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ABSTRACT

Network recoverability refers to the ability of a network to return to a desired
performance level after suffering malicious attacks or random failures. A system is
controllable if it can be driven from any arbitrary state to any desired state in finite
time under the control of the driver nodes, which are attached to external inputs. We
use the minimum number of driver nodes as the R-value, which is a typical metric
to denote the network controllability. We investigate the recoverability of network
controllability under link-based perturbations and node-based perturbations. For
link-based perturbations, two recovery scenarios are discussed: (1) only the links which
are damaged in the failure process can be recovered; (2) links can be established
between any pair of nodes that have no link between them after the failure process.
For node-based perturbations, we also investigate two recovery scenarios: (1) only the
nodes and their original links that are removed in the failure process are recovered; (2)
the nodes are removed during the failure process are recovered, and the same number
of removed links are added at random. We propose analytical approximations under
link-based and node-based perturbations in two recovery scenarios by using generating
functions. Results show that our approximations fit well with simulation results both
in synthetic networks and some real-world networks, such as swarm signaling networks
and communication networks.

v





CONTENTS

Preface iii

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 The theoretical analysis framework of network controllability . . . . . . . 5

2.2 Optimization of network controllability . . . . . . . . . . . . . . . . . . . 6

2.3 The robustness of network controllability . . . . . . . . . . . . . . . . . . 7

2.4 The influence of network properties on controllability . . . . . . . . . . . 8

3 Approach 9
3.1 The Basic Network Models . . . . . . . . . . . . . . . . . . . . . . . . . 9
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1
INTRODUCTION

Network science [1] has attracted considerable interest and attention, as many complex
networks exist in the world, such as the Internet, WWW, electricity networks, transport
networks, brain networks, and social networks. The various elements in a complex
system are abstracted into nodes in the network, and the connections between nodes
are regarded as the functional relationship between system elements. Different types
of networks in the real world can be abstracted into complex network models in order
to study the commonalities of various networks that seem different and find universal
methods for them. As a result, they can provide guidance for the analysis and design of
real-world networks.

After several decades of development, the theoretical research of complex networks
has achieved many remarkable scientific results and laid a theoretical foundation for
further study. The proof of our understanding of natural or technological systems is
reflected in our ability to control them [2]. Thus, the research that finds effective ways to
control the behavior of the networks has attracted attention.

Many complex system problems in the real world can be abstracted into network
controllability problems. For example, we can select several genes as the drug targets
to make the whole biological system reach our expected state in the gene regulatory
network [3]. And we can select nodes as information source nodes to produce the
desired publicity effect for the entire social network [4]. Both the above problems have
a common feature that is about selecting driver nodes. By applying some inputs on the
driver nodes, we can control the entire network and steer it to a desired state.

Real-world networks are often confronted with topological perturbations such as
link-based random failures or node-based random failures. Network robustness is
interpreted as a measure of the network’s response to perturbations or challenges
imposed on the network [5], which has been widely studied. The ability that a network
returns to the desired performance level after suffering malicious attacks and random

1
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failures is defined as network recoverability [6]. Several recovery mechanisms [7] have
been investigated in complex networks applications.

1.1. CHALLENGES
Liu et al.[2] proposed an analytical approach to express the controllability of directed
networks. Based on this important theoretical framework, Sun et al. [8][9] expressed
the approximations of the minimum fraction of driver nodes of networks after links
removal or links additions. However, his method cannot approximate the minimum
fraction of driver nodes during the recovery process after suffering attacks. We will
propose a method to analytically express network controllability during a realization that
comprises the attack progress and the subsequent recovery process in two scenarios. In
addition, we will assess the performance of the analytical approximations by comparing
it with simulations on various synthetic and real-world networks.

1.2. OBJECTIVES
Based on the background mentioned above, the objectives of our research are as follows:

1. Validate Sun et al.’s formulas [8][9] about the minimum fraction of driver nodes
after removing links or adding links;

2. Propose analytical approximations of the network controllability during a
realization consisting of the link-based attack process and the subsequent
link-based recovery process, and validate them with simulations;

3. Compare different link-based attack strategies and recovery strategies in two
separate scenarios.

4. Apply our method of analytical expressing the network controllability to the
network under node-based perturbations.

1.3. CONTRIBUTION
The main contributions of this thesis are:

1. We validated Sun et al.’s formulas [8][9] about the minimum fraction of driver
nodes after removing a fraction p of the links or adding a fraction f of the links.
Then, we applied Sun et al.’s formula about removing a fraction p of the links to
the node-based attack.

2. We proposed the general relations about generating functions of degree
distributions after removing links or adding links. Based on this, the minimum
fraction of driver nodes can be analytical approximated during the recovery
process in two scenarios. We evaluate our approximations on real-world networks
and two types of synthetic networks.

3. We compared several attack and recovery strategies for link-based attack and
recovery and found the optimal recovery strategies in different scenarios.
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4. We also used the general relations about generating functions of degree
distributions to express network controllability of the network under node-based
attack and recovery.

5. We compared three attack strategies for node-based attack. Also, we analyzed the
reason that analytical approximation of minimum fraction of driver nodes cannot
work after the degree-based attack and the localized attack.

1.4. THESIS OUTLINE
The structure of this thesis is as follows; Chapter 2 presents the research development
of network controllability in detail. In Chapter 3, some basic knowledge of networks
and the theoretical framework of network controllability are introduced. Then we
propose the analytical approach for approximating the network controllability based on
this fundamental theoretical framework. In Chapter 4, we compare the performance
of our analytical approximations with simulation for link-based attack and link-based
recovery. Besides comparing several link-based attack strategies, we compare two
different link-based recovery strategies (referred to as Scenario A and B) and find the
optimal strategy for each scenario. Chapter 5 deals with node-based attack and recovery.
We compare the performance of analytical approximations and the simulation under
node-based attack and recovery in two scenarios. Also, we try to analytically express the
network controllability under the degree-based attack and the localized attack. Finally,
we present our conclusions and discuss the possible scope for future research in Chapter
6.





2
BACKGROUND

In the recent ten years, the topic of network controllability has become a hot issue in
the network science community. There are many critical research issues with extensive
scientific significance and application value, such as whether complex networks are
controllable, whether it is controllable with self-feedback, how to control networks with
self-feedback, how to achieve minimum cost control, etc.

The current research on the controllability of complex networks mainly focuses on
the following four aspects:

1. Research on the theoretical analysis framework of the controllability of complex
networks;

2. Research on the optimization of network controllability through structural
disturbance;

3. Research on the network’s attack vulnerability and robustness of controllability;

4. Research on the influence of the main structural characteristics of the network on
controllability.

The following sections will introduce the research progress of these four aspects in detail.

2.1. THE THEORETICAL ANALYSIS FRAMEWORK OF NETWORK

CONTROLLABILITY
In 2007, Lombardi and Hörnquist firstly combined the control theory and network
science [10]. They introduced Kalman’s controllability criterion [11] into research
and transformed the network controllability problem into calculating the rank of the
controllability matrix. They concluded that the property of being downstream of the
node to which the input is applied turns out to be a necessary but not a sufficient
condition for controllability. Lombardi and Hörnquist’s work did not get much attention

5
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for two reasons: for most real-world networks, the weights of links are unknown, so
we cannot get the controllability matrix. Even if all weights are known, computing the
rank for numerous distinct combinations is a computationally prohibitive task for large
networks.

In 2011, Liu et al. [2] introduced Lin’s structural controllability [12] to bypass the
need to measure the link weights. They used the ‘maximum matching’ to get the
minimum number of driver nodes in order to solve the problems mentioned above
for large-scale directed networks. They proposed an analytical approach to compute
networks’ controllability according to statistical physics. From the simulations and
analytical results, Liu et al. found that the minimum number of driver nodes is
determined mainly by the degree distribution, and sparse inhomogeneous networks are
more difficult to control than dense homogeneous networks. Liu et al.’s work attracted
lots of attention, and many researchers have started to focus on the topic of network
controllability.

However, Liu et al.’s theory only suits directed networks, which cannot work for
undirected networks. Yuan in 2013 introduced a general controllability paradigm for
any network, which is called the exact controllability framework [13]. It identifies the
minimum number of driver nodes based on the maximum geometric multiplicity of all
eigenvalues of the adjacency matrix. Due to the higher computational complexity, Yuan’s
framework is used less than Liu et al.’s structural controllability in applications.

2.2. OPTIMIZATION OF NETWORK CONTROLLABILITY
The optimization of network controllability reduces the number of driver nodes needed
to control the network, increasing the efficiency of controlling and reducing the cost of
application. The ideal situation for controllability optimization is to achieve optimal
control. There are no unmatched nodes in the network, which can be described as
N − |M ∗ | = 0, where N is the number of nodes and |M ∗ | denotes the size of the
maximum matching in the directed network. Any node in this network can be used as a
driver node to control the entire network. The network in this situation always contains
a cycle of length N , but there are almost no networks with such topology in real life.
Therefore, the realization of perfect matching is the goal of controllability optimization.
There are two main methods currently used for optimization, changing the topology of
the network [14][15] and changing the direction of the links in the network [16][17][18].

Wang [14] firstly proposed a method that can optimize the controllability of networks
by structural perturbations to achieve optimal control. This method forms a new
directed path by connecting the independent matching paths of the network to ensure
that only one driver node is needed to control the whole network. As shown in Fig.
2.1, (a) depicts a heterogeneous network with 30 nodes, the matching links(nodes) are
marked as green, and the unmatched links(nodes) are shown in gray. (b) shows that red
links are added to connect the independent matching paths in sequence.

Hou proposed a method that removes redundant links and adds the same number of
links randomly [15], which would not change the total number of links of the network.
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Figure 2.1: (a) The network before optimization. (b) The network after optimization. All matching paths in
order. Cited from [14]

Different types of links have different influences on network controllability: critical links
refer to that links whose removal will increase the number of driver nodes; ordinary links
are that links whose removal will change the location of driver nodes but not change the
number of driver nodes; redundant links are that links whose removal will not affect any
control configuration.

The two methods discussed above are changing the topology of the network in order
to optimize its controllability. However, changing the topology of networks would cost
much in reality. Thus, it is necessary to find some other ways that do not need to change
the topology of networks.

Based on the node residual degree, a method of assigning link direction to enhance
the controllability of the network was proposed by Hou [16]. His simulations indicated
that this method is more efficient than random assigning direction and can enhance the
robustness of the network at the same time.

Xiao in 2014 proposed the link orientation for optimal controllability problem
(EOOC) by changing the direction of links [17]. In 2015 [18], he presented a simpler
link orientation method that aimed at producing more critical link directions. He
also proposed a strategy that utilized only local information to enhance network
controllability.

