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Tensor Completion for Alzheimer’s Disease
Prediction From Diffusion Tensor Imaging

Yixin Gou , Yipeng Liu , Senior Member, IEEE, Fei He , Graduate Student Member, IEEE,
Borbála Hunyadi , and Ce Zhu , Fellow, IEEE

Abstract—Objective: Alzheimer’s disease (AD) is a
slowly progressive neurodegenerative disorder with insidi-
ous onset. Accurate prediction of the disease progression
has received increasing attention. Cognitive scores that re-
flect patients’ cognitive status have become important cri-
teria for predicting AD. Most existing methods consider the
relationship between neuroimages and cognitive scores to
improve prediction results. However, the inherent structure
information in interrelated cognitive scores is rarely con-
sidered. Method: In this article, we propose a relation-aware
tensor completion multitask learning method (RATC-MTL),
in which the cognitive scores are represented as a third-
order tensor to preserve the global structure information in
clinical scores. We combine both tensor completion and lin-
ear regression into a unified framework, which allows us to
capture both inter and intra modes correlations in cognitive
tensor with a low-rank constraint, as well as incorporate the
relationship between biological features and cognitive sta-
tus by imposing a regression model on multiple cognitive
scores. Result: Compared to the single-task and state-of-
the-art multi-task algorithms, our proposed method obtains
the best results for predicting cognitive scores in terms
of four commonly used metrics. Furthermore, the overall
performance of our method in classifying AD progress is
also the best. Conclusion: Our results demonstrate the ef-
fectiveness of the proposed framework in fully exploring
the global structure information in cognitive scores. Sig-
nificance: This study introduces a novel concept of lever-
aging tensor completion to assist in disease diagnoses,
potentially offering a solution to the issue of data scarcity
encountered in prolonged monitoring scenarios.
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I. INTRODUCTION

A LZHEIMER’S disease (AD) is a progressive neurologi-
cal disorder, which mainly affects cognitive function and

memory capacity of the brain [1]. The symptoms of AD typically
start with mild memory loss and difficulties with daily activities,
as the disease progresses, it can lead to language impairment,
emotional lability, many behavioral problems [2], and eventually
death. As the condition worsens, the patient is often progres-
sively disconnected from family or society [3]. Unfortunately,
the etiology of AD remains unclear, and effective cures are
yet to be discovered. These circumstances impose significant
monetary and psychological strains on both patients and their
families [4]. Consequently, understanding the progression of AD
has become a research priority [5].

AD can only be accurately diagnosed by brain biopsy
or autopsy [6]. Fortunately, several studies have identified
a strong association between patterns of brain atrophy and
AD progression [7]. Therefore, cognitive assessment tests can
be used to evaluate the cognitive status, which in turn can
partially indicate the disease state [8], [9]. Such cognitive
assessment tests include the mini-mental state examination
(MMSE) [10], the Alzheimer’s disease assessment scale cog-
nitive score (ADAS) [11], and the Rey auditory verbal learning
test (RAVLT) [12]. Since disease intervention is more effective
at an early stage, there is an urgent need to refine the prediction
of AD progression based on clinical scores and to identify the
most predictive biomarkers of the progression. As neuroimages
can provide more sensitive early biomarkers than other tech-
nologies, many studies use imaging data to predict cognitive
scores, including magnetic resonance imaging (MRI) [13], [14],
[15] and diffusion tensor imaging (DTI) [16], [17], [18]. In
order to study the progression of the disease, there is a need
to track pathophysiological changes using the cognitive scores
as explained above. However, conducting long-term tests on
a large group of individuals can be a resource-intensive and
time-consuming endeavor. Moreover, the inherent difficulty of
regularly following patients - i.e. patients missing follow-up
visits or dropping out from the study - can lead to irregular
data collection or even missing records.

Due to these challenges, biological markers based multitask
learning (MTL) regression models have been proposed to predict
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Fig. 1. Overall framework of the proposed method. The first line shows the process of DTI data processing to get the input feature X. The disease
progression can be predicted by assuming the tensor representation of cognitive scores is low-rank (hypothesis 1), and Y is the observed data.
Furthermore, the relationship between image data and cognitive statute may provide additional information to improve the performance (hypothesis
2), which is constrained by the minimization of ‖XW −Y(1)‖F. By combining these two modules, cognitive scores are predicted and preserved in
Z.

cognitive scores from neuroimaging data. Two families of MTL
problems have been widely considered: cross-sectional analy-
sis and longitudinal analysis [19]. In cross-sectional analysis,
cognitive scores are assumed to be related to each other, so the
task models are constrained to predict multiple cognitive scores
at a given time point [20], [21], [22]. In contrast, longitudinal
analysis pays more attention to temporal changes in AD pro-
gression, which assumes that the clinical scores are correlated
across multiple time steps. Thus, multi-task learning in this case
means simultaneously learning the same score at different time
points [23], [24], [25], [26], in which, the correlation between
different cognitive scores is ignored.

Although MTL regression has shown good performance in
AD prediction, existing studies focus on inter-correlations,
i.e. correlations within one aspect, and neglect the intra-
correlations, i.e. correlations across these two modes. Therefore
the tasks are simply represented as a single index, resulting in the
loss of additional inherent structure in cognitive scores, which is
similar to the dataset mentioned in [27]. Furthermore, although
multiple clinical scores reflect different aspects of cognitive
status, the underlying pathology is the same. Therefore, we
hypothesize that it is beneficial to incorporate this correlation
in our works. Besides, for the problem of missing items, the
classic solution either deletes the entire samples or replaces them
with the mean value, which significantly reduces the number of
training samples and introduces the pseudo-labels.

