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ABSTRACT As large languagemodels (LLMs) permeate more andmore applications, an assessment of their
associated security risks becomes increasingly necessary. The potential for exploitation by malicious actors,
ranging from disinformation to data breaches and reputation damage, is substantial. This paper addresses a
gap in current research by specifically focusing on security risks posed by LLMs within the prompt-based
interaction scheme, which extends beyond the widely covered ethical and societal implications. Our work
proposes a taxonomy of security risks along the user-model communication pipeline and categorizes the
attacks by target and attack type alongside the commonly used confidentiality, integrity, and availability
(CIA) triad. The taxonomy is reinforced with specific attack examples to showcase the real-world impact
of these risks. Through this taxonomy, we aim to inform the development of robust and secure LLM
applications, enhancing their safety and trustworthiness.

INDEX TERMS Large language models, security, jailbreak, natural language processing.

I. INTRODUCTION
Large language models (LLMs) have taken the world
by storm, revolutionizing workflows across many applied
knowledge domains. LLMs are natural language processing
models trained on vast amounts of data, capable of generating
coherent and meaningful textual outputs. The most famous
example of an LLM architecture is the Generative Pre-trained
Transformer (GPT) series by OpenAI.

GPT uses transformers [1] pre-trained on massive amounts
of text data using unsupervised learning. Once pre-trained,
GPT can be fine-tuned for tasks such as question answering,
sentiment analysis, or machine translation. The flagship
example of a pioneer tool using GPT is ChatGPT [2], whose
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prowess and versatility in generating human-like responses
to natural language queries has penetrated applications such
as content creation, text summarization, and software code
generation. With the release of additional LLM-based tools,
such as Anthropic’s Claude and Google’s Gemini, we can
assume LLMs are here to stay. Alongside their surging
importance, there is a growing concern about LLMs’ security
risks.

One of the main LLM security concerns is posed by
prompt-based attacks, in which attackers achieve their
intended malicious outcome solely by manipulating the
prompt(s) and/or response(s) flowing between the LLM and
its users. The LLM itself is left intact, the attacker requires
no knowledge of the model’s architecture, its parameters,
or access to the machines the model resides on. Note that this
greatly lowers the barrier of entry for the attackers. Crafting
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traditional adversarial attacks requires non-trivial security
knowledge and a degree of technical prowess, but a prompt-
based attack merely requires the attacker to strategically
manipulate the interactions with the LLM.

FIGURE 1. Examples of prompt-based attacks. Malicious behavior and
outcomes are colored red.

In this paper, we address this topic by focusing on
prompt security: the discipline of protecting LLMs and
their users from prompt-based attacks by malicious actors.
Good prompt security directly increases robustness, builds
trust, and significantly contributes to transforming LLMs
from experimental prototypes to reliable tools. In recent
literature, there has been a growing body of works on safety,
societal, and ethical topics related to LLMs: for instance,
biases and discrimination [3], [4], [5], societal and economic
harm [6], or the impact on academia [7]. These resources are
highly relevant to the broader safety and robustness objective.
Still, to the best of our knowledge, the specific topic of
prompt security risks of LLMs has not yet been covered
systematically.

LLMs pose a number of risks and prompt security implica-
tions, illustrated in Figure 1. The ability of LLMs to generate
convincing responses can be exploited by malicious actors
to spread disinformation, launch phishing attacks, or even
impersonate individuals [6]. It is crucial to continuously
monitor and assess the security vulnerabilities in LLMs and
develop appropriate measures to mitigate them because their
consequences are far-reaching. The consequences include
financial losses, data breaches, privacy violations, impacting
social connections, causing emotional harm, and incurring
reputational damage to individuals and organizations. This
paper aims to classify different types of LLM prompt security
risks and discuss their possible consequences.

In particular, this paper brings the following three contri-
butions to the ongoing discussion about the impact of LLMs
on society:

• The key contribution of this paper is a comprehensive
taxonomy of security risks associated with prompt-
based attacks on LLMs. The taxonomy combines
categorization based on the target—the user, the model,
and a third party—with the confidentiality, integrity, and
availability (CIA) triad [8] widely used in information
security.

• The paper provides a broad list describing relevant
attack instances and their potential adversarial impact.

• By outlining the potential risks and attack vectors
associated with LLMs, this paper lays a solid foun-
dational framework for future research in this area
that integrates seamlessly with existing cybersecurity
frameworks.