2.3. THE ROBUSTNESS OF NETWORK CONTROLLABILITY
The robustness of network controllability focuses on the change of controllability under
the random attack or the targeted attack. This is also the main focus of this thesis.

Pu in 2012 [19] found that degree-based attacks are more efficient on network
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structural controllability than random attacks and cascade failures also do great
harm to network controllability. Nie et al. [20] studied the network controllability
under two strategies: random and intentional attack. They found the vulnerability
of controllability under random and intentional attacks behave differently as the
removal fraction increases. He et al. [6] proposed a general topological approach and
recoverability indicators to quantify the network recoverability by applying the effective
graph resistance and the network efficiency as robustness metrics.

In this thesis, we investigate the recoverability of network controllability under
link-based and node-based perturbations, respectively. The minimum fraction of driver
nodes is a metric to measure controllability.

2.4. THE INFLUENCE OF NETWORK PROPERTIES ON

CONTROLLABILITY
The influence of network properties on controllability mainly studies the impact of
network metrics such as degree distribution, betweenness, average shortest path, etc.
on network controllability. Liu et al. [2] in 2011 studied the influence of the degree
distribution of the network on controllability. They found that the degree distribution
is the most critical factor for network controllability. Meanwhile, they found that driver
nodes tend to avoid hubs.

In 2013, Posfai [21] found that clustering and modularity have no impact on
network controllability, but the density of the driver nodes is linearly related to the
out-degree-in-degree correlation, that it is quadraticly related to the out-out-degree
correlation and in-in-degree correlation, and it has no correlation with the in-out degree.

In [22], Menichetti et al. showed that the density of nodes with in-degree and
out-degree equal to one and two, determines the number of driver nodes. Based on
these results, they also proposed an algorithm to improve the controllability of networks
by adding links for nodes with low degree.

In summary, the research on the controllability of complex networks is based on
the structural controllability analysis framework proposed by Liu et al. [2] and is
supplemented by the strict controllability framework proposed by Yuan et al. [13]. The
studies of network controllability have gradually developed to optimization, robustness,
and the influence of network metrics on it since the basic theoretical research work was
proposed. Although some preliminary results have been achieved, there are still many
problems to be solved. Overcoming and solving these problems will help people achieve
the goal of controlling complex networks.

This thesis studies the recoverability of network controllability, which is extended
from the research on the robustness of network controllability. We will propose a method
that can analytical express the fraction of driver nodes during the attack process and the
subsequent recovery process based on generating functions.



3
APPROACH

This chapter introduces the basic related theories of network controllability and
methods used in this research. Section 3.1 introduces several complex network
models used in this research, including Erdős-Rényi networks, regular networks, Swarm
Signalling Networks, etc. Section 3.2 introduces the structural control theory in
detail. Section 3.3 introduces the theoretical formulas based on statistical physics
for the minimum number of driver nodes. Section 3.4 introduces the theoretical
approximations proposed by Sun et al. [8][9] for the minimum of driver nodes of the
networks after attacking or adding links randomly. Section 3.5 presents an approach for
measuring the network recoverability in two scenarios.

3.1. THE BASIC NETWORK MODELS
Complex network models are usually divided into the different types according to their
structure and basic properties. Regular networks have a fixed network structure in
the sense that every node has the same degree. Erdős-Rényi networks have a degree
sequence which is approximately a Poisson distribution and a small network diameter.
Small-world networks have high clustering coefficient and short average path length.
Scale-free networks have a power-law distribution degree distribution, implying there
are a few nodes with very high degree values (hubs). The types of networks that are
researched in this project are described in detail below.

3.1.1. ERDŐS-RÉNYI NETWORKS
Erdős-Rényi Network (ER network) consists of N nodes, and the probability of a
link between each pair of nodes is p. Erdős-Rényi Network is named after two
mathematicians, Pál Erdős and Alfréd Rényi, who have done much fundamental
works on graph theory. The degree distribution of the ER networks has the binomial
distribution which approximates the Poisson distribution:

P (k) =
(

N

k

)
pk (1−p)N−k ≈ 〈k〉k e−〈k〉

k !
(3.1)

9
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where < k > is the average degree.
There are two methods to generate a directed ER network:

1. G(N , p) model
Step1: Generate a graph with N isolated nodes;
Step2: Iterate each pair of nodes and add a directed link between each pair with
probability p.

2. G(N ,L) model
Step1: Generate a graph with N isolated nodes;
Step2: Place L directed links randomly.

The directed network which is generated by the G(N , p) model has N nodes and pN (N −
1) links and its average out-degree is < kout >= p(N−1), which always equals the average
in-degree. For G(N ,L), the ER networks have N nodes and L links and its average
out-degree is < kout >= L

N . In this thesis, we use G(N ,L) to generate ER networks for
simulation.

3.1.2. REGULAR NETWORKS
Regular networks are networks whose nodes all have the same degree. If the degree of all
nodes is < k >, this graph is called a k-regular graph. Its degree distribution satisfies the
Dirac delta function:

P (k) = δ(〈k〉−k) (3.2)

In the directed k-regular graph, we assume that both the out- and in-degree are fixed
(< kout >=< ki n >=< k >). It has N nodes and N < k > links.

3.1.3. SWARM SIGNALLING NETWORKS (SSNS)
In 2013, Kamareji et al. [23] discussed the resilience and controllability of dynamic
collective behaviors. They devised the swarm signaling networks based on the
topology to research the dynamics of information transfer channels. A SSN is modeled
as a directed network with k-regular out-degree distribution and Poisson in-degree
distribution with average k as:

Pi n(ki n) = kki n e−k

ki n !
(3.3)

Pout (kout ) = δ(k −kout ) (3.4)

The basic generating algorithm of SSN (N ,k) is as below:
Step1: Generate a graph with N isolated nodes;
Step2: Iterate each node and randomly add k directed links pointing to k nodes that are
randomly chosen.

3.1.4. REAL-WORLD NETWORKS
There are many networks in the real world, such as social networks, information
networks, technology networks, and biological networks [24]. We select some real
communication networks from the Topology ZOO [25] and the Network Repository [26]
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for the case study. The 4 real-world networks that are used in this thesis are described in
Table 3.1. < k > is the average out-degree, which equals the average in-degree.

Networks N L < k >
Cogentco 197 243 1.234

kdl 754 895 1.187
routers 2114 6632 3.137
WHOIS 7500 56900 7.587

Table 3.1: Topological properties of 4 real-world networks

For real-world networks, the generating function of degree distribution follows:

G(x) = N (k = 0)+N (k = 1)×x +N (k = 3)×x2 +·· ·+N (k = n −1)×xn−1

n
(3.5)

where n is the total number of nodes in the network, N (k = 0) is the number of nodes
whose degree is zero, and so on.

3.2. THE STRUCTURAL CONTROL THEORY

3.2.1. THE SYSTEM DYNAMICS OF NETWORKS’ CONTROLLABILITY
In real life, most processes running on complex networks are non-linear, which system
dynamics are challenging to express in a general mathematical equation. However, the
performance of non-linear systems is similar to that of linear systems in many aspects
[27]. Considering the linear time-invariant (LTI) dynamics of the complex network with
N nodes:

d x(t )

d t
= Ax(t )+Bu(t ) (3.6)

where the vector x(t ) = (x1(t ), x2(t ), ..., xN (t ))T is the state of N nodes at time t ; the
N × N matrix A describes the interaction strength between nodes; the N × M(M ≤ N )
matrix B is the input matrix which identifies the interaction between the internal nodes
and external control; the vector u(t ) = (u1(t ),u2(t ), ...,uM (t ))T expresses the signals that
are imposed on the M nodes which are controlled by an outside controller.

According to the classical control theory, the system, which is expressed in Eq. 3.6,
is controllable if it can be driven from any initial state to any desired final state in finite
time. In control theory, there are two conditions that are always used for identifying
a system, whether controllable or not: Kalman’s controllability rank condition [11]
and PBH controllability condition [28]. In the following, we will introduce Kalman’s
condition in detail.

3.2.2. KALMAN’S CONTROLLABILITY RANK CONDITION
A LTI sytem is controllable if the matrix

C = [B , AB , A2B , ..., AN−1B ] (3.7)
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has full rank, which means,
r ank(C ) = N (3.8)

According to Kalman’s controllability criterion, for a given complex network system,
matrix A is given. Therefore, it is critical to find a suitable input matrix B so that the
system satisfies Kalman’s controllability condition, which determines that the network
is controllable. If an external control signal is applied to every node in the network, the
system must be fully controllable. The reason is that matrix B is a diagonal matrix with
rank N , satisfying Kalman’s controllability condition. However, it would be better if fewer
nodes in the network are selected to control the whole system.

3.2.3. STRUCTURAL CONTROLLABILITY THEOREM
The specific weights between the nodes of the networks are usually unknown for
real-world networks. And in most cases, only the topology of the network is known.
Thus, Liu et al. [2] proposed it is feasible to use structural controllability to avoid the
problem that many real-world networks’ weights are unknown. They regarded the
network as a structural matrix where non-zero entries represent a link between two
nodes and a zero represents that there is no link between the two nodes.

The structural controllability shows that for a system composed of a structural
matrix, if it is possible to fix the free parameters in A and B to specific values so that
the system is controllable, the system is called structure controllable. If a system is
structurally controllable, it is completely controllable for almost all parameter values,
except for the all-zero state and some proper algebraic variety.

3.2.4. MATCHING PROBLEM
The matching M of an undirected graph G is a link set such that any two links in this set
do not have any common nodes. A node is matched if it is incident to a link in the set
M . Otherwise, it is unmatched.

The matching M of a directed graph G is a link set such that any two links in this set
do not share any start or end nodes. A node is matched if it is an end node of a link that
belongs to this set M . Otherwise, it is unmatched.

For undirected and directed graphs, maximum matching is the matching set that
includes the maximum number of links. It is worth noting that there can be several
different maximum matching sets. However, the maximum numbers of these sets are
the same, which means the maximum number of matched nodes is fixed. If all nodes of
a graph are matched, this is called the perfect match.

The minimum number of driver nodes (ND ) to fully control a directed network
depends on the maximum matching of this network:

ND = max{N −|M ∗|,1} (3.9)

where N is the size of the network and |M ∗| denotes the size of the maximum matching
in the directed network.
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3.2.5. SIMULATIONS FOR DRIVER NODES

In this thesis, we research the controllability of directed networks. To determine the
maximum matching of directed networks, a bipartite network GB with 2N nodes and L
links is constructed to represent the directed network G with N nodes and L links, as
shown in Fig. 3.1:

(a) A directed graph

(b) Bipartite representation of the digraph in (a)

Figure 3.1: Matching in digraph and its bipartite representation, the matching links are shown in blue

In Fig.3.1(b), the left column with signature “+” represents source nodes, and
“-“ represents target nodes. The links between them are still original links of
the directed graph. There are many algorithms that can calculate the maximum
matching of a bipartite graph efficiently. In our simulations, the algorithm
g.maximum_bipartite_matching() in igraph-python is used directly to find the size of
the maximum matching.

