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Abstract: The efficacy of robust optimal control with adjustable uncertainty sets is verified in
several domains under the perfect state information setting. This paper investigates constrained
robust optimal control for linear systems with linear cost functions subject to uncertain
disturbances and state measurement errors that are both residing in adjustable uncertainty sets.
We first show that the class of affine feedback policies of state measurements are equivalent to
the class of affine feedback policies of estimated disturbances in terms of their conservativeness.
Then, we formulate and solve a robust optimal control problem with adjustable uncertainty sets
by considering the disturbance feedback policies. In contrast to the conventional robust optimal
control, where uncertainty sets are fixed and known a priori, the uncertainty sets themselves
are regarded as decision variables in our design. In particular, given the metrics for evaluating
the optimal size/shape of the polyhedral uncertainty sets, a bilinear optimization problem is
formulated to decide the optimal size/shape of uncertainty sets and a corresponding optimal
control policy to robustly guarantee that the system will respect its constraints for all admissible
uncertainties. In addition, we introduce a convex approximation for the proposed scheme to
provide a computationally efficient inner approximation of the original problem. The proposed
scheme is illustrated by numerical simulation of a building temperature control problem to
demonstrate its effectiveness.

Keywords: Robust optimal control, imperfect state measurement, adjustable uncertainty set,
adaptive affine policy, building temperature control

1. INTRODUCTION

Robust constrained optimal control for linear systems with
additive disturbances, which usually entails optimizing
control actions/policies with tightened constraints, are
well investigated in both control community (Mayne et al.,
2000, 2005; Chisci et al., 2001; Goulart et al., 2006; Skaf
and Boyd, 2010; Langson et al., 2004; Sieber et al., 2021)
and operations research (Ben-Tal and Nemirovski, 1998,
1999; Ben-Tal et al., 2004; Bertsimas and Hertog, 2022). It
is commonly accepted that in order to handle larger scope
of uncertainties, control policies instead of control actions
should be designed. However, arbitrary/nonlinear control
policies will make the resulting robust control problem
computationally intractable. As a result, many methods
focus on finding suboptimal but computationally tractable
policies for the robust constrained control problem.

Among the existing literature, affine state feedback poli-
cies and affine disturbance feedback policies are two types
of widely-adopted decision rules in robust optimal control.
While it is shown in Goulart et al. (2006) that these two
types of affine feedback policies are equivalent, affine feed-
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back policies over disturbances have gained more favour
due to their computational superiority: affine disturbance
feedback policies yield a linear hence convex relationship
between predicted states and control parameters, while
affine state feedback policies give a highly nonconvex rela-
tionship between predicted states and control parameters
(Goulart et al., 2006; Skaf and Boyd, 2010).

In the existing literature of developing robust control algo-
rithms, perfect state measurement is commonly assumed.
However, this assumption is not always ensured in many
real-world problems. In Goulart and Kerrigan (2006); Ben-
Tal et al. (2006); Richards and How (2005); Goulart and
Kerrigan (2007), the robust optimal controller for linear
systems with inaccurate state information is researched.
Richards and How (2005) compute robust optimal con-
trol actions by solving a MPC problem with tightened
constraints to counteract state estimation errors. In Ben-
Tal et al. (2006), an affine decision rule over the so-
called purified outputs is proposed for constrained linear
systems with measurement noises. Based on a similar
parameterization of decision rules as in Ben-Tal and Ne-
mirovski (1998) but including the dynamics of a linear
state observer with non-zero initial condition, an affine
decision rule is designed, and its geometric and invariance
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the class of affine feedback policies of estimated disturbances in terms of their conservativeness.
Then, we formulate and solve a robust optimal control problem with adjustable uncertainty sets
by considering the disturbance feedback policies. In contrast to the conventional robust optimal
control, where uncertainty sets are fixed and known a priori, the uncertainty sets themselves
are regarded as decision variables in our design. In particular, given the metrics for evaluating
the optimal size/shape of the polyhedral uncertainty sets, a bilinear optimization problem is
formulated to decide the optimal size/shape of uncertainty sets and a corresponding optimal
control policy to robustly guarantee that the system will respect its constraints for all admissible
uncertainties. In addition, we introduce a convex approximation for the proposed scheme to
provide a computationally efficient inner approximation of the original problem. The proposed
scheme is illustrated by numerical simulation of a building temperature control problem to
demonstrate its effectiveness.

Keywords: Robust optimal control, imperfect state measurement, adjustable uncertainty set,
adaptive affine policy, building temperature control

1. INTRODUCTION

Robust constrained optimal control for linear systems with
additive disturbances, which usually entails optimizing
control actions/policies with tightened constraints, are
well investigated in both control community (Mayne et al.,
2000, 2005; Chisci et al., 2001; Goulart et al., 2006; Skaf
and Boyd, 2010; Langson et al., 2004; Sieber et al., 2021)
and operations research (Ben-Tal and Nemirovski, 1998,
1999; Ben-Tal et al., 2004; Bertsimas and Hertog, 2022). It
is commonly accepted that in order to handle larger scope
of uncertainties, control policies instead of control actions
should be designed. However, arbitrary/nonlinear control
policies will make the resulting robust control problem
computationally intractable. As a result, many methods
focus on finding suboptimal but computationally tractable
policies for the robust constrained control problem.

Among the existing literature, affine state feedback poli-
cies and affine disturbance feedback policies are two types
of widely-adopted decision rules in robust optimal control.
While it is shown in Goulart et al. (2006) that these two
types of affine feedback policies are equivalent, affine feed-

⋆ The work was supported by the Brains4Buildings project under
the Dutch grant programme for Mission-Driven Research, Develop-
ment and Innovation (MOOI).

back policies over disturbances have gained more favour
due to their computational superiority: affine disturbance
feedback policies yield a linear hence convex relationship
between predicted states and control parameters, while
affine state feedback policies give a highly nonconvex rela-
tionship between predicted states and control parameters
(Goulart et al., 2006; Skaf and Boyd, 2010).

In the existing literature of developing robust control algo-
rithms, perfect state measurement is commonly assumed.
However, this assumption is not always ensured in many
real-world problems. In Goulart and Kerrigan (2006); Ben-
Tal et al. (2006); Richards and How (2005); Goulart and
Kerrigan (2007), the robust optimal controller for linear
systems with inaccurate state information is researched.
Richards and How (2005) compute robust optimal con-
trol actions by solving a MPC problem with tightened
constraints to counteract state estimation errors. In Ben-
Tal et al. (2006), an affine decision rule over the so-
called purified outputs is proposed for constrained linear
systems with measurement noises. Based on a similar
parameterization of decision rules as in Ben-Tal and Ne-
mirovski (1998) but including the dynamics of a linear
state observer with non-zero initial condition, an affine
decision rule is designed, and its geometric and invariance

properties are investigated in Goulart and Kerrigan (2006,
2007).