II. RELATED WORK
Multiple surveys and analyses discuss societal challenges
and risks associated with LLMs [6], [9], [10]. These risks
include discrimination, misinformation, malicious use, and
user interaction-based harm. There is a growing concern
for developing safe and responsible dialogue systems that
address abusive and toxic content, unfairness, ethics, and
privacy issues [11], [12]. Many studies address biases,
stereotypes, discrimination, and exclusion in LLMs [4],
[5], [13], [14], [15], and new benchmarks and metrics are
proposed to mitigate these issues [3], [16].

LLMs also have the potential to generate false outputs,
which may be harmful, especially in sensitive domains such
as health and law [6], [17]. Several approaches have been
suggested to address various drawbacks associated with
LLMs, such as statistical frameworks for creating equitable
training datasets [18] and conditional-likelihood filtration to
mitigate biases and harmful views in LLM training data [19].
A framework for assessing and documenting risks associated
with language model applications called RiskCards was
introduced by Derczynski et al. [20]. Regulation of large
generative models is also proposed to ensure transparency,
risk management, and non-discrimination [21].

Many works focus on ChatGPT as the representative
example of LLMs due to its widespread adoption and
extensive utilization in various domains. Five priorities for
ChatGPT’s role in research are suggested by van Dis et al.
[22]: focusing on human verification, developing rules for
accountability, investing in truly open LLMs, embracing the
benefits of AI, and widening the debate on LLMs. The
ethical concerns related to the use of ChatGPT are addressed
by Zhuo et al. [23]. The paper highlights the need for
accountable LLMs due to the potential social prejudice and
toxicity exhibited by these models. The specific impact of
ChatGPT on academia and libraries is discussed by Lund and
Wang [7], and the implications on education are explored by
Rudolph et al. [24]
While there is a large body of literature on the risks

and drawbacks of LLMs in general, there are fewer
resources on LLM security fundamentals. Among the most
important recent publications is the Top 10 for LLMs [25],
which addresses the urgent need for comprehensive security
protocols. It highlights the high-risk issues associated with
LLMs and provides a valuable resource for developers
and stakeholders to ensure the safer adoption of this
technology. Iqbal et al. propose a systematic evaluation
framework for LLM platforms, particularly focusing on the
security implications of third-party plugins in platforms
like ChatGPT [26]. This work underscores the complexities
introduced by integrating external services and the need for
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robust security measures. Rao et al. address LLM jailbreak
attacks, classifying them into seven categories, including
direct instruction, syntactical transformation, and cognitive
hacking [27]. Sun et al. provide a safety assessment of
Chinese LLMs by several criteria, such as insult, unfairness,
and discrimination [28]. Huang et al. provide an extensive
survey on the safety and trustworthiness of LLMs, analyzing
vulnerabilities categorized into inherent issues, intentional
attacks, and unintended bugs [29]. The analysis of security
attacks on general machine learning models [30] can also
apply to LLMs.

One of the most important security issues is the potential
exposure of private and sensitive data through membership
inference attacks, where an adversary can extract the training
data [31], [32], [33], [34]. The most prominent examples
of extracting the training data from LLMs can be found
in the work of Carlini et al. [35], which demonstrates that
memorized content, including personal information, could
be extracted from GPT-2. Brown et al. [36] discuss privacy
concerns regarding LLMs’ tendency to memorize phrases.
The authors conclude that existing protection methods
cannot ensure privacy and suggest addressing the risk by
using exclusively public text data to train language models.
Pan et al. [37] demonstrate practical threats to sensitive data
and propose four different defenses to mitigate the risks.
Shao et al. [38] examine the increasing capability of LLMs
to aggregate information as they scale up, noting that this
proficiency is particularly strong when entities have shorter
co-occurrence distances or higher co-occurrence frequencies.
In addition to stealing sensitive data, the attacker may aim to
steal the model itself. Modern model extraction attacks are
capable of stealing the model with increasingly lower query
budgets [39].
Heidenreich and Williams [40] investigate the use of

universal adversarial triggers to affect the topic and stance
of natural language generation models, in particular GPT-2.
Perez et al. [41] propose using red teaming to automatically
generate test cases to identify harmful, undesirable behaviors
in language models before deployment, avoiding the expense
of human annotation. Code generation models such as
GitHub Copilot are widely used in programming, but their
unsanitized training data can lead to security vulnerabilities
in generated code [42], [43]. A novel approach to finding
vulnerabilities in black-box code generation models by
Hajipour et al. [43] shows its effectiveness in finding
thousands of vulnerabilities in various models, including
GitHub Copilot, based on the GPT model series. A security
study by Sandoval et al. [44] reveals a positive trend,
though: LLM-assisted participants introduced only 10%
more security issues in C code than the control group.
In addition, LLMs can be used to generate disinformation
for malicious purposes [6], such as in phishing [45] or
targeting fact verification systems [46]. Moskal et al. [47]
demonstrate how LLMs can enhance cyber threat testing by
automating the reasoning and decision-making processes in
cyber campaigns.