3.3. ANALYTICAL APPROXIMATIONS FOR DRIVER NODES
The generating function is an important method in combinatorics, which corresponds
the discrete number sequence to the formal power series. Generating functions can also
be used in complex networks. In Li’s paper [29], he used the generating function to
express the probability that all links of a randomly chosen node are in a specific state,
which is written as:

G(x) =
∞∑

k=0
pk xk (3.10)
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x is the probability that a link is in a certain state, and pk is the probability that this node
has degree k.

We can also use the excess degree distribution [29] as Eq. 3.11 to express the
probability of a node with degree k reached by a randomly chosen link.

qk = pk k∑∞
k=0 pk k

= pk k

〈k〉 (3.11)

Therefore, the generating function for the excess degree distribution can be written as:

H(x) =
∞∑

k=1
qk xk−1 (3.12)

Liu et al. in 2011, proposed a way to compute the minimum number of driver nodes [2].
The authors used the method in statistical physics to derive the minimum fraction of
driver nodes with given generating functions of out-degree and in-degree distributions.

The general function for the minimum fraction of driver nodes nD that Liu et al. [2]
obtained is:

nD = ND

N

= 1

2
{Gi n(ω2)+Gi n(1−ω1)−2+Gout (ω̂2)+Gout (1− ω̂1)+k(ω̂1(1−ω2)+ω1(1− ω̂2))}

(3.13)

where ND is the number of driver nodes, N is the size of this network, k is the average
out-degree, and ω1, ω2, ω̂1, ω̂2 satisfy:

ω1 = Hout (ω̂2) (3.14)

ω2 = 1−Hout (1− ω̂1) (3.15)

ω̂1 = Hi n(ω2) (3.16)

ω̂2 = 1−Hi n(1−ω1) (3.17)

3.3.1. MINIMUM NUMBER OF DRIVER NODES FOR SSN
In the following, we apply Liu et al.’s equation [2] of nD Eq. 3.13 on SSN as an example.
The out-degree distribution of SSN is regular, which is given in Eq. 3.4, where k is the
average out-degree. The in-degree distribution approximates the Poisson distribution,
which is given in Eq. 3.3, where k is the average in-degree. After substituting in-degree
distribution and out-degree distribution into the generating functions Eq. 3.10 and Eq.
3.12, the generating functions of SSN’s degree distributions can be expressed as:

Gout (x) = xk (3.18)

Gi n(x) = e−k(1−x) (3.19)

Hout (x) = xk−1 (3.20)

Hi n(x) = e−k(1−x) (3.21)
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and ω1, ω2, ω̂1, ω̂2 satisfy:

ω1 = ω̂k−1
2 (3.22)

ω2 = 1− (1− ω̂1)k−1 (3.23)

ω̂1 = e−k(1−ω2) (3.24)

ω̂2 = 1−e−kω1 (3.25)

If we assume:

ω1 = 1−ω2 (3.26)

ω̂2 = 1− ω̂1, (3.27)

then the pair of equations Eq. 3.23 and Eq. 3.24 follows from Eq. 3.22 and Eq. 3.25. As a
result, the minimum fraction of driver nodes nD follows:

nD = (1−e−k(1−ω2))k −1+e−k(1−ω2) +k(1−ω2)e−k(1−ω2) (3.28)

where ω2 satisfies:
1−ω2 = (1−e−k(1−ω2))k−1 (3.29)

In our simulations, we generate 1000 SSNs with the same number of nodes 20,000 but
with different out-degree k, ranging from 1 to 8 to compute the fraction of driver nodes
by applying the maximum matching algorithm. The performance comparison of the
average results from simulation and the analytical approximations is shown in Fig. 3.2
and Table 3.2. The simulation and approximations fit very well, which means Eq. 3.28
can be used to determine the minimum fraction of driver nodes for SSN.

Figure 3.2: Performance comparison of the approximation Eq. 3.28 and simulations for nD of SSN with 20,000
nodes
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k Simulation Eq. 3.28
1 0.36765 0.36788
2 0.16176 0.16190
3 0.06096 0.06076
4 0.02081 0.02092
5 0.00732 0.00726
6 0.00259 0.00258
7 0.00092 0.00093
8 0.00032 0.00034

Table 3.2: Comparing values from Eq. 3.28 with simulation for SSN with 20,000 nodes

3.3.2. MINIMUM NUMBER OF DRIVER NODES FOR ER NETWORKS
For directed Erdős-Rényi networks, the generating functions of the degree distributions
are:

Gout (x) = e−k(1−x) (3.30)

Gi n(x) = e−k(1−x) (3.31)

Hout (x) = e−k(1−x) (3.32)

Hi n(x) = e−k(1−x) (3.33)

and the expression of the minimum fraction of driver nodes nD is:

nD = e−kω1 +exp(−ke−kω1 )−1+kω1e−kω1 (3.34)

where ω1 satisfies:
ω1 = exp(−ke−kω1 ) (3.35)

We generate 1000 ER networks with the same number of nodes 20,000 but with different
out-degree k, ranging from 1 to 8 to compute the fraction of driver nodes. Fig. 3.3 and
Table 3.3 compare the fraction of driver nodes by the average simulation results and
the analytical approximations from Eq. 3.34. The discrepancy between simulation and
analytical values is very tiny, which indicates that Eq. 3.34 can estimate the minimum
fraction of driver nodes that are needed to control the ER network.

3.4. ANALYTICAL APPROXIMATIONS FOR CONTROLLABILITY

UNDER PERTURBATIONS

3.4.1. REMOVE A FRACTION p OF THE LINKS AT RANDOM
In this section, we deduce the analytical approximations for the minimum fraction of
driver nodes of a network where a fraction p of the links is removed at random.

We deduce the analytical expression for the fraction nD of driver nodes in SSNs
where a fraction p of links is randomly removed. An important step is to find the degree
distribution of the resulting network G(N ,L(1−p)) after a fraction p of links are randomly
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Figure 3.3: Performance comparison of the approximation Eq. 3.34 and simulations for nD of ER networks
with 20,000 nodes

k Simulation Eq. 3.34
1 0.45610 0.45594
2 0.21608 0.21607
3 0.07314 0.07231
4 0.02261 0.02216
5 0.00775 0.00742
6 0.00279 0.00260
7 0.00105 0.00093
8 0.00041 0.00034

Table 3.3: Comparing values from Eq. 3.34 with simulation for ER networks with 20,000 nodes

removed from the original graph G0(N ,L). The degree distribution Pr [DG = i ] [30] of the
resulting network can be expressed as:

Pr [DG = i ] = (1−p)i
N−1∑
j=i

(
j

i

)
p j−i Pr [DG0 = j ] (3.36)

where p = m
L is the fraction of removed links in the original network, and m is the

number of links that are removed randomly.

The new degree distribution is used to obtain the new generating functions of SSNs
in which a fraction of p of the links are removed at random. The generating functions of
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the new out-degree and in-degree distributions satisfy:

Ḡout (x) = (p + (1−p)x)k (3.37)

Ḡi n(x) = e−k(1−p)(1−x) (3.38)

H̄out (x) = (p + (1−p)x)k−1 (3.39)

H̄i n(x) = e−k(1−p)(1−x) (3.40)

The average out- and in-degree after removing a fraction p of the links are denoted by k̄,
which satisfies:

k̄ = k̄out = k̄i n = k(1−p) (3.41)

After substituting the new generating functions into Eq. 3.13, the fraction of driver nodes
of SSN after a fraction p of the links have been removed satisfies [8]:

nD = (p + (1−p)(1−e−k(1−p)(1−ω2)))k −1+e−k(1−p)(1−ω2) +k(1−p)(1−ω2)e−k(1−p)(1−ω2)

(3.42)
where ω2 satisfies:

1−ω2 = (p + (1−p)(1−e−k(1−p)(1−ω2)))k−1 (3.43)

The complete proof of the formulas given above is given in the Appendix A.
When p = 0, there is no links removal. Eq. 3.42 and Eq. 3.43 become Eq. 3.28 and Eq.
3.29.

3.4.2. ADD A FRACTION f OF THE LINKS AT RANDOM
In this section, we generalized the analytical approximations for the graph with m links
being added randomly by considering SSNs again. The fraction of added links is denoted
as f , which satisfies:

f = m

N (N −1)−L
(3.44)

The average out- and in-degree is denoted by k̄, which is expressed as:

k̄ = k + f (N −1−k) (3.45)

f (N −1−k) means each node in the original network has N −1−k out-going links that
can be added randomly with probability f . The degree distribution Pr [DG = i ] [30] of
the network after a fraction f of links addition is expressed as:

Pr [DG = i ] = (1− f )N−1−i
i∑

j=0

(
N −1− j

i − j

)
f j−i Pr [DG0 = j ] (3.46)

Then, the new generating functions of the out- and in-degree distributions respectively
satisfy:

Ḡout (x) = xk (1− f (1−x))N−1−k (3.47)

Ḡi n(x) = e−k̄(1−x) (3.48)

H̄out (x) = xk−1

k̄
(k̄ − f (N −1)(1−x))(1− f (1−x))N−2−k (3.49)

H̄i n(x) = e−k̄(1−x) (3.50)
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Therefore, the minimum fraction of driver nodes of SSN after additions is expressed as
[9]:

nD = e−k̄(1−ω2) + (1−e−k̄(1−ω2))k (1− f e−k̄(1−ω2))N−1−k −1+ k̄(1−ω2)e−k̄(1−ω2) (3.51)

where ω2 satisfies:

k̄(1−ω2) = (1−e−k̄(1−ω2))k−1(k̄ − f (N −1)e−k̄(1−ω2))(1− f e−k̄(1−ω2))N−2−k (3.52)

The complete proof of the formulas given above is given in the Appendix B.
When f = 0, there is no links addition. Eq. 3.51 and Eq. 3.52 become Eq. 3.28 and Eq.
3.29.

3.5. R-VALUE AND TWO RECOVERY SCENARIOS
In this thesis, the recoverability of the network controllability can be assessed by the
efficiency that the minimum fraction nD of driver nodes return to the original state
under perturbations of the network topology.

3.5.1. R-VALUE
The robustness of a network can be expressed in a mathematical way, through the
so-called R-value, which quantifies the robustness of a network [5]. In our work, we use
the normalized value of nD as the R-value whose value is between 0 and 1. The definition
of R-value in this thesis is:

R = 1−nD

1−nD0

(3.53)

where nD0 is the fraction of driver nodes in the original network, nD is the fraction of
driver nodes during the attack phase and recovery phase. When nD is equal to nD0 , R
equals 1, which reflects the network’s controllability does not change. When R-value
equals 0, it means the network controllability is completely destroyed, and all nodes
need to be controlled to control the whole network.

