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Abstract
This paper introduces a novel stochastic inverse method that utilizes perturba-
tion theory and advanced intelligence techniques to solve the multi-parameter
identification problem of concrete dams using displacement field monitoring
data. The proposed method considers the uncertainties associated with the dam
displacement monitoring data, which are comprised of two distinct sources: the
first is related to stochastic mechanical properties of the dam, and the second
is due to observation errors. The displacements at different measuring points
generated by dam mechanical properties exhibit spatial correlation, while the
observation errors at different points can be considered statistically random.
In this context, the inversion formulas are derived for unknown stochastic
parameters of the dam by combining perturbation equations and Taylor expan-
sion methods. An improved meta-heuristic optimization method is employed
to identify the mean of stochastic parameters, while mathematical and statis-
tical methods are used to determine the variance of stochastic parameters. The
feasibility of the proposed method is verified through numerical examples of a
typical dam section under different conditions. Additionally, the paper discusses
and demonstrates the applicability of this method in a practical dam project.
Results indicate that thismethod can effectively capture the uncertainty of dam’s
mechanical properties and separates them from observation errors.

KEYWORDS
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1 INTRODUCTION

Hydropower is the most widely-used renewable power source, accounting for more than 65% of the global power
generation capacity from renewable sources. Dams play a crucial role in water conservancy and hydropower projects
by providing flood control, power generation, water supply, and irrigation.1 However, they also pose potential risks to
nearby populations, property, and the environment.2 Past failures, like Malpasset Dam in France and St. Francis Dam
in the United States, resulted in enormous loss of life and property.3,4 Some concrete dams such as Koelnbrein dam in
Austria, Dworshak dam in the United States, and Sayano-Shushenskaya dam in Russia had severe cracks and leakage,
with tremendously high costs for repair and reinforcement.5
Dam surveillance can help reduce the risk of dam failure by early detection of undesirable events.6,7 Typically, a variety

of instruments are placed both inside and outside the dam to monitor external load parameters (such as water level and
ambient temperature) and structural response parameters (like displacement and strain).8–10 Forward analysis methods
and inverse analysis methods11 are two widely-used data analysis approaches which make use of the monitoring data for
interpreting the complex dam system.
Forward analysis methods are a fundamental approach for dam safety assessment.12–14 These methods allow for the

estimation of dam response under specific load combinations. Significant progress has been made over the past decades
in the development of forward analysis methods for different types of dams.15,16 The numerous studies carried out in this
field can be categorized as physics-based and data-based methods. Physics-based methods use finite element (FE) meth-
ods or other numerical techniques to analyze and predict the dam effect field based on provided structural morphology
andmechanical parameters. In contrast, data-based methods construct a mathematical monitoring model based on infor-
mation obtained from prototype observations, which allows for the determination of expected responses using previously
collected data.17
Inverse analysis methods, also known as system identification, are a powerful tool for determining unknown mechan-

ical parameters, boundaries, or initial conditions.18–20 Depending on the type of measured data, inverse analysis
methods can be subdivided into three categories: stress-based, displacement-based, and hybrid methods.21 Among
these, the displacement-based method has been extensively implemented because the information is easier to obtain.
In terms of the solution process, inverse analysis methods can be subdivided into two main categories: direct and
indirect methods. The direct inverse analysis method requires the establishment or derivation of explicit equations
between mechanical parameters and field monitoring data.22 The indirect method converts the inversion problem
into an optimization problem of an objective function, which is more flexible in generating a solution for nonlinear
systems.
This paper focuses on the parameter identification problems of concrete dams. The elastic modulus is an important

mechanical parameter for assessing the stiffness and performance of the dam body and foundation.23 Inverse analysis
methods are widely employed to determine the elastic moduli of concrete dams using deformationmonitoring data. Sortis
et al.24 presented an identification algorithm for the physical parameters of the hollow gravity dams allowing a useful
determination of their equivalent elastic moduli. Yang et al. developed an improved particle swarm optimization (PSO)
algorithm to identify the elastic moduli of a concrete dam.25 Kang et al. proposed a novel multi-parameter inverse analysis
approach utilizing a kernel extreme learning machine-based response surface model to identify the elastic moduli of
concrete dams.26
Current studies on inverse analysis of concrete dams are mainly focused on deterministic mathematical models. Con-

crete dams are inherently uncertain system, with mechanical parameters that exhibit stochastic behavior due to the
variability in material properties, construction quality, and other factors.27,28 In other structural engineering domains,
probability methods have been used to solve inversion and parameter identification problems. The Bayesian approach is
one of the most popular methods for solving uncertainty inversion problems,29,30 typically using Markov chain Monte
Carlo (MCMC) methods to determine probability distributions. However, for multi-parameter identification problems of
large-scale concrete dams, the MCMC steps require forward FE analysis that is computationally inefficient. The interval
inversion algorithm is another useful tool for conducting uncertainty inverse analysis,31 but its limitation is that the uncer-
tainty of parameters can only be roughly represented by lower and upper bounds, without providing a deeper insight into
the essence of the uncertainty.
Perturbation method is an efficient approach for evaluating the uncertainty of structural responses. It involves first- or

second-order Taylor series expansions of the governing equations, characterizing the structural behavior by considering
terms around the mean values of the fundamental random variables.32,33 Perturbation method is used in a wide range
of fields and has the advantages of computational efficiency, flexibility in handling uncertainties, and interpretability
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LIN et al. 3

of results.34 Many studies have applied the perturbation method to address direct problems.35–37 However, the inverse
problem for structures with uncertain parameters has received less attention and only few contributions are available in
literature.38
For concrete dams, the uncertainties associated with the displacement monitoring data is comprised of two distinct