It should be pointed out that all of the above-mentioned
robust optimal control schemes assume that the admissible
uncertainty sets are fixed and known a priori. However,
in a so-called reserve provision problem, which prevails in
operating modern energy and building systems (Fabietti
et al., 2016; Mueller et al., 2019; Vrettos et al., 2016),
robust optimal control with unfixed uncertainty sets need
to be handled. Motivated by this problem, the constrained
robust optimal control problem with adjustable uncer-
tainty sets is formulated and studied in Zhang et al. (2017);
Bitlislioğlu et al. (2017); Kim et al. (2018); Raghuraman
and Koeln (2021) with the assumption of perfect state
measurement. Unlike the conventional robust constrained
optimal control problem, the size/shape of uncertainty sets
are undetermined and treated as decision variables in the
setting of adjustable uncertainty sets. The control design
objective is to determine the optimal size/shape of admis-
sible uncertainty sets and also the corresponding control
inputs to robustly guarantee constraint satisfaction.

This paper provides an extension of the work in Zhang
et al. (2017), which considers the robust optimal control
with adjustable uncertainty set and perfect state measure-
ments, to study the robust constrained optimal control
problem in the presence of imperfect state information.
Our main contributions are summarized below:

• We introduce an affine feedback policy of estimated
disturbances, which yields a linear hence convex re-
lationship between predicted system states and con-
trol parameters, and prove that this type of policy
is essentially equivalent to the corresponding affine
feedback policy of state measurements.

• A bilinear optimization problem is formulated to as-
sess the optimal shape/size of the adjustable uncer-
tainty sets and simultaneously optimize the feedback
policy to robustly ensure constraint satisfaction. In
addition, a convex approximation of the original bi-
linear optimization problem is introduced to provide
a feasible inner approximation.

• We consider a building climate control problem to
show how it can be formulated and solved using our
proposed design framework.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the considered system dynamics and the
robust optimal control problem. Section 3 elaborates two
types of feedback control policies: affine feedback policy of
state measurements and affine feedback policy of estimated
disturbances, and rigorously proves their equivalence. In
Section 4, restricting the uncertainty sets as polyhedra, we
reformulate the original robust optimal control problem,
which is semi-infinite, to yield a numerically tractable
bilinear optimization problem, and also introduce a convex
inner approximation for this bilinear optimization prob-
lem. We present numerical simulation results in Section 5,
and conclude this paper in Section 6.

Notation: Rd denotes a d-dimensional real space and Rd
+

a d-dimensional positive real space. The subscript k of
a given time-dependent variable denotes k-th time step,
and k = 0 denotes the initial time step. Uppercase letters

denote matrices, and boldface lowercase letters denote
stacked sequences of the given signal. [·]i denotes the i-th
row/element of the corresponding matrix/vector. diag(·)
defines a diagonal/block-diagonal matrix with the given
matrices/vector on its diagonal. I denotes identity matrix
with appropriate dimensions, and 0 denotes zero matrix
with proper dimensions.

2. PROBLEM FORMULATION

This section introduces the formulation of the robust con-
strained optimal control problem. Similarly to Zhang et al.
(2017), we consider the following discrete-time uncertain
linear systems

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rnx is the system state, uk ∈ Rnu is the control
input, and wk ∈ Rnx is the unknown disturbance. For
system (1), the following polytopic state-input constraints
should be respected

Z := {(xk+1, uk) ∈ Rnx × Rnu | Cxk+1 +Duk ≤ b} (2)

where C ∈ Rnz×nx and D ∈ Rnz×nu .

We assume that the disturbance signal belongs to an
admissible set W: wk ∈ W ⊂ Rnx . Unlike the problem
considered in Zhang et al. (2017); Bitlislioğlu et al. (2017);
Kim et al. (2018), where perfect state measurement is
assumed, we consider that the system state xk cannot be
accurately measured/estimated, and the uncertain mea-
surement error is defined as

ek := x̂k − xk, (3)

where x̂k is the measurement of xk. Similarly, the mea-
surement error ek is assumed to be within an admissible
uncertainty set E : ek ∈ E ⊂ Rnx .

The reason why the uncertainty sets W and E are called
“adjustable” is because their sizes/shapes are not fixed
when designing the control inputs. In contrast to con-
ventional finite horizon robust optimal control problems
that consider fixed and predetermined uncertainty sets,
the parameters defining the size/shape of W and E are
not fixed a priori and are instead decision variables in our
design.

Let N be the length of the prediction horizon. Then
the stacked sequences of the state x, state measure-
ment/estimation x̂, control input u, disturbance w and
measurement/estimation error e over N prediction steps
are defined as

x = [xT
0 , x

T
1 , · · · , xT

N ]T ∈ R(N+1)nx (4a)

x̂ = [x̂T
0 , x

T
i , · · · , x̂T

N ]T ∈ R(N+1)nx (4b)

u = [uT
0 , u

T
1 , · · · , uT

N−1]
T ∈ RNnu (4c)

w = [wT
0 , w

T
1 , · · · , wT

N−1]
T ∈ RNnx (4d)

e = [eT0 , e
T
1 , · · · , eTN ]T ∈ R(N+1)nx . (4e)

Given a metric ρ(W, E) := 2R
nx ×2R

nx → R for evaluating
the uncertainty sets W and E , our design objective is to
find a control policy to maximize the scope of uncertainty
and minimize some operational cost while ensuring con-
straint satisfaction for all possible uncertainty realizations
wk ∈ W and ek ∈ E . More precisely, the control objective
can be formulated as

2



	 Yun Li  et al. / IFAC PapersOnLine 56-2 (2023) 562–569	 563

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

properties are investigated in Goulart and Kerrigan (2006,
2007).

It should be pointed out that all of the above-mentioned
robust optimal control schemes assume that the admissible
uncertainty sets are fixed and known a priori. However,
in a so-called reserve provision problem, which prevails in
operating modern energy and building systems (Fabietti
et al., 2016; Mueller et al., 2019; Vrettos et al., 2016),
robust optimal control with unfixed uncertainty sets need
to be handled. Motivated by this problem, the constrained
robust optimal control problem with adjustable uncer-
tainty sets is formulated and studied in Zhang et al. (2017);
Bitlislioğlu et al. (2017); Kim et al. (2018); Raghuraman
and Koeln (2021) with the assumption of perfect state
measurement. Unlike the conventional robust constrained
optimal control problem, the size/shape of uncertainty sets
are undetermined and treated as decision variables in the
setting of adjustable uncertainty sets. The control design
objective is to determine the optimal size/shape of admis-
sible uncertainty sets and also the corresponding control
inputs to robustly guarantee constraint satisfaction.

This paper provides an extension of the work in Zhang
et al. (2017), which considers the robust optimal control
with adjustable uncertainty set and perfect state measure-
ments, to study the robust constrained optimal control
problem in the presence of imperfect state information.
Our main contributions are summarized below:

• We introduce an affine feedback policy of estimated
disturbances, which yields a linear hence convex re-
lationship between predicted system states and con-
trol parameters, and prove that this type of policy
is essentially equivalent to the corresponding affine
feedback policy of state measurements.

• A bilinear optimization problem is formulated to as-
sess the optimal shape/size of the adjustable uncer-
tainty sets and simultaneously optimize the feedback
policy to robustly ensure constraint satisfaction. In
addition, a convex approximation of the original bi-
linear optimization problem is introduced to provide
a feasible inner approximation.