In the following chapters, a challenge indicates an event that changes the network
topology and thus possibly changes the R-value. In this thesis, we assume that changes
do not happen at the same time. For link-based attack and recovery, an elementary
challenge is one link removal in the attack phase or one link addition in the recovery
phase. An elementary challenge for node-based attack and recovery is one node removal
and its links removal in the attack phase and one node addition and adding the number
of its original links in the recovery phase. Each challenge can change the network
topology and the R-value. As a result, every perturbation in the attack and recovery
process has its associated nD and R-value. A sequence of R-values can describe any
realization with a number M of elementary challenges, denoted by R[k]1≤k≤M , where k
is the sequence number of challenges.

3.5.2. RECOVERY IN SCENARIO A
In this thesis, R-value is the controllability metric of a network G(N ,L). Attacking
this network would make its minimum fraction nD of driver nodes increase. Thus,
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the R-value decreases, which denotes the degradation of network controllability. The
links or the nodes are removed one by one until the R-value reaches a predefined
threshold Rthr eshol d . The number of removed links or removed nodes that makes
R-value reach the predefined threshold is denoted as Ka . Then the recovery process
starts from the remaining network Gat t acked (N ,L −Ka) or Gat t acked (N −Ka ,Lr emai ned ).
Scenario A assumes that the recovered links can be added between any two nodes in
the complement of the graph after attacks if the elementary challenges are link-based
removals and additions. If the elementary challenges are node-based removals and
additions, the recovery process in Scenario A assumes that the removed nodes are
added, and k out-links and k in-links are added between the added node and any
random nodes, where k is the average out- and in-degree of the original network before
the attack process.

For link-based random attack and random recovery in Scenario A, the generating
function during the attack process [30] is denoted as Ḡ(x) and the generating function

during the subsequent recovery process [9] is denoted as ¯̄G(x):


Attack process: Ḡ(x) =G(p + (1−p)x), p = m

L

Recovery process: ¯̄G(x) = (1− f (1−x))N−1Ḡ( x
1− f (1−x) ), f = m

N (N−1)−L−Ka

(3.54)

For the above general relations of generating functions, we still use SSN as an
example to illustrate the method. The generating functions of an original SSN’s out-
and in-degree distributions follow Eq. 3.18 and Eq. 3.19. After a fraction p of the links
is removed, the generating functions are written as Eq. 3.37 and Eq. 3.38. Then, we
substitute the attacked SSN’s generating functions of the degree distributions (Eq. 3.37
and Eq. 3.38) to the general relations of generating functions about recovery (Eq. 3.54).
As a result, the generating functions of out- and in-degree distributions of recovered
networks are expressed as:

¯̄Gout (x) = (1− f (1−x))N−1(p + (1−p)
x

1− f (1−x)
)k (3.55)

¯̄Gi n(x) = (1− f (1−x))N−1e−k(1−p)(1− x
1− f (1−x) ) (3.56)

According to these new generating functions and Eq. 3.13 by Liu et al., the minimum
fraction of driver nodes to control the network during the recovery phase can be
analytically expressed.

For node-based random attack and random recovery in Scenario A, the generating
function in the attack process is the same as that for link-based attack, while p is the
fraction of removed nodes. During the recovery process, there are many ways of adding
nodes in Scenario A. In this thesis, we assume that one removed node is added, and k
out-links and k in-links are established randomly between this node and any random
nodes in each recovery step. Thus, we still use the general formula about generating
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functions for link-based recovery in node-based recovery process, while f = 2km
N (N−1) .

Attack process :Ḡ(x) =G(p + (1−p)x), p = m
N

Recovery process : ¯̄G(x) = (1− f (1−x))N−1Ḡ( x
1− f (1−x) ), f = 2km

N (N−1)

(3.57)

where 2km is the number of links are added in each step.

3.5.3. RECOVERY IN SCENARIO B
The attack process in Scenario B is the same as in Scenario A. In the recovery process
in Scenario B, all the links that are removed in the attack process are added until the
network returns to the original state under the link-based recovery. For the node-based
recovery, all removed nodes and their original links are added to return to the original
state. A symmetric method is used in Scenario B to express the generating function in
the recovery process. Eq. 3.58 and Eq. 3.59 are generating functions under the link-based
challenges and node-based challenges, respectively. By using the same notation as

before, Ḡ(x) [30] and ¯̄G(x) refer to the generating functions in the attack process and
the subsequent recovery process, respectively.

Attack process :Ḡ(x) =G(p + (1−p)x), p = m
L

Recovery process : ¯̄G(x) =G(p + (1−p)x), p = 2Ka−m
L

(3.58)

In the link-based attack process, p is the fraction of the removed links, and m is the
number of removed links. In the link-based recovery process, p = 2Ka−m

L , where Ka is the
number of removed links that makes the R-value reach at the R-threshold, and m is the
number of added links.

Attack process: Ḡ(x) =G(p + (1−p)x), p = m
N

Recovery process: ¯̄G(x) =G(p + (1−p)x), p = 2Ka−m
N

(3.59)

In the node-based attack process, p is the fraction of removed nodes, and m is the
number of removed nodes. During the node-based recovery process, p = 2Ka−m

N where
Ka is the number of removed nodes that makes the R-value drop to the R-threshold, and
m is the number of added nodes.





4
RESULTS FOR REMOVAL AND

SUBSEQUENT ADDITIONS OF LINKS

In this chapter, we consider the link-based attack and the subsequent link-based
recovery and show the performance of the analytical approximations compared with
simulation.

4.1. REMOVING AT RANDOM A FRACTION p OF THE LINKS
In Chapter 3, Eq. 3.42 gives the analytical expression of the fraction of the minimum
number of driver nodes of SSN after removing a fraction p of links uniformly at random.
In our simulations, we generate SSNs with the same number of nodes 10,000 but with
different fixed out-degree k, which ranges from 1 to 8. For a SSN with a specific
out-degree, we randomly remove a fraction p of links, where p = 0, 0.2 or 0.5. The
simulation results are the average values of nD for 1000 different attacked SSNs. Fig.
4.1 and Table 4.1 compare the average simulation values and analytical values.

Simulation Eq. 3.42
k p=0 p=0.2 p=0.5 p=0 p=0.2 p=0.5
1 0.36765 0.44973 0.60652 0.36788 0.44933 0.60653
2 0.16176 0.23894 0.41013 0.16190 0.23883 0.41012
3 0.06096 0.11632 0.27945 0.06076 0.11628 0.279212
4 0.02081 0.05021 0.18341 0.02092 0.05034 0.18344
5 0.00732 0.02111 0.11286 0.00726 0.02114 0.11270
6 0.00259 0.00904 0.06526 0.00258 0.00900 0.06539
7 0.00092 0.00395 0.03747 0.00093 0.00390 0.03738
8 0.00032 0.00177 0.02157 0.00034 0.00171 0.02150

Table 4.1: Comparing Eq. 3.42 with simulation results for SSNs with 10,000 nodes under links removal

In the case that there is no link removal, i.e. p = 0, Eq. 3.28 becomes Eq. 3.42. As

23
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Figure 4.1: Fraction of driver nodes for SSN with 10,000 nodes as function of k for several values of p under
links removal

the value of p increases from 0.2 to 0.5, the value of nD also increases since more driver
nodes are needed to make the network controllable. Fig. 4.1 also illustrates that dense
networks are easier to control than sparse networks, which have a smaller degree. As
Table 4.1 shows, the simulations fit very well with the approximation Eq. 3.42.

The calculation can also be applied to other directed networks when the value of p
and the degree distribution P (ki n ,kout ) are given. Through any given degree distribution
P (ki n ,kout ) of the network, the analytical approximation of the nD of the network in
which a fraction p of the links is randomly removed can be deduced and expressed. To
simplify the discussion, the analytical formula for ER networks is given as Eq. 4.1 directly.

nD = exp(−k(1−p)e−k(1−p)(1−ω2))−1+e−k(1−p)(1−ω2)+k(1−p)(1−ω2)e−k(1−p)(1−ω2) (4.1)

where ω2 satisfies the equation:

ω2 = 1−exp(−k(1−p)e−k(1−p)(1−ω2)) (4.2)

A shown in Fig. 4.2 and Table 4.2, the performance of our approximation for ER
networks after after a fraction p of the links is removed is very well. The results from
simulation are the average values of nD for 1000 different attacked ER networks .

4.2. ADDING AT RANDOM A FRACTION f OF THE LINKS
In the previous chapter, Eq. 3.51 provides the analytical results of minimum fraction
nD of driver nodes for randomly adding a fraction f of links to SSNs with the k-regular
out-degree. In our simulations, we generate SSNs with 10,000 nodes but with different
fixed out-degree k that ranges from 1 to 8. For 1000 SSN with specific degree, we
randomly add a fraction f of links to simulate, where f = 3×10−6 and f = 3×10−4. Fig.
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Figure 4.2: Fraction of driver nodes for ER networks with 10,000 nodes as function of k for several values of p
under links removal

Simulation Eq. 4.1
k p=0 p=0.2 p=0.5 p=0 p=0.2 p=0.5
1 0.45610 0.52675 0.65341 0.45594 0.52538 0.65437
2 0.21608 0.29440 0.45565 0.21607 0.29628 0.45594
3 0.07315 0.14961 0.32024 0.07231 0.14942 0.31906
4 0.02261 0.05849 0.21615 0.02216 0.05649 0.21607
5 0.00775 0.02330 0.13560 0.00742 0.02216 0.13442
6 0.00279 0.00941 0.07344 0.00260 0.00919 0.07231
7 0.00105 0.00431 0.03920 0.00093 0.00394 0.03943
8 0.00041 0.00198 0.02343 0.00034 0.00172 0.02216

Table 4.2: Comparing Eq. 4.1 with simulation results for ER networks with 10,000 nodes under links removal

4.3 and Table 4.3 compare the values from simulation and analytical approximations.

The approximations exhibit a very good fit for the simulation when f = 3 ×
10−6. However, when f = 3 × 10−4, there is a gap between the tail of the analytical
approximations and that of the simulation. In other words, in the case, f = 3× 10−4,
the analytical approximations cannot fit with the simulations well when the degree is
large. The reason is that when the degree is large, the number of driver nodes is at least
1, which follows from Eq. 3.9. Thus, nD is always at least 1

N where N is the size of the
network.