In this paper, we propose a relation-aware tensor completion
multitask learning method, denoted as RATC-MTL. To pre-
serve the global structure information of the clinical scores,
we organize the scores of an individual patient in a matrix
with two indices: one running index for the different types of
cognitive scores, and one index for measurement time points.
Then, these patient matrices are stacked behind each other to
form a third-order tensor, possibly with missing entries when

a score is not available. Then, the cognitive score prediction
can be formulated as a tensor completion problem. As shown in
Fig. 1, the framework of RATC-MTL consists of two parts, i.e.,
low-rank completion on the cognitive score tensor and multitask
regression module defined on unfolding cognitive scores matrix.
This combination allows us to effectively explore the global
consistency underlying the cognitive scores and the relationship
between biomarkers and cognitive status.

In addition, among traditional methods, the use of MRI-based
biomarkers is more common, while DTI-based studies so far
have focused on predicting categorical variables in classification
tasks [28], [29]. However, DTI is a powerful tool for early
diagnosis of AD and differential diagnosis of other demen-
tia [30]. Therefore, the relationship between DTI biomarkers
and cognitive scores is estimated in this paper.

In comparison to existing studies, our work makes the follow-
ing contributions:

1) We propose a novel multi-task learning method that uses
a tensor completion algorithm to model the disease pro-
gression. By this, we can not only leverage the longitudi-
nal and the horizontal correlations present in individual
indices but also explore the global association among
different indices (i.e. tensor modes).

2) We integrate regression and completion into a unified
framework. The former incorporates the close relation-
ship between neuroimages and cognitive status, while the
latter explores the global correlation of multiple aspects
in cognitive scores at the same time.

The remainder of this paper is organized as follows. Section II
gives the notations and preliminaries. Section III presents a
review of related works on predicting cognitive scores. The pro-
posed approach is outlined in Section IV. Details regarding the
dataset, experimental results, and their discussion are presented
in Section V. Finally, Section VI concludes the paper.
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II. NOTATION AND PRELIMINARIES

A. Notations

For brevity, we represent scalars by lowercase letters, e.g., x,
vectors by bold lowercase letters, e.g.,x, matrices by bold
uppercase letters, e.g.,X, and high-order tensor by calligraphic
uppercase letters, e.g.,X . For matrixX ∈ RI×J , its j-th column
is represented as xj and its i, j-th element can be written as xij .
A K-th-order tensor X ∈ RI1×···×IK , its element is represented
by X (i1, . . . , iK), where its index typically ranges from 1 to
their capitalized version, e.g., ik = 1, . . . , Ik. The inner prod-
uct of two tensors X ,Y ∈ RI1×···×IK is defined by 〈X ,Y〉 =∑

i1,...,iK
X (i1, . . . , iK)Y(i1, . . . , iK), and the squared Frobe-

nius norm of tensor X is ‖X‖2F = 〈X ,X〉.

B. Preliminaries on Tensor Operations

Definition 1. (Mode-k unfolding): For k ∈ [K], the mode-k
unfolding matrix of a K-th-order tensor X is defined by
X(k) ∈ RIk×Jk , where Jk =

∏K
i=1,i�=k Ii, with its entries are

X(k)(ik, i1 . . . ik−1ik+1 . . . iK) = X (i1, . . . , iN ), i1 . . . iK =
i1 + (i2 − 1)I1 + (i3 − 1)I1I2 + · · ·+ (iK − 1)I1I2IK−1.
And its opposite operation ‘Foldk’ is defined as X =
Foldk(X(k)).

Definition 2. (Tensor trace norm) [31]: For a K-th-order
tensor X ∈ RI1×···×IK , its trace norm is defined as:

‖X‖∗ =
K∑

k=1

αk‖X(k)‖∗, (1)

whereαk, k = 1, . . . ,K are scales thatαk > 0 and
∑K

k=1 αk =
1, the nuclear norm (trace norm) of matrixX(k) ∈ RIk×Jk , Jk =∏K

i=1,i�=k Ii is denoted as ‖X(k)‖∗ =
∑Rk

rk=1 σrk(X(k)), where
Rk is the rank of X(k), σrk(X(k)) is the rk-th singular value of
matrix X(k).

Definition 3. (Singular value threshold operator) [32]: Let
X = UΣVT represent the singular value decomposition (SVD)
for matrix X, the “threshold” operator SVTτ (X) is defined as

SVTτ (X) = UΣτV
T, (2)

where Στ = diag(max(σk − τ), 0).

III. RELATED WORKS

Regarding the prediction of cognitive scores and identifica-
tion of relevant biomarkers, multitask learning as an effective
approach is widely used in this field, which assumes there is
an inherent correlation between different data records obtained
from the same individuals and is also the focus of this paper.
Let X = [x1, . . . ,xN ]T ∈ RN×D represent the input biological
features, which is consisted of N subjects with d dimensional
features. Y = [y1, . . . ,yN ]T ∈ RN×M is the corresponding
cognitive scores, and M denotes the number of tasks. The
regularized multitask regression model between X and Y can
be written as:

min
W

L(Y,X,W) + λR(W), (3)

where W ∈ RD×M is the weight matrix that indicates the
implication between input features and output values, L(·, ·) is
the loss function, and R(·) is the regularization term that use to
prevent overfitting and add prior knowledge on model.

