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The experimental realization of increasingly complex quantum states underscores the pressing need for
new methods of state learning and verification. In one such framework, quantum state tomography, the
aim is to learn the full quantum state from data obtained by measurements. Without prior assumptions on
the state, this task is prohibitively hard. Here, we present an efficient algorithm for learning states on n
fermion modes prepared by any number of Gaussian and at most t non-Gaussian gates. By Jordan-Wigner
mapping, this also includes n-qubit states prepared by nearest-neighbor matchgate circuits with at most
t SWAP gates. Our algorithm is based exclusively on single-copy measurements and produces a classical
representation of a state, guaranteed to be close in trace distance to the target state. The sample and time
complexity of our algorithm is poly(n, 2t); thus if t = O(log(n)), it is efficient. We also show that, if t
scales slightly more than logarithmically, any learning algorithm to solve the same task must be inefficient,
under common cryptographic assumptions. We also provide an efficient property-testing algorithm that,
given access to copies of a state, determines whether such a state is far or close to the set of states for which
our learning algorithm works. In addition to the outputs of quantum circuits, our tomography algorithm is
efficient for some physical target states, such as those arising in time dynamics and low-energy physics of
impurity models. Beyond tomography, our work sheds light on the structure of states prepared with few
non-Gaussian gates and offers an improved upper bound on their circuit complexity, enabling an efficient
circuit-compilation method.

DOI: 10.1103/PRXQuantum.6.010319

I. INTRODUCTION

Quantum state tomography is the task of reconstructing
a classical description of a quantum state from experi-
mental data [1,2]. Beyond its foundational significance in
quantum information theory, it stands as the gold stan-
dard for verification and benchmarking of quantum devices
[2]. However, in the absence of any prior assumptions
on the state to be learned, one encounters necessarily the
curse of dimensionality of the Hilbert space: learning the
classical description of a generic quantum state demands
resources that grow exponentially with the number of
qubits [1,3]. Simply storing and outputting the density
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matrix of a state already results in an exponential cost in
time. This raises the crucial question of identifying inter-
esting classes of quantum states that can be efficiently
learned using a number of state copies and time scaling
at most polynomially with the system size. Only a few
classes of states are currently known to be efficiently learn-
able—in particular, matrix-product states [2,4], finitely
correlated states [5], high-temperature Gibbs states [6],
states prepared by shallow quantum circuits [7–9], stabi-
lizer states [10], quantum phase states [11], and fermionic
Gaussian states [12,13]. The latter class of states comprises
those prepared by fermionic Gaussian circuits [14], also
referred to as free fermionic (noninteracting) evolutions or
fermionic linear-optics circuits [15,16]. Via Jordan-Wigner
mapping, such states on n fermionic modes can also be
viewed as n-qubit states, prepared by generalized match-
gate circuits [16–18]. Fermionic Gaussian states play a
key role in condensed-matter physics and quantum chem-
istry, via the Hartree-Fock method and in the context of
Fermi liquid and Bardeen-Cooper-Schrieffer theories [19–
22]. These states are also essential in understanding many
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exactly solvable spin models [23–25]. In quantum com-
puting, fermionic Gaussian states are primarily recognized
for their efficient classical simulability [15,17,18]. As in
the case of Clifford circuits, for which the introduction
of magic gates, such as T gates, allows universal quan-
tum computation to be reached [26], also for the case
of Gaussian circuits the inclusion of certain magic gates
[27–29], for example, SWAP gates [28], allows universal-
ity to be reached. If the number t of T gates in a Clifford
circuit is low, the resulting states can still be efficiently
simulated classically [30–32]; it has also been recently
demonstrated that such states, termed as t-doped stabi-
lizer states [33,34], are still efficiently learnable [35–37].
Similarly, in the past year, it has been shown that Gaus-
sian circuits with a few magic gates are also classically
simulable [38–40]. However, the learnability of such “t-
doped fermionic Gaussian states” remains unknown and
this motivates the core question of our work:

Can we efficiently learn states prepared by Gaussian
operations (e.g., matchgates) and a few magic gates?

We answer it by proposing a quantum algorithm of
polynomial time and sample complexity that uses only
single-copy measurements and learns a succint classical
description of a t-doped fermionic Gaussian state; the
learned state is guaranteed to be close to the true state
in trace distance. Our presentation is framed in the lan-
guage of qubits, but the results seamlessly translate into
the fermionic formalism. Our learning algorithm may also
be feasible to implement in near-term fermionic analog
quantum simulators [41,42], like cold atoms in optical lat-
tices [43], since we utilize only time evolutions of simple
few-body fermionic Hamiltonians [44]. The core of our
algorithm relies on a result of independent interest, elu-
cidating the structure of states in question. In particular,
for any t-doped fermionic Gaussian state |ψ〉 we show that
there exists a Gaussian operation G such that G† |ψ〉 =
|φ〉 ⊗ ∣∣0n−κt

〉

, where |φ〉 is supported on κt qubits and κ
is a small constant. Informally, this says that all the magic
(non-Gaussianity) of such states can be compressed to a
few qubits via a Gaussian operation. The proof of our
compression theorem is constructive, which has implica-
tions for the circuit complexity of |ψ〉 and for improved
preparation of doped fermionic Gaussian states.

The high-level idea of the learning algorithm is to
first learn a Gaussian unitary G, which compresses the
magic, apply it to the state, and then perform full-state
state tomography on the first few qubits alone. Our learn-
ing algorithm has a time complexity O(poly(n, 2t)), i.e.,
it scales polynomially in the system size n and expo-
nentially in the number of non-Gaussian gates t. Thus
it is efficient as long as the number of non-Gaussian
gates is t = O(log(n)). Furthermore, we establish that the
task of learning such states is computationally intractable
when the number of non-Gaussian gates scales slightly

more than logarithmically, under a common cryptogra-
phy assumption [46–49]. We show the latter result using
the theory of pseudorandom quantum states [50,51] and
qubit-to-fermion mappings [25]. In doing that, we bring
pseudorandom quantum states, so far explored only for
qubit-based systems, to the fermionic realm. Our learning
algorithm generalizes the one presented by Aaronson et al.
[12], which is tailored to learn only those states prepared
by particle-number conserving Gaussian gates and t = 0
(in our work we relax both of these assumptions).

Furthermore, our algorithm extends to all Gaussian-
compressible states, i.e., those states, which can be written
as G(σ ⊗ ∣∣0n−t

〉〈

0n−t
∣
∣)G†, where G is a Gaussian unitary

and σ is a possibly mixed quantum state supported on the
first t qubits. We also propose an efficient method to test
if a given state is close or far from the set of compress-
ible states, by showing an efficiently estimatable quantity
that lower bounds the distance to this set. Moreover, we
also demonstrate that our learning algorithm can learn
states that are close to being compressible—this feature is
particularly significant as it emphasizes the noise robust-
ness of the algorithm. Additionally, we note that ground
states of impurity models, a well-regarded class of quan-
tum states in condensed-matter physics [45,52–54], are
approximately compressible, making our algorithm suit-
able for efficient tomography of such physically relevant
states. We further provide numerical evidence showing
that states prepared by time evolutions governed by impu-
rity model Hamiltonians [45] remain approximately com-
pressible until constant evolution times, thus making them
learnable by our tomography algorithm.

It should be noted that the concept of magic compression
was first introduced in the context of Clifford+T circuits by
Leone et al. and Oliviero et al. [55,56] and later exploited
for learning t-doped stabilizer states [35,36]. Our strategy
of proving non-Gaussianity compression and applying it
to quantum state tomography was inspired by these earlier
works. It is an intriguing fact that a similar compression
theorem holds in our context, even though the mathemat-
ical structures of stabilizer states and fermionic Gaussian
states appear quite different.

See Fig. 1 for the visual summary of our results. In the
next sections we summarize our findings, stating more pre-
cisely our results and the essential ideas that underlie them.
In the Appendix, we provide the technical details.

A. Preliminaries

Our work can be applied to two distinct and naively sep-
arate settings: a system of n qubits with one-dimensional
(1D) matchgates circuits and their magic gates (e.g., SWAP
gates), or a native fermionic system of n modes with states
prepared by fermionic Gaussian evolutions and local non-
Gaussian evolutions. These two perspectives are math-
ematically related through the Jordan-Wigner mapping.

010319-2
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FIG. 1. A visual summary of our work. (a) We show that any t-doped state, i.e., a state prepared by an arbitrary number of Gaussian
layers and at most t local fermionic non-Gaussian gates (i.e., a t-doped matchgate circuit), can be equivalently prepared by a single
non-Gaussian unitary ut acting solely on O(t) fermionic modes (or qubits) and a global Gaussian unitary G. This shows that non-
Gaussianity can be compressed into a localized part of the system. (b) We provide a tomography algorithm to learn such t-compressible
states, i.e., states of the form G(|φ〉 ⊗ ∣∣0n−t

〉

), where G is an arbitrary Gaussian unitary and |φ〉 is an arbitrary quantum state supported
solely on t modes. The algorithm is efficient as long as t = O(log(n)). This also directly implies an algorithm to learn t-doped states.
Furthermore, up to common cryptographic assumptions, we prove that any tomography algorithm capable to learn a state prepared by
slightly more than log(n) gates must be computationally inefficient. Moreover, we show that physical states, such as ground states of
impurity models [45], are approximately O(log(n)) compressible and thus efficiently learnable by our algorithm. (c) Our results have
various applications, including learning physical states; efficient circuit compilation (implied by the non-Gaussianity compression);
benchmarking and verification of digital and analog quantum devices; and testing if the underlying unknown state is t compressible—of
the form for which our algorithm is efficient.

We will use it now as a definition of Majorana opera-
tors, thus directly aligning our discussion with the qubit
language. Majorana operators, denoted as γ2k−1 and γ2k
for k ∈ [n] := {1, . . . , n}, are defined in terms of stan-
dard Pauli operators as γ2k−1 := (

∏k−1
j =1 Zj )Xk and γ2k :=

(
∏k−1

j =1 Zj )Yk. Alternatively, they can be defined in the
fermionic language through their anticommutation rela-
tions [15,57]. A fermionic Gaussian unitary G is a uni-
tary that satisfies G†γμG =∑2n

ν=1 Oμ,νγν for any μ ∈ [2n],
where O ∈ O(2n) is an orthogonal matrix. The prod-
uct of two Gaussian unitaries is Gaussian. Notably, a
one-to-one correspondence exists between Gaussian uni-
taries up to a global phase and O(2n) orthogonal matri-
ces. Given an orthogonal matrix, it is known how to
exactly implement the associated Gaussian unitary using
O(n2) 2-local qubits or 2-local fermionic Gaussian opera-
tions [38,58,59]. A pure fermionic Gaussian state can be
defined as |ψ〉 = G |0n〉, where G is a Gaussian unitary
and |0n〉 denotes the zero computational basis state. Given
a quantum state ρ, its correlation matrix C(ρ) is defined

as the real antisymmetric 2n × 2n matrix with elements
[C(ρ)]j ,k := − i

2 Tr
(

γj γkρ
)

, for any j < k ∈ [2n]. We have
that C(GρG†) = OC(ρ)OT, for any Gaussian unitary G
associated with O ∈ O(2n). A well-known result in linear
algebra [60] asserts that any real antisymmetric matrix C
can be decomposed in the so-called “normal form”:

C = O
n
⊕

j =1

(

0 λj
−λj 0

)

OT, (1)

where O is an orthogonal matrix in O(2n) and λj ≥
0, for any j ∈ [n], are dubbed as “normal” eigenval-
ues, ordered in increasing order. We denote the trace
distance between two quantum states |ψ〉 and |φ〉 as
dtr(|ψ〉 , |φ〉) := 1

2‖|ψ〉〈ψ | − |φ〉〈φ|‖1. Given a matrix A,
its operator norm ‖A‖∞ is defined as its largest singular
value. We refer to the Appendix for more preliminaries.
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B. Structure of t-doped Gaussian states

States prepared by Gaussian circuits applied to a com-
putational basis state are efficiently simulable classically.
However, by incorporating “non-Gaussian”, or “magic”
operations, such as SWAP gates [17,28], one can render
Gaussian circuits universal for quantum computation. The
term “magic gate” comes from a loose parallel to Clifford
circuits, which are efficiently simulable per se but become
universal upon introduction of “magic” non-Clifford T
gates.

Here we consider non-Gaussian operations generated by
κ Majorana operators {γμ(r)}κr=1, where μ(1), . . . ,μ(κ) ∈
[2n]. Examples of such non-Gaussian operations for κ =
4 are the SWAP gate or a unitary exp(iθγ1γ5γ6γ8) for θ ∈
R; for κ = 3, an example is exp(θγ2γ6γ7). We refer to κ
as the maximum Majorana locality of the employed non-
Gaussian gates.

Definition 1 (t-doped fermionic Gaussian state). A state
|ψ〉 is a (t, κ)-doped Gaussian state if it can be prepared
by Gaussian unitaries {Gi}t

i=0 and t non-Gaussian κ-local
gates {Wi}t

i=1, specifically

|ψ〉 = GtWt · · · G1W1G0
∣
∣0n〉 , (2)

where κ local means that each non-Gaussian gate involves
at most κ Majorana operators. Informally, a state is t-
doped Gaussian if it is (t, κ)-doped Gaussian for some
fixed constant κ .

Similarly, we denote the unitary Ut := GtWt · · · G1W1G0
as a t-doped Gaussian unitary. We now present our main
result concerning the structure of t-doped Gaussian states:
it is possible to compress all the “non-Gaussianity” of the
state into a localized region of the system via a Gaussian
operation. This motivates the following definition.

Definition 2 (t-compressible Gaussian state). Let t ∈
[n]. A state |ψ〉 is (Gaussian) t compressible if and only
if

|ψ〉 = G(|φ〉 ⊗ ∣∣0n−t〉), (3)

where G is a Gaussian operation, and |φ〉 is a state
supported solely on the first t qubits.

In the following, we assume κt ≤ n.

