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ABSTRACT 

To analyze latent multiple specific patterns in the line-based public transport daily delay 

occurrence, a data-driven explorative analysis of public transport daily delay spatial-temporal 

distribution pattern is performed based on the k-means clustering algorithm. Firstly, we used 

aggregated daily delay profile to visualize how the delay is distributed in space and time. And the 

pattern of daily delay distribution is represented by the image features. Secondly, the image 

features are extracted by the pre-trained neural network ResNet50, and the output image feature 

vector are used for implementing unsupervised k-means clustering algorithm. Finally, the k-means 

clustering results reveal five different daily delay patterns. The distinctive characteristics of these 

five delay patterns are analyzed and lead to some significant results, which could provide public 

transport operators with a better understanding of how delays occur on a specific line. 

 

Keywords: Public transport, Delay pattern, Unsupervised learning, Clustering, AVL data, image 

recognition 
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INTRODUCTION  

Punctuality is the essential quality that public transport systems are pursuing. To achieve this goal, 

strategic, tactical, and operational management are needed(1), which requires the operator to own 

prior knowledge of the characteristics of public transport (PT) running. However, each PT lines 

and transport hub in the PT system have distinctive functions, and their delay occurrence characters 

could be different. Are there any spatial-temporal characteristics of delay that occurred on a 

specific PT line? The increasing variety of PT-related data resources is providing more 

opportunities for the operators to censor different phenomena that appear in daily PT operations, 

especially automatic vehicle location (AVL) data and general transit feed specification (GTFS) 

data(2, 3). AVL and GTFS datasets contain dynamic (e.g., locations) and static (e.g., stop 

information, geographic structure, and schedule) information collected when the tram lines are 

operated(4). This research aims to construct a methodology for data-driven exploration of PT line-

based spatial-temporal patterns of delay occurrence. Understanding the spatial-temporal pattern of 

delay distribution on a single line could be meaningful for the operator(5).  

A large amount of research effort has been built on the AVL data to better understand the 

characteristics of phenomena that occur in PT lines. Methods for extracting PT running 

information from these data were developed by previous studies to explore the service reliability 

and extracting the spatiotemporal load profile is one of the efficient approaches for this purpose(6, 

7). The spatiotemporal load profile was introduced to merge multiple data sources by building the 

algorithm to extract meaningful information from raw data and visualize them in one profile(2). 

The approach to making the profile for PT running visualization has been implemented and used 

in various research in the PT domain. For example, (3) implemented the operation profile to 

visualize the daily running situation of a single tram line. The profile images contain the real-time 

location of PT vehicles, combined with the passenger loads on the journey. And the defined 

bunching phenomenon is detected and clustered according to an unsupervised machine learning 

method. Similarly, to predict the short-term train loads, (8) introduced an image-processing-

oriented methodology, and the image represents the train loads at each stop.  

Among the research focused on the PT operation, multiple cases did the exploration 

analysis based on unsupervised learning(9). Unsupervised learning techniques have recently been 

employed to investigate spatial travel patterns and demand, given their natural advantages in 

solving clustering problems(3). In the area of public transport, many analyses related to clustering 

rely on k-means, which permit to cluster relatively large sets of data and require only a few 

parameters. One crucial parameter is the desired number of clusters(10). Most of the previous 

studies that implement the k-means algorithm in the PT field are based on the low-dimensional 

input, which means the number of attributes of each data point is relatively small and definite(3, 

5).  

However, the disadvantage of the low-dimensional input for clustering algorithms is that 

the more complex spatiotemporal PT dynamics could not be well represented, and the clustering 

could only be based on the limited features among data points. The advantage of the profile derived 

from the real-time PT data (e.g., AVL data) is that it can construct a complete view of PT operation 

in time, space, and more dimensions. Still, the existing research methodology could not fully use 

this advantage. To the best of our knowledge, very few studies have attempted to use clustering on 

the high-dimensional input (e.g., image) that represents the PT dynamics. Combining clustering 

and representation learning is one of the most promising approaches for unsupervised learning of 

deep neural networks (8). Thus, this paper focuses on extracting the latent feature contained in the 

line-based PT daily delay profile image by a deep learning algorithm and performing the k-means 
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clustering based on the extracted feature vectors. The study aims to answer the question: how to 

recognize a single PT line's distinctive daily delay patterns and analyze them with the k-means 

clustering approach. The contributions of this paper are as follows: 

⚫ We build an image-based method to extract and visualize a single PT line's line-based daily 

punctuality information. The generated daily delay profile image could allow us to view how 

the delay occurs and its spatial-temporal distribution characteristics. 

⚫ This study applies a pre-trained convolution neural network architecture, Resnet50, for image 

feature recognition. The advantage of this feature recognition approach is that the abstract 

spatial-temporal distribution characteristics of delay occurrence could be extracted from the 

profile images. This technique is different from the previous studies that vectorize the daily 

punctuality data for the k-means algorithm or define the attributes of each sample manually. 

⚫ The clustering results provide a generalized overview of different delay patterns on a specific 

PT line. This can provide prior knowledge for further studies such as supervised learning on 

PT dynamic patterns or planning and management applications. This methodology is 

generalizable to be extended to other PT lines or systems. 