In regularized multitask learning, one of the key issues is
to build learning models that can capture prior task correlation
knowledge. Two kinds of commonly used analysis incorporate
different correlations. One considers the variation in cognitive
scores across different time points, which is known as longi-
tudinal analysis. Specifically, the task number of formulation
(3) is M = T and each wj corresponds to a time point. Some
works assumed a small subset of biomarkers is predictive of
the disease progression, and multiple regression models from
different time points satisfy the smoothness property, thus the
temporal group lasso regularization was used. Additionally,
considering the problem of missing target values, the unified
optimization model can be extended as:

min
W

‖P� (Y −XW)‖2F + λ1‖W‖2Q + λ2‖WH‖2Q

+ λ3‖W‖2,1, (4)

where P is used to indicate missing target values, pij = 0
if the target value of sample i is missing at the j-th task,
and pij = 1 otherwise, � represents the elementwise opera-
tor thatA�B = aijbij , ‖W‖Q = Q

√∑
d,m |wdm|Q, ‖W‖2,1 =∑D

d=1

√∑M
m=1 w

2
dm, λ1 � 0, λ2 � 0, λ3 � 0 are the regular-

ization parameters that control the generalization error, temporal
smoothness and feature selection respectively. In [23], Q = 2
and ‖WH‖2F =

∑T
t=1 ‖wt −wt+1‖22 is a temporal smooth-

ness term, where H ∈ RT×T−1 is defined as hij = 1 if i = j,
hij = −1 if i = j + 1, and hij = 0 for others. To better capture
the correlation of the biomarkers, Zhou et al. [24] utilized both
�1-norm and �2,1-norm to achieve common feature selection for
multiple tasks and specific feature selection for each task at the
same time, which is known as the convex fused sparse group
lasso (cFSGL) and the optimization problem of cFSGL is the (4)
with Q = 1. Moreover, other types of regularization methods,
such as group �2,1-norm and subspace structure penalty are used
in [26] to explore the correlation of tasks and the task relatedness
with shared subspace.

Since low rank is another approach applied in MTL, which
assumes the relatedness of multiple tasks may lead to the cor-
relation in corresponding task parameters, thus implying the
low rankness of model parameter [33], has been studied in AD
prediction. Chen et al. [34] proposed a robust multitask learning
algorithm that uses trace norm to capture the task relation
and simultaneously identifies the irrelevant tasks through group
sparse structure, while the trace norm is a natural choice when
estimating data with low-rank structure [35]. The optimization
model can be formulated as:

min
L,S

‖Y −X(L+ S)‖2F + λ1‖L‖∗ + λ2‖S‖1,2 (5)

where W = L+ S, L and S are the low-rank structure and the
group-sparse structure, respectively. Moreover, H. Wang et al.
also imposed the trace norm on model parameters to explore
the task correlations at different time points [36]. Nie et al. [37]
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adopted a non-convex low-rank regularization to explore the
shared information. To explore the correlation information be-
tween biomarkers and cognitive scores, Jiang et al. [38] proposed
a correlation-aware sparse and low-rank constrained model,
whose regularizer is comprised of �2,1-norm, �1-norm and trace
norm.

In contrast, the cross-sectional analysis is another MTL frame-
work that takes the interrelation between different scores into
account, the task number of formulation (3) is M = V and
each wj corresponds to a cognitive score. The formulation of
cross-sectional analysis is akin to that of longitudinal analysis,
with the exception of focusing on different task-relatedness, such
as [21] also utilize �2,1-norm and �1-norm to select features.
In [22], an SVM-based method was proposed to jointly predict
different clinical scores and �2,1-norm used to constrain that
all tasks share a common set of features. And [20] uses the
Bayesian regression method to model multiple medical variables
and capture their inherent correlations.

Although the above-mentioned studies have performed out-
standing performance, they only consider the relationship be-
tween neuroimages and cognitive status, ignoring the high-order
interrelated structure within cognitive scores, and may have
limitations in getting the optimal results. To solve this, we
propose a novel formulation that simultaneously incorporates
biomarkers and high-order correlation in cognitive scores.

IV. METHODS

To the best of our knowledge, when it comes to the prediction
of Alzheimer’s disease from neuroimages, most studies rely on
a regression framework, and tensor completion has not been
applied. Even though a plethora of applications have lever-
aged its effectiveness, such as image recovery [39], traffic data
analysis [40], and multitask learning [41]. Although there exist
several differences between cognitive scores, they both reveal a
certain aspect of the disease, which means that multiple clinical
scores are interrelated. Most existing works do not make full
use of this prior knowledge to exploit low-rank structure on
cognitive scores, yet this is a natural underlying assumption after
theoretical analysis. Inspired by these, our model leverages both
biomarkers and global correlation by utilizing matrix and tensor
representation simultaneously.

A. Problem Formulation

For an MTL problem with M tasks, each task is associated
with two (or more) modes, and the data can be organized as
a tensor Y ∈ RN×I1×···×IK−1 , where M =

∏K−1
k=1 Ik. In the

context of AD, Y ∈ RN×T×V denotes that there are N subjects,
and each subject has V different cognitive scores at all T time
points, thus the total task in this condition isM = V T . To jointly
predict different cognitive scores of new subjects at multiple time
points, the traditional optimization model can only be applied
to the unfolding matrix of cognitive tensor Y , which means
‖XW −Y(1)‖F is constructed for optimization. However, this
formulation may suffer from the limitation that unfolding a
tensor into matrix form will lose the high-order structural char-
acteristics, affecting its exploration of global consistency.