Theorem 1 (Magic compression in t-doped Gaus-
sian states). Any (t, κ)-doped Gaussian state is κt
compressible.

Proof. Let Ut |0n〉 be the t-doped state, where Ut =
(
∏t

t′=1 Gt′Wt′)G0 is the t-doped unitary. We rearrange
Ut as Ut = G̃tGaux

∏t
t′=1(G

†
auxW̃t′Gaux)G

†
aux, introducing a

Gaussian operation Gaux to be fixed and defining W̃t′ :=
G̃†

t′−1Wt′G̃t′−1 and G̃t′ := Gt′ ..G0. We require that Gaux

satisfies G†
aux |0n〉 = |0n〉, and that each G†

auxW̃t′Gaux is sup-
ported nontrivially only on the first κt qubits. The latter
is enforced by demanding that the Heisenberg evolution,
via G̃t′−1Gaux, of each Majorana operator involved in the
Hamiltonian generating Wt′ , has nontrivial support exclu-
sively on the first κt qubits. The existence of Gaux is shown
by demonstrating the existence of its associated orthogo-
nal matrix Oaux. The requirements on Gaux translate into
the demand that Oaux must be symplectic and such that it
sends κt fixed vectors to the span of the first 2κt canonical
basis vectors. The existence of such Oaux can be proven via
the isomorphism between real 2n × 2n symplectic orthog-
onal matrices and n × n unitaries [61]. Additional details
are provided in the Appendix (see Theorem 5). �

This compressibility should not be confused with the
compressed quantum computation result described in
Ref. [62], which pertains to free-fermionic circuits (t = 0)
and demonstrates how such computations can be equiva-
lently expressed in logarithmic space.

Note that while a (t, κ)-doped Gaussian state is a κt-
compressible Gaussian state, the reverse implication does
not hold due to circuit complexity arguments. Similarly to
Theorem 1, we show that any t-doped Gaussian unitary can
be represented as

Ut = GA(ut ⊗ I)GB, (4)

where GA and GB denote Gaussian operations, and ut is
a unitary operator supported on �κt/2� qubits (with �·�
denoting rounding to the next integer), as elaborated in the
Appendix (Theorem 4). Notably, if Ut is a particle-number-
conserving unitary [15], then GA, ut, and GB can also be
chosen as such.

Our proof of Theorem 1 is constructive, i.e., given a
classical description of the circuit that prepares |ψ〉, it pro-
vides an efficient procedure for finding the compressing
Gaussian circuit G and the state |φ〉. The decomposi-
tion of t-doped Gaussian states (unitaries) reveals also
that they have a circuit complexity, i.e., number of local
gates needed for implementing the state (unitary), upper
bounded by O(n2 + t3) (Proposition 3 in the Appendix).
This provides a better circuit complexity upper bound
compared to the naive O(n2t) implied by Definition 1 for
κ = O(1). Hence, our construction reveals also a method
to compress the circuit depth (and not only the magic),
which might be used in practice for efficient circuit compi-
lation of doped matchgate circuits. Remarkably, analogous
results hold for the Clifford+T gate circuits [56].

In the context of Clifford operations, the notions of sta-
bilizer dimension [35] and stabilizer nullity [63,64] were
introduced to quantify the degree of stabilizerness of a
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quantum state, and their connection to magic monotones
was investigated. Analogously, we define the Gaussian
dimension of a state as the number of normal eigenval-
ues of its correlation matrix that are equal to one, and the
Gaussian nullity as the number of normal eigenvalues of
its correlation matrix that are strictly less than one.

Using Eq. (1), we can show that a state has a Gaussian
nullity of at most t (a Gaussian dimension of at least n −
t) if and only if it is t compressible. Consequently, (t, κ)-
doped Gaussian states have a Gaussian nullity of at most
κt (a Gaussian dimension of at least n − κt).

C. Learning algorithm

We present an algorithm for learning t-compressible
Gaussian states, or, equivalently, quantum states with at
least n − t Gaussian dimension. Note that this is a broader
class than t-doped Gaussian states; as an example unrelated
to t-doped states, ground states of quantum impurity mod-
els are approximately of this form (as shown in Ref. [45]
and elaborated further in the subsequent subsections). By
definition, any t-compressible Gaussian state |ψ〉 can be
factorized as G† |ψ〉 = |φ〉 ⊗ ∣∣0n−t

〉

, where G† is Gaussian
and |φ〉 is a state on t qubits. At a high level, our strat-
egy is to learn the Gaussian unitary G†, apply it to |ψ〉,
and then perform full-state tomography solely on the first t
qubits to learn |φ〉. Since full-state tomography algorithms
scale exponentially with the number of qubits [65], for
t = O(log(n)) our algorithm will be efficient.

To delve deeper, the initial phase of our learning
algorithm entails estimating the correlation matrix entries
through single-copy measurements. This can be achieved
using different methods outlined in the Appendix, such
as measurements in the Pauli basis, global Clifford Gaus-
sian measurements [66], or fermionic classical shadows

[58,67,68]. The estimated correlation matrix Ĉ is subse-
quently transformed into its normal form in Eq. (1) to
yield the corresponding orthogonal matrix Ô associated
with the Gaussian operation Ĝ. (We use the hat symbol
to denote the objects estimated from the measurements.)
Applying the inverse operation Ĝ† to |ψ〉 results in a
state that exhibits high fidelity with a state, which is ten-
sor product of an arbitrary state on the first t qubits and
the zero computational basis state on the remaining n − t
qubits. Consequently, the learning algorithm queries mul-
tiple copies of |ψ〉 (one at a time), applies Ĝ† to them
and measures the last n − t qubits. If the outcome of such
measurements correspond to

∣
∣0n−t

〉

, then the algorithm pro-
ceeds with a step of pure-state tomography [65,69] on the
t-qubits state. The state tomography routine performed in
the compressed space yields the state |φ̂〉. The final out-
put of the learning algorithm is |ψ̂〉 := Ĝ(|φ̂〉 ⊗ ∣∣0n−t

〉

),
and an efficient classical representation can be provided
if t = O(log(n)). Namely, to specify |ψ̂〉, it is sufficient
to provide the complete description of the t-qubit state |φ̂〉
and the orthogonal matrix Ô ∈ O(2n) associated with Ĝ.

We now present a theorem, which formalizes and proves
the efficiency of the discussed procedure, outlined in
Algorithm 1, to learn doped Gaussian states or, more
generally, t-compressible Gaussian states.

Theorem 2 (Learning algorithm guarantees). Let |ψ〉
be a t-compressible Gaussian state, and ε, δ ∈ (0, 1]. Uti-
lizing O(poly

(

n, 2t
))

single-copy measurements and com-
putational time, Algorithm 1 outputs a classical repre-
sentation of a state |ψ̂〉, such that dtr(|ψ̂〉, |ψ〉) ≤ ε with
probability ≥ 1 − δ.

ALGORITHM 1. Learning algorithm for t-compressible fermionic Gaussian states.
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Proof sketch. Using O(poly(n)) copies of |ψ〉, we esti-
mate its correlation matrix C, yielding Ĉ such that ‖Ĉ −
C‖∞ ≤ εc with a failure probability ≤ δ/3, where εc :=
ε2/(4(n − t)). Expressing Ĉ in its normal form [Eq. (1)],
we find the Gaussian unitary Ĝ associated to Ô ∈ O(2n).
Let
∣
∣ψ ′〉 := Ĝ† |ψ〉. As detailed in the Appendix, we derive

〈

ψ ′∣∣ Zk
∣
∣ψ ′〉 ≥ 1 − 2εc for each k ∈ {t + 1, . . . , n} and, by

quantum union bound [70] we get dtr(|φ〉 ⊗ ∣∣0n−t
〉

,
∣
∣ψ ′〉) ≤

ε/2, where |φ〉 ⊗ ∣∣0n−t
〉

corresponds to the state obtained
by measuring the last n − t qubits of Ĝ† |ψ〉 in the com-
putational basis and obtaining the outcome corresponding
to
∣
∣0n−t

〉

, an event that occurs with probability ≥ 1 − ε2/4.
By querying �2Ntom(t, ε/2, δ/3)+ 24 log(3/δ)� copies of
|ψ〉, and, for each copy, applying Ĝ† and measuring
the last n − t qubits, we get the outcome

∣
∣0n−t

〉

at least
Ntom(t, ε/2, δ/3) times, with failure probability ≤ δ/3 due
to Chernoff bound. Here, Ntom(t, ε/2, δ/3) is the number
of copies sufficient for full-state tomography [65] of a
t-qubit state with an ε/2 accuracy and a failure probabil-
ity ≤ δ/3. Performing the t-qubit tomography on all the
copies where the outcome

∣
∣0n−t

〉

occurred yields |φ̂〉 such
that dtr(|φ̂〉, |φ〉) ≤ ε/2, with a failure probability ≤ δ/3.
Defining |ψ̂〉 := Ĝ(|φ̂〉 ⊗ ∣∣0n−t

〉

), we have dtr(|ψ̂〉, |ψ〉) ≤
dtr(|φ̂〉, |φ〉)+ dtr(|φ〉 ⊗ ∣∣0n−t

〉

, Ĝ† |ψ〉). This is ≤ ε if the
algorithm does not fail, an event occurring with probability
≥ 1 − δ due to the union bound. �

Theorem 2 is restated and rigorously proven in the
Appendix as Theorem 6. The sample, time and memory
complexity of our algorithm for learning t-compressible
states exhibits a polynomial dependence on n and an
exponential dependence on t: specifically, the poly(n) con-
tribution [specifically an O(n5) scaling] arises solely from
estimating and postprocessing the correlation matrix, while
the exp(t) contribution arises from full-state tomography
on t qubits. It is easy to see that the dependence on t is
optimal, because learning t-compressible states is at least
as hard as learning an arbitrary pure state on t qubits and
thus requires at least exp(
(t)) copies of the state [3].

However, if we focus on the subclass of t-doped
Gaussian states, a classical shadow-tomography-based
algorithm presented in Refs. [71,72] achievesO(poly(n, t))
sample complexity. Specifically, this algorithm requires a
number of copies that scales polynomially with the circuit
complexity of the state, and t-doped states have a circuit
complexity O(poly(n, t)). However, the time complexity
of the algorithm in Refs. [71,72] scales exponentially with
the number of qubits n, while our algorithm’s time com-
plexity scales only polynomially (although always expo-
nentially in t). This observation also applies to t-doped
stabilizer states learning analyzed in recent works [35,36].

In our Appendix, we extend our learning algorithm to
handle mixed states. Specifically, we provide an algorithm

to learn, in trace distance, possibly mixed quantum states
that have at least n − t normal eigenvalues of their corre-
lation matrix equal to one. In the more general mixed-state
scenario, the algorithm in Table 1 becomes significantly
simpler. Notably, measuring the last n − t qubits and post-
selecting on the outcome

∣
∣0n−t

〉

is not necessary, as we do
not require the output state to be pure. Thus, it is sufficient
to perform full state tomography [1] on the first t qubits
right after the Gaussian operation Ĝ† is applied to the state
|ψ〉. More details are given in Sec. F of the Appendix.

Additionally, in Sec. F, we analyze the noise robustness
of our algorithm, which is crucial for practical experi-
mental scenarios where the unknown state may not be
exactly t compressible, but approximately so. Specifically,
our analysis reveals that our algorithm allows for efficient
tomography of states that are possibly mixed and (suffi-
ciently) approximately compressible, which are the types
of states one would expect to get when running a t-doped
matchgate circuit on a noisy quantum device.

D. Time-complexity lower bound

It is natural to wonder whether there exist algorithms
for learning t-doped Gaussian states with time-complexity
scaling in t as O(poly(t)). We establish that the answer
is no (see Proposition 8 in the Appendix), relying on
a widely believed cryptography assumption. Specifically,
we show that certain families of pseudorandom quantum
states [50,51] can be generated using a polynomial num-
ber of local non-Gaussian gates. This implies that if there
were an algorithm with polynomial time complexity in t
for learning t-doped Gaussian states, quantum computers
could solve [73] in polynomial time, which is considered
unlikely [46–48,73–75]. While this rules out the existence
of efficient algorithms if t scales polynomially with the
number of qubits n, it does not yet preclude the existence of
efficient algorithms if t grows slightly more than logarith-
mically, for example, t = O((log n)2). However, we can
rule out this possibility by making the stronger assumption
that quantum computers cannot solve in subexponential
time [46–49]. This implies that the time complexity of
any algorithm to learn Õ(t)-doped Gaussian states [where
Õ(·) hides polylogarithmic factors] would necessarily be
exp(
(t)). In other words, the following holds.

Theorem 3 (Time-complexity lower bound, informal).
Assuming that quantum computers cannot solve in subex-
ponential time, then there is no time-efficient algorithm to
learn the ω̃(log(n))-doped Gaussian state, which outputs
a description of an efficiently preparable quantum state.
Here, ω̃(log(n)) := ω(log(n)polyloglog(n)).

This would prove that the time complexity in t of our
algorithm is essentially optimal, because our algorithm is
efficient as long as t = O(log(n)). We show Theorem 3
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by efficiently encoding the pseudorandom quantum state
constructions [72] via a specific qubits-to-fermions map-
ping [25] into other states produced by the same number
of gates, all of which are now local non-Gaussian. Cru-
cially for our construction, this mapping sends local qubit
operations to local fermionic operations with only a con-
stant overhead in the number of qubits. We refer the reader
to the Appendix (Proposition 9) for more details.

