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A B S T R A C T

With the proliferation of Internet of Things (IoT) ecosystems, traditional resource orchestration mechanisms,
executed on fog devices, encounter significant scalability, reliability and security challenges. To tackle these
challenges, recent decentralized algorithms in Fog-IoT use Distributed Ledger Technologies to orchestrate
resources and payments between peers. However, while distributed ledgers provide many desirable properties,
their consensus mechanism introduces a performance bottleneck. This paper introduces Light-HIDRA, a
consensus-less and decentralized resource orchestration system for Fog-IoT environments. At its core, Light-
HIDRA uses Byzantine Reliable Broadcast (BRB) to coordinate actions without centralized control, therefore
drastically reducing communication overhead and latency compared to consensus-based solutions. Light-HIDRA
coordinates the scheduling and execution of workloads, and securely manages the payments that peers receive
for dedicating resources to workloads. Light-HIDRA further increases performance and reduces overhead by
grouping peers into distinct domains. We conduct an in-depth analysis of the protocol’s security properties,
investigating its efficiency and robustness in diverse situations. We evaluate the performance of Light-HIDRA,
highlighting its performance over HIDRA, a state-of-the-art baseline that uses smart contracts. Our experiments
demonstrate that Light-HIDRA reduces the bandwidth usage by up to 57x, the latency of workload offloading
by up to 142x, and shows superior throughput compared to HIDRA.
1. Introduction

The explosive growth of Internet-of-Things (IoT) ecosystems has
upsurged the volume of data generated by IoT devices such as cameras
and sensors [1]. To process and analyze this massive influx of IoT
data, the fog computing paradigm is increasingly being used [2]. The
key idea behind fog computing is to process as much data as possible
on (edge) devices themselves, close to where the data is produced,
therefore avoiding latency induced by edge-cloud data communication.
Resource allocation in fog computing has become a critical yet complex
task, compounded by the need for efficient mechanisms capable of
handling potentially many resource-constrained devices that might also
be faulty, unresponsive, or malicious (Byzantine) [3,4]. While central-
ized orchestration solutions such as Kubernetes are common solutions,
they must apply complex techniques to support high availability (and
avoid single points of failure) and tackle trust issues, specially in
multi-domain environments [5].
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Decentralized resource orchestration in Fog-IoT settings has emerged
as a promising alternative to centralized approaches [6–8]. In this
setting, fog nodes coordinate the resource orchestration amongst them-
selves without the need for centralized coordination. An increasing
amount of work in this domain leverage the capabilities of Distributed
Ledger Technologies (DLT) and smart contracts which provides prin-
ciples of autonomy, transparency, and resilience [9–12]. However,
the need to reach consensus to ensure the integrity of distributed
ledgers often becomes a significant performance bottleneck, intro-
ducing overhead and latency that undermine system efficiency [13,
14].

To overcome this bottleneck, this work introduces Light-HIDRA,
a decentralized mechanism for resource orchestration in Fog-IoT en-
vironments based on Byzantine broadcast primitives. Light-HIDRA is
efficient, lightweight, and scalable, and operates in Fog-IoT environ-
ments in which devices may be resource-constrained, numerous and
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malicious. Light-HIDRA circumvents the need for consensus, a common
scalability barrier in DLT-based solutions. Instead, our mechanism re-
lies on Byzantine Reliable Broadcast (BRB) [15] to synchronize and
coordinate workloads among peers, as well as to manage payments
that peers receive for the resources they dedicate to workloads. Rely-
ing on BRB guarantees the robustness and reliability of Light-HIDRA,
while significantly reducing communication overhead and latency com-
pared to consensus-based approaches. We show in this work that key
components of resource orchestration, including workload schedul-
ing, workload execution and payments, can be implemented based on
BRB. Through our performance evaluation, we demonstrate that Light-
HIDRA is not only a theoretical construct, but is also an efficient,
robust, and practical solution for resource orchestration in Fog-IoT
environments, in particular compared to consensus-based approaches.

In summary, the contributions of this work are four-fold:

1. We introduce Light-HIDRA, a novel, secure and scalable so-
lution for decentralized resource orchestration in Fog-IoT en-
vironments. Light-HIDRA includes BRB-based sub-protocols for
workload scheduling, execution, monitoring and payments (Sec-
tions 3 and 4).

2. We provide a security analysis of Light-HIDRA, highlighting its
resilience against Byzantine attacks and system failures (Sec-
tion 5).

3. We implement Light-HIDRA and open-source its implementation.
4. We compare the performance and scalability of Light-HIDRA

against that of HIDRA, a state-of-the-art baseline in the field
(Section 6). Our experiments show that Light-HIDRA signifi-
cantly reduces bandwidth usage, latency and throughput.

2. Byzantine Reliable Broadcast (BRB)

Byzantine Reliable Broadcast (BRB) is a key distributed computing
abstraction that provides reliable message dissemination even in the
presence of a limited number of Byzantine faults. Such Byzantine faults
refer to arbitrary and malicious behaviors exhibited by faulty peers in a
distributed system. The BRB protocol has a sending peer that broadcasts
a message to all other peers in the system and guarantees that if
the sender is correct then all correct peers will eventually deliver its
message. The fault tolerance of BRB ensures that the algorithm can cope
with up to a certain threshold of faulty peers 𝑓 , where the threshold
depends on 𝑛, the number of total peers in the system. In particular,
Bracha’s BRB protocol assumes less than 𝑛

3 faulty peers in asynchronous
networks [15–18]. The BRB primitive has already been applied by
the scientific community in other works to avoid consensus. Recently,
it has been shown that it can be used to coordinate cryptocurrency
payments in a decentralized way [19], and multi-hops payments in
payment channel networks [20]. In an earlier work, it was also used as
an underpinning primitive for data replication between servers [21].

BRB emphasizes reliable message dissemination, ensuring totality
and guaranteeing that all correct peers eventually agree on the broad-
cast messages they deliver (i.e., even when their sender is faulty). A
BRB round involves several steps of message exchange (also illustrated
in Fig. 1): (1) an initial SEND step in which the sender peer broadcasts
a message to the other peers, (2) an all-to-all ECHO step that the
correct peers employ to ensure consistency of the sender’s message, and
(3) an all-to-all READY step to indicate the willingness of the correct
peers to deliver the sender’s message, thus ensuring totality. Note that
the BRB algorithm requires the collaboration of Byzantine quorums of
participating peers (2𝑓 + 1 peers) to reach agreement and deal with
Byzantine faults. Peers receiving a threshold of 2𝑓 +1 ECHO or READY

essages will be enabled to deliver the sender’s message. Moreover,
RB implements an amplification step for sending READY messages

that is key to achieving the totality property: if a correct peer receives
𝑓 + 1 READY messages but has not yet sent its READY message, then
77

hat peer will be enabled to send its READY message.
Fig. 1. Bracha’s Byzantine Reliable Broadcast. The ECHO and READY steps are all-to-all
communication phases that ensure the consistency and totality properties.

For a better understanding of the security properties to be achieved
by Light-HIDRA, we summarize the properties enforced by a BRB
algorithm [22]:

• Validity. If a correct peer broadcasts a message, then all correct
peers eventually deliver it.

• No duplication. Correct peers deliver a message at most once.
• Integrity. If a correct peer delivers a message from a given

sender, then the message was indeed sent by that sender.
• Consistency. All correct peers deliver the same message.
• Totality. If a message is delivered by any correct peer, then all

correct peers eventually deliver the message.

3. System overview and threat model

We now introduce our system and threat models, and state the
assumptions made in this work.

Architecture. Fig. 2 shows an overview of Light-HIDRA. We parti-
ion the system into multiple domains that work cooperatively on task
xecution, in line with other related works in the literature [10,19,23].
his partitioning (also called sharding) improves the performance of
ecentralized systems as agreement is often only required amongst
mall group of peers instead of network-wide [24]. Each peer is part
f exactly one domain, its parent domain. Light-HIDRA considers a total
f 𝑛 peers participating in the system that are divided into 𝑚 different
omains. We refer to the set of participating peers as 𝑁 and to the
et of domains as 𝑀 . Domains in Light-HIDRA are composed of peers
elated to a particular Fog-IoT environment, e.g., peers belonging to an
nter-campus computing group or to a global P2P resource offloading
arketplace. Peers first try to offload workloads to peers in their parent
omain and then offload workloads to other domains if unsuccessful.
imultaneously, peers offer their own resources to others in the system.
his conceptually turns each domain into a decentralized computing
luster in which peers offer finite amounts of resources to execute
orkloads.
Domain and peer bootstrapping. In its current form, Light-HIDRA

argets controlled Fog-IoT environments where there is an administra-
ive entity per domain. In those settings, a peer registration phase and
bootstrapping phase manage the participation of peers in the system
omains. When a new peer 𝑝 wants to join a domain, it must apply for
egistration in advance by submitting its network address, public key,
nd the maximum amount of resources it is willing to provide. When
completes the registration process, it joins a parent domain 𝑀𝑝 ∈ 𝑀 .
he specific parent domain that a peer joins depends, for example, on
eographical location or administrative domain (such as a building on
university campus). Peers must have a parent domain where they can
ffer their resources and can receive payments by executing workloads
f other peers. All peer identities and their domain membership are
ublished as predefined lists that can be accessed externally by any
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Fig. 2. Light-HIDRA’s architecture, roles and interactions. Each peer is part of exactly
one parent domain and we assume that each domain contains at least 3𝑓 +1 peers and
at most 𝑓 Byzantine peers.

potential user, e.g., via public repositories or websites. For the develop-
ment of the prototype and testing of Light-HIDRA, we assume that all
peers in the system know in advance this information about the other
peers as this can easily be shared out of band [19].