Considering the correlation among different clinical scores
exists in both inter-mode and intra-modes, which means that Y
should be of low-rank, we take this prior knowledge into account.
Furthermore, during data collection, the cognitive scores are
missing at some time points, thus Y may be incomplete. A
commonly used strategy is either removing all patients with
missing items or filling the missing items with mean value,
which significantly affects the model performance. We consider
extending the model with missing target values. To solve the
limitation, low-rank tensor completion as a solution ensures
the exploration of global correlation. Then the optimization
formulation can be written as:

min
W,Z

rank(Z) +
λ1

2
‖PO(XW − Z(1))‖2F + λ2R(W),

s. t. ZO = YO. (6)

where Z is the predicted tensor and PO denotes the random
sampling operator, which is defined by

PO(T ) =

{
T (i1, . . . , iK), i1, . . . , iK ∈ O
0, otherwise

(7)

where O denotes the sample index set which contains the known
indexes. We utilize the known entries which are worked as
training data to predict the other observations.

Note that there are many kinds of tensor ranks, such as Tucker
rank [42], tensor ring rank [43], and so on. To facilitate the
algorithm solution, Tucker rank is considered. And the Tucker
rank of K-th-order tensor Z is denoted by rankT(Z), and its
elements are the ranks of corresponding modes unfolding matrix,
i.e., rankT(Z) = (rank(Z(1)), . . . , rank(Z(K))). In addition, to
identify the relevant features and incorporate the local temporal
correlation, �1-norm, �2,1-norm, and fused lasso penalty are
used, which is similar to cFSGL, and our model is to solve the
following optimization problem:

min
W,Z

rank(Z) +
λ1

2
‖PO(XW − Z(1))‖2F + λ2‖W‖1

+ λ3‖RWT‖1 + λ4‖W‖2,1
s. t. ZO = YO, (8)

where R = HT, defined in (4).
The formulation of RATC-MTL explores both global consis-

tency contained in cognitive scores and the linear relationship
that exists between neuroimage and cognitive status. The miss-
ing value ofY can be predicted by both image data and low-rank
properties. The detailed solution for problem (8) will be given
as follows.

B. Optimization Algorithm

The objective function of the problem (8) can be solved by
splitting it into several subproblems. And the pseudocodes are
summarized in Algorithm 1.

1) Update W: When fixing other variables, the subproblem
of W is:

min
W

1

2
‖PO(XW −Y(1))‖2F + λ2‖W‖1

Authorized licensed use limited to: TU Delft Library. Downloaded on July 16,2024 at 06:50:43 UTC from IEEE Xplore.  Restrictions apply. 
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+ λ3‖RWT‖1 + λ4‖W‖2,1. (9)

Notably, to prevent the performance degradation of the model
caused by learning with pseudo-labels, the update of W only
uses the training data which is achieved by sampling operator
PO . Thus, W can be updated at first. This problem is the
same as cFSGL, which can be solved by accelerated gradient
method [24], [44].

2) Update Y: The subproblem of Y is:

min
Z

rank(Z) +
λ1

2
‖XW − Z(1)‖2F,

s. t. ZO = YO, (10)

where W is the weight matrix learned above, which allows
relation-aware tensor completion for disease progression in the
following steps. Moreover, the optimization problem (10) is
nonconvex since minimizing the rank function is NP-hard [45],
a common approach is to use the trace norm instead, which is the
tightest convex envelop for the rank function. Then the objective
function can be relaxed to its convex one as:

min
W,Z

‖Z‖∗ +
λ1

2
‖PO(XW − Z(1))‖2F,

s. t. ZO = YO. (11)

According to Definition 2, the equivalent formulation of the
problem (11) can be obtained as:

min
W,Z,A1,...,AK

K∑
k=1

αk‖Ak(k)
‖∗ +

λ1

2
‖XW − Z(1)‖2F

s. t. ZO = YO,Ak = Z, k = 1, . . . ,K. (12)

where Ak ∈ RN×I1×···×IK−1 , k = 1, . . . ,K are auxiliary ten-
sors.

The augmented Lagrangian function of the problem (12) is
defined as:

Lp(Z,A1, . . . ,AK , T1, . . . , TK)

=
λ1

2
‖XW − Z(1)‖2F +

K∑
k=1

αk‖Ak(k)
‖∗

+ < Ak −Z, Tk > +
ρ

2
‖Ak −Z‖2F, (13)

under the constraint ZO = YO . where ρ is a positive penalty
scalar and Tk ∈ RN×I1×···×IK−1 , k = 1, . . . ,K is the Lagrange
multiplier. The problem (13) can be further split into several sub-
problems within the alternating direction method of multipliers
framework [46].

� Update Ak: The subproblem of Ak is:

min
Ak

K∑
k=1

αk‖Ak(k)
‖∗ +

ρ

2
‖Ak −Z +

Tk
ρ
‖2F, (14)

Then it can be divided into 3 subproblems:

min
Ak(k)

αk‖Ak(k)
‖∗ +

ρ

2
‖Ak(k)

− Z(k) +
Tk(k)

ρ
‖2F, (15)

Algorithm 1: Relation-Aware Tensor Completion Multitask
Learning.