• We consider a building climate control problem to
show how it can be formulated and solved using our
proposed design framework.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the considered system dynamics and the
robust optimal control problem. Section 3 elaborates two
types of feedback control policies: affine feedback policy of
state measurements and affine feedback policy of estimated
disturbances, and rigorously proves their equivalence. In
Section 4, restricting the uncertainty sets as polyhedra, we
reformulate the original robust optimal control problem,
which is semi-infinite, to yield a numerically tractable
bilinear optimization problem, and also introduce a convex
inner approximation for this bilinear optimization prob-
lem. We present numerical simulation results in Section 5,
and conclude this paper in Section 6.

Notation: Rd denotes a d-dimensional real space and Rd
+

a d-dimensional positive real space. The subscript k of
a given time-dependent variable denotes k-th time step,
and k = 0 denotes the initial time step. Uppercase letters

denote matrices, and boldface lowercase letters denote
stacked sequences of the given signal. [·]i denotes the i-th
row/element of the corresponding matrix/vector. diag(·)
defines a diagonal/block-diagonal matrix with the given
matrices/vector on its diagonal. I denotes identity matrix
with appropriate dimensions, and 0 denotes zero matrix
with proper dimensions.

2. PROBLEM FORMULATION

This section introduces the formulation of the robust con-
strained optimal control problem. Similarly to Zhang et al.
(2017), we consider the following discrete-time uncertain
linear systems

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rnx is the system state, uk ∈ Rnu is the control
input, and wk ∈ Rnx is the unknown disturbance. For
system (1), the following polytopic state-input constraints
should be respected

Z := {(xk+1, uk) ∈ Rnx × Rnu | Cxk+1 +Duk ≤ b} (2)

where C ∈ Rnz×nx and D ∈ Rnz×nu .

We assume that the disturbance signal belongs to an
admissible set W: wk ∈ W ⊂ Rnx . Unlike the problem
considered in Zhang et al. (2017); Bitlislioğlu et al. (2017);
Kim et al. (2018), where perfect state measurement is
assumed, we consider that the system state xk cannot be
accurately measured/estimated, and the uncertain mea-
surement error is defined as

ek := x̂k − xk, (3)

where x̂k is the measurement of xk. Similarly, the mea-
surement error ek is assumed to be within an admissible
uncertainty set E : ek ∈ E ⊂ Rnx .

The reason why the uncertainty sets W and E are called
“adjustable” is because their sizes/shapes are not fixed
when designing the control inputs. In contrast to con-
ventional finite horizon robust optimal control problems
that consider fixed and predetermined uncertainty sets,
the parameters defining the size/shape of W and E are
not fixed a priori and are instead decision variables in our
design.

Let N be the length of the prediction horizon. Then
the stacked sequences of the state x, state measure-
ment/estimation x̂, control input u, disturbance w and
measurement/estimation error e over N prediction steps
are defined as

x = [xT
0 , x

T
1 , · · · , xT

N ]T ∈ R(N+1)nx (4a)

x̂ = [x̂T
0 , x

T
i , · · · , x̂T

N ]T ∈ R(N+1)nx (4b)

u = [uT
0 , u

T
1 , · · · , uT

N−1]
T ∈ RNnu (4c)

w = [wT
0 , w

T
1 , · · · , wT

N−1]
T ∈ RNnx (4d)

e = [eT0 , e
T
1 , · · · , eTN ]T ∈ R(N+1)nx . (4e)

Given a metric ρ(W, E) := 2R
nx ×2R

nx → R for evaluating
the uncertainty sets W and E , our design objective is to
find a control policy to maximize the scope of uncertainty
and minimize some operational cost while ensuring con-
straint satisfaction for all possible uncertainty realizations
wk ∈ W and ek ∈ E . More precisely, the control objective
can be formulated as
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min max
wk∈W,ek∈E

{J(u,w, e)} − λ · ρ(W, E) (5a)

s.t. (1) and (xk+1, uk) ∈ Z (5b)

∀wk ∈ W, k = 0, 1, · · · , N − 1 (5c)

∀ek ∈ E , k = 0, 1, · · · , N (5d)

where λ ≥ 0 is a user-defined weighting parameter,
J(u,w, e) is the nominal operational cost function, and
the minimization is performed over control inputs and the
parameters defining the shape/size of the uncertainty sets
W and E . A common choice for J(u,w, e) is

J(u,w, e) :=
N−1
k=0

lk(ϕk+1(u,w, e), uk) (6)

where lk(ϕk+1(u,w, e), uk) is the k-th stage cost function,
and ϕk(u,w, e) represents the system states at k-th time
step driven by (u,w, e). As in Goulart et al. (2006); Zhang
et al. (2017), stage cost functions are restricted to linear
functions. Possible choices for selecting ρ(·, ·) can be found
in Zhang et al. (2017).

3. STATE AND DISTURBANCE FEEDBACK
POLICIES AND THEIR EQUIVALENCE

In this section, two types of control policies: state feedback
policy and disturbance feedback policy, will be discussed.
We will show that, while the disturbance feedback policy is
more computationally superior, these two types of control
policies are equivalent even in the presence of inaccurate
state information.

3.1 State Feedback Policy

One natural choice for the control policy is to parameterize
the control input with system states in an affine structure
as in Goulart et al. (2006) and Skaf and Boyd (2010). Since
imperfect state measurement/estimation is assumed in our
design setting, the state feedback policy is consequently
constructed as

usf
k =

k
i=0

Lk,ix̂i + gk (7)

where Lk,i ∈ Rnu×nx and gk ∈ Rnu are control parameters
to be optimized. Since the controller should be non-
anticipative, usf

k is only dependent on measurements xt

for t ≤ k. The input sequence u can then be compactly
expressed as

usf = Lx̂+ g (8)

where L ∈ RNnu×(N+1)nx and g ∈ RNnu are defined as

L =




L0,0 0 · · · 0
...

. . .
. . . 0

LN−1,0 · · · LN−1,N−1 0


 , g =




g0
g1
...

gN−1


 . (9)

For a given initial state x, the state feedback policy (L,g)
is admissible if the control policy (8) guarantees that
the system constraints (2) are satisfied for all possible
uncertainties wk ∈ W and ek ∈ E over the N -step
prediction horizon. More precisely, the set of feasible state
feedback policies is defined as

Πsf(x) :=




(L,g)



xk+1 = Axk +Buk + wk

uk =

k
i=0

Lk,ix̂i + gk

(L,g) satisfy (9)

x0 = x

(xk+1, uk) ∈ Z

∀ wk ∈ W, ∀ ek ∈ E
∀ k ∈ [0, 1, · · · , N − 1]





. (10)

Correspondingly, the set of initial states that ensures the
existence of a feasible state feedback policy is

Xsf := {x ∈ Rnx
Πsf(x) ̸= ∅}. (11)

As mentioned in Goulart et al. (2006), one critical limi-
tation of the state feedback control policy is that the set
of admissible state feedback policies Πsf(x) is non-convex.
Hence, in order to optimize the control parameters (L,g),
a non-convex optimization problem needs to be solved, or
some nonlinear reformulations need to be performed.