The next section of this paper presents the proposed methodology from two aspects, the 

details of implementing the k-means algorithm in this research and the image processing 

approaches. Then, the case study setup based on the cleaned AVL data is introduced. After that, 

the results of clustered delay patterns are presented, with the analysis of spatial-temporal 

characteristics of each kind of delay pattern. Finally, the conclusion is drawn with discussion and 

suggestions for further research. 

 

METHODOLOGY 

In this section, the methodology for detecting the spatial-temporal characteristics of different daily 

delay patterns is introduced. An overview based on a conceptual model is given first. Then, the k-

means clustering method is described in detail. Also, the image processing approaches in this 

research are discussed, as they provide the bridge between the daily delay profile image and the k-

means clustering algorithm. Punctuality mentioned in this research refers to the time difference 

between the scheduled and real departure time for the tram at each stop. So, the value of punctuality 

could be positive (representing delay) or negative (indicating early arrival). For simplification, we 

mainly focus on exploring the delay patterns. And the feature of early arrival pattern can be 

obtained as complementary findings. 

 

Overview 

An overview of the methodological framework is shown in 

Figure 1. The raw AVL and GTFS datasets are stored separately as input, which contains the daily 

running situation information and the PT lines network information. The raw data obtained from 

these two datasets are cleaned and useful information is extracted. Then, based on the three-step 

method, the daily delay patterns with different spatial-temporal characteristics are derived from 

the raw data and clustered based on the daily delay profile image. Finally, the daily delay patterns 

are interpreted to extract insights, which is this study's final output. 
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Figure 1 Overview of the methodology. The blocks with gray shadows represent the key (intermediate) 

results.  
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k-means algorithm (for image clustering)  

k-means is the most concise clustering algorithm in unsupervised learning, which was first 

proposed in (11), and has been leveraged in various fields. Given a dataset 𝑋 , containing n 

datapoints with m dimensions, 𝑋 = (

𝑥11 ⋯ 𝑥1𝑚

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

), the algorithm aims to partition them into k 

(k<n) clusters {𝐶1, 𝐶2, 𝐶3, … , 𝐶𝑘}. For each cluster, the centroid is defined as the mean of data 

points belonging to the cluster and is calculated iteratively until the algorithm process is terminated. 

The definition of centroid could also be generalized in high dimensional space. For each iteration, 

each datapoint 𝑥 is assigned to the nearest cluster, based on the distance to each centroid. Multiple 

methods are used to calculate the distance between data points (10), and the Euclidean distance is 

the most used. The algorithm iteration is terminated when the assignment results of all data point 

no longer change. The steps of generic k-means include the following steps: 

1. Select k samples {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑘} in the dataset randomly as initial cluster centroids of k 

clusters. 

2. For all the other data points, calculate their distance to the initial cluster centroids, and 

assign them to the nearest cluster. The most common distance calculation is Euclidean 

distance 𝐷, which is: 

𝐷𝑖(𝑥𝑖 , 𝐶𝑖)
2 = ∑(𝑥𝑖𝑑 − 𝐶𝑖𝑑)2

𝑚

𝑑=1

= ‖𝑥𝑖 − 𝐶𝑖‖2
2 (1) 

 

Where 𝑖 denotes the label of a cluster, 𝐷𝑖 denotes the Euclidean distance between datapoint 𝑥𝑖 

and centroid 𝑢𝑖 both belong to the cluster 𝐶𝑖. 

3. Calculate the mean of each cluster as the new centroid of the cluster. 

4. Run steps 2 and 3 iteratively until the limitation of iteration or the assignment no longer 

changes, which means the within-cluster sum of square SSE (the sum of the distance of 

each datapoint to the corresponding cluster centroid). 

 

𝑆𝑆𝐸(𝑘) = ∑ ∑ 𝐷𝑖(𝑥𝑖, 𝑢𝑖)2

𝑥∈𝐶𝑖

𝑘

𝑖=1

(2) 

 

For each cluster, the ideal situation is that the distance between each data point assigned to 

the cluster and the centroid could be as small as possible. In contrast, the difference (distance) 

among centroids of multiple clusters could be as significant as possible. Thus, the aim of the k-

means algorithm is an optimization problem where the goal is to minimize the within-cluster sum 

of squared errors (SSE).  

A common issue in the unsupervised machine learning algorithm is that clustering methods 

always return clusters even if the data does not contain any clusters. It is necessary to evaluate if 

there exists a significant clustering tendency in the vectorized input dataset and if it could obtain 

reasonable and meaningful clustering results. To evaluate the clustering tendency of a specific 

dataset, we implement the Hopkins Statistic h by estimating the data set's randomness (12, 13). h 

will be in the range (0,1), and a high value indicates highly clustered data points. An h closer to 0 

refers to a lower cluster tendency and is more regularly spaced. An h closer to 1 refers to a higher 

cluster tendency. If the data is uniformly distributed, the h will be 0.5(14). 
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The key point of k-means clustering is to determine the number of clusters k. Two methods have 

been commonly used for solving the problem: the elbow method based on the SSE curve and the 

silhouette analysis  

The Elbow method is one of the most popular methods to select the optimal number of 

clusters by fitting the model with a range of values for k in the k-means algorithm. The Elbow 

method requires a line plot between SSE and the number of clusters and finding the point 

representing the “elbow point.” However, the within-cluster SSE could not determine the 

optimum cluster number independently. The elbow could be unclear, and SSE could only reflect 

the data distribution within each cluster. 