Input: X ∈ RN×D,Y ∈ RN×I1×···×IK−1 and index set O,
W ∈ RD×M ,M =

∏K−1
k=1 Ik, λ1, λ2, λ3, λ4, ρ.

Initialization: ZO = YO , Ak = Z, Tk = 0,
k = 1, . . . ,K.

update W according to [24].
for iter = 1 to Maxiter do
Ẑ = Z;
for k = 1 to K do

update Ak via (16);
update Tk via (19);

end for
update Z via (18), and note that each time Z is updated,
the known training labels should keep constant, which
is a common operation in completion methods;

if ‖Ẑ−Z‖F
‖Ẑ‖F

< tol then
break;

end if
end for

Output: predicted tensor Ẑ .

and the solution of Ak(k)
is:

Ak(k)
= SVTτ

(
Z(k) −

Tk(k)

ρ

)
, (16)

where τ = αk

ρ is a parameter for thresholding.
� Update Z: Fix other variables, the subproblem on Z is:

min
Z

K∑
k=1

< Ak −Z, Tk > +
ρ

2
‖Ak −Z‖2F

+
λ1

2
‖XW − Z(1)‖2F,

s. t. ZO = YO. (17)

Since this objective function is convex and differentiable, Z
can be updated by

Z = Fold1

(
λ1XW +

3∑
k=1

(ρAk +Tk)(1)

)
, (18)

and keep known training labels unchanged.
� Update Tk: The Lagrange multiplier can be updated by

Tk = Tk + ρ(Ak −Z) (19)

V. EXPERIMENT AND RESULTS

A. Data

The clinical data used in this research were all collected
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). ADNI began in 2003, funded as
a private-public partnership, and is a longitudinal multicenter
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study designed to develop clinical, imaging, genetic, and bio-
chemical biomarkers for the early detection and tracking of
Alzheimer’s disease, where the data of subjects are obtained
by conducting a long-term following test, and recorded every
half year. The first time when the subject performs the screening
becomes Baseline (BL), and the duration starting from BL to
the follow-up visit is denoted by “M·”, such as “M06” de-
notes 6 months after the first screening. Notably, it has been
facilitating the scientific evaluation of diverse data for medical
diagnosis, including MRI, positron emission tomography (PET),
clinical neuropsychological assessments, and other biomarkers,
see www.adni-info.org for up-to-date information.

In this paper, we use the baseline biomarkers from DTI as
input features, which is a promising imaging technique that has
greatly helped to identify white matter regions affected by AD in
its early stages [47]. And the diffusion tensor images, from the
ADNI website, used for this research were preprocessed using
FSL software [48], including:

1) transformed the images into Nifti format;
2) extracted the gradient directions and b-values;
3) correction for eddy current and head motion;
4) skull-stripping using the brain extraction tool.

After preprocessing, a single diffusion tensor was fitted at
each voxel in the image by DTIfit, fraction anisotropy (FA) and
mean diffusivity (MD) were calculated [49], [50]. Then FA and
MD maps need to be carefully aligned to a group-wise space,
we achieved this by means of the tract-based spatial statistics
(TBSS) algorithm implemented in FSL [51].

By applying the automated anatomical labeling (AAL) [52],
the brain space was partitioned into 90 brain regions of interest
(ROIs) for each image. Then the mean and variance of FA and
MD of all 90 regions are calculated, and there are a total of 360
(90 × 2 × 2) features. In this study, we assume that there are no
missing values in input features.

B. Evaluation Metrics

To quantitatively assess the predictive performance of our
model, we utilized the root mean square error (rMSE) and corre-
lation coefficient (CC) as the assessment metrics. Moreover, for
the overall performance, normalized mean square error (nMSE),
which is widely utilized in multitask learning [53], and weighted
R-value (wR), which is utilized in the medical field to address
the progression of AD [54].

rMSE(y, ŷ) =

√
‖y − ŷ‖22

n
(20)

CC(y, ŷ) =
cov(y, ŷ)

σ(y)σ(ŷ)
(21)

nMSE(Y, Ŷ) =

∑M
m=1 ‖Ym − Ŷm‖22/σ(Ym)∑M

m=1 nm

(22)

wR(Y, Ŷ) =

∑M
m=1 corr(Ym, Ŷm)Nm∑M

m=1 nm

(23)

For rMSE and CC, y is the ground truth of the target for a
signal task (a time point or a cognitive score), and ŷ is the

TABLE I
THE DESCRIPTION OF COGNITIVE SCORES USED IN THIS STUDY

corresponding predicted value. For nMSE and wR, Ym repre-
sents the ground truth of target for task m, m = 1, . . . ,M , Ŷm

represents the corresponding predicted result. n is the number
of task samples, cov is the covariance between two vectors, σ is
the standard deviation of the vector, and corr is the correlation
coefficient between two vectors. It is worth noting that for
regression method Ŷ = XW after learning the parameter W,
but for our work Ŷ = Ẑ , and we utilize corresponding elements
of Ŷ to calculate these metrics. For nMSE and rMSE, a smaller
value indicates better performance, whereas, for wR and CC, a
larger value represents improved performance.