E. Testing Gaussian dimension

We have introduced an algorithm for efficiently learning
states with a high Gaussian dimension (or, equivalently,
small Gaussian nullity), specifically those promised to be t
compressible with a small t. A natural question arises: how
can we test the Gaussian dimension of a state? In other
words, how can we determine if the underlying state is
close or far from the set of t-compressible states? In our
Appendix, using ideas developed in Ref. [76] for the case
of Gaussian states (t = 0), we establish that the minimum-
trace distance between a quantum state |ψ〉 and the set of
t-compressible Gaussian states, denoted by Gt, satisfies

1 − λt+1

2
≤ min

|φt〉∈Gt
dtr(|ψ〉 , |φt〉) ≤

√
√
√
√

n
∑

k=t+1

1 − λk

2
, (5)

where {λk}n
k=1 represents the normal eigenvalues of the

correlation matrix of |ψ〉 ordered in increasing order.
These inequalities imply that |ψ〉 is close in trace dis-
tance to the set Gt if and only if λt+1 is close to one.
In particular, assuming that |ψ〉 is either a state in Gt or
min|φt〉∈Gt dtr(|ψ〉 , |φt〉) ≥ ε, we can determine with at least
1 − δ probability, which of the two cases is true by accu-
rately estimating λt+1. Specifically, O((n5/ε4) log

(

n2/δ
)

)

copies of the state suffice for this purpose. Notably, this
complexity scaling for testing is independent from t, in
contrast to learning. More details are provided in Sec. D
of the Appendix, along with a generalization to the mixed-
state scenario.

F. Numerical simulations: t-compressible states in
many-body physics

In the previous section, we introduced an algorithm to
learn quantum states that are t compressible. In Sec. F of
the Appendix, we extended the algorithm to learn states
that are not exactly t compressible but approximately.
This connects to the work of Bravyi and Gosset [45],
who demonstrated that ground states of so-called quantum
impurity models can be well approximated by compress-
ible states (see Ref. [45], Corollary 1). In this section we
discuss the learnability of such states and of the states
produced by the time dynamics of impurity models.

Quantum impurity models represent a bath of free
fermions coupled with a small localized interacting sub-
system referred to as an impurity. These models are of
paramount importance in condensed-matter physics and
have been extensively studied over the past half-century.
The exploration of such Hamiltonians gained significant
traction in the 1960s and 1970s, largely due to the pioneer-
ing work of Anderson, Kondo, and Wilson. Their focus
was on the behavior of magnetic impurities within met-
als [52–54,77], providing a theoretical basis for the Kondo
effect [53], which had been experimentally observed much
earlier. Quantum impurity models are also crucial com-
putational tools for analyzing the electronic structure of
strongly correlated materials, including transition metal
compounds and high-temperature superconductors. They
are integral to the dynamical mean field theory (DMFT)
[78], a method used to study these materials. In DMFT, the
impurity typically represents a cluster of atoms within a
unit cell, while the bath models the bulk of the material.

Formally, a quantum impurity model Hamiltonian is a
Hamiltonian Hm that can be expressed as Hm = Hfree +
Himp,m, where Hfree is a free-fermionic Hamiltonian (i.e., a
Hamiltonian quadratic in the Majorana operators Hfree =
i
∑2n

p ,q=1 hp ,qγpγq, with h being a real antisymmetric
matrix) and Himp,m is an arbitrary Hamiltonian, potentially
nonfree fermionic, acting nontrivially on at most m distinct
Majorana operators, where m is chosen to be O(1) relative
to the number of fermionic modes n.

Restating Corollary 1 from Ref. [45], Bravyi and Gosset
demonstrated that ground states |ψGS〉 of impurity models
can be approximated, for any ε > 0, by a t-compressible
Gaussian state with t := O(log

(

ε−1
)

). Specifically, there
exists a Gaussian unitary G and a state |φ〉 supported
on t modes such that ‖ψGS − ψt‖1 ≤ ε, where |ψt〉 :=
G(|φ〉 ⊗ ∣∣0n−t

〉

) [79]. Thus, our algorithm can effectively
be applied to learn ground states of impurity models with
arbitrary ε precision, with a sample complexity scaling as
poly(n, ε−1).

An intriguing question arises: can evolutions governed
by such Hamiltonians maintain approximate t compress-
ibility up to certain evolution times, thus making our
algorithm applicable to such nonequilibrium quantum
states? To explore this, we conducted numerical sim-
ulations with an interacting impurity embedded in the
background of two distinct free models: the 1D transverse-
field Ising model (TFIM) and an expander graph
model. The respective Hamiltonians are HTFIM = wZ1Z2 +
∑n

j =1(gXj Xmod(j +1,n) + Zj ), where w and g are real num-
bers, and Hgraph = wγ1γ2γ3γ4 +∑e∈G iveγe(1)γe(2), where
G represents a random four-regular graph, with coupling
constants ve uniformly set to 1 for simplicity. Without the
impurity term (i.e., for w = 0), both Hamiltonians become
quadratic in the Majorana operators (up to a long Z-
string term, corresponding to a fixed-parity contribution),
implying that the continuous evolution they realize is
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Gaussian. We focus on the cases g = w = 1, so that the
energy scales of the impurity term and the quadratic part
are comparable.

We consider the continuous evolution |ψ(T)〉 =
e−iHT |0n〉 with H = Hgraph and HTFIM and investigate
whether the resulting state |ψ(T)〉 is approximately t com-
pressible. To determine this, we check if there exists a t
such that

√
√
√
√

n
∑

m=t+1

1
2
(1 − λm) ≤ εtrunc, (6)

where {λj }n
j =1 are the normal eigenvalues of the corre-

lation matrix of |ψ(T)〉 ordered in increasing order, and
εtrunc is a fixed truncation error, which captures the approx-
imate t compressiblity of the underlying quantum state.
This implies that the state |ψ(T)〉 can be learned with our
algorithm up to an error ε + εtrunc in trace distance, where
ε is the accuracy chosen in the tomography algorithm (see
Theorem 9 of the Appendix for more details). This learning
error can be brought closer to εtrunc by decreasing ε at the
respective cost. In Fig. 2, we present the dynamics of the
minimal Gaussian nullity t that allows a compression error
below εtrunc = 0.05, as a function of the evolution time T.

For small evolution times T, as shown in Fig. 2 (left
panel), |ψ(T)〉 exhibits small approximate Gaussian nul-
lity. One might wonder if this approximate t compressibil-
ity of impurity dynamics scales well with the system size,
or whether, on the contrary, maintaining a fixed error in
trace distance becomes increasingly difficult for larger n.

Our numerical analysis suggests the former. For instance,
consider the maximal time T4 that allows maintaining
approximate t compressibility for t = 4 and a fixed εtrunc.
The question is whether T4 decreases to zero with increas-
ing n or stabilizes at a constant value. We find that T4
indeed saturates at a certain constant for both the TFIM
and the expander models (Fig. 2, right panel).

We also examine whether the compressibility shown in
Fig. 2 can be derived from our Theorem 1 for t-doped
circuits using the Trotter approximation. Our numerical
analysis rules out this gate-counting hypothesis, because
this hypothesis predicts high approximate nullity already
for minuscule times (vertical dotted lines in Fig. 2, left
panel). A detailed explanation of this analysis is given
in Sec. G of the Appendix. We do not have an analyti-
cal derivation of approximate t compressibility of impurity
dynamics as observed in our numerical investigation, and
leave this question open for future work. The failure of
explanation via Trotter expansion highlights the difficulty
of this problem. For the TFIM model, the approximate t
compressibility may be derivable using 1D Lieb-Robinson
bounds. However, such a derivation should not work for
the expander graph model—and at present we do not know
how this case could be analytically handled. This open
problem also connects to the open questions about the clas-
sical simulation of impurity dynamics, raised earlier by
Bravyi and Gosset [45].

To run the simulations of |ψ(T)〉 = e−iHT |0n〉 presented
in Fig. 2, we employed sparse matrix multiplication rou-
tines. More details about our numerical simulations are
given in Sec. G of the Appendix.
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FIG. 2. (Left) Dynamics of the Gaussian nullity in an impurity model with expander graph and 1D TFIM backgrounds as defined in
the text. The admissible deviation from t compressibility, εtrunc, is set to 0.05; system size is n = 14. The deviation from t compress-
ibility is upper bounded using the normal eigenvalues of the correlation matrix in the state |ψ(T)〉, as in Eq. (6). Vertical dotted lines
show times T, which are too large to derive t < 14 nullity from Trotter approximation and Theorem 1. The time axis is resolved up to
�T = 0.05. (Right) Maximal evolution time T4 allowing approximate t = 4 compression (up to εtrunc = 0.05). One observes that T4
saturates at a constant value as a function of n for both models.
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G. Conclusions

In this work, we have presented an algorithm for effi-
ciently learning t-doped fermionic Gaussian states, with
sample and time complexity scaling as O(poly(n, 2t)).
Additionally, we have established, under standard cryp-
tography assumptions, that there is no learning algorithm
for such class of states with a polynomial dependence
on t in the time complexity. Crucially, our algorithm uti-
lizes solely experimentally feasible single-copy measure-
ments. Its working idea is based on a theorem that we
prove, which says that all the non-Gaussianity in a t-doped
fermionic Gaussian state can be efficiently compressed
onto O(t) qubits through a Gaussian operation. This obser-
vation carries potential significance beyond the scope of
learning, particularly within the context of quantum many-
body theory or within efficient circuit compilation. Thus,
the results presented in this work, besides being directly
relevant to device verification and benchmarking, among
other tasks, hold fundamental significance for quantum
information theory, as they reveal more about the structure
of Gaussian states with fermionic magic gates. Addition-
ally, we introduce a variety of useful analytical techniques,
such as new ways to leverage pseudorandom quantum
states [50,51] in the context of fermionic systems, which
are likely to find applications in future research. We also
observe that the results presented in our study for fermionic
systems have already found application in continuous-
variable systems and bosonic Gaussian states [80], where
the concept of t-doped bosonic Gaussian states is explored,
highlighting the broader applicability of our ideas and
techniques to a different context.

Our work offers new directions for further research. An
open question arising from this work is whether t-doped
Gaussian unitaries can be efficiently learned in a scenario
where both the input states to the unitary and the measure-
ments at the end can be chosen. The specific case of t = 0
has already been addressed in Ref. [81], and it would be
interesting to generalize this to t > 0. Another promising
direction is the study of the resource theory of fermionic
non-Gaussianity, where the notion of Gaussian nullity we
introduced may play a significant role, similar to stabi-
lizer nullity in the Clifford context [63,64]. Finally, an
analytical justification of the approximate t compressibil-
ity of impurity-model dynamics remains an intriguing open
problem, which we intend to explore in future research.
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APPENDIX

In this Appendix, we provide a more comprehensive
level of detail and explanation for certain statements cov-
ered in the main text.

APPENDIX A: PRELIMINARIES

1. Notation and basics

In this work, we employ the following notation. L(Cd)

denotes the set of linear operators acting on the d-
dimensional complex vector space C

d. Additionally, we
use [d] to represent the set of integers from 1 to d, i.e.,
[d] := {1, . . . , d}. We denote with Mat(d, F) the set of
d × d matrices over the field F. Let v ∈ C

d be a vec-
tor, and let p ∈ [1, ∞]. The p-norm of v is denoted by
‖v‖p , defined as ‖v‖p := (

∑d
i=1 |vi|p)1/p . The Schatten p-

norm of a matrix A ∈ C
d, with p ∈ [1, ∞], is given by

‖A‖p := Tr((
√

A†A)p)1/p , corresponding to the p-norm of
the vector of singular values of A. The trace norm and the
Hilbert-Schmidt norm are important instances of Schat-
ten p-norms, denoted as ‖·‖1 and ‖·‖2, respectively. The
Hilbert-Schmidt norm is induced by the Hilbert-Schmidt
scalar product 〈A, B〉HS := Tr(A†B) for A, B ∈ L(Cd). The
infinity norm, ‖·‖∞, of a matrix is defined as its largest
singular value. This norm can be interpreted as the limit
of the Schatten p-norm of the matrix as p approaches
infinity. For any unitaries U and V, and a matrix A,
we have the unitary invariance property ‖UAV‖p = ‖A‖p .
Also, ‖A ⊗ B‖p = ‖A‖p‖B‖p for A, B ∈ L(Cd). We denote
with U(n) the group of n × n unitary matrices. We denote
O(2n) as the group of real orthogonal 2n × 2n matrices.
Sp(2n, R) denotes the group of symplectic matrices over
the real field, defined as

Sp(2n, R) := {S ∈ Mat(2n, R) : S
ST = 
}, (A1)

where 
 :=⊕n
i=1(

0 1
−1 0 ). The n-qubit Pauli operators are

represented as elements of the set {I , X , Y, Z}⊗n, where
I , X , Y, Z represent the standard single-qubit Pauli. Pauli
operators are traceless, Hermitian, they square to the
identity, and form an orthogonal basis with respect to
the Hilbert-Schmidt scalar product for the space of lin-
ear operators. We define the set of quantum states as
S(Cd) := {ρ ∈ L(Cd) : ρ ≥ 0, Tr(ρ) = 1}. The trace dis-
tance between two quantum states ρ, σ is defined as
dtr(ρ, σ) := 1

2‖ρ − σ‖1. For a function f (n), if there exists
a constant c and a specific input size n0 such that f (n) ≤
c · g(n) for all n ≥ n0, where g(n) is a well-defined func-
tion, then we express it as f (n) = O(g(n)). This notation
signifies the upper limit of how fast a function grows in
relation to g(n).
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For a function f (n), if there exists a constant c and a spe-
cific input size n0 such that f (n) ≥ c · g(n) for all n ≥ n0,
where g(n) is a well-defined function, then we express it
as f (n) = 
(g(n)). This notation signifies the lower limit
of how fast a function grows in relation to g(n).

For a function f (n), if for any constant c, there exists
an input size n0 such that f (n) > c · g(n) for all n ≥ n0,
where g(n) is a well-defined function, then we express it
as f (n) = ω(g(n)). This notation implies that the function
grows strictly faster than the provided lower bound.

2. Basics of probability theory

In this section, we present fundamental results from
probability theory useful in our work.

Lemma 1 (Union bound). Let A1, A2, . . . , AM be events
in a probability space. The probability of the union of
these events is bounded by the sum of their individual
probabilities:

Pr

(
M
⋃

i=1

Ai

)

≤
M
∑

i=1

Pr(Ai).

