
      

 

J.G.V. van Ramshorst 
 

 

 

 

 

 

Genetic Programming in 

Hydrology 
Using genetic programming in conceptual 
modelling 
 
 



       

2 

 

 

 

 

Genetic Programming in Hydrology 
Using genetic programming in conceptual modelling 

 
By 

 

J.G.V. (Justus) van Ramshorst 
 
 
 
 
 

As part of my additional thesis at the National University of Singapore during                                                                           
my MSc in Water Management at the Delft University of Technology 

 

 
 
 
 
 

 
Supervisors:   Prof.dr.ir. H.H.G. Savenije (TU Delft) 
   Dr.ir. G.H.W. Schoups (TU Delft) 
   Assoc.Prof.dr.MSc. V. Babovic (NUS)  
   MSc. J. Chadalawada (NUS) 
    

 
 
 
 
 
 
 
 
Front page image: Photo at the Wark, Luxembourg (2016); photo from own selection 
 
 
 
An electronic version of this thesis is available at http://repository.tudelft.nl/. 
 

 

 

  

http://repository.tudelft.nl/


       

3 

 

Preface & Acknowledgements 

 

This report is written as part of my additional thesis at the National University of Singapore (NUS) 
in Singapore. This additional thesis was part of my Master of Science in Water Management at the 
Delft University of Technology.  
 
I would like to thank the following people at the NUS and TU Delft for guiding me, their feedback 
and the nice discussions: Vladan, Jayashree, Björn and Abhishek while working in Singapore and 
Huub and Gerrit from a distance in Delft. Also I want to thank Laurène Bouaziz and the Service 
Publique de Wallonie for sharing their dataset of the Ourthe, Orientale and Occidentale 
catchments so this study and method could be tested in real-life. Last but not least I want to thank 
Brad and his family for hosting me and the community of St. George’s which both made me feel at 
home during the 15 weeks stay in Singapore. 
 
Finally, I want to mention that the International University Partnership Fund (TU Delft) funded part 
of the travel expenses to Singapore with a STIR fund grant. 
 
 
Singapore/Delft, August 2017 
 
Justus van Ramshorst 
 



       

4 

 

Abstract 

This report introduces the use of Genetic Programming (GP) into hydrology by describing the 
results of GP using conceptual hydrological models as physical representation. First the 
possibilities of GP are tested on synthetic data, which results in a shortlist of good working 
objective functions and insight in the most important GP settings. The test on real data in the 
Belgium Ardennes showed that GP using the objective functions KG10, MM and Shafii performed 
better. Nevertheless all three models performed not well on simulating the low flows and high 
peaks. Furthermore GP using KG10 and MM both results in simple serial models which perform 
well overall, but bad on quick response runoff. Shafii resulted in parallel models which show quick 
response flow, however GP it is not able to capture the fast responses correctly (yet). GP has the 
potential to improve the understanding in the behaviour of catchments, however it still needs the 
human mind to observe, compare and analyse the modelling results. The main consideration with 
GP is to look for a balance between: model search space, objective function, randomness and 
(computational) time. The challenge is how to lead GP in an efficient way without removing the 
possibility of finding unknown patterns. 
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Introduction 

Relevance of Genetic Programming to hydrology 

Genetic Programming (GP) is an (optimization) technique which has its roots in computer 
sciences. GP is one of the four mainstream evolutionary algorithms which are developed in the 
second half of the 20th century (Babovic and Keijzer 2000). Since GP was founded by Koza in the 
early 90’s (Koza 1992) much progress has been made and GP is introduced into the hydrological 
field: (Babovic and Keijzer 2000) and (Savic, Walters and Davidson 1999). Recently GP has also 
been used in trying to model rainfall-runoff relations by combining conceptual models and GP: 
(Havlíček, et al. 2013), (Chadalawada, Havlicek and Babovic 2017a) and (Chadalawada, Havlicek 
and Babovic 2017b). Therefore, it is interesting to take a more thorough look into GP and its 
possibilities for hydrology. 
 
GP is a data-driven method, which tries to discover the relationship between input and output data, 
which increases the understanding of a dataset (Babovic and Keijzer 2000). This discovery is 
achieved by simulating (natural) selection processes over a certain amount of generations where 
in time the accuracy of the relationship increases. GP uses symbolic regression to describe the 
data, this means GP creates equations in each generation. So, the difference with ordinary 
optimization methods used in hydrological modelling is that not only parameters of a prior defined 
relation (hence model) are optimized, with GP the relation itself is also optimized and whenever 
necessary changed together with the parameters. So, the hydrological model is also part of the 
search process in describing the relationship between input and output data (Babovic 2005). This 
gives the possibility to automatically solve problems without giving or knowing a solution/model in 
advance. This could be used on hydrological datasets to find physical relations without prior 
specification of the whole model structure. 
 
However, an equation, without any direct physical representation, which in itself is not very useful 
from a hydrologist perspective, because it is not clear what kind of mechanisms are represented. 
Therefore conceptual models are included in this research. This limits the search field of GP (for 
now), but will give much more workable results as conceptual models tell something about the 
(physical) mechanisms of a catchment and can act as hypotheses for the dominant (flow) 
mechanisms (Savenije 2009). Therefore this method gives a quick and simple insights in the (flow) 
mechanisms of a catchment, which can be verified or questioned with observations in the field of 
for example the topography within a catchment (Savenije 2010). (Chadalawada, Havlicek and 
Babovic 2017b) presented this novelty method recently and this report is an extra look into the 
possibilities. In this study the possibilities of the GP method first will be tested on synthetic data 
from the 12 conceptual SUPERFLEX models from (Fenicia, Kavetski, et al. 2014). After this, GP 
will be tested on a real dataset from the Belgian Ardennes (Service Publique de Wallonie 2017) 
and these results will be compared with (de Boer-Euser, et al. 2017). 
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A short introduction into Genetic Programming 