factors: the first is related to stochastic mechanical properties of the dam, and the second is due to observation errors. The
displacements at different measuring points generated by dam mechanical properties exhibit spatial correlation due to
the common environmental loads they are subjected to, while the observation errors at different points can be considered
statistically random.
Upon reflecting on this situation, a novel stochastic inverse method is proposed by combining perturbation

theory and advanced meta-heuristic optimization technique. The inversion formulas for unknown mechanical
parameters are derived based on multi-point displacement monitoring data, enabling the identification of the
mean and variance of the dam’s mechanical parameters. Furthermore, this method can effectively separate the
perturbed displacements caused by dam mechanical parameters from those caused by observation errors. The
proposed inverse method has the advantages of simplicity for formulation, efficiency of execution, and ease of
understanding.
This paper is structured into six sections as follows. In Section 2, the derivation process of the stochastic inverse analysis

is illustrated in detail. In Section 3, the improved parallelmulti-verse optimization (IMVO) is introduced, and the inversion
framework is established. Section 4 presents a series of numerical examples of a typical gravity dam section to verify the
feasibility of the proposed inverse method. In Section 5, the applicability of the proposed inverse method in practical dam
projects is discussed and demonstrated. Finally, the conclusions are provided in Section 6.

2 STOCHASTIC INVERSEMETHOD FOR DAM PARAMETER IDENTIFICATION

When dealing with the parameter identification problem of concrete dam system, it is important to consider the uncer-
tainties associated with two main factors: (1) the uncertainty of material mechanical parameters, and (2) the uncertainty
of observation errors. In this section, we derive formulas for solving stochastic mechanical parameters of the dam system
based on displacement field monitoring data.

2.1 Mathematical model

The stochastic parameters (i.e., unknown elastic moduli) of the damwithmean values and perturbation terms are defined
in Equation (1):

𝑋 = 𝑋 + 𝜀𝑋, (1)

where 𝑋 represents the vector of stochastic parameters such that 𝑋 = {𝑥1, 𝑥2, ⋅ ⋅ ⋅𝑥𝑝}
𝑇; 𝑋 represents the vector of mean

values of stochastic parameters such that𝑋 = {𝑥̄1, 𝑥̄2, ⋅ ⋅ ⋅𝑥̄𝑝}
𝑇; 𝜀𝑋 represents the vector of perturbation terms of stochastic

parameters such that 𝜀𝑋 = {𝜀𝑥1 , 𝜀𝑥2 , ⋅ ⋅ ⋅𝜀𝑥𝑝 }
𝑇; and 𝑝 is the number of stochastic parameters.

It is assumed in this study that the vector of dependent variables, denoted by 𝛿(𝑋, 𝑌), represents the dam monitoring
displacements. Here, X represents a set of unknown stochastic parameters (independent variables), while Y represents a
set of environmental parameters such as water level and temperature. Considering the monitoring displacement series
𝛿(𝑋, 𝑌) as a non-stationary stochastic process with a deterministic trend, it can be expressed as follows:

𝛿(𝑋, 𝑌) = 𝛿̄(𝑋, 𝑌) + 𝜀𝛿, (2)

where 𝛿̄(𝑋, 𝑌) represents the vector of mean values of dam displacements; and 𝜀𝛿 represents the vector of perturbation
terms of dam displacements.
The perturbation terms of dam displacements 𝜀𝛿 can be decomposed into two parts: 𝜀𝛿𝑋 and 𝜀𝑓 . Here, 𝜀𝛿𝑋 indicates

the displacement perturbation term caused by stochastic parameters, and 𝜀𝑓 represents the displacement perturbation

 10969853, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3812 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [13/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 LIN et al.

term due to observation errors. The observation errors are independent at each measuring point and follow a normal
distribution with a mean of zero.
It is assumed that there are N measuring points, and each point has M groups of displacement monitoring data.

According to Equation (2), the variance of the dam displacement at the jth measuring point is formulated as follows:

var(𝛿𝑗) =
1

𝑀

𝑀∑
𝑘=1

(𝜀𝛿𝑗𝑘 )
2
=

1

𝑀

𝑀∑
𝑘=1

[𝛿(𝑋, 𝑌𝑗𝑘) − 𝛿̄(𝑋, 𝑌𝑗𝑘)]
2
, (3)

where var denotes the variance operator, and 𝛿(𝑋, 𝑌𝑗𝑘) represents the kth displacement value at the jth measuring
point (𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑁 and 𝑘 = 1, 2, ⋅ ⋅ ⋅,𝑀). For simplicity, it is defined that 𝛿𝑗𝑘 = 𝛿(𝑋, 𝑌𝑗𝑘), 𝛿̄𝑗𝑘 = 𝛿̄𝑗𝑘(𝑋, 𝑌𝑗𝑘), and 𝛿̄𝑗𝑘
represents the mean value of 𝛿𝑗𝑘.
Suppose that 𝛿(𝑋, 𝑌) can be expanded into a Taylor series around its mean point. If we exclude the higher-order

polynomial terms and only retain the first-order polynomial term, then we obtain:

𝛿(𝑋, 𝑌) = 𝛿(𝑋, 𝑌) +
∑ 𝜕𝛿

𝜕𝑥

||||𝑋=𝑋̄(𝑋 − 𝑋) = 𝛿(𝑋, 𝑌) +∑ 𝜕𝛿

𝜕𝑥

||||𝑋=𝑋̄𝜀𝑋. (4)

The following formula gives the mean value of Equation (4):

E(𝛿(𝑋,𝑌)) = 𝛿̄(𝑋,𝑌) = 𝛿(𝑋,𝑌), (5)

where E denotes the mathematical expectation.
Substituting Equation (5) into Equation (3), the expression turns out to be:

var(𝛿𝑗) =
1

𝑀

𝑀∑
𝑘=1

[𝛿(𝑋, 𝑌𝑗𝑘) − 𝛿̄(𝑋, 𝑌𝑗𝑘)]
2
=

1

𝑀

𝑀∑
𝑘=1

[𝛿(𝑋, 𝑌𝑗𝑘) − 𝛿(𝑋, 𝑌𝑗𝑘)]
2
. (6)