While the body of literature on LLM prompt security fun-
damentals is limited, several security taxonomies can inspire
the development of a novel taxonomy for prompt security
risks. The work of Derbyshire et al. [48] categorizes and
evaluates existing cyber-attack taxonomies. Nai-Fovino et al.
[49] propose a comprehensive taxonomy for European
cybersecurity competencies, emphasizing the need for coher-
ent and comprehensive categorization to understand and
mitigate cyber threats. The AVOIDIT taxonomy proposed by
Simmons et al. [50] offers a structured approach to classify
cyber-attacks. The Common Attack Pattern Enumeration and
Classification (CAPEC) schema described by Barnum [51]
provides a foundational framework for representing attack
patterns. Charfeddine et al. [52], in addition to conventional
cybersecurity attacks, address jailbreaks and prompt-based
attacks targeting legitimate third parties, and discuss the
defensive use of ChatGPT. Gupta et al. [53] also focus
on jailbreak and third-party attacks but also cover prompt
injection attacks.

A number of LLM security works address the associated
risks from the cybersecurity perspective. Addington [54]
discusses selected cybersecurity threats posed by ChatGPT,
such as the risk of information leakage, phishing attacks,
and manipulation leading to biased and harmful responses.
Seifried et al. [55] address ChatGPT applications in cyber-
security both on the offensive and the defensive side.
Ranade et al. [56] demonstrate how transformer-based LLMs
can generate fake Cyber Threat Intelligence text, misleading
cyber-defense systems and performing a data poisoning
attack. Charan et al. [57] analyze the possible misuse cases
of ChatGPT and Google Bard by cybercriminals. The authors
generated code for the top 10 techniques from the MITRE1

database of cyber-attacks, showing that ChatGPT has the
potential to perform more sophisticated and better-targeted
attacks.

Kang et al. [58] address bypassing ChatGPT’s defense
mechanisms against malicious use through mechanisms such
as prompt obfuscation, code injection, and payload splitting
inspired by classic cybersecurity. Li et al. [59] evaluate Chat-
GPT’s safety defenses and show that they are effective against
direct prompts but insufficient when jailbreaking prompts
are used. The study also explores the LLM capabilities
integrated into the Bing search engine, concluding that it is
substantially more vulnerable to direct prompts. Adversarial
attack research in NLP further spawned a number of works on
prompt injection attacks that manipulate the model [60], [61],
[62], jailbreak attacks [63], or a combination of both [64].

Sebastian [65] presents the results of an online survey
with ten questions, asking 259 respondents about their views
on ChatGPT’s security. A follow-up study [66] reports
on an online survey with 177 respondents on ChatGPT
privacy implications and offers insights into the possible
strategies to secure private information in LLMs. The work
of Shi et al. [67] proposes BadGPT, claimed to be the

1https://attack.mitre.org/
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first backdoor attack against the reinforcement learning from
human feedback (RLHF) fine-tuning used in LLMs. The
experimental evaluation is performed with GPT-2.

To the best of our knowledge, the prompt security
implications of LLMs and, in particular, conversational AI
systems such as ChatGPT have not yet been systematically
covered in the literature. The taxonomy proposed in this paper
aims to cover this gap and provide a concise, comprehensive
tool for prompt security risk assessment.

III. TAXONOMY OF LLM ATTACKS
We propose a taxonomy that delineates different types of
security threats and their implications in the prompt-based
interaction of users with LLMs. It has been designed with
a broad and diverse audience in mind, including model
developers and owners, LLM users, researchers, and policy-
makers. The taxonomy provides a broad, systematic overview
of relevant security risks, enabling us to understand them
better and develop robust measures to mitigate these threats.
We follow the best practices of developing a taxonomy
inspired by the cybersecurity attack taxonomy analysis [48] to
design a taxonomy that is mutually exclusive, comprehensive,
and intuitive.

The taxonomy exclusively focuses on the user-model
communication pipeline, covering a broad spectrum of
attacks that exploit prompts or misuse a given trained model.
Specifically, we are interested in potential threats within
a black-box setting, where we have no or very limited
knowledge of the model’s inner workings and lack direct
access. The scope of our work excludes classic cyber-attacks
on the infrastructure hosting the model, training backdoors,
and direct model edits.