The analytical expression can also be applied in ER networks. The approximation for
nD satisfies:

nD = e−k̄ω1 +exp(−k̄e−k̄ω1 )−1+ k̄ω1e−k̄ω1 (4.3)

where k̄ = k + f (N −1−k) and ω1 = exp(−k̄e−k̄ω1 ).
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Figure 4.3: Fraction of driver nodes for SSN with 10,000 nodes as function of k for adding probability f under
links recovery

Simulation Eq. 3.51
k f = 3×10−6 f = 3×10−4 f = 3×10−6 f = 3×10−4

1 0.36069 0.02158 0.36095 0.02183
2 0.15801 0.00744 0.15806 0.00736
3 0.05910 0.00262 0.05895 0.00259
4 0.02020 0.00090 0.02026 0.00093
5 0.00696 0.00031 0.00704 0.00034
6 0.00248 0.00018 0.00250 0.00012
7 0.00087 0.00011 0.00090 0.00005
8 0.00033 0.00010 0.00033 0.00002

Table 4.3: Comparing Eq. 3.51 with simulation for SSNs with 10,000 nodes

We also generate ER networks with 10,000 nodes but with different out-degree that
ranges from 1 to 8. The randomly links addition probability f is set as f = 3 × 10−6.
For a specific degree k and the probability f . 1000 ER networks are used to simulate.
Fig. 4.4 and Table 4.4 compare the average values from simulations and analytical
approximations, and show a good fit between them.

4.3. RECOVERABILITY IN SCENARIO A AND SCENARIO B
4.3.1. SCENARIO A
Scenario A assumes that the recovery links can be added between any two nodes if
there is no link between them after attacks. The whole process is divided into two steps.
The first step is attacking links one by one randomly until the R-value decreases to the
threshold Rthr eshol d , which is predefined, Then the second step is adding links one by
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Figure 4.4: Fraction of driver nodes for ER networks with 10,000 nodes as function of k after adding a fraction
f of the links

k Simulation Eq. 4.3
1 0.44639 0.44674
2 0.21066 0.21041
3 0.06965 0.07071
4 0.02142 0.02210
5 0.00719 0.00768
6 0.00252 0.00280
7 0.00091 0.00107
8 0.00033 0.00041

Table 4.4: Fraction of driver nodes for ER networks with 10,000 nodes as function of k after adding a fraction
f of the links

one in Scenario A until the R-value returns to 1.

The R-threshold is set to 0.9 in all simulations in this thesis. In our simulation, we
generate 100 SSNs with 500 nodes and out-degree k = 2, and each of them is simulated
for 100 realizations. Each realization of processes consists of an attack process and the
subsequent recovery process.

Based on Eq. 3.54, the controllability of the attacked network can be analytically
expressed during the subsequent recovery process in Scenario A. The top two figures in
Fig. 4.5 exemplify the envelopes of the challenges in SSN for the controllability metric
R-value in Scenario A, under the random attack strategy and the recovery strategy. The
approximation fits very well with the simulation, which indicates the general formulas
Eq. 3.54 about generating functions that are discussed in the previous chapter work well.
As shown in the bottom two figures of Fig. 4.5, the method can easily also be applied to
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real-world networks and also performs well. We can find our analytical approximations
of network controllability for kdl predict the R-value better than that for Cogentco, as the
method is based on statistical physics and performs better for large networks.

Figure 4.5: Envelopes of the challenges for SSNs with 500 nodes and different average out-degree(kout = 2
and kout = 4) and two real-world networks (Cogentco and kdl) in Scenario A, by random attack and random

recovery strategy. The threshold of R-value is 0.9. Each envelope is based on 104 realizations.

4.3.2. SCENARIO B
Scenario B assumes that the recovery links can only be added between the two nodes
which had a connection before attacks. In other words, only the links removed in the
attack process are added one by one until the network returns to the original topology.

For link-based recovery in Scenario B, we use the symmetric method Eq. 3.59
for generating functions to approximate nD and the R-value. In our simulations,
we generate 100 SSNs with specific nodes number (N = 500) and a specific
out-degree(kout = 2 or kout = 4). Each network is simulated 100 times. We also use
two real-world networks for simulations. For a specific real-world network, we simulate
10,000 times. Each realization consists of a link-based random attack process and a
subsequent link-based random recovery process in Scenario B. Fig. 4.6 illustrates the
method predicts the network controllability well during the whole process, not only for
SSN, but also for real-world networks.

Comparing the figure for Scenario A and Scenario B, although the attack process is
the same, the total number of challenges Ka + Kr in Scenario A is larger than that in
Scenario B. It means Scenario B can recover the network’s controllability faster than
Scenario A because Scenario B assumes it just recovers the attacked links.
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Figure 4.6: Envelopes of the challenges for SSNs with 500 nodes and different average out-degree(kout = 2
and kout = 4) and two real networks (Cogentco and kdl) in Scenario B, by random attack and random recovery

strategy. The threshold of R-value is 0.9. Each envelope is based on 104 realizations.

4.4. ATTACK STRATEGIES
This section studies the network controllability under six link-based attack strategies. In
the general case, the damage of link-based attack to the controllability of the network
is not as significant as node-based attack. For a network with N nodes and average
out-degree k, removing a fraction p of the links only removes pN k links, while removing
a fraction p of the nodes means removing N p nodes and about 2pN k links. The links
that are removed under the link-based attack are about half of that under the node-based
attack. It should be noted that the study here is different from the study [31] based on
link cascading failure: the removal of one link will trigger the removal of other links in
a cascading of failures. In this thesis, the cascading failures are not considered. Thus,
removing one link will not affect the removal of other links. There are three different
attack strategies that are discussed:

• Random Attack. For this strategy, the links are removed randomly and uniformly.

• Metric-based Attack. The metric-based strategy refers to the sequence of
removing links by the topological metrics of links. We consider attack strategies
based on metrics of links between node i and j : the minimum product of
degree (mi n(di d j )), the maximum product of degree (max(di d j )), the minimum
product of eigenvector centrality(evc) (mi n(ci c j )), and the maximum product of
eigenvector centrality (max(ci c j )). In each challenge during the attack process
under a specific strategy, a link with the related metric is removed.

• Greedy Attack. The greedy attack strategy involves removing the link that makes
the R-value decrease the most in each challenge.
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Figure 4.7: R-value as function of number of challenges under six different attack strategies in SSN(300,2)

We generate 100 SSNs with 300 nodes and with an average out-degree of 2. Each
SSN is attacked by six different strategies respectively for 100 times. From Fig. 4.7, the
envelope of random attack covers a large surface, which implies that the performance of
a realization can deviate much from the other. The greedy strategy decreases the R-value
to the threshold with the least steps. The strategy based on attacking the link with the
minimum degree-product also performs well and is faster than any realization of the
random attack. Although the minimum evc-product strategy can reduce the R-value
faster than random attack, it performs much worse than the minimum degree-product
strategy, which means the minimum fraction of driver nodes is more related to the
degree than eigenvector centrality. The strategies based on maximum metrics perform
worse than the random attack, especially the max degree-product strategy.

4.5. RECOVERY STRATEGIES
For simplicity, we use the random attack strategy in the attack process, and different
recovery strategies are applied after the random attack. In the following, we also consider
two scenarios: Scenario A and Scenario B.

4.5.1. SCENARIO A
In Scenario A, links can be added between any two nodes in the complement of the graph
after attacks. Thus, the possible number of steps that is needed to recover the network
controllability under the metric-based recovery strategies can be very large. Thus they
are not suitable for Scenario A. In the following, three recovery strategies are discussed:

• Random Recovery. Random recovery is the easiest way that can be regarded as a
self-repairing method after failures or a recovery method without scheduling.

• Greedy Recovery. The greedy recovery strategy is adding the link that makes the
R-value increase the most in each challenge. However, there are many options
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to add links in each step. Thus, it is a computationally prohibitive task for large
networks as the greedy strategy needs to compute all results and pick the best
choice.

• Connect Recovery. The Connect recovery strategy is extended from [14], which
proposed a general approach to optimize the controllability of complex networks
by judiciously perturbing the network structure. There are three steps to use the
connect recovery strategy:

1. finding the minimum number of independent matching paths;

2. randomly ordering all found matching paths;

3. linking the ending nodes of each matching path to the starting nodes of the
matching paths next to it in order.

There are three topology structural cases [14] of a matching path, shown in Fig.
4.8.

1. a chain: a path starts from an unmatched node and ends at a matched node
without outgoing link belonging to the set of maximum matching;

2. a directed loop: a path starts from an arbitrary node in a directed loop and
ends at the “superior” node that points at the starting node;

3. isolated node: a node without any link belonging to the set of the maximum
matching.

(a) chain

(b) loop

(c) isolated node

Figure 4.8: Three cases of independent path. Unmatched nodes are shown in red and matched nodes are
shown in blue.

As shown in Fig. 4.9, both the greedy strategy and the connect strategy recover the
controllability at the fastest speed. The number ND of driver nodes becomes one less
after every step under the two strategies. And their recovery speed is upper bounded
by the random recovery envelopes. However, greedy recovery is a computationally
prohibitive task for large networks as it needs to compute all possible outcomes and
pick the best choice. The average computation time used for one realization is 8531
s. In comparison, connect recovery strategy only costs 0.04 s for one realization on
average. The reason that the connect strategy just needs a little time to compute is
that it only computes once before recovery to find all independent paths. Considering
both the steps and time, the connect strategy is optimal for Scenario A. The second
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recommendation is the greedy strategy if the time is less important than the number
of steps and the network is not too large.

Strategies Time used in one realization
Random Recovery 15.2 s
Connect Recovery 0.04 s
Greedy Recovery 8531.9 s

Figure 4.9: Comparisons of different recovery strategies for SSN(500,2) in Scenario A

4.5.2. SCENARIO B
Scenario B assumes that it only recovers the links that are removed during the attack
process. Thus, the computational effort is much less than for Scenario A. We also divide
the strategies into three categories:

• Random Recovery. The random recovery strategy refers to adding the removed
links randomly and uniformly during the recovery process.

• Metric-based Recovery. The metric-based strategy determines the sequence of
adding links that were attacked, by the topological metrics of links. Four recovery
strategies based on metrics of links between node i and node j are considered:
the minimum product of degree (mi n(di d j )), the maximum product of degree
(max(di d j )), the minimum product of eigenvector centrality (mi n(ci c j )), and
the maximum product of eigenvector centrality (max(ci c j )). In each challenge
step during the recovery process under a specific strategy, a link with the related
optimal metric is added.