Lemma 2 (Chernoff bound). Consider a set of indepen-
dent and identically distributed random variables {Xi}N

i=1
with binary outcomes, taking values in {0, 1}. Define X :=
∑N

i=1 Xi and μ := E[X ]. For any α ∈ (0, 1), the probabil-
ity of X being less than (1 − α) times its expected value is
exponentially bounded as follows:

Pr [X ≤ (1 − α)μ] ≤ exp
(

−α
2μ

2

)

.

Lemma 3 (Hoeffding’s inequality). Let {Xi}N
i=1 be inde-

pendent and identically distributed (IID) random variables
with values in [a, b] ⊆ R. For any ε > 0, the probability
of the deviation of X̂ := (

∑N
i=1 Xi)/N from its expected

value is exponentially bounded as follows:

Pr

(∣
∣
∣
∣
∣

1
N

N
∑

i=1

Xi − E[X̂ ]

∣
∣
∣
∣
∣
≥ ε

)

≤ 2 exp
(

− 2Nε2

(b − a)2

)

.

Corollary 1. For any ε > 0 and δ > 0, let {Xi}N
i=1 be

IID random variables with values in [a, b] ⊆ R and X̂ :=
(
∑N

i=1 Xi)/N . According to Hoeffding’s inequality, a sam-
ple size N satisfying

N ≥ (b − a)2

2ε2 log
(

2
δ

)

suffices to guarantee that |1/N ∑N
i=1 Xi − E[X̂ ]| < ε with

a probability of at least 1 − δ.

3. Fermionic Gaussian states

In this section, we explore the definitions and essen-
tial properties of fermionic Gaussian states. We focus on
a system consisting of n qubits or n fermionic modes,
resulting in a Hilbert space dimension of 2n. More pre-
cisely, our work is approached from two perspectives:
examining a system of n qubits with 1D matchgate circuits
and their magic gates (e.g., SWAP gates), or an equivalent
native fermionic system of n modes with states prepared
by fermionic Gaussian evolutions and local non-Gaussian
evolutions. These perspectives are mathematically con-
nected through the Jordan-Wigner mapping, which we use
now for defining Majorana operators in terms of Pauli
operators.

Definition 3 (Majorana operators). For each k ∈ [n],
Majorana operators are defined as

γ2k−1 :=
⎛

⎝

k−1
∏

j =1

Zj

⎞

⎠Xk, γ2k :=
⎛

⎝

k−1
∏

j =1

Zj

⎞

⎠ Yk. (A2)

Majorana operators can also be defined directly in the
fermionic language through their anticommutation rela-
tions [15,57]. Majorana operators are Hermitian, traceless,
and their squares yield the identity, as deducible from their
definitions. Moreover, distinct Majorana operators exhibit
anticommutativity and orthogonality with respect to the
Hilbert-Schmidt inner product.

Definition 4 (Majorana ordered products). Given a set
S := {μ1, . . . ,μ|S|} ⊆ [2n] with 1 ≤ μ1 < · · · < μ|S| ≤
2n, we define the Majorana product operator as γS =
γμ1 · · · γμ|S| if S �= ∅, and γ∅ = I otherwise.

The 4n distinct ordered Majorana products are orthog-
onal to each other with respect the Hilbert-Schmidt inner
product, therefore they form a basis for the linear operators
L(C2n)

.

Definition 5 (Fermionic Gaussian unitary (FGU)). A
fermionic Gaussian unitary GO is a unitary operator sat-
isfying

G†
OγμGO =

2n
∑

ν=1

Oμ,νγν (A3)

for any μ ∈ [2n], where O ∈ O(2n) is an orthogonal
matrix.

Since the ordered products of Majorana operators γμ
withμ ∈ [2n] form a basis for the linear operators, it is suf-
ficient to specify how a unitary acts under conjugation on
the 2n Majorana operators γμ, where μ ∈ [2n], to uniquely
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determine the unitary up to a phase. Thus, there is a one-to-
one mapping between n-qubit fermionic Gaussian unitaries
(up to a global phase) and orthogonal matrices O(2n).
In particular, given O ∈ O(2n), it is possible to build the
associated unitary using at most O(n(n − 1)/2) two-qubit
FGU operations. For a more detailed explanation on how
to map an O(2n) matrix to a fermionic Gaussian unitary,
refer to Refs. [38,58,82]. From the previous definition, it
readily follows that G†

O = GOT . Moreover we have that
the product of two Gaussian unitaries is Gaussian, namely
(GO1GO2)

†γμGO1GO2 =∑2n
ν=1(O1O2)μ,νγν . To streamline

notation, we will frequently refer to fermionic Gaussian
unitaries GO simply as G when there is no need to spec-
ify the associated orthogonal matrix. Now, we define a
fermionic Gaussian state.

Definition 6 (Fermionic Gaussian state). An n-qubit
state |ψ〉 is a (pure) fermionic Gaussian state if it can
be expressed as |ψ〉 = G |0n〉, where G is a fermionic
Gaussian unitary.

It is noteworthy that any computational basis state |x〉
is a Gaussian state. This stems from the observation that
each Pauli-Xi gate acting on the ith qubit, where i ∈ [n], is
a fermionic Gaussian unitary. An additional useful iden-
tity is Zj = −iγ2j −1γ2j . Thus, the density matrix of a
pure fermionic Gaussian state associated to an orthogonal
matrix O ∈ O(2n) can be written as

GO
∣
∣0n〉〈0n

∣
∣G†

O = GO

⎛

⎝

n
∏

j =1

I − iγ2j −1γ2j

2

⎞

⎠

G†
O =

n
∏

j =1

(
I − iγ̃2j −1γ̃2j

2

)

, (A4)

where γ̃μ := GOγμG†
O =∑2n

ν=1 OT
μ,νγν for each μ ∈ [2n].

It can be shown that free-fermionic Hamiltonians, which
are quadratic Hamiltonians in the Majorana operators, i.e.,
Hfree := i

∑2n
p ,q=1 hp ,qγpγq, where h is a real antisymmet-

ric matrix, have fermionic Gaussian states as their ground
states. Moreover, it can be shown that their time evolutions
are fermionic Gaussian unitaries.

We now proceed to define the correlation matrix for any
(possibly non-Gaussian) state.

Definition 7 (Correlation matrix). For any n-qubit
quantum state ρ, its correlation matrix C(ρ) is defined as

[C(ρ)]j ,k := − i
2

Tr
([

γj , γk
]

ρ
)

, (A5)

where j , k ∈ [2n].

The correlation matrix of any state is real and antisym-
metric, possessing eigenvalues in pairs ±iλj for j ∈ [2n],

where λj are real numbers such that |λj | ≤ 1. The cor-
relation matrix of a quantum state, when evolved using
fermionic Gaussian unitaries, undergoes a transformation
through conjugation with the corresponding orthogonal
matrix, as articulated in the following lemma.

Lemma 4 (Transformation of the correlation matrix
under FGU). For a given n-qubit state ρ, we have

C(GOρG†
O) = OC(ρ)OT, (A6)

for any orthogonal matrix O ∈ O(2n) and associated
fermionic Gaussian unitary GO.

This result is readily verified through the definitions of
the correlation matrix and fermionic Gaussian unitary. The
state |x〉 is characterized by a correlation matrix of the
following form:

C(|x〉〈x|) =
n
⊕

j =1

(

0 (−1)xi

−(−1)xi 0

)

. (A7)

Hence, for a fermionic Gaussian state |ψ〉 := GO |0n〉, the
correlation matrix takes the form:

C(|ψ〉〈ψ |) = O
n
⊕

j =1

(

0 1
−1 0

)

OT. (A8)

In the subsequent discussion, we will use C(|ψ〉) to denote
the correlation matrix of a pure state |ψ〉. If the state
|ψ〉 is a pure Gaussian state, then each of the eigenval-
ues of C(|ψ〉) is one in absolute value. Moreover, it is
worth noting that every real antisymmetric matrix can be
decomposed in the following form.

Lemma 5 (Normal form of real antisymmetric matrices
[60]). Any real antisymmetric matrix C can be decom-
posed in the so-called “normal form”:

C = O
n
⊕

j =1

(

0 λj
−λj 0

)

OT, (A9)

where O is an orthogonal matrix in O(2n) and λj ≥ 0 ∈
R, for any j ∈ [n], are ordered in increasing order. The
eigenvalues of C are ±iλj where λj ∈ R for any j ∈ [n].

Definition 8 (Normal eigenvalues). Given a real-
antisymmetric matrix decomposed as in the previous
Lemma 5, {λj }n

j =1 are dubbed as the “normal eigenvalues”
of the matrix.
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4. Particle-number-preserving unitaries

In this section, we introduce the concept of particle-
number-preserving fermionic unitaries and establish def-
initions and facts useful for subsequent discussions. We
begin by defining creation and annihilation operators.

Definition 9 (Creation and annihilation operators). The
annihilation operators are defined as

aj := γ2j −1 + iγ2j

2
, (A10)

for any j ∈ [n]. The creation operators {a†
j }n

j =1 are defined
as the adjoints of the annihilation operators.

Definition 10 (Particle-number operator). The operator
N̂ :=∑n

i=1 a†
i ai is denoted as the particle number operator.

The computational basis forms a set of eigenstates for
the particle-number operator:

N̂ |x1, . . . , xn〉 = (x1 + · · · + xn) |x1, . . . , xn〉 , (A11)

where x1, . . . , xn ∈ {0, 1}.
Definition 11 (Particle-number-preserving unitaries).

A unitary U is said to be particle-number preserving if and
only if

U†N̂U = N̂ , (A12)

where N̂ :=∑n
i=1 a†

i ai is the particle-number operator.

Definition 12 (Symplectic group). The group of real
symplectic matrices, denoted as Sp(2n, R), is defined as

Sp(2n, R) := {S ∈ Mat(2n, R) : S
ST = 
}, (A13)

where 
 :=⊕n
i=1(

0 1
−1 0 ) =⊕n

i=1 iY.

It is often convenient to express 
 as 
 = In ⊗ iY,
where In denotes the n × n identity matrix. Note that 
 in
the literature is sometimes defined (see, e.g., Ref. [61]) as
iY ⊗ In = ( 0n In

−In 0n
), but the two definitions are equivalent

up to orthogonal transformation.
Now, we state an important proposition that will be

useful in the subsequent section.

Proposition 1 (U(n) is isomorphic to O(2n) ∩ Sp
(2n, R)). The set of unitaries U(n) is isomorphic to the set
of real symplectic orthogonal matrices O(2n) ∩ Sp(2n, R).

In particular, any orthogonal symplectic matrix O ∈
O(2n) ∩ Sp(2n, R) can be written as follows:

O = Re(u)⊗ I + Im(u)⊗ iY, (A14)

where u ∈ U(n) is an n × n unitary.

Proof. We refer the reader to Appendix B.1 of the book
[61] for a detailed proof. However, by inspection, it can
be verified that the matrix O defined in this way is both
orthogonal and symplectic. This follows from the unitarity
of u, which implies the relations:

Re(u)Re(u)t + Im(u)Im(u)t = I ,

Re(u)Im(u)t − Im(u)Re(u)t = 0. (A15)

�

We now present a lemma, which shows (some) equiva-
lent definitions of a particle-number-preserving fermionic
Gaussian unitary.

Lemma 6 (Particle-number-preserving Gaussian uni-
tary). Let G be a fermionic Gaussian unitary associated
with the orthogonal matrix O ∈ O(2n). The following
points are equivalents:

(1) G is particle-number-preserving,
(2) G |0n〉〈0n| G† = |0n〉〈0n|,
(3) O is symplectic orthogonal, i.e., O ∈ O(2n) ∩

Sp(2n, R).

Proof. If G is particle-number-preserving, then

G†N̂G
∣
∣0n〉 = N̂

∣
∣0n〉 = 0, (A16)

where the first equality uses Definition 11. This implies
N̂G |0n〉 = 0. Since the ground space corresponding to the
zero eigenvalue of the particle-number operator N̂ is one-
dimensional and spanned by |0n〉, it follows that G |0n〉 is
equal to |0n〉, up to a phase. Thus, (1), implies (2).

Noting that |0n〉〈0n| is a Gaussian state with a correla-
tion matrix 
 =⊕n

j =1 iY, we deduce that the correlation
matrix of G |0n〉〈0n| G† is O
OT. Therefore, the condition
G |0n〉〈0n| G† = |0n〉〈0n| is equivalent to O
OT = 
, i.e.,
O is a real symplectic orthogonal matrix. This proves that
(2) is equivalent to (3).

Now, let us assume that O ∈ O(2n) ∩ Sp(2n, R). Then,
we have for l ∈ [n]:

G†alG = G†
(
γ2l−1 + iγ2l

2

)

G =
2n
∑

j =1

(

O2l−1,j + iO2l,j
) γj

2

(A17)

=
n
∑

j =1

(

O2l−1,2j −1 + iO2l,2j −1
) γ2j −1

2

+
n
∑

j =1

(

O2l−1,2j + iO2l,2j
) γ2j

2
, (A18)
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=
n
∑

j =1

(

Re(u)l,j + iIm(u)l,j
) γ2j −1

2

+
n
∑

j =1

(−Im(u)l,j + iRe(u)l,j
) γ2j

2
, (A19)

=
n
∑

j =1

ul,j

(

γ2j −1 + iγ2j
)

2
=

n
∑

j =1

ul,j aj , (A20)

where in the fourth equality we used that O ∈ O(2n) ∩
Sp(2n, R), and so, because of Proposition 1, it can be writ-
ten as O = Re(u)⊗ I + Im(u)⊗ iY where u ∈ U(n) is a
n × n unitary. Similarly, we have G†a†

l G =∑n
j =1 u∗

l,j a†
j .