3.2 Disturbance Feedback Policy

An alternative parameterization of the control policy is to
design the input as an affine function of prior disturbances,

i.e., udf
k =

k−1
i=0 Mk,iwi + vk. Since the disturbance signal

wk is only available after (k + 1)-st time step, the control
input udf

k is consequently constructed by wt for t ≤ k −
1. In many cases the unknown external disturbance wk

is not directly measurable, and is rather computed via
wk = xk+1 − Axk − Buk (Goulart et al., 2006). In our
work, an estimation of the disturbance from imperfect
state measurements is computed as

ŵk = x̂k+1 −Ax̂k −Buk (12)

and accordingly, the control policy udf
k becomes

udf
k =

k−1
i=0

Mk,iŵi + vk. (13)

The input sequence over the N prediction steps udf can
then be compactly represented as

udf = Mŵ + v (14)

where ŵ ∈ RNnx , M ∈ RNnu×Nnx and v ∈ RNnu are
defined as ŵ = [ŵT

0 , ŵ
T
1 , · · · , ŵT

N−1]
T

M =




0 0 · · · 0
M1,0 0 · · · 0
...

. . .
. . . 0

MN−1,0 · · · MN−1,N−2 0


 , v =




v0
v1
...

vN−1


 . (15)

Similarly to (10) and (11), the set of feasible disturbance
feedback policies (M,v) and the corresponding set of
feasible initial states are defined as

Πdf(x) =




(M,v)



xk+1 = Axk +Buk + wk

uk =

k−1
i=0

Mk,iŵi + vk

ŵk = x̂k+1 −Ax̂k −Buk

(M,v) satisfy (15)

x0 = x

(xk+1, uk) ∈ Z

∀wk ∈ W, ∀ek ∈ E
∀k ∈ [0, 1, · · · , N − 1]




(16)

3

Xdf := {x ∈ Rnx
Πdf(x) ̸= ∅}. (17)

One critical advantage of the disturbance feedback policy
(14) over the state feedback policy (8) is that the predicted
state sequence x is an affine function of the control
parameters (M,v).

3.3 Equivalence Between State and Disturbance Feedback
Policies

Regarding the state feedback policy (7) and the distur-
bance feedback policy (13), one natural question to ask
is whether one policy is more or less conservative than
the other. It has been shown in Goulart et al. (2006) that
assuming perfect state measurements these two types of
control policies are equivalent. In the following, we will
show that the two types of control policies are equivalent
even under imperfect state measurement setting.

Theorem 1. The admissible sets of initial states for both
state feedback and disturbance feedback policies in (11)
and (17), respectively, are identical, namely Xdf = Xsf. In
addition, for any feasible state feedback policy (L,g), an
equivalent feasible disturbance feedback policy (M,v) can
be found to yield the same state and input sequences for
any allowable uncertainty sequences w and e, and vice-
versa.

Proof: For system (1), the state sequence over N -step
prediction horizon x can be compactly represented as

x = Ax0 +Bu+Ew (18)

where

A =




I
A
...

AN


 , B =




0 0 · · · 0
B 0 · · · 0
...

. . .
. . . 0

AN−1B AN−2B · · · B


 (19)

E =




0 0 · · · 0
I 0 · · · 0
...

. . .
. . . 0

AN−1 AN−2 · · · I


 . (20)

In addition, according to (1), (3) and (12), we have

ŵk = xk+1 + ek+1 −A(xk + ek)−Buk (21a)

= wk + ek+1 −Aek (21b)

Defining w̃k := ŵk − wk and considering (21) yields

w̃ = He (22)

where w̃ ∈ RNnx and H ∈ RNnx×(N+1)nx are

w̃ :=




w̃0

w̃1

...
w̃N−1


 , H :=



−A I · · · 0
...

. . .
. . . 0

0 · · · −A I


 . (23)

Xsf ⊆ Xdf: From the definition of Xsf, given x0 ∈ Xsf,
there exists at least one state feedback control policy (L,g)
satisfying the constraints in (10). For admissible sequences
w and e, the input sequence generated from the state
feedback policy and the corresponding state sequence are

usf = Lx̂+ g (24a)

x = Ax0 +B(Lx̂+ g) +Ew. (24b)

Based on the definition of e in (3), (24b) can be rewritten
as

x = Ax̂0 −Ae0 +B(Lx+ g) +BLe+Ew (25)

which further gives

x = (I−BL)
−1

(Ax̂0 −Ae0 +Bg +BLe+Ew). (26)

Substituting (26) into (24a) yields

usf = Lx+ g + Le (27a)

= L(I−BL)−1Ew + L(I−BL)−1(Ax̂0 +Bg) + g

+ L(I−BL)−1(BLe−Ae0) + Le. (27b)

Notice that matrix (I−BL)−1 is always well-defined since
BL is strictly lower triangular. Defining Ā = [A,0, · · · ,0] ∈
R(N+1)nx×(N+1)nx leads to

Ae0 = Āe. (28)

In order to find a disturbance feedback policy udf = Mŵ+
v = Mw+v+Mw̃ = Mw+v+MHe that is equivalent
to (27), the following should hold

M = L(I−BL)−1E (29a)

v = L(I−BL)−1(Ax̂0 +Bg) + g (29b)

MH = L(I−BL)−1(BL− Ā) + L. (29c)

Considering (29a) and (29c), the following relationship
should be satisfied to ensure that the above equations hold

L(I−BL)−1EH  
LHS

= L(I−BL)−1(BL− Ā) + L  
RHS

. (30)

The RHS can be rewritten as

RHS = L(I−BL)−1(BL− Ā) + L(I−BL)−1(I−BL)

= L(I−BL)−1(I− Ā).

Recalling the definition of E, H and Ā, it is easy to verify
that EH = I − Ā, which justifies (30). Further, it can
be readily checked that the (M,v) defined in (29a) and
(29b) also satisfies the structure in (15) and will generate
the same state sequence as with the corresponding state
feedback policy. Hence, (M,v) ∈ Πdf(x0) and x0 ∈ Xsf ⇒
x0 ∈ Xdf.

Xdf ⊆ Xsf: According to the definition of Xdf, there
exists a disturbance feedback policy (M,v) such that
the constraints in (16) are satisfied. Given a sequence of
disturbances w, and a sequence of measurement errors e,
the corresponding input and state sequences are

udf = Mŵ + v = Mw + v +MHe (31a)

x = Ax0 +Budf +Ew. (31b)

Since E is full column rank, there exists a matrix E∗ ∈
RNnx×(N+1)nx such that E∗E = I. Then, based on (31b),
we have

w = E∗ �x−Ax0 −Budf

. (32)

Substituting (32) into (31a) leads to

udf =
�
I+ME∗B)−1(ME∗(x−Ax0) + v +MHe



= (I+ME∗B)−1ME∗x+ (I+ME∗B)−1(v

−ME∗Ax̂0)+(I+ME∗B)−1M(E∗Ā+H)e (33)

where (I+ME∗B)−1 is always well-defined since ME∗B
is strictly lower triangular. In order to find an equivalent
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Xdf := {x ∈ Rnx
Πdf(x) ̸= ∅}. (17)

One critical advantage of the disturbance feedback policy
(14) over the state feedback policy (8) is that the predicted
state sequence x is an affine function of the control
parameters (M,v).