To give more insight in how GP works, step by step the process and terminology will be briefly 
explained, the flowchart of the GP process is visualised in Figure 2 by (Negnevitsky 2005). As GP 
is using symbols to create a symbolic expression (S-expression), a defined band wide of symbolic 
operators needs to be given to be able create expressions. This can range from basic operators 

such as +, −, ∗  𝑎𝑛𝑑 /, but also more complex operators like 𝑒𝑥, ln(x) , x2 or √𝑥 . During the 
selection process it should be kept in mind that some operations are not possible or lead to 
solutions going to infinity (e.g. dividing by 0) which should be prevented. Preventing this is called 
closure. One of the options in GP to represent symbolic expressions is by using and adapting 
parse trees. A parse tree is constructed of terminals and functions. Terminals correspond to the 
input data or constants created by GP. Functions act upon the terminals and correspond to 
operators. In Figure 1 is visible how a parse tree with terminals (𝑃, 𝐸, 𝐴) and functions (∗, −) is 
represented, which algebraically represents (𝑃 − 𝐸) ∗ 𝐴 and for example could be a simple 
expression to estimate output 𝑄. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the search domain of the terminals and functions are defined the selection process can be 
started. As no prior expression is given, the population of the first generation needs be generated 
by GP. This initial generation is created randomly, by using the given domains of the terminals and 
functions. However, some restrictions need to be given to this process. For example, the 
population of size N needs to be chosen, which represents N expressions in each generation. To 
restrict the size and depth of each expression, values have to be assigned to the initial depth and 
size. For where depth is the longest non-backtracking path from a leaf to the root of the tree (most 
upper node) and size is the number of nodes in the tree. For the parse tree of Figure 1 this means 
the depth is 2 and the size is 5. Furthermore, a fitness/objective function (e.g. Nash-Sutcliffe) 
needs to be defined which checks the accuracy of each expression, which will be used to rank the 
expressions accordingly for each generation. In this study the parse trees are shown differently 
than the parse tree from Figure 1, in this study the trees are linearized in the form of arrays 
(Havlíček, et al. 2013), however the idea is still the same. 
 
For randomly creating the first generation multiple options are available like the Full method, Grow 
method and Ramped half-and-half (which is used in this study) which combines the Full and Grow 
method (Babovic and Keijzer 2000). These methods regulate the way expressions are created in 
order to obtain a proportional, well mixed distribution over the whole range of possible 
expressions. Next to these methods it is possible to give priority to certain terminals/functions or to 
regulate on the size of the expressions.  
 
  

Figure 1: Parse tree 
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After the initial generation is created and ranked based on the fitness criteria, GP will select and 
generate the next generation and this process will iterate until the termination criterium is reached, 
which can be a certain fitness or number of generations. The selection procedure for the next 
generation is where “Genetic”, hence (natural) selection, in GP comes forward. Selection in GP is 
the optimisation force in which the best expressions are kept and the worst expressions are 
removed from the generation based on the fitness function. This selection can be just the best 
proportion of the generation, which is called the truncation selection. Tournament selection is an 
option where random expressions are selected and the winner/best expression survives.  
 
After selecting the fittest expressions a temporarily population (mating pool) is obtained. This 
mating pool is used for reproducing the new generation. This reproduction is based on the 
evolutionary process/ideas in which the criterions of heredity, variability and fecundity play a big 
role. These criterions provide the necessary conditions for an evolutionary process to occur 
(Babovic and Keijzer 2000). In GP this reproduction process is integrated by the following generic 
operators: cloning, crossover and mutation. Where cloning in this case can be defined as a sort of 
elitism where the fittest expressions will directly survive until the next generation. Crossover can be 
seen as the offspring of two (parent) expressions, where each parent is divided into two and this is 
exchanged resulting in two offspring expressions. The undergoing transformation is restricted to 
offspring which are grammatically correct, meaning the new expression should make sense 
algebraically/syntactically. Mutation is a process which alters only one single expression. In GP the 
expression is mutated by random substitution of a sub-tree with another random sub-tree. This can 
range from replacing an entire sub-tree to replacing a single node. To make sure the produced 
offspring do not contain erroneous expressions soft brood selection can be used. Soft brood 
selection creates more offspring then necessary and checks the worth of the new offspring with a 
simple and fast fitness function, this method is called the culling function. This prevents useless 
expressions ending up in the next generation. The production of offspring is repeated until an N 
amount of expressions is created and a new generation of expressions is ready to be tested. 
 
This process of selecting and reproducing next generations is repeated until the defined stopping 
criteria. By iterating this process for a number of times GP tries to find the optimal solution for the 
given dataset. This process can be conceived as the accumulation of knowledge, in which the 
expressions over time tend to increase their fitness (Babovic and Keijzer 2000). 
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Figure 2: Flowchart for GP (Negnevitsky 2005) 
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Method 

SUPERFLEX 

In this study the twelve conceptual model structures defined in (Fenicia, Kavetski, et al. 2014) are 
used. These models are built with the SUPERFLEX building blocks as described in (Fenicia, 
Kavetski and Savenije 2011). SUPERFLEX gives the possibility to add and remove building 
blocks, like reservoirs, lag functions and junctions during the search for the most suited model for a 
catchment. In the past this was not so easy, because “just” adding and removing components to 
your model could create numerical instability, however within the SUPERFLEX framework this 
problem is solved (Fenicia, Kavetski and Savenije 2011). This possibility creates also great 
opportunities for GP as it would be possible to let GP search for an suited model structure with 
only giving the building blocks as input, instead of determining and testing complete model 
structures manually. This research however is only focussed on twelve potential model 
structures/hypotheses (M01-M12). This narrows the model search space and makes everything 
less complex for now, so it is able to see the potential of using GP to search in the model structure 
and parameter space. In Figure 3 the twelve models are shown, consisting of very simple single-
reservoir structures and more complex serial and parallel structures, all described more elaborately 
in (Fenicia, Kavetski, et al. 2014). 
 

 
 

       Figure 3 - The 12 model structures/hypotheses based on the SUPERFLEX framework (Fenicia, Kavetski, et al. 2014)  
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GP setup 

Within this study the optimum model structure and parameters are searched for by GP. This is 
done by using the GP method written and described thoroughly by (Chadalawada, Havlicek and 
Babovic 2017b), which is based on SORD! of (Havlíček, et al. 2013). GP’s model structure search 
space in this study is limited to the twelve model structures from (Fenicia, Kavetski, et al. 2014) 
and an additional function set. The necessary parameters for these model structures are fixed, 
although GP can add extra parameters (constants). The settings and used options are given and 
shortly explained in Table 1, and are based on (Chadalawada, Havlicek and Babovic 2017b). 
 