C. Compared Algorithms

In this paper, we conduct two groups of experiments on ADNI
data to validate the proposed algorithm: a simulated situation
and a real situation. These two experiments were all designed
to jointly predict multiple cognitive scores at multiple time
points using baseline DTI images. To compare the prediction
performance, we select seven state-of-the-art algorithms, includ-
ing single-task method and multi-task learning methods which
incorporate the task prior correlation knowledge.

� Lasso regression (Lasso) [55];
� Temporal Group Lasso (TGL) [23];
� Convex Fused Sparse Group Lasso (cFSGL) [24];
� Non-convex Fused Sparse Group Lasso (nFSGL) [25];
� Robust Multitask Learning (RMTL) [34];
� Trace norm Multitask Learning (Trace) [56];
� Non-Convex Calibrated Multitask Learning (NC-CMTL)

[37].
Cognitive scores used in this paper are listed in Table I. As

matrix P in (4) is used to deal with incomplete target data, we
employ this operation in all comparison methods like [57]. And
all input data have been normalized by z-scored.
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TABLE II
BASELINE DEMOGRAPHIC INFORMATION OF SUBJECTS USED IN SIMULATION

EXPERIMENTS

D. Simulation Experiments

In this situation, we use 235 subjects who have high-quality
images at BL and seven cognitive scores well-documented
at three continuous time points (BL, M06, and M12), which
ensures these samples have accurate ground truth to evaluate
the results. This population consists of 34 participants with
Alzheimer’s disease (AD), 47 cognitively normal subjects (CN),
93 early mild cognitive impairment (EMCI), 49 late mild cog-
nitive impairment (LMCI), and 12 significant memory con-
cern (SMC), the demographic information of these subjects at
baseline are shown in Table II, including the female and male
number of subjects corresponding to each category, age, and
education. And the data size in this experiment isX ∈ R235×360,
Y ∈ R235×3×7.

To compare with existing methods, we conducted a two-fold
analysis on them, given that our method enables simultaneous
prediction of multiple scores across different time points. (1)
Longitudinal analysis, simultaneously predicts one cognitive
score at all time points. (2) Cross-sectional analysis, predict all
seven clinical variables together at a one-time step. Note that in
these two situations, the experiment settings of matrix-based
methods are the same as [24] and [19], which is to build a
prediction model for each target. Specifically, they use baseline
DTI features to predict one cognitive score at multiple time
points and run corresponding methods seven times for all seven
clinical scores in longitudinal analysis. Similarly, for the cross-
sectional study, the baseline biomarkers are also used to predict
all cognitive scores at one-time points and run three times for
all time steps.

To simulate the missing situation, we artificially introduce
the sampling rate (SR) on cognitive scores. Considering various
missing scenarios, we set SR to vary from 10% to 80%. Upon
giving SR, the corresponding proportion of a particular cognitive
score at a certain time point is chosen as known labels. We
apply this operation to all cognitive scores across three-time
steps. Then the samples corresponding to these labels constitute
the training dataset. Subsequently, the remaining samples are
evenly partitioned into validation and testing sets. Notably, the
cross-validation method used in this part is a specific version of
the Monte Carlo cross-validation (MCCV), in which the data
are partitioned K times into disjoint train, test, and validate
subsets. The key distinction between MCCV and standard k-fold
cross-validation is that in MCCV the different train subsets are
chosen randomly and need not be disjoint [58]. MCCV has
shown its superiority in many applications [59], [60]. However,
due to the randomness of the method, it is also possible to

Fig. 2. Comparison of different methods on six cognitive scores with
different SR in Longitudinal analysis.

introduce more noise, and the stability is relatively poor. We
mitigate this problem to some extent through multiple repe-
titions, which are measured between computational cost and
model accuracy, and we set K = 10 in our experiments. In the
end, we build the model on training data, evaluate on testing
set, and repeat this process 10 times, the average of all 10
metrics was used to evaluate the performance of our method.
Since the parameters of the optimization problem (8) need to be
selected, we use the validation set to select these parameters in
grid search loops, where the range of each parameter varies from
0.01 to 1000. In the end, we chose λ1 = 0.01, λ2 = 0.01, λ3 =
0.1, λ4 = 0.01, and ρ = 0.1. The experimental results are as
follows.

1) Performance in the Longitudinal Study: The results of
the longitudinal analysis with 20% SR are shown in Tables III
and IV and use boldfaced to represent the best result, underline
to indicate suboptimal results.

From these, we can draw the following conclusions: First,
compared with single-task learning (Lasso), MTL can utilize the
temporal correlation among tasks and have better performance in
longitudinal AD prediction. Second, compared with other MTL
algorithms, the proposed method consistently shows the best
performance on overall prediction measurements. More specif-
ically, the nMSE measurement of DSS and MMSE achieves a
decline of 28.88% and 13.37% compared with the suboptimal
values, and the wR increased by 17.39% and 26.41% respec-
tively. These results verify the effectiveness of the proposed
method to simultaneously explore correlations between mul-
tiple modalities in clinical scores and incorporate the medical
features.

Fig. 2 shows the comparison curves of different methods in
predicting six clinical scores with SR ranging from 10% to 80%.
As the number of training samples increases, all methods show
an improvement in their respective performance. It shows that
our method shows the best results across different SRs, which
further proves the power of the proposed algorithm.