A. CLASSIFICATION BY ATTACK TARGET
The main approach to classifying the potential attacks that
we consider the most useful is by their target. Three main
categories emerge:

• The user: Disrupting the user’s workflow by compro-
mising the exchange between the user and the LLM.

• The model: Disrupting the model or coaxing it into
unintended outputs.

• A third party: Utilizing the model as a tool to launch
attacks on third parties.

Each category implies a different attack strategy and reflects
distinct security considerations.

B. CLASSIFICATION BY CIA TRIAD
The CIA triad [8] is a model used in information security
to identify the three properties of information that need to
be protected: confidentiality, integrity, and availability. Each
of them specifies one way in which information could be
threatened.

• Confidentiality: Limiting access to interaction with
the LLM to the authorized recipient only. In case
confidentiality is compromised, information is disclosed
to undesired individuals.

• Integrity: Maintaining the accuracy, validity, and com-
pleteness of the interaction with the LLM. In case the
integrity is compromised, data can be changed on the
way between the sender and the recipient without their
knowledge.

• Availability: Ensuring that authorized users can access
the LLM when needed. If availability is degraded,
the service cannot be accessed or used effectively for
legitimate purposes.

These form the basis of the second criterion in our
taxonomy, helping define potential effects on the interaction
with an LLM.

FIGURE 2. Overview of attacks on the user.

C. ATTACKS TARGETING THE USER
Attacks on users exploit the vulnerabilities in the user-model
communication pipeline. Attackers may be in-line, intercept-
ing network traffic, or establishing fraudulent services to
forward queries. Figure 2 provides an overview of the attacks.

Prompt blocking focuses on interrupting availability [25].
The attacker intercepts and discards the user’s prompt,
essentially creating a break in the communication pipeline.
Such attacks could lead to decreased efficiency and user
frustration, as users may have to repeatedly send prompts,
often without understanding why their prompts are not being
processed. This can be particularly impactful when LLMs
are employed in time-sensitive environments, like emergency
response or medical advice systems. A strategic deployment
of such an attack could potentially result in significant
disruption to important services.

In prompt tampering, the attacker targets communication
integrity by modifying the user’s prompt before it reaches
the model [25], [27], [29], [40], [58], [59]. This could
involve changing prompt semantics to get different results or
injecting misleading information. For instance, the attacker
could subtly modify a lawyer’s prompt, asking for relevant
case precedents to request fictional cases instead, inducing
hallucination even if the model would otherwise provide a
factually correct response. The unwitting user might then
base their actions on false information.

In contrast to prompt tampering, prompt bloating is an
attack on availability, where the attacker manipulates the
user’s prompt in such a way that it results in an excessively
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long response from the model [25]. This could be achieved
by appending the original prompt with additional, potentially
irrelevant or nonsensical requests. The result is a ‘flood’ of
information that the user has to wade through, making it
difficult to find the information they actually need. In extreme
cases, the bloatingmight be so severe that the response cannot
be efficiently processed, effectively blocking the user from
performing their tasks.

Response blocking hinders availability by preventing
the model’s response from reaching the user [25]. The
attacker might intercept the response or cause a break in the
communication after the model has processed the prompt.
Similarly to prompt blocking, this could potentially hinder
important operations if the LLM is being used in a critical
system. Additionally, since the prompt has arrived but the
response has not, this attack can create an illusion of the
model being inefficient and unreliable. This may severely
damage user trust.

Response tampering is an integrity attack where the
attacker alters the model’s response before it reaches the
user [25]. Tampering could involve removing important
information, adding misinformation, or changing the tone
of the response. The implications of such attacks could
range from minor confusion to serious misinformation. For
instance, if a medical practitioner uses an LLM for diagnostic
assistance, altered responses could lead to misdiagnoses,
endangering patient health.

Finally, attacks on confidentiality include eavesdropping,
where the attacker illicitly ‘listens in’ on the prompts and
responses being sent between the user and the model [29].
This can lead to breaches of privacy, particularly if sensi-
tive information like personal details, proprietary business
information, or confidential legal advice is being discussed.
Besides the immediate privacy concerns, such information
could be exploited in further attacks or used for blackmail
or corporate espionage.

FIGURE 3. Overview of attacks on the model.

D. ATTACKS TARGETING THE MODEL
To safeguard LLMs, it is crucial to anticipate and comprehend
the potential security threats targeting the model itself. The

attack types in this category are depicted in Figure 3 and
described below.