• Greedy Recovery. The greedy recovery strategy is choosing the link to add in each
step to increase the R-value the most from the links removed during the attack
process.
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Figure 4.10: Comparisons of different recovery strategies for SSN(500,2) in Scenario B

As shown in Fig. 4.10, the greedy strategy outperforms other strategies as expected.
And because links to be added are the removed links, the greedy strategy is scalable
for large networks. The strategies which select and restore the link with the minimum
degree product or minimum eigenvector centrality product perform better than random
recovery. It is worth noting that the R-value as function of the number of challenges
k under the greedy strategy, minimum-degree product, and minimum-evc product
are concave in the recovery process, which demonstrates the returns property of the
recovery measures are diminishing. In contrast, the functions under the recovery
strategies based on maximum degree-product and maximum evc-product are convex,
and the function under random recovery is approximately linear. What is more, the
number of steps needed to make the R-value return to 1 in random recovery, the
maximum degree-product strategy, and the maximum-evc product is the same because
Scenario B recovers the links that are removed in the attack phase.





5
RESULTS FOR REMOVAL AND

SUBSEQUENT ADDITIONS OF NODES

As mentioned in the previous chapter, the node-based attack is more harmful than the
link-based attack since all links attached to the attacked node are removed under the
node-based attack. In this chapter, we present the results under the node-based attack
and recovery.

5.1. REMOVING AT RANDOM A FRACTION p OF THE NODES
Eq. 3.42 in Chapter 3 can also express the approximation for the minimum fraction nD of
driver nodes of SSN after removing a fraction p of the nodes at random. In this case, p =
m
N , where m is the number of removed nodes, and N is the original number of nodes of
the SSN. However, nD , which is computed from Eq. 3.42, cannot be used directly, as this
is the minimum fraction of driver nodes of the remained network after attacks. However,
we assume that the removed nodes also need to be controlled separately to control the
whole network so that the minimum fraction n′

D of driver nodes of the attacked network
follows:

n′
D = nD × (N −m)+m

N
(5.1)

By combining the Eq. 3.42 and Eq. 5.1, the minimum fraction of driver nodes n′
D of SSN

after removing a fraction p of the nodes at random satisfies:

n′
D =(((p + (1−p)(1−e−k(1−p)(1−ω2)))k −1+e−k(1−p)(1−ω2) +k(1−p)(1−ω2)e−k(1−p)(1−ω2))

× (N −N p)+N p)/N
(5.2)

where p = m
N .

In our simulations, we generate SSNs with 10,000 nodes but with different
out-degree k, ranging from 1 to 8. For SSN with a specific degree, we randomly remove a

35



5

36 5. RESULTS FOR REMOVAL AND SUBSEQUENT ADDITIONS OF NODES

fraction p of nodes, where p = 0.2 and p = 0.5. We simulate 1000 times for each situation
with specific out-degree k and probability p. When p is 0, for which case there is no
node and no link removal, n′

D = nD , and Eq. 5.2 becomes Eq. 3.28. As shown in Fig. 5.1
and Table 5.1, n′

D of SSN after at random a fraction p of the nodes is approximated by
the expression Eq. 5.2 accurately.

Figure 5.1: Fraction of driver nodes for SSN with 10,000 nodes as function of degree k for several values of p
under nodes removal

Simulation Eq. 5.2
k p=0 p=0.2 p=0.5 p=0 p=0.2 p=0.5
1 0.36765 0.55928 0.80408 0.36788 0.55946 0.80327
2 0.16176 0.39123 0.70468 0.16190 0.39106 0.70506
3 0.06096 0.29262 0.63961 0.06076 0.29302 0.63961
4 0.02081 0.24027 0.59184 0.02092 0.24027 0.59172
5 0.00732 0.21682 0.55583 0.00726 0.21691 0.55635
6 0.00259 0.20732 0.53247 0.00258 0.20720 0.53270
7 0.00092 0.20314 0.51827 0.00093 0.20312 0.51869
8 0.00032 0.20129 0.51048 0.00034 0.20137 0.51075

Table 5.1: Comparing Eq. 5.2 with simulation for SSN with 10,000 nodes after removing a fraction p of the
nodes

We apply the above method to ER networks. The analytical expression of n′
D of ER

networks after a fraction p of the nodes is removed follows:

n′
D =(exp(−k(1−p)e−k(1−p)(1−ω2))−1+e−k(1−p)(1−ω2) +k(1−p)(1−ω2)e−k(1−p)(1−ω2)

× (N −N p)+N p)/N
(5.3)
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We generate ER networks with 10,000 nodes and with different out-degree k, ranging
from 1 to 8. Also, we randomly remove ER networks’ nodes with probability p, where
p is 0.2 or 0.5. The results of simulation are the average values of n′

D after 1000 times
simulation. As shown in Fig. 5.2 and Table 5.2, we find our approximations results have
a good fit with the simulations. This indicates that Eq. 5.3 is suitable for expressing n′

D
of ER networks after removing a fraction p of the nodes at random.

Figure 5.2: Fraction of driver nodes for ER networks with 10,000 nodes as function of degree k for several
values of p under node-based removal

Simulation Eq. 5.3
k p=0 p=0.2 p=0.5 p=0 p=0.2 p=0.5
1 0.45610 0.62015 0.82724 0.45594 0.62030 0.82718
2 0.21608 0.43681 0.72792 0.21607 0.43703 0.72797
3 0.07315 0.31984 0.65951 0.07231 0.31954 0.65953
4 0.02261 0.24795 0.60798 0.02216 0.24519 0.60804
5 0.00775 0.21976 0.56780 0.00742 0.21773 0.56721
6 0.00279 0.20868 0.53858 0.00260 0.20735 0.53616
7 0.00105 0.20404 0.52169 0.00093 0.20315 0.51971
8 0.00041 0.20203 0.51262 0.00034 0.20138 0.51108

Table 5.2: Comparing Eq. 5.3 with simulation for ER networks with 10,000 nodes after removing a fraction p
of the nodes
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5.2. RECOVERABILITY IN SCENARIO A AND SCENARIO B
5.2.1. SCENARIO A
In Scenario A, there is no certain way to recover the nodes and their links. This thesis
assumes that the removed nodes are added one by one in the recovery process. At the
same time, we add k out-links and k in-links between the added node and other random
nodes in each step during the recovery process, where k is the average out-degree and
in-degree. If the R-value still does not return to 1 after all removed nodes are added, we
keep choosing an existing node randomly from the network and adding k out-links and
k in-links between this picked node and any other nodes.

In our simulations, we generate SSN and ER networks with a specific number of
nodes(N = 500) but with different out-degree (kout = 2 and kout = 4). We generate
100 SSNs and 100 ER networks with 500 nodes and a specific out-degree and run 100
simulations for each network. Besides synthetic networks, two real-world networks
are also used for running 10,000 simulations. Each realization consists of a random
attack process and a subsequent random recovery process in Scenario A. In Fig. 5.3, we
compare simulation results for SSN and ER networks with 500 nodes and with different
out-degree(kout = 2 and kout = 4) to the analytical approximations Eq. 3.57. We find
the analytical approximations do not fit the simulations well, especially for sparse
ER networks with average out-degree kout = 2. Besides, there is a twist at the end of
the envelopes, which indicates the recovery method that only adding links randomly
for existing nodes after all removed nodes are added will slow down the network
controllability recovery.

Figure 5.3: Envelopes of the challenges for SSNs and ER networks with different degree in Scenario A, by
random attack and random recovery strategy. The threshold of R-value is 0.9. Each envelope is based on 104

realizations.
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When the formulas are applied to real-world networks, as shown in Fig. 5.4, the
discrepancy between the approximations and the simulation results is more obvious.
The reason for the bad performance could be from two aspects. Firstly, the method of
node-based recovery in Scenario A is hard to define. There are many possible ways to
recover nodes and links. And it is uncertain how to recover the network controllability
if the R-value still does not return to 1 after all original nodes are added. Secondly, we
assume that 2k links are added randomly in each step for analytical approximations,
which is a rather crude assumption.

Figure 5.4: Envelopes of the challenges for two real networks in Scenario A, by random attack and random
recovery strategy. The threshold of R-value is 0.9. Each envelope is based on 104 realizations.

5.2.2. SCENARIO B
The attack process in Scenario B is the same as in Scenario A. In the recovery process
in Scenario B, we add the removed nodes one by one in each step. Also, the node’s
original links are added when the node is recovered. Thus, the network would return to
its original state after the recovery process in Scenario B.

For node-based recovery in Scenario B, we still use the symmetric method Eq. 3.59
for generating functions and Eq. 5.1 to approximate n′

D and the R-value. In our
simulations, we generate 100 SSNs and 100 ER networks with a specific number of nodes
number(N = 500) and a specific out-degree(kout = 2 or kout = 4). Each network is
simulated 100 times. Besides synthetic networks, we also use two real-world networks
for simulations. For a specific real-world network, we run 10,000 simulations. Each
realization consists of a random attack process and a subsequent random recovery
process in Scenario B. Fig. 5.5 and Fig. 5.6 indicate that the symmetric method used
in Scenario B works well for both synthetic and real-world networks.

5.3. ATTACK STRATEGIES
We consider three node-based attack strategies:

1. Random Attack. It refers to the strategy that the nodes are removed uniformly
at random. With the removal of nodes, the links that belong to these nodes are
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Figure 5.5: Envelopes of the challenges for SSNs and ER networks with different degree in Scenario B, by
random attack and random recovery strategy. The threshold of R-value is 0.9. Each envelope is based on 104

realizations.

Figure 5.6: Envelopes of the challenges for two real-world networks in Scenario B, by random attack and
random recovery strategy. The threshold of R-value is 0.9. Each envelope is based on 104 realizations.
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removed at the same time.

2. Degree-based Attack [32]. This strategy attacks nodes based on degree

distribution, which means nodes are attacked with probability W (ki ) = ki∑N
j=1 k j

=
ki
2L , where ki is the degree of node i .

3. Localized Attack [33]. The localized attack strategy describes a realistic attack
method: one node’s removal would influence its neighbors. It assumes that the
nodes are chosen to be removed, starting from the root node that is chosen
randomly, then its nearest neighbors, the next nearest neighbors, and so on.

The degree-based attack and localized attack were proposed for undirected
networks. In this project, we adjust them and apply them on directed networks. For
the degree-based attack, we regard the sum of nodes’ in-degree and out-degree as the
degree used in the computation of attacking probability. For localized attack, we ignore
the direction of the links.

As shown in Fig. 5.7, the degree-based attack destroys the network controllability
faster than the random attack for SSNs with average out-degree (k̄out = 2). The localized
attack needs the most steps to decrease the R-value to the threshold. The difference
among the steps that are taken to diminish the R-value under the three strategies is
tiny. For the real-world networks kdl, we can find the degree-based attack is still the
quickest, and the steps that localized attack needs to destroy kdl is the upper bound for
the envelope of the random attack.

Figure 5.7: Comparisons of three node-based attack strategies in SSN(500,2) and kdl network. The threshold
of R-value is 0.9.