  Table 1 - The settings in the GP process 

Setting Value Definition 

n 10 (20, 40, 60) Amount of random starts 

Number of generations 50 (100) Number of optimizations steps until termination 

Population size 500 Amount of expressions within one generation 

Objective/fitness function e.g. NS0 Fitness criteria within GP for ranking the expressions 

Dependent variable Q Variable which is used to evaluate the expression 

Independent variables P and E Input for the expressions 

Function set +,-,*,: and spec. functions Functions available for GP; this includes the 12 models 

Constant range 0-1 Range for constants added 

Initialization Ramped half-and-half Method used to create the first generation 

Tree size (initial/maximum) 3/7 Tree size 

Selection method Tournament size 4 Selection method used at the end of each generation 

Probability of crossover 0.7 Probability for a crossover during creation of a generation 

Probability of mutation 
(subtree/constant/separation/node) 

0.5/0.7/0.3/0.3 Probability for a mutation during creation of a generation 

Max. depth (initial/maximum) 1/3 Maximum depth 

Rounding factor 3 Rounding to three decimal places 

Parameters 

For all the twelve models there are parameters which are optimized during the optimization 
process. These parameters are implemented in the GP setup by (Chadalawada, Havlicek and 
Babovic 2017b) and this implementation is based on the twelve model structures and the 
according parameters from (Fenicia, Kavetski, et al. 2014). The used parameters in GP for each 
model are listed in Table 2 to give insight in the complexity and mechanisms of the models. 
Accordingly, a short description for each for parameter is given in Table 8 in the Appendix A. More 
detailed descriptions of the model structures and implementation is found in (Fenicia, Kavetski and 
Savenije 2011), (Fenicia, Kavetski, et al. 2014) and (Chadalawada, Havlicek and Babovic 2017b). 
 

Table 2 - List of parameters for each model  

Model Number of 
reservoirs 

Number of 
parameters 

List of parameters 

MI 1 4 alpha_Qq_FR, K_Qq_FR, Ce, m_E_FR 

MII 1 6 Ce, Beta_Qq_UR, Smax_UR, K_Qb_UR, Beta_E_UR, SiniFr_UR 

MIII 2 7 alpha_Qq_FR, K_Qq_FR, Ce, Smax_UR, Beta_Qq_UR, Beta_E_UR, SiniFr_UR 

MIV 2 7 alpha_Qq_FR, K_Qq_FR, Ce, Smax_UR, Beta_Qq_UR, Beta_E_UR, SiniFr_UR 

MV 2 8 alpha_Qq_FR, K_Qq_FR, Ce, Smax_UR, Beta_Qq_UR, Beta_E_UR, SiniFr_UR, Tlag 

MVI 3 10 alpha_Qq_FR, Beta_Qq_UR, K_Qq_FR, Ce, Smax_UR, Smax_IR, m_QE_IR, Beta_E_UR, SiniFr_UR, Tlag 

MVII 3 10 alpha_Qq_FR, K_Qq_FR, Ce, Smax_UR, Beta_Qq_UR, Beta_E_UR, SiniFr_UR, D_R, K_Qq_RR, Tlag 

MVIII 2 5 K_Qq_FR, Ce, K_Qq_SR, D_S, m_E_FR 

MIX 3 8 Beta_Qq_UR, K_Qq_FR, Ce, K_Qq_SR, D_S, Smax_UR, Beta_E_UR, SiniFr_UR 

MX 3 8 K_Qq_FR, Ce, K_Qq_SR, D_S, Smax_UR, Beta_E_UR, SiniFr_UR, Tlag 

MXI 3 9 Beta_Qq_UR, K_Qq_FR, Ce, K_Qq_SR, D_S, Smax_UR, Beta_E_UR, SiniFr_UR, Tlag 

MXII 4 11 Beta_Qq_UR, K_Qq_FR, Ce, K_Qq_SR, D_S, SiniFr_UR, Smax_UR, Smax_IR, m_QE_IR, Beta_E_UR, Tlag 
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Synthetic data and objective functions 

Before testing GP’s possibilities on real catchments, where the exact model and parameters are 
never exactly known, GP is first tested on synthetic data. With synthetic data it is possible to 
arbitrarily select parameters for each of the 12 models and try to find these model settings back 
with GP. This gives to opportunity to see if GP is able to find the correct model structure for the 
created synthetic flow data. Furthermore, it is tested which objective function performs best while 
using GP, as GP needs to know the performance of each expression during the search of the 
model structure and parameters. To be able to make a selection of the best objective functions, 
GP is tested on the synthetic dataset with 17 objective functions which are available through 
(Chadalawada, Havlicek and Babovic 2017b). The following parameters (Table 3) for the 12 
models were chosen arbitrary, within the parameter range, to create the synthetic data. All 
parameters had only one value and are the same for each model when this parameter is present.  
 
The objective functions used are suggested by (Chadalawada, Havlicek and Babovic 2017b) and 
these are chosen based on literature study and having objective functions focussed on different 
performance measures: statistical, hydrological and signature based (Ley, et al. 2016). The 
objective function “Shafii” however is added later on during this research and tested in this study. 
Shafii uses 13 signatures and the normal and log Nash-Sutcliffe efficiency (Nash and Sutcliffe 
1970). The Shafii objective function is modelled as done in (Shafii and Tolson 2015). Shafii is 
implemented as a single-objective function (A2-S0) as this prevents creating a Pareto front and still 
gives good results, although its more sensitive to randomness (Shafii and Tolson 2015). In this 
study GP a single objective optimization scheme is used which only allows single criterions or 
balanced multiple criteria, perhaps in the future modelling with multi objective criterions is an 
option. Furthermore, all objective functions are optimized towards 0, therefore some objective 
function are slightly adapted to make sure 0 is the optimum instead of 1 or any other value. All 
objective functions are given and categorised on measured performance in Table 9, Appendix B. 
 

To select the best objective functions using the synthetic dataset the following procedure is used. 
First of all 17 runs, using all the objective functions, for each of the 12 models are performed 
(Stage 1). Based on these results it was decide to change the important settings: n random start 
and the amount of generations, with the best six objective functions (Stage 2). Finally, one set of 
runs is done with the best performing three objective functions. This procedure is followed in order 
to efficiently see the effect of the most important settings and the effect of the objective functions, 
in order to make selections for testing on the real dataset. 
 