Prompt injection involves altering the behavior of the
model to carry out tasks that it was not intended for,
thereby compromising the model’s integrity [59]. Malicious
actors might manipulate the model to generate certain
responses when specific prompts are asked. In contrast
to traditional security threats, this kind of attack can
be relatively easy to execute, especially with persistent
or ‘rolling’ sessions, where prompts can incrementally
steer the model’s responses. An attacker could manipulate
an LLM into generating defamatory content or disin-
formation, undermining the integrity of the model and
its output.

Data poisoning attacks, originally conceptualized in
computer vision [68], alter data to make it unusable
as training data. Data poisoning can be used for noble
reasons, such as protecting one’s privacy [69], [70], [71],
but also maliciously, to subtly, yet permanently sabotage
a model’s performance [72]. In the LLM context, a data
poisoning attack aims to disrupt the usability of user-LLM
conversations as training data for training or fine-tuning
future LLM models. The attacker conducts a large number
of conversations where they provide misleading information
or incorrect feedback, stating a response was correct when it
was, in fact, incorrect, or vice versa. Data poisoning attacks
are only usable on LLMs that use user-LLM conversations as
training data. Data poisoning is an especially attractive attack
vector on smaller proprietary LLMs that receive less traffic
because the attacker only needs a lower amount of poisoned
conversations to succeed.

In intensive prompt attacks, the attacker sends prompts
that require an unusually high computational effort to
process [25]. These intensive prompts can slow down the
LLM considerably, thereby decreasing its availability by
disrupting the service for other users. If used strategically,
this could effectively function as a denial-of-service attack.
This type of attack potentially impacts a wide array of users,
from individuals to large organizations relying on the LLM
for important tasks.

Model extraction involves an attempt to extract the
underlying structure and weights of the LLM, impacting
the confidentiality of the model [25], [30], [35], [36], [37].
If successful, the attacker would gain access to the ‘blueprint’
of the model and could create a copy of it. Besides intellectual
property theft, such attacks could enable malicious actors to
fine-tune the stolen model for nefarious purposes or exploit
specific weaknesses in the model that they discover through
analysis of the model structure.

Membership inference attacks aim to compromise the
confidentiality of the model’s training data [25], [29], [30],
[31], [32], [37], [38], [41], [54]. The attacker tries to
infer whether specific data instances were included in the
training set of the LLM. The successful execution of such
an attack could potentially reveal sensitive information,
such as personal details or confidential documents, that
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were included in the training data. This has serious privacy
implications and can also lead to legal issues, especially if
the model has been trained on data that should not have been
publicly accessible.

Information gathering is an instance of membership
inference. It is a wide-ranging attack that could be further
broken down into two subcategories:

• Extracting explicitly protected information. The attacker
tricks the model into revealing information it has been
specifically programmed to withhold. They do this
by carefully crafting prompts to sidestep the model’s
security measures and expose the protected information.

• Extracting sensitive but unprotected information. The
attacker coaxes the model into disclosing information
that it should not share, but that has not been explicitly
protected. This may occur because the model does not
recognize the information as sensitive, underscoring
the challenges in defining what constitutes ‘sensitive’
information in the context of LLMs.

E. ATTACKS TARGETING A THIRD PARTY
As the versatility of LLMs increases, so does the risk of them
being used as tools to target third parties not directly involved
in the interaction between the user and the model. The attacks
can impact the target in any aspect of the CIA triad. In attacks
on third parties, the model serves as a resource for the attacker
to achieve their malicious goals, often using techniques to
manipulate the model to overcome any built-in guardrails.
These attacks are outlined in Figure 4 and described below.

FIGURE 4. Overview of attacks on legitimate third parties.

With their ability to generate convincing and contextually
relevant text, LLMs can be misused to generate malicious
text, which has a number of adversarial uses. Malicious
actors may leverage LLMs to generate disinformation: craft
deceptive narratives or false claims that can then be spread on
social platforms, contributing to the wider problem of ‘fake
news’ [11], [56]. The potential for disinformation generation
by LLMs heightens the need for careful moderation and
regulation of their use, especially in politically charged or
sensitive contexts.

LLMs can be further misused to generate offensive
content, which can then be distributed via various online

channels [11], [41], [54]. The capability of these models
to generate large volumes of text quickly makes them an
efficient tool for creating hate speech, defamatory statements,
or other harmful content. The offensive material, when
distributed, can cause serious harm and distress to individuals
or communities targeted by such attacks.

In a phishing attack, an attacker poses as a trust-
worthy entity to trick individuals into providing sensitive
information [45], [54]. LLMs could be used to compose
highly convincing phishing e-mails, enabling attackers to
carry out these schemes more effectively and on a larger
scale. For instance, the model can generate personalized
e-mails that convincingly mimic the style and tone of a
legitimate organization, thereby increasing the likelihood of
unsuspecting recipients falling for the scam.