The other method is silhouette analysis. The silhouette analysis allows seeing how similar 

the points within the cluster are with the centroid point and how different they are from the points 

of other clusters(15). For each data point in a cluster, a silhouette score could be calculated scale 

from -1 to 1, and the average value of all silhouette score represent the results of silhouette analysis. 

The following equation calculates the average silhouette score. 

 

𝑆 =
1

𝑛
∑

𝑏𝑖 − 𝑎𝑖

max(𝑎𝑖, 𝑏𝑖)

𝑛

𝑖=1

(3) 

 

Where, 𝑎𝑖 represents the average distance between sample i and other samples in its cluster, 

and 𝑏𝑖 denotes the minimum average distance between sample i and samples in other clusters. If 

the 𝑎𝑖 verge to 0 or 𝑏𝑖 is high enough, the average silhouette score getting closer to 1 indicates that 

the clustering algorithm works better. 

Although the mentioned methods could provide quantifiable evidence for choosing the 

value of k, the number of clusters should also consider the purpose of clustering based on prior 

knowledge. In this research, we need to observe if universal and generic features exist among data 

points within each cluster. This way, the patterns of daily delay distribution characteristics could 

be extracted, concluded, and generalized. 

 

Image processing approaches  

As introduced before, k-means clustering is based on real vectors with multiple dimensions. 

However, the daily delay information is represented by the delay profile images. So, how the 

images are vectorized and plugged into the k-means algorithm needs to be discussed. 

In the previous research, the dimensions of the k-means input are limited (usually no more 

than 101 or 102  attributes (dimensions)). However, in this research, the spatial-temporal 

distribution of the delay phenomenon is represented by the daily delay profile image and the 

dimension of image input we propose to obtain (more than 102 or 103 , depending on the 

aggregation granularity of the delay profile images) could be relatively much higher. The 

challenges brought by the high dimensional input for k-means include two aspects:  

 

1) The k-means algorithm determines the data points’ cluster affiliation based on the pair-

wise distance, but all the points are at a similar distance from the others when the dimension 

increases. Thus, the notion of “nearest points” vanishes in the high dimensional space(16).  

2) The input for k-means distance calculation is one-dimensional vectors. If an image is 

unfolded to a one-dimensional vector directly, any possible translation or disturbance of 

the image could significantly impact the clustering result due to the difference in pixel 
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values(17). For example, in two identical images, if one of them is translated to a one-pixel 

distance, no difference could be found in their appearances. Still, they may be attributed to 

two different clusters. 

3) The spatial relationship among the image pixels would be ignored if we directly unfold the 

image pixel values to a one-dimensional vector. One of the most significant advantages of 

representing the daily delay information by the punctuality profile image is that the spatial-

temporal characteristics could be visualized and analyzed. 

 

To solve the problems caused by the characteristics of the data in this research, image 

recognition based on the pre-trained deep neural network architecture Resnet-50 is implemented, 

combined with two kinds of dimensionality reduction approaches. Using the image feature 

recognition algorithm Resnet-50, the spatial-temporal distribution characteristics of daily delay 

could be extracted. And the dimensionality reduction could aid the k-means algorithm to be more 

efficient. Thus, the appropriate input attributes for the k-means algorithm could be obtained. 

 

Image feature extraction 

For many image clustering or classification problems, replacing raw image data with features 

extracted by a pre-trained convolutional neural network (CNN) leads to better clustering 

performance(18, 19). The previous research compared multiple neural network architectures and 

proved that the ResNet50 could perform relatively better than other prevailing architectures(20, 

21). Residual Network is a classic neural network used as a backbone for many computer vision 

tasks, which was first proposed by Kaiming He in 2015(22). ResNet-50 is a convolutional neural 

network with 50 layers. The pre-trained Resnet-50 deep neural network architecture could 

effectively recognize the features of the images and has been widely used in computer vision, 

including image classification and detection applications. The process of implementing the 

ResNet50 is done by the PyTorch deep learning framework. 

 

Dimensionality reduction  

The dimensionality reduction method could transfer the high-dimensional data into low-

dimensional space, vital in feature engineering, data visualization, and saving computation time 

(16). There are two kinds of dimensionality reduction methods: projection and manifold 

learning(23). Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor 

Embedding (t-SNE) are two typical algorithms belonging to these two kinds of dimensionality 

reduction methods respectively.  

As a traditional and popular dimensionality reduction technique, PCA is a linear technique that 

keeps the low-dimensional representations of different data points far apart. However, PCA cannot 

account for complex polynomial relationships between features. Unlike PCA, t-SNE is a nonlinear 

dimensionality reduction algorithm based on the probability distribution of random walks on the 

neighborhood graph to find the structure within the data. It maps multidimensional data to two or 

more dimensions suitable for human observation. In the research conducted by van der Maaten 

and Hinton(24), t-SNE is better than existing techniques at creating a single map that reveals 

structure at many different scales. It is essential for high-dimensional data that lie on several 

different but related, low-dimensional manifolds, such as images of objects from multiple classes 

seen from various viewpoints. 