2.2 Derivation of parameter mean and variance

Define the objective function as follows:

𝐽 = var(𝛿) =
1

𝑁

𝑁∑
𝑗=1

var(𝛿𝑗) =
1

𝑀 × 𝑁

𝑀∑
𝑗=1

𝑁∑
𝑘=1

[𝛿(𝑋, 𝑌𝑗𝑘) − 𝛿(𝑋, 𝑌𝑗𝑘)]
2
, (7)

where 𝛿(𝑋, 𝑌) represents the calculated displacement obtained by taking the mean value of X.
Based on this, we can estimate the mean value of the stochastic parameter by minimizing the objective function. The

formula for solving the variance of the stochastic parameter is derived below.
For a certain monitoring moment 𝑘(𝑘 = 1, 2, ⋅ ⋅ ⋅,𝑀), we define:

𝐵(𝑋, 𝑌𝑘) =
𝜕𝛿

𝜕𝑋

||||𝑘,𝑋=𝑋̄ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝛿1
𝜕𝑥1

𝜕𝛿1
𝜕𝑥2

⋅ ⋅ ⋅
𝜕𝛿1
𝜕𝑥𝑝

𝜕𝛿2
𝜕𝑥1

𝜕𝛿2
𝜕𝑥2

⋅ ⋅ ⋅
𝜕𝛿2
𝜕𝑥𝑝

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝜕𝛿𝑁
𝜕𝑥1

𝜕𝛿𝑁
𝜕𝑥2

⋅ ⋅ ⋅
𝜕𝛿𝑁
𝜕𝑥𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑘,𝑋=𝑋̄

, (8)

where 𝐵(𝑋, 𝑌𝑘) ∈ 𝑅𝑁×𝑝 is the sensitivity coefficient; 𝑁 is the number of measuring points; and 𝑝 is the number of
stochastic parameters.
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LIN et al. 5

Then Equation (4) can be rewritten as follows:

𝛿(𝑋, 𝑌𝑘) = 𝛿(𝑋, 𝑌𝑘) + 𝐵(𝑋, 𝑌𝑘) {𝜀𝑋𝑘} , (9)

where 𝛿(𝑋, 𝑌𝑘) is an 𝑁 × 1 vector; and {𝜀𝑋𝑘} is a 𝑝 × 1 vector such that {𝜀𝑋𝑘} = { 𝜀𝑥1𝑘 𝜀𝑥2𝑘 ⋅ ⋅ ⋅ 𝜀𝑥𝑝𝑘 }
𝑇
.

Equation (9) can be transformed into:

𝐵(𝑋, 𝑌𝑘) {𝜀𝑋𝑘} = 𝛿(𝑋, 𝑌𝑘) − 𝛿(𝑋, 𝑌𝑘). (10)

Multiplying both sides of Equation (10) with 𝐵(𝑋, 𝑌𝑘)
𝑇
, we obtain:

𝐵(𝑋, 𝑌𝑘)
𝑇
𝐵(𝑋, 𝑌𝑘) {𝜀𝑋𝑘} = 𝐵(𝑋, 𝑌𝑘)

𝑇
{𝛿(𝑋, 𝑌𝑘) − 𝛿(𝑋, 𝑌𝑘)}. (11)

Then the solution turns out to be:

{𝜀𝑋𝑘} =
[
𝐵(𝑋, 𝑌𝑘)

𝑇
𝐵(𝑋, 𝑌𝑘)

]−1
𝐵(𝑋, 𝑌𝑘)

𝑇
{𝛿(𝑋, 𝑌𝑘) − 𝛿(𝑋, 𝑌𝑘)}. (12)

If the number of equations is greater than the unknown variables, the solution of the redundant equations is equal to
the least-squares solution.
Hence, the variance of the stochastic parameter can be obtained:

var(𝜀𝑋) =
{
𝜎2
𝑋

}
=
{
𝜎2𝑥1 𝜎2𝑥2 ⋯ 𝜎2𝑥𝑃

}𝑇
=

1

𝑀

{
𝑀∑
𝑘=1

{
𝜀𝑥1𝑘

}2 𝑀∑
𝑘=1

{
𝜀𝑥2𝑘

}2
⋅ ⋅ ⋅

𝑀∑
𝑘=1

{
𝜀𝑥𝑝𝑘

}2}𝑇

. (13)

Substituting the calculation results of Equation (12) into Equation (10), the displacement perturbation term caused by
𝜀𝑋 at the moment 𝑘 is given by:

{𝜀𝛿𝑋𝑘} = 𝐵(𝑋, 𝑌𝑘) {𝜀𝑋𝑘} , (14)

where {𝜀𝛿𝑋𝑘} is an 𝑁 × 1 vector.
As described in Equation (2), the perturbation term of the dam displacement is composed of two parts. The observation

error at the moment k is given by: {
𝜀𝑓𝑘

}
=
{
𝜀𝛿𝑘

}
−
{
𝜀𝛿𝑋𝑘

}
. (15)

According to Equations (14) and (15), we can obtain the variance of the two displacement perturbation terms (var(𝛿𝑋)
and var(𝛿𝑓)).

2.3 Formula of sensitivity coefficients

Discretizing the continuous dam structure into a FE framework, the FE equations related to nodal displacements 𝛿 and
nodal loads F takes the following form:

𝐾𝛿 = 𝐹. (16)

The global stiffness matrix K of the structure is given as follows:

𝐾 = ∫
𝑉

𝐵T𝐷𝐵𝑑𝑉, (17)

where D indicates the elastic stress-strain matrix expressed by elastic constants including elastic modulus and Poisson
ratio; and B indicates the strain-displacement matrix that describes the geometric properties of the elements.
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6 LIN et al.