The final flagship example of malicious text generation
is using LLMs to conduct extensive spam campaigns [41],
[58]. By automating the creation of vast amounts of unso-
licited messages, attackers can overwhelm communication
channels or manipulate social discourse. These campaigns
can be disruptive, harmful, and difficult tomanage due to their
volume and speed of generation.

Another large group of misuse cases is malicious code
generation [42], [43], [57]. LLMs, such as GPT-3 and
its successors, have demonstrated an impressive ability to
generate computer code based on prompts. If harnessed
maliciously, this could lead to the automatic generation of
malicious software or scripts. The generated code could be
used to exploit software vulnerabilities, carry out cyber-
attacks, or even automate the creation of malware, which
can then be used in more extensive attacks. This provides
significant attack assistance to attackers and lowers the
barrier of entry for script kiddies, malicious actors with
limited cybersecurity knowledge that only use existing
technology to attempt attacks [47].

With their natural language generation capabilities, LLMs
could be exploited to generate text that is designed to evade
detection by content filters or security systems [58]. For
example, an attacker might use an LLM to produce e-mails,
bypassing content filters. Furthermore, LLMs could be used
to craft messages that trigger or exploit vulnerabilities in
systems that process textual input, much like a traditional
code injection attack, but carried out via natural language
processing systems.

IV. EMPIRICAL INSTANCES OF LLM ATTACKS
In order to illustrate the theoretical concepts discussed previ-
ously, this section provides specific instances of LLMattacks.
Some of these examples draw from existing resources, while
others are based on our experimentation with ChatGPT.
In this section, we provide a short summary for each custom
instance with reference to the Appendix to link the summary
to the full attack. The experiments were performed using the
most recent state-of-the-art OpenAI’s model GPT-4o.2

2https://openai.com/index/hello-gpt-4o/
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A. INSTANCES OF ATTACKS ON THE USER
Deception through fraudulent services poses a significant
security risk tied to the popular and widely-known LLMs
such as ChatGPT. In these scenarios, malicious actors
exploit the technology to develop counterfeit applications
or platforms that mimic the LLM or falsely promise
unrestricted access to its capabilities, thereby threatening
confidentiality.

Malicious actors fabricate applications and services
promising consistent and free access to the LLM’s features,
as observed in existing reports.3 They might also clone
genuine websites or applications, e.g., creating a convincing
facade of ChatGPT.4 Users who fall victim to these scams
often expose their personal information or devices to
serious risks. Typically, these fraudulent applications target
popular platforms like Windows and Android. They have the
capability to harvest sensitive information from users through
eavesdropping attacks, compromising their confidentiality.
They target sensitive data such as credit card numbers and
account credentials. Once collected, this information can
be exploited for identity theft, financial fraud, or further
cyber-attacks. These fraudulent applications can get beyond
data harvesting to classic cyber-attacks, e.g., by installing
malware.

The prompt tampering technique is another method that
malicious actors can use. This involves manipulating the
LLM to generate false or misleading outputs in response
to a user’s legitimate query, thereby compromising the
integrity of the information received. An example of this
technique is detailed in Table 1 in the Appendix. Additionally,
the prompt bloating technique, illustrated in Table 2 in
the Appendix, involves inflating the response to a user’s
query to an excessive length, impacting the availability
by making it difficult for the user to extract useful
information from the response. Both of these techniques
can undermine user trust and degrade the overall user
experience.

B. INSTANCES OF ATTACKS ON THE MODEL
There are privacy and security concerns associated with
the potential disclosure of personal information by LLMs,
compromising confidentiality. Attackers attempt to recover
parts of the training data through membership inference
attacks, potentially exposing sensitive information. Despite
implementing safety measures to prevent the extraction of
personal and sensitive information, the risk of accidentally
disclosing phone numbers, e-mail addresses, and other
private details remains. For example, Li et al. [59] attempted
to recover e-mail addresses from ChatGPT, succeeding for
frequent e-mails.

Malicious actors exploit the LLM’s generative capabilities
to gather information about potential targets, posing another

3https://www.bleepingcomputer.com/news/security/hackers-use-fake-
chatgpt-apps-to-push-windows-android-malware/

4https://blog.cyble.com/2023/02/22/the-growing-threat-of-chatgpt-
based-phishing-attacks/

threat to confidentiality. The intelligence gathered can be
used in the early stages of a cyber-attack when attackers seek
to understand the target better to launch the most effective
attack. As described on a Reddit thread,5 ChatGPT can be
directed to collect intelligence about a chosen target, thus
performing a membership inference attack. For example,
ChatGPT can list information about IT systems employed by
a specific bank; see Table 3 in the Appendix.