The k-means calculate which cluster a data point belongs to base on the distance among 

vectors with multiple dimensions, and the dimension is high in this research. Accordingly, the 
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dimensionality reduction could be plugged into the clustering method in two roles: 1) processing 

the output of ResNet50 with 3 × 3 × 512 dimension to be the input of the k-means algorithm. 2) 

visualize high-dimensional k-means output data by giving each data point a location in a two- or 

three-dimensional map. The first role may not be necessary, but for some specific data, the 

dimensionality reduction before k-means could help with feature selection and reducing time 

complexity(25). So, a comparison is made among the data preprocessing methods with (PCA or t-

SNE) and without dimensionality reduction before k-means. The second role is one of the critical 

parts of analyzing the effectiveness of the clustering algorithm, which is necessary. So, the t-SNE 

is chosen to visualize the clustering results.  

 

CASE STUDY  

For this study, the General Transit Feed Specification (GTFS) dataset and the Automatic Vehicle 

Location (AVL) dataset are used to extract the historical real-time running information of all the 

PT lines in The Hague, covering 79 days across June, July, and August in 2019. Among all the PT 

lines, tram line 1 was selected for the case study. As the oldest and longest tram line in The Hague, 

line 1 runs from Scheveningen Noord to Delft Tanthof, via The Hague city center, Hollands Spoor 

station, Rijswijk Haagweg, and Delft station, as shown in Figure 2. The line has been running in 

and around The Hague for decades. The diversity of the land use pattern where tram line 1 pass by 

could ensure that multiple kinds of daily delay patterns exist for the line.  

 
Figure 2 Tram line 1 from Scheveningen Noorderstrand to Delft Tanthof (TBD) 

 

The dynamic information is derived from the AVL data, Table 1 which contains: line number, 

vehicle number, journey number, the actual arrival/departure time to the platform of the vehicle, 

stop (platform) code, distance to the last platform, punctuality, and more related information of all 

the PT lines operated in The Hague as shown in Table 1. Besides, the static network information 

is derived from the GTFS dataset, which contains each platform's stop name, code, and geographic 

location. To extract the available information, we select the data point with the actual stop name 

and collect the exact time and position data when a tram leaves the platform. Finally, 78 platforms 
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(34 stops in one direction) are identified and all the stops of tram line 1 are selected. And for each 

data point, the punctuality is derived from the schedule and departure time. Besides, some of the 

data points with extreme attribute values are deleted from the dataset, as these could be caused by 

a particular situation like rare equipment failure or temporary traffic control. The well-organized 

data could make the subsequent computation more efficient through data cleaning. 

Table 1 Description of AVL data of each tram vehicle 

Name Data 

type 

Example Description 

receive datetime 2019-06-05 

04:51:52.086383 

Time of sending message by the 

source system 

messagetype string DEPARTURE The status of the vehicle 

operatingday datetime 2019-06-05 a specific date the datapoint belongs to 

dataownercode string HTM Operator company 

lineplanningnumber int 1 Line number of the journey belongs 

journeynumber int 30004 Public journey number 

userstopcode int 9594 Stop number of the stop where the 

arrival/leave is. 

punctuality int 20.0 Current deviation from the scheduled 

arrival time in seconds for this stop. 

Too early <0, too late >0, on time =0 

rd_x&rd_y float 86795.0, 454011.0 RDS in meters. RD coordinates refer to 

locations in the Netherlands according 

to the Rijksdriehoek system4 

vehiclenumber int 4047 Vehicle identification number 

 

 

RESULT: EXPLORED DAILY DELAY PATTERNS 

Punctuality visualization 

To represent the daily delay spatial-temporal distribution pattern of tram line 1, the delay profile 

is obtained from the AVL and GTFS data, as Figure 3 illustrates. Figure 3 contains the spatial-

temporal trajectories of tram line 1 tram in a single operation day, in both directions. The dots 

represent the time and location when a tram sends the signal that it is leaving a platform. The shade 

colors of the dots represent the punctuality in the unit of seconds, with the value from -200 to 200 

seconds. The positive value represents delay, and the negative value represents early arrival. The 

dash lines connect multiple dots representing the trajectories of tram vehicles. The blank 

segmentation that appears between platforms 38 and 39 represents the end of the single-direction 

journey. The range of the y-axis from platform 1 (“Den Haag, Zwarte Pad”) to platform 38 (“Delft, 

Abtswoudsepark”) represents one direction, and this direction is defined as “direction 1”. The 

range of the y-axis from platform 39 (“Delft, Abtswoudsepark”) to platform 78 (“Den Haag, 

Zwarte Pad”) is defined as “direction 2”.  
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Figure 3 The punctuality profile of tram line 1 on the date: 2019-07-11 

 

Figure 4 visualizes the aggregated punctualities based on the punctuality profile. Two 

levels of punctuality aggregation are used: aggregate to the original value and aggregate to two 

punctuality types (“delay” or “on time”). Figure 4a shows the original punctuality value in space 

and time scale. Figure 4b shows the classified punctuality types (delay or no delay), which could 

indicate the temporal-spatial distribution of delay occurrence but ignore the delay severity. For 