It can be inferred from Equation (16) that:

𝐾𝛿 = 𝐹. (18)

Assuming that the elastic moduli are stochastic parameters, the formula for the first derivative of Equation (16) at the
mean point is given by:

𝐾
𝜕𝛿

𝜕𝑋

||||𝑋=𝑋̄ + 𝜕𝐾

𝜕𝑋

||||𝑋=𝑋̄𝛿̄ = 𝜕𝐹

𝜕𝑋
. (19)

Equation (19) can be rewritten as follows:

𝐾
𝜕𝛿

𝜕𝑋

||||𝑋=𝑋̄ = 𝜕𝐹

𝜕𝑋
−
𝜕𝐾

𝜕𝑋

||||𝑋=𝑋̄𝛿̄. (20)

The gradient vector 𝐵(𝑋, 𝑌) is also referred to as the sensitivity coefficient. Since the gradient vector of the displace-
ment with respect to stochastic parameters does not have an explicit analytic expression, the central difference method is
adopted to solve it, and the component 𝑏𝑗𝑖(𝑋, 𝑌𝑘) in the matrix 𝐵(𝑋, 𝑌𝑘) can be formulated as follows:

𝑏𝑗𝑖(𝑋, 𝑌𝑘) =
𝜕𝛿𝑗

𝜕𝑥𝑖

|||||𝑘,𝑋=𝑋 =
𝛿(𝑥̄1, ⋅ ⋅ ⋅, 𝑥̄𝑖 + Δ𝑥𝑖, ⋅ ⋅ ⋅, 𝑥̄𝑝, 𝑌𝑘) − 𝛿(𝑥̄1, ⋅ ⋅ ⋅, 𝑥̄𝑖 − Δ𝑥𝑖, ⋅ ⋅ ⋅, 𝑥̄𝑝, 𝑌𝑘)

2Δ𝑥𝑖
, (21)

where 𝑗 = 1, 2, ⋅ ⋅ ⋅, 𝑁 and 𝑖 = 1, 2, ⋅ ⋅ ⋅, 𝑝.
The aforementioned formula for the sensitivity coefficient is based on choosing a reference Δ𝑥𝑖 , which is generally

suggested within the range of:

Δ𝑥𝑖 = 𝛼𝑥𝑖, 10
−5 ≤ 𝛼 ≤ 10

−2
. (22)

The value of 𝛼 is set as 0.001 in this study.

3 INVERSE ANALYSIS FRAMEWORK FOR PARAMETER IDENTIFICATION

In this section, the inverse analysis framework for parameter identification is introduced. The multi-verse optimization
(MVO) is employed and improved for identifying the mean of stochastic parameters, while mathematical and statistical
methods are used to determine the variance of stochastic parameters.

3.1 Improved parallel multi-verse optimization (IMVO)

A forefront optimization algorithm called MVO39 is studied and applied in inverse analysis framework. The main inspi-
rations of this algorithm are based on three concepts in cosmology: white hole, black hole, and wormhole. MVO shares
some advantages with other meta-heuristic optimization algorithms, such as simplicity and speed in searching. Further-
more, it has a unique advantage that it has only two hyper-parameters responsible for balancing between exploration and
exploitation.40
InMVO, a solution (unknown elasticmoduli) is represented by a universe, where each variable corresponds to an object

in the universe. The fitness value of the solution (i.e., the value of the objective function) is indicated by the inflation rate
of the universe. The population of universes U is defined as follows:

𝑈 =

⎡⎢⎢⎢⎢⎢⎣

𝑥1
1

𝑥2
1

⋅ ⋅ ⋅ 𝑥𝑑
1

𝑥2 𝑥2
2

⋅ ⋅ ⋅ 𝑥𝑑
2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑥1𝑛 𝑥2𝑛 ⋅ ⋅ ⋅ 𝑥𝑑𝑛

⎤⎥⎥⎥⎥⎥⎦
, (23)
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LIN et al. 7

where 𝑑 is the number of objects (variables) and 𝑛 is the number of universes (candidate solutions).
The main mathematical model of this algorithm is based on Equations (24) and (25), which are described as follows:

𝑥
𝑗

𝑖
=

{
𝑥
𝑗

𝑘
, 𝑟1 < 𝑁𝐼 (𝑈𝑖)

𝑥
𝑗

𝑖
, 𝑟1 ≥ 𝑁𝐼 (𝑈𝑖)

, (24)

where 𝑥𝑗
𝑖
represents the jth variable of the ith universe; 𝑥𝑗

𝑘
represents the jth variable of the kth universe which selected

by a roulette wheel selection mechanism;𝑈𝑖 denotes the ith universe and𝑁𝐼(𝑈𝑖) is the normalized inflation rate (fitness
value) of the 𝑈𝑖; 𝑟1 is a random number in the range of [0,1].
The evolution of universes also follows:

𝑥
𝑗

𝑖
=

⎧⎪⎨⎪⎩
{
𝑋𝑗 + T𝐷𝑅 ∗ ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟4 + 𝑙𝑏𝑗), 𝑟3 < 0.5

𝑋𝑗 − TDR ∗ ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟4 + 𝑙𝑏𝑗), 𝑟3 ≥ 0.5
𝑟2 < WEP

𝑥
𝑗

𝑖
𝑟2 ≥WEP

, (25)

where 𝑋𝑗 denotes the jth variables of the best universe formed so far; 𝑙𝑏𝑗 and 𝑢𝑏𝑗 denote the lower and upper boundaries
of the jth variable; 𝑟2, 𝑟3 and 𝑟4 are random numbers in the range of [0,1].
There are two adaptive coefficients in the MVO: the wormhole existence probability (WEP) and the traveling distance

rate (TDR).39 WEP increases over the iterations in order to emphasize exploitation as the progress of optimization process.
TDR is increased over the iterations to have more precise exploitation/local search around the best solution obtained so
far. The expressions are as follows:

WEP = WEPmin + 𝑙 ∗

(
WEPmax −WEPmin

𝐿

)
, (26)

TDR = 1 −
𝑙1∕𝑞

𝐿1∕𝑞
, (27)

whereWEPmin is the minimum value which is ordinarily set to 0.2;WEPmax is the maximum value which is ordinarily
set to 1; 𝑙 and 𝐿 represent the current iteration number and the maximum iteration number; 𝑞 indicates the exploitation
factor which is ordinarily set to 6.
In the past few years, a number of variants41 were proposed to improve the performance ofMVO that include theChaotic

MVO,42 memory-assisted adaptive MVO,43 hybridized version of MVOwith genetic algorithm (GA),44 hybridized version
of MVO with grey wolf optimizer (GWO),45 and so on.
For the parameter inversion problem in dam engineering, the convergence process has nonlinear characteristics. To

improve the searching ability of the basic MVO algorithm, this paper presents a nonlinear formula for WEP, as expressed
in Equation (28). The adjustedWEP grows faster during iterations, which can enhance the exploitation in the optimization
process. Figure 1 illustrates the nonlinear increasing process of the improved WEP over a maximum iteration number of
50.

WEP = WEPmin +

(
WEPmax −WEPmin

1 − (5𝑒)
−1

)
× (1 − (5𝑒)

−
𝑙

𝐿 ), (28)

where e is the base of the natural logarithm.
Moreover, this paper introduces multi-core parallel computing to speed up the optimization process for large-scale

numerical analysis problems. In the proposed IMVO, universes are divided into subpopulations for parallelization via a
spatially structured network, allowing subpopulations to evolve on different processors while exchanging good solutions.

3.2 Statistical model of dammonitoring displacement

Statistical models are often employed to find out the contribution of external loads (such as water pressure and temper-
ature) to dam deformation.46 An analytical formula gives the along-river displacement of a concrete dam as the sum of
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8 LIN et al.

F IGURE 1 Improved wormhole existence probability (IWEP) and traveling distance rate (TDR).

three terms47:

𝑢 = 𝑢𝐻 + 𝑢𝑇 + 𝑢𝜃, (29)

where 𝑢 denotes the along-river displacement; 𝑢𝐻 denotes the hydraulic component; 𝑢𝑇 denotes the thermal component;
and 𝑢𝜃 denotes the irreversible component.
The hydraulic component can be described using a polynomial function depending on the reservoir water level as

follows:

𝑢𝐻 =

𝑚∑
𝑖

𝑎𝑖𝐻
𝑖, (30)

where 𝑎1 ∼ 𝑎3 are regression coefficients of the hydraulic component;𝐻 is the upstream water level; and the value of𝑚
depends on the dam type and𝑚 = 3 is suitable for the gravity dam.
The thermal component can be expressed by a combination of harmonic functions as follows48:

𝑢𝑇 =

2∑
𝑖

(𝑏1𝑖 sin(𝑖𝜔) + 𝑏2𝑖 cos(𝑖𝜔)), (31)

where 𝑏11, 𝑏12, 𝑏21, and 𝑏21 are regression coefficients of the thermal component; 𝜔 = 𝜋𝑡∕365 and t is the number of days
from the initial date.
The irreversible component reflects the irreversible deformation of the dam in a certain direction over time. According

to previous research results, the irreversible component can be described by a polynomial function consisting of linear,
exponential, logarithmic, and hyperbolic functions,49 shown as follows:

𝑢𝜃 =

4∑
𝑖

𝑐𝑖𝐹𝑖, (32)

𝐹1 = 𝜃, 𝐹2 = 1 − 𝑒
−𝜃, 𝐹3 = ln(𝜃 + 1), 𝐹4 = 𝜃∕(𝜃 + 1), (33)

where 𝑐1 ∼ 𝑐4 are regression coefficients of the irreversible component; 𝜃 is the time calculation parameter related to t,
which can be expressed as 𝜃 = 𝑡∕100.
The coefficients (𝑎1, 𝑎2, . . .𝑐4) can be calculated using multiple linear regression analysis. The deformation caused by

hydrostatic pressure is primarily associated with elastic moduli. By subtracting the thermal and irreversible components
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LIN et al. 9

F IGURE 2 Flowchart of the stochastic inverse method for dam elastic moduli.

from the total displacement 𝑢, the hydraulic component 𝑢𝐻 can be obtained as follows:

𝑢𝐻 = 𝑢 − 𝑢𝑇 − 𝑢𝜃. (34)

3.3 Inverse problem formulation and solution strategies

The flowchart of the stochastic inverse method is illustrated in Figure 2. The process involves the following steps:

Step 1. Collect monitoring data from the dam surveillance system.
Step 2. Establish the statistical model of dam displacement and isolate the hydraulic component from the total
displacement.

Step 3. Establish the FEmodel of the dam and calculate the damdisplacement field under the given load combination.
Step 4. Establish the objective function (Equation 7) of the inverse problem. Set the parameter intervals, the population
size and the termination conditions. Search the optimal solution (i.e., the mean values of elastic moduli) of the
objective function using IMVO.

Step 5. Calculate the first-order sensitivity coefficient 𝐵(𝑋, 𝑌) using FE method and the variance of elastic moduli
according to Equations (12) and (13).

Step 6. Output the solution at the end.

4 METHOD VALIDATION

In this section, numerical examples are conducted to verify the feasibility of the stochastic inverse method and the
computational efficiency of the inverse analysis framework based on the IMVO algorithm.