Moreover, ChatGPT’s potential misuse extends to gen-
erating speculative or harmful content about individuals,
which can lead to reputational damage or privacy violations,
thus undermining the model’s integrity. In a custom prompt
injection attack instance, we were able to make ChatGPT
divulge personal information about a prominent politician
(full instance in Table 4 in the Appendix). It was primed by
a set of role-playing instructions, which we intentionally do
not report in full due to ethical concerns.

C. INSTANCES OF ATTACKS ON A THIRD PARTY
Although LLM-based systems like ChatGPT undergo rigor-
ous fine-tuning processes and use methods such as RLHF
to continuously improve them, attackers can still exploit
them to compromise a third party’s confidentiality, integrity,
or availability. By ingeniously crafting prompts or engaging
in role-playing scenarios, users can manipulate the model to
produce undesired outputs.

Advanced LLMs can generate code, which raises several
security concerns. For instance, malicious actors could use
ChatGPT to create obfuscated code, making it challenging
for security analysts to detect and understand their activities.
As an example, we have been able to exploit ChatGPT to pro-
duce proof-of-concept code for testing Log4j vulnerabilities
(full instance in Table 5 in the Appendix).
As for malicious text generation attacks, we demonstrate

that ChatGPT can craft convincing phishing e-mails. For
instance, an attacker might direct ChatGPT to write an
e-mail notifying employees about a salary increase. The
unsuspecting employee, pleased with the news, would follow
the e-mail’s instructions, thereby exposing their device to a
threat embedded in an Excel file attachment (full instance in
Table 6 in the Appendix).

V. DISCUSSION
LLM security impacts all actors involved with LLM-
powered systems: users, LLM stakeholders, policymak-
ers, and, broadly speaking, society in general. Therefore,
it is quickly becoming an integral part of cybersecurity,
and it is imperative that LLM security is safeguarded
now. In this section, we discuss the contributions of the
proposed taxonomy toward LLM and cybersecurity best
practices.

Firstly, the broad view of LLM attacks presented in
the taxonomy reveals a high diversity of the attacks,

5https://www.reddit.com/r/OSINT/comments/10tq6iz/how_to_use_
chatgpt_for_osint/
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which motivates the need for new defense mechanisms.
In LLM-powered systems, a classic cybersecurity policy
restricting access to the system to authorized users only
is certainly important. Notably, attacks on the user hinge
on the third-party attacker gaining unauthorized access to
the user-LLM pipeline. On its own, however, this is not a
sufficient security measure. Similarly to other AI models,
LLMs are susceptible to adversarial attacks that manipulate
the model inputs to achieve an undesirable model output.
These can be launched by registered, authenticated users
with authorized access. The attack vector is the prompt
itself, and it is notoriously difficult to disambiguate between
benign and adversarial text—one essentially needs an AI to
judge an AI’s input. With LLMs, this critical weakness is
exacerbated further because LLM outputs can be used for
malicious deeds outside the model’s ecosystem, as evidenced
by malicious content and code attacks targeting a third party.
The proposed taxonomy takes these emerging risks fully
into account.

Secondly, while the attacks described in our taxonomy
can be standalone attacks, they can also be stacked together
to form more complex attacks, referred to as kill chains
in cybersecurity [73]. In such cases, each attack forms
a building block of a kill chain: a sequence of attacks
that completes an objective more complex than achievable
by a single attack. In the modern context, one kill chain
may realistically feature both classic and LLM attacks.
For example, consider the following scenario. An attacker
executes amodel manipulation attack to obtain from an LLM
sensitive information about key people in a certain company.
Then, they perform amalicious text generation attack, asking
the LLM to write a phishing e-mail specifically targeting a
key person in the company. Finally, they gain unauthorized
access to the target company. The LLM attacks defined in the
proposed taxonomy are scoped to complement the existing
cyber-attacks.

Finally, the proposed taxonomy combines a general and
actor-specific view of LLM security. It is important to
balance the general safety of LLM-powered systems for a
society increasingly using AI and the value for individual
participants of the user-LLM exchange. The general view
is covered by the CIA categorization: we need to protect
the confidentiality, integrity, and availability of LLMs for
everyone in the pipeline. This perspective is especially
important for policymakers, security experts, and scientists.
The actor-specific view is covered by the categorization by
attack target. Users, LLM stakeholders, and third parties can
use the proposed taxonomy as a structured, broad framework
to protect their interests. As a result, the proposed taxonomy
takes into account everyone in the pipeline and society in
general, which we hope will result in broad adoption and
usefulness.