Figure 4b, the criteria of delay definition are derived from the distribution of the punctuality values 

in the whole dataset. The purpose of using two kinds of punctuality aggregation levels is to 

compare which one could better reflect the feature of the daily delay pattern and lead to clustering 

results with more distinctive features. Thus, the output images of 79 days aggregated daily delay 

profiles with different aggregation levels will be processed by ResNet50 and compared. 
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a) Original punctuality values b) Classified punctuality types 

 
Figure 4 Two kinds of aggregated punctuality profile images extracted from Figure 3 

 

Punctuality profile images clustering 

In this section, the proposed methodology for extracting the spatial-temporal characteristics of 

delay distribution is implemented. Based on the visualization of the daily delay distribution, the 

clustering could separate the daily delay information into clusters as dissimilar as possible. So, the 

feature of the punctuality profile images should be extracted in the appropriate approach and form 

the input dataset to be clustered. 

Multiple methods could be used for preprocessing the input data of clustering. However, 

the precondition of meaningful clustering results is that the data be nonuniformly distributed and 

show the clustering tendency. All the cluster methods will always lead to a result, regardless of 

whether the input data points have a clear cluster tendency or not. Also, the clustering tendency of 

the input data points obtained by different approaches should be compared to evaluate if these 

acquired datasets could lead to meaningful clustering results. 

Three image preprocessing approaches were implemented to compare their performance in 

transforming images into input data for k-means with significant clustering tendency: 1) ResNet50, 

2) ResNet50 + PCA, 3) ResNet50 + T-SNE. Besides, two kinds of images we obtained in the 

former steps are used, which are “Original punctuality value images” and “Classified punctuality 

images.” These two types of images contain different kinds of daily delay distribution 

characteristics with different granularity. We compare these two kinds of images to see which one 

can obtain clusters with clear distinctions. Combining the above-mentioned image preprocessing 

approaches and image types, 6 combinations are tested and compared using the Hopkins Statistic 

h. The results are illustrated in Table 2 and Figure 5. 
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Table 2  Comparison among multiple images preprocessing approaches before k-means 

Image preprocessing approaches 
Hopkins Statistic h 

mean std min 25% 75% max 

Original 

punctuality 

value images 

1) ResNet50 0.632 0.0068 0.6175  0.6311  0.6407  0.6505  

2) ResNet50 + PCA 0.567 0.0084 0.5454  0.5571  0.5647  0.5770  

3) ResNet50 + T-SNE 0.5972 0.0752 0.4424   0.5505   0.6555 0.7525 

Classified 

punctuality 

images 

4) ResNet50 0.6224 0.0056 0.6058  0.6191 0.6269 0.6324  

5) ResNet50 + PCA 0.5616 0.0060 0.5549  0.5707  0.5793  0.6000  

6) ResNet50 + T-SNE 0.5960 0.0826 0.4684  0.5318  0.6453  0.8289  

 

 
Figure 5 Comparison of Hopkins statistic h of six image preprocessing approaches before k-means 

clustering 

Table 2 and the boxplot in Figure 5 illustrate that for all the implemented image preprocessing 

approaches, the means of h statistics are all higher than 0.5, which means these approaches could 

obtain the input data with a clustering tendency. Also, this could suggest the clustering tendency 

in daily delay dynamics. Thus, it is possible to classify the daily delay pattern and make the 

conclusion of delay pattern characteristics. According to Figure 5, the preprocessing method 1), 

4), 2), and 5) could obtain a dataset with a relatively more stable clustering tendency, with higher 

means and lower deviation of h. However, methods 3) and 6) have the probability of obtaining the 

image data with a higher clustering tendency with acceptable fluctuation.  

The final goals of the research are to cluster and distinguish the different daily delay 

patterns. So, the higher the clustering tendency, the more preferred the results to be used for 

explaining, even though the preprocessing method may not be so stable with the higher deviation 

of h. According to this, the “ResNet50 + T-SNE” combination is chosen as the preprocessing 

method before the k-means algorithm. 

 

Clusters number 

By choosing the suitable number of clusters k, the daily punctuality profile can be separated into 

meaningful delay patterns with distinct features. And for the k-means clustering algorithm, the first 
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issue that needs to be solved is the appropriate number of clusters k. To determine the k value, the 

SSE and silhouette analysis is implemented on the scale of k from 2 to 30. Also, the application 

and the analysis objectives should be considered so that the generalized daily delay distribution 

patterns are more desirable from the planning perspective and more explainable. 

The curve of SSE and silhouette score with different k values is shown in Figure 6. The 

within-cluster sum of squared errors reflects the data homogeneity in each cluster. Figure 6a 

indicates that the SSE declines rapidly before k =8, and then the decline slope alleviates, and the 

approximate elbow point is in the range of 5 and 8. When k is lower than 8, the impact of changing 

the k value on SSE is relatively significant, so the clustering performance of k values in this range 

should be compared carefully. 

