anchor 
and any further values elicited are adjusted to match the 
anchor. These adjustments are often insufficient resulting 
in a distorted representation of the actual situation. Thus, it 
is suggested to follow the protocol of O’Hagan (2019) for 
further research to minimize expert biases and to utilize a 
standardized elicitation method, allowing to more readily 
compare BNs. Though, O’Hagan stresses that for a high-
quality elicitation it is essential for the facilitator to be expe-
rienced, a requirement not fulfilled in this study.

The expert-specific models in themselves, as well as the 
results among the experts, show variances. Consistency 
among experts may be interpreted as supporting the result’s 
reliability (Douglas and Newton 2014); however, dissimilar-
ities may indicate honest variation in the expert’s beliefs as 
further described by Hamilton et al. (2015) as the “plurality 
of expert opinions” or experts’ personal experience (Mar-
cot 2017). Considering this, the observed variance among 
the expert’s results does not necessarily mean the results 
are erroneous. Rather, it highlights the benefit of surveying 
multiple experts over a single expert in producing reliable 
results, a conclusion in line with the findings by Landuyt 
et al. (2013). Therefore, eliciting multiple experts for BNs 
prior probabilities seems beneficial in validating the model’s 
outputs. It allows to investigate for varying understandings 
and helps avoiding making false conclusion based on only a 
single expert’s knowledge. Consequentially, it is advised to 
include multiple experts when populating a BN.

This study further tests the possibility to combine 
multiple expert’s prior probabilities into one BN model. 
Provided prior probabilities were merged by assigning a 
weight to every expert’s best guess estimate according to 
the indicated certainties (the 95% BCIs). The produced 
results indicate similar posterior probabilities to the indi-
vidual expert’s BNs. This demonstrates the ability to com-
bine multiple knowledge sources, and expert’s priors into 
one BN model while simultaneously accounting for the 
indicated uncertainty ascribed to each estimate, support-
ing findings by Douglas and Newton (2014). Being able to 
combine multiple expert’s responses into one BN model 
is of interest especially in situations with larger sample 
sizes where it is inappropriate to populate the BN for every 
single expert. However, as Uusitalo (2007) describes, just 
because some experts have a very distinct experience 
about a situation does not make it automatically truer. 
Therefore, the objective of the study must be clearly stated 
to decide which approach is suitable, as has been sug-
gested by Marcot (2017). On this insight, it is concluded 
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that when done with care, BNs are suitable to combine 
multiple sources of knowledge into one functional model 
operationalizing scenarios.

Despite having identified sources of uncertainty within 
the BN development process, outputs looking at trade-offs 
between the exemplar ESs were generated. These results show 
that based on the input of two experts, trade-offs between the 
state of the Lagoon fringe biodiversity and Juvenile fish diver-
sity may occur. For the other two experts, the model’s output 
do not suggest any trade-offs between these two ESs. The 
discussed BN model is an alpha-level model (Marcot et al. 
2006), developed solely on expert knowledge and literature, 
and only applicable in the explorative decision context (Smith 
et al. 2017). However, the possibility of quantifying trade-
offs is (partially) demonstrated; indicating an applicability of 
BNs in ES trade-off analysis. Nevertheless, there is still need 
to further define and improve this approach as attempted by 
Landuyt et al. and explored in their (2016) study.

Furthermore, this study has demonstrated the ability of 
BNs to combine tangible and intangible ESs into one model. 
Previous research by Fisher et al. (2009) has identified the 
inability of traditional ESs valuation in combining tangible 
and intangible ESs, as a key issue. This inability has further 
been identified by Folmer et al. (2010) and Gee and Bur-
khard (2010) as one reason for underestimating the value 
of, especially intangible ESs. Therefore, being able to utilize 
BNs to incorporate a variety of ESs into one model appears 
promising. Particularly, by being able to operationalize sce-
narios founded on qualitative and quantitative data making 
the scenarios more realistic, also mentioned as a key advan-
tage of BNs by Landuyt et al. (2013). In combination with 
the demonstrated ability of BNs to transparently represent 
uncertainties throughout the development process, a finding 
stressed by Uusitalo et al. (2015), adumbrating the value this 
approach can add to ES trade-off analysis. This study suggests 
that BNs may be a promising tool in ES trade-off analysis, as 
they appear to be able to bridge the gap between qualitative 
and quantitative approaches, a finding corroborated by recent 
studies (e.g., Landuyt et al. 2016; Marcot 2017; Smith et al. 
2017), and may potentially aid in the traditionally problematic 
quantification of ESs by a reduction in underestimation.