        Table 3 - Parameters for the synthetic data 

Parameter Min Max Unit Chosen parameter values (fixed) 

Alpha_Qq_FR 1 10 - 2 

Beta_E_U_R 0.01 10 - 2 

Beta_Qq_UR 0.001 10 - 2 

Ce 0.1 3 - 1 

D_R 0 1 - 0.2 

D_S 0 1 - 0.3 

K_Qb_UR 0.000001 2 1/time 0.01 

K_Qq_FR 0.001 10 1/time 0.4 

K_Qq_RR 0.05 4 1/time 0.2 

K_Qq_SR 0.000001 1 1/time 0.01 

m_E_FR 0.01 2 - 0.3 

m_QE_IR 0.001 1 - 0.4 

SiniFr_U 0 1 - 0.3 

Smax_IR 0.01 20 mm 3 

Smax_UR 0.1 1000 mm 400 

Tlag 1 10 time 0.5 
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Test with real data 

Once the results of GP with different objective functions are analysed it is interesting to investigate 
GP’s performance for a real catchment. In (Chadalawada, Havlicek and Babovic 2017b) GP is 
tested on three catchments in Luxemburg which is compared with the SUPERFLEX results from 
(Fenicia, Kavetski, et al. 2014) to make a first comparison with real rainfall-runoff data. In this 
study, GP is tested in three other catchments in the Belgian Ardennes to obtain a second analysis 
in a different environment. The measurement data is kindly made available by (de Boer-Euser, et 
al. 2017) and (Service Publique de Wallonie 2017) so this comparison could be made. GP will be 
tested on the following three catchments which are shown in Figure 4 and are part of the Meuse 
basin: Ourthe and its two subcatchments Orientale and Occidentale. In (de Boer-Euser, et al. 
2017) a more detailed description of the three catchments is given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first step in this approach will be doing eleven runs for each catchment where a selection of 
the best performing objective functions of the synthetic dataset is used. In addition some other 
objective functions are selected, so each kind of performance measure (Appendix B) is included. 
Based on the runs with the synthetic data is chosen to use n=40 and generation=50, all the other 
GP settings remain the same as in previews runs (Table 1). The first six years (January 2000 until 
December 2005) are used as training data, the final fitness is validated for 2000 until 2010, with 
2001 as warm-up year for the model. The second step will be trying to select the best performing 
models for each catchment. This selection is made by looking at several performance indices, 
signatures and visual inspection. Therefore for each of the 33 runs the performance are examined 
based on 7 performance indices (see Table 4): NS0, logNS0, r2, RMSE, KGE, rel_d0 and SUSE. 
Furthermore the relative volumetric and maximum peak flow errors are calculated and flow 
duration curves (FDC’s) and hydrographs are visually examined. The final step will focus on 
comparing the models with observations from fieldwork and previous publications and look at the 
physical agreement from the GP selected models. 
 
  

Figure 4 - The studied catchments in the Belgian Ardennes (de Boer-Euser, et al. 2017) 
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Table 4 - Performance indices 

Performance indices Formula 

Nash Sutcliffe efficiency (NS0) 𝑁𝑆𝐸 =  1 −
∑(𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2

∑(𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠)
2 ;  𝑁𝑆0 =  1 − 𝑁𝑆𝐸 

Log Nash Sutcliffe efficiency (logNS0) 𝑙𝑜𝑔𝑁𝑆𝐸 =  1 −
log(∑(𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2 )

log (∑(𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠)
2

)
;  𝑙𝑜𝑔𝑁𝑆0 =  1 − 𝑙𝑜𝑔𝑁𝑆𝐸 

Correlation coefficient: R2 𝑅2 =
[∑(𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑚)(𝑄𝑠𝑖𝑚,𝑖 − �̅�𝑠𝑖𝑚)]

2

∑(𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑚)
2

∑(𝑄𝑠𝑖𝑚,𝑖 − �̅�𝑠𝑖𝑚)
2 

Rooted mean square error: RMSE 𝑅𝑀𝑆𝐸 =  √
∑(𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2

𝑛
 

Kling-Gupta Efficiency (KG10) 𝐾𝐺𝐸 =  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2; 𝐾𝐺10 = 1 − 𝐾𝐺𝐸 

Relative index of agreement: rel_d0 𝑟𝑒𝑙𝑑0 =

∑ (
𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖

𝑄𝑜𝑏𝑠,𝑖
)

2

∑ (
|𝑄𝑠𝑖𝑚,𝑖 − �̅�𝑜𝑏𝑠| + 𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠

�̅�𝑜𝑏𝑠
)

2 

SUSE (Entropy measure) 𝑆𝑈𝑆𝐸 = max[|𝐻𝑠𝑖𝑚
𝑈 − 𝐻𝑜𝑏𝑠

𝑈 |, |𝐻𝑠𝑖𝑚
𝑆 − 𝐻𝑜𝑏𝑠

𝑆 |] 

Volumetric error 𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑟𝑟𝑜𝑟 =
∑(𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

∑ 𝑄𝑜𝑏𝑠
 

Maximum peak flow error 𝑀𝑎𝑥 𝑝𝑒𝑎𝑘 𝑓𝑙𝑜𝑤 𝑒𝑟𝑟𝑜𝑟 =
(max [𝑄𝑜𝑏𝑠] − max [𝑄𝑠𝑖𝑚])

max [𝑄𝑠𝑖𝑚]
 

 

 

The Nash Sutcliffe efficiency are used as overall hydrological performances indices for the 
selected models (Nash and Sutcliffe 1970). The R2 gives shows the correlation between observed 
and simulated data. The RMSE is also a statistical indication in the relation between the observed 
and simulated data. The Kling-Gupta Efficiency is a more recent indices which shows the model 
performance (Gupta, et al. 2009). The relative index of agreement is also an indices which shows 
the model performance (Krause, Boyle and Bäse 2005). SUSE is an indication of the entropy state 
and is a measure which is based on Shannon’s entropy theory (Pechlivanidis, et al. 2014). The 
volumetric error shows the difference in total volume balance of the observed and simulated 
flow/data. The maximum peak flow error shows the difference between the observed and 
simulated maximum flow.  
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Results 

Test with synthetic data 

GP was tested on the synthetic data to analyse the possibilities of capturing the module structure 
which is known beforehand. The results of the individual runs are shown in Table 4, 5 and 6. Each 
of the tables shows a correct estimation of GP in green and incorrect in red. All tables also show 
the number of correct objective functions for each model (right column) and the amount of correct 
estimated models for each objective function (bottom row). 
 
 
Table 5 – Effect of settings: stage 2; The right column shows the number of correct objective functions for each model. 
The lowest row shows the number of correct models for each objective function. The number in the lower right corner 
shows the amount of correct model hits. 2A contains the best six results of stage 1 with n=10 and generations=50. 2B is 
n=20, gen=50. 2C is n=10, gen=100. 2D is n=20 and gen=100. 2E is n=40, gen=50. 