4.1 Analysis procedure

Based on the damdisplacement fieldmonitoring data, the proposed stochastic inversemethod can capture the uncertainty
of the dam’s mechanical properties and separate them from observation errors. Numerical examples are conducted on a
typical gravity dam section to demonstrate the feasibility of the inverse method when dealing with multiple stochastic
parameters and different measuring points. The main steps of the procedure are as follows:

Step 1. Establish the FE model of the dam section.
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10 LIN et al.

F IGURE 3 Example models.

Step 2. Determine the number of stochastic parameters. Set the mean, variance, and distribution of stochastic
parameters, as well as observation errors.

Step 3. Randomly generate a series of independent samples of stochastic parameters and observation errors.
Step 4. Use the FE model to calculate the dam displacement for different parameter samples under given hydrostatic
loads.

Step 5. Assume the calculated displacement including observation errors represents the observations at each
measuring point.

Step 6. Identify the mean of stochastic parameters by using the IMVO according to Equation (7), and identify the
variance of stochastic parameters according to Equation (13).

Step 7. Compare the inversion results with the theoretical values, and analyze the feasibility of the proposed stochastic
inverse method.

4.2 Case study

Two typical gravity dam models are established with a dam height of 150 m, as shown in Figure 3. In Model I, the
elastic modulus of the dam body is assumed to follow a normal distribution with a mean of 30 GPa and a stan-
dard deviation of 4 GPa. The elastic modulus of the dam foundation is assumed to follow a normal distribution
with a mean of 20 GPa and a standard deviation of 4 GPa. In Model II, the dam body maintains the same param-
eter settings as Model I. The dam foundation is divided into three layers (R1, R2, and R3), each with different mean
values of elastic moduli (15, 20, and 25 GPa) and corresponding standard deviations (3, 4, and 5 GPa). Further, it
is assumed that observation errors follow a normal distribution with a mean of zero and a standard deviation of
1.00 mm.
The displacementmonitoring instruments, such as pendulums, are typically located in transversal and vertical galleries

near the upstream surface of gravity dams. According to the current measuring point arrangements, the instruments are
assumed to be equipped at pointsD1-D7 formonitoring the along-river displacement of the dam. The corresponding nodes
of the measuring points are depicted in Figure 4. To analyze the applicability of the proposed inverse method for different
numbers of measuring points, two groups of measuring point arrangements are selected: (i) all seven points (D1-D7) have
observations and (ii) only four points (D1, D3, D5, and D7) have observations.
In addition, two different load conditions are analyzed and compared in case study. The first condition requires main-

taining a constant water level of 140 m throughout the study. The second condition involves randomly changing the water
level between 120 and 150 m at each moment. The eight examples are listed in Table 1.

4.3 Results and discussion

The proposed inverse analysis framework is applied to the eight examples. For each example, 500 groups of parameter
samples are generated. The inversion results are presented in Table 1, where 𝐸′𝑐 and 𝜎′𝑐 represent the identified mean and
standard deviation of the elastic modulus of the dam body, and 𝐸′𝑟 (or 𝐸′𝑟1, 𝐸

′
𝑟2
, 𝐸′

𝑟3
) and 𝜎′𝑟 (or 𝜎′𝑟1, 𝜎

′
𝑟2
, 𝜎′

𝑟3
) represent the

identified mean and standard deviation of the elastic modulus of the foundation.
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LIN et al. 11

F IGURE 4 Schematic diagram of measuring points (heights are in meters).

TABLE 1 The examples and results.

Inversion results, the mean and standard deviation (GPa)

Example Model
Measuring
arrangement

Water
level (m) 𝑬′𝒄 𝝈′𝒄 𝑬′𝒓 (𝑬

′
𝒓𝟏
, 𝑬′

𝒓𝟐
, 𝑬′

𝒓𝟑
) 𝝈′𝒓 (𝝈

′
𝒓𝟏
, 𝝈′

𝒓𝟐
, 𝝈′

𝒓𝟑
)

(1) I i 140 29.76 4.46 19.83 4.06
(2) I i 120–150 29.80 4.34 19.77 4.27
(3) I ii 140 29.76 4.75 19.78 4.68
(4) I ii 120–150 29.72 4.86 19.80 4.75
(5) II i 140 m 30.11 4.21 14.75, 19.88, 24.63 3.43, 4.35, 5.38
(6) II i 120–150 29.56 4.34 14.84, 20.14, 24.84 3.40, 3.89, 5.54
(7) II ii 140 30.41 4.87 14.78, 19.87, 25.35 4.02, 4.76, 5.82
(8) II ii 120–-150 29.43 5.01 14.84, 20.14, 24.84 3.89, 4.92, 6.12

Note: Subscript c refers to dam body and r to dam foundation.

4.3.1 Feasibility analysis of the stochastic inverse method

After analyzing the results of all eight examples, we take the results of Example (1) for detailed analysis. Figure 5 shows
the comparison of the probability density curve between the example samples and the inversion results. It can be seen
that the identifiedmean of the elastic modulus is similar to that of the samples, and the distribution range of the inversion
results is slightly wider than that of the samples.
Based on the parameters identified, the displacements of measuring points are calculated and compared with the the-

oretical values of samples. The statistical results are listed in Table 2. The Columns 2−4 are the sample statistic: 𝛿(𝑋, 𝑌)
represents the mean displacement, std(𝛿𝑋) represents the standard deviation of the displacement perturbation caused by
stochastic mechanical parameters, and std(𝛿𝑓) represents the standard deviation of the observation errors. The Columns
5−7 are the statistical results of the inverse analysis: 𝛿(𝑋′, 𝑌) represents the estimatedmean displacement calculated based
on the mean value of identified parameters, and std(𝛿′𝑋) and std(𝛿′𝑓) are calculated according to Equations (14) and (15).
Results show that the estimated mean displacement is close to that of the samples, and the displacement perturbation
caused by stochastic parameters increases with elevation. In addition, the estimated standard deviation of observation
errors is approximate to the set value of 1.00mm. Therefore, the proposed stochastic inversemethod can reasonably reveal
the uncertainty of dam’s elastic properties and separate perturbed displacements generated by stochastic parameters from
those attributable to observation errors.
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12 LIN et al.

F IGURE 5 Probability density curves of elastic moduli.

TABLE 2 Comparison of samples and estimated results at different measurement points.

Samples Estimated results

Point 𝜹(𝑿, 𝒀)(mm)
𝐬𝐭𝐝(𝜹𝑿)

(mm)
𝐬𝐭𝐝(𝜹𝒇)

(mm) 𝜹(𝑿′, 𝒀)(mm)
𝐬𝐭𝐝(𝜹′𝑿)

(mm)
𝐬𝐭𝐝(𝜹′𝒇)

(mm)
D1 9.19 1.79 1.02 9.26 1.66 1.08
D2 14.50 2.37 0.99 14.62 2.39 1.00
D3 16.92 2.67 0.98 17.06 2.86 0.97
D4 21.70 3.26 1.01 21.88 3.38 0.99
D5 24.20 3.57 1.00 24.40 3.53 1.07
D6 29.12 4.19 0.99 29.37 4.32 0.97
D7 31.58 4.49 1.03 31.84 4.66 1.06

For all eight examples, it can be seen from Table 1 that the results obtained by the stochastic inverse method are close
to the actual situation and can meet the accuracy requirements. In addition, it can be concluded from the results that
increasing the number of measuring points is helpful to improve the accuracy of the inversion results.

4.3.2 Performance evaluation of the inverse analysis framework based on IMVO

The most computationally intensive part of the inverse analysis framework is the identification of the mean value of
the stochastic parameters, as it requires iterative analyzes of the FE model. In order to evaluate the performance of the
proposed inverse analysis framework based on IMVO, it is comparedwith several other inversion optimization algorithms,
such as basic MVO, PSO, and GA. According to the trial and experience, the control parameters for each algorithm are set
as follows: the population size is taken as 20 and the maximum number of iterations is taken as 50. The WEP in IMVO
increases nonlinearly from 0.2 to 1.0 over the course of iterations, while it increases linearly in MVO. The acceleration
factors in the PSO are set to 𝑐1 = 𝑐2 = 0.5 and the inertia weight is taken as𝜔 = 0.9. In GA, the crossover rate andmutation
rate are set to 𝑃c = 0.2 and 𝑃𝑚 = 0.5, respectively.
After conducting a detailed analysis, we take the results of Examples (1) and (5) for further examination. The results of

the parameter identification are presented in Table 3, and Figure 6 displays the convergence curves of different algorithms
that reflect the objective function value J (Equation 7). It can be seen that IMVO outperformsMVO, PSO, and GA in terms
of faster convergence rates. Additionally, it can be observed that the search accuracy of IMVO is superior to the other three
algorithms in Cases (1) and (5). Therefore, based on our study, IMVO ranks highest in both convergence rate and search
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LIN et al. 13

TABLE 3 The results of identified elastic moduli based on different algorithms.

Method
Case Case (1) Case (5)

𝑬′𝒄 (GPa) 𝑬′𝒓 (GPa) 𝑱 (mm2) 𝑬′𝒄 (GPa) 𝑬′
𝒓𝟏
(GPa) 𝑬′

𝒓𝟐
(GPa) 𝑬′

𝒓𝟑
(GPa) 𝑱 (mm2)

IMVO 29.76 19.83 11.9570 30.11 14.75 19.88 24.63 12.5028
MVO 29.78 19.68 11.9575 29.82 14.72 19.68 25.75 12.5116
PSO 29.80 19.38 11.9606 29.07 15.22 18.89 26.36 12.5520
GA 29.62 19.84 11.9573 30.41 14.57 19.47 26.01 12.5265

F IGURE 6 Comparison of convergence curves recorded in the identification process.

capability. Furthermore, the employment of the multi-core parallel computing strategy leads to substantial reductions in
computation time. To illustrate, utilizing a quad-core processor for IMVO calculation can save approximately 70% of the
time required for the original serial computation because processors can perform calculations simultaneously.

5 ENGINEERING EXAMPLES

In this section, the feasibility of the proposed stochastic inverse method is examined using a real-world dam project as a
case study.

5.1 Background

A roller compacted concrete dam (RCCD) is located in Southwest China. The non-overflow dam section 11# is selected for
analysis. The crest elevation of the dam section is 382.00m, the foundation surface is 216.43 m, and the crest width is 14 m.
There is a folding point located upstream at 270.00 m elevation with a slope of 1:0.25, and the downstream slope is about
1:0.70. The dam body was constructed using concrete material, and according to tests, the density, elastic modulus, Poison
ratio, compressive strength and tensile strength are 2.5 g/cm3, 44.3 GPa, 0.167, 38.55 MPa and 3.39 MPa, respectively. The
dam bedrock is mainly composed of sandstone and limestone. The density, elastic modulus, Poison ratio of the bedrock
are 2.2 g/cm3, 30 GPa, and 0.3, respectively.
The dam section is equipped with four plumb lines for monitoring the displacement in the upstream-downstream

direction. Three normal plumb lines (PL11-1, PL11-2, and PL11-3) were installed at 379.20, 342.00, and 270.00 m elevations,
and PL11-2 has two vertical points (PL11-2-1 and PL11-2-2) at 310.00 and 270.00m elevations. An inverted plumb line (IP11)
was installed at 222.75 m elevation. The plumb line allows for measuring relative displacement between the two ends of
the plumb line. For a normal plumb line, the upper end of the wire is fixed at the top of the dam, while a heavy weight is
damped at its lower end. For an inverted plumb line, the plumb wire is fixed at the lower end, and the upper end of the
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14 LIN et al.

F IGURE 7 Locations of the plumb lines.

F IGURE 8 The inverted plumb line (IP 11).

wire is linked to a float submerged in a water box in the observation area. The monitoring points in the dam section 11#
are shown in Figure 7, and the inverted plumb line (IP11) is illustrated in Figure 8.

5.2 Statistical analysis

The study period chosen for this study spans from July 28, 2010, to April 15, 2013. Throughout this timeframe, the upstream
water level was changed between 334.40 and 369.55 m. The measuring of displacements was conducted twice a month,
which resulted in a total of 59 groups of data. By using Equation (29), a statistical model is established for each measur-
ing point allowing for the separation of the hydraulic component, thermal component, and irreversible component. The
results of the hydraulic component of themonitoring displacement at differentmeasuring points are presented in Figure 9.
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LIN et al. 15

F IGURE 9 The hydraulic component of the monitoring displacement at different measuring points.

F IGURE 10 FE model for the dam section 11#.

5.3 Inverse analysis

According to the actual situation of the plumb lines, the FEmodel of the dam section is established as shown in Figure 10.
The FE mesh includes 3736 elements and 3580 nodes. The described model was implemented by GeHoMadrid, a FE
program that was jointly developed between Technical University of Madrid (Spain) and Hohai University (China).50
The program is developed in Fortran and incorporates the PARDISO package for solving highly complicated and sparse
equations. It is commonly used to solve complex structural, fluid and multi-physics problems in geotechnical and
hydraulic engineering.
In the inverse analysis, the intervals of the elastic moduli of the dam body and foundation are set as 𝐸𝑐 ∈

[35𝐺𝑃𝑎, 55𝐺𝑃𝑎] and 𝐸𝑟 ∈ [20𝐺𝑃𝑎, 40𝐺𝑃𝑎], respectively. Moreover, it has been verified that the load-displacement
response of the concrete dam is not significantly influenced by the Poisson ratio, thus the Poisson ratios of the dam body
and the foundation are regarded as known and taken as 𝜇𝑐 = 0.163 and 𝜇𝑟 = 0.3, respectively.
After inputting the displacement field data of the fivemeasuring points and the load data into the inverse analysis frame-

work, the elastic moduli of the dam body and foundation can be identified. The identified elastic moduli are expressed in
terms of the mean and variance. The mean elastic modulus of the concrete dam body is 45.53 GPa, and its standard devia-
tion is 5.87 GPa resulting in a variation coefficient of 12.9%. This variation coefficient falls within the reasonable range for
concrete materials, as reported by Larrard51 and Vasconcellos.52 Additionally, the mean elastic modulus of the dam foun-
dation is 31.53 GPa, and its standard deviation is 6.12 GPa resulting in a variation coefficient of 19.4%. It isreasonable that
the variation coefficient of bedrock material is higher than that of concrete material.
The statistical results of displacement perturbation terms at different measuring points are shown in Table 4.

It is observed that the displacement perturbation caused by stochastic elastic moduli exhibits a mechanically related
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16 LIN et al.

TABLE 4 Statistical results of displacement perturbation terms.

Point IP11 PL11-3 PL11-2-2 PL11-2-1 PL11-1
std(𝛿′𝑋) (mm) 0.13 0.28 0.47 0.61 0.81
std(𝛿′𝑓) (mm) 0.08 0.09 0.07 0.09 0.07

F IGURE 11 The displacement intervals of the measuring points with 95% CIs. (A) IP11, (B) PL11-3, (C) PL11-2-2, (D) PL11-2-1, (E) PL11-1.

phenomenon across differentmeasuring points. Additionally, Table 4 reveals that the observation errors are approximately
0.08 mm.
Based on the analysis above, it is possible to derive a probabilistic output for the damdisplacement. The confidence inter-

val (CI) of the displacement can be determined by the statistical variance. For instance, the upper and lower bounds of the
95% CI are defined as 𝛿(𝑋′, 𝑌) + 1.96 ×

√
var(𝛿′𝑋) + var(𝛿′𝑓) and 𝛿(𝑋′, 𝑌) − 1.96 ×

√
var(𝛿′𝑋) + var(𝛿′𝑓), respectively.

Figure 11 depicts the displacement intervals of the five measuring points with 95% CIs.

6 CONCLUSION

This paper presents a novel stochastic inverse method for identifying mechanical parameters of concrete dam system.
It involves using reasonable mathematical models and powerful computation tools to analyze the informative content
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LIN et al. 17

provided by the dam monitoring system. The feasibility of the stochastic inverse method is demonstrated through
numerical examples and a practical dam project. The conclusions are as follows:

(1) Based on dam monitoring data, the inversion formulas for unknown stochastic parameters of the dam are derived
by combining perturbation equations and Taylor expansion methods. The proposed inverse method allows for the
separation of perturbed displacements caused by mechanical parameters from those caused by observation errors.
The separated results can effectively reflect the actual working behavior of the dam.

(2) In the inverse analysis framework, the IMVO method is employed to identify the mean of stochastic parameters,
whilemathematical and statisticalmethods are used to determine the variance of stochastic parameters. The proposed
inverse method has the advantages of simplicity for formulation, efficiency of execution, and ease of understanding.

(3) An IMVO algorithm that combines nonlinear convergence factor strategy and multi-core parallel computing is intro-
duced in the inverse analysis framework. The efficiency of IMVO is confirmed through a comparative studywith basic
MVO, PSO, and GA.

(4) The current research considers the uncertainty of measurements and materials, the future research will investigate
the uncertainty of external loads and other factors comprehensively.
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