The BN in its current state cannot confidently provide a 
basis upon which a conclusion on the potential trade-offs is 
imposed by winter reed harvesting. The results of sustainable 
and unsustainable harvesting are too similar, as well as uncer-
tainties imposed on and propagated through the BN model are 
too great at this stage. In order to better represent the full spec-
tra of the system in question, the inclusion of a “no harvesting” 
state, something not actively being pursued but a potential state 
nonetheless, would introduce a greater contrast between the 
possible management strategies and better reflect the flexibility 
of the system.

This study demonstrates the potential to use BNs in opera-
tionalizing ESs trade-off analysis and how tangible and intan-
gible ESs may be combined within one model. Furthermore, 
utilizing experts as an additional channel of knowledge is 
found beneficial, especially in information-restricted circum-
stances, underpinning the potential of BNs to support ES 
valuation. Nonetheless, thorough model validation must be 
performed before applying a BN in real-life decision-making 
contexts which require either a deeper pool of experts or, 
optimally, data sets with which such a network can be tested 
against. Despite not being able to derive a conclusive decision 
on the potential impacts of winter reed harvesting in the Curo-
nian Lagoon, it is demonstrated how the BN development pro-
cess supports identifying future research priorities. Being able 
to combine qualitative and quantitative data derived from the 
literature and multiple experts may positively support any pro-
tected area park manager in making informed decision. Addi-
tionally, the potential to continuously update BNs in regard to 
newly available data appears to support the application of this 
approach and further advertises ES trade-off analysis in deci-
sion and management applications.
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Appendix 1

The following formula was used to determine the weight for 
every individual expert’s response per state for each node.
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∑
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where  BGWavg = average of weighted Best Guess estimates, 
w = weight, x = Best Guess estimate, n = number of experts

where BCI = assigned 95% Bayesian Credible Interval

Appendix 2: Literature‑based BN

Figure 8 shows the BN developed on the basis of the exten-
sive literature review and knowledge structuring. This 
BN was provided to the experts during the introduction 

w
i
= 100 − BCI

presentation and used as a basis to develop the expert-
informed BN utilized in the later process.

Appendix 3: Expert details

In addition to elicit the experts for their priors they 
were also asked to provide some personal details for the 
meta-data.

In the following you are kindly requested to provide 
some personal information. This information serves solely 
the documentation of the type of experts and level of 
expertise surveyed. Your information will not be linked 
to your survey answers in any way.

(1) What is your affiliation (i.e., University, company, pro-
tected area manager/park)?

(2) What is your educational background (i.e., post-doc, 
researcher, etc.)?

(3) What is your field of specialization (i.e., fisheries, mac-
rophytes, etc.)?

(4) For how long have you been working in your field 
(length of specialization)?

(5) Do you have any cross-disciplinary background? If yes, 
which ones?

(6) How long have you been involved in the work with the 
Curonian Lagoon?

Table 4 holds the meta-data of all experts included in the 
elicitation process. The order of the information per expert 
is random and not affiliated to the identifier (E1–E4).

Fig. 8  Literature based winter reed harvesting BN

Table 4  Expert meta-data

Affiliation Educational background Field of specialization Length of 
specialization

Cross-disciplinary background Time 
worked 
with 
Curonian 
Lagoon

University PhD student Fisheries; Ichthyology 5 years Ecology; biology; botany; etc. 4 years
University Lead researcher Aquatic ecology; ecological mod-

eling; food webs
33 years No 33 years

University PhD student Aquatic ecology; food webs; birds 6 years No Appr. 4 
years (dis-
continu-
ously)

University PhD student Ichthyology; spatial modeling 8 years System ecology; population 
ecology; biology; etc.

8 years
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Appendix 4: States’ definition

See Table 5.
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