 

A (n=10) Mai0 md0 Price Rel_d0 Shafii Vis_3 

# of correct 
objective 
functions 

MIV MIII MIV MIII MIV MIII MIV 3 

MV MVII MV MV MV MVII MV 4 

MVII MVII MX MVII MX MXI MVII 3 

MIX MIX MXI MX MIX MX MXI 2 

MXI MX MXI MX MX MX MX 1 

# of correct models 2 3 2 3 0 3 13 
        
        

B (n=20) Mai0 md0 Price Rel_d0 Shafii Vis_3  

MIV MIV MIV MIII MIII MIII MIV 3 

MV MVII MV MV MV MV MVII 4 

MVII MVII MVII MVII MVII MVII MVII 6 

MIX MXI MIX MX MIX MIX MX 3 

MXI MX MX MXI MXI MX MXI 3 

 2 4 3 4 3 3 19 

        
C (gen=100) Mai0 md0 Price Rel_d0 Shafii Vis_3  

MIV MIII MIII MIV MIII MIV MIII 2 

MV MV MV MV MV MV MV 6 

MVII MVII MVII MX MVII MVII MX 4 

MIX MX MIX MX MXI MIX MIX 3 

MXI MXI MX MXI MXI MX MX 3 

 3 3 3 3 4 2 18 

        
D (n=20,gen=100) Mai0 md0 Price Rel_d0  Shafii Vis_3  

MIV MIV MIV MIII MIII MIII MIII 2 

MV MV MV MV MV MV MV 6 

MVII MX MVII MVII MVII MVII MVII 5 

MIX MIX MXI MIX MIX MIX MXI 4 

MXI MX MX MX MXI MXI MX 2 

 3 3 3 4 4 2 19 
        
        

E (n=40) Mai0 md0 Price Rel_d0 Shafii  Vis_3  

MIV MIV MIV MIV MIII MIV MIII 4 

MV MV MV MV MV MV MV 6 

MVII MX MVII MVII MVII MVII MVII 5 

MIX MIX MX MIX MIX MIX MIX 5 

MXI MX MX MX MXI MXI MX 2 

 3 3 4 4 5 3 22 
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Table 6 - Effect of settings: stage 1; n=10 and gen=50 

 Borsanyi CED CED_new Dawson KG10 KG20 Mai0 md0 MM NS0 Price rel_d0 SUSE Vis_1 Vis_2 Vis_3 Shafii 

# of correct 
objective 

functions (17) 

MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI MI 17 

MII MII MII MII MII MIV MIII MII MII MII MII MII MII MVI MII MII*0.48 MII MII 13 

MIII MIII MXII MIII MIII 2*MIII MIII MIII MIII MIII MIV MIII MIII MV MIII MIII MIII MIII 13 

MIV MIII MIII MIII MIII MIII MIII MIII MIV MIII MIV MIII MIV MIII MIII MIII MIV MIII 4 

MV MV MII MII MVII MXI MXI MVII MV MVII MVII MV MV MVII MV MV MV MVII 7 

MVI MVI MII MXII MVI MVI MXII MVI MVI MVI MVI MVI MVI MII MVI MVI MVI MVI 13 

MVII MXI MXII MX MX MX MX MVII MX MXI MX MVII MX MXII MX MVII MVII MXI 4 

MVIII MVIII MII/MIII* MXII MVIII MXI MVIII MVIII MVIII MVIII MVIII MVIII MVIII MV MVIII MVIII MVIII MVIII 13 

MIX MX MXI MIX MX MIX MX MIX MXI MX MX MX MIX y=0.232 MX MX MXI MX 4 

MX MX MX* MX MX MXI MX MX MX MX MX MX MX MX MXI MX MX MX 15 

MXI MX MXII MXI MX MX MX MX MXI MX MXI MX MX MX MX MX MX MX 3 

MXII MXII MXI/MV* MX MXII MX MXII MXII MXII MII MXII MXII MXII y=0.571 MXII MXII MXII MXII 13 

# of correct 
models (12) 8 3 6 7 3 5 9 10 7 8 9 10 2 7 8 10 7  

 
  

Table 8 - Setting performance in stage 2 compared to stage 1 

Settings Improvement Running time 

n=20 46.2% 200% 

g=100 38.5% 200% 

n=20,g=100 46.2% 400% 

n=40 69.2% 400% 

 

Table 7 - Effect of settings: stage 2; Results of n=60, gen=50 

 Price Rel_d0 Shafii  

MIV MIII MIV MIII 1 

MV MV MV MV 3 

MVII MVII MVII MVII 3 

MIX MXI MXI MIX 1 

MXI MXI MXI MX 2 

 3 4 3 10 
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It is visible that in stage 1 (Table 5) md0, rel_d0 and Vis_3 perform the best, followed by Mai0 and 
Price. SUSE, CED and KG10 perform by far the worst of all objective functions. Based on these 
results is chosen to use md0, rel_d0, Vis_3, Mai0 and Price for stage 2. Shafii is chosen to be 
used for stage 2 as well, as the intermediate results looked interesting and this function was not 
used before in (Chadalawada, Havlicek and Babovic 2017b), so it is interesting to check its 
promising possibilities (Shafii and Tolson 2015). Furthermore, the worst performing model 
structures are selected to test the objective functions, as stage 1 indicates, models MIV, MV, MVII, 
MIX and MXI are more difficult to reproduce. 
 
In stage 2, the settings of n starting points and the amount of generations are changed as shown in 
Table 4 and 6. Increasing n, the number of random starts, increases the chance of a random start 
point near the global optimum. The amount of generations determines how long GP tries to 
improve the relation/model starting from a certain start point. It is visible in Table 5 that increasing 
n from 10 to 20 and the amount of generations from 50 to 100 both increases the amount of 
correct estimations, however the increase of n shows a better improvement. Until n is 40 the 
amount of correct estimations increases, when tried to make n is 60 (Table 4) this did not lead to 
extra improvement, hence it was even worse (10 instead of 13). This clearly shows that the GP 
method is subject to randomness. Nevertheless, based on these results, n is 40, generations is 50 
is the best setting for finding the correct model, therefore that setting is used in the test with the 
real data. 

Test with real data 

In Table 9 the performance indices of all the runs for each catchment is given. First of all is seen 
that for all (except some Shafii) runs the NS0, logNS0, R2, RMSE, rel_d0 and SUSE performance 
indices do not differ much, most of the values perform equally well, with high NSE values of ~85-
90. Furthermore, notice that the rel_d0 values are all small, which is a known to be a difficulty 
(Willmott, Robeson and Matsuura 2012), however most of the results are all similarly small. For the 
Kling-Gupta efficiency (KGE) there is a difference between objective functions, overall KG10 
(which is the KGE), Multi Madsen (MM) and the Shafii runs which show a low NSE, show a better 
performance. 
 