This implies

G†N̂G =
n
∑

l=1

G†a†
l alG =

n
∑

l,j ,k=1

u∗
l,j ul,ka†

j ak

=
n
∑

j =1

a†
j aj = N̂ , (A21)

where we used the unitarity of u in the last step. This
proves that (3) and implies (1). �

APPENDIX B: STRUCTURE OF t-DOPED
GAUSSIAN UNITARIES AND STATES

In this section, we analyze the concept of t-doped
fermionic Gaussian unitaries and states.

Definition 13 (t-doped fermionic Gaussian unitary). A
unitary Ut is a (t, κ)-doped fermionic Gaussian unitary
if it can be decomposed in terms of Gaussian unitaries
{Gi}t

i=0 and at most t non-Gaussian κ-local gates {Wi}t
i=1,

specifically

Ut = GtWt · · · G1W1G0. (B1)

Here κ local refers to the number of distinct Majorana
operators that generate each non-Gaussian gate. Infor-
mally, a unitary is t-doped Gaussian if it is (t, κ)-doped
Gaussian for some fixed constant κ .

In our work, we consider non-Gaussian gates Wt′ for
t′ ∈ [t], each generated by κ ≤ 2n in κ fixed Majo-
rana operators {γμ(t′,j )}κj =1, where μ(t′, 1), . . . ,μ(t′, κ) ∈
[2n]. For κ = 3, an example of a non-Gaussian gate is
exp(θγ1γ2γ3) = exp(−iY1θ), where θ ∈ R, and for κ = 4,
an example is the SWAP gate.

Definition 14 (t-doped fermionic Gaussian state). An
n-qubit state |ψ〉 is a (t, κ)-doped (informally, t-doped)
fermionic Gaussian state if it can be expressed as |ψ〉 =
Ut |0n〉, where Ut is a (t, κ)-doped (t-doped) fermionic
Gaussian unitary.

1. Compression of t-doped Gaussian unitaries and
states

We start by presenting a theorem, which shows how all
non-Gaussianity in a t-doped unitary can be “compressed”
or “moved” to the first few qubits.

Theorem 4 (Compression of non-Gaussianity in t-doped
unitaries). Any (t, κ)-doped fermionic Gaussian unitary
Ut can be expressed as

Ut = GA(ut ⊗ I)GB, (B2)

where GA, GB are Gaussian unitaries, and ut is a unitary
supported exclusively on �κt/2� qubits.

Proof. Let us denote M := κt. We express the t-doped
unitary as Ut = (

∏t
t′=1 Gt′Wt′)G0. Rearranging it, we have

Ut = G̃t

t
∏

t′=1

W̃t′ , (B3)

where W̃t′ := G̃†
t′−1Wt′G̃t′−1, and G̃t′ := Gt′ ..G0. Infor-

mally, the idea behind this rewriting is that Gaussian
operations act nicely under conjugation. Next, we rewrite

Ut = G̃tGaux

t
∏

t′=1

(G†
auxW̃t′Gaux)G†

aux, (B4)

by introducing a Gaussian operation Gaux that we fix
later and that will be responsible for moving all the
non-Gaussian gates to the first qubits. Now, we set

GA := G̃tGaux (B5)

ut :=
t
∏

t′=1

(G†
auxW̃t′Gaux) (B6)

GB := G†
aux. (B7)

Note that GA so defined is Gaussian because the product of
Gaussian unitaries is Gaussian, and GB is clearly Gaussian
because the adjoint of a Gaussian unitary is Gaussian. We
need to show that it is possible to choose Gaux such that ut
is supported only on the first �M/2� qubits.

More precisely, we will require that Gaux ensures that
each G†

auxW̃t′Gaux is generated by the first M Majorana
operators alone. We will achieve it by ensuring that the
Heisenberg evolution under G̃t′−1Gaux, of each Majorana
that generates Wt′ , has nontrivial support exclusively on
the first M Majorana operators. To find Gaux with the
desired property, we will find the associated orthogonal
matrix Oaux. Let {μ(t′, r)}t′∈[t],r∈[κ], with μ(t′, r) ∈ [2n], be
the set of indices of Majorana operators generating the
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t′th non-Gaussian gate (listed in increasing order). For
example, consider κ = 4 and the t′th non-Gaussian gate
Wt′ := exp(iγ2γ4γ6γ9 + iγ4). In this case, μ(t′, 3) = 6. For
each such Majorana operator γμ(t′,r), where r ∈ [2n], its
Heisenberg evolution yields

G†
auxG̃†

t′−1γμ(t′,r)G̃t′−1Gaux =
2n
∑

m=1

(Ot′−1Oaux)μ(t′,r),mγm,

(B8)

where Ot′−1 is the orthogonal matrix associated with G̃t′−1.
Our demand on the support of Heisenberg-evolved γμ(t′,r)
implies

(Ot′−1Oaux)μ(t′,r),m = (OT
auxOT

t′−1)m,μ(t′,r) = 0 (B9)

for any m ∈ {M + 1, . . . , 2n}.
Let us denote as {ei}2n

i=1 the canonical basis vectors of
R

2n. For easy notation, we now denote the unit norm vec-
tors {OT

t′−1eμ(t′,r)}t′∈[t],r∈[κ] with the set of vectors {vj }M
j =1

(remember that M = κt). We can prove the existence of
such Oaux by proving the existence of its transpose O :=
OT

aux. In such notation, the condition in Eq. (B9) reads as

eT
mOvj = 0, (B10)

for any j ∈ [M ] and m ∈ {M + 1, . . . , 2n}. In other words,
we need to prove the existence of an orthogonal matrix O
that maps any given real vectors v1, . . . , vM ∈ R

2n, where
M ≤ 2n, to the span of the first M canonical basis vec-
tors of R

2n. The existence of such a matrix is readily
established by selecting an orthonormal basis for W :=
Span(v1, . . . , vM ) and defining the orthogonal matrix that
maps this orthonormal basis to the first dim(W) ≤ M
canonical basis vectors. This concludes the proof. �

The subsequent Theorem 5 demonstrates the compres-
sion of t-doped Gaussian states.

Theorem 5 (Compression of non-Gaussianity in t-doped
Gaussian states). Any (t, κ)-doped fermionic Gaussian
state |ψ〉 can be represented as

|ψ〉 = G(|φ〉 ⊗ ∣∣0n−κt〉), (B11)

where G is a Gaussian unitary, and |φ〉 is a state supported
exclusively on κt qubits.

Proof. Let |ψ〉 := Ut |0n〉, where Ut =
(∏t

t′=1 Gt′Wt′
)

G0 is a t-doped fermionic Gaussian unitary. The proof
begins analogously to the one of the previous Theorem 4

and it uses the same notation. In particular, we have

Ut = G̃tGaux

t
∏

t′=1

(G†
auxW̃t′Gaux)G†

aux, (B12)

where W̃t′ := G̃†
t′−1Wt′G̃t′−1 and G̃t′ := Gt′ ..G0. We set, as

before

GA := G̃tGaux (B13)

ut :=
t
∏

t′=1

(G†
auxW̃t′Gaux) (B14)

GB := G†
aux. (B15)

However, now, we require that ut has support on the first
M qubits, where M := κt (while in the previous proof
of Theorem 4 we requested �M/2�), or, equivalently, we
request that the generators of G†

auxW̃t′Gaux for any t′ ∈ [t]
involve only the first 2M Majorana operators.

This time we also impose that G†
aux |0n〉 = |0n〉. This

implies that OT
aux ∈ Sp(2n, R) (where Oaux is the orthog-

onal matrix associated to Gaux), i.e., OT
aux must be a sym-

plectic orthogonal matrix, because of Lemma 6. We now
define O := OT

aux.
Similarly to the previous theorem and using the same

notation, we can ensure that ut is supported only on the first
M qubits by demonstrating the existence of an orthogonal,
but this time also symplectic, matrix O that satisfies

eT
mOvj = 0, (B16)

for any j ∈ [M ] with arbitrary v1, . . . , vM real vectors, and
m ∈ {2M + 1, . . . , 2n}. The existence of such O follows
from the subsequent Lemma 7, which crucially uses the
isomorphism between 2n × 2n symplectic orthogonal real
matrices and n × n unitaries [61]. �

Lemma 7 (Compression via symplectic orthogonal
transformations). Let {ei}2n

i=1 be the canonical basis of
R

2n. Let v1, . . . , vM ∈ R
2n be a set of unit-norm real vec-

tors, where M ≤ n. There exists an orthogonal symplectic
matrix O ∈ O(2n) ∩ Sp(2n, R) such that

eT
i Ovj = 0, (B17)

for all i ∈ {2M + 1, . . . , 2n} and j ∈ [M ], meaning that all
{Ovj }M

j =1 are exclusively supported on the span of the first
2M canonical basis vectors.

Proof. Orthogonal symplectic matrices O ∈ O(2n) ∩
Sp(2n, R) have a bijective correspondence with unitary
matrices U ∈ U(n) through a well-defined vector-space
mapping [61] (see Proposition 1). Specifically, for a 2n-
dimensional real vector w := (w1, . . . , w2n), there exists
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a bijective mapping to an n-dimensional complex vector
f(w) := (w1 − iw2, . . . , w2n−1 − iw2n). A unitary transfor-
mation U in this n-dimensional complex space corresponds
to an orthogonal symplectic transformation O in the corre-
sponding 2n-dimensional real space, and vice versa. Thus,
finding a unitary U that maps the span of f(v1), . . . , f(vM )

to the span of the first M canonical basis vectors of this
n-dimensional complex space implies the existence of
a symplectic orthogonal matrix O that maps v1, . . . , vM
to the span of the first 2M canonical basis vectors of
the 2n-dimensional real space. To establish the existence
of such a unitary, consider the complex vector subspace
W := Span(f(v1), . . . , f(vM )) of dimension at most M . By
selecting an orthonormal basis for this subspace, we can
construct a unitary matrix U that maps this basis to the
first dim(W) ≤ M canonical basis vectors. Hence, the exis-
tence of the required unitary matrix is confirmed, implying
the existence of a symplectic orthogonal matrix O that
maps v1, . . . , vM to the span of the first 2M canonical basis
vectors. This concludes our proof. �

It is noteworthy that the “compressed size” obtained for
t-doped unitaries, which is �κt/2�, is less than κt, which
we proved for t-doped Gaussian states.

2. Compression of t-doped Gaussian
particle-number-preserving unitaries

The subsequent Proposition 2 demonstrates that the
compression of t-doped Gaussian unitaries can also be
achieved in the particle-number-preserving case.

Proposition 2 (Particle-number-preserving t-doped uni-
taries). Let Ut be a t-doped fermionic Gaussian unitary,
as per Definition 13, where all the unitaries that com-
pose Ut are particle-number-preserving. Then Ut can be
decomposed as

Ut := GA(ut ⊗ I)GB, (B18)

where GA and GB are Gaussian unitaries, which preserve
the number of particles (see Definition 11) and ut is a
particle-number-preserving possibly non-Gaussian unitary
supported on κt qubits.

Proof. The proof of such proposition follows the same
lines as the one of Theorem 5. In fact, by inspecting the
proof, it readily follows that the so-defined GA is particle-
number-preserving. The fact that GB and ut are particle-
number-preserving follows from the condition G†

aux |0n〉 =
|0n〉, where GB := G†

aux and by Lemma 6. �

3. Circuit complexity of t-doped Gaussian unitaries
and states

The circuit complexity of a unitary (state) is defined
as the minimum number of O(1)-local gates needed for

implementing the unitary (state). We will consider locality
both in the qubit and in the fermionic sense; in the latter
case it refers to the number of distinct Majorana opera-
tors that generate each non-Gaussian gate. Our subject of
interest is the scaling of the complexity of a t-doped uni-
tary. Throughout this section, we assume κ = O(1) and
let t = t(n) change in some way with n. By Definition
13, a t-doped Gaussian unitary Ut can be written as Ut =
GtWt · · · G1W1G0, where {Gi}t

i=0 are Gaussian unitaries
and {Wi}t

i=1 are, possibly non-Gaussian, κ-local fermionic
gates. From this definition and using the fact that any
Gaussian unitary can be decomposed as the product of
≤ 2n(2n − 1)/2 (fermionic) 2-local gates [38,58,59], the
fermionic circuit complexity of t-doped Gaussian unitaries
is upper bounded by O(n2t). The same can be shown for
qubit circuit complexity (see below). But more impor-
tantly, we have proven earlier that a t-doped Gaussian
unitary can be decomposed as Ut = GA(ut ⊗ I)GB, where
GA, GB are Gaussians and ut is a unitary on �κt/2� qubits.
In the following, we show that such decomposition reveals
an improved upper bound on the circuit complexity of
t-doped Gaussian unitaries.

Proposition 3 (Circuit complexity of t-doped Gaus-
sian unitaries). The circuit complexity C(Ut) of a t-doped
Gaussian unitary Ut is (both in the qubit and fermionic
sense):

C(Ut) =
{

O(n2 + t3), if κt ≤ n
O(n2t), otherwise.

(B19)

Proof. Let us assume that κt ≤ n. Then, Ut can be writ-
ten as Ut = GA(ut ⊗ I)GB, where GA, GB are Gaussians
and ut is a unitary on �κt/2� qubits. In fact, ut is itself
a (t, κ)-doped Gaussian unitary on �κt/2� qubits. It is
not directly obvious, but will be shown momentarily; this
will imply the desired circuit complexity O(t3). We recall
our definitions used in the proof of Theorem 4. We have
G̃t′ := Gt′ ..G0 for t′ ∈ [t] and a Gaussian unitary Gaux, and
set

ut :=
t
∏

t′=1

(G†
auxG̃†

t′−1Wt′G̃t′−1Gaux) =
t
∏

t′=1

wt′ , (B20)

where we defined the unitaries wt′ := G†
auxG̃†

t′−1Wt′G̃t′−1
Gsaux, which act only on the first �κt/2� qubits (equiva-
lently, fermionic modes). We note that wt′ is generated by
κ Majorana operator superpositions of form

∑κt
i=1[ṽj ]iγi,

j ∈ [κ(t′ − 1)+ 1, κt′]; here ṽj := Ovj (cf. notation O and
vj from the proof of Theorem 4). Hence, for each of these
(nonlocal) non-Gaussian unitaries wt′ , we can find a Gaus-
sian operation gt′ on the first �κt/2� qubits whose associ-
ated orthogonal matrix rotates vectors ṽj into the span of
the first κ-basis vectors. As a result, we have wt′ = g†

t′w̃t′gt′ ,
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where w̃t′ is now a κ-local non-Gaussian unitary generated
by the first κ Majorana operators. By implication, it is also
a local qubit gate acting on the first �κ/2� qubits. From this
it follows that the circuit complexity of each wt′ scales as
that of a Gaussian gt′ . As gt′ acts on the first O(t) qubits
and fermionic modes, its circuit complexity is O(t2) both
in the qubit and the fermionic sense. Therefore, the circuit
complexity of ut is tO(t2) = O(t3). Moreover, the circuit
complexity (both qubit and fermionic) to implement GA
and GB is O(n2). Putting the above observations together,
it follows that the circuit complexity of Ut is O(n2 + t3).
As long as κt ≤ n, this upper bound is tighter than the one
whose proof follows from the t-doped definition, namely
O(n2t).