An interesting phenomenon is that the prediction performance
of ADAS-13 is better than other scores, which is the same as [19].
The possible reason is that ADAS-13 exhibits more pronounced
temporal correlations than other tests. What’s more, it is also
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TABLE III
PERFORMANCE COMPARISON OF LONGITUDINAL ANALYSIS IN TERMS OF RMSE AND CC ON SEVEN COGNITIVE SCORES AT THREE-TIME POINTS
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TABLE IV
PERFORMANCE COMPARISON OF LONGITUDINAL ANALYSIS IN TERMS OF NMSE AND WR ON SEVEN COGNITIVE SCORES

TABLE V
PERFORMANCE COMPARISON OF CROSS-SECTIONAL ANALYSIS IN TERMS

OF NMSE AND WR AT THREE-TIME POINTS

observed that in the longitudinal study, using the temporal cor-
relation as a prior regularization is more effective than low-rank
constraints. To statistically evaluate the distinctions between the
proposed method and other approaches, we conduct the paired
sample t-test in this part and apply the Bonferroni correction [61]
to account for multiple comparisons. Our findings reveal that,
in comparison to other methods, our approach demonstrates a
consistently increased wR (p< 0.001), and decreased nMSE
(p< 0.001). Moreover, we can also observe enhanced CC (p<
0.05) and decreased rMSE (p< 0.001) among all time points.
For more details, see Appendix A.

2) Performance in the Cross-Sectional Analysis: The
cross-sectional study’s nMSE and wR with SR = 20% are

Fig. 3. Comparison of different methods at three-time points with dif-
ferent SR in cross-sectional analysis.

reported in Table V, while Fig. 3 indicates the comparison curves
of different methods with varying SRs at three distinct periods.

Based on these results, we can derive several observations.
First, in this experiment, multitask learning is still competitive
with single-task learning which justifies the correlations between
different cognitive scores are also useful information, and it is
reasonable to incorporate such prior knowledge in associated
studies. Second, the proposed method shows the best perfor-
mance at all time points, for instance, the nMSE measurement
achieves 25.97%, 19.93%, and 18.24% reduction compared to
NC-CMTL at three-time points respectively, and wR values
have increased by 27.03%, 20.68%, and 18.57% respectively.
These results further validate the effectiveness of our framework.
Third, from Tables IV and V, Low-rank methods are more
suitable for cross-sectional analysis, this may due to the temporal
correlation are not prominent in the horizontal direction and is
difficult to apply in such formulation. Additionally, imposing
low-rank constraints on clinical scores can be a useful way
to explore the underlying structural information. Furthermore,
the same paired sample t-test is conducted in this experiment.
The results show that our method consistently indicates signif-
icant increases in wR (p< 0.001) compared to other methods,
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TABLE VI
PERFORMANCE COMPARISON BY USING UNFOLDED DATA IN TERMS OF

NMSE AND WR AT THREE-TIME POINTS

as well as deceased nMSE (p< 0.001). For more details see
Appendix A.

From the above, we can observe that our method consistently
exhibits optimal results, and there is a large difference between
the matrix-based methods and the tensor-based method. There-
fore, we want to further investigate the reason for this difference.
Namely, we identified two possible reasons: (1) the tensor-based
method uses more data. That is the matrix-based methods only
consider one correlation and handle a limited number of tasks,
i.e.T orV , but our approach involvesT ∗ V tasks, thereby lever-
aging a piece of more abundant information. (2) the low-rank
tensor structure carries a lot of important information. To inves-
tigate how each of these factors affects prediction performance,
we take the cross-sectional analysis as an example, and do the
following experiment: We unfolded the tensor to a matrix along
mode-1, and let the matrix-based methods solve the equation
‖XW −Y(1)‖F with corresponding regularization terms. Then
compare it with our tensor-based solution. This experiment
compares the results when all data are used but without the
low-rank tensor assumption. We set other experiment settings
to be consistent with those in Table V and report the results in
Table VI to make a direct comparison. In addition, the paired
t-test is also conducted on these obtained results, the test results
show increased wR (p < 0.001), decreased nMSE (p < 0.001)
in comparison to other methods, as shown in Appendix A. These
results can reveal some interesting points:

1) As the number of tasks increases, the predictive perfor-
mance of matrix-based methods improves. This enhance-
ment is likely attributed to the presence of correlations
not only among multiple cognitive scores at the same time
point but also across different time points. Consequently,
our approach leverages various forms of correlation and
more abundant data, contributing to the improvement in
model performance.

TABLE VII
BASELINE DEMOGRAPHIC INFORMATION OF SUBJECTS AND MISSING RATE

IN REAL SITUATION EXPERIMENTS

2) Despite the improved performance of matrix-based meth-
ods as shown in Table VI, our approach still demonstrates
the optimal results. The prominent reason behind this lies
in the low-rank tensor assumption for cognitive scores.
This assumption facilitates the exploration of the global
structural information within cognitive scores, leading to
enhanced predictive accuracy.