Roles and interactions. Peers have the flexibility to assume dis-
inct roles over time, including being an Applicant, Solver or Validator.
urthermore, peers can simultaneously undertake multiple roles based
n the scheduling requests or offloading events they engage in. Applicant
eers offload their workloads to other peers in the system. Solver peers
xecute the workloads created by Applicant peers. The selection of
he Solver peer that will handle a particular workload is performed
y Applicants themselves. This pre-selection process by itself does not
uarantee that the workload will eventually be executed by the selected
olver: the Applicant’s payment must first be confirmed and the Solver’s
esources must be reserved prior to execution. Finally, Validator peers
onitor whether the workload is actually being executed by the Solver.

ig. 2 shows the roles and interactions of Light-HIDRA and outlines
he protocol for workload scheduling: an Applicant (blue cube) sends
n offloading event to a Solver (orange cube) either intra-domain (1a)
r inter-domain (1b) depending on the local availability of candidate
olver peers. Once the payment is confirmed and the resources are
eserved, peers in the Applicant domain become Validators (green
ubes) and monitor the workload deployed on the local (2a) or remote
2b) Solver peer. Grey cubes illustrate peers that are not involved in
he current offloading event.
Payments. Rewarding Solver peers for their work is an important

art of resource orchestration [25,26]. In line with other work [27,28],
ight-HIDRA integrates a payment system where Applicant peers pay
redits to Solver peers for the work they perform. The amount of
redits offered by an Applicant peer will depend on the execution
ime requested for its workload and on a price per unit of time (see
ection 4.2 for more details). We assume that credits are assigned to
eers by an external administrator, and that peers can convert their
redits for some fiat currency using an out-of-band mechanism. Note
hat in order to fairly carry out offloading events for both Applicants
nd Solvers and to minimize risks, Light-HIDRA includes a partial
ayment system that allows Validators to lock and settle payments
radually according to the monitoring results obtained.
Threat model. Correct peers in domains strictly follow the protocol

ules. Peers might also crash, and a limited number of peers per domain
ight behave maliciously. We assume the presence of adversaries that

ttempt to corrupt the system, for example, by allowing duplicated mes-
ages, compromising the integrity and consistency of the information
xchanged, omitting some protocol rules, etc. More specifically, Light-
78

IDRA takes into account the existence of at most 𝑓 faulty peers per
Fig. 3. Overview of the Light-HIDRA workflow, including the different phases of the
protocol and sections where these are described.

domain, assuming that each domain in the system contains at least
3𝑓 + 1 peers. Therefore, an adversary cannot corrupt more than 𝑓
peers per domain in order to maintain the protocol correctness [15]. In
addition, Applicants and Solvers may act as faulty peers and try to cheat
each other by sending inaccurate payments and executing workloads
incorrectly.

Network model. Light-HIDRA adopts a partial synchronous net-
work model in which the network begins as an asynchronous network
(i.e., peers could delay message delivery for any finite amount of
time), and later becomes a synchronous network after some special
time, which is called the Global Stabilization Time (GST) [29]. Since
the workload scheduling protocol is based on BRB, it can operate
in asynchronous networks. However, some steps of the Light-HIDRA
protocol rely on global timeouts or timestamps in the future for message
delivery. For example, Applicants define for each offloading event a
timestamp in the future before which the event must be validated to
start the workload execution and monitoring. These special times are
necessary since Light-HIDRA must avoid offloading events stuck due to
unresponsive peers (a workload must eventually be executed). Thus,
Applicants are able to retry the request against other peers or domains.

Target workloads. Applicant peers bundle the specifications of
their workloads within offloading events, and Solver peers execute the
workload according to the received information. Light-HIDRA focuses
on the offloading of deterministic workloads that execute services dur-
ing fixed amounts of time. During execution times, Applicants’ domains
divide Applicants’ payments into different partial payments that are
gradually settled according to the health of the service. Deployed
services expose a network port to which both the end-users and the
Validator peers connect. We limit the type of workloads supported to
those workloads accessible via the HTTP protocol that expose services
such as web pages or applications, REST APIs or file download reposito-
ries. Note that we intend to simplify the proposal and the development
of the prototype by focusing on the HTTP protocol because of its
simplicity and because it is widely used in Fog-IoT environments. Thus,
Validators can analyze the monitoring responses according to the HTTP
response status codes, Quality of Service (QoS) metrics such as latency
or availability [30], or the requested content by comparing multiple
monitoring responses. The latter requires extending the Light-HIDRA
proposal by including a result verification mechanism as in [27].

4. Light-HIDRA Protocol

The Light-HIDRA protocol allows Applicant peers to schedule work-
loads on Solver peers, and has Validator peers that monitor the correct
execution of the scheduled workloads. Light-HIDRA includes a decen-

tralized payment mechanism where Applicant peers remunerate Solver
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Fig. 4. SSP workflow. Step 1: 𝑝𝑎 selects a domain (first tries 𝑀1 and then 𝑀2). Step 2: 𝑝𝑎 sends RequestResourceInfo messages to the peers in 𝑀1 (step 2a) or 𝑀2 (step 2b). Step
: peers in the selected domain reply to 𝑝𝑎 with ResourceInfo messages.
Table 1
Notations used in Light-HIDRA per phase.
Global symbols

𝑁 Set of all peers in the system
𝑀 Set of domains composed of peer subsets of 𝑁
𝑝 Regular peers in a domain
𝑝𝑎 Applicant peers that send offloading events
𝑝𝑠 Solver peers that receive offloading events and execute

workloads
𝑝𝑣 Validator peers that monitor workloads and settle partial

payments
𝑒 Offloading events
𝑤 Workloads within offloading events

Solver Selection Phase (SSP)

𝑟max Maximum amount of resources that peers offer to their
parent domains

𝑟f ree Current amount of free resources of Solver peers
𝑡𝑜𝑢𝑡ssp Timeout for the selection of Solver peers

Workload Reservation Phase (WRP)

𝑠𝑛𝑒 Sequence number to identify offloading events per Applicant
peer

𝑡exec Total execution time requested by Applicant peers for their
workloads

𝑝ratio Payment per unit of time offered by Applicant peers to
Solver peers for workload execution

𝑡𝑠start Timestamp in the future that specifies the start time of the
monitoring process

𝑑𝑒 Deposits offered by Applicant peers and locked by domains
for the settlement of partial payments

𝑠𝑛𝑟 Sequence number to identify resource reservations per Solver
peer

Workload Execution Phase (WEP)

𝑛ep Number of epochs in which the monitoring process is divided
to send monitoring requests and settle partial payments

𝑛mon Number of monitoring requests sent by Validator peers per
epoch

𝑓thr Threshold set by Validator peers to account for failed
monitoring requests

𝑡𝑠end Timestamp in the future that specifies the end time of the
monitoring process

peers for the execution of workloads. The protocol is divided into three
phases: (1) the Solver Selection Phase (SSP) in which information on
available peers and resources is exchanged in order to pre-select a
suitable Solver to execute a workload; (2) the Workload Reservation
Phase (WRP) that allows peers to disseminate offloading events, lock
Applicants’ payment offers and reserve resources for workload exe-
cution; and (3) the Workload Execution Phase (WEP) responsible for
monitoring the workload and ensuring the settlement of the payments.
In this section we detail the workflow for each phase. For readability
and simplicity reasons, we summarize the Light-HIDRA protocol and
describe the notations we use in Fig. 3 and Table 1, respectively.
79
4.1. Solver selection phase (SSP)

Before sending an offloading event 𝑒, Applicant peers query in-
formation about other domains and peers to select a suitable Solver
peer for the execution of a workload 𝑤. This selection is performed
locally by Applicant peers and could take into account information
about other peers such as the amount of free resources (e.g., CPU
or memory), reputation, or geographical location. For presentation
clarity and without loss of generality we assume the amount of free
resources as the only deciding attribute for Solver peer selection, which
is expressed by a single number. The steps involved in the SSP are
shown in Fig. 4 and are detailed below:

1. Domain selection. An Applicant peer 𝑝𝑎 iteratively queries dif-
ferent domains until it has pre-selected a candidate Solver peer
that has sufficient resources for the workload. By default, 𝑝𝑎 tries
to send 𝑒 and execute 𝑤 on its parent domain first. If 𝑀1 is not
willing to handle 𝑒 or does not have enough resources (example
shown in Fig. 4), 𝑝𝑎 can try other domains. Furthermore, in
case of canceled offloading events, 𝑝𝑎 can also retry the request
through other domains. The process is repeated until it finds a
Solver peer capable of executing 𝑤, or until it has exhausted all
domains.

2. Querying resource usage. Peer 𝑝𝑎 sends RequestResourceInfo
messages in parallel to an arbitrary number of peers in the
selected domain including details about the offloading event to
be carried out. This information includes the payment details,
requested resources, the workload type and its configuration.
Thus, peers receiving RequestResourceInfo messages can validate
the Applicant’s proposal and accept or deny it according to their
own criteria.

3. Solver selection. Peers reply to the RequestResourceInfo by 𝑝𝑎
with a ResourceInfo message which includes their availabili-
ty/willingness to execute 𝑤 (YES or NO) and resource infor-
mation such as their 𝑟max and 𝑟f ree. Note that each domain is
responsible for managing the resources of its peers, so peers
belonging to the same domain are aware of each other’s re-
source information. Therefore, peers also include the resource
information of the others in the ResourceInfo messages, allowing
Applicants to collect and contrast this information from multiple
sources. To delimit the selection time, Applicant peers set a
local timeout 𝑡𝑜𝑢𝑡ssp to wait for ResourceInfo messages. Once
𝑡𝑜𝑢𝑡ssp expires, 𝑝𝑎 compares the information received and selects
a Solver peer 𝑝𝑠 prioritizing replies on a first-come first-served
basis as long as 𝑝𝑠 has enough resources to execute 𝑤. At the
end of the SSP, 𝑝𝑎 has selected a candidate Solver peer, but the
payment and resource reservation have not yet been confirmed.
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Fig. 5. WRP workflow during which Applicant peer 𝑝𝑎 schedules a workload on a Solver peer 𝑝𝑠. Steps show the number of messages required from peers to continue the workflow.
4.2. Workload Reservation Phase (WRP)

The Workload Reservation Phase (WRP) attempts to schedule a
workload to the candidate peer 𝑝𝑠 selected in the SSP. The WRP is
designed around the BRB protocol that allows peers from a single do-
main or from multiple domains to register a workload offloading. This
mechanism encourages peers to carry out offloading events through
partial payments in order to minimize the fraud risk between Applicant
and Solver peers. The WRP employs two BRB rounds to ensure of-
floading event dissemination among peers and domains, credit locking
by Applicants’ domains and resource reservation by Solvers’ domains.
Even if workloads are scheduled across domains, credit locking and
payments are always handled by Applicants’ domains, which ultimately
certify the credit transfer to Solvers’ domains. Note that the WRP
conducts the credit locking to prove that the Applicant is willing to
pay for the execution of 𝑤, but does not perform the payment itself.
Payments are settled in the WEP described in Section 4.3.

Credit locking. Fig. 5 shows the WRP workflow divided by domains
and message types, depicting the two BRB rounds, for credit locking
and resource reservation, and a final step to confirm the offloading
event. In this scenario, Applicant peer 𝑝𝑎 in domain 𝑀1 intends to
schedule a workload on a Solver peer 𝑝𝑠 in another domain 𝑀2. We
first detail the BRB round used for credit locking (steps 1-4):

1. Peer 𝑝𝑎 sends a Locking (SEND) message including the offloading
event 𝑒 to all peers in its parent domain 𝑀1. This message
contains the pre-selected candidate 𝑝𝑠, the workload 𝑤 to be
executed and other parameters such as the requested execution
time 𝑡exec, the payment per unit of time 𝑝ratio and a timestamp
in the future 𝑡𝑠start before which 𝑒 must be confirmed. Listing
1 shows all fields of an offloading event in JSON format. Of-
floading events also include a sequence number 𝑠𝑛𝑒 to track
events/payments per Applicant, so an event can be globally
identified by the tuple (𝑝𝑎, 𝑠𝑛𝑒). Correct peers increment 𝑠𝑛𝑒 by
one after each event sending.

2. Each correct 𝑝 ∈ 𝑀1 receives 𝑒 and checks that 𝑠𝑛𝑒 is the next
sequence number of 𝑝𝑎. This check prevents Applicants from
double-spending their credits by reusing sequence numbers since
it does not allow receiving two different events/payments with
80

the same 𝑠𝑛𝑒. Peers also check that 𝑝𝑎 has enough credits to cover
Listing 1: Content of an offloading event (in JSON format).

1 {
2 " applicant " : "7 d7918afebac ...",
3 " sn_e " : 0,
4 " to " : {
5 " domain " : " a6ab43a9113a ...",
6 " solver " : "3 bf7ad8b7bf0 ...",
7 },
8 " workload " : {
9 " image " : " nginx " ,

10 " resource_limit " : 1024,
11 " port " : 80
12 },
13 " t_exec " : {
14 " value " : 10,
15 " unit " : " h "
16 },
17 " p_ratio " : {
18 " value " : 5,
19 " unit " : " h "
20 },
21 " ts_start " : 1640995200,
22 " signature " : "6 e367d727a46 ..."
23 }

the entire payment by calculating a deposit 𝑑𝑒 as 𝑡exec multiplied
by 𝑝ratio. If so, correct peers temporarily lock 𝑑𝑒 credits from
the Applicant’s balance. If both conditions are satisfied, correct
peers that received 𝑒 broadcast a Locking (ECHO) message to 𝑀1.
Otherwise, peers ignore 𝑒.

3. Correct peers in 𝑀1 wait for at least 2𝑓 + 1 Locking (ECHO)
valid messages that relate to 𝑒 (a Byzantine quorum). Once this
is achieved, each correct 𝑝 ∈ 𝑀1 broadcasts a Locking (READY)
message to 𝑀1 containing 𝑒. Alternatively, peers are allowed to
send a Locking (READY) message to 𝑀1 after receiving 𝑓 + 1
Locking (READY)messages from other peers (i.e., while they wait
for the 2𝑓 + 1 Locking (ECHO) messages). This is known as the
READY amplification step.
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Fig. 6. WRP workflow cancellation scenarios. Cancellation sent by Solver’s domain and Applicant’s domain, respectively.
4. Finally, correct peers that receive at least 2𝑓+1 Locking (READY)
messages send a Locking (CREDIT) message including 𝑒 to 𝑀2
(the domain the Solver peer 𝑝𝑠 belongs to). A Locking (CREDIT)
message constitutes a quorum certificate that attests to 𝑀2 of
the offloading event and the payment offer made by 𝑝𝑎. Now,
𝑀1 have to wait for 𝑀2 to approve the resource reservation for
𝑤.

Resource reservation. In the SSP, Solver peers are only pre-
selected, so an additional phase is needed to reserve the requested
resources. This reservation phase is crucial since Solvers may receive
concurrent offloading events trying to reserve the same resources. To
overcome this, the reservation phase orders the reservation requests
addressed to each Solver peer. Note that the peers in the Solvers’ parent
domain are responsible for reserving the requested resources. Fig. 5
illustrates the steps of the second BRB round (steps 5-7) for resource
reservation, which are explained below:

5. Correct peers in 𝑀2 wait for 𝑓 +1 Locking (CREDIT) messages to
deliver the offloading event 𝑒. Once the Solver peer 𝑝𝑠 delivers
𝑒, it assigns its next reservation sequence number 𝑠𝑛𝑟 to 𝑒 in
order to reserve in 𝑀2 the necessary resources to execute 𝑤.
Then, 𝑝𝑠 sends a Reservation (ECHO) message to the peers in
𝑀2 including 𝑠𝑛𝑟. To prevent concurrent events with the same
𝑠𝑛𝑟 (for example, initiated by a faulty 𝑝𝑠) from being executed,
correct peers that receive 𝑠𝑛𝑟 send their Reservation (ECHO)
messages to 𝑀2 including a vote (YES or NO) that determines
the next offloading event chosen to be executed. Thus, at most
only one event will succeed and the others will be canceled as
they fail to collect enough votes.

6. Each correct 𝑝 ∈ 𝑀2 waits for 2𝑓 + 1 Reservation (ECHO)
messages including positive votes to guarantee the Byzantine
quorum of the assignment (𝑒, 𝑠𝑛𝑟). Alternatively, peers can also
receive negative votes. In case of receiving 𝑓 + 1 Reservation
(ECHO) messages including negative votes, peers in 𝑀2 will
cancel the offloading event. Once the Byzantine quorum of the
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assignment is guaranteed, correct peers in 𝑀2 check that: (1)
𝑠𝑛𝑟 is the next reservation sequence number of 𝑝𝑠, and (2) 𝑝𝑠
has enough resources to execute 𝑤 depending on the workload
configuration included in 𝑒. If so, each correct 𝑝 ∈ 𝑀2 locally
updates the free resources 𝑟f ree of 𝑝𝑠 and broadcasts a Reservation
(READY) message to 𝑀2. Note that this step also rely on the
READY amplification step of the BRB protocol.

7. At the end of the reservation BRB round, correct peers that
receive 2𝑓 + 1 Reservation (READY) messages send a Reservation
(CREDIT) message back to the Applicant’s domain 𝑀1 as a quo-
rum certificate that attests the resource reservation made in 𝑀2
for 𝑝𝑠. Moreover, when 𝑝𝑠 receives 2𝑓 + 1 Reservation (READY)
messages, i.e., it achieves the Byzantine quorum, 𝑝𝑠 can start
the execution of 𝑤 according to the configuration parameters
specified in 𝑒.

After credits are locked and the resources are reserved, domains 𝑀1
and 𝑀2 have proved both the willingness of 𝑝𝑎 to pay for the execution
of 𝑤 and the willingness of 𝑝𝑠 to execute 𝑤. Fig. 5 shows a last message
exchange (step 8) between the peers in 𝑀1 to confirm to each other
the reception of valid Reservation (CREDIT) messages and confirm that
all correct peers agree on the same decision. In this last step, each
correct 𝑝 ∈ 𝑀1 waits for the reception of 𝑓 + 1 Reservation (CREDIT)
messages and then broadcasts an Event (CONFIRM) message to 𝑀1.
Thereafter, correct peers collecting at least 2𝑓 + 1 Event (CONFIRM)
messages can consider 𝑒 as confirmed. At this point, faulty or out-of-
date peers receiving 2𝑓+1 Event (CONFIRM) messages can update their
local state to the actual one. Note that Applicant peers set for each
offloading event a timestamp in the future 𝑡𝑠start before which the event
must be confirmed. This parameter is also key to the proper monitoring
of the workload executed by 𝑝𝑠 and the accounting of partial payments
in the WEP phase described in Section 4.3.

Handling failures. So far we have assumed a WRP workflow in
which credit locking and resource reservation rounds are successfully
carried out. Since several requirements are checked during the WRP
workflow, such as sequence numbers, Applicants’ credit balances and

Solvers’ free resources, it is common that in deployed settings peers
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Fig. 7. WEP workflow during which Validator peers in 𝑀1 monitor the workload 𝑤 executed by 𝑝𝑠, select a shared 𝑡𝑠end and settle the Applicant’s payment. Finally, peers in 𝑀2
release the resources used by 𝑝𝑠 to execute 𝑤.
participating in an offloading event do not reach an agreement. There-
fore, our protocol needs to handle failures during workload scheduling.
Fig. 6 shows additional steps that both 𝑀1 and 𝑀2 perform to cancel
an offloading event in order to unlock deposits and release resources
to be used in future events.

Fig. 6(a) shows the scenario in which, after 𝑀1 locked the credits
offered by 𝑝𝑎, the 𝑠𝑛𝑟 chosen by 𝑝𝑠 for the resource reservation is wrong
or peer 𝑝𝑠 is not available to execute 𝑤. In this scenario, correct peers
in 𝑀2 broadcast a Reservation (CANCEL) message to 𝑀1. Then, each
correct 𝑝 ∈ 𝑀1 waits to collect 𝑓 + 1 Reservation (CANCEL) messages
to unlock 𝑑𝑒 from the Applicant’s balance. The second cancellation
scenario takes place at the end of the WRP workflow.

Fig. 6(b) represents what happens if an offloading event is not
confirmed in 𝑀1 before reaching the timestamp 𝑡𝑠start , i.e., correct peers
do not receive 2𝑓 + 1 Event (CONFIRM) messages before 𝑡𝑠start . In this
case, correct peers in 𝑀1 first unlock 𝑑𝑒 from the Applicant’s balance
and then send Event (CANCEL) messages to 𝑀2. Finally, correct peers
in 𝑀2 wait for 𝑓 + 1 of these messages to release the resources of 𝑝𝑠
previously reserved for 𝑤. Furthermore, Solver 𝑝𝑠 stops the execution
of 𝑤.

4.3. Workload execution phase (WEP)

By executing the WRP protocol, peers disseminate offloading events,
attest to payment offers and reserve resources for workload execution.
The Workload Execution Phase (WEP) is responsible for ensuring the
proper execution of workloads and settlement of payment offers. Since
there are peers that could fail or act maliciously, we propose a workload
monitoring mechanism that assembles Byzantine quorums on the state
of executed workloads. The WEP employs a final BRB round to ensure
the dissemination of the monitoring results used to determine the final
payment sent to the Solver peer. Continuing with the last step of the
WRP, we now detail the WEP phase, which is also shown in Fig. 7:

1. Once timestamp 𝑡𝑠start specified in 𝑒 is reached, correct peers in
𝑀1 start the monitoring process of 𝑤. Note that 𝑡𝑠start prevents
Applicant and Solver peers from starting the monitoring process
themselves, thus avoiding cheating (i.e., peers that notify only a
subset of the peers in 𝑀1 about the WRP completion). Now, each
𝑝 ∈ 𝑀1 that starts the monitoring process becomes a Validator
peer 𝑝𝑣. Since all correct peers in 𝑀1 receive 𝑒 in the WRP,
they already know the parameters 𝑡exec and 𝑝ratio, so each 𝑝𝑣
can determine the number of partial payments and monitoring
requests to be sent:
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Fig. 8. WEP monitoring timeline representing both a workload with a negative
monitoring result (𝑤1) and a workload with a positive monitoring result (𝑤2).

• Partial payments are settled based on predefined time
epochs, settling one partial payment per epoch. The num-
ber of epochs 𝑛ep and their duration depends on the 𝑡exec
and 𝑝ratio parameters. For example, if 𝑡𝑒𝑥𝑒𝑐 = 10 hours
and 𝑝𝑟𝑎𝑡𝑖𝑜 = 5 credits per hour, each 𝑝𝑣 must settle ten
partial payments of five credits, i.e., ten epochs settling
𝑝ratio credits per epoch. For better understanding, Fig. 8
details the monitoring timeline of two workloads showing
different epochs and partial payments.

• Monitoring requests are sent at random times within epochs
in order to prevent 𝑝𝑠 from anticipating when 𝑤 is mon-
itored. Validator peers send 𝑛mon Monitoring (REQUEST)
messages per epoch to 𝑤. This parameter can be configured
to perform monitoring with varying intensity.

2. Correct Validators count the number of monitoring requests that
fail due to no response by the Solver peer, malformed responses
or insufficient QoS levels (e.g., high latencies). In any case, if a
Validator reaches a threshold 𝑓thr of failed monitoring requests,
it notifies 𝑝𝑎 via a signed Monitoring (RESULT) message that
includes its personal decision, namely a negative monitoring re-
sult. Positive monitoring results are only sent when 𝑡exec expires

without reaching 𝑓thr . Just after sending a Monitoring (RESULT)
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message, Validator peers stop sending monitoring requests. Note
that all correct Validators start the monitoring process at the
same time (𝑡𝑠start), but it is also crucial for Validators to agree
on a shared end timestamp 𝑡𝑠end. Timestamp 𝑡𝑠end depends on the
monitoring result obtained by each Validator: the sum of 𝑡exec to
𝑡𝑠start in case of a positive result, or an arbitrary time in case of
a negative result. Regardless of the monitoring result, Validators
include their own 𝑡𝑠end in Monitoring (RESULT) messages in order
to later select a shared 𝑡𝑠end with which peers in 𝑀1 can equally
account for elapsed epochs and partial payments.

3. Applicant 𝑝𝑎 waits for 2𝑓 + 1 valid Monitoring (RESULT) mes-
sages. It does not matter what monitoring results 𝑝𝑎 receives,
i.e., positive, negative or a mixture, it only matters to receive
2𝑓 + 1 valid monitoring results to eventually select a shared
𝑡𝑠end. Once received, 𝑝𝑎 bundles the monitoring results and sends
them via a Monitoring (SEND) message to the peers in 𝑀1. This
message starts the BRB round required to reach the Byzantine
quorum on the monitoring results sent by 𝑝𝑎. Note that without
this BRB round, a faulty 𝑝𝑎 could send different sets of monitor-
ing results, so peers would eventually select a different shared
𝑡𝑠end.

4. Correct peers in 𝑀1 receive the Monitoring (SEND) message and
check the signed monitoring results. If the Monitoring (SEND)
message contains 2𝑓 + 1 valid monitoring results from other
peers, then correct peers broadcast a Monitoring (ECHO) message
containing the monitoring results to 𝑀1.

5. Peers receiving 2𝑓 + 1 identical Monitoring (ECHO) messages
can consider as valid the Monitoring (SEND) message sent by 𝑝𝑎.
At this point, correct peers in 𝑀1 send a Monitoring (CREDIT)
message as quorum certificate including the monitoring results
to 𝑀1 and 𝑀2. The partial payments settled from the deposit
𝑑𝑒 depend on the number of epochs that have elapsed from
𝑡𝑠start to 𝑡𝑠end. To obtain 𝑡𝑠end consistently, correct peers receiving
2𝑓 +1 Monitoring (CREDIT) messages select the (𝑓 +1)th smallest
timestamp from the monitoring results. Finally, correct peers in
𝑀1 and 𝑀2 determine the number of partial payments to be
settled and update the balances of 𝑝𝑎 and 𝑝𝑠. In addition, correct
peers in 𝑀2 release the resources of 𝑝𝑠 used by 𝑤.

5. Security analysis

In this section we evaluate the security of Light-HIDRA by discussing
potential shortcomings and security properties required to carry out
offloading events in the system. We also analyze the three phases of the
protocol by identifying potential attack vectors concerning the different
roles involved in the system during the execution of an offloading
event. For each potential risk identified, we describe the security
measures that mitigate it.

We first focus on identifying potential shortcomings of the Light-
HIDRA proposal. In decentralized environments, addressing malicious
actions that could degrade system trust, reliability and performance is
of critical importance. Sybil attacks [31,32] pose a significant threat
to the security of decentralized systems. In a Sybil attack, a single
adversary creates multiple identities to attempt to compromise trust
and gain undue influence on the system. Light-HIDRA mitigates such at-
tacks by establishing an initial domain and peer bootstrapping process
managed by an administrative entity. The management of identities
free from administrative entities falls outside the scope of this paper.
Consequently, we highlight an additional shortcoming related to the ad-
ministrative overhead during this initial process. As stated in Section 3,
we assume an administrative entity responsible for composing domains
and publishing peer lists, a process that will entail extra steps and time
for the end-user. We also identify other attack vectors in decentralized
systems such as Denial of Service (DoS) attacks [33]. Although all
messages received by peers during the different phases of Light-HIDRA
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are validated before being computed, it could lead to peer saturation if
a very large number of repeated or malformed messages are received.
External systems such as firewalls and network traffic monitors could
prevent these attacks [34,35].

We continue to emphasize the BRB security properties and how
the Light-HIDRA protocol leverages them. First, the validity property
verifies that a message (an offloading event 𝑒, a reservation request or
a monitoring result) sent by a correct peer is eventually delivered to
every correct peer. The BRB primitive guarantees the validity property
in Light-HIDRA since, assuming a correct sender, the correct peers in
the system (or in a domain) that receive the message broadcast it again
to the other peers via ECHO messages. Consequently, each correct peer
receives at least 𝑁 − 𝑓 ECHO messages, and 𝑁 − 𝑓 ≥ 2𝑓 + 1, so
correct peers are able to deliver the sender’s message. Regarding the
no duplication property, peers in Light-HIDRA implement a message
tracking mechanism that uses sequence numbers, sender identities and
message type identifiers. This mechanism allows correct peers to detect
and discard duplicate messages. Light-HIDRA achieves the integrity and
authenticity of exchanged messages by implementing authenticated
links via digital signatures. This ensures that if a correct peer receives
a message from a (supposedly) correct sender, the message has indeed
been sent by that sender and has not been tampered. The next security
property is consistency. This property is achieved by ECHO messages
and Byzantine quorums, i.e., correct peers have to collect at least 2𝑓 +1
ECHOs of the same message in order to validate and deliver it. Thus,
all correct peers achieve a consistent view of the sender’s message.

In addition to the aforementioned security properties, it is necessary
to guarantee totality in order to achieve reliable message delivery in
Light-HIDRA. This property ensures final agreement in such a way
that correct peers only deliver a message if all other correct peers
deliver that message. In Light-HIDRA, achieving the totality property
is essential since all correct peers in the system or in a domain need
to agree on whether an offloading event has succeeded based on if
(1) the Applicant’s credits have been locked, (2) the resources have
been reserved in the Solver, or (3) the execution of the workload has
been successful. To accomplish this, Light-HIDRA incorporates a final
broadcast round of READY messages. Again, correct peers collecting at
least a Byzantine quorum of 2𝑓 +1 READY messages are able to deliver
the sender’s message.

5.1. SSP risks and measures

Applicant peers conduct the Solver Selection Phase to pre-select the
domains and Solver peers which execute their workloads. To achieve
this, Applicant peers iteratively query different domains and peers in
the system until they receive a response. Below, we detail the potential
risks in this phase and the security measures employed in Light-HIDRA
to mitigate them:

• A potential risk is that the Applicant peer receives ResourceInfo
messages with fake resource information from faulty peers. Note
that the Applicant is responsible for collecting the same infor-
mation from at least 𝑓 + 1 peers belonging to the system or
domain. If the Applicant does not receive the same information
from 𝑓 +1 peers, it discards its current selection and searches for
other candidate peers or domains.

• Another risk to consider is the selection of a faulty peer as the
Solver peer. In the SSP this is not a problem because the Applicant
peer can choose another peer or send a new RequestResourceInfo
message to a different domain after canceling the offloading event
in the WRP or obtaining a premature negative monitoring result
in the WEP.

• An Applicant peer could provide details of the offloading event
during this phase that differ from what it will actually send
within 𝑒 in the WRP. In this case, peers asked for pre-selection
will reply incorrectly based on this information. However, both

credit locking and resource reservation will be carried out using
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the information sent within 𝑒 in the first step of the WRP. If
the Applicant ultimately does not have enough credits or the
Solver does not have available resources, event 𝑒 will be canceled.
Additionally, potential Solvers can also compare the event details
received in the SSP with those received in the second BRB round
of the WRP. Thus, Solver peers are able to cancel requests from
this kind of faulty Applicants.

• Limited availability of peers participating in the SSP could hin-
der the pre-selection phase. Note that the responsibility for pre-
selection and sending the offloading event 𝑒 lies with the Appli-
cant peer. Therefore, during the SSP, the Applicant is the only
peer that must remain available. If peers being queried do not
reply, the Applicant will repeat the process with other peers and
domains.

.2. WRP risks and measures

Once a Solver peer has been pre-selected, the Applicant broadcasts
he offloading event 𝑒 to the peers in its parent domain and also to
he Solver domain in case of an inter-domain request. The Workload
eservation Phase is the most critical phase of the Light-HIDRA proto-
ol, since it must ensure a secure and fair credit locking and resource
eservation among participating peers, avoiding any fraudulent action
or individual profit. We now identify the potential attack vectors and
iscuss the security measures for this second phase of Light-HIDRA:

• One of the most significant risks to consider is the possibility of
double spending by Applicant peers. Light-HIDRA is a trustless
P2P system in which peers participate and collaborate according
to the protocol rules. To send 𝑒 and its related payment to a Solver
peer, an Applicant must first be approved by the system or parent
domain to which it belongs. This procedure is managed by the
first BRB round of the WRP, which locks the payment until the
resource reservation and execution of 𝑤 occur. Therefore, Appli-
cant peers are required to prove their balances and willingness
to pay to all participating peers in an offloading event. Note that
payments are managed and settled in a decentralized way by the
Applicant’s peers, making it not possible to reject a payment once
sent (unless otherwise determined by the protocol) or to use the
same credits for multiple payments (since credits are locked).

• Once the Applicant’s payment is confirmed, it is also crucial to
ensure that the Solver peer follows the protocol and makes a fair
resource reservation. The resources in the system or domain are
collectively managed by the peers within them, which prevents a
Solver from conducting unfair actions on its own. To minimize the
risk in the case of faulty Solvers, Applicant’s payments are divided
and settled in partial payments over time. Thus, Applicants can
stop paying for the execution of workloads and recover part of
the locked credits.

• Another potential risk is the sending of duplicated or simulta-
neous offloading events that compromise the consistency of the
system, i.e., that produce different states in each peer (e.g., if
two events arrive simultaneously in a different order at different
peers). To avoid this, Light-HIDRA orders offloading events and
resource reservations using sequence numbers. This ensures that
peers receiving offloading events with a 𝑠𝑛𝑒, and reservations
including a 𝑠𝑛𝑟, can execute them in an ordered way to pre-
serve consistency regarding balances, locked credits and available
resources.

• Peers in Light-HIDRA must mutually confirm the credit locking
and resource reservation for a workload to be eventually exe-
cuted. If one of the two BRB rounds of the WRP is not successfully
completed, both the locked credits and reserved resources must
be released for use in future offloading events. The WRP supports
several additional cancellation messages (see Section 4.2 for more
details) to allow participating domains and peers to report unsuc-
cessful offloading events and release both credits and resources.
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Note that the timestamp 𝑡𝑠start is also crucial when canceling an
offloading event, since it determines the maximum time the event
has to complete the locking and reservation phases before starting
the WEP and workload monitoring.

• Finally, we discuss whether the availability of participating peers
in the WRP could hinder the locking and reservation phases. Once
the Applicant peer sends 𝑒 to its peers using a Locking (SEND)
message, it is no longer required for the Applicant to remain
available during the WRP. The credit locking will be carried out
by other available peers. However, the selected Solver peer must
be available to execute 𝑤 before starting the WEP if it wants
to succeed without obtaining a premature negative monitoring
result.

5.3. WEP risks and measures

The Workload Execution Phase is responsible for monitoring the
workload executed by the Solver peer in the WRP and, ultimately,
settling the payment in both the Applicant and Solver domains. The
final payment depends on the monitoring results obtained by Validator
peers belonging to the Applicant’s domain. The risks identified in the
WEP and the measures implemented by Light-HIDRA to mitigate them
are as follows:

• Once the WRP is completed, the Solver peer may not execute 𝑤
or may not execute it on time. Applicant peers add a timestamp
𝑡𝑠start to each offloading event sent that determines the maximum
time to perform the WRP and the WEP start time. If the Solver
does not execute 𝑤 or executes it out of time, the Validators will
get a premature negative monitoring result that will terminate 𝑒 at
no cost or minimal cost for the Applicant. Therefore, Solver peers
are responsible for the correct execution of 𝑤. Note also that the
Solver domain could deny an offloading event in the WRP in case
it receives a 𝑡𝑠start too small. This will depend on the configuration
and requirements of the Solver domain and its peers.

• Applicant peers are responsible for collecting and broadcasting
the monitoring results that include the 𝑡𝑠end timestamps. This is
because if each Validator broadcasts its own 𝑡𝑠end, the other peers
might receive different sets of monitoring results, resulting in
the selection of a different shared 𝑡𝑠end. Therefore, potential risks
could be that a faulty Applicant does not send the Monitoring
(SEND) messages or sends different Monitoring (SEND) messages
to each peer. If an Applicant does not broadcast the monitoring
results, the Validator peers will settle the entire payment in favor
of the Solver peer. Besides, sending different sets of monitoring
results to each peer is not feasible from the point of view of a
faulty Applicant since the WEP employs a third BRB round to
safely broadcast the monitoring results.

• Applicants and Solvers perform special tasks in the WEP, i.e., the
broadcasting of monitoring results and timestamps 𝑡𝑠end and the
execution of workloads respectively, so it is crucial at this phase
that both Applicant and Solver maintain a high level of avail-
ability. Note that it will be the responsibility of Applicants and
Solvers to remain available to maximize their profits, since it
is not feasible to harm other participating peers in case of low
availability (Applicants and Solvers are the only ones interested
in completing an offloading event).

6. Experimental evaluation

This section presents the implementation of Light-HIDRA and as-
sesses its feasibility and performance, compared to the state-of-the-art
in this field. We compare Light-HIDRA with the HIDRA scheduling
system, which is our previous proposal for resource scheduling in
Fog-IoT environments [6]. In particular, our experiments answer the
following questions:
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1. How does the bandwidth usage of Light-HIDRA and HIDRA scale
with the network size (Section 6.2)?

2. What is the end-to-end latency of an offloading event in Light-
HIDRA and HIDRA, and how does this latency change when
increasing the number of events (Section 6.3)?

3. How does the CPU and memory usage of Light-HIDRA and
HIDRA scale with the network size (Section 6.4)?

Considering the testbed chosen to carry out the experiments (de-
tailed in Section 6.1), our main findings are as follows:

1. Light-HIDRA reduces bandwidth usage by up to 57× compared
to HIDRA under the same workload.

2. Light-HIDRA reduces the latency of offloading events by up
to 142× compared to HIDRA under the same workload.

3. Light-HIDRA demonstrates superior throughput performance
compared to HIDRA, exhibiting a notably lower average event
fulfill latency across all evaluated system loads.

4. Light-HIDRA reduces CPU usage by up to 10× and memory
usage by up to 9.6× compared to HIDRA under the same
workload.

Baseline. HIDRA schedules workloads in a distributed way lever-
aging blockchain technology and smart contracts. Each peer belonging
to a HIDRA network executes a management client and a blockchain
client to record and share information via blockchain transactions,
thus allowing all nodes to know the current state of scheduling flows.
Blockchain transactions allow HIDRA nodes to perform tasks such
as node registration, sending offloading events and selecting Solver
nodes that execute the scheduled workloads. We remark that in HIDRA
the Solver selection process is carried out by voting of the nodes
participating in the network. HIDRA involves four steps of information
exchange via blockchain transactions. When an Applicant node sends
an offloading event to the network, the other nodes reply by sending
information needed for the selection of a Solver (e.g., current resource
usages, node location, etc.). Then, HIDRA waits for the response from
a minimum number of nodes, a parameter configurable in the network
setup. Using the collected information, nodes deterministically select
a Solver and publish their vote on the blockchain. The smart contract
then waits for a minimum number of votes (also configurable in the
setup) to notify the Solver node that it can execute the requested
workload. Finally, the Solver node solves the offloading event once it
finishes executing the workload. It should be noted that the security
and performance of HIDRA will depend on the consensus mechanism
used by the underlying blockchain.

Implementation. Light-HIDRA is developed in the Python 3 pro-
gramming language and is based on the IPv8 peer-to-peer networking
library.1 This lightweight library enables authenticated data exchange
among peers belonging to the same overlay network. Moreover, HIDRA
is implemented in the Golang programming language and utilizes the
Ethereum platform, the Geth client, and Solidity smart contracts for
the processing of offloading events. Both proposals employ libraries
for asynchronous event processing and multiprocessing. All software
artifacts of both Light-HIDRA2 and HIDRA3 are available online.

6.1. Experimental setup

The main objective of our experiments is to compare both Light-
HIDRA and HIDRA on different aspects. Our aim is to establish the
scalability and performance benefits of Light-HIDRA as a decentralized
and lightweight approach that sidesteps the need for a global consen-
sus algorithm to maintain a shared state of payments and resource

1 See https://github.com/Tribler/py-ipv8.
2 See https://github.com/swarleynunez/HIDRA_IPv8
3

85

See https://github.com/swarleynunez/HIDRA
reservations in the system. To this end, our experiments measure key,
non-functional attributes such as the bandwidth, latency and resource
usage (CPU and memory usage) of offloading events sent over Light-
HIDRA and HIDRA networks of differing sizes. An innovative part
of Light-HIDRA is the partitioning of peers into distinct domains. To
demonstrate the benefits of domains, our experiments consider two
possible configurations of Light-HIDRA: (1) a configuration in which
all peers in the network belong to the overall system, so there are no
domains (or there is only one ‘‘virtual’’ domain) and offloading events
are sent globally (intra-domain), and (2) a configuration that divides
the network peers into different domains so offloading events are sent
across domains (inter-domain).

Testbed. To carry out the experiments, different Light-HIDRA and
HIDRA networks, composed of up to 400 peers, have been deployed
on an Ubuntu 22.04.2 server with 64 Intel Xeon Gold 5218 CPUs and
504 GB of memory. The HIDRA networks deployed for the experiments
are permissioned networks using a lightweight consensus algorithm
such as Proof-of-Authority (PoA) and a zero block time (i.e., instant
transactions). We configure the HIDRA networks to require the same
number of correct peers as in Light-HIDRA, i.e., at least 2𝑓 + 1 peers
sending replies and votes. Note that Light-HIDRA experiments consider
the worst case scenario regarding the 𝑓 parameter (i.e., the largest
possible 𝑓 value given the number of peers in each experiment). During
the execution of an offloading event, all involved peers send all protocol
messages (regardless of whether they are correct or faulty messages)
to all other peers in the network. Since we assume networks with at
most 𝑓 faulty peers, correct peers only make use of the first 2𝑓 + 1
correct messages they receive. In order to ensure a fair comparison, the
experiments also take into account several assumptions when executing
offloading events and measuring the results. On the one hand, we
omit network latencies between peers to avoid interference with the
obtained results. Thus, the results solely relate to the execution of the
Light-HIDRA and HIDRA scheduling protocols. On the other hand, the
experiments do not include statistics related to network bootstrapping
and peer discovery, and we assume peers know each other in advance
when the experiment starts. For example, the results obtained for
HIDRA do not include the overhead of initial on-chain transactions such
as the smart contract deployment and the registration of each peer in
the system.

Experiment workloads. We prepare synthetic workloads that can
be handled by HIDRA and Light-HIDRA. Synthetic workloads are sim-
ilar to real workloads and can be repeatedly applied to both systems,
allowing us to reproduce specific scenarios for carrying out the experi-
ments. To conduct a fair comparison, in each experiment both proposals
execute synthetic workloads containing the same tasks. Such tasks are
actually offloading events like the one shown in Listing 1. Offloading
events are triggered by one or more randomly chosen Applicant peers at
the beginning of each experiment. In the case of HIDRA, an offloading
event will be disseminated across all nodes in the blockchain network,
performing the transaction exchange needed to select a Solver peer
and finally execute a service. In contrast, an offloading event in Light-
HIDRA will go through the different phases of the protocol described
in this paper, i.e., the pre-selection of the Solver, the credit locking,
the resource reservation and the service monitoring process. Note
that all messages or transactions produced during the execution of an
offloading event in both systems are truly sent, received, validated and
computed. In the experiments, we only simulate the execution of the
services that would run on top of HIDRA and Light-HIDRA.

6.2. Bandwidth usage

We first evaluate the bandwidth generated when sending an offload-
ing event in Light-HIDRA and HIDRA networks of different sizes.

Setup. We employ the tcpdump tool to measure the bandwidth

usage from the start to the completion of one offloading event in both

https://github.com/Tribler/py-ipv8
https://github.com/swarleynunez/HIDRA_IPv8
https://github.com/swarleynunez/HIDRA
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Fig. 9. Total bandwidth usage in the scheduling of an offloading event sent both
on-chain (via HIDRA) and off-chain (via Light-HIDRA).

roposals. For each network type and size, a random peer belonging to
hat network sends the same event including the same workload.
Results. Fig. 9 displays the total bandwidth usage of HIDRA and

ight-HIDRA, for different network sizes. We compare three settings:
IDRA, Light-HIDRA without domains and Light-HIDRA with domains.

n the latter configuration we fix the domain size to 100 peers. Figure
eveals that bandwidth usage increases as the network size grows. The
raph also shows high bandwidth usage of HIDRA compared to Light-
IDRA. Even without dividing the network into domains, Light-HIDRA
ses significantly less bandwidth than the baseline system. For example,
n a network comprising 400 peers, HIDRA consumes a total of 1647.6
B, while Light-HIDRA consumes at most 412.1 MB and 28.9 MB when

sing domains: a reduction of 75.0% and 98.2%, respectively. We also
bserve differences in bandwidth usage between the two configurations
f Light-HIDRA: in the case of Light-HIDRA without domains, larger
etworks result in higher bandwidth usages, whereas in Light-HIDRA
ith domains the bandwidth remains constant. Note that the first
easurement yields similar bandwidth results for both Light-HIDRA

onfigurations, since the total number of peers is 100 and we fix the
omain size to 100 peers for this experiment, so there can only be one
omain.

Fig. 10 showcases the effect of using domains of different sizes
n bandwidth usage, detailing the evolution of bandwidth usage with
espect to the number of peers per domain. In this experiment, we
eploy two domains for each domain size. Thus, for a domain size of
00 peers, we actually deploy a Light-HIDRA network with 400 peers.
omparing the obtained results with those from Fig. 9, the use of two
omains with 200 peers in Light-HIDRA (400 peers in total) incurs
.66 times less bandwidth than an HIDRA network with 200 peers,
nd 14.17 times less bandwidth than an analog HIDRA network of
00 peers. Finally, we note that Light-HIDRA networks with domains
dd a slight bandwidth overhead compared to Light-HIDRA networks
ithout domains. This is because in inter-domain offloading events,

he Applicant and Solver domains have to exchange additional data
han in the case of intra-domain events. For example, peers in inter-
omain events are required to send the Monitoring (CREDIT) messages
o both peers in their parent domain and to peers in the Solver’s
omain (more details in Section 4.3), which duplicates the bandwidth
or this type of message. In contrast, peers in intra-domain events only
xchange Monitoring (CREDIT) messages with each other within their
arent domain.
Conclusions. We demonstrated that Light-HIDRA incurs a signifi-

antly lower bandwidth consumption compared to HIDRA. The use of
omains also reduces bandwidth usage. By dividing peers into domains,
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ight-HIDRA further reduces the overhead of offloading events for the
Fig. 10. Total bandwidth usage of an offloading event in Light-HIDRA using different
domain sizes.

same number of participating peers. Note that we assume networks
with 𝑓 faulty peers and at least 3𝑓+1 peers, so the larger a Light-HIDRA
network is, the more peers will need to participate in an offloading
event. Moreover, since the experiments consider the worst case scenario
regarding the 𝑓 parameter, i.e., all the 𝑓 peers send messages, any value
𝑓 ′ ≤ 𝑓 will not lead to additional overhead in the results. For example,
in the 100-peer Light-HIDRA network without domains in Fig. 9, both
with 𝑓 ′ = 𝑓 and with 𝑓 ′ = 0 the bandwidth usage is about 26.9 MB,
whereas if we assume a scenario with 𝑓 silent peers that selfishly avoid
participating in the protocol, the bandwidth usage is 19.14 MB (keeping
the network size at 100 peers in all cases).

6.3. Latency and throughput of offloading events

We next quantify the sustainable throughput and end-to-end laten-
cies of offloading events in HIDRA and Light-HIDRA. This latency is the
time between the creation of an offloading event by an application peer
and the moment the workload gets assigned to a Solver peer.

Setup. To conduct a fair comparison between both proposals, we
only measure the time required by the scheduling protocols on their
own to complete offloading events. We do not include in the results
additional times such as the blockchain block time. This is because the
block time will depend on the blockchain network on which HIDRA is
executed and will always increase the fulfill latency of an offloading
event (since we use instant transactions in the experiments). We also
do not include in the results the configurable timeouts of Light-HIDRA
(i.e., 𝑡𝑜𝑢𝑡ssp and 𝑡𝑠start).

Results. Fig. 11 shows the event fulfill latencies of an offloading
event in HIDRA and Light-HIDRA networks ranging from 100 to 400
peers, with domains composed of 100 peers. Fig. 11 shows high latency
for HIDRA: it takes over four minutes to fulfill an offloading event in a
network of 400 peers. We observe that the latency increases between
the different HIDRA networks are significantly larger (superlinear) than
the increases occurring in Light-HIDRA networks. In contrast, the event
fulfill latencies in Light-HIDRA, both with and without domains, are
significantly lower. In a network of 400 peers, Fig. 11 demonstrates a
reduction 19.4× and 142× for Light-HIDRA without and with domains,
respectively. Note that in Light-HIDRA, the steps that contribute the
most to increase latencies are those with 𝑂(𝑁2) complexity, i.e., steps
that involve an all-to-all communication and have to guarantee the
Byzantine quorum before the execution flow can continue (ECHO and
READY messages in the different BRB rounds).

Our next experiments explore the throughput of HIDRA and Light-
HIDRA with domains. We measure the throughput of offloading events
for both systems in networks with 100 peers and domains composed of
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Fig. 11. Fulfill latency of an offloading event in HIDRA and Light-HIDRA networks of
different sizes.

50 peers. We expose both systems to an increasing number of offloading
events, and measure the increase in event fulfill latency. This is a
common approach to measure the throughput of distributed algorithms
[14]. Fig. 12 shows an increase of the fulfill latencies per offloading
event as the number of simultaneous events sent increases for both sys-
tems. We also show the standard deviation in latency with error bars.
Our first observation is that Light-HIDRA shows significantly lower
verage event fulfill latencies for all evaluated loads. For example,
hen sending 60 offloading events, HIDRA shows an average fulfill

atency of 89.86 s, while Light-HIDRA achieves an average of 4.7 s per
vent, 19.1 × lower.

As the system load increases, Fig. 12 shows a notable increase
f event fulfill latencies in HIDRA whereas Light-HIDRA is mostly
ndifferent to this increase. We do notice a small increase latency
or Light-HIDRA when sending more than 50 simultaneous offloading
vents. Specifically, when increasing the load from 50 to 60 events, the
verage event fulfill latency of Light-HIDRA increases by 1.63 times. We
lso noticed that in some executions, HIDRA is unable to handle more
han 60 simultaneous events and is unable to fulfill some of these events
n these conditions.
Conclusions. Light-HIDRA shows significant reductions in the fulfill

atency of offloading events compared to HIDRA, namely up to 142×.
ight-HIDRA also demonstrates superior throughput performance com-
ared to HIDRA, exhibiting a notably lower average event fulfill latency
cross all evaluated system loads. To explore the influence of the 𝑓
arameter as is done with bandwidth usage, we evaluate the fulfill
atency of an offloading event by assuming a scenario with 𝑓 silent
eers that selfishly avoid participating in the protocol. We observe
imilar fulfill latencies in experiments with and without silent peers.
or example, in a 100-peer Light-HIDRA network without domains, we
btain a fulfill latency of 1.51 s for the scenario with 𝑓 silent peers,
ompared to the 1.83 s shown in Fig. 11.

.4. CPU and memory usage

Our final set of experiments measure the CPU and memory overhead
f HIDRA and Light-HIDRA.
Setup. We measure the resource usage of the HIDRA and Light-

IDRA networks deployed for the experiments in Figs. 9 and 11. This
elps us to assess the feasibility of running Light-HIDRA on lightweight,
esource-constrained devices. To this end, we add some additional
eatures to the management clients of HIDRA and Light-HIDRA in order
o monitor the resource usage of each peer deployed in the experiments.
pecifically, we employ the psutil library in both proposals to monitor
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eers during the lifecycle of an offloading event. Note that the overhead
Fig. 12. Fulfill latency when sending multiple offloading events.

produced by the monitoring features is excluded from the obtained
results.

Results. Fig. 13 highlights the CPU and memory usages of HIDRA
and Light-HIDRA networks with varying sizes, when sending a single
ffloading event. Figure shows the overall CPU and memory usage of
ll peers belonging to the network deployed in each experiment. The
alues are displayed in relation to the total amount of resources of our
estbed. The obtained results for CPU usages (Fig. 13(a)) and memory
sages (Fig. 13(b)) demonstrate a high resource consumption by HIDRA
n comparison with Light-HIDRA. Taking as example the measurement
f a 400-peer network, HIDRA has a CPU consumption of 38.02%
ompared to 8.08% for Light-HIDRAwithout domains, which represents
4.71× reduction in CPU usage. Another observation is the difference

n CPU usage between the two Light-HIDRA configurations. Fig. 13(a)
hows approximately double of CPU usage in Light-HIDRA networks
ithout domains, except for the measurement with 100 peers, since

here is only one domain. This is because all peers in networks without
omains fully execute the three phases of the Light-HIDRA protocol,
hereas in networks with domains the tasks are distributed among the
pplicant and Solver domains.

Fig. 13(b) shows that Light-HIDRA significant reduces memory us-
ge compared to HIDRA. In a 400-peer network, Light-HIDRA uses up to
.6× less memory than HIDRA. We also observe that memory usage for
he two configuration of Light-HIDRA is mostly the same, and domains
o not impact memory usage.

It should be noted that the high CPU and memory usages of HIDRA
re partially attributed to the use of its two software clients, i.e., the
anagement client and the blockchain client (Geth), in comparison
ith Light-HIDRA, which only requires to execute the management

lient since it is an off-chain solution. We decided to add the resource
sage of the underlying blockchain to the results as it is an essential
omponent in HIDRA.
Conclusions. Light-HIDRA consumes significantly less CPU and

emory resources compared to HIDRA, and therefore is more suitable
or deployment on lightweight devices. Regarding the 𝑓 parameter, any
alue 𝑓 ′ ≤ 𝑓 will not lead to additional overhead in the results as the
xperiments consider the worst case scenario. We also evaluate CPU
nd memory usages of an offloading event in a scenario with 𝑓 silent
eers that avoid participating in the protocol. In the case of the 100-
eer Light-HIDRA network without domains in Figs. 13(a) and 13(b),
e obtain a CPU usage of 1.4% and a memory usage of 4.88 GB for the

cenario with 𝑓 silent peers, results slightly lower to those obtained in
he previous experiments (i.e., 1.56% and 4.9 GB, respectively).
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. Related work

In this section we emphasize prominent related work in the field of
istributed resource orchestration and workload offloading in order to
ighlight the novelty of Light-HIDRA compared to other works in the
iterature. We summarize the most relevant and comparable works and
heir main features in Table 2.

Workload scheduling in Fog-IoT environments is an integral part
f resource orchestration. According to the survey presented in [36],
he vast majority of proposals for orchestration in fog environments
dhere to a centralized architecture. This survey also identifies several
oals addressed by orchestrators, including Service Level Agreement
SLA) guarantees, service cycle management, and more, with resource
anagement being the most frequently researched goal.

Given that applications and services are often encapsulated as con-
ainers for easier deployment and management, a growing trend is
o leverage Kubernetes-like container orchestrators for fog/edge re-
ources. To this end, specialized versions of Kubernetes tailored to
it resource-scarce distributed nodes have been developed, such as
3s [37] or KubeEdge [38]. However, note that in all these cases,
esource orchestration is still performed by a centralized server. Fur-
hermore, the scalability of the Kubernetes’ ecosystem is approached
hrough the federation of different Kubernetes clusters, exemplified
y Karmada [39], which again relies on a centralized control plane
overning multiple Kubernetes clusters.

However, a centralized approach poses challenges such as potential
ingle points of failure, increased latency and scalability limitations. To
ddress these issues, researchers are exploring alternate solutions based
n distributed resource orchestration. Due to the intrinsic decentralized
ature of fog computing, its confluence with blockchain and other dis-
ributed technologies seems natural, not only in the application domain
in order to track and secure data from Fog-IoT environments), but also
o achieve a truly distributed resource management. The EdgeChain
ramework [40] proposes a credit-based resource management sys-
em based on a permissioned blockchain and a currency system. The
ehavior of the IoT devices and rule enforcement is regulated by
eans of smart contracts. Another prominent work in the field of dis-

ributed resource management is MODiCuM [27]. The authors present
n open resource outsourcing market based on blockchain technology
nd smart contracts in which resource owners and end users exchange
omputational resources and credits. To avoid misbehavior by system
articipants, MODiCuM models the exchange of resources as a game-
heoretic model with the objective of assigning them fair rewards and
enalties.

The authors of Light-HIDRA also proposed HIDRA, a fully dis-
ributed orchestrator designed for managing fog resources [6]. The
88
primary focus of HIDRA was to effectively orchestrate workloads as
containers within local fog clusters, harnessing the combined power
of blockchain networks and lightweight virtualization technologies. In
HIDRA, the workload scheduling tasks rely on a set of smart contracts.
Consequently, the control plane of HIDRA is deliberately decentral-
ized, avoiding the risks associated with single points of failure. By
distributing control across all nodes in the cluster, the system’s security
is significantly enhanced, effectively protecting against potential DoS
attacks and physical threats. More recently, S-HIDRA [10] has been
eveloped to address Fog-IoT environments that are geographically
roader and organized in domains composed of fog nodes/end devices.
o further empower the decentralized orchestration of containerized
ervices, S-HIDRA integrates Software Defined Networking (SDN) ca-

pabilities. This strategic fusion of SDN technology and the HIDRA
orchestrator, along with S-HIDRA domains, enables dynamic and pro-
grammable management of network traffic, facilitating efficient and
scalable operations across the fog computing landscape.

Regarding the most specific topic of workload offloading, the recent
survey in [41] focuses on strategies for node selection in order to
optimize QoS and reduce energy consumption. The proposals address
the computing offloading among cloud, fog, and edge layers, not among
peers as in the case of Light-HIDRA. The optimization-based techniques
are the most preferred choices to improve the QoS and reduce energy.
Most of those techniques can complement Light-HIDRA by providing
more sophisticated criteria for solver selection (auto-selection in our
case, since there is not a centralized controller). This survey also
includes a few studies that harness the blockchain technology in dif-
ferent ways, such as using smart contracts at the application level
for interaction among stakeholders [42], or securing the offloading
process [43–46].

More precisely, Shi et al. propose a blockchain-enabled Vehicu-
lar Edge Computing (VEC) framework [43] aimed at boosting the
reliability and efficiency of vehicle-to-vehicle task offloading. They
also employ a Deep Reinforcement Learning (DRL)-based computation
offloading scheme. This enables task vehicles to delegate a portion of
their computation-intensive tasks to neighboring vehicles. To enhance
security, the paper introduces an improved consensus algorithm based
on Practical Byzantine Fault Tolerance (PBFT), along with an algorithm
for selecting consensus nodes. The proposed scheme for VEC is vali-
dated through simulation, considering a fixed area with 50 base stations
and up to 30 consensus nodes.

Sellami et al. combine blockchain and DRL to facilitate energy-
aware task scheduling and offloading within an Internet of Things
(IoT) network enabled by SDN [44]. They implement a centralized
control plane, which includes a task scheduler within the Ryu SDN

controller (i.e., offloading decisions are made off-chain in a centralized
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Table 2
Key features of comparable approaches. Decentralized management (D.M.), scalability-focused (S.F.), workload validation (W.V.), underlying consensus/agreement mechanism (U.M.)

Ref. Context Main goal D.M. S.F. W.V. U.M. Proposal
validation

Evaluation etrics

[40] Fog-IoT
environments

Managing resources using smart
contracts deployed on
permissioned blockchains

✓ ✗ ✗ PoW Experimental
testbed

CPU, memory and disk usages,
block and transaction delays,
block sizes, request acceptance
rates

[27] Computation
outsourcing

Decentralized market of
computational resources based on
blockchain and smart contracts

✓ ✗ ✓ PoA Equilibrium
analysis, proof
of concept

CPU and memory usages, gas
costs, function latencies

[6] Fog computing Resource orchestration based on
blockchain and smart contracts

✓ ✗ ✗ PoA Physical testbed CPU, memory and disk usages,
block sizes, power consumption

[10] Fog computing Resource orchestration based on
blockchain and SDN;
domain-based coordination

✓ ✓ ✗ PoA Physical testbed Request latency and availability

[43] Vehicular edge
computing

Secure and reliable vehicular task
allocation system for computation
offloading among smart
contract-enabled vehicles

✓ ✗ ✗ PBFT Simulation Average delay of offloading tasks,
average utility

[44] 5G IoT networks SDN-enabled centralized
energy-aware task offloading
(off-chain); blockchain to
communicate offloading decisions

✗ ✗ ✗ PoA Emulation Network latency, transaction
throughput and energy
consumption

[19] Online payments Decentralized and scalable
off-chain payments

✓ ✓ ✗ BRB Testbed (public
cloud network)

Payment latencies and throughput

Our work Fog computing Scalable, decentralized and
consensus-less resource
orchestration in Fog-IoT
environments

✓ ✓ ✓ BRB Security analysis,
testbed

Bandwidth, CPU and memory
usages, latency and throughput of
offloading events
point). The task assignment and offloading decisions are communicated
securely through the blockchain, by means of a set of smart contracts on
top of a PoA-based network. PoA is shown to outperform Proof-of-Work
(PoW) and PBFT algorithms in terms of network latency, transaction
throughput and energy consumption.

Our in-depth comparison with HIDRA, which also uses a PoA con-
sensus, showcases the main benefit of Light-HIDRA to lower the over-
head incurred by conventional blockchains. Existing distributed ledger
technologies pose some performance and scalability issues that the
scientific community is currently analyzing [47–49]. In the field of
online payments, decentralized alternatives beyond those based on
blockchain technology have been explored. Authors in [19] propose
Astro, an off-chain decentralized payment system based on the BRB
broadcast primitive that avoids the need for consensus to prevent
double-spending. Astro employs a sharding scheme to partition nodes
into different shards or domains. The goal of sharding is to improve
scalability and avoid the requirement of a global system state shared
by all nodes. Whereas Astro focuses its efforts on designing a payment
system, we go a step further with Light-HIDRA by proposing a decen-
tralized resource orchestration system that also implements payments
in order to reward peers for the resources provided to the network.

8. Conclusion

This paper introduced Light-HIDRA, a novel and efficient approach
for decentralized resource orchestration within IoT ecosystems. By
building upon the Byzantine Reliable Broadcast algorithm for the or-
chestration of resources, Light-HIDRA bypasses the need for consensus,
dramatically reducing communication overhead and latency compared
to existing approaches that rely on distributed ledger technology. Our
system achieves further scalability by grouping peers into distinct
domains and reducing inter-domain communication.

Our comprehensive security analysis and experimental evaluation
show Light-HIDRA’s robustness and efficiency. Notably, our experimen-
tal results reveal the superior performance of Light-HIDRA over HIDRA,
a state-of-the-art approach for decentralized resource orchestration.
89

Specifically, Light-HIDRA reduces the bandwidth usage by up to 57
times and the latency of workload offloading by up to 142 times, whilst
maintaining higher throughput. These findings establish Light-HIDRA
as a promising solution for resource orchestration.

As future work, we plan to explore real-world use cases where we
could apply the Light-HIDRA approach, such as inter-campus comput-
ing groups or resource offloading marketplaces. We also intend to study
the use of Light-HIDRA in more open Fog-IoT environments. To achieve
this, we will design a reputation system to effectively measure and
quantify the behavior of both domains and peers, aiming to mitigate
common trust attacks in open networks such as Sybil attacks.
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