The performance of random attack and degree-based attack is the same for random
regular networks, as every node in a random regular network has the same degree;
thus, the probability of being attacked under degree-based attack is the same. For
Erdős–Rényi network, the localized attack performs the same as the random attack.
These are shown in Fig. 5.8.
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Figure 5.8: Comparisons of three node-based attack strategies in Erdős–Rényi network(500,2) and Random
Regular Network(500,2). The threshold of R-value is 0.9.

5.4. DEGREE-BASED ATTACK
Let W (ki ) denote the probability that a node with degree ki is removed under the attack:

W (ki ) = ki∑N
j=1 k j

(5.4)

= ki

2L
(5.5)

where ki is the sum of the out-degree and in-degree of node i .
The generating function of the degree distribution of the unperturbed network satisfies:

G(x) =
∞∑

k=0
pk xk (5.6)

The generating function of the degree distribution of the remaining network after
degree-based attack follows:

Ḡ(x) = 1

p̂
G( f + f 2 G ′( f )

< k > (x −1)) (5.7)

where p̂ is the fraction of nodes that are not attacked, f ≡ G−1(p̂), and < k > is the
average degree of the original networks.

We use Eq. 5.7, Eq. 3.13, and Eq. 5.1 to compute network controllability n′
D and

R-value after degree-based attack. Fig. 5.9 shows the comparison of the analytical
approximations and simulations. From the figure, we can find there is an obvious
discrepancy between them. To figure out which step in our model contains mistakes,
we compare the analytical degree distribution of SSN after the degree-based attack and
the simulations.

As shown in Fig. 5.10 the degree distribution from the generating function Eq. 5.7
cannot predict the actual degree distribution under simulations accurately, which has
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Figure 5.9: Comparison of approximations and simulation of SSN(500,2) under degree-based attack

apparent gaps between analytical values and simulations. However, the expression of
degree distribution is the critical step to deduce the minimum fraction of the driver
node. The generating function Eq. 5.7 cannot be used in perturbed directed networks.

Then, we investigate the out-degree-based attack and in-degree-based attack for
directed networks. The difference between the two strategies and the degree-based
attack is that ki in Eq. 5.5 is out-degree or in-degree rather than the sum of
out-degree and in-degree. In our simulation, we generate 100 SSNs with 500 nodes
and an out-degree of 2. Each SSN is attacked by the out-degree-based attack and
in-degree-based attack 100 times, respectively. Fig. 5.11 compares the degree
distributions of SSN after out-degree-based attack and in-degree-based attack with the
analytical values. We find the approximations for out-degree distribution can fit well
with the simulations under out-degree-based attack. The in-degree distribution of SSN
under in-degree-based attack is close to the analytical in-degree distribution. Thus, we
can only predict one of the two degree distributions accurately.

5.5. LOCALIZED ATTACK
As introduced before, the localized attack is attacking nodes from the root node chosen
at random, then its nearest neighboring nodes, the next nearest neighbors, and so on.
This strategy was proposed by Shao et al. [33] for undirected connected networks. The
authors also analytically studied the robustness of complex networks under the localized
attack. Shao et al. found that the generating function Ḡ(x) of the degree distribution of
the remaining network after the localized attack follows [33]:

Ḡ(x) = 1

G( f )
G

[
f + G ′( f )

G ′(1)
(x −1)

]
(5.8)

where G(x) is the generating function of the original network, p̂ is the fraction of nodes
that are not removed, and f ≡G−1(p̂).
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Figure 5.10: Comparisons of degree distributions from simulation and analytical values of SSN(500,2) after a
fraction p = 0.1 of the nodes are removed by the degree-based attack

Figure 5.11: Comparisons of degree distributions from simulation under out-degree-based attack and
in-degree-based attack and analytical values of SSN(500,2) after a fraction p = 0.1 of the nodes are removed by

the degree-based attack
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Figure 5.12: Comparisons of degree distributions from simulation under localized attack and analytical values
of SSN(500,2) after a fraction p = 0.1 of the nodes are removed by the localized-based attack

In our simulation, we generate 100 SSNs with 500 nodes and an average out-degree
of 2. For aach SSN, a fraction 0.1 of the nodes is removed 100 times by localized attack,
which ignores the direction of links. The comparison of the out-degree and in-degree
distribution from simulations and approximations is shown in Fig. 5.12. We can find
that Eq. 5.8 cannot predict the generating function of degree distributions well for
directed networks under the localized attack.

We adjust and extend the localized attack to out-localized attack and in-localized
attack. The out-localized attack is attacking nodes according to the distances from the
root node to the other nodes. On the contrary, the in-localized attack is that we attack
the nodes whose distance from itself to the root node with ascending order. We also
generate 100 SSNs with 500 nodes and an average out-degree of 2 and attack these SSNs
100 times by the out-localized attack and the in-localized attack, respectively. As shown
in Fig. 5.13, the generating function Eq. 5.8 of out-degree distribution can predict
the out-degree distribution of SSN under in-localized attack better. The in-degree
distributions from approximation Eq. 5.8 and simulations under out-localized attack
can fit well.
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Figure 5.13: Comparisons of degree distributions from simulation under out-localized attack and in-localized
attack and analytical values of SSN(500,2) after a fraction p = 0.1 of the nodes are removed by the

localized-based attack



6
CONCLUSIONS AND FUTURE WORK

This chapter is the last chapter summarizing our findings and proposing some
suggestions for future research.

6.1. CONCLUSIONS
In this thesis, we assessed the recoverability of networks based on network
controllability, in terms of the fraction of minimum number of driver nodes nD .
We focused on analytical expressions for network controllability during the attack and
the subsequent recovery process in Scenario A and Scenario B.

In Chapter 4, we mainly discussed the case under link-based attack and recovery.
Firstly, we validated Sun et al’s formulas [8][9] of analytically expressing the minimum
fraction of driver nodes of networks after removing links and adding links with
simulations. We used the method that describes the general relations of generating
functions during the attack and the subsequent recovery process to approximate
the network controllability in the whole process. The recovery process has two
scenarios: Scenario A refers to the case that links that can be established between
any two disconnected nodes after attacking; for Scenario B only the links that are
removed during the attack process are recovered. Comparing analytical values from
our equations and the average simulation results shows a very good performance, both
in Scenario A and Scenario B. We also compared some attacking strategies and some
recovery strategies in Scenario A and Scenario B, respectively. In the attack process,
the greedy attack strategy is the most destructive. For the recovery process in Scenario
A, the connect strategy is optimal as it needs a minimal number of steps to recover its
controllability, just like the greedy strategy, while it costs much less computation time
than the greedy strategy. For the recovery process in Scenario B, the greedy recovery
strategy exhibits the best performance.

In Chapter 5, we researched the case under node-based attack and node-based
recovery. The formula expressing the minimum fraction of driver nodes of networks
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after removing links was also applied to that of networks after removing nodes. The
general relations of generating functions about attacking and recovering were also used
under the node-based perturbations. However, the minimum number of driver nodes
computed from the equations is the ND of the remaining networks after attacking. The
removed nodes also need to be controlled separately to control the whole network
so that the number of removed nodes needs to be added. The general relations
of generating functions under the recovery process in Scenario A cannot work as it
considers k out-links and k in-links are added, where k is the average out-degree and
in-degree, in each step in analytical expressions for simplification. The symmetric
method used in Scenario B still performs accurately. We also compare three node-based
attack strategies: random attack, degree-based attack, and localized attack. We tried
to express the network controllability under degree-based attack and localized attack
analytically but failed. Then we analyzed the reasons why it did not work.

6.2. FUTURE RESEARCH
This project represents a very small part in exploring combining network controllability
and recoverability. There are still many open questions left, waiting to be explored and
solved. In this section, we propose some directions for future research.

Firstly, we mainly focused on network controllability and did not quantify the
recoverability in this thesis. In [6], He et al. quantified network recoverability based on
robustness metrics, which can also be applied to network controllability. Quantifying
recoverability based on network controllability can help people identify whether a
network has a good ability to recover its network controllability after attacks.

Secondly, there are many possible ways to recover the nodes and links under the
node-based recovery process in Scenario A. How to recover the links when recovering
a node? How to recover if all removed nodes are added but the network controllability
does not return to the original state? Besides the way of simulations for Scenario A, the
analytical expression of network controllability under the recovery process in Scenario
A also needs optimization.

Thirdly, we failed to express the network controllability of directed networks under
degree-based attack or localized attack. We were not able to find expressions for the
generating functions of out- and in-degree distributions of networks after degree based
or localized attacks.

Lastly, this project mainly focuses on the analytical approximation of network
controllability for synthetic networks and some other real-world networks. In the future,
we can combine the theoretical framework of network controllability and apply it to
some real-world cases, such as gene control networks, transport networks, etc.
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APPENDIX A

This appendix shows the procedure of deducing Eq. 3.42 in detail. The out-degree
distribution Pout () for an unperturbed SSN is:

Pout (kout ) = δ(k −kout ) (A.1)

The expression for the degree distribution after removing m links randomly is expressed
as:

Pr [DG = i ] = (1−p)i
N−1∑
j=i

(
j

i

)
p j−i Pr [DG0 = j ] (A.2)

Thus, the out-degree distribution of network after perturbations P̄out () follows:

P̄out (kout ) = (1−p)kout
N−1∑

j=kout

(
j

kout

)
p j−koutδ(k − j ) (A.3)

After removing links, kout ≤ k, and

P̄out (kout ) = (1−p)kout

(
k

kout

)
pk−kout (A.4)

From the degree distribution, we can express the generating function Gout as:

Ḡout (x) ==
∞∑

kout=0
P̄out (kout )xkout

=
k∑

kout=0
(1−p)kout

(
k

kout

)
pk−kout xkout

=
k∑

kout=0

(
k

kout

)
((1−p)x)kout pk−kout

= (p + (1−p)x)k

(A.5)
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The in-degree distribution of unperturbed SSN Pi n() follows a Poisson distribution:

Pi n(ki n) = kki n e−k

ki n !
(A.6)

Following the Eq. A.2, the in-degree distribution of the perturbed SSN P̄i n() is expresses
as:

P̄i n(ki n) = (1−p)k
i n

∞∑
j=ki n

(
j

ki n

)
p j−ki n

k j

j !
e−k (A.7)

Then, the generating function of in-degree distribution for the perturbed SSN follows:

Ḡi n(x) ==
∞∑

ki n=0
P̄i n(ki n)xki n

=
∞∑

ki n=0
(1−p)ki n

∞∑
j=ki n

(
j

ki n

)
p j−ki n

k j

j !
e−k xki n

= e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

∞∑
j=ki n

(
j

ki n

)
(pk) j

j !

= e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

∞∑
j=ki n

j !

ki n !( j −ki n)!

(pk) j

j !

= e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

∞∑
j=ki n

(pk) j

ki n !( j −ki n)!

= e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

1

ki n !

∞∑
j=ki n

(pk) j−ki n (pk)ki n

( j −ki n)!