The qubit (and not only fermionic) circuit complexity
of O(n2t) for κt > n can be found in a similar way as the
complexity of O(t3) we showed for ut above. In particular,
consider any κ-local non-Gaussian fermionic unitary Wt′
which participates in Ut. Using auxilliary Gaussian rota-
tions, its generating Majorana operators can be mapped
to {γ1, .., γκ}, resulting in a unitary supported by the first
�κ/2� qubits alone. The asymptotic qubit complexity of Ut
is thus determined by that of remaining t Gaussian layers,
yielding O(n2t) as promised. �

This proposition reveals that t-doped fermion Gaussian
unitaries allow not only a “spatial compression for the
magic,” but also a compression of the circuit depth. Since
our proof of Theorem 4 is constructive, this provides a use-
ful method for compiling magic matchgate circuits, which
might be used in practice to reduce the circuit depth.

4. t-compressible Gaussian states

We now introduce the notion of t-compressible
fermionic Gaussian state, a class of states that includes
the one of t-doped Gaussian states. We now reiterate
Definition 2 for convenience. Throughout this section, we
assume that t ∈ [n].

Definition 15 (t-compressible Gaussian state). A state
|ψ〉 is a t-compressible (Gaussian) state if and only if it
can be represented as |ψ〉 = G(|φ〉 ⊗ ∣∣0n−t

〉

), where G is a
Gaussian operation, and |φ〉 is a pure state supported solely
on the first t qubits.

A t-doped Gaussian state is also a κt-compressible
Gaussian state because of Theorem 5. However, the
reverse is not true because of circuit complexity argu-
ments: t-doped Gaussian states exhibit a circuit complexity
of at most O(n2t). In contrast, a t-compressible state fea-
tures a circuit complexity of O(n2 + exp(t)), representing
the complexity needed for implementing a single Gaus-
sian operation and preparing a generic state supported on t
qubits.

In the subsequent proposition, we elucidate the structure
of the correlation matrix of any t-compressible state, such
as t-doped states.

Proposition 4 (Correlation matrix of a t-compressible
Gaussian state). The correlation matrix C(|ψ〉) of a t-
compressible Gaussian state |ψ〉 can be expressed as

C(|ψ〉) = O
n
⊕

j =1

(

0 λj
−λj 0

)

OT, (B21)

where λj ≤ 1 for j ∈ [t] and λj = 1 for j ∈ {t + 1, . . . , n},
and O ∈ O(2n) is an orthogonal matrix.

Proof. As per Definition 15, we represent |ψ〉 as |ψ〉 =
G(|φ〉 ⊗ ∣∣0n−t

〉

), where G is a Gaussian operation and |φ〉 is
a pure state supported solely on the first t qubits. Utilizing
Lemma 5, we can express the correlation matrix C(|ψ〉) as
follows:

C(|ψ〉) = QC(|φ〉 ⊗ ∣∣0n−t〉)QT (B22)

= Q
(

C(|φ〉)⊕ C(
∣
∣0n−t〉)

)

QT, (B23)

where Q ∈ O(2n) is the orthogonal matrix associated to the
Gaussian unitary G. By Eq. (A7), we have

C(
∣
∣0n−t〉) =

n−t
⊕

j =1

(

0 1
−1 0

)

. (B24)

Since C(|φ〉) is an antisymmetric real matrix, we can
decompose it into its normal form (Lemma 5):

C(|φ〉) = Ot

t
⊕

j =1

(

0 λj
−λj 0

)

OT
t . (B25)

The proof concludes by defining O := Q(Ot ⊕ I2n−2t). �

The previous proposition reveals that t-compressible
states exhibit at least n − t normal eigenvalues, which are
exactly one. This motivates the following definition, in
analogy to the stabilizer dimension and nullity defined in
the stabilizer case [35,63,64], which found applications in
resource theory of magic.

Definition 16 (Gaussian dimension and Gaussian nullity
of a state). The Gaussian dimension of a state is defined
as the number of the normal eigenvalues of its correlation
matrix, which are equal to one, while the Gaussian nullity
is defined as the number of the normal eigenvalues of its
correlation matrix, which are strictly less than one.

In the following, we show that this is also a sufficient
condition for a state to be Gaussian t compressible.
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Lemma 8 (Sufficient condition for t compressibility).
Let |ψ〉 be an n-qubit quantum state. If |ψ〉 has Gaussian
dimension ≥ n − t (or, equivalently, Gaussian nullity ≤ t),
then |ψ〉 is a t-compressible Gaussian state.

Proof. The correlation matrix of |ψ〉 can be writ-
ten in its normal form as C(|ψ〉) = O�OT, where � :=
⊕n

j =1

(
0 λj

−λj 0

)

, and O ∈ O(2n). The {λj }n
i=1 are the nor-

mal eigenvalues such that the last n − t are equal to
one. Consider the state

∣
∣ψ ′〉 := G†

O |ψ〉 where GO is
the Gaussian unitary associated with O. Then, C(ψ ′) =
OTC(|ψ〉)O = �. In particular,

Tr(
∣
∣ψ ′〉〈ψ ′∣∣Zk) = C(ψ ′)2k−1,2k = �2k−1,2k = 1, (B26)

for each k ∈ {t + 1, . . . , n}. Therefore,
∣
∣ψ ′〉 must be of the

form
∣
∣ψ ′〉 = |φ〉 ⊗ ∣∣0n−t

〉

, where |φ〉 is an arbitrary state
on the first t qubits. Therefore, we have |ψ〉 = GO(|φ〉 ⊗∣
∣0n−t

〉

), which is a t-compressible state. �

Hence, Proposition 4 and Lemma 8 prove the following.

Proposition 5 (Equivalence between t compressibily and
n − t Gaussian dimension). A n-qubit state is t compress-
ible if and only if its Gaussian dimension is at least n − t
(or, equivalently, its Gaussian nullity is at most t).

Note that Proposition 5 also proves that a quantum state
is a pure Gaussian state if and only if its Gaussian dimen-
sion is n. Furthermore, as a direct consequence of the proof
of Lemma 8, we establish that the Gaussian unitary associ-
ated with a t-compressible Gaussian state can be selected
as the Gaussian unitary corresponding to any orthogonal
matrix placing its correlation matrix in the normal form
(Lemma 5). This is summarized as follows.

Lemma 9. Every t-compressible Gaussian state |ψ〉 can
be written as |ψ〉 := GO(|φ〉 ⊗ ∣∣0n−t

〉

), where GO is cho-
sen as the Gaussian unitary associated with an orthogonal
matrix O ∈ O(2n) that arranges its correlation matrix in
the normal form described in Lemma 5, and |φ〉 is a state
supported on t qubits.

APPENDIX C: TOMOGRAPHY ALGORITHM

In this section, we present a detailed and rigorous anal-
ysis of the tomography algorithm for t-compressible states
outlined in the main text (Algorithm 1). Throughout this
section, we assume that t ∈ [n].

1. Useful lemmas and subroutines

Let us start with a lemma, which gives a sample com-
plexity upper bound to estimate the correlation matrix of
a state using single-qubit Pauli-basis measurements. We

recall that the correlation matrix of a state ρ is a real
antisymmetric matrix, defined as

[C(ρ)]j ,k = Tr(O(j ,k)ρ), (C1)

where O(j ,k) := −iγj γk, for j < k ∈ [2n] (and the other
elements are given by the antisymmetricity of the matrix).
Note that O(j ,k) are Pauli observables. Thus, we have a total
of M := n(2n − 1) Pauli expectation values to estimate.

Lemma 10 (Sample complexity for estimating the cor-
relation matrix by Pauli measurements). Let εc, δ > 0.
Assume to have access to N ≥ Nc(n, εc, δ), with

Nc(n, εc, δ) :=
⌈

8n3(2n − 1)
ε2

c
log
(

2n(2n − 1)
δ

)⌉

, (C2)

copies of an n-qubit state ρ. Utilizing only N single-copies
measurements in the Pauli basis, with probability ≥ 1 − δ,
we can construct an antisymmetric real matrix Ĉ such that
it satisfies

‖Ĉ − C(ρ)‖∞ ≤ εc. (C3)

Proof. Let ε > 0 an accuracy parameter to be fixed.
For each j < k ∈ [2n], we measure N ′ copies of ρ

in the Pauli basis corresponding to O(j ,k), obtain-
ing outcomes {X (j ,k)

m }N ′
m=1, where X (j ,k)

m ∈ {−1, +1}. Let
Ĉj ,k := 1/N ′∑N ′

m=1 X (j ,k)
m . Hoeffding’s inequality (specif-

ically Corollary 1) implies that N ′ ≥ (4/(2ε2)) log(2M/δ)

suffices to guarantee that, with probability at least 1 −
δ/M , we have |Ĉj ,k − Tr(O(j ,k)ρ)| < ε. By using the union
bound, we conclude that the probability that this holds for
any j < k ∈ [2n] is at least 1 − δ. More specifically,

Pr
(

∀ j < k ∈ [2n] : |Ĉj ,k − Tr(O(j ,k)ρ)| < ε
)

= 1 − Pr
(

∃ j < k ∈ [2n] : |Ĉj ,k − Tr(O(j ,k)ρ)| ≥ ε
)

(C4)

≥ 1 −
∑

j<k∈[2n]

Pr
(

|Ĉj ,k − Tr(O(j ,k)ρ)| ≥ ε
)

(C5)

≥ 1 − δ. (C6)

Therefore, the total number of measurements needed is
N = N ′M . Now, we can conclude by transferring the
error to the operator norm. Let A := Ĉ − C(ρ). For
the definition of the operator norm, we have ‖A‖∞ :=
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sup|ψ〉
√∣
∣〈ψ | A†A |ψ〉∣∣. Thus, we have

∣
∣〈ψ | A†A |ψ〉∣∣ ≤

2n
∑

i,j ,k=1

∣
∣〈ψ |i〉〈i| A† |j 〉〈j | A |k〉〈k|ψ〉∣∣

= 2nε2
2n
∑

i,k=1

|〈ψ |i〉| |〈k|ψ〉| ≤ 4n2ε2 (C7)

where, in the first step, we inserted the resolution of the
identity and applied the triangle inequality, in the second
step, we applied the upper bound on each matrix element,
and, in the last step, we used the Cauchy-Schwartz inequal-
ity. Hence, we have ‖Ĉ − C(ρ)‖∞ ≤ 2nε. We conclude by
choosing εc := ε/2n. �

While the sequential estimation of individual cor-
relation matrix entries by measurements in the Pauli
basis, as described above, may not be the most sample-
efficient approach, it might be convenient to adopt in an
experiment because of its easy implementation scheme.
However, instead of independently estimating each cor-
relation matrix entry, one could choose to simultaneously
measure mutually commuting observables [66] or uti-
lize the fermionic classical shadow protocol introduced in
Refs. [58,67,68]. This refinement would lead to a reduc-
tion in sample complexity by a factor of n, at the cost of
implementing a slightly more complicated measurement
scheme.

For completeness, we present now a lemma, which
gives a sample complexity upper bound for estimating the
correlation matrix, using a commuting observables mea-
surement scheme. The idea is to partition the observables
O(j ,k) := −iγj γk, for j < k ∈ [2n] into disjoint sets of com-
muting observables. Subsequently, one employs the fact
that commuting Pauli observables can be measured simul-
taneously via a Clifford measurement [66,83]. A crucial
observation is that two different Pauli observables of the
form −iγj γk commute if and only if they are associated
with different Majorana operators. Using this observation,
we can partition these M = (2n − 1)n observables into
2n − 1 disjoint sets, each containing n commuting Pauli
observables. We refer to Ref. [66] Appendix C for details
of such a partition, and we omit repeating the construc-
tion here. However, we point out that the required Clifford
transformations can be chosen to be Gaussian as well.