3.3 Equivalence Between State and Disturbance Feedback
Policies

Regarding the state feedback policy (7) and the distur-
bance feedback policy (13), one natural question to ask
is whether one policy is more or less conservative than
the other. It has been shown in Goulart et al. (2006) that
assuming perfect state measurements these two types of
control policies are equivalent. In the following, we will
show that the two types of control policies are equivalent
even under imperfect state measurement setting.

Theorem 1. The admissible sets of initial states for both
state feedback and disturbance feedback policies in (11)
and (17), respectively, are identical, namely Xdf = Xsf. In
addition, for any feasible state feedback policy (L,g), an
equivalent feasible disturbance feedback policy (M,v) can
be found to yield the same state and input sequences for
any allowable uncertainty sequences w and e, and vice-
versa.

Proof: For system (1), the state sequence over N -step
prediction horizon x can be compactly represented as

x = Ax0 +Bu+Ew (18)

where

A =




I
A
...

AN


 , B =




0 0 · · · 0
B 0 · · · 0
...

. . .
. . . 0

AN−1B AN−2B · · · B


 (19)

E =




0 0 · · · 0
I 0 · · · 0
...

. . .
. . . 0

AN−1 AN−2 · · · I


 . (20)

In addition, according to (1), (3) and (12), we have

ŵk = xk+1 + ek+1 −A(xk + ek)−Buk (21a)

= wk + ek+1 −Aek (21b)

Defining w̃k := ŵk − wk and considering (21) yields

w̃ = He (22)

where w̃ ∈ RNnx and H ∈ RNnx×(N+1)nx are

w̃ :=




w̃0

w̃1

...
w̃N−1


 , H :=



−A I · · · 0
...

. . .
. . . 0

0 · · · −A I


 . (23)

Xsf ⊆ Xdf: From the definition of Xsf, given x0 ∈ Xsf,
there exists at least one state feedback control policy (L,g)
satisfying the constraints in (10). For admissible sequences
w and e, the input sequence generated from the state
feedback policy and the corresponding state sequence are

usf = Lx̂+ g (24a)

x = Ax0 +B(Lx̂+ g) +Ew. (24b)

Based on the definition of e in (3), (24b) can be rewritten
as

x = Ax̂0 −Ae0 +B(Lx+ g) +BLe+Ew (25)

which further gives

x = (I−BL)
−1

(Ax̂0 −Ae0 +Bg +BLe+Ew). (26)

Substituting (26) into (24a) yields

usf = Lx+ g + Le (27a)

= L(I−BL)−1Ew + L(I−BL)−1(Ax̂0 +Bg) + g

+ L(I−BL)−1(BLe−Ae0) + Le. (27b)

Notice that matrix (I−BL)−1 is always well-defined since
BL is strictly lower triangular. Defining Ā = [A,0, · · · ,0] ∈
R(N+1)nx×(N+1)nx leads to

Ae0 = Āe. (28)

In order to find a disturbance feedback policy udf = Mŵ+
v = Mw+v+Mw̃ = Mw+v+MHe that is equivalent
to (27), the following should hold

M = L(I−BL)−1E (29a)

v = L(I−BL)−1(Ax̂0 +Bg) + g (29b)

MH = L(I−BL)−1(BL− Ā) + L. (29c)

Considering (29a) and (29c), the following relationship
should be satisfied to ensure that the above equations hold

L(I−BL)−1EH  
LHS

= L(I−BL)−1(BL− Ā) + L  
RHS

. (30)

The RHS can be rewritten as

RHS = L(I−BL)−1(BL− Ā) + L(I−BL)−1(I−BL)

= L(I−BL)−1(I− Ā).

Recalling the definition of E, H and Ā, it is easy to verify
that EH = I − Ā, which justifies (30). Further, it can
be readily checked that the (M,v) defined in (29a) and
(29b) also satisfies the structure in (15) and will generate
the same state sequence as with the corresponding state
feedback policy. Hence, (M,v) ∈ Πdf(x0) and x0 ∈ Xsf ⇒
x0 ∈ Xdf.

Xdf ⊆ Xsf: According to the definition of Xdf, there
exists a disturbance feedback policy (M,v) such that
the constraints in (16) are satisfied. Given a sequence of
disturbances w, and a sequence of measurement errors e,
the corresponding input and state sequences are

udf = Mŵ + v = Mw + v +MHe (31a)

x = Ax0 +Budf +Ew. (31b)

Since E is full column rank, there exists a matrix E∗ ∈
RNnx×(N+1)nx such that E∗E = I. Then, based on (31b),
we have

w = E∗ �x−Ax0 −Budf

. (32)

Substituting (32) into (31a) leads to

udf =
�
I+ME∗B)−1(ME∗(x−Ax0) + v +MHe



= (I+ME∗B)−1ME∗x+ (I+ME∗B)−1(v

−ME∗Ax̂0)+(I+ME∗B)−1M(E∗Ā+H)e (33)

where (I+ME∗B)−1 is always well-defined since ME∗B
is strictly lower triangular. In order to find an equivalent
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state feedback policy usf = Lx̂ + g = Lx + g + Le, the
following should hold

L = (I+ME∗B)−1ME∗ (34a)

g = (I+ME∗B)−1 (−ME∗Ax̂0 + v) (34b)

L = (I+ME∗B)−1M(E∗Ā+H). (34c)

By checking the structure of H and E, it can be verified
that HE = I, namely E∗ = H, and HĀ = 0, which
justify (34a) and (34c). In addition, the state feedback
policy (L,g) defined in (34a) and (34b) also satisfies (10),
and will generate the same sequence of states as with the
corresponding disturbance feedback policy. As a result, for
every x0 ∈ Xdf, it can be concluded that x0 ∈ Xsf. In other
words, Xdf ⊆ Xsf. This completes the proof. □

Remark 1 : Unlike the control input parameterization
adopted in Goulart and Kerrigan (2007) and Ben-Tal et al.
(2006), where so-called purified output signals are used
and a linear observer is designed, we parameterize the con-
trol input as an affine function of estimated disturbances
that are computed from state measurements/estimations,
which is similar to the parameterization considered in
Goulart et al. (2006) and Zhang et al. (2017) but with
noisy state information. If we would further assume that
system states are fully measurable and used directly for
constructing the control policy in (7), namely the output
measurements y = x̂, the scheme designed in Goulart and
Kerrigan (2007) subsumes our proposed scheme. However,
it is worth emphasizing that, for applying the schemes in
Goulart and Kerrigan (2007) and Ben-Tal et al. (2006), a
linear state observer with predefined structures needs to
be designed for obtaining the purified output signal. On
the contrary, our proposed scheme imposes no restrictions
on the approaches for obtaining the state estimate x̂. For
example, moving horizon estimation (MHE) (Rao et al.,
2003), which is effective in constrained state estimation,
can be combined with our scheme directly but is not
compatible with the schemes proposed in Goulart and
Kerrigan (2007) and Ben-Tal et al. (2006). In addition,
we show in Appendix A that if the state estimate is as-
sumed to be obtained via the linear observer considered in
Goulart and Kerrigan (2007), the control policy considered
in this work also subsumes the policy considered in Goulart
and Kerrigan (2007) under some mild conditions.