VI. CONCLUSION
This paper contributes to a critical understanding of LLMs’
potential misuse and exploitation. Through systematic

classification of attack types along the user-model com-
munication pipeline, we have provided a comprehensive
taxonomy that elucidates the key areas where such misuse
might occur: attacks targeting the user, the model, and
third parties. We also classified the attacks from the
perspective of the widely adopted confidentiality, integrity,
and availability (CIA) triad. These classifications are not
merely hypothetical; our detailed exploration of empirical
instances corroborates the potential for these attacks to
occur and demonstrates how the threats can manifest in the
real world.

Our research underscores the complexity of safeguarding
LLMs. While considerable strides have been made in
improving LLM safety measures, our findings reveal that
they are not immune to determined or creative misuse. This
highlights the need for enhanced security solutions, model
training refinements, and fine-tuning of safety mechanisms to
suppress emerging threats. We further illustrate the potential
for LLMs to be manipulated into malicious outputs, whether
through fraudulent services, information theft, or harmful
content creation. The reported empirical instances spotlight
the risks stemming from the misuse.

The proposed taxonomy is intended to serve as a
framework for future research in the field of LLM security,
providing a reference for identifying and addressing potential
threats. We encourage researchers and practitioners to build
upon our taxonomy when considering the potential security
risks and ethical implications posed by LLMs. In the pursuit
of AI benefits, we must ensure that these powerful tools are
not used to inflict harm.

LIMITATIONS
While we made our best efforts to provide a comprehensive
taxonomy of potential security risks, there are several
limitations. Our exploration is based on the versions and
applications of LLMs available up until the point of
writing, using ChatGPT as the most prominent example.
As AI technology rapidly evolves, newer versions of models
might present different vulnerabilities or improve upon the
ones we have identified. However, the timelessness of our
work is supported by the fact that the risks identified in
our previous study [74] when using one of the earliest
GPT-3.5 versions still manifest when using the latest
GPT-4o model.

Furthermore, the instances provided in our study do not
cover all potential misuses or attack vectors. We empirically
tested only the attacks that did not interfere with the
functioning of the model, the Terms of Use, and any
applicable legislation. LLMs can be exploited in unique
and unforeseen ways, particularly by innovative or highly
skilled threat actors. Our work is intended to encourage future
research aiming at uncovering these evolving threats.

ETHICS STATEMENT
The authors affirm that all research was conducted following
widely adopted ethical guidelines. Special care was taken to
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ensure that all experimentation with the ChatGPT model was
conducted responsibly, with no intent to cause harm or exploit
vulnerabilities for malicious purposes. We did not use the
model to actually disclose private information or deploy any
potentially harmful generated content in an attack on a third
party; any such outputs shown in the paper were generated
solely for illustrative purposes within an ethical boundary

TABLE 1. Prompt tampering using ChatGPT. The first example shows a
benign prompt and response. In the second example, the benign prompt
was prepended with malicious instructions.

TABLE 2. Prompt bloating using ChatGPT. The first example shows a
benign prompt and response. In the second example, malicious
instructions that generate clutter were appended to the prompt.

and were anonymized and carefully selected to prevent
misuse.

TABLE 3. An example of using ChatGPT to gather information on the IT
systems used by the target. Sensitive identifying information has been
masked out to protect privacy.

TABLE 4. An example of ChatGPT primed to override its ethical behavior
within a role-playing scheme. The model discloses details from the
private life of a public person. Sensitive identifying information has been
masked out to protect privacy.
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This research is intended to shed light on potential
vulnerabilities and misuse of LLMs. We believe that by
drawing attention to these issues, we can contribute to
the ongoing efforts to improve the security and ethical
deployment of these models. It is our hope that our work
will help to inform the development of safer, more reliable
AI systems and foster a responsible and ethical approach to
AI research and development.

APPENDIX
EMPIRICAL INSTANCES OF ATTACKS
This appendix lists sessions with ChatGPT demonstrating
real-world instances of LLM attacks described in Section IV.
The interactions reported were carried out using the version
of ChatGPT from May 13, 2024, based on GPT-4o, accessed
via the web interface.

TABLE 5. An example of malicious code generation using ChatGPT –
Log4j vulnerability testing. Part of the code has been masked out in the
output.

TABLE 6. An example of malicious text writing using ChatGPT –
a phishing e-mail.
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