Lemma 11 (Sample complexity for estimating the cor-
relation matrix by grouping commuting observables). Let
εc, δ > 0. Assume to have access to N ≥ Nc(n, εc, δ), with

Nc(n, εc, δ) :=
⌈

8n2(2n − 1)
ε2

c
log
(

2n(2n − 1)
δ

)⌉

, (C8)

copies of an n-qubit state ρ. Utilizing N single-copy
(Gaussian) measurements, with probability ≥ 1 − δ, we
can construct an antisymmetric real matrix Ĉ such that it
satisfies

‖Ĉ − C(ρ)‖∞ ≤ εc. (C9)

Proof. For each of the 2n − 1 sets of commuting Pauli,
we find the Clifford U that allows us to simultaneously
measure such commuting Pauli in the given set, i.e., we
map each of the n Pauli to {Zk}n

k=1. Now this Clifford can
also be chosen to be Gaussian. Indeed, the key constraint
on U is that each of the different Paulis of the form −iγj γk
with j < k ∈ [2n] [where pairs (j , k) are nonoverlapping
since these Paulis commute] is mapped to {Zk}n

k=1 with
Zk := −iγ2k−1γ2k. This constraint can be satisfied by using
a Gaussian operation associated to the orthogonal matrix,
which is a permutation of the Majorana indices from the
commuting Paulis into the Majorana indices from the Z
Paulis. Consequently, we measure N ′ copies of UρU† in
the computational basis. Thus, for each O(j ,k), we obtain
outcomes {X (j ,k)

m }N ′
m=1, where X (j ,k)

m ∈ {−1, +1}. The unbi-
ased estimators are Ĉj ,k := 1/N ′∑N ′

m=1 X (j ,k)
m . As before,

Hoeffding’s inequality and union bound imply that N ′ ≥
(2/ε2) log(2M/δ) suffices to guarantee that the probability
of |Ĉj ,k − Tr(O(j ,k)ρ)| < ε holding for each j < k ∈ [2n]
is at least 1 − δ. Therefore, the total number of measure-
ments needed is N = N ′(2n − 1). We can conclude as in
the previous lemma. �

Lemma 12 (Perturbation bounds on the normal eigen-
values of correlation matrices). Let A and B be two
2n × 2n antisymmetric real matrices with normal eigen-
values {λk(A)}n

k=1 and {λk(B)}n
k=1, respectively, ordered in

increasing order. Then, we have

|λk(A)− λk(B)| ≤ ‖A − B‖∞, (C10)

for any k ∈ [n].

Proof. This follows from the fact that C := iA and D :=
iB are Hermitian matrices. Applying Weyl’s perturbation
theorem (see Ref. [84], Sec. VI), which states that two
2n × 2n Hermitian matrices C and D, with eigenvalues
c1 ≤ · · · ≤ c2n and d1 ≤ · · · ≤ d2n, satisfy

‖C − D‖∞ ≥ max
j ∈[n]

|cj − dj |. (C11)

Since A and B are antisymmetric, their eigenvalues are
{±iλk(A)}n

k=1 and {±iλk(B)}n
k=1, respectively. Hence, the

eigenvalues of C and D are {±λk(A)}n
k=1 and {±λk(B)}n

k=1,
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respectively. This implies that

‖A − B‖∞ = ‖C − D‖∞ ≥ max
j ∈[2n]

|cj − dj |

= max
k∈[n]

|λk(A)− λk(B)|. (C12)

�

To formalize our learning algorithm, it is useful to
invoke the following well-known lemma.

Lemma 13 (Quantum union bound [70,85,86]). Let
ε1, . . . , εM > 0, where M ∈ N. Let {Pi}M

i=1 be projectors,
and ρ be a quantum state. If Tr(Piρ) ≥ 1 − εi for all i ∈
[M ], then
∥
∥
∥
∥
ρ − PM . . .P1ρP1 . . .PM

Tr(PM . . .P1ρP1 . . .PM )

∥
∥
∥
∥

1
≤ 2
√
∑

i∈[M ]

εi . (C13)

We now leverage this known lemma to prove the fol-
lowing.

Lemma 14. Let |ψ〉 be a t-compressible Gaussian state.
Given an estimate Ĉ for the correlation matrix C(|ψ〉),
there exists a Gaussian operation Ĝ such that

dtr(|φ〉⊗∣∣0n−t〉, Ĝ†|ψ〉) ≤
√

(n − t)‖Ĉ − C(|ψ〉)‖∞,
(C14)

where |φ〉 ⊗ ∣∣0n−t
〉

corresponds to the postmeasurement
state obtained by measuring the last n − t qubits of the
state Ĝ† |ψ〉 in the computational basis and obtaining the
outcome corresponding to

∣
∣0n−t

〉

. This event occurs with a
probability of at least 1 − (n − t)‖Ĉ − C‖∞.

Proof. According to Proposition 4, the correlation
matrix C := C(|ψ〉) can be put in the form C = O�OT,
where O ∈ O(2n) and � = i

⊕n
j =1 λj (C)Y. Here, λj ≤ 1

for j ∈ [t] and λj = 1 for j ∈ {t + 1, . . . n}, and Y repre-
sents the Y-Pauli matrix. Let εc := ‖Ĉ − C‖∞, then we
have (because of Lemma 12) that |λj (Ĉ)− λj (C)| ≤ εc,
where {λj (Ĉ)}n

j =1 and {λj (C)}n
j =1 are the normal eigen-

values of the matrices Ĉ and C, respectively. Thus, we
have

λm(Ĉ) ≥ 1 − εc, (C15)

for m ∈ {t + 1, . . . n}. We can now express the real anti-
symmetric matrix Ĉ in its normal form Ĉ = Ô�̂ÔT, where
Ô ∈ O(2n) is an orthogonal matrix and �̂ is a matrix of the
form �̂ = i

⊕n
j =1 λj (Ĉ)Y, with λj (Ĉ) ∈ R for any j ∈ [n].

Next, consider the state |ψ ′〉 := Ĝ† |ψ〉, where Ĝ is the

Gaussian unitary associated to ÔT. It holds that |C(ψ ′)j ,k −
(�̂)j ,k| ≤ εc, where we used that C(ψ ′) = ÔTC(|ψ〉)Ô,
�̂ = ÔTĈÔ, Cauchy-Schwarz and the definition of infin-
ity norm. Therefore, we have C(ψ ′)j ,k ≥ (�̂)j ,k − εc. In
particular, for m ∈ {t + 1, . . . , n}, we get

Tr(Zmψ
′) = C(ψ ′)2m−1,2m (C16)

≥ (�̂)2m−1,2m − εc (C17)

= λm(Ĉ)− εc (C18)

≥ 1 − 2εc, (C19)

where Zm = −iγ2m−1γ2m is the Z-Pauli operator acting on
the mth qubit and in the last step we used Eq. (C15). There-
fore, we also have Tr(|0〉〈0|m ψ ′) ≥ 1 − εc. By using the
quantum union bound (Lemma 13), we have

dtr(
∣
∣ψ ′〉 , |φ〉 ⊗ ∣∣0n−t〉) ≤

√

(n − t)εc, (C20)

where |φ〉 ⊗ ∣∣0n−t
〉

is the postmeasurement state after hav-
ing measured the outcomes corresponding to

∣
∣0n−t

〉

in the
last n − t qubits. By Lemma 13, this scenario occurs with
probability at least 1 − (n − t)εc. �

In the following, we mention the guarantees of a
full pure-state tomography algorithm, which demonstrates
optimal dependence on the number of qubits and uses
only single-copy measurements, albeit with a trade-off in
accuracy compared to other algorithms [3,87]. This is an
example of a procedure that we can utilize in our t-qubit
full-state tomography step of our learning algorithm.

Lemma 15 (Fast-state tomography [65]). For any
unknown n-qubit pure state |ψ〉, there exists a quantum
algorithm that, utilizing Ntom(n, ε, δ) := O(2nn log(1/δ)
ε−4
)

copies of |ψ〉 and Ttom(n, ε, δ) := O(4nn3 log(1/δ)
ε−5
)

time, generates a classical representation of a state
|ψ̃〉 that is ε close to |ψ〉 in trace distance with probabil-
ity at least 1 − δ. Furthermore, the algorithm requires only
single-copy Clifford measurements and classical postpro-
cessing.

Next, we provide a lemma that is useful in the proof of
the subsequent Theorem 6.

Lemma 16 (Boosting the probability of success). Let
δ > 0 and N ′ ∈ N. Consider an algorithm A that succeeds
with a probability of psucc ≥ 3

4 . If we execute A a total
of m ≥ �2N ′ + 24 log(1/δ)� times, then A will succeed at
least N ′ times with a probability of at least 1 − δ.

Proof. We will employ a Chernoff bound 2 to estab-
lish this result. Define binary random variables {Xi}m

i=1 as
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follows:

Xi =
{

1 if A succeeds,
0 if A fails.

(C21)

Define X̂ :=∑m
i=1 Xi. We have E[X̂ ] = mpsucc. Moreover,

we aim to upper bound by δ the probability that A suc-
ceeds fewer than N ′ times, which is Pr

(

X̂ ≤ N ′
)

. We

first write it as Pr
(

X̂ ≤ N ′
)

= Pr
(

X̂ ≤ (1 − α)E[X̂ ]
)

,
where we defined α := 1 − N ′/mpsucc. Note that α satisfies
α ≥ 1

3 , if

m ≥ 2N ′, (C22)

exploiting the fact that psucc ≥ 3
4 . Applying the Chernoff

bound, we obtain

Pr
(

X̂ ≤ (1 − α)E[X̂ ]
)

≤ exp

(

−α
2
E[X̂ ]
2

)

= exp
(

−α
2

2
psuccm

)

. (C23)

This is upper bounded by δ if

m ≥ 2
psuccα2 log

(
1
δ

)

. (C24)

Therefore, choosing m as follows satisfies Eqs. (C22)
and (C24):

m ≥ 2N ′ + 2
( 3

4

) ( 1
3

)2 log
(

1
δ

)

= 2N ′ + 24 log
(

1
δ

)

,

(C25)

where we used the fact that psucc ≥ 3
4 and α ≥ 1

3 . �

2. Joining the pieces: proof of correctness

We now present the main theorem, which puts together
the lemmas we have discussed. It demonstrates that to
learn t-doped fermionic Gaussian states, or more generally
t-compressible Gaussian states, with t = O(log(n)), only
resources scaling polynomially in the number of qubits are
required.

Theorem 6 (Efficient learning of t-compressible Gaus-
sian states). Let |ψ〉 be a t-compressible Gaussian state,

and consider ε, δ ∈ (0, 1]. By utilizing

N ≥ 256n5

ε4 log
(

12n2

δ

)

+ 2Ntom

(

t,
ε

2
,
δ

3

)

+ 24 log
(

3
δ

)

(C26)

single-copy measurements and

T ≥ O(n3)+ Ttom

(

t,
ε

2
,
δ

3

)

(C27)

computational time, Algorithm 1 yields a classical repre-
sentation of a state |ψ̂〉, satisfying dtr(|ψ̂〉, |ψ〉) ≤ ε with
probability ≥ 1 − δ.

Here, Ntom(t, ε/2, δ/3) and Ttom(t, ε/2, δ/3), respec-
tively, denote the number of copies and computational time
sufficient for full-state tomography of a t-qubit state with
an ε/2 accuracy and a failure probability of at most δ/3
(using the notation of Lemma 15).

Proof. The learning procedure is outlined in Algorithm 1
in the main text. We now establish its efficiency and cor-
rectness. According to Lemma 11, Nc(n, εc, δ/3) single
copies of |ψ〉 are sufficient to construct an antisymmetric
real matrix Ĉ such that ‖Ĉ − C‖∞ ≤ εc with a probabil-
ity of at least 1 − δ/3, where C is the correlation matrix
of ρ. Here, we set εc := ε2/(4(n − t)). Then, we can find
the orthogonal matrix Ô ∈ O(2n) such that it puts Ĉ in its
normal form Eq. (1), which can be performed in O(n3

)

time. Employing this, we construct the associated Gaussian
unitary Ĝ [a task achievable in time O(n3

)

, see [38,58]].
Subsequently, we consider the state Ĝ† |ψ〉. As per Lemma
14, we have

dtr(|φ〉 ⊗ ∣∣0n−t〉 , Ĝ† |ψ〉) ≤ ε

2
, (C28)

where |φ〉 ⊗ ∣∣0n−t
〉

corresponds to the postmeasurement
state obtained by measuring the last n − t qubits of the
state Ĝ† |ψ〉 in the computational basis and obtaining
the outcome corresponding to

∣
∣0n−t

〉

. The probability of
such an occurrence, as per Lemma 14, is at least 1 −
ε2/4 ≥ 3/4. Thus, the algorithm proceeds iteratively by
querying a total of m copies of |ψ〉. In each iteration,
it applies the unitary Ĝ† to |ψ〉 and computational basis
measurements on the last n − t qubits. By choosing m :=
�2Ntom(t, ε/2, δ/3)+ 24 log(3/δ)�, it is guaranteed that the
measurement outcome corresponding to

∣
∣0n−t

〉

occurred
at least Ntom(t, ε/2, δ/3) with probability at least 1 − δ/3
(this follows by Lemma 16). Applying the tomography
algorithm of Lemma 15 to the first t qubits of all the copies
where we obtained the outcome corresponding to

∣
∣0n−t

〉

,
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we obtain an output state |φ̂〉 such that it is guaranteed that

dtr(|φ̂〉, |φ〉) ≤ ε

2
, (C29)

with a probability of at least 1 − δ/3. Our output state is
|ψ̂〉 := Ĝ(|φ̂〉 ⊗ ∣∣0n−t

〉

), and the information about such a
state is provided in the output by providing the orthogonal
matrix Ô ∈ O(2n), which identifies Ĝ, and the t-qubit state
|φ̂〉.

Considering the trace distance between |ψ̂〉 and |ψ〉 and
applying the triangle inequality with Ĝ(|φ〉 ⊗ ∣∣0n−t

〉

) as the
reference state, we have

dtr(|ψ̂〉, |ψ〉) ≤ dtr(|φ̂〉, |φ〉)+ dtr(|φ〉 ⊗ ∣∣0n−t〉 , Ĝ† |ψ〉),
(C30)

where in the last step we use the unitary invariance
of the trace distance and dtr(|φ̂〉 ⊗ ∣∣0n−t

〉

, |φ〉 ⊗ ∣∣0n−t
〉

) =
dtr(|φ̂〉, |φ〉). The algorithm’s overall failure probability
is contingent on the potential failure of any of the three
subroutines—specifically, correlation matrix estimation,
measurement of the last n − t qubits, and the tomogra-
phy protocol. Each subroutine is associated with a failure
probability of at most δ/3. Consequently, by the union
bound, the algorithm’s total failure probability is at most
δ. Utilizing Eqs. (C28), (C29), (C30) and assuming the
case in which the algorithm does not fail, we deduce
dtr(|ψ̂〉, |ψ〉) ≤ ε. The overall sample complexity is deter-
mined by the number of copies needed to estimate the
correlation matrix Nc(n, εc, δ/3) plus the copies m for
tomography, i.e., a total number of copies

N =
⌈

256n5

ε4 log
(

12n2

δ

)

+ 2Ntom

(

t,
ε

2
,
δ

3

)

+ 24 log
(

3
δ

)⌉

,

(C31)

suffices, which is O(poly(n)+ exp(t)). On the other
hand, the time complexity involves postprocessing of the
estimated correlation matrix, requiring O(n3) time, and
the time complexity for full-state tomography, which is
O(exp(t)). �

Remark 1. The output state of Algorithm 1 is |ψ̂〉 :=
Ĝ(|φ̂〉 ⊗ ∣∣0n−t

〉

). Specifically, to provide a classical repre-
sentation of |ψ̂〉 in the output, it suffices to give the orthog-
onal matrix Ô ∈ O(2n) associated with Ĝ and the classical
description of the t-qubit state |φ̂〉. Therefore, the mem-
ory necessary to store the classical description of the state
outputted by Algorithm 1 is O(poly(n, 2t)), similarly to its
time and sample complexity.