4. ROBUST CONTROL WITH ADJUSTABLE
UNCERTAINTY SETS

In this section, the robust constrained optimal control
problem with imperfect state measurements and ad-
justable uncertainty sets formulated in Section 2 is solved
using the duality of linear optimization. Since we have
proven in Section 3 that the disturbance feedback policy
(14) is equivalent to the state feedback policy (8), in
the following we will only investigate the robust optimal
control problem formulated in (5) with the disturbance
feedback policy because of its computational superiority.

In our design, the uncertainty sets W and E are restricted
to be compact (closed and bounded) polyhedra and con-
tain the origin in their interior, which are defined as

W :={w | Fw ≤ f} (35a)

E :={e | Y e ≤ y} (35b)

where (F, f) ∈ F ⊆ Rnf×nx × Rnf and (Y, y) ∈ Y ⊆
Rny×nx × Rny are unknown or partially unknown param-
eters to be determined. To ensure that the resulting opti-
mization problem for determining the optimal uncertainty
sets and the corresponding control policy only contain
bilinear constraints, the admissible sets of control param-
eters F and Y are also restricted to be polyhedra.

By defining the N -fold Cartesian product of W and E as
WN := W ×W · · ·W and EN := E × E · · · E , respectively,
the admissible sets of the uncertain sequences w and e can
be expressed as

WN := {w | Fw ≤ f} (36)

where F = diag(F, · · · , F ) ∈ RNnf×Nnx and f =
[fT, · · · , fT]T ∈ RNnf ;

EN := {e | Ye ≤ y} (37)

where Y = diag(Y, · · · , Y ) ∈ RNny×Nnx and y =
[yT, · · · , yT]T ∈ RNny .

Recall that the nominal cost function in (5) is restricted to
be linear. Then considering (2), (14) and (18), the optimal
control problem (5) can be formulated as

min
M,v,F,f,Y,y

{
max

w∈WN ,e∈EN

{
pTudf + qTw + oTe

}

− λ · ρ(W, E)
}

(38a)

s.t. udf = Mŵ + v, (M,v) satisfies (15) (38b)

Cudf +Dw +Ge ≤ d (38c)

∀w ∈ WN , ∀e ∈ EN (38d)

where p, q, o, C, D, G and d are constructed from system
parameters and exogenous information in the objective
function.

The problem formulation (38) requires the satisfaction
of infinitely many constraints and is a semi-infinite op-
timization problem, which is computationally intractable
for numerical solvers. The universal quantifier in (38d)
can be equivalently replaced by guaranteeing constraint
satisfaction for the following worst-case scenario

min τ − λ · ρ(W, E) (39a)

s.t. max
w,e

{
(pTM+ qT)w + (pTMH+ oT)e

}

+ pTv ≤ τ (39b)

max
w,e

{(CM+D)w + (CMH+G)e}+Cv ≤ d

(39c)

Fw ≤ f , Ye ≤ y (39d)

(F, f) ∈ F, (Y, y) ∈ Y, (M,v) satisfies (15) (39e)

where the max operator in (39c) represents row-wise
maximization. Notice that in (39) the objective function
and constraints are linear w.r.t. w and e. Following a
similar line as in Zhang et al. (2017) and applying the
duality of LP, problem (39) can then be equivalently
reformulated as

5

min τ − λ · ρ(W, E) (40a)

s.t. fTµ1 + yTµ2 + pTv ≤ τ (40b)

FTµ1 = MTp+ q (40c)

YTµ2 = HTMTp+ o (40d)

µ1 ≥ 0, µ2 ≥ 0 (40e)

fTηi1 + yTηi2 + [C]Ti v ≤ di (40f)

FTηi1 = [CM+D]i (40g)

YTηi2 = [CMH+G]i (40h)

(M,v) satisfies (15) (40i)

ηi1 ≥ 0, ηi2 ≥ 0, i = 1, 2, · · · , Nnz (40j)

(F, f) ∈ F, (Y, y) ∈ Y (40k)

where (M,v, F, f, Y, y, µ1, µ2, η
i
1, η

i
2, τ) are decision vari-

ables. By solving this optimization problem, the optimal
solution (M∗,v∗, F ∗, f∗, Y ∗, y∗) will characterize the ad-
missible uncertainty sets WN and EN such that for all
possible w ∈ WN and e ∈ EN there exists a disturbance
feedback control policy (M∗,v∗) to robustly guarantee
constraint satisfaction for the system over the N -step
prediction horizon.

Remark 2 : The reason why we restrict the nominal opera-
tional cost function to be linear and define the feasible sets
of all decision variables via linear constraints is to ensure
that the resulting optimization only contains one type of
non-convexity: bilinear terms (FTµ1,Y

Tµ2,F
Tηi1,Y

Tηi2)
in the constraints (40b) – (40k). Assuming that the ob-
jective function ρ(W, E) is a linear/bilinear function of
(F, f, Y, y) will then ensure that (40) is a bilinear optimiza-
tion problem, which can be handled by several off-the-shelf
solvers, such as Gurobi, SCIP and Ipopt.

Remark 3 : For the optimization problem (40), we can
eliminate the bilinearities in (40b) – (40k) such that the
resulting optimization problem only contains linear hence
convex constraints to provide an inner approximation
of the original problem (39). This can be achieved by
making two modifications to the original problem: 1)
considering control actions udf = v instead of control
policies u = Mŵ + v; and 2) applying the uncertainty
set approximation via primitive sets introduced in Zhang
et al. (2017) for the uncertainty sets W and E . Then,
it can be verified that the dual problem of the modified
optimization problem only contains linear hence convex
constraints. Hence, the computational tractability of the
resulting optimization problem will be improved, and any
feasible solution to this simplified problem is also feasible
for the original problem with affine control policies.

5. SIMULATION RESULTS

The value of the methodology developed in Section 4 is
now illustrated through a case study of building climate
control. We consider a single-zone building model that
is identified via the resistor-capacitor (RC)-network ap-
proach with a 2R2C structure (Bacher and Madsen, 2011).
The mathematical expression of the indoor temperature
dynamics is

xk+1 = Axk +Buk + wk +Rdk, (41)

where the states xk = [xk,1, xk,2] ∈ R2 represent the
average indoor temperature xk,1 and the average building

envelope temperature xk,2, uk ∈ R denotes the control-
lable heating/cooling power, wk ∈ R2 the scaled heat-
ing/cooling power generated by indoor appliances or flex-
ible power adjustment for providing demand-side service
to power grid, and dk ∈ R2 the boundary conditions: out-
door temperature and solar radiation. While the building
thermal dynamics in (41) is not in the same format as the
system in (1), the proposed approach is still directly ap-
plicable since all system constraints considered are linear.

It should be mentioned that accurately measuring or es-
timating the average temperatures for both the indoor
air and building’s envelope is difficult since the measure-
ment/estimation of the temperature variables is influenced
by several factors, such as sensor locations, humidity, ra-
diation, etc, and also the non-homogeneity of construc-
tion materials. In addition, the indoor climate is subject
to some uncertain internal heat gains, such as heat flux
from appliance and occupancy behaviors. In order to ef-
ficiently operate the building temperature control system
and maintain comfortable indoor conditions, the uncer-
tainties in both the temperature measurement/estimation
and the internal heat gains should be properly consid-
ered. In the following, we will apply the proposed scheme
to analyze the maximal size of permissible uncertainties
in both indoor temperature measurements/estimations as
well as internal heat gains and design a corresponding
heating/cooling strategy to achieve robust comfort con-
straint satisfaction.

