
Enriching Machine
Learning Model
Metadata
Collecting performance metadata
through automatic evaluation

Hendrik G. J. Kant

Enriching
Machine

Learning Model
Metadata

Collecting performance metadata through
automatic evaluation

by

Hendrik G. J. Kant

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday May 8th, 2023 at 4:00 PM.

Student number: 4024400
Project duration: March 1, 2022 – May 8, 2023
Thesis committee: Prof. dr. ir. A. Bozzon, TU Delft, thesis supervisor

Dr. A. Katsifodimos, TU Delft, daily supervisor
Dr. R. Hai, TU Delft, daily supervisor
ir. Z. Li, TU Delft, daily co-supervisor
Dr. ing. S. Proksch, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

The completion of this thesis marks the ending of my studies at the TU Delft. This project has
been one of the most challenging tasks I have faced in my life, which makes the satisfaction of
having completed it all the greater.

Machine learning was not an integral part of my course load, and I was not familiar with the topic
of model zoos before starting this project, but have found it an intriguing topic nonetheless. In
all the projects I’ve done, during my studies as well as professionally, I have always tried to be
mindful of the impact they have on actual people, and the real problems they try to solve. With
model zoos being very end-user oriented applications, and still in their infancy, I am glad I was
able to contribute to this topic in a meaningful way.

I would like to take this opportunity to thank Alessandro Bozzon, to whom I was a student
and later assistant, and who was supervisor of the final project for my Bachelor’s degree, which
solidified him as my choice of supervisor for this project as well. In every capacity, your feedback
has been invaluable and your enthusiasm infectious, and has motivated me throughout this final
project. I also want to thank Ziyu Li, who has guided me to completion of this project with
her feedback provided during our many meetings from start to finish, Asterios Katsifodimos and
Rihan Hai for providing feedback during pivotal moments of this project, and Sebastian Proksch
for serving as external committee member during the assessment of my work.

Furthermore, I would like to thank my supporting parents, who have encouraged but never pres-
sured me during the many, many years it has taken me to complete my studies. Finally, I would
like to thank my girlfriend, Asiye, who has kept me going during this project and was here for me,
even when my mood was down and my mind pre-occupied.

Hendrik G. J. Kant
Delft, April 2023

iii

Contents

1 Introduction 1
1.1 Limitations in current model zoos . 2
1.2 Prospects for model zoo improvements . 3
1.3 Potential use-cases. 4

1.3.1 UC1: Model comparison and selection. 4
1.3.2 UC2: Automated model selection for solving complex tasks 4

1.4 Objective and research questions. 5
1.5 Contributions . 5
1.6 Outline . 5

2 Related Work 7
2.1 Model zoos . 7
2.2 Evaluation . 8
2.3 Model Cards . 9
2.4 Robustness . 9

3 Framework Design 11
3.1 Framework architecture . 11

3.1.1 Scraper . 12
3.1.2 Model Evaluation . 13
3.1.3 User Interface. 13

3.2 Metadata model . 14
3.2.1 Model metadata . 14
3.2.2 Dataset metadata. 15
3.2.3 Evaluation metadata . 17
3.2.4 Reference . 17

4 Model evaluation 19
4.1 Evaluation design goals . 19
4.2 Evaluation Subcomponents . 21
4.3 Evaluation Process . 23

5 Analysis of collected performance metadata 27
5.1 Performance metadata availability . 27

5.1.1 FiftyOne . 30
5.1.2 Hugging Face . 32

v

vi Contents

6 User Interface 35
6.1 Datasets . 35

6.1.1 Dataset information . 35
6.1.2 Scatterplot. 39

6.2 Models . 42
6.2.1 Browsing models . 42
6.2.2 Model information . 43
6.2.3 Performance results . 45
6.2.4 Variant comparison . 50
6.2.5 Model performance comparison . 50

7 Conclusion and limitations 55
7.1 Fulfillment of objective . 55
7.2 Limitations of provided solution . 56
7.3 Suggestions for future research . 57

Dedicated to our cat Coco,
with whom I couldn’t spend enough time during her developing illness

for most of this project

1
Introduction

As Machine Learning (ML) becomes more popular, more and more ML models are being created.
In recent years, sharing these models has gained popularity, and has given rise to so called model
zoos, repositories of ML models. There may be several reasons to share a ML model. A shared
model can be re-used in multiple different applications. As the resources required, both time and
computational, are increasing to create state-of-the-art models, significant savings can be had by
re-using an existing model. Sharing a model also allows others to verify claims made about the
model.

Several model zoos have gained popularity, such as PyTorch Hub1, TensorFlow Hub2, FiftyOne3,
and — to the best of our knowledge — the largest to date, Hugging Face4, which contains over
160.000 models at the time of writing this report, having tripled in size since the start of this thesis.
Is these model zoos, users can find ready-to-use models, often categorized by task, training dataset,
or ML framework. Users can browse and search for specific models, read provided information,
and oftentimes start using the model quickly through an intuitive programmable interface. In
some cases, datasets and information about them is also included, as well as tools for users to
create models themselves.

Besides the models, metadata of the models is shared as well. Though there are varying definitions
of metadata (Furner, 2020), for our purpose we will follow use the definition of ”data about data”
(Riley, 2017). In our context, the artifact that is described by the metadata is the ready-to-use
model, and metadata of that model commonly includes information about who created it, how
they did it, what the model does, and how well it does it. Metadata can take any form (e.g.
textual, visual), but in current model zoos is often limited to textual information. The sharing

1https://pytorch.org/hub/
2https://www.tensorflow.org/hub
3https://docs.voxel51.com/user_guide/model_zoo/index.html
4https://huggingface.co/

1

2 1. Introduction

of metadata allows other users to understand how that model works, thus providing a degree of
transparency and explainability of the model in question. Until recent there was no clear standard
of sharing a model’s metadata. Mitchell et al., 2019 sought to change this with a proposed to share
a model’s metadata in so-called model-cards. This framework allows a standardized way to report
all aspects related to the creation and use of the model, such as it’s training data and methods,
performance evaluation results, and ethical considerations, both in textual and visual form. Most
model zoos include a version of a model card, though the information included varies greatly, both
between models in the same zoo, as well as what seems to be the standard for reporting between
model zoos.

The proliferation of model zoos has made it uncomplicated to share ML models. However, in
their current form, many model zoos provide little functionality beyond this. While it easy to
find any model to fulfil a task, it remains difficult to find a model that fits specific needs. For
users looking for a ready-to-use model, naturally information about the model that describes its
behavior and performance is of great value. However, in current-day model zoos the parts of model
cards that describe this aspect of a model — performance, limitations, ethical considerations —
are neglected. Instead, they oftentimes provide merely enough information to determine if a model
can be used for a given task, and a general description of a model, if that. Performance metadata,
if provided, is limited to a handful of values, thus barely providing potential users with a sufficient
understanding of the model’s performance, with other aspects such as limitations and ethical
considerations receiving little to no attention at all.

In this thesis we focus on the availability of performance metadata in the model zoos’ model cards.
Throughout this thesis, we describe a framework for a model evaluation pipeline, which overcomes
the main problems surrounding performance metadata: the availability and richness of this data
in current day model zoos. We also provide a reference benchmarking system built using our
framework and extract rich performance metadata for 986 models from the Hugging Face and
FiftyOne model zoos, and a new interface to view the metadata obtained with our benchmarking
system.

1.1. Limitations in current model zoos
As mentioned, there are two main problems surrounding performance metadata in model cards:
the availability and richness of this metadata. There are multiple aspects that contribute to these
problems.

Though it varies between and within model zoos, metadata is often missing completely from the
models’ model cards. Over the course of this thesis we have evaluated 1215 models from external
model zoos (see Chapter 5 for our results). For over 25% of these models, no performance metadata
was provided in the original model card.

If performance results are provided, they are, in most cases, limited to aggregated results. For
example, for classification models the precision metric over a complete dataset is sometimes
given, but not for each of the classes that can be classified by the model. If this is the case, they

1.2. Prospects for model zoo improvements 3

provide only a limited understanding of a model’s performance, and hide possible performance
disparities (Barocas et al., 2021).

An additional cause to these problems is the unstructured nature of performance reporting, for
example by providing performance results in the model’s description, rather than a predefined
format separately in the model card. This forces the user to scan a potentially long description
for the desired information, and limits access to this information by third parties.

There is also a strong reliance on self-reported values, which come with inherent trust issues in the
validity of the results, by requiring the creator of the model to provide these values when sharing
the model in a model zoo. The creator might not want to spend the time to gather these values,
or simply not know how, and thus omit them from the model card.

Each of these aspects also contributes to a lack of comparable performance metadata, thus pre-
venting users from comparing models with each other, and being able to find the best performing
model for their specific needs.

1.2. Prospects for model zoo improvements
As we have pointed out several shortcomings surrounding the performance metadata provided by
current model zoos, we would like to use this section to describe what a model zoo that overcomes
these problems might look like.

The first noticeable change for such an improved model zoo is observed when browsing for a
model. Besides the options available in current model zoos to filter and search for models. As
more performance metadata is present for models, new options will be available to filter models
with more complex queries. These might include filters for evaluation on a certain dataset or the
availability of a desired metric in the performance metadata. There might be more fine-grained
search filters as well, such as for the training on, and evaluation of specific data classes (e.g. ”show
me models that were evaluated on pictures containing cats”), or attributes of the data objects used
during classification (e.g. ”show me models evaluated with images smaller than 50x50 pixels”).
For these improvements over current model zoos, detailed information about the datasets, as well
as the metrics used during evaluation need to be recorded in the evaluation process.

Further improvements would be observed in the model cards. Naturally, performance results
would be provided in a structured manner, be disaggregated, comparable, and verified. As more
metadata is available, model cards include visualizations to present the data in an attractive and
informative way. Such visualizations will be interactive, with options to filter, sort, and zoom
in on specific parts of the data as users please. Besides the presentation of metadata collected
during evaluation, higher-level observations that describe a model’s behavior may be presented
in the model card as well. For example, based on the evaluation results, it could be said about
an image-classification model that it performs generally well on pictures of animals, or that a
text-classification model errs on the more positive side overall.

As the performance metadata collected in our envisioned model zoo is comparable, it will include

4 1. Introduction

a model comparison tool. A comparison can be made here for a handful of models, letting the
user compare the models in fine detail, based on their (disaggregated) performance results, but
also other model attributes, such as the speed and size of the model.

These improvements over current model zoos would enable new use-cases, of which we describe
two in the following section.

1.3. Potential use-cases
The presence of rich metadata in model zoos would enable new use-cases. In this section we
describe two use-cases that would be enabled by, and depend on, the presence of such performance
metadata.

1.3.1. UC1: Model comparison and selection
With the presence of increasingly rich performance metadata, users will be able to find an optimal
model according to increasingly specific needs. For example, consider a user with the following
classification need:

”I have 10.000 black and white pictures and am interested in pictures containing

bears. I want to minimize the false-negatives, and the process should be completed

within one hour.”

To obtain an optimal model to solve their problem, the user needs comparable performance meta-
data for each of the models that can solve this task. This metadata needs to be rich enough to
provide the user with the information for the metric they are interested in, recall. The perfor-
mance metrics also need to be disaggregated; the best performing model overall may not be best
at classifying bears, which the user is particularly interested in. As there is a time constraint,
the inference speed is of interest as well. As this particular metric depends on the hardware used
during model evaluation, special care needs to be taken to ensure it remains comparable with
other models. Finally, the user’s pictures are black-and-white, whereas most imaging datasets
use color pictures. The performance of models trained on such datasets will be impacted by this
difference, in varying degrees. Only by also evaluating models outside of their intended use can
the performance metadata be rich enough to find an optimal model for the user’s need.

1.3.2. UC2: Automated model selection for solving complex tasks
Each ML model performs a single task, yet more complex queries may exist that require a composi-
tion of models to answer. Furthermore, while each model has an average performance, they might
perform better or worse in certain aspects in their domain. For example, a sentiment-analysis
model — a model deriving mood from an input text — might be better at detecting anger than
happiness, an object-detection model — a model identifying objects in images — might perform
better at detecting chairs than airplanes. Tools build on top of a model zoo, that support complex
queries such as

Find pictures of the groom with the wedding cake

1.4. Objective and research questions 5

requires the disaggregate performance information and limitations of each model to be able to
create an optimal query execution path utilising one or more models.

1.4. Objective and research questions
The objective of this thesis is to find a means to provide performance metadata that is richer than
that provided by current solutions. Our aim is to improve upon the current situation in a way
that enables the use-cases described in Section 1.3. To do so, first the limitations and drawbacks
of current solutions need to be identified, resulting in our first research question:

RQ1: What are the limitations of provided metadata in current model zoos?

After answering this question, we can move to devise a solution that overcomes the found limita-
tions. Hence, our second research question:

RQ2: How can we provide rich and comparable performance metadata for machine

learning models

1.5. Contributions
In the process of answering both research questions, we make several contributions to the field:

• We identified a need for richer performance metadata for machine learning models unad-
dressed in current solutions

• We devised a framework for a model evaluation pipeline, with which one can create a bench-
marking system tailored to automate model performance evaluation for a specific set of
machine learning models

• We delivered a reference implementation of a benchmarking system built using our frame-
work, providing rich performance metadata for 986 models from the Hugging Face and Fifty-
One model zoos

• We presented an interactive interface, showing many visualizations for both dataset and
model metadata, with the latter uniquely enabled by our benchmarking system

The interactive interface is available at https://www.metadatazoo.io.

1.6. Outline
Chapter 2 gives an overview of existing related literature. Chapter 3 gives an overview of our
framework for an evaluation pipeline devised during this thesis, with Chapter 4 describing in more
detail the model evaluation component of our framework. In Chapter 5 we outline the results
achieved with our implementation of a benchmarking system, built using our framework, where
we compare the performance metadata collected during evaluation of 1215 models available in
the Hugging Face and FiftyOne model zoos with the performance metadata provided by those
model zoos. Chapter 6 describes and shows our user interface to view the metadata collected
by our benchmarking system, with many visualizations made possible only by the collection of

https://www.metadatazoo.io

6 1. Introduction

this metadata. Finally, in Chapter 7 we provide some concluding remarks and options for further
research into this field.

2
Related Work

2.1. Model zoos
In recent years several model zoos have gained popularity. The Hugging Face Model Hub Wolf et
al., 2020 (Hugging Face) is a combination of website and API through which users can explore and
use A large number of models. Initially containing exclusively Transformers based NLP models
and related datasets, through submission of new models by end-users it has steadily grown to
include pre-trained1, fine-tuned models, and datasets for other tasks and libraries as well. While
Hugging Face is — to the best of our knowledge — the largest to date, with over 160.000 models
at the time of writing this thesis, many more exist, such as model zoos containing models created
with a particular ML framework, such as PyTorch Hub2 for PyTorch (Paszke et al., 2019) models
and TensorFlow Hub3 for models created with the TensorFlow (Abadi et al., 2016) framework,
model zoos associated with software packages, such as the FiftyOne model zoo4, usable with the
FiftyOne software package5 and the Open Model Zoo for OpenVINO toolkit6 , containing example
models to be used in the OpenVINO toolkit7. While there is a variety of model zoos, many features
are shared between popular model zoos. This includes, but is not limited to, the categorization of
models (e.g. by task, framework, training dataset), browsing and searching models, a description
of each model, access to datasets and their metadata, and APIs or software packages to start using
the models.

1A partially trained model that can be used as starting point to fully train a model
2https://pytorch.org/blog/towards-reproducible-research-with-pytorch-hub/
3https://www.tensorflow.org/hub
4https://docs.voxel51.com/user_guide/model_zoo/index.html
5https://docs.voxel51.com/index.html
6https://github.com/openvinotoolkit/open_model_zoo
7https://docs.openvino.ai/

7

https://github.com/openvinotoolkit/open_model_zoo

8 2. Related Work

2.2. Evaluation
A machine learning model’s performance is evaluated based on task-specific metrics. For example,
precision, recall, and accuracy tend to be used for classification tasks, BLEU Papineni et al., 2002
and metrics based on BLEU such as METEOR Banerjee and Lavie, 2005 and ROUGE Lin, 2004
for various natural-language-processing tasks such as machine-translation and summarization, and
intersection-over-union for object-detection tasks.

Using such metrics is not without limits. Accuracy is known to be a bad metric when using
imbalanced datasets, and according to a study by Ferri et al., 2009, most classification metrics
tend to measure different aspects of a model. Similarly, BLEU has been shown to have limitations
(Callison-Burch et al., 2006, Reiter, 2018, Mathur et al., 2020.

It has been shown that problem exist in the way that evaluation results for ML models have
been reported as well. Raff, 2019 attempted to reproduce results from 255 selected papers and
found that 63% were reproducible. A similary study by Blagec et al., 2020 using 3867 from the
PapersWithCode8 platform and found that a large majority of metrics used have properties that do
no accurately describe the model’s performance. The used metrics themselves are also a problem.
Marie et al., 2021 conducted a study of 769 papers related to machine-translation and found that
nearly all of them (98,8%) still use this metric, despite numerous newer metrics being proposed
and accepted as superior.

In order to simplify evaluation of models, several libraries have been created with such features.
Some are framework-specific such as TorchMetrics (Detlefsen et al., 2022) for PyTorch or Keras9 for
TensorFlow. Other libraries exist that provide evaluation features such as Scikit-learn10, SciPy11,
NLTK12, and StatsModels13. Furthermore there are standard implementations for individual met-
rics such as BARTScore (Yuan et al., 2021), SacreBleu (Post, 2018), or rouge_score14. Some
model zoos have included tools to evaluate their models as well. FiftyOne includes tools to evalu-
ate models and then visualize the results, for example the bounding boxes of an object-detection
task, through their software. Hugging Face released the evaluate library (von Werra et al., 2022) in
an attempt to overcome the many different and incompatible metrics and methods of evaluation.
Tied in to the Hugging Face Model Hub, it enables users to evaluate any supported combination
of model and dataset from the Model Hub.

Finally, evaluation-as-a-service has gained traction, where evaluation of models is offloaded to a
third-party (Yadav et al., 2019, Kiela et al., 2021, Ma et al., 2021, Liu et al., 2021, Coleman et al.,
2017). Letting a designated party do the evaluation also enables holding challenges (Coleman
et al., 2017, Russakovsky et al., 2015, Yadav et al., 2019), rather than comparing self-reported
results. Centrally evaluating models has several advantages, such as increased reproducibility,
8https://paperswithcode.com/
9https://keras.io/
10https://scikit-learn.org/
11https://scipy.org/
12https://scipy.org/
13https://www.statsmodels.org/
14https://github.com/google-research/google-research/tree/master/rouge

2.3. Model Cards 9

compatibility and trust regarding the results (Willis and Stodden, 2020), and move the fields
towards a better approach to evaluation.

2.3. Model Cards
Mitchell et al., 2019 proposed a framework to standardize the metadata of models in so called
model cards, similar to a different proposal to standardize dataset information (Gebru et al.,
2021). Model card are intended to give any stakeholders information of the model in question in
order to improve understanding of that model. the required information regarding the model, such
as it’s details, intended use, performance, and ethical considerations. Most model zoos include
such a model card for each of their models, with varying levels of detail.

Crisan et al., 2022 build upon this to propose interactive model cards. Interactive model cards
are extended with interactive elements, which let a user interact with a model by, for example,
submitting own data to test the model or using interactive visualizations to explore the performance
evaluation results.

As part of model cards, Mitchell et al., 2019 advocate for the reporting of disaggregated evaluation
results. This is supported by other works, such as Barocas et al., 2021, recognizing that there may
be a performance disparities in subgroups of datasets, for example for different races and genders
in classification tasks (Buolamwini and Gebru, 2018), which are hidden by aggregated performance
reporting.

Model zoos may provide a template for a model card to work with their own system. For example
Hugging Face provides a template15 which allows users to provide a description of the model,
specify tags to categorize the model, or provide performance results that are shown separately in
their user interface.

2.4. Robustness
Tangientally related to our project is the concept of robustness of a ML model. While there is
no singular definition, it can broadly be defined as the model’s retained performance when using
corrupted or perturbed input. Several studies have been conducted regarding the impact of such
input, showing that for certain types of models the performance takes a significant hit when using
perturbed inputs (Akhtar and Mian, 2018, Dziugaite et al., 2016, Engstrom et al., 2017), noting
that perturbations too small to notice are sometimes enough to trick the model. Others have
also investigated how model robustness can be improved (Djolonga et al., 2021), and have created
standardized benchmarks to benchmark robustness (Hendrycks and Dietterich, 2019).

For the purpose of this project, we note the importance of the robustness of a model in the
context of completing a model card. As, in our case, the information is used by end-users in order
to understand and compare models, we focus primarily on the use of perturbations that reflect
real-world use-cases, rather than corrupted inputs.

15https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1

https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1

3
Framework Design

In this chapter we describe the architecture of our framework for a model evaluation pipeline. This
framework can be used to implement a benchmarking system to evaluate models from any source,
locally or external, which is able to automatically extract rich performance metadata for those
models. The framework is designed such that a benchmarking system built with it, by design,
overcomes the problems outlined in Section 1.1. As part of this thesis, we have implemented
a benchmarking system using our framework, able to evaluate models from the Hugging Face
and FiftyOne model zoos. In Chapter 5 we compare the performance metadata obtained for
1215 models by our benchmarking system, to the performance metadata already present in those
external model zoos.

In Section 3.1 we describe the architecture of our framework. In short, the main components are
(i) metadata storage, (ii) dataset storage, and (iii) a model evaluation component. For the needs
of this thesis we have included a scraper to collect model metadata from external sources rather
than adding our own, and a user interface to view the stored metadata, though how initial model
metadata is obtained, and performance metadata is accessed, is not dictated by our framework.
Finally, we outline our data model in Section 3.2.

3.1. Framework architecture
Our framework consists of a few main components, displayed in Figure 3.1. The metadata for
each model and dataset (detailed in Section 3.2) are stored in metadata storage, with the files for
datasets stored in a dataset storage. We obtain performance metadata for each model through a
model evaluation component, described briefly in Section 3.1.2 and in greater detail in Chapter
4. For our benchmarking system we have created a scraper, described in Section 3.1.1, to obtain
model metadata from external model zoos, and a user interface, described briefly in Section 3.1.3
and in greater detail in Chapter 6, to display the metadata obtained by the benchmarking system.

11

12 3. Framework Design

Figure 3.1: The subsystems of our model evaluation pipeline framework. Our implementation of a benchmarking system
included the use of a scraper and user interface. Though not part of our framework, they have been included in the presented

architecture to show the interactive between them and the components of our framework

Though not part of the framework itself, we have included a description of each of these systems in
this section as well, and included them in Figure 3.1 to show the interaction between the scraper,
the user interface, and the components of our framework.

3.1.1. Scraper
In this section we describe the scraper used to populate our metadata storage with metadata
retrieved external sources. For our implementation of a benchmarking system, we have scraped
model metadata from the Hugging Face and FiftyOne model zoos. For each source the metadata
for unknown models is stored in our storage, and metadata for models that do not exist anymore
in the external source is deleted. Initially, for each model only the model’s name and task are
copied, and the origin of the model is noted. For the purpose of this thesis, our benchmarking
system supports a subset of all scraped models for evaluation. In the interest of speeding up the
scraping process, only for these models the complete available metadata — as far as relevant to,
or required for evaluation — is obtained from the external source. See Section 5.1 for details on
which models are included in this subset. For these models, any tags from the model’s external
model card, containing information such as framework, training dataset supported languages, are
retrieved. The training dataset is mapped to a dataset known in our system, if possible, and a
reference is included in the model’s metadata. If available, the size of the model is recorded as well.
If a reference to an external published paper present in the model’s description, it is extracted,
stored, and added to the model’s metadata. The full textual description is not copied but rather
retrieved when the model’s metadata is accessed. This is done to always retrieve the most current
description, as they may change over time. The external metadata may be obtained through an
API or scraped from a web page. As support for more models may be added in the future for
our benchmarking system, the described metadata can also be added after the initial scrape. See
Table 3.1 for an example of scraped metadata for a model.

We use the scraper also to obtain metadata for with datasets when possible. For each dataset, we

3.1. Framework architecture 13

include the name, description, year, version, link to homepage, logo, and other basic information.
If relevant for the dataset, we include a id-to-label mapping for classes represented in the dataset.
Most datasets are divided in subsets, each used for a different task such as model training or
evaluation. For each of these so-called splits we record the name, total number of objects in the
split, and, for classification datasets, the distribution of the objects over each classifiable class. If
applicable, up to 20 examples of data objects are stored, again per classifiable class for classification
datasets. See Tables 3.2a to 3.2d for examples of scraped metadata for datasets.

3.1.2. Model Evaluation
Our framework addresses the problems described in Section 1.1 through the inclusion of a model
evaluation component. The model evaluation component removes the need for self-reported perfor-
mance metadata, or any user interaction besides the sharing of the model, as it allows continuing
evaluation of all models represented in our metadata storage. This is made possible by, during
the evaluation of a model, assessing which metadata is already stored for that model, and only
obtaining metadata that is not present yet.

Through the use of re-usable components for metric calculation, the model evaluation component
delivers comparable performance metadata, even between models from different sources. To obtain
richer performance metadata, it enables evaluation using multiple dataset. We borrow the idea
from model robustness to evaluate with perturbed versions of each dataset as well. The evaluation
component defines standardized perturbation techniques, in order to evaluate a model’s perfor-
mance with input deviating from the training dataset, and providing the user with additional
performance metadata. These dataset perturbations are handled automatically by the evaluation
pipeline, creating and re-using perturbed datasets as needed.

For a more detailed description of the model evaluation component and evaluation process, see
Chapter 4.

3.1.3. User Interface
The user interface included for this thesis allows users to explore and compare the rich metadata
obtained by our benchmarking system. When viewing datasets, the user can view examples of
data instances of this dataset, if they exist, information about the splits of the dataset, with
information about the objects in it, a selection of models that are evaluated using this dataset is
shown, and task-related information, such as the classes for datasets used to train classification
models..

The user can browse models, and apply filters to search for a specific model. For each model we
have created a model card: a combination of the description from the model card from the source
model zoo, the scraped metadata, and several new interactive elements to visualize the model’s
performance results. This includes several diagrams allowing the user to view performance of a
model, for a whole dataset, or subsections or perturbations thereof, task-specific representations
such as a confusion matrix and misclassifications, and scatter plots to get a higher-level overview
of the performance of a large number of models.

14 3. Framework Design

Figure 3.2: The metadata model. The color of each entity indicates which metadata is hold: grey describe models, red describe
datasets, blue describe evaluation results, and the purple entity holds references to external resources.

The visualizations in our model card used to display the information regarding both datasets and
models are interactive, allowing the user to filter, zoom, or disable parts of the data they are
not interested in. For a look the user interface and its various visualizations, please see Chapter
6.

3.2. Metadata model
In this section we describe the data model used to store model and dataset metadata. For our data
model we took inspiration from other publications such as Schelter et al., 2017 and Li et al., 2022,
but adapted the model to fit our needs. Figure 3.2 depicts our data model. The entities in the
data model are color coded according to the information they relate to. They can be divided in
metadata related to models (grey entities, described in Section 3.2.1), datasets (red, described in
Section 3.2.2) and evaluation results (green, Section 3.2.3), with reference (purple, Section 3.2.4)
being a standalone entity.

3.2.1. Model metadata
The entities containing metadata related to models are colored grey in our data model. The
Model entity contains all information related to the model itself. This always contains a unique
identifier, the name of the model, and the source of the model. Additionally, if known, it contains
the task the model performs, a reference to the datasets it is trained on, and other information
important to be able to find the appropriate model in the zoo. It has a reference to the Task

entity, which contains only the name of a task. See Table 3.1 for an example of stored metadata
for a Model.

3.2. Metadata model 15

Field Value
_id 63a0abd915a79b5cfb175bcc
name facebook/detr-resnet-101-dc5
task object-detection
datasets [6325c7632aa8981c9d3b411f]
tags {dataset: [coco], library: [PyTorch], …}
files {pytorch.model.bin: 243011543, …}
config {backbone: resnet101, …}

Table 3.1: An instance of the Model entity

3.2.2. Dataset metadata
Entities related to datasets (colored red) contain all information related to the stored datasets.
The main entity is the Dataset itself. This entity describes a dataset which was used to train
models, and can be used to evaluated models. It contains the name and version of the dataset,
and the type of data in the dataset, for example images or text. If available, further information
such as a description and a homepage URL can be stored here too. For each dataset we also record
compatible datasets. A compatible dataset means that model which is trained on this dataset, can
also be evaluated using any compatible dataset. This allows us to expand the performance results
collected for each model, which in turn gives the user more information. Finally, for each dataset
we note the variants, if any, that can be created to use during evaluation. From these values
our benchmarking system can automatically create the required variants during the evaluation
process. Table 3.2a shows an example instance of the Dataset entity.

For many datasets, each object in it is labelled as a particular class of objects. For example,
the CIFAR-10 image-classification dataset (Krizhevsky, Hinton, et al., 2009) assigns to each of
its 60.000 images one of the ten classes. Similarly, the IMDB text classification dataset contains
50.000 movie reviews, each labeled as either a positive or negative review. This information is
described by the DatasetClass entity. This entity contains a reference to the dataset it belongs
to, and a numerical identifier and textual label of the class. Additionally it might contain extra
information, such as a higher level label for the class. Table 3.2b shows an example instance of
the DatasetClass entity.

Most datasets are partitioned in disjoint subsets, called splits. Datasets are commonly divided in
a training split to train models with, and a test and/or validation split to evaluate models with.
The DatasetSplit entity contains information to describe any splits available for a dataset.
This entity has a reference to the dataset it pertains to, the type of split (training, test, etc.), the
number of objects in the split, and, if known, the division of objects per DatasetClass of the
dataset. Table 3.2c shows an example instance of the DatasetSplit entity.

The DatasetExample contains descriptions of examples of the objects in the dataset. Besides a
reference to the dataset itself, it contains the example and optionally a reference to a class of the
dataset. The example might be a reference to a media file (for datasets of those types), or a text

16 3. Framework Design

snippet (for textual datasets). If a class is referenced, the example shows an object for the given
class. If not, the example shows more classes, for example a collage of images for each class in the
dataset. Table 3.2d show an example instance of the DatasetExample entity.

Finally, the Variant describes each of the available variants. Each variant is for a single data
type, and it contains a description of the method of perturbation, so as to increase reproducibility
of our results. Table 3.2e shows an example of the Variant entity.

Field Value
_id 6325c78d2aa8981c9d3b48bb
name imagenet
version 2012
datatype IMAGE
description The ImageNet project is…
homepage https://www.image-net.org/
year 2012
reference 6325c7752aa8981c9d3b449c
compatible_with [63a0cf8b22c94be4b5751187]
logo https://www.image-net.o…
supported_variants [greyscale, flipped, inverte…]

(a) An instance of the Dataset entity

Field Value
_id 6325c7632aa8981c9d3b4124
dataset_id 6325c7632aa8981c9d3b411f
name bicycle
classId 2
extra_fields {superCategory: vehicle}

(b) An instance of the DatasetClass entity

Field Value
_id 6329b25b0f1513e306f0fe5a
dataset_id 6325c7892aa8981c9d3b488b
split_type TRAIN
total_items 25000
class_counts {1: 12500, 2: 12500}

(c) An instance of the DatasetSplit entity

Field Value
_id 6325c78a2aa8981c9d3b4892
dataset_id 6325c7892aa8981c9d3b488b
example ”I rented I AM CURIOUS…”
class_id 0

(d) Instance of the DatasetExample entity for a specific class
of the dataset

Field Value
_id 63fb9aedb25eb0fc34626de9
variant rotated90
description The image is counter-clockwise rotated 90 degrees
method PIL.Image.transpose(Transpose.ROTATE_90)
datatype IMAGE

(e) An instance of the Variant entity

Table 3.2: Example instances of each entity related to dataset metadata

3.2. Metadata model 17

3.2.3. Evaluation metadata
Entities related to model evaluation are colored blue in the data model. The main entity is the
EvaluationResult. It links together all aspects of a model’s evaluation step. Besides references
to both the model and dataset split, this entity contains a timestamp of evaluation, the metrics that
have been calculated during processing of the results, and optionally a perturbation used during
evaluation. Table 3.3a show an example instance of the EvaluationResult entity.

The ClassResult entity describes the actual performance results. Besides a reference to the
EvaluationResult it pertains to, it holds a combination of a metric and its value. Additionally,
a class id may be present if the given value indicates the model’s performance for a specific class.
If no class id is given, the value indicates the average for the whole dataset. Table 3.3b shows an
example instance of the ClassResult entity.

The Misclassification describes classification errors made during model evaluation. Besides
the confidence and object under consideration while making the mistake, it holds the predicted and
true classes — only one of which is required. The nature of the mistake can be determined from the
presence of the predicted and/or true classes. If the PredictedClass field is set, it was a false
positive, meaning the model thought it was the predicted class, but it was not. If the TrueClass
is set, it was a false negative, meaning it was that class, but the model thought otherwise. Note
that in a classification setting there is always both a true class and predicted class given, but this
is not required. Table 3.3c shows an example instance of the Misclassification entity.

The Metric describes the various metrics our system can calculate. For each Metric, we provide
a simple description, and both the means of calculation and values that can occur. Each metric
is linked to specific Tasks for which it can be used. Table 3.3d show an example of a Metric

entity.

Finally, the Runtime describes the model’s speed during evaluation. This entity holds a reference
to an EvaluationResult, the total time it took to evaluate all objects in the dataset, and, to
same needed conversions based on the desired representation, both the average time it took to
evaluate an object of the dataset and the average number of objects evaluated per second. See
table 3.3e for an example instance of the Runtime entity.

3.2.4. Reference
The Reference entity is another singular entity, used to store information pointing to a scientific
publication. Both the Model and Dataset entities can hold a reference to a Reference entity.
Table 3.4 shows an instance of the Reference entity.

18 3. Framework Design

Field Value
_id 63a24e65fe72489ce66a946c
timestamp 1671581027
model_id 62bdfe83465b811023e311d9
dataset_split 6329b25b0f1513e306f0fe5b
metrics [PRECISION, RECALL, …]
perturbation greyscale

(a) Instance of the EvaluationResult entity.

Field Value
_id 63a22df80f95c6eaa292283c
result_id 63a22df80f95c6eaa2922838
classId 5
metric F1SCORE
value 0.9876

(b) Instance of the ClassResult entity. If the classId field
is omitted, the entity described average performance over all

classes

Field Value
_id 63a22dfb0f95c6eaa29228cb
result_id 63a22df80f95c6eaa2922838
instance automobile_s_001582.png
detected_class 9
true_class 1
confidence 0.5762876868247986

(c) Instance of the Misclassification entity. Only one of
detected_class and true_class is required

Field Value
_id 63fb9aedb25eb0fc34626de6
metric PRECISION
calculation (TP + FN) / TP
values Range between zero (min…
tasks [text-classification, image…]

(d) Instance of the Metric entity

Field Value
_id 63a22dfd0f95c6eaa2922936
result_id 63a22df80f95c6eaa2922838
time_in_seconds 87.92572036699858
time_per_instance 0.008792572036699857
instances_per_second 113.73236361624772

(e) Instance of the Runtime entity

Table 3.3: Example instances of each entity related to model evaluation metadata

Field Value
_id 63a0cf8b22c94be4b5751186
type inproceedings
name wang2019learning
author Wang, Haohan and Ge, Songwei and Lipton, Zachary and Xing, Eric P
title Learning Robust Global Representations by Penalizing Local Predic…
year 2019
booktitle Advances in Neural Information Processing Systems
pages 10506–10518

Table 3.4: Instance of the Reference entity

4
Model evaluation

In this chapter we describe how models are evaluated in the model evaluation component of our
framework. As the name suggests, this component performs the actual evaluation of the models,
and obtains the performance metadata for them. It was designed such that it addresses the
problems outlined in Section 1.1. In Section 4.1 we describe the goals set for the model evaluation
component, which include ways to address the aforementioned problems, but should also allow for
the creation of a maintainable and extensible benchmarking system. Then, Section 4.2 describes
the subcomponents of our model evaluation component and how they work together to evaluate
models. Finally, in Section 4.1 we detail the evaluation process itself.

4.1. Evaluation design goals
When designing our framework, several goals were kept in mind. We strived to complete the
following goals with our model evaluation component, and thus the framework as a whole:

DG1 Remove burden from user: Remove burden to provide model performance

metadata from the model creator

DG2 Metadata for high degree of models: Enable obtaining performance meta-

data for a high degree of models

DG3 Comparable performance results: Obtain comparable performance results

between models, also from different sources

DG4 Richermetadata: Encourage obtaining richer metadata than provided by cur-

rent model zoos

19

20 4. Model evaluation

DG5Flexible design: Use a flexible design to allow the evaluation of a growing num-

ber of models over time

DG6 Expansion of metadata collection: Enable the re-evaluation of any model

to expand the collected metadata

The first four goals aim to overcome the shortcomings observed with performance metadata pro-
vided by existing model zoos, described in Section 1.1, and the latter two allowing for a more
flexible benchmarking system being created when using our framework. We will briefly describe
the purpose of each of these goals.

DG1: Removing burden from user
In current model zoos, the person writing the model card is expected to provide all metadata for
a model card. This need for user action limits performance metadata sharing. For example, the
person writing the model card may simply not want to spend the time required to evaluate their
model, or not know how to perform the evaluation. By removing the burden from the user to
provide the metadata, we remove one hurdle in the sharing of this metadata.

DG2: High degree of performance metadata
Availability of performance metadata varies within and across existing model zoos. The model
evaluation component in our framework should be designed so, that it allows the creation of
a benchmarking system that can obtain performance metadata for many, if not all, available
models.

DG3: Comparable performance results
Performance metadata provided by current model zoos is often incomparable. This stems from
self-reported, not-verified results, and the possible use of different metrics by different reporters,
and is compounded by problems surrounding model performance reporting in the field of machine
learning as a whole (see Section 2.2). By providing comparable results, users can compare models
to find one that suits their specific needs.

DG4: Richer metadata
Model performance reporting is often limited to a handful of values, not always providing an
aspiring user of that model enough information to determine if it fits their needs. The model
evaluation component should encourage obtaining of richer performance metadata than provided
by current solutions, thus providing more information of the model’s performance, and allowing a
more fine-grained comparison between models.

DG5: Flexible design
Model zoos are continuously growing with new types of models, possibly performing new tasks.
Benchmarking systems built at one point in time would not be able to evaluate such new types of

4.2. Evaluation Subcomponents 21

models. The model evaluation component should be flexible enough to accommodate the expansion
of a benchmarking system as needed.

DG6: Expansion of metadata collection
Over time, new datasets will become available to use during the evaluation of models, and new
metrics to describe a model’s performance, both providing more metadata. The design of the
model evaluation component should anticipate anticipate the need for re-evaluation of a model,
and the fact that metadata may exist which need not be obtained multiple times.

4.2. Evaluation Subcomponents
In this section we give an overview of the different subcomponents that make up the model evalu-
ation component of our framework. There are five main subcomponents: (i) a single Executor,
which is the entry point of the pipeline, accepts a model for evaluation, and directs the evaluation
process, (ii) one or more user-defined EvaluationModules, where each EvaluationModule is
able to execute a specific type of models, (iii) EvaluationTasks, generated in the evaluation pro-
cess, each defining a small task to perform in the complete evaluation process for a model,. (iv) one
or more user-defined Processors, each providing a standardized way of calculating a predefined
set of metrics, and (v) one or more user-defined Perturbations, standardized methods of data
perturbation which, when applied to datasets, create what we call ”dataset variants”.

Our framework provides templates for the EvaluationTask, Processor, and Perturbation

subcomponents. By implementing these subcomponents as needed, a benchmarking system can be
created to evaluate any set of models, and provide the performance metadata desired. Following
is a brief description of each component.

Executor
The Executor directs the process of evaluating a model. To evaluate a given model, it obtains
the available EvaluationModules that can execute this model. From the configuration of each
EvaluationModule, the Executor determines what performance metadata can be obtained
during the evaluation of that model, and what EvaluationTasks to perform to do so. The
evaluation process is detailed in section 4.3.

EvaluationModule
How a model is to be evaluated depends on its origin (e.g. which API to use to load the model),
its task (i.e. which metrics to calculate), and, in some cases, which dataset was used to train the
model. This last attribute is relevant for certain tasks, as it may restrict the responses a model
may be able to give. For example, the responses of a classification model are limited to one of the
defined classes of the training dataset.

When using our framework, one or more EvaluationModules should be defined by the cre-
ator of the resulting benchmarking system. Each EvaluationModule is required to specify a
combination of model source and task, and a dataset, and shall implement a function that per-

22 4. Model evaluation

forms model inference (i.e. it executes the model on some input) for models from that source
performing that task, utilizing that dataset. For example, one EvaluationModule can specify
the combination {HuggingFace, text-classification, emotion}, meaning it can exe-
cute text-classification models originating from Hugging Face, and will always use the emotion
dataset when doing so. Another EvaluationModule could specify {HuggingFace, text-

classification, IMDB}, meaning it can execute the same set of models, but using a different
dataset. As mentioned, the training dataset of a model may be relevant during evaluation. For
this reason, each EvaluationModule can judge if it can execute a given model based on the
model’s metadata and its own specified model origin, task, and dataset.

An observant reader will note that a varied set of models may result in many combinations of
origin, task, and training dataset, and thus require many EvaluationModules to be able to
evaluate all models. This is true, and by design. When creating a benchmarking system using our
framework, each EvaluationModule is an uncomplicated component, which, once implemented,
need rarely be updated, save to expand the metadata that is to be collected. This approach allows
a benchmarking system created using our framework to start with support for evaluation of a
small set of models, and expand afterwards by adding additional EvaluationModules. Through
this approach, we have achieved design goal DG5, which helps to also help achieve design goal
DG2.

To evaluate a model, one or more EvaluationTasks are to be completed. Through configura-
tion options, each EvaluationModule lets the Executor know which EvaluationTask are
required to fully evaluate a model of its subset. Each EvaluationModule configure 1. which
Processors to use to process the model inference output, and optionally 2. a file location if
the dataset is stored on disk, 3. which dataset variants are to be evaluated as well, and 4. a
specific split to use during evaluation, if not a default one. From this information, one or more
EvaluationTasks are created. When given a model and EvaluationTask by the Execu-

tor, the EvaluationModule performs the model inference according to the specifications of
the EvaluationTask and returns the output to the Executor for further processing.

EvaluationTask
The EvaluationTask contains the parameters to perform model inference. Each Evaluation-
Task defines (i) which dataset to use, (ii) the location of this dataset on disk, if stored on disk,
(iii) which dataset variant to use, if any, and, (iv) the current and total number of Evalua-
tionTasks, for logging purposes. During evaluation of a given model, an EvaluationModule

executes the model according to parameters given by one or more EvaluationTasks, with each
combination of model and EvaluationTask resulting in unique performance metadata.

Processor
A Processor provides a standardized method of calculating performance metrics from the output
of the model inference performed by the EvaluationModule. While some APIs from external
sources provide means to calculate metrics, our framework only uses Processors to guaran-

4.3. Evaluation Process 23

tee comparability of performance metrics also between models from different sources, and thus
satisfies design goal DG3. Several Processors are readily provided in our framework for the
calculation of metrics of classification and object-detection tasks, with each calculating not only
aggregated metrics, but also for each classifiable and detectable class, thus contributing to design
goal DG4.

Perturbation
Our framework allows definition of Perturbations, standardized methods of data perturbation
to create dataset variants. These variants can be used in the evaluation process to evaluate a
model using a perturbed version of a dataset. This provides additional performance metadata,
particularly by describing the model’s performance when provided with inputs that deviate from
the training dataset — something that may happen during operation of the model. Any required
dataset variants required during evaluation of a model need not be provided beforehand, but are
created as part of the evaluation process. By supporting this extraction of additional performance
metadata during the evaluation process, this feature contributes to design goal DG4 as well.

4.3. Evaluation Process
In this section we describe the process of evaluating a model. To evaluate a given model, the
Executor performs five steps:

1 Module selection: The executor retrieves the EvaluationModules that can exe-

cute the given model

2 Task creation: Creating EvaluationTasks based on the configuration of the re-

trieved EvaluationModules

3Task filtering: the EvaluationTasks that would not provide newmetadata based

on metadata present in storage are ignored

4 Model execution: Executing the remaining EvaluationTasks

5Results processing: Processing and storing the results using Processors defined

by the EvaluationModule

Figure 4.1 visualizes these steps. The combination of the first and third step allows a continuous
evaluation cycle, where, at intervals, all models can be pushed through the evaluation pipeline for
evaluation, regardless if they actually can be evaluated, or have been evaluated already. This means
that, once a new model is shared, it will automatically be picked up in the next iteration of the
cycle, and performance metadata is extracted as required. It also means that, if the performance
metadata that should be extracted from a model changes, in a next iteration of the cycle this newly
desired metadata, and only this metadata, is automatically extracted. Neither initial evaluation
nor re-evaluation require actions from the model creator, thus completing design goal DG1. Next,

24 4. Model evaluation

Figure 4.1: The process when evaluating a single model. Five steps are defined. 1. from all available EvaluationModules the
ones able to evaluate the given model are selected. Then, for each EvaluationModule, 2. from the base step and configuration
of the runner EvaluationModule, additional steps are created, 3. the EvaluationTasks that do not provide new metadata
for this model are filtered out, 4. each remaining EvaluationTask is executed by the EvaluationModule, 5. the results are

processed by each Processor defined by the EvaluationModule and stored

we describe each step.

1. Module selection
The first step the Executor performs is to select the EvaluationModules which can be used
to execute the given model. If the model does not fall within the subset defined by any of the
EvaluationModules present, this means it is not supported yet, and the evaluation process ends
here. The subsequent steps are performed for each EvaluationModule.

2. Task creation
In the second step the Executor creates all EvaluationTasks to complete to evaluate the model
with the EvaluationModule. It does so by first creating a base EvaluationTask to evaluate
with the dataset defined by the EvaluationModule. From this base EvaluationTask, addi-
tional EvaluationTasks are created based on the configuration of the EvaluationModule,
such as dataset variants to use during evaluation. Each EvaluationTask provides a unique set
of metadata for each model.

3. Task filtering
Third, the Executor filters out the EvaluationTasks that would not result in new performance
metadata. After filtering, if the model has been evaluated before, only new EvaluationTasks
will be used during this evaluation, and no duplicate metadata will be collected. If no steps remain,

4.3. Evaluation Process 25

the evaluation process ends here. This step allows indiscriminate evaluation

4. Model execution
In the fourth step, each of the EvaluationTasks are executed. If the step specifies a dataset
variant and source location on disk, the Executor ensures the dataset variant exists. If not,
the variant is created in this step, and stored so that it can be re-used during the evaluation of
another model in the future. To execute the EvaluationTask, it and the model are passed
to the EvaluationModule from which the step was created, which performs model inference
based on the parameters of the EvaluationTask. After the inference, the EvaluationModule
returns information regarding the execution speed and the results of the inference itself.

5. Results processing
In the final step, after execution of each EvaluationTask, the results are processed by each
Processor the EvaluationModule defined in its configuration, which in turn return stan-
dardized results. These processed results are then stored and accessible, for example through a
user interface.

5
Analysis of collected performance

metadata

In this chapter we describe the results achieved by our implementation of a benchmarking system,
built using our framework for an evaluation pipeline. In Section 5.1 we look at the availability
and diversity of the performance metadata generated by our benchmarking system. We do this
specifically for the subset of models our benchmarking system should be able to evaluate at time
of writing this thesis. The user interface to view the obtained performance metadata is accessible
at https://www.metadatazoo.io.

Some metadata, particularly inference speed, depend on hardware and software used during eval-
uation. For reproducibility of our results, we outline the hardware and software used in our
benchmarking system in Tables 5.1a and 5.1b.

5.1. Performance metadata availability
In this section we compare the performance metadata provided by our benchmarking system to
that provided by existing model zoos. We compare this metadata only for models that have
already been passed through our benchmarking system. The EvaluationModules (see Section
4.2) in our system provides support to evaluate Hugging Face and FiftyOne models that perform
one of three tasks, and were trained on one of thirteen datasets, resulting in a total of 1215 models
evaluated. Table 5.2 shows the distribution of these models per selected task and training dataset,
and per source the models were collected from.

Our benchmarking system was not able to evaluate all of these models. For 229 models (18.8%)
evaluation failed, for one of three reasons: (i) incompatibility between libraries used in our bench-
marking system and those used when creating the model, (ii) insufficient metadata available in
the external source to load the model with their API, or (iii) use of unknown classification labels,

27

https://www.metadatazoo.io

28 5. Analysis of collected performance metadata

Hardware
CPU AMD EPYC 7413
GPU NVidia A40
Memory 512GB
Platform Version
Ubuntu 20.04.1 LTS
Docker 20.10.12
Software Version
Language Python 3.8.10
Database MongoDB 4.4

(a) Execution environment of our benchmarking system

Dependencies Version
pymongo 3.12.3
tensorflow 2.9.1
torch 1.10.2+cu113
torchvision 0.11.3+cu113
torchaudio 0.10.2+cu113
fiftyone 0.16.5
huggingface-hub 0.11.1
datasets 2.8.0
transformers 4.21.2
evaluate 0.2.2
pycocotools 2.0.6
Pillow 9.0.4

(b) Python dependencies used to implement our benchmarking
system

Table 5.1: Hardware and version of software and important dependencies used in our benchmarking system

for example by using different capitalization (Sadness vs. sadness), using numbered labeling
instead of human-readable names (LABEL_0, LABEL_1, …vs. airplane, automobile, …), us-
ing a differently worded label (Science/Technology vs. Sci/Tech, 5 star vs. 5), using
unknown labels (e.g. Disgust when trained on the Emotion dataset), or using different language
(悲哀 vs. sadness). For models that failed because of the third reason, inference results could
not appropriately be judged to be correct or incorrect, and no metrics could be calculated. In
some EvaluationModules the dataset metadata was manually extended to include these dif-
ferent labels in the label-to-class-id mapping, if this error was discovered and the differing labels
could be identified, so that some models could be evaluated after all.

For the models that were evaluated, the collected performance metadata was consistent between
models that perform the same task and were evaluated on the same dataset. This holds true
between models from different external model zoos, due to the re-use of Processors by each
EvaluationModule. Table 5.3 details the metrics collected for each task. As all evaluated
object detection models were trained on the COCO dataset, the COCO metrics were calculated
during evaluation for all of these models. These metrics were calculated for the dataset as a
whole, but also for each individual class of objects to detect. For the two classification tasks,
different metrics are used for the dataset average and per-class results, with the difference lying in
true positives, false positives, and false negatives calculated for each classifiable class, and merely
the number of correct and incorrect classifications recorded for the whole dataset. This is done
because false positives/negatives may differ for each individual class, while for the whole dataset
it counts as a single incorrect classification. For example, a classification model may classify a
picture of a cat as a dog, counting as one false negative for the ”cat” class, and one false positive
for the ”dog” class, but one ”incorrect” classification for the dataset as a whole.

5.1. Performance metadata availability 29

Task Training Dataset Evaluated Models HF Models FO Models
Object Detection COCO 74 43 31
Image Classification ImageNet 199 173 26
Image Classification Beans 49 49 0
Image Classification CIFAR-10 17 17 0
Image Classification CIFAR-100 6 6 0
Image Classification Food101 19 19 0
Image Classification MNIST 7 7 0
Text Classification Emotion 468 468 0
Text Classification Ag-News 12 12 0
Text Classification Banking77 14 14 0
Text Classification IMDB 311 311 0
Text Classification Rotten Tomatoes 14 14 0
Text Classification Yelp Review 26 26 0
All tasks All datasets 1215 1158 57

Table 5.2: Number of models evaluated by our benchmarking system by task and training dataset, showing the total number of
models and for each of the external sources — Hugging Face (HF) and FiftyOne (FO).

Task Collected metrics
Object Detection COCO metricsa

Image Classification True positive, False Positive, False Negative (per class)
Correct, Incorrect (dataset)
Precision, Recall, F1-Score, average and per class

Text Classification True positive, False Positive, False Negative (per class)
Correct, Incorrect (dataset average)
Precision, Recall, F1-Score (dataset average and per class)

Table 5.3: The metrics collected during evaluation of a model of the specified tasks. As for each of these tasks the model is
tasked with finding objects of a specific class, the collected metrics are calculated for each individual class, as well as the

average over the dataset.

ahttps://cocodataset.org/#detection-eval

30 5. Analysis of collected performance metadata

Task Training Dataset Data points collected per evaluation
Object Detection COCO 972 (FO models), 5832 (HF models)
Image Classification ImageNet 7006 (FO models), 49042 (HF models)
Image Classification Beans 27
Image Classification CIFAR-10 76
Image Classification CIFAR-100 706
Image Classification Food101 713
Image Classification MNIST 76
Text Classification Emotion 48
Text Classification Ag-News 41
Text Classification Banking77 545
Text Classification IMDB 40
Text Classification Rotten Tomatoes 40
Text Classification Yelp Review 41

Table 5.4: Number of data points collected during evaluation of a model of the given task and trained on the given dataset. For
some combinations more data points are collected for Hugging Face (HF) models, as their evaluation include the use of

additional datasets and dataset variants not used in evaluation of FiftyOne (FO) models

Table 5.4 shows how many performance data points were collected for each model, divided by task
and training dataset. The numbers follow from the presented metrics collected. For example, for
models evaluated with the CIFAR-10 dataset, 7 values are calculated for each of the 10 classes,
and 6 aggregated values are calculated for the dataset average: 6 + 7 ∗ 10 = 76 data points. For
IMDB and rotten_tomatoes models more data points are collected, as models trained on either
of those datasets are evaluated using both, with evaluation using either dataset resulting in 20
data points. For COCO and ImageNet models, Hugging Face models are evaluated utilizing 5
dataset variants, resulting in more data points, and an additional dataset (ImageNet-sketch)
was used to evaluate models trained with ImageNet.

Figures 5.1a and 5.1b show the fraction of evaluated models for which more than one dataset,
or dataset variants were used during the evaluation. The use of additional datasets or variants
increases the available performance metadata after evaluation.

5.1.1. FiftyOne
In the case of FiftyOne evaluation (see Figure 5.2b) failed for fourteen of the 57 models (24,5%).
In all cases, this was due to a mismatch in libraries used by our benchmarking system (TensorFlow
2) and in the creation of the models (TensorFlow 1), meaning these models could not be executed.
This could be remedied in future applications by setting up an alternative environment with
different dependencies, to run a second instance of our benchmarking system.

FiftyOne does not provide much metadata for each model. Besides details such as the name,
external source, size, tags, they state required packages and if the model has CPU or GPU support.
No performance metadata are provided. This means that, for each of these models all the metadata

5.1. Performance metadata availability 31

(a) The number of datasets used during the evaluation of
each model.

(b) The number of dataset variants used during the
evaluation of each model.

Figure 5.1: Fractions of evaluated models that use additional datasets or dataset variants, each resulting in additional
performance metadata

(a) Results of evaluating 1158 Hugging Face models. (b) Results of evaluating 57 FiftyOne models.

Figure 5.2: Fraction of evaluated models that succeeded and failed, per external source

32 5. Analysis of collected performance metadata

collected by our benchmarking system is new to the model card of the model. Currently, for
roughly half of the models in the FiftyOne model zoo, our benchmarking system expands the
model card with new performance results, at no additional effort to the user. It is our believe that,
by adding additional EvaluationModules and setting up alternative execution environments,
for all FiftyOne models the model cards can be enriched with performance values through our
benchmarking system.

5.1.2. Hugging Face
For Hugging Face models, some model cards do report performance data. This is done in textual
form, but Hugging Face has also defined a structural way to present evaluation data1, which is
shown in a separate section of the webpage of the model. However, this is not always used when
reporting performance results. We attempted to categorize the manner performance results are
reported on Hugging Face, for the 1158 models we also ran through our benchmarking system.
Figure 5.3a shows the distribution of availability of performance metrics in either the description
of the model card, or using Hugging Face’s format to report performance numbers. For 257 models
(22,1%) of the model cards, performance results were not given. In another 98 cases (8,4%), they
were given solely in the description of the model. For 10 model cards (0,9%), they were given
only using Hugging Face’s format, and thus displayed separately in the model cards, and for the
majority of models, 793 models (68,4%), they were given both in the model’s description as well as
in Hugging Face’s model card format. Performance results that are shown separately are naturally
preferable, as then the user does not need to scan the description for them.

Besides how often performance values are given, it is also relevant what exactly is given. Figure
5.3b shows for model cards that provide performance results in Hugging Face’s format, how many
are self-reported, and how many are verified performance values. A large majority of performance
values are self-reported, meaning the creator of the model provides them in the model card, and
have not been verified to be accurate. Figure 5.3c shows for these same model cards how many
values were given in total. Here it is visible that, even though a handful of model cards provide a few
more values, for most models the performance is reported by just a single or two values. While this
provides some value, users wanting to know a model’s performance on a specific metric, or under
certain circumstances cannot get the answers they seek with such limited information. Of note is
the one model who provides 23 values. However, this model (morenolq/distilbert-base-
cased-emotion2) provides duplicate values for the same metric, even including a contradiction
at that.

When we compare this to the results to obtained by the benchmarking system built using our
framework, there are two main take-aways. First, many Hugging Face models already included
some performance results in their model cards. Using our benchmarking system we have added
performance number to just 42 models, or 3,6% of the evaluated models. If we do not consider
performance values that were reported in textual form only, this number still just grows to 140

1https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
2https://huggingface.co/morenolq/distilbert-base-cased-emotion

5.1. Performance metadata availability 33

models, or 12,1%. This number could be increased by updating our benchmarking system and the
environment it runs in, to evaluate some of the models that could not be evaluated before, but
for other it is not within our control. Nevertheless, a large share of Hugging Face models already
include performance numbers.

It should be noted, that during inspection of the models themselves, many models were found of
the same name. This may occur, as names are often a combination of a pre-trained model and
the dataset it was finetuned on. What we consider less likely though, is a natural occurrence of
364 models names distilbert-base-uncased-finetuned-emotion and 146 models named
finetuning-sentiment-model-3000-samples. Most — if not all — models of this name
provide the same information in their model card and leave the same parts empty, as if using the
same template. We find it plausible that these models were shared by students of an (online)
course, and including performance values was part of the instructions. While we do not discount
these models, they do significantly increase the share of models that include performance values in
their model cards, both for Hugging Face and our benchmarking system, and a different selection of
models to support in our benchmarking system could paint a significantly different picture.

The second main take-away, is that, even though many Hugging Face models provide some per-
formance values, the performance metadata can be significantly enriched through the use of our
benchmarking system. Where the vast majority of models provide just one or two values, our
benchmarking system provides dozens to thousands of values. Some of these values come from
evaluation with multiple datasets or dataset variants, which would be a new inclusion on Hugging
Face, where evaluation values are based on original datasets only.

34 5. Analysis of collected performance metadata

(a) Availability of results in the model cards on Hugging
Face. The performance results were given either in textual

form, in Hugging Face’s model card syntax, both, or neither.
Textual form was checked by searching for the words

accuracy, precision or recall

(b) The fraction of verified performance results provided in
the model cards on Hugging Face. The not-verified results

are self-reported, by the creator of the model.

(c) Number of values reported in the model cards on Hugging
Face. Most model cards report a single or two values, with a

very small fraction reporting more numbers.

Figure 5.3: Statistics of the performance results provided by Hugging Face for the 1158 models also evaluated by our
benchmarking system

6
User Interface

This chapter will describe and show the interactive user interface (UI) created to visualized the
performance metadata obtained by our implementation of a benchmarking system (also see Chap-
ter 5). The main goal is to visualize the model performance metadata in a way that enables
the use-cases as described in Section 1.3, though it does display other metadata of both mod-
els and datasets.The UI’s web pages can be divided into two categories. The ones showing
the information related to datasets are described in section 6.1, and those showing all infor-
mation of the models in the zoo are described in section 6.2. The user interface is accessible at
https://www.metadatazoo.io/.

6.1. Datasets
This section describes and shows the visualization of dataset metadata obtained by our bench-
marking system. Though this aspect is not the primary focus of this thesis, the dataset used to
train a model can provide a user with extra information about the model itself, such as biases
in the training data and thus the model’s performance, and examples of data used to train the
model. The visualizations shown in this section are of the metadata of the COCO dataset1.

6.1.1. Dataset information
For each dataset in our model zoo a page exists showing all it’s available information. As an
example we look at the COCO dataset. The dataset page can be divided into four sections. At
the top of the page we show the basic information for the dataset. For the COCO dataset, this is
a short description, it’s logo. There is a link to the homepage of the dataset in case the user wants
to get more information. Below that, two buttons are given allowing the user to view models
trained using this dataset, or to view a scatterplot to compare all models already evaluated using

1https://www.metadatazoo.io/datasets/6325c7632aa8981c9d3b411f

35

https://www.metadatazoo.io/

36 6. User Interface

this dataset. Then, a reference, if available, can be shown should the user wish to reference the
paper in which the dataset was introduced. If models trained on this dataset can be evaluated
using other datasets as well, these datasets are listed as ”compatible datasets”. Finally, a list of
perturbations that may be used during evaluation with this dataset are shown. See Figure 6.1 for
a screenshot of COCO’s information overview.

Figure 6.1: The basic information of the COCO dataset.

If possible, examples of objects in the dataset are shown. If applicable, such as for object detection
datasets like COCO, we show examples of the dataset’s classes, with up to 20 examples of each
class. Figure 6.2 shows a screenshot of the classes of the COCO dataset. For each of its 80 classes,
it shows the class id with the label. For each class, ten example images are shown containing at
least one object of that class. Though for this dataset image examples are present for each class,
other datasets might have just a single image, such as a collage showing examples of multiple
classes, or text examples instead of images.

Further down the page, the user is presented with a summary of the models which have been
evaluated using this dataset. Figure 6.3 shows this section for the COCO dataset. This summary
is shown for each possible variant of the dataset, as the number may differ per variant. For each
variant the total number of evaluated models is shown, and how many of these evaluated models
were evaluated on this dataset. These numbers may be different, if model trained on a compatible
dataset were evaluated using the shown dataset as well. For our COCO example, this is not
the case. For each variant, the user may open a dialog showing all models evaluated using this
variant. Here the user may enter a search term to search for a specific model, and directly view
and compare the performance results of any evaluated model. Figure 6.4 shows this dialog for the
greyscale variant of the COCO dataset.

Most datasets are subdivided in multiple subsets called splits. This is to reserve a subset of the
data to, for example, test the model after training it on a different subset of the dataset. We show
the different splits available for the dataset, and a few statistics for each of them. For our COCO

6.1. Datasets 37

Figure 6.2: The available classes for the COCO dataset. Shown are examples for the first three classes

Figure 6.3: A summary of the models evaluated with the COCO dataset

38 6. User Interface

Figure 6.4: An overview of models evaluated with the greyscale variant of the COCO dataset.

6.1. Datasets 39

Figure 6.5: The splits of the COCO dataset.

dataset there are 2 splits: train and validation, as shown in Figure 6.5. The total number of
objects in each split is given, 118287 and 5000 respectively. For the COCO dataset we also know
the division of the dataset objects per class of the dataset, so we can display this in a diagram
as well. This diagram is limited to just the five most common classes as there might be many,
depending on the dataset, but can be extended by the user to show more.

6.1.2. Scatterplot
Once many models have been evaluated using the same dataset, one might be interested to compare
all of these models directly to gain a high-level understanding of the performance of different
models. For this purpose our user interface includes a scatterplot, in which a user can compare
all models evaluated on a specific dataset, and the user can specify the attributes they want to
compare, such as any of the performance metrics collected during evaluation, runtime, or model
size. If many models have been evaluated, certain areas of the plot can become too crowded
to easily make out the minor differences between models. In this case, the user can zoom in
and pan around the plot to get a better view. Clicking a dot in the plot brings the user to the
evaluation results of the model it represents. Figure 6.6 shows all models for the COCO dataset,
with the models’ score for the COCO_AP_50_95_ALL2 metric size compared to the speed of the
evaluation.

If so desired, the values presented in the scatterplot can also be viewed in tabular form, with
options to sort the models on either of the selected attributes, and a field to search for specific
models. Figure 6.7 shows the table displaying the same information shown in the scatterplot shown
in Figure 6.6.

2https://cocodataset.org/#detection-eval

40 6. User Interface

Figure 6.6: A scatterplot comparing all models evaluated on the COCO dataset. The plot shows the model’s performance on
the COCO_AP_50_95_ALL metric versus total duration of the evaluation.

6.1. Datasets 41

Figure 6.7: A table to show the same information as the scatterplot shown in Figure 6.6

42 6. User Interface

Figure 6.8: The view to browse models, with several options to filter and sort this list.

6.2. Models
This section will describe and show the visualizations used to display the metadata for models.
The visualizations shown in these sections are made possible by the ability of our benchmarking
system to extract rich performance metadata during model evaluation. This rich metadata allows
for several visualizations, each highlighting a different aspect of the model’s performance. The
visualizations can display a model’s performance after evaluation, including task-specific visual-
izations such as a confusion matrix and inspection of errors made during evaluation. They also
allow inspection of a model’s behavior when presented with perturbed data, by comparing perfor-
mance during evaluation of a dataset variant with performance of the original dataset. Finally,
two or more models can be compared head-to-head, in which the performance of multiple models
is compared directly. Each of these visualizations is interactive, allowing the user to select data to
view, remove metrics they are not interested in, and sort the presented data in a way that interests
them.

6.2.1. Browsing models
First, the user is presented with a list of all models, shown in Figure 6.8. Here, the user can browse
and search for a specific model. The shown list of models highlights for each model the origin of
the model, the task it performs, the dataset it was trained on, and whether performance metadata
is available to view, with links to directly view and compare. Several filtering options are available
to search for a specific model, such as filtering by model origin, task, the dataset the model was
trained and/or evaluated, and whether performance metadata is available, and options are given
to sort the resulting list of models.

6.2. Models 43

Figure 6.9: The basic info for the facebook/regnet-x-120 model

6.2.2. Model information
For each model the user can view its information and any available performance metadata through
a few interactive visualizations. First showing on the page for each model is its basic info. Figure
6.9 shows a screenshot of the basic info for the facebook/regnet-x-1203 model. First, there is the
name of the model, and a link to the external source if there is one; Hugging Face for this model.
For the shown model, there are links back to the list of all models, with a filter to either the
origin, task, dataset, or availability of metrics pre-applied. If there are evaluation results — for
this model for the ImageNet and ImageNet-Sketch datasets — the user can also view or compare
the performance results. Below this, the scraped tags will also be shown here, if there are any.
Finally, the model’s size is shown, and a reference which can be used in scientific papers, if it exists.
For Hugging Face models such as facebook/regnet-x-120 there are often files available for multiple
frameworks. In our example the model can be used with either the PyTorch or TensorFlow, thus
showing the size for either configuration.

Below the basic info of the model is some information about each of the datasets used for training
or evaluation of the model. Figure 6.10 shows here the information of the ImageNet dataset for the
facebook/regnet-x-120 model. If the model has been evaluated on this dataset, a summary of this
can be made visible to show a summary and the total duration of the evaluation. This diagram,
like most throughout our model zoo, are interactive. The user can disable and enable the metrics
they want to see, and hovering the mouse cursor over the metrics shows a popup presenting the
data in a concise way. If the model has been evaluated on other datasets, they are shown after
the training dataset, using the same summary of performance.

Finally, for each model any available hyperparameters, and any textual description from the orig-
inal source is shown, with a link to the external source. Figures 6.12 and 6.13 show the hyperpa-
rameters and a portion of this description for the facebook/regnet-x-120 model.

3https://www.metadatazoo.io/models/63a0b0d515a79b5cfb17a0c5

44 6. User Interface

Figure 6.10: The dataset information for the facebook/regnet-x-120 model.

Figure 6.11: A summary of the evaluation results for the evaluation of the facebook/regnet-x-120 model with the ImageNet
dataset. The mouse cursor is hovered over the diagram, opening a popup with the information of the group average.

Figure 6.12: Display of the hyperparameters for the facebook/regnet-x-120 model.

6.2. Models 45

Figure 6.13: A snippet of the shown description for the facebook/regnet-x-120 model.

Figure 6.14: Info for the evaluation of the facebook/regnet-x-120 model on the ImageNet dataset.

6.2.3. Performance results
If the model has been evaluated, the results of each evaluation can be viewed. As was seen in basic
information for our example model facebook/regnet-x-120, it has been evaluated on the ImageNet
and ImageNet-Sketch datasets. When viewing the results of an evaluation, the user is first shown
again some basic information of the evaluation. The information consists of two parts. First,
some information about the evaluation itself, such as which dataset was used for this particular
evaluation, which other variants have been evaluated, and which metrics were collected. There
are also quick links to the external source of the model, and to compare the model’s performance
results against other models evaluated with the same dataset. The second part of this evaluation
information is regarding the dataset used. Here the user can find a quick description of the dataset
and split used for this evaluation, with links to both of them for more information. An example is
shown in Figure 6.144; this evaluation was performed on the test split of the ImageNet dataset,
which contains 10.000 images evenly distributed over all 1.000 classes.

After the basic information, the user is first presented with the inference speed of the model. For
each evaluation the total number of objects evaluated is recorded and the total time needed to

4https://www.metadatazoo.io/models/63a0b0d515a79b5cfb17a0c5/results/63b6e821f93ee77589ca804b

46 6. User Interface

Figure 6.15: The speed and summary of characteristics for the evaluation of the facebook/regnet-x-120 model on the ImageNet
dataset.

Figure 6.16: The summary of evaluation of the perturbations evaluation of the ImageNet dataset for the facebook/regnet-x-120.

evaluate those objects, as well as both the number of objects per second and the time it takes on
average to evaluate a single object. The inference speed for the facebook/regnet-120-x model is
shown in Figure 6.15.

Next, if the model’s evaluation included the evaluation using dataset variants, a summary is
shown. For our example facebook/regnet-x-120 model this is shown in Figure 6.16. First, a list
of evaluated variants is given. For our model these are the rotated90, flipped, mirrored,
greyscale, and inverted variants. For this chart a single metric is selected, one that gives
an indication of performance of a model for the given evaluated task. Also, the chart shows just
the overall average result of the perturbation evaluation, and the user is directed to view the full
comparison of variant results for a more detailed look.

For certain tasks there might be specific visualisations that are appropriate for the task. In
our running example, the evaluated task is image-classification. This is a multi-class
classification task, for which a confusion matrix is often used to show results. In this matrix,
it can be shown for each class how often mistakenly the model thought it was one of the other
classes. Figure 6.17 shows this matrix for the evaluation of the facebook/regnet-x-120 model on
the ImageNet dataset. The number of correct classifications for each class are on the diagonal
of the matrix, with the other numbers, in red, show the number of times the model made the
same mistake. Initially, the classes related to the 3 most common misclassifications during the
evaluation are shown. The user can then select the specific classes they are interested in to view
in the matrix.

From the confusion matrix, the user inspect for exactly which objects the model made the mistakes.

6.2. Models 47

Figure 6.17: The confusion matrix with a selection of combinations of classes for the evaluation of the facebook/regnet-x-120
model on the ImageNet dataset.

48 6. User Interface

Figure 6.18: The misclassifications for the glopez/cifar-10 when evaluating using the CIFAR-10 dataset. Shown are instance
where the model classified the image as ’cat’, while in reality it was ’dog’.

Figure 6.18 shows the misclassifications for another model, glopez/cifar-1056, evaluated on the
CIFAR-10 dataset. Shown are 2 of the 12 images where the model thought the image was of
a cat, but it was actually of a dog. The instances are sorted by confidence, ascending. Those
instances are generally more interesting, as they where the model confidently made errors, rather
than where the model is ”guessing”. The user can select any other combination of classes, and
filter the instances based on confidence if they are interested in a different range.

Finally, for each evaluation the evaluation results are shown. This is done in detail, in order to
let the user get a good understanding of the models performance for. For multi-class classification
tasks such as image-classification, this means that the metrics are calculated for each class sepa-
rately, as well as average for the whole dataset. Figure 6.19a shows the diagram with these results
for the evaluation of glopez/cifar-10 with the CIFAR-10 dataset. The metrics shown depend on the
evaluated task. For multi-class classification tasks, they are the metrics of precision, recall,
and f1-score. Again, when the mouse cursor is hovered over the diagram, a popup legend shows
the user which value corresponds to which metric. The diagram is initially sorted according to the
id of each class, but the classes can be sorted based on each of the metrics available. The user can
also filter the shown classes, and if the user is not interested in one of the metrics, the can hide it.
Figure 6.19b shows the same chart with a filter and sorting option applied, and one of the metrics
hidden from the chart.

Besides a chart, the user can also opt to view the results in a table. The table can be sorted on
any of the metrics, and can be filtered to only show selected classes matching the given input.
Figure 6.20 shows the table corresponding to the diagram in Figure 6.19a.

5https://www.metadatazoo.io/models/633c34b646bfec446fc8a024
6https://www.metadatazoo.io/models/633c34b646bfec446fc8a024/results/63a22ec70f95c6eaa2922a74/misclassifications

6.2. Models 49

(a) The initial view of the chart showing performance results. The mouse cursor is hovered over the chart to show a popup with a small
legend and the values of the metrics for the class.

(b) The same chart with a filter to only show classes containing ”e”, with the classes sorted on the achieved PRECISION, and the
F1-SCORE metric hidden

Figure 6.19: The chart showing the metrics for each of the CIFAR-10 classes for the evaluation of the glopez/cifar-10 model on
the CIFAR-10 dataset.

50 6. User Interface

Figure 6.20: The table showing the metrics for each of the ImageNet classes for the evaluation of the glopez/cifar-10 model on
the CIFAR-10 dataset.

6.2.4. Variant comparison
If the model has bee evaluated with variants of datasets as well, the user can view the results
for each variant, and compare against results obtained from the original dataset. As was seen in
Figure 6.16, our example model facebook/regnet-x-120 has been evaluated with five variants of
the ImageNet dataset. From the evaluation results for any variant, the comparison of all variants
can be accessed. Here, a diagram is shown which is structured similar to the one that shows
the results for the evaluation with the original dataset. For the comparison of variations for
the facebook/regnet-x-120 model, this means that the comparison is made for each class of the
evaluated ImageNet dataset, as partially shown in Figure 6.21a. However, as there are multiple
results compared, rather than showing the calculated metrics for each class, the diagram shows
the result for each variation for a single selected metric.

This diagram has similar options to customize the view. The user can again apply a filter, sort
the classes according to performance of a single variant, hide the results of the variant they
are not interested in, and view a table with these results. Furthermore, the user can select
the metric they are interested in, and the diagram can show either the absolute values of each
evaluation, or the results of the evaluated variations relative to those of the original dataset. The
user can use the latter option to quickly get an insight of how each variation impacts the model’s
performance.

In Figure 6.21b the diagram shows the results of the evaluations of the variations relative to those
of evaluation of the original dataset. At a glance the impact of each variation becomes clear. While
every variation affects the overall performance negatively, the effect is different for each class, with
the model even performing better for some variants for certain classes.

6.2.5. Model performance comparison
Besides comparing all evaluated models for a single dataset, as described in Section 6.1.2, a user
can two or more models head-to-head as well. Upon reaching the model comparison tool, first

6.2. Models 51

(a) Initial view showing the real values for each class, for the shown metric

(b) The view showing performance of each variant relative to the original dataset, thus clearly indicating how much each variant impacts
the model’s performance. The filter shark is applied, thus showing only classes containing this word, the classes are sorted by

performance of the greyscale variant, and the results of multiple variants are hidden from the chart.

Figure 6.21: A view of the comparison of results achieved by evaluation of multiple variants of the same dataset for the
facebook/regnet-x-120 model

52 6. User Interface

Figure 6.22: Selection of models to compare. Two CIFAR-10 image-classification models have been selected, with the option to
add more models that have been evaluated with CIFAR-10.

some models need to be added to the comparison. Figure 6.22 shows this for a comparison7 of
image-classification models evaluated on the CIFAR-10 dataset. In this example, the glopez/cifar-
10 and jadohu/BEiT-finetuned8 models have been selected for comparison. More models can be
added, provided they have been evaluated with this dataset. From here, the user can quickly view
each model’s evaluation results, or go to the external source of the model.

After models have been added, two diagrams are used to compare the models. First the inference
speed for all models is shown in a diagram. Figure 6.23 show this for our two selected models. The
second diagram compares the evaluation results for each of the selected models. Since CIFAR-10 is
used for image-classification, like ImageNet, during evaluation all metrics are calculated for each of
the classes supported by the dataset. During comparison, all models will therefore also compared
for each class as well. Figure 6.24 shows the comparison of the results of the two selected models.
By now this diagram looks familiar. Just like the comparison of evaluated variants of a dataset,
again the user must select a metric to compare. Then for each of the classes of the CIFAR-10
dataset the results for each model, for the selected metric, are shown. When hovering over the
results of a class, a popup will be shown with the legend and values for each model. In our example,
the results for the recall metric are shown. The classes of the diagram can again be sorted, and
for our comparison we have sorted them based on the performance of the glopez/cifar-10 model,
in descending order.

From this example comparison, one can see that the glopez/cifar-10 model evaluates images faster,
on average, than the jadohu/BEiT-finetuned model. However, the performance is worse anywhere
from one to ten percentage points, depending on the class. If one wants to use one of these specific
models, the presented information lets them choose the right model for their needs.

7https://www.metadatazoo.io/results/compare/?id=63a0b62f1c242bc07af546ee,633c34b646bfec446fc8a024&dataset=
6325c78d2aa8981c9d3b48bb

8https://www.metadatazoo.io/models/63a0b62f1c242bc07af546ee

https://www.metadatazoo.io/results/compare/?id=63a0b62f1c242bc07af546ee,633c34b646bfec446fc8a024&dataset=6325c78d2aa8981c9d3b48bb
https://www.metadatazoo.io/results/compare/?id=63a0b62f1c242bc07af546ee,633c34b646bfec446fc8a024&dataset=6325c78d2aa8981c9d3b48bb

6.2. Models 53

Figure 6.23: A comparison of the inference speed of two image-classification models evaluated on the CIFAR-10 dataset.

Figure 6.24: A comparison of the results two image-classification models evaluated on the CIFAR-10 dataset. The classes are
sorted by the performance of the glopez/cifar-10 model, in descending order. The mouse cursor is hovered over the values for

the automobile class, showing a popup with the legend and values for this class.

7
Conclusion and limitations

As the sharing of machine learning model is becoming more popular, the number of model zoos is
steadily growing. However, the current generation of model zoos provide little functionality beyond
the sharing of models, in part due to a lack of performance metadata available for the models within
them. In this work, we have provided a framework to enable and encourage the obtaining of rich
performance metadata for machine learning models through the automatic evaluation of those
models.

Furthermore, we have presented a benchmarking system built using our framework and used this
system to attempt the evaluation of 1215 models from the Hugging Face and FiftyOne model
zoos. Our results show an increase of the number of models for which performance metadata is
present, with room to increase this number further. Our results also show a vast improvement in
the richness of this metadata, providing disaggregated performance results, for evaluation using
multiple datasets, and perturbations thereof, where current model zoos are often limited to a mere
handful of performance results obtained by evaluating with a single dataset.

7.1. Fulfillment of objective
As part of this thesis we have posed two research questions. Our first research question was
related to the problems currently existing surrounding the limitations of the provided performance
metadata in current model zoos:

RQ1: What are the limitations of provided metadata in current model zoos?

We have answered this question by observing limitations of the performance metadata provided
by current model zoos — a lack of performance results, the unstructured nature of reported
performance results, a tendency to use only aggregated values, and the incomparability of the
provided results — and in the process of obtaining these results — a reliance on self-reported

55

56 7. Conclusion and limitations

results. In addition to this, through literature survey we noted problems that plague performance
reporting in the field of machine learning as a whole, such as non-reproducibility of reported results,
and a tendency to use outdated or inappropriate metrics during evaluation of a model.

Our second research question was aimed to provide a solution for the found limitations in existing
model zoos:

RQ2: How can we provide rich and comparable performance metadata for machine

learning models

We have answered this question by providing a framework from which a benchmarking system can
be created that overcomes the posed limitations. We have shown the validity of our solution by
creating our own benchmarking system, and providing rich performance metadata for 1158 models
from existing model zoos. For many of these models, no performance metadata was present until
now, and for all others we have vastly increased the richness of the available metadata. Our
benchmarking system can provides performance metadata for a high degree of models it evaluates,
and the performance results provided are comparable, disaggregate, structured, and does not rely
on users’ input beyond the point of sharing a model.

7.2. Limitations of provided solution
Though we have fulfilled the objective of this thesis, some limitations of our framework can be
observed as well. While our framework provides the tools to create a benchmarking system to
evaluate models and obtain rich metadata, as any tool the end results depend on the wielder of
the tool. It is entirely possible to our framework to evaluate models, and obtain nothing but
aggregated results. However, as the calculation of metrics need only be defined once, and can
be re-used during evaluation of models that perform many different tasks, we feel it regardless
encourages the proper use of our tool.

Second, as exemplified by implemented benchmarking system, to run models that have differing
requirements of the execution environment, multiple benchmarking system running in different
environments are required. While not completely obstructing the evaluation of different types of
models, this is an inelegant way to achieve evaluation of a varied set of models, and can not be
avoided by the current version of our framework.

Lastly, and perhaps most importantly, our framework requires the training dataset of a model
to be known to evaluate a model. This places a requirement on the metadata of the model for
evaluation, that does not exist for users that merely want to use that model. This is particularly
wry because the training dataset is sometimes mentioned in the name or description of the model,
and would be easy to ascertain by a user. For some tasks the training dataset is not required to
determine how a model should be evaluated. For example, the output of a text-summarization
model — a model that shortens a long text while retaining the important parts of the input text
— solely depends on the input, and not on the training dataset. For such cases it may be possible
to relax this requirement. For tasks where knowledge of the training dataset is required, such as
classification tasks, future research might provide simple ways to deduce it from the behavior of

7.3. Suggestions for future research 57

the model itself.

7.3. Suggestions for future research
While our framework is an improvement over the current state-of-the-art solutions for providing
performance metadata, improvements are possible, of which we will describe two.

First, a major drawback is the reliance on knowledge of the training dataset of a model in the
evaluation process. This is not always known, which means a model cannot be evaluated, even
though users are able to use it. Future research may be done to find ways of efficiently determining
the training dataset, either from other metadata of the model, or through execution of the model
itself.

Second, while our framework encourages providing rich performance metadata, it still merely
provides numbers. Future research may be done to find ways of making higher level statements
about a model’s performance or biases that can be derived from the provided metadata. For
example, for an image-classification model it might be said then that it performs poor on the
classification of animals — not a specific class, but animals in general. In another example, for a
summarization model an observation could be made that it tends to leave our important people
in its summarizations of long texts, and these people are most often women. The recognition
of such biases is important for the use of models, and while this information is available in the
performance metadata, it is complex to uncover.

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,
G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. Osdi,
16(2016), 265–283.

Akhtar, N., & Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision:
A survey. Ieee Access, 6, 14410–14430.

Banerjee, S., & Lavie, A. (2005). Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. Proceedings of the acl workshop on intrinsic and ex-
trinsic evaluation measures for machine translation and/or summarization, 65–72.

Barocas, S., Guo, A., Kamar, E., Krones, J., Morris, M. R., Vaughan, J. W., Wadsworth, W. D.,
& Wallach, H. (2021). Designing disaggregated evaluations of ai systems: Choices, consid-
erations, and tradeoffs. Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics,
and Society, 368–378.

Blagec, K., Dorffner, G., Moradi, M., & Samwald, M. (2020). A critical analysis of metrics used
for measuring progress in artificial intelligence. arXiv preprint arXiv:2008.02577.

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in com-
mercial gender classification. Conference on fairness, accountability and transparency, 77–
91.

Callison-Burch, C., Osborne, M., & Koehn, P. (2006). Re-evaluating the role of Bleu in machine
translation research. 11th Conference of the European Chapter of the Association for
Computational Linguistics, 249–256. https://aclanthology.org/E06-1032

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J., Nardi, L., Bailis, P., Olukotun, K.,
Ré, C., & Zaharia, M. (2017). Dawnbench: An end-to-end deep learning benchmark and
competition. Training, 100(101), 102.

Crisan, A., Drouhard, M., Vig, J., & Rajani, N. (2022). Interactive model cards: A human-centered
approach to model documentation. 2022 ACM Conference on Fairness, Accountability, and
Transparency, 427–439.

Detlefsen, N. S., Borovec, J., Schock, J., Jha, A. H., Koker, T., Di Liello, L., Stancl, D., Quan, C.,
Grechkin, M., & Falcon, W. (2022). Torchmetrics-measuring reproducibility in pytorch.
Journal of Open Source Software, 7(70), 4101.

Djolonga, J., Yung, J., Tschannen, M., Romijnders, R., Beyer, L., Kolesnikov, A., Puigcerver, J.,
Minderer, M., D’Amour, A., Moldovan, D., et al. (2021). On robustness and transferability
of convolutional neural networks. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 16458–16468.

Dziugaite, G. K., Ghahramani, Z., & Roy, D. M. (2016). A study of the effect of jpg compression
on adversarial images. arXiv preprint arXiv:1608.00853.

59

https://aclanthology.org/E06-1032

60 Bibliography

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., & Madry, A. (2017). A rotation and a translation
suffice: Fooling cnns with simple transformations.

Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance
measures for classification. Pattern recognition letters, 30(1), 27–38.

Furner, J. (2020). Definitions of“metadata”: A brief survey of international standards. Journal
of the Association for Information Science and Technology, 71(6), E33–E42.

Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Iii, H. D., & Crawford,
K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86–92.

Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261.

Kiela, D., Bartolo, M., Nie, Y., Kaushik, D., Geiger, A., Wu, Z., Vidgen, B., Prasad, G., Singh, A.,
Ringshia, P., Ma, Z., Thrush, T., Riedel, S., Waseem, Z., Stenetorp, P., Jia, R., Bansal,
M., Potts, C., & Williams, A. (2021). Dynabench: Rethinking benchmarking in NLP.
Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 4110–4124. https://doi.org/
10.18653/v1/2021.naacl-main.324

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
Li, Z., Hai, R., Bozzon, A., & Katsifodimos, A. (2022). Metadata representations for queryable ml

model zoos.
Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Text summarization

branches out, 74–81.
Liu, P., Fu, J., Xiao, Y., Yuan, W., Chang, S., Dai, J., Liu, Y., Ye, Z., Dou, Z.-Y., & Neubig, G.

(2021). Explainaboard: An explainable leaderboard for nlp. arXiv preprint arXiv:2104.06387.
Ma, Z., Ethayarajh, K., Thrush, T., Jain, S., Wu, L., Jia, R., Potts, C., Williams, A., & Kiela,

D. (2021). Dynaboard: An evaluation-as-a-service platform for holistic next-generation
benchmarking. Advances in Neural Information Processing Systems, 34, 10351–10367.

Marie, B., Fujita, A., & Rubino, R. (2021). Scientific credibility of machine translation research:
A meta-evaluation of 769 papers. arXiv preprint arXiv:2106.15195.

Mathur, N., Baldwin, T., & Cohn, T. (2020). Tangled up in BLEU: Reevaluating the evaluation of
automatic machine translation evaluation metrics. Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 4984–4997. https://doi.org/10.18653/
v1/2020.acl-main.448

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji,
I. D., & Gebru, T. (2019). Model cards for model reporting. Proceedings of the conference
on fairness, accountability, and transparency, 220–229.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: A method for automatic evaluation
of machine translation. Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, 311–318. https://doi.org/10.3115/1073083.1073135

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing systems, 32.

https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2021.naacl-main.324
https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.18653/v1/2020.acl-main.448
https://doi.org/10.3115/1073083.1073135

Bibliography 61

Post, M. (2018). A call for clarity in reporting BLEU scores. Proceedings of the Third Conference
on Machine Translation: Research Papers, 186–191. https://www.aclweb.org/anthology/
W18-6319

Raff, E. (2019). A step toward quantifying independently reproducible machine learning research.
Advances in Neural Information Processing Systems, 32.

Reiter, E. (2018). A structured review of the validity of bleu. Computational Linguistics, 44(3),
393–401.

Riley, J. (2017). Understanding metadata. Washington DC, United States: National Information
Standards Organization (http://www. niso. org/publications/press/UnderstandingMetadata.
pdf), 23, 7–10.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3), 211–252.
https://doi.org/10.1007/s11263-015-0816-y

Schelter, S., Boese, J.-H., Kirschnick, J., Klein, T., & Seufert, S. (2017). Automatically tracking
metadata and provenance of machine learning experiments.

von Werra, L., Tunstall, L., Thakur, A., Luccioni, A. S., Thrush, T., Piktus, A., Marty, F., Rajani,
N., Mustar, V., Ngo, H., et al. (2022). Evaluate & evaluation on the hub: Better best
practices for data and model measurement. arXiv preprint arXiv:2210.01970.

Willis, C., & Stodden, V. (2020). Trust but verify: How to leverage policies, workflows, and infras-
tructure to ensure computational reproducibility in publication.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R.,
Funtowicz, M., et al. (2020). Transformers: State-of-the-art natural language processing.
Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, 38–45.

Yadav, D., Jain, R., Agrawal, H., Chattopadhyay, P., Singh, T., Jain, A., Singh, S. B., Lee, S., &
Batra, D. (2019). Evalai: Towards better evaluation systems for ai agents. arXiv preprint
arXiv:1902.03570.

Yuan, W., Neubig, G., & Liu, P. (2021). Bartscore: Evaluating generated text as text generation.
In M. R. o, A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances in
neural information processing systems (pp. 27263–27277). Curran Associates, Inc. https:
//proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://doi.org/10.1007/s11263-015-0816-y
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/e4d2b6e6fdeca3e60e0f1a62fee3d9dd-Paper.pdf

	Dedication
	Introduction
	Limitations in current model zoos
	Prospects for model zoo improvements
	Potential use-cases
	UC1: Model comparison and selection
	UC2: Automated model selection for solving complex tasks

	Objective and research questions
	Contributions
	Outline

	Related Work
	Model zoos
	Evaluation
	Model Cards
	Robustness

	Framework Design
	Framework architecture
	Scraper
	Model Evaluation
	User Interface

	Metadata model
	Model metadata
	Dataset metadata
	Evaluation metadata
	Reference

	Model evaluation
	Evaluation design goals
	Evaluation Subcomponents
	Evaluation Process

	Analysis of collected performance metadata
	Performance metadata availability
	FiftyOne
	Hugging Face

	User Interface
	Datasets
	Dataset information
	Scatterplot

	Models
	Browsing models
	Model information
	Performance results
	Variant comparison
	Model performance comparison

	Conclusion and limitations
	Fulfillment of objective
	Limitations of provided solution
	Suggestions for future research