APPENDIX D: TESTING t-COMPRESSIBLE
STATES

In this section, we address the property testing problem,
i.e., the problem of determining whether a state is close or
far from the set of t-compressible states (or equivalently
we test the Gaussian dimension of a state). We begin by
establishing an upper bound on the trace distance between
a state and the set of t-compressible Gaussian states. Sub-
sequently, we present a lower bound on the same quantity.
Finally, we leverage these two bounds to develop a testing
algorithm for t-compressible Gaussian states.

We note that the testing problem in the context of
fermionic Gaussian states (t = 0) was also unsolved.
However, a forthcoming paper [76] addresses the testing
problem for general, possibly mixed, fermionic Gaus-
sian states. Here, we generalize the results presented in
Ref. [76] regarding Gaussian testing to the scenario of
t-compressible Gaussian states.

1. Upper bound on the trace distance from the set of
t-compressible states

We observed in Lemma 8 that when n − t normal eigen-
values of a state’s correlation matrix are precisely one, the
state is a t-compressible state. However, when these eigen-
values are close to one, we may inquire about the existence
of a t-compressible state in close proximity. This inquiry is
formalized in the subsequent Proposition 6.

Proposition 6 (Check the closeness to a t-compressible
Gaussian state). Let |ψ〉 be a quantum state. Let {λi}n

i=1
be the normal eigenvalues of its correlation matrix ordered
in increasing order. Then, there exists a t-compressible
Gaussian state |ψt〉 such that

dtr(|ψt〉 , |ψ〉) ≤
√
√
√
√

n
∑

k=t+1

1
2
(1 − λk). (D1)

In particular, |ψt〉 can be chosen as |ψt〉 := GO(|φ〉 ⊗∣
∣0n−t

〉

), where GO is the Gaussian unitary associated with
the orthogonal matrix O ∈ O(2n) that puts the correla-
tion matrix of |ψ〉 in its normal form (Lemma 5), and
|φ〉 ⊗ ∣∣0n−t

〉

is the state obtained by projecting the state
G†

O |ψ〉 onto the zero state on the last n − t qubits.

Proof. We can define the state
∣
∣ψ ′〉 := G†

O |ψ〉. We have

Tr(
∣
∣ψ ′〉〈ψ ′∣∣ Zk) = C(ψ ′)2k−1,2k

= �2k−1,2k = λk = 1 − (1 − λk), (D2)

for each k ∈ {t + 1, . . . , n}. By using that Zk = 2 |0〉〈0|k −
I , we have:

Tr(
∣
∣ψ ′〉〈ψ ′∣∣0

〉〈0|k) = 1 − (1 − λk)

2
(D3)
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By quantum union bound (Lemma 13), we have

dtr(
∣
∣ψ ′〉 , |φ〉 ⊗ ∣∣0n−t〉) ≤

√
√
√
√

n
∑

k=t+1

(1 − λk)

2
. (D4)

Therefore, by using the unitarity invariance of the trace-
norm, we can conclude. �

From this, it readily follows that trace distance between
the state and the set of t-compressible pure Gaussian states
Gt is upper bounded by

min
|φt〉∈Gt

dtr(|ψ〉 , |φt〉) ≤
√

(n − t)
(1 − λt+1)

2
. (D5)

2. Lower bound on the trace distance from the set of
t-compressible states

In this section, we establish a lower bound on the trace
distance of a state from the set of t-compressible Gaussian
states. We denote the set of pure t-compressible Gaussian
states as Gt. In the following proof, we follow the deriva-
tion presented in Ref. [76] for the case of pure Gaussian
states (t = 0), extending it to t-compressible states.

Proposition 7. Let |ψ〉 be a quantum state, and let
{λi}n

i=1 be the normal eigenvalues of its correlation matrix,
ordered in increasing order. The lower bound on the trace
distance between the state and the set of t-compressible
pure Gaussian states Gt is given by

min
|φt〉∈Gt

dtr(|ψ〉 , |φt〉) ≥ 1
2
(1 − λt+1). (D6)

Proof. Consider an arbitrary operator O with ‖O‖∞ ≤
1, to be fixed later. Let |φt〉 ∈ Gt. Then, we have

dtr(|ψ〉 , |φt〉) = 1
2
‖ |ψ〉〈ψ | − |φt〉〈φt| ‖1 (D7)

≥ 1
2
|Tr(O(|ψ〉〈ψ | − |φt〉〈φt|))|, (D8)

where in the last step, we used Holder’s inequality.
Let C(|ψ〉) and C(|φt〉) be the correlation matrices of

|ψ〉 and |φt〉, respectively. Since C(|ψ〉)− C(|φt〉) is real
and antisymmetric, it can be brought into its normal form
C(|ψ〉)− C(|φt〉) = QT�′Q, where �′ =⊕n

j =1 iσ ′
j Y and

{σ ′
j }n

j =1 are the normal eigenvalues of C(|ψ〉)− C(|φt〉)
and Q ∈ O(2n) is an orthogonal matrix (Lemma 5).

Now, choose the operator O in the form O =
U†

Qiγ2k−1γ2kUQ, where k ∈ [n] and UQ is a Gaussian uni-
tary associated with the orthogonal matrix Q ∈ O(2n).

Note that ‖O‖∞ = 1. Fix k as a value of j that maximizes
|σ ′

j |. Thus, we have

|Tr(O(|ψ〉〈ψ | − |φt〉〈φt|))|
= |[C(UQ |ψ〉)− C(UQ |φt〉)]2k−1,2k| (D9)

= |[Q(C(|ψ〉)− C(|φt〉))QT]2k−1,2k| (D10)

= |σ ′
k| (D11)

= max
j ∈[n]

|σ ′
j | (D12)

= ‖C(|ψ〉)− C(|φt〉)‖∞, (D13)

where in the first step we used the definition of correlation
matrix, in the second step we used Lemma 4 and in the
last step we used the fact that the largest normal eigenval-
ues of an antisymmetric matrix corresponds to the infinity
norm of the matrix. Therefore, combining with Eq. (D8),
we have

dtr(|ψ〉 , |φt〉) ≥ 1
2
‖C(|ψ〉)− C(|φt〉)‖∞. (D14)

Now, by applying Lemma 12, we have

‖C(|ψ〉)− C(|φt〉)‖∞ ≥ |λ(C(|ψ〉)t+1 − λ(C(|φt〉)t+1|,
(D15)

where λ(C)t+1 denotes the t + 1th smallest normal eigen-
value of a correlation matrix C. Since |φt〉 is a t-
compressible Gaussian state, its Gaussian dimension is
n − t (because of Proposition 5), hence its t + 1th small-
est normal eigenvalue must be one. Therefore, the desired
lower bound is obtained by taking the minimum over
|φt〉 ∈ Gt . �

3. Testing the Gaussian dimension of a state

We present an efficient algorithm (Algorithm 2) for
property testing of t-compressible states, where Gt repre-
sents the set of n-qubits t-compressible Gaussian states, or
equivalently the set of states with n − t Gaussian dimen-
sion. The algorithm takes copies of a state |ψ〉 as input
and determines whether min|φt〉∈Gt dtr(|ψ〉 , |φt〉) ≤ εA or
min|φt〉∈Gt dtr(|ψ〉 , |φt〉) ≥ εB, with the promise that one of
these cases is true, where εB > εA ≥ 0.

We provide the details of the testing algorithm in
Algorithm 2. The correctness of this algorithm is estab-
lished by the following theorem, the proof of which
follows the same steps as proofs presented in Ref. [76].

Theorem 7 (Efficient t-compressible Gaussian test-
ing). Let |ψ〉 be an n-qubit pure state. Assume εB, εA ∈
[0, 1] such that εB >

√
(n − t)εA, δ ∈ (0, 1], and εcorr =

(ε2
B/(n − t)− εA). Assume that |ψ〉 is such that min|φt〉∈Gt

dtr(|ψ〉 , |φt〉) ≤ εA or min|φt〉∈Gt dtr(|ψ〉 , |φt〉) > εB. Then,
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ALGORITHM 2. Property testing algorithm for t-compressible Gaussian states.

Algorithm 2 can discriminate between these two scenar-
ios using N = �16(n3/ε2

corr) log
(

4n2/δ
)� single-copy mea-

surements of the state |ψ〉 with a probability of success at
least 1 − δ.

Proof. Let εcorr > 0 be an accuracy parameter to be
fixed later. By Lemma 11, with N ≥ 8(n3/ε2

corr) log
(

4n2/δ
)

single-copy measurements, we can find a matrix �̂

such that, with probability at least 1 − δ, it holds that
‖�̂ − �(|ψ〉)‖∞ ≤ εcorr. This implies that for all k ∈ [n],
we have |λ̂k − λk| ≤ εcorr, where {λ̂k}n

k=1, {λk}n
k=1 are the

normal eigenvalues of �̂ and �(|ψ〉), respectively. Let εtest

be a parameter to fix later. If λ̂t+1 ≥ 1 − εtest, we aim to
show that min|φt〉∈Gt dtr(|ψ〉 , |φt〉) ≤ εB, otherwise, we aim
to show that min|φt〉∈Gt dtr(|ψ〉 , |φt〉) > εA. Thus, we first
assume that λ̂t+1 ≥ 1 − εtest. From Lemma 6, we have that

min
|φt〉∈Gt

dtr(|ψ〉 , |φt〉) ≤
√

(n − t)
2

(1 − λt+1)

≤
√

(n − t)
2

(1 − λ̂t+1 + εcorr)

≤
√

(n − t)
2

(εtest + εcorr). (D16)

Therefore, we need to ensure that
√
(n − t)/2(εtest + εcorr)

≤ εB. Let us analyze now the case in which λ̂t+1 < 1 −
εtest. From Lemma 7, we have

min
|φt〉∈Gt

dtr(|ψ〉 , |φt〉) ≥ 1
2
(1 − λt+1)

≥ 1
2
(1−λ̂t+1−εcorr)>

1
2
(εtest−εcorr).

(D17)

Therefore, we impose that (εtest − εcorr)/2 ≥ εA. The
two mentioned inequalities are satisfied by choosing
εtest = (ε2

B/(n − t)+ εA) and εcorr = (ε2
B/(n − t)− εA), by

assuming that εB >
√
(n − t)εA. �

APPENDIX E: PSEUDORANDOMNESS FROM
T-DOPED GAUSSIAN STATES AND

TIME-COMPLEXITY LOWER BOUND

We have presented an algorithm for learning t-doped
fermionic Gaussian states with a time-complexity scaling
as O(poly(n, 2t)) (assuming that the Majorana locality κ
of each non-Gaussian gate is constant in the number of
qubits). Thus, as long as t = O(log(n)), the algorithm is
efficient, i.e., the total runtime is polynomial in the num-
ber of qubits. In this section, we delve into establishing
lower bounds on the time complexity for learning t-doped
fermionic Gaussian states. We begin by demonstrating
that, under a well-believed cryptography assumption [46–
48,73–75], no algorithm can learn t-doped fermionic Gaus-
sian states with time complexity scaling in t as O(poly(t)).
This rules out efficient algorithms if t scales polynomially
with the number of qubits n. However, under a stronger
cryptography assumption [46–49], we can establish that
when t scales slightly faster than logarithmically in the
number of qubits n, i.e., t = ω̃(log(n)), there exists no effi-
cient algorithm to learn t-doped fermionic Gaussian states,
where we defined ω̃(log(n)) := ω(log(n)polyloglog(n)).

1. t-doped Gaussian states cannot be learned in
polynomial time in t

Our cryptography assumption relies on the conjecture
that a specific problem, namely “learning with errors over
rings” [73], is hard to solve by quantum computers [46–
48,73–75]. Detailed definitions and discussions about can
be found in Ref. [73]. Informally, is a variant of the more
general “learning with errors” (LWE) problem specialized
to polynomial rings over finite fields, where the LWE prob-
lem is to distinguish random linear equations, perturbed by
a small amount of noise, from truly uniform ones.

Crucial to our proof is a lemma, adapted from Ref. [72]
(which strongly relies on previous work [46,50,51]), pre-
sented below.

Lemma 17 (Adapted from Theorem 14 in Ref. [72]).
Assume that cannot be solved by quantum computers in
polynomial time. Then, there exists a set SPRS of k-qubit
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pure quantum states, known as pseudorandom quantum
states, with the following properties:

(1) Any state in SPRS can be prepared using Õ(k) Toffoli
and Hadamard gates [here, Õ(·) hides polylog(·)
factors].

(2) States in the set SPRS cannot be learned in time com-
plexity O(poly(t)) by quantum computers. More
specifically, let ρ ∈ SPRS be an unknown quantum
state. Then there is no quantum algorithm that,
using O(poly(k)) copies of ρ and computational
time, with probability at least 2/3 outputs a classi-
cal description of a state ρ̂, which can be prepared
in polynomial time on a quantum computer such that
dtr(ρ, ρ̂) ≤ 1/