In our simulation example, comfort constraints are given
as 19◦C ≤ xk,1 ≤ 24◦C. Heating power constraints are
−2000W ≤ uk ≤ 2000W. The admissible uncertainty sets
for wk and ek are defined as

−w̄ ≤ wk ≤ w̄, −ē ≤ ek ≤ ē

where w̄ = [w̄1, w̄2] ∈ R2
+ and ē = [ē1, ē2] ∈ R2

+ are
decision variables to be determined. Model parameters A,
B and R are identified according to the data provided in
Rouchier (2022) using Scipy. Optimization problems are
modeled using Pyomo and solved via Gurobi 9.5.1 solver.
Scripts for reproducing our simulation results are avail-
able in https://github.com/li-yun/optimal_control_
inexact_measurement.

Notice that the work of Goulart and Kerrigan (2007)
requires that the uncertainty sets W and E are fixed.
However, this paper aims at exploring the problem of
robust optimal control for adjustable uncertainty sets, thus
a comparable design from Zhang et al. (2017) is considered
in our simulation for comparison. We implement the fol-
lowing three schemes:

• Scheme 1: the robust control formulation defined in
(40).

• Scheme 2: the convex approximation of (40) intro-
duced in Remark 3.

• Scheme 3: the approach proposed in Zhang et al.
(2017), where the state measurement error is not
considered.

The objective function for all considered schemes is set as
ρ(W, E) = w̄1w̄2ē1ē2, which is to maximize the product
of the area of the rectangles defined by w̄ and ē. The
estimated initial states is x0 = [20◦C, 25◦C], and the
prediction horizon is N = 8. The admissible uncertainty
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min τ − λ · ρ(W, E) (40a)

s.t. fTµ1 + yTµ2 + pTv ≤ τ (40b)

FTµ1 = MTp+ q (40c)

YTµ2 = HTMTp+ o (40d)

µ1 ≥ 0, µ2 ≥ 0 (40e)

fTηi1 + yTηi2 + [C]Ti v ≤ di (40f)

FTηi1 = [CM+D]i (40g)

YTηi2 = [CMH+G]i (40h)

(M,v) satisfies (15) (40i)

ηi1 ≥ 0, ηi2 ≥ 0, i = 1, 2, · · · , Nnz (40j)

(F, f) ∈ F, (Y, y) ∈ Y (40k)

where (M,v, F, f, Y, y, µ1, µ2, η
i
1, η

i
2, τ) are decision vari-

ables. By solving this optimization problem, the optimal
solution (M∗,v∗, F ∗, f∗, Y ∗, y∗) will characterize the ad-
missible uncertainty sets WN and EN such that for all
possible w ∈ WN and e ∈ EN there exists a disturbance
feedback control policy (M∗,v∗) to robustly guarantee
constraint satisfaction for the system over the N -step
prediction horizon.

Remark 2 : The reason why we restrict the nominal opera-
tional cost function to be linear and define the feasible sets
of all decision variables via linear constraints is to ensure
that the resulting optimization only contains one type of
non-convexity: bilinear terms (FTµ1,Y

Tµ2,F
Tηi1,Y

Tηi2)
in the constraints (40b) – (40k). Assuming that the ob-
jective function ρ(W, E) is a linear/bilinear function of
(F, f, Y, y) will then ensure that (40) is a bilinear optimiza-
tion problem, which can be handled by several off-the-shelf
solvers, such as Gurobi, SCIP and Ipopt.

Remark 3 : For the optimization problem (40), we can
eliminate the bilinearities in (40b) – (40k) such that the
resulting optimization problem only contains linear hence
convex constraints to provide an inner approximation
of the original problem (39). This can be achieved by
making two modifications to the original problem: 1)
considering control actions udf = v instead of control
policies u = Mŵ + v; and 2) applying the uncertainty
set approximation via primitive sets introduced in Zhang
et al. (2017) for the uncertainty sets W and E . Then,
it can be verified that the dual problem of the modified
optimization problem only contains linear hence convex
constraints. Hence, the computational tractability of the
resulting optimization problem will be improved, and any
feasible solution to this simplified problem is also feasible
for the original problem with affine control policies.

5. SIMULATION RESULTS

The value of the methodology developed in Section 4 is
now illustrated through a case study of building climate
control. We consider a single-zone building model that
is identified via the resistor-capacitor (RC)-network ap-
proach with a 2R2C structure (Bacher and Madsen, 2011).
The mathematical expression of the indoor temperature
dynamics is

xk+1 = Axk +Buk + wk +Rdk, (41)

where the states xk = [xk,1, xk,2] ∈ R2 represent the
average indoor temperature xk,1 and the average building

envelope temperature xk,2, uk ∈ R denotes the control-
lable heating/cooling power, wk ∈ R2 the scaled heat-
ing/cooling power generated by indoor appliances or flex-
ible power adjustment for providing demand-side service
to power grid, and dk ∈ R2 the boundary conditions: out-
door temperature and solar radiation. While the building
thermal dynamics in (41) is not in the same format as the
system in (1), the proposed approach is still directly ap-
plicable since all system constraints considered are linear.

It should be mentioned that accurately measuring or es-
timating the average temperatures for both the indoor
air and building’s envelope is difficult since the measure-
ment/estimation of the temperature variables is influenced
by several factors, such as sensor locations, humidity, ra-
diation, etc, and also the non-homogeneity of construc-
tion materials. In addition, the indoor climate is subject
to some uncertain internal heat gains, such as heat flux
from appliance and occupancy behaviors. In order to ef-
ficiently operate the building temperature control system
and maintain comfortable indoor conditions, the uncer-
tainties in both the temperature measurement/estimation
and the internal heat gains should be properly consid-
ered. In the following, we will apply the proposed scheme
to analyze the maximal size of permissible uncertainties
in both indoor temperature measurements/estimations as
well as internal heat gains and design a corresponding
heating/cooling strategy to achieve robust comfort con-
straint satisfaction.

In our simulation example, comfort constraints are given
as 19◦C ≤ xk,1 ≤ 24◦C. Heating power constraints are
−2000W ≤ uk ≤ 2000W. The admissible uncertainty sets
for wk and ek are defined as

−w̄ ≤ wk ≤ w̄, −ē ≤ ek ≤ ē

where w̄ = [w̄1, w̄2] ∈ R2
+ and ē = [ē1, ē2] ∈ R2

+ are
decision variables to be determined. Model parameters A,
B and R are identified according to the data provided in
Rouchier (2022) using Scipy. Optimization problems are
modeled using Pyomo and solved via Gurobi 9.5.1 solver.
Scripts for reproducing our simulation results are avail-
able in https://github.com/li-yun/optimal_control_
inexact_measurement.

Notice that the work of Goulart and Kerrigan (2007)
requires that the uncertainty sets W and E are fixed.
However, this paper aims at exploring the problem of
robust optimal control for adjustable uncertainty sets, thus
a comparable design from Zhang et al. (2017) is considered
in our simulation for comparison. We implement the fol-
lowing three schemes:

• Scheme 1: the robust control formulation defined in
(40).