= e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

(pk)ki n

ki n !

∞∑
ĵ=0

(pk) ĵ

ĵ !

= e−k
∞∑

ki n=0

(k(1−p)x)ki n

ki n !
epk

= e−k ek(1−p)x epk

= e−k(1−p)(1−x)

(A.8)

The generating functions of excess out-degree distribution Hout () can be written as:

Hout (x) =
∞∑

kout=1

Pout (kout )kout

< kout >
xkout−1 (A.9)
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After attacks, the generating function H̄out (x) of SSN is given by:

H̄out (x) =
∞∑

kout=1

P̄out (kout )kout

< kout >
xkout−1

=
k∑

kout=1

(1−p)kout

(
k

kout

)
pk−kout kout

k(1−p)
xkout−1

=
k∑

kout=1

(
k −1

kout −1

)
pk−kout ((1−p)x)kout−1

m=kout−1=
k−1∑
m=0

(
k −1

m

)
pk−1−m((1−p)x)m

= (p + (1−p)x)k−1

(A.10)

The same procedure for deducing the generating function H̄i n(x):

H̄i n(x) =
∞∑

ki n=1

P̄i n(ki n)ki n

< ki n > xki n−1

=
∞∑

ki n=1

ki n(1−p)ki n

k(1−p)

∞∑
j=ki n

(
j

ki n

)
k j

j !
e−k p j−ki n xki n−1

= e−k
∞∑

ki n=1

ki n(1−p)ki n

k(1−p)

∞∑
j=ki n

j !

ki n !( j −ki n)!

p j−ki n k j

j !
xki n−1

= e−k
∞∑

ki n=1

ki n(1−p)ki n

k(1−p)

∞∑
j=ki n

kki n

ki n !

(kp) j−ki n

( j −ki n)!

xki n

x

= e−k
∞∑

ki n=1

ki n(1−p)ki n

k(1−p)

kki n

ki n !
epk xki n

x

= e−k
∞∑

ki n=1

ki n(kx(1−p))ki n

xk(1−p)ki n !
epk

= e−k+pk
∞∑

ki n=1

(kx(1−p))ki n−1

(ki n −1)!

m=ki n−1= e−k+pk
∞∑

m=0

(kx(1−p))m

m!

= e−k(1−p)(1−x)

(A.11)

Thus, the set of equations Eq. 3.22-Eq. 3.25 becomes:

ω1 = (p + (1−p)ω̂2)k−1 (A.12)

ω2 = 1− (p + (1−p)(1− ω̂1))k−1 (A.13)

ω̂1 = e−k(1−p)(1−ω2) (A.14)

ω̂2 = 1−e−k(1−p)ω1 (A.15)
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By setting ω̂2 = 1− ω̂1 and ω2 = 1−ω1, the pair of Eq. A.12 and Eq. A.15 is equivalent to
the pair of Eq. A.13 and Eq. A.14. Then, the nD in Eq. 3.13 follows:

nD = Ḡout (1− ω̂1)+Ḡi n(ω2)−1+ k̄ω̂1(1−ω2)

= (p + (1−p)(1−e−k(1−p)(1−ω2)))k −1+e−k(1−p)(1−ω2) +k(1−p)(1−ω2)e−k(1−p)(1−ω2)

(A.16)
where ω2 satisfies:

1−ω2 = (p + (1−p)(1−e−k(1−p)(1−ω2)))k−1 (A.17)
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Here we deduce the Eq. 3.51 in detail. The degree distribution Pr [DG = i ] of SSN after
randomly adding links can be expressed as:

Pr [DG = i ] = (1− f )N−1−i
i∑

j=0

(
N −1− j

i − j

)
f j−i Pr [DG0 = j ] (B.1)

The out-degree distribution for the perturbed SSN P̄out () follows:

P̄out (kout ) = (1− f )N−1−kout
kout∑
j=0

(
N −1− j

kout − j

)
f kout− jδ(k − j )

= (1− f )N−1−kout

(
N −1−k

kout −k

)
f kout−k

(B.2)

if kout ≥ k. From the above out-degree distribution, we can get the generating function
of the out-degree distribution:

Ḡout (x) =
∞∑

kout=0
P̄out (kout )xkout

=
N−1∑

kout=k
(1− f )N−1−kout

(
N −1−k

kout −k

)
f kout−k xkout

i=kout−k=
N−1−k∑

i=0
(1− f )N−1−k−i

(
N −1−k

i

)
f i xk+i

=
N−1−k∑

i=0
xk

(
N −1−k

i

)
( f x)i (1− f )N−1−k−i

= xk ( f x +1− f )N−1−k

= xk (1− f (1−x))N−1−k

(B.3)
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The in-degree distribution of SSN with N nodes and with average in-degree of k follows
a binomial distribution. Thus the in-degree distribution of the perturbed SSN P̄i n()
follows:

P̄i n(ki n) = (1− f )N−1−ki n
ki n∑
j=0

(
N −1− j

ki n − j

)
f ki n− j

(
N −1

j

)
p j (1−p)N−1− j (B.4)

Then, the generating function of in-degree distribution can be expressed:

Ḡi n(x) =
∞∑

ki n=0
P̄i n(ki n)xki n

=
N−1∑

ki n=0
(1− f )N−1−ki n

ki n∑
j=0

(
N −1− j

ki n − j

)
f ki n− j

(
N −1

j

)
p j (1−p)N−1− j xki n

=
N−1∑

ki n=0
(1− f )N−1−ki n ( f x)ki n

ki n∑
j=0

(N −1− j )!

(ki n − j )!(N −1−ki n)!

(N −1)!

(N −1− j )! j !
(

p

j
) j (1−p)N−1− j

=
N−1∑

ki n=0
(1− f )N−1−ki n ( f x)ki n

ki n∑
j=0

(N −1)!

(N −1−ki n)!ki n !

ki n !

(ki n − j )! j !
(

p

f
) j (1−p)N−1− j+ki n−ki n

=
N−1∑

ki n=0

(
N −1

ki n

)
((1− f )(1−p))N−1−ki n ( f x)ki n

ki n∑
j=0

(
ki n

j

)
(

p

f
) j (1−p)ki n− j

=
N−1∑

ki n=0

(
N −1

ki n

)
((1− f )(1−p))N−1−ki n ( f x)ki n (

p

f
+1−p)ki n

=
N−1∑

ki n=0

(
N −1

ki n

)
((1− f )(1−p))N−1−ki n (x(p + f (1−p)))ki n

= ((1− f )(1−p)+x(p + f (1−p)))N−1

= (1− f (1−x)− (1− f )p(1−x))N−1

p= k
N−1= (1− f (1−x)− (1− f )

k

N −1
(1−x))N−1

= (1− f (1−x)− (1− f )
k̄ − f (N −1−k)

N −1
(1−x))N−1

= (1− (1−x)k̄

N −1
)N−1

N→∞= e−k̄(1−x)

(B.5)
where p = k

N−1 and k̄ = k + f (N −1−k).
The generating function of excess out-degree distribution of the perturbed SSN is:

H̄out (x) =
∞∑

kout=1

P̄out (kout )kout

< kout >
xkout−1 (B.6)
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=
N−1∑

kout=k

kout (1− f )N−1−kout

(
N −1−k

kout −k

)
f kout−k

k̄
xkout−1 (B.7)

i=kout−k=
N−1−k∑

i=0

(k + i )(1− f )N−1−k−i

(
N −1−k

i

)
f i

k̄
xk+i−1 (B.8)

= xk−1

k̄

N−1−k∑
i=0

(k + i )

(
N −1−k

i

)
( f x)i (1− f )N−1−k−i (B.9)

= xk−1

k̄
(k( f x +1− f )N−1−k + f (N −1−k)x( f x +1− f )N−2−k ) (B.10)

= xk−1

k̄
(k f x +k −k f +N f x − f x −k f x)( f x +1− f )N−2−k (B.11)

= xk−1

k̄
(k̄ − f (N −1)(1−x))(1− f (1−x))N−2−k (B.12)

The same procedure for deducing the generating function H̄i n(x) of the perturbed SSN:

H̄i n(x) =
∞∑

ki n=1

P̄i n(ki n)ki n

< ki n > xki n−1

= 1

< ki n >
N−1∑

ki n=1
(1− f )N−1−ki n

ki n∑
j=0

(
N −1− j

ki n − j

)
f ki n− j

(
N −1

j

)
p j (1−p)N−1− j xki n−1

= 1

k̄x

N−1∑
ki n=1

ki n

(
N −1

ki n

)
((1− f )(1−p))N−1−ki n ( f x)ki n

ki n∑
j=0

(
ki n

j

)
(

p

f
) j (1−p)ki n− j

= 1

k̄x

N−1∑
ki n=1

ki n

(
N −1

ki n

)
((1− f )(1−p))N−1−ki n ( f x)ki n (

p

f
+1−p)ki n

= 1

k̄x

N−1∑
ki n=1

ki n

(
N −1

ki n

)
((1− f )(1−p))N−1−ki n (x(p + f (1−p)))ki n

= 1

k̄x
(N −1)(x(p + f (1−p)))(x(p + f (1−p))+ (1− f )(1−p))N−2

= (N −1)(p + f (1−p))

k̄
(1− (p + f (1−p))(1−x))N−2

p= k
N−1= (N −1)( k

N−1 +
f (N−1−k)

N−1 )

k̄
(1− (

k

N −1
+ f (N −1−k)

N −1
)(1−x))N−2

= (1− k̄

N −1
(1−x))N−2

N→∞= e−k̄(1−x)

(B.13)
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Thus, the set of equations Eq. 3.22-Eq. 3.25 follows:

ω1 =
ω̂k−1

2

k̄
(k̄ − f (N −1)(1− ω̂2))(1− f (1− ω̂2))N−2−k (B.14)

ω2 = 1− (1− ω̂1)k−1

k̄
(k̄ − f (N −1)ω̂1)(1− f ω̂1)N−2−k (B.15)

ω̂1 = e−k̄(1−ω2) (B.16)

ω̂2 = 1−e−k̄ω1 (B.17)

By setting ω̂2 = 1− ω̂1 and ω2 = 1−ω1, the nD in Eq. 3.13 follows:

nD = Ḡout (1− ω̂1)+Ḡi n(ω2)−1+ k̄ω̂1(1−ω2) (B.18)

= e−k̄(1−ω2) + (1−e−k̄(1−ω2))k (1− f e−k̄(1−ω2))N−1−k −1+ k̄(1−ω2)e−k̄(1−ω2) (B.19)

where ω2 is the solution of the equation:

k̄(1−ω2) = (1−e−k̄(1−ω2))k−1(k̄ − f (N −1)e−k̄(1−ω2))(1− f e−k̄(1−ω2))N−2−k (B.20)
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