Figure 6b shows the silhouette score fluctuation with the k value. The k =2 will lead to a 

score much higher than any other k value, which means the best separation could be obtained 

between clusters. However, combined with the corresponding SSE value when k =2, the variability 

within clusters doesn’t allow for a good description of cluster characteristics. Moreover, the red 

line in Figure 6b denotes the score equal to 0.2. When k is larger than 8, the score will decrease 

gradually, which means the appropriate k value that could lead to a satisfying clustering result is 

between k =3 to 8. Besides, the red dot denotes the second-highest silhouette score at k =5, which 

leads to a relatively optimum clustering result. 

  

(a) (b) 
Figure 6 Analysis for determining the number of clusters (k): (a) SSE decrease exponentially as the 

number of cluster increases (b) Silhouette Score 

According to the analysis above, the clustering results of different k values, ranging from 

2 to 7, are visualized in Figure 7 to make a detailed comparison among these results. In Figure 7, 

different colors represent data points belonging to different clusters, and the number represents the 

cluster labels. The distance between the data points could be recognized as their similarity. The 

closer data points mean they are more similar, and vice versa. We can observe that the clustering 

results when k is larger than 2 are based on the clustering when k equals 2, and the red lines denote 

this phenomenon. This means the data could largely be divided into two clusters, and in each 

cluster, the data have the potential to be separated into multiple sub-clusters. This feature is marked 

by the red line in Figure 7, which is the approximate boundary between the two primary clusters. 
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Figure 7 Clustering results with different k values. The red line denotes the approximate boundary 

between the two primary clusters. 

 

The clusters should have as significant differences as possible, be self-contained, and be 

coherent. Also, the clusters shouldn’t be too large to make reasonable explanations and easily be 

generalized. Accordingly, k =5 is chosen for the k-means cluster algorithm, and the result of 

clustering is shown in Figure 8. 
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Figure 8 Clustering results with k=5. The black stars denote the centroid of each cluster. The 

distance between clusters 2&5 and 1&3&4 is relatively apparent. The red circles indicate the latent 

outliers. 

In Figure 8, the results of k =5 are shown in detail, with the clusters centroids and latent outliers 

marked. We notice that some latent outliers are lying approximately at the boundaries between 

multiple clusters, which means those data points’ features may not be as clear as those data points 

cluster around the centroids, or these data points have features of two adjacent clusters and hence 

are ambiguous. 

 

Clustering results 

As described in the earlier sections, the clustering is based on the daily delay profile images. 

Thus, the spatial-temporal feature of daily delay distribution could be represented. After 

processing the image feature recognition algorithm Resnet 50 and dimensionality reduction, the 

daily delay patterns of 79 days are clustered into five types, as shown in Table 3. For each cluster, 

the centroid is calculated iteratively in the k-means algorithm until stable. We define the image 

closest to the cluster centroid as a “centroid image,” which could best represent the feature of the 

cluster members. The corresponding images of the cluster centroid and elements in each cluster 

are listed in the appendix, followed by the analysis of each centroid image. The capital letter with 

number in Table 3 “spatial imbalance distribution,” denotes the auxiliary lines in the appendix 

figures, representing the platforms’ locations or times with significant delay dynamics. 

The most significant feature difference among the five types of delay patterns is that each 

pattern has a specific day-of-week distribution. We found that there exist two main types of delay 

patterns: “weekend delay” (represented by clusters 2 and 5) and “weekday delay” (represented 

by clusters 1,3,4). This feature can be identified in Figure 9. The number and color in the blocks 

denote the number of days belonging to the specific day and cluster. Most of the daily delay 

patterns that occur on weekends belong to the “weekend delay”, while most of the delay that 

happens on weekdays belongs to one in three “weekday delay” clusters. Also, we found that more 

than half of Monday's daily delay distribution has a similar feature as cluster 3, and clusters 1 and 

4 occur more frequently on Thursday and Friday.  

Looking at the cluster-level features, we found a significant feature difference among the 

five types of delay patterns. These clusters have distinctive combinations of imbalance distribution 
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on space, time, line directions, and corresponding delay severity. The feature differences are 

described in Table 3.  

 
Figure 9 Cluster distribution on the day of the week 



Table 3 Clustering results and attributes of delay pattern of each cluster 1 

Class “Weekday delay” “Weekend delay” 

Cluster 

(count) 

Cluster 1 

(14) 

Cluster 3 

(11) 

Cluster 4 

(22) 

Cluster 2 

 (20) 

Cluster 5 

(13) 

Feature of 

the delay 

distribution 

Temporal 

imbalance 

distribution  

The heavy 

delay 

occurs 

during the 

evening 

peak hours 

The heavy delay 

occurs between 

the morning peak 

end and evening 

peak end, from 9 

am to 7 pm 

Heavy delay evenly 

distributes all-day 

Heavy delay 

evenly 

distributes all-

day 

Delay occurs at 

intervals 

Directional 

imbalance 

distribution  

Heavier 

delay on 

direction 1  

Slightly heavier 

on direction 1 

Heavier delay on 

direction 1 

Heavier delay 

on direction 1 

More delay on 

direction 1; More 

early arrive at 

direction 2 

Spatial 

imbalance 

distribution 

Always 

punctual 

between C2 

and C2 

(Delft) 

Evenly distribute Always delay near 

Den Haag Kurhaus 

terminal (Den Haag, 

Scheveningen) 

More early arrive 

between C1 and D 

(Delft) 

Always delay 

between A1 and 

Den Haag 

Kurhaus 

terminal (Den 

Haag) 

Always arrive on 

time between C2 and 

D (Delft); Always 

delay between A1 

and Den Haag 

Kurhaus terminal 

(Den Haag) 

Mean of 

statistics of 

punctuality 

Average of 

daily delay 

28 3 13 48 45 

std 123.93 100.47 109.67 119.15 113.11 

25% -39 -52 -45 -18 -16 

50% 18 6 11 34 34 

75% 85 54 65 100 98 

Day type 

distribution 

Workday 92.9% 100% 100% 18.2% 7.7% 

Weekend 7.1% 0% 0% 81.8% 92.3% 

Significant 

frequently 

Even in 

weekday 

Monday Even in weekday Sunday Saturday 

2 



Moreover, the percentile values of the average daily punctuality of each cluster are 1 

illustrated in Figure 10. It is obvious that the “weekend delay” (cluster 2 and 5) have a higher delay 2 

time than the “weekday delay” (cluster 1,3,4) on all percentiles as well as a higher average daily 3 

delay. From this, we can conclude that the “weekend delay” patterns generally exhibit relatively 4 

more serious delays than the “weekday delay”. Combined with Figure 11, we can see that there is 5 

a distinct periodic fluctuation in daily punctuality. The daily average punctuality has a significant 6 

peak almost every weekend and reaches the valley almost every Monday. 7 

 8 
Figure 10 Distribution of daily punctuality values in each cluster. The lines within each box from 9 
top to bottom represent the 75%, 50%, and 25% percentile of punctuality. The red dots denote the 10 
mean value of average daily punctuality for each cluster. 11 

 12 

 13 
Figure 11 The daily delay pattern and punctuality statistics of each day. The orange dash line 14 
denotes the mean of daily punctuality. The color of boxplots denotes the clustering result of each 15 
day. The x-axis denotes the day of the week (‘0’ represent Monday), while the y-axis denotes the 16 
punctuality value in seconds. 17 
  18 
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According to the analysis in this section, the prominent findings could be summarized as 1 

follows: 2 

1) There are five types of daily delay patterns with distinct characteristics for tram line 1. 3 

2) The delays on Monday, Saturday, and Sunday have significant distinct daily delay 4 

patterns. Weekends usually have more severe delays than weekdays. Tram line 1 is the 5 

most punctual on Monday, and least punctual on Sunday with a higher possibility of 6 

severe delay hampering large areas.  7 

3) Direction 1(from “Den Haag Kurhaus” to “Delft, Tanthof”) usually has a more serious 8 

delay than direction 2 (from “Delft, Tanthof” to “Den Haag Kurhaus”). And direction 9 

2 has earlier arrival than direction 1.  10 

4) The delay that occurs in the morning peak usually exceeds 9 am, and the delay that 11 

occurs in the evening peak usually exceeds 7 pm, although the morning and evening 12 

peak hours generally, tend to end after these two time points. 13 

5) The tram usually arrives earlier at stops in Delft than at stops in the Hague. 14 

6) A latent boundary on the daily delay profile exists at the location of stop ‘Den Haag 15 

Frankenslag’ in both directions, where the location is also the approximate boundary 16 

between the Den Haag Scheveningen (near the beach and the terminal of the tram line) 17 

and Den Haag downtown area. The spread of delay may be disturbed (intensified or 18 

weakened). This means the delay pattern of the Den Haag Scheveningen and Den Haag 19 

downtown area is different. The same boundary also exists at ‘Delft station. This can 20 

be caused by the onboard/arriving passengers at those stops, especially at transit hubs, 21 

or caused by the land use pattern, which leads to less or more delay.  22 

 23 

CONCLUSION 24 

In this paper, we implemented the k-means clustering on the daily punctuality information 25 

of tram line 1 in the Hague. The patterns of daily delay distribution are detected, extracted, and 26 

clustered according to the proposed methodology. 79 days of daily delay profile images are 27 

clustered into five types with different spatial-temporal delay distribution features. The case study 28 

results indicate distinct weekdays and weekend patterns. The data-driven explorative analysis 29 

proposed in this research can make significant contributions to PT operators and planners. Firstly, 30 

such an analysis technique could elucidate the operator's general understanding of the regularity 31 

of delay occurrence on a specific line. Based on the new perception of delay characteristics, precise 32 

improvement of PT management could be conducted and evaluated. Besides, clustering could 33 

provide the researchers with prior knowledge of typical delay patterns of PT networks. 34 

Furthermore, the proposed methodology can easily be extended for other transit lines and other 35 

networks with GTFS data and AVL data and can explore and extract more abstract delay pattern 36 

characteristics.  37 

There are several limitations to this study. K-means algorithm could have limited validation 38 

opportunities on high-dimensional data, which is a common issue for the distance-based algorithm. 39 

In this research, the dimensionality reduction methods, PCA and t-SNE, are implemented for 40 

simplification. More possible solutions to the dimensionality of image input could be implemented 41 

and compared, such as the sub-spacing method. Besides, the k-means algorithm is not the only 42 

choice for clustering. We found that the clustering result in this research has ambiguity due to the 43 

outliers at the boundaries of the clusters. The more advanced technique like density-based 44 

clustering algorithms (DBSCAN) algorithm could solve this problem. Finally, the current analysis 45 
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only provides a qualitative analysis. This could only provide public transport operators with a 1 

general insight into delay characteristics and could be less suitable for practice. 2 

We envision four potential directions for further research. First, Automatic Passenger 3 

Count (APC) data could be incorporated to estimate and analyze the average passenger delay per 4 

passenger. This delay can more closely represent the actual delay that the passengers experienced 5 

in their commute. Second, extending the methodology for network level instead of line level 6 

analysis. This allows for understanding delay propagation at a city or regional scale and allows the 7 

operator to gain insight for providing a recommendation for PT network management advice. 8 

Third, to provide a more quantitative analysis of each delay pattern, a more explainable clustering 9 

algorithm is required. The public transport operators need to not only know different delay patterns 10 

but also, more specific characteristics of these patterns to assist them to implement targeted 11 

operational strategies more precisely. A more explainable clustering algorithm will make a clearer 12 

connection between the criterion of image cluster decision and delay characteristics, by providing 13 

the statistical description of these characteristics. Finally, the image representation of delay 14 

patterns proposed in this research allows us to efficiently collect delay patterns from a longer 15 

period, thus creating a rich fused dataset. This opens various possibilities from the computer vision 16 

domain for a comprehensive understanding of long-term delay patterns of PT networks which in 17 

turn can be used for predicting delay propagation. 18 

 19 

 20 
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APPENDIX A: THE CLUSTERING RESULTS OF K-MEANS ALGORITHM 1 

Figures in the appendix illustrate the daily delay profile images of each cluster in detail. For each 2 

figure, subfigure a) is the “centroid image” (the daily delay profile image closest to the centroid), 3 

which could best represent the cluster features. The subfigure b) are all elements in the cluster. 4 

Few of the elements in subfigure b) may not have the obvious same feature as other elements 5 

(correspond to the outliers denoted in Figure 8), as the outliers are not always avoidable. 6 

To better identify the daily delay distribution, the auxiliary dash blue lines are drawn in 7 

each subfigure a). The horizontal lines (A1, B1, C1 and A2, B2, C2) represent the location of stops 8 

at train stations (“Den Haag, Centrum”, “Den Haag, Station Hollands Spoor”, “Delft, Delft 9 

Station”) and the terminal station (blue dash line D, “Delft, Tanthof”). The same capital letter of 10 

auxiliary lines represents the same location, and the number after the capital letter represents a 11 

different platform on the tram line direction 1 or 2. (Direction 1 is from “Den Haag Kurhaus” to 12 

“Delft, tanthof”, and direction 2 is from “Delft, tanthof” to “Den Haag Kurhaus”).  13 
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Feature:  

1) Temporal imbalance 

distribution: heavy 

delay occurs during the 

evening peak hours 

2) Directional imbalance 

distribution: heavier 

delay on direction 1 

3) Spatial imbalance 

distribution: Always 

punctual between C2 

and C2 (Delft) 

a) Centroid data image (date:06/25/19) 

 
b) All elements in cluster 1 

FIGURE A-1 The centroid data and all elements image of cluster 1 1 
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Feature:  

1) Temporal imbalance 

distribution: Heavy 

delay evenly distributes 

all day 

2) Directional imbalance 

distribution: Heavier 

delay on direction 1 

3) Spatial imbalance 

distribution: Always 

delay between A1 and 

Den Haag Kurhaus 

terminal (Den Haag) 

a) Centroid data image (date:08/08/19) 

 
b) All elements in cluster 2 

FIGURE A-2 The centroid data and all elements image of cluster 2 1 
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Feature:  

1) Temporal imbalance 

distribution: Heavy 

delay occurs between 

the morning peak end 

and evening peak end, 

from 9 am to 19 pm 

2) Directional imbalance 

distribution: Slightly 

heavier on direction 1 

3) Spatial imbalance 

distribution: Evenly 

distribute 

a) Centroid data image (date:07/28/19)  

 

 

b) All elements in cluster 3  
FIGURE A-3 The centroid image and all elements of cluster 3 1 
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Feature: 

1) Temporal imbalance 

distribution: Heavy 

delay evenly distributes 

all day 

2) Directional imbalance 

distribution: Heavier 

delay on direction 1 

3) Spatial imbalance 

distribution: Always 

delay near Den Haag 

Kurhaus terminal (Den 

Haag, Scheveningen) 

More early arrive between 

C1 and D (Delft) 
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c) Centroid data image (date:07/30/19) 

 
d) All elements in cluster 4 

FIGURE A-4 The centroid image and all elements of cluster 4 1 
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Feature: 

1) Temporal imbalance 

distribution: Delay 

occurs at intervals  

2) Directional imbalance 

distribution: More 

delay on direction 1; 

More early arrive at 

direction 2 

3) Spatial imbalance 

distribution: Always 

arrive on time between 

C2 and D (Delft); 

Always delay between 

A1 and Den Haag 

Kurhaus terminal (Den 

Haag) 

 

e) Centroid data image (date:08/10/19) 

 
f) All elements in cluster 5 

FIGURE A-5 The centroid image and all elements of cluster 4 1 