• Scheme 2: the convex approximation of (40) intro-
duced in Remark 3.

• Scheme 3: the approach proposed in Zhang et al.
(2017), where the state measurement error is not
considered.

The objective function for all considered schemes is set as
ρ(W, E) = w̄1w̄2ē1ē2, which is to maximize the product
of the area of the rectangles defined by w̄ and ē. The
estimated initial states is x0 = [20◦C, 25◦C], and the
prediction horizon is N = 8. The admissible uncertainty
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sets W and E computed via the three different schemes are
depicted in Fig. 1. It can be seen that Scheme 3 obtains the
largest admissible uncertainty set for disturbance wk since
no state measurement error ek is considered. Compared
with Scheme 2, which is a convex approximation of Scheme
1, Scheme 1 gives a larger value of objective function,
namely a larger value of the product of the area of two
uncertainty sets.

Remark 4 : The reasons for choosing the objective function
ρ = w̄1w̄2ē1ē2 are to avoid w̄∗

i = 0 or ē∗i = 0, which
is undesirable since in that case no uncertainty can be
tolerated for wi or ei, and to balance the size of two
uncertainty sets. After obtaining the values of w̄∗

i and
ē∗i , we can then actively determine the accuracy of state
measurement/estimation, e.g., by choosing appropriate
sensors or estimation algorithms, and select the set of the
unmodeled thermal disturbance w, e.g., by adjusting the
model accuracy. As long as the uncertainties belong to
the uncertainty sets defined by (w̄∗, ē∗), system constraints
can be guaranteed by applying the corresponding control
policy (M,v). Since the uncertainty sets are adjustable
and can be predefined before the uncertainties are re-
vealed, constraint satisfaction is guaranteed a priori.
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Fig. 1. Admissible uncertainty sets for the considered three
design schemes.

Based on the admissible uncertainty sets computed via
Scheme 1, we randomly generate 50,000 feasible sequences
of w and e, respectively, and then implement the opti-
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Fig. 2. Indoor temperature envelopes for the considered
three design schemes.

mal control policies (M∗,v∗) solved by different schemes.
The indoor temperature envelopes with different control
schemes are depicted in Fig. 2 (dotted lines indicate com-
fort constraints). Observe while Scheme 3 can theoretically
tolerate the largest admissible uncertainty set W by ignor-
ing state measurement errors, indoor comfort constraints
can be violated by applying Scheme 3 even in the presence
of a smaller uncertainty w but with state measurement er-
rors. This observation justifies the necessity of considering
measurement errors explicitly. Compared with Scheme 1,
Scheme 2 is more computationally efficient since only con-
trol actions are considered and bilinearities in constraints
are removed. However, indoor constraints will be violated
in the presence of greater uncertainty in wk.

6. CONCLUSION

We studied the robust optimal control design problem for
linear systems with linear cost functions and adjustable
uncertainty sets in the presence of imperfect state mea-
surements. We have shown that the class of affine policies
of state measurements is equivalent to the class of affine
policies of estimated disturbances. Instead of assuming
fixed uncertainty sets as within the conventional robust
optimal control framework, we consider optimizing the
size/shape of polyhedral uncertainty sets of disturbances
and state measurement errors. By considering polyhedral
uncertainty sets, the proposed approach is able to de-
termine the optimal size/shape of the uncertainty sets
and also a feasible control policy to robustly guarantee
constraint satisfaction by solving a bilinear optimization
problem. The applicability of the proposed approach is
exemplified by implementing the designed scheme on a
building indoor temperature control problem.

Future extensions may include seeking computationally
efficient formulations and numerical solutions for the pro-
posed design without increasing conservativeness, and in-
vestigating recursive feasibility/stability issues for the pro-
posed approach.
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Bitlislioğlu, A., Gorecki, T.T., and Jones, C.N. (2017).
Robust tracking commitment. IEEE Transactions on
Automatic Control, 62(9), 4451–4466.

7

Chisci, L., Rossiter, J.A., and Zappa, G. (2001). Systems
with persistent disturbances: predictive control with
restricted constraints. Automatica, 37(7), 1019–1028.

Fabietti, L., Gorecki, T.T., Qureshi, F.A., Bitlislioğlu, A.,
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Appendix A

Here we show that under a mild condition (the observer
gain matrix Lo is full column rank), our considered control
policy (8) subsumes the affine purified output feedback
policy considered in Goulart and Kerrigan (2007) (Eq.
(19)). The affine purified output feedback policy designed
in Goulart and Kerrigan (2007) is

uof
k =

k−1
i=0

Mk,i(yi − Cx̂i) + vk (A.1)

where yi ∈ Rny is the outputs, C ∈ Rny×nx is the output
matrix, and x̂i is the estimated states. The compacted
form of uof

k over the N -step prediction horizon is

uof = M(y −Cx̂) + v (A.2)

where M ∈ RNnu×Nny and v ∈ RNnu are defined as

M :=




0 0 · · · 0
M1,0 0 · · · 0
...

. . .
. . .

...
MN−1,0 · · · MN−1,N−2 0


 , v :=




v0
v1
...

vN−1


 .

For the control policy (A.2), it can be rewritten as

uof = M(Ce+ η) + v (A.3)

where e ∈ R(N+1)nx is the estimation error vector of states,
η = [η0, η1, · · · , ηN−1] ∈ RNny is the output measurement
error vector. According to the results in Goulart and
Kerrigan (2007), for the estimated state x̂, we have

x̂ = Ax̂0 +Bu+EL(Ce+ η) (A.4)

which further leads to

EL(Ce+ η) = x̂−Ax̂0 −Bu (A.5)

where E is defined as in (20) and L = I ⊗ Lo with
Lo ∈ Rnx×ny being the observer gain matrix. See Goulart
and Kerrigan (2007) for more details.

Assuming that the observer gain matrix Lo is full column
rank, then EL is also full row rank, and there exists a
matrix (EL)∗ = L∗E∗ = (I⊗L∗

o)E
∗ such that (EL)∗EL =

I. Consequently, we can show that

Ce+ η = (EL)∗(x̂−Ax̂0 −Bu). (A.6)

Substituting (A.6) into (A.3) leads to

uof = M(EL)∗(x̂−Ax̂0 −Buof ) + v (A.7)

from which we obtain
uof = (I+M(EL)∗B)−1M(EL)∗x̂+

(I+M(EL)∗B)−1(v −M(EL)∗Ax̂0).
(A.8)

Notice that (I+M(EL)∗B)−1 is well-defined since

M(EL)∗B = ML∗E∗EI ⊗B = ML∗I ⊗B

is strictly block lower triangular. Then, it becomes clear
that there exists an equivalent affine policy of estimated
states usf = Lx̂+ g where

L := (I+M(EL)∗B)
−1

M(EL)∗ (A.9a)

g := (I+M(EL)∗B)
−1

(v −M(EL)∗Ax̂0) . (A.9b)

It can be verified that the control parameters (L,g) defined
in (A.9) satisfy the structure in (9). This completes the
proof. □
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