E. Real Experiments

In the simulation experiments, the missing condition of data
is artificially designed. To verify the performance of our method
in dealing with the real missing situation on the ADNI dataset,
we process the data including (1) deleting the samples without
baseline DTI records, (2) deleting samples without labels, (3)
deleting the samples whose entries are missed more than 10%.
Finally, 284 subjects which consist of 62 participants with
Alzheimer’s disease (AD), 74 cognitively normal subjects (CN),
98 early mild cognitive impairment (EMCI), and 50 late mild
cognitive impairment (LMCI) are used. It is noteworthy that,
due to the limited number of subjects in the SMC class, we omit
subjects from the SMC class. Apart from the above data, these
subjects’ corresponding 20 cognitive measurements at three-
time points in the real situation are analyzed as labels. Then the
data structures are X ∈ R284×360, Y ∈ R284×3×20. Statistical
information of these subjects at BL and the missing ratio of
M06 (1) and M12 (2) is recorded in Table VII. The missing
rates of different cognitive scores are shown in Appendix B.
Evidently, the complexity of data incompleteness increases in
real-world scenarios. Disparities in data missing rates exist
among different time points, different disease progression, and
different cognitive scores.

In this part, we retain the incomplete situation of authentic
data. The known entries are used as the training set, and the
remaining samples are partitioned into two equivalent sets, with
one for validation and the other for testing. In the absence of
ground truth under true missing conditions, five binary classifi-
cation tasks, which utilize the predicted cognitive scores as clas-
sification criteria, are conducted to indirectly verify the accuracy
of our model. Due to the efficiency of support vector machine
(SVM) in small sample classification tasks [62], [63], an SVM
classifier with a radial basis function (RBF) kernel is adopted
in our experiments. The penalty coefficient of the RBF kernel
is set based on the empirical value and remains constant during
the whole experiment. The validation method of classification
experiments is the leave-one-out which can exploit data to the
fullest. The same classifier is used for all comparison methods,
and prediction accuracy (ACC) and sensitivity (SEN) are used
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Fig. 4. Mean accuracy comparison of different methods at M06 and
M12.

Fig. 5. ACC and SEN of different methods at M06.

as evaluation metrics. When employing the predicted cognitive
scores as classification features, the statistical disparities among
different categories also constitute a crucial metric. Thus for
each classification task, we perform group t-tests on the features
across different categories to validate the statistical significance
of our method. For simplicity, different numbers are used to
indicate specific classification tasks, and 1–‘CN vs. AD’, 2–‘CN
vs. LMCI’, 3–‘CN vs. EMCI’, 4–‘AD vs. LMCI’, 5–‘AD vs.
EMCI’.

Similar to the simulation one, the parameters of the optimiza-
tion problem (8) in this experiment are also selected in the grid
search loop that λ1 = 0.01, λ2 = 0.01, λ3 = 0.01, λ4 = 100,
and ρ = 10. Also, the parameters of the comparison methods
are also adjusted to the optimum.

As Fig. 4 shows the overall classification accuracy for five bi-
nary classification tasks, the mean ACC of our proposed method
is 84.29% and 86.88% at M06 and M12, which yield the best
performance. Compared to the suboptimal method, our method
improves by 4.02% and 3.69% at two-time points respectively.
Due to the higher overall missing rate at M06, M12 exhibits
superior results in comparison.

For further analysis, Fig. 5 shows the comparison results of
ACC and SEN on all binary classification tasks at M06, and Fig. 6
shows the corresponding results at M12. Excepting the SEN
value of the first classification task at M12, the proposed method
shows the state-of-the-art ones in other values, especially, the
proposed framework has a significant advantage in ‘AD vs.

Fig. 6. ACC and SEN of different methods at M12 .

LMCI’ (p < 0.05) task at M06 and ‘CN vs. EMCI’ (p < 0.05)
task at M12. Detailed statistical analysis results are provided in
Appendix C.

In addition, there are also some interesting phenomena in this
experiment. In the simulation experiments, our method shows a
significant advantage, but the classification results of different
methods are similar. The possible reason for the discrepancy
between these two results may be: (1) The missing situation is
different. In the real situation, some cognitive scores’ missing
rate is much higher than others, such as DSPAN For and DIGIT
are missing in almost all patients, and only 7 CN subjects retain
the values. (2) A large RMSE or CC may not translate to a large
classification difference, which may be due to the choice of the
classifier not being very well. To substantiate our hypothesis,
we further conduct a series of experiments where we carefully
consider the difference between cognitive scores for participants
with different disease categories at different time points. The
details are shown in Appendix D.

VI. CONCLUSION

In summary, this article focuses on studying the disease
progression of AD by baseline imaging markers and high-order
correlation in cognitive scores. Based on existing approaches, we
propose a relation-aware tensor completion multitask learning
formulation, in which the prediction of cognitive status can be
modeled as a tensor completion problem. This approach not only
allows us to explore both inter-mode and intra-mode correlations
within cognitive score simultaneously but is also a natural choice
for addressing the issue of missing target values. Furthermore,
we also take the linear relationship between neuroimages and
cognitive scores into account. This method gives an idea of
how to integrate the regression and completion models in AD
prediction. Specifically, in this framework, tensor completion
explores the underlying high-order structural information of
labels, while the regression model incorporates the close re-
lationship between neuroimaging and cognitive scores. In the
end, we validate the effectiveness of the proposed method on
the ADNI dataset, compared with traditional models for AD
prediction, our algorithm shows better performance in both
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missing situations. We also validate our algorithm in a more
reasonable situation and discuss corresponding results.

Although the above results have been shown, there are still
some limitations in this study. We only use the mean and variance
of FA and MD features in DTI data as input biomarkers, suggest-
ing that more complex and accurate feature designs could further
enhance the model performance. Additionally, this article only
considers the DTI data as input features, and other biomarker
types such as PET and CSF may help to extend knowledge on
AD.
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