The objective functions are clearly distinguishable when looking at the volume balance error. 
Overall the KG10, MM and (not all) Shafii runs perform better than the others. The error is in some 
cases less than 1%. This is also visible in the performance of the FDC’s in Figure 5, compared with 
the other FDC’s in Figures 8-10 the shapes of the FDC’s of KG10, MM an Shafii are more in 
accordance with the observed data. From the FDC’s more things become clear, for each model the 
low flows are (slightly) underestimated. Also in accordance with the max flow error, the most 
extreme high peaks are not reproduced by the models, except of a few Shafii runs. 
 
The hydrographs in Figure 6 and 7 show us a couple of things. The high NS0 values of KG10 and 
MM are clearly visible in Figure 6 where the simulated flow is almost just as smooth as the 
measured flow, nevertheless in the quick responses in the summer of Figure 7 it is visible KG10 
and MM average out the little quick response fluctuations and the high peaks are not captured in 
the model. It is visible that Shafii is has a much spikier response, this however leads to non-
existing fluctuations as seen in Figure 6. Despite these fluctuations it looks like Shafii picks up the 
quick response behaviour as visible in Figure 7, however in some cases the timing seems slightly 
off and it’s the peaks are not perfect, as in accordance with the less high NS0 value from Table 9. 
This spikey behaviour can perhaps be explained by having a look at the model selection, “GP with 
Shafii” selects half of the time a parallel model instead of a simpler serial model as done by “GP 
with KG10 and MM”. Nevertheless Vis 3 and Price which often show MVII, also a parallel model, 
don’t show this spikey behaviour as seen in Figure 16. The runs with CED_new also result in 
parallel models, however the overall performance is less good, especially the volumetric error.
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Table 9 – Performance indices results for the three catchments Ourthe, Orientale and Occidentale. Showing all the runs with their different objective functions shown in the first column. 

Model performance Ourthe           

9a Model NS0 logNS0 R2 RMSE KGE rel_d0 SUSE Volumetric error Max flow error 

CED_new MXII 0.2348 0.1973 0.1190 0.0276 0.1405 1.09E-06 0.0375 0.0669 0.1640 

KG10 MV 0.0983 0.1115 0.0495 0.0179 0.0589 4.90E-07 0.0525 0.0273 0.2501 

MM MV 0.0972 0.1146 0.0489 0.0178 0.0544 4.95E-07 0.0535 0.0213 0.2458 

NS0 MV 0.1001 0.1168 0.0494 0.0180 0.0855 4.67E-07 0.0517 0.0634 0.2629 

Price MVII 0.1014 0.1143 0.0489 0.0181 0.1036 3.93E-07 0.0496 0.0841 0.2703 

rel_d0 MVI 0.1186 0.1240 0.0544 0.0196 0.1247 3.12E-07 0.0266 0.1121 0.2081 

Vis_3 MVII 0.1013 0.1156 0.0491 0.0181 0.0989 3.98E-07 0.0511 0.0801 0.2709 

Shafii (0.2) MIV 0.1213 0.1245 0.0591 0.0198 0.0813 4.81E-07 0.0378 0.0556 0.1895 

Shafii (0.05) MXI 0.3372 0.2600 0.1632 0.0331 0.1666 2.63E-06 0.0307 -0.0145 0.0499 

Shafii (n=80) MX 0.3395 0.3160 0.1732 0.0332 0.1747 4.64E-06 0.0298 -0.0068 0.0435 

Shafii (g=100) MXI 0.3643 0.2224 0.1789 0.0344 0.1797 1.98E-06 0.0190 -0.0023 -0.0133 

           

Model performance Orientale          

9b Model NS0 logNS0 R2 RMSE KGE rel_d0 SUSE Volumetric error  Max flow error  

CED_new MIX 0.2380 0.3178 0.1179 0.0310 0.1321 1.77E-06 0.0375 0.0594 0.1738 

KG10 MIII 0.1351 0.1266 0.0666 0.0233 0.0683 6.37E-07 0.0738 0.0081 0.3453 

MM MV 0.1309 0.1338 0.0661 0.0230 0.0688 6.91E-07 0.0830 0.0157 0.3782 

NS0 MVII 0.1257 0.1257 0.0619 0.0225 0.0911 5.31E-07 0.0765 0.0657 0.3782 

Price MIII 0.1308 0.1135 0.0660 0.0230 0.0710 5.02E-07 0.0858 0.0230 0.3981 

rel_d0 MIII 0.1855 0.1331 0.0827 0.0273 0.2467 4.40E-07 0.0963 0.1554 0.5319 

Vis_3 MIII 0.1370 0.1086 0.0690 0.0235 0.1094 4.01E-07 0.0795 0.0667 0.4243 

Shafii (0.2) MVI 0.2090 0.2168 0.0874 0.0290 0.1513 7.79E-07 0.0372 0.0527 0.1908 

Shafii (0.05) MXI 0.1564 0.1675 0.0787 0.0251 0.0866 9.95E-07 0.1242 -0.0334 0.4933 

Shafii (n=80) MVI 0.1332 0.1297 0.0681 0.0232 0.0759 6.83E-07 0.0954 0.0157 0.4208 

Shafii (g=100) MVI 0.1292 0.1153 0.0658 0.0228 0.0701 5.18E-07 0.0994 0.0077 0.4283 
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Model performance Occidentale          

9c Model NS0 logNS0 R2 RMSE KGE rel_d0 SUSE Volumetric error Max flow error 

CED_new MXII 0.1856 0.1532 0.0949 0.0258 0.1280 7.13E-07 0.0854 0.0619 0.3970 

KG10 MV 0.1405 0.1807 0.0711 0.0225 0.0752 1.00E-06 0.0745 0.0191 0.3598 

MM MIII 0.1352 0.1715 0.0689 0.0220 0.0760 1.02E-06 0.0847 0.0180 0.3961 

NS0 MV 0.1309 0.1690 0.0610 0.0217 0.1338 5.82E-07 0.0704 0.1127 0.3902 

Price MVII 0.1247 0.1372 0.0581 0.0212 0.1385 4.79E-07 0.0839 0.1113 0.4399 

rel_d0 MIII 0.1778 0.1507 0.0785 0.0253 0.2208 4.17E-07 0.1096 0.1583 0.5821 

Vis_3 MVII 0.1279 0.1368 0.0595 0.0214 0.1525 5.69E-07 0.0948 0.1114 0.4789 

Shafii (0.2) MIV 0.1589 0.2125 0.0715 0.0239 0.1303 7.10E-07 0.0294 0.1044 0.1996 

Shafii (0.05) MXI 0.1514 0.1703 0.0780 0.0233 0.0912 9.13E-07 0.1135 0.0189 0.4962 

Shafii (n=80) MV 0.1359 0.1419 0.0695 0.0221 0.0889 6.47E-07 0.1042 0.0342 0.4749 

Shafii (g=100) MIX 0.3048 0.2968 0.1510 0.0331 0.1521 2.78E-06 0.0226 0.0164 0.0482 
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Figure 5 - FDC's of the Ourthe, Orientale and Occidentale catchment, produced by the models with 
KG10, MM and Shafii (g100) as objective function. 
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Figure 6 – Hydrographs of the Ourthe catchment in autumn 2003-2004, based on the models with KG10, 
MM and Shafii (g100) as objective function. 
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Figure 7 – Hydrographs of the Ourthe catchment in summer 2008, based on the models with KG10, MM and 
Shafii (g100) as objective function. 
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Discussion and Conclusions 

The test with the synthetic data made it possible to make a shortlist of the better objective 
functions and showed the importance of the most important settings in the GP setup: n (amount of 
random starts) and the size of each generation. Also, the possibilities of the objective function 
Shafii which includes signatures became clearer. The results showed clearly that GP is subject to 
randomness in finding the global optimum, this must be taken into account, certainly when the 
observed catchment becomes more complex and therefore the search for the global optimum 
becomes more complex as well. Furthermore, the setup with a more complex objective function 
such as Shafii increases the subject to randomness, especially when Shafii is implemented as 
single objective function (Shafii and Tolson 2015). Also, it must be mentioned that it might be more 
useful to test the GP settings on small, well known/studied catchments, as these represent real 
natural patterns and complexity. Synthetic/random data does not contain naturally occurring 
patterns which are developed over time in real catchments (Savenije and Hrachowitz 2017). 
Therefore, the results from synthetic data can be misleading in choosing appropriate settings and 
objective functions, as real data is more complex. This points at the importance of (reliable) data, 
especially for a data-driven method as GP. 
 
From the results with the real data follows that KG10, MM and Shafii perform better, this is 
expected as these are multi objective functions (implemented as balanced multi objective function) 
(Chadalawada, Havlicek and Babovic 2017a) and (Chadalawada, Havlicek and Babovic 2017b). 
Multi objective functions in GP are useful as these objective functions are able to capture multiple 
characteristics of the flow in a catchment, however it is visible with Shafii that using (too) many 
objectives for optimization creates complexity in finding an optimum. Despite the difficulties in 
choosing an appropriate objective functions for the model search in GP it is clear that only looking 
at NSE values as indication of the performance of a model is not enough as also indicated in (de 
Boer-Euser, et al. 2017). This points at the importance to look for example at signatures of the flow 
like the FDC’s and also check the hydrographs visually. Also by looking at multiple criteria 
afterwards as in Table 9 it becomes easier to make a selection in choosing the better performing 
models, in this study a good distinction could be made based on the volumetric error. Furthermore, 
by having a look at the FDC’s and hydrographs important problems where shown. All models 
(slightly) underestimated the low flows and the really high peaks are (mostly) not reproduced, this 
became clearly visible in the FDC. The hydrographs showed that despite the high NSE values of 
GP with KG10 and MM the quick response runoff (Figure 7) was not captured in the model. These 
kinds of errors are not easy/possible to find by only looking at a statistical representation of the 
simulated flow. 
 
The problems faced with modelling the low flows and the quick runoff are similar as mentioned in 
(de Boer-Euser, et al. 2017). In (de Boer-Euser, et al. 2017) was pointed at the importance of a 
parallel model which can contain a very quick runoff component and a groundwater component. 
Also, as mentioned before, simple models (like model MV) performed better than more complex 
models, especially for high flows. The high performance of GP with KG10 and MM confirms this 
observation, they both perform well, but miss the low flows and clearly do not reproduce the quick 
runoff components. GP with Shafii looks to be able to find the importance for a parallel model, but 
is not able (in the given model runtime) to converge to an optimum which captures all the fast 
responses properly. This highlights as mentioned in (de Boer-Euser, et al. 2017) the difficulty in 
finding an appropriate model. As mentioned, in this study GP is limited by only twelve model 
structure options as seen in Figure 3, however when the model search space is expanded to only 
building blocks this not directly means a better solution is found. Expanding the model search 
space increases the (search) complexity and therefore GP will need (much) more time to converge 
to a global optimum. Expanding the model search space also increases the chance of equifinality 
(Savenije 2001), hence multiple solutions resulting in the same performance, and points at the 
importance of choosing a suitable model search space, rather than just an infinite, and the 
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importance of choosing and looking for a well performing objective function which robustly leads 
this complex search in the right direction.    
 
GP was able to find similar results as described in (de Boer-Euser, et al. 2017), however the used 
method of GP is still in the developing phase and in that light some main challenges, 
considerations and recommendations are given for future work. First of all, the ideal (theoretical) 
picture for GP in hydrology would be, insert the data and GP gives you the correct (“perfect”) 
model structure and the according parameters. As easy as it sounds, every modeller/scientist 
could confirm: “finding an appropriate (“perfect”) model is never easy”, this also holds for GP. 
Furthermore, this assumes a perfect model does exist, which unlikely. However GP can be really 
useful to look for patterns the modeller does not see on beforehand. The results from GP can be 
used to improve the understanding of the scientist in the behaviour of a catchment (Savenije 
2009). 
 
The main consideration for GP which has to be made is the balance between model search space, 
objective function, randomness and (computational) time. As mentioned the model search space 
has a limitation on both sides, giving not enough freedom narrows your search, giving all freedom 
is not an option either. First of all, giving complete freedom would lead to equations without 
physical meaning, therefore the building blocks of SUPERFLEX can be a solution. So instead of 
giving twelve model options, it would be possible to only give building blocks as prior, as 
(Chadalawada, Havlicek and Babovic 2017b) did. However, how do you make sure this search 
leads to an appropriate and useful model structure? Theoretically, if you perform an infinite amount 
of random starts/runs you should find the “perfect” model, nevertheless an infinite number of runs 
is unrealistic. The main challenge is: how to lead GP in an efficient way without removing the 
possibility of finding unknown patterns?  
 
The fitness of an equation from GP is now measured by an objective function. The objective 
function is responsible for the (natural) selection process in GP, which pushes the evolution of an 
equation/model in a certain direction. The choice of a suitable objective function is therefore very 
important and this is confirmed by the results from this study. KG10 and MM only find serial model 
structures and Shafii is able to find parallel model structures. It is clear that NSE gives a first 
indication, but from this study and (Chadalawada, Havlicek and Babovic 2017a) and 
(Chadalawada, Havlicek and Babovic 2017b) is clearly visible that multi objective functions perform 
better, because multi objective functions are able to look at multiple characteristics at the same 
time. Therefore, a study focussed on implementing a fully multi-objective method could be useful. 
Furthermore, it could be interesting to look at possibilities of fitness criteria which not only measure 
the performance at the end of each generation in an inherently lumped manner, but also during the 
evolving process within each generation with multi-layered objective functions that may be 
prescribed or learnt, similar to deep learning architectures have been proposed and shown to be 
useful in some cases (Albelwi and Mahmood 2017), (Sato, et al. 2013) and (Janocha and 
Czarnecki 2017). 
 
GP is based on randomness/random starts, which is an interesting feature, but at the same time 
not always easy. Because of the randomness it is non-trivial to reproduce the work which is done, 
of course “seeds” which remind the random starting points can be used, however the fact remains 
that reproduction of a complete study is still less easy. Next to that the search for the optimum 
model is influenced by the randomness in the fact that there is no guarantee in finding the global 
minimum, hence “perfect” model. So how do you ensure you have the global minimum? As 
mentioned an infinite number of runs is not desirable, so a compromise regarding runtime needs to 
be made. The running time is not only related to the randomness, the objective function and model 
search space are also influencing the running time. Therefore concluding, the main consideration 
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is how to balance between the model search space, objective function, randomness and 
(computational) time. 
 
A way to decrease the amount of running time would be to make sure independent function 
evaluations can be done in parallel on multi-core clusters/super computers which can dramatically 
reduce runtimes, hence widening search space. However this does not solve the main 
consideration as mentioned earlier. Furthermore, an important question is how to deal with (more) 
complex catchments? An interesting option would be to enable to possibility of semi-distributed GP 
conceptual models, however the main consideration mentioned would even be more important.  
 
GP has potential in becoming a useful tool to find patterns the modeller does not see beforehand 
and to create models which can be used to improve the understanding of the behaviour of a 
catchment. However, just as every modelling method, it is not realistic to think a “perfect” model 
structure will be found. Finally, hydrology remains an art and that is something which needs human 
intelligence/thoughts, as only statistical measurements on which a model/computer relies is still far 
beyond the human mind in the sense of observing, comparing and analysing modelling results. 
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Appendices 

A. Parameters including short description 

 
             Table 10 - Parameters with short description 

Parameter Unit Description 

Alpha_Qq_FR - Alpha/power factor for quick flow 

Beta_E_UR - Actual evaporation from unsaturated zone factor (Epot/E) 

Beta_Qq_UR - Non-linearity/power factor of the unsaturated zone 

Ce - Proportion potential evaporation is actual evaporation   

D_R - Split function into riparian reservoir 

D_S - Split function into slow reservoir 

K_Qb_UR 1/time Time dependency of the unsaturated reservoir 

K_Qq_FR 1/time Time dependency of the fast reservoir 

K_Qq_RR 1/time Time dependency of the riparian reservoir 

K_Qq_SR 1/time Time dependency of the slow reservoir 

m_E_FR - Smoothening factor fast reservoir 

m_QE_IR - Smoothening factor interception reservoir 

SiniFr_UR - Initial storage factor 

Smax_IR mm Maximum storage capacity of the interception reservoir 

Smax_UR mm Maximum storage capacity of the unsaturated reservoir 

Tlag time Lag time 
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B. Objective functions 

 
           Table 11 - Objective functions, performance category and source 

Objective function Performance measure Source 

Borsanyi Hydrological/Statistical (Borsányi, et al. 2016) 

CED Hydrological (Entropy) (Pechlivanidis, et al. 2014) 

CED_new Hydrological (Entropy) (Pechlivanidis, et al. 2014) 

Dawson Statistical (Dawson, et al. 2012) 

KG10 Hydrological (Gupta, et al. 2009) 

KG20 Hydrological (Kling, Fuchs and Paulin 2012) 

Mai0 Hydrological (Mai, et al. 2016) 

md0 Hydrological (Krause, Boyle and Bäse 2005) 

Multi Madsen Statistical (Madsen 2000) 

NS0 Hydrological (Nash and Sutcliffe 1970) 

Price Hydrological/Statistical (Price, et al. 2012) 

rel_d0 Statistical (Krause, Boyle and Bäse 2005) 

SUSE Entropy (Pechlivanidis, et al. 2014) 

Vis_1 Hydrological (Vis, et al. 2015) 

Vis_2 Hydrological (Vis, et al. 2015) 

Vis_3 Hydrological (Vis, et al. 2015) 

Shafii Signature/Hydrological (Shafii and Tolson 2015) 
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C. Flow durations curves (FDC’s) 

Ourthe 

  

Figure 8 - FDC's of the Ourthe catchment from the models with the other objective functions used. 
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Orientale 

  

Figure 9 - FDC's of the Orientale catchment from the models with the other objective functions used. 
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Occidentale 

  

Figure 10 - FDC's of the Occidentale catchment from the models with the other objective functions used. 
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FDC’s lowest 20% flow 

  

Figure 11 - FDC's of the lowest 20 % of the flow of the Ourthe, Orientale and Occidentale catchment, produced by the 
models with KG10, MM and Shafii (g100) as objective function. 
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D. Hydrographs of parts of 2003-2004 (autumn) and 2008 (summer) 

Orientale 2003-2004 

Figure 12 - Hydrographs of the Orientale catchment in autumn 2003-2004, based on the models with KG10, 
MM and Shafii (g100) as objective function. 
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Orientale 2008 

  

Figure 13 - Hydrographs of the Orientale catchment in summer 2008, based on the models with KG10, MM 

and Shafii (g100) as objective function. 
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Occidentale 2003-2004 

 

  

Figure 14 - Hydrographs of the Occidentale catchment in autumn 2003-2004, based on the models with 
KG10, MM and Shafii (g100) as objective function. 
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Occidentale 2008 

  

Figure 15 - Hydrographs of the Occidentale catchment in summer 2008, based on the models with KG10, 
MM and Shafii (g100) as objective function. 
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Ourthe – CED_new, Price and Vis 3; 2008 

 

 

 

Figure 16 – Hydrographs of the Ourthe catchment in summer 2008, based on the models with CED_new, 
Price and Vis 3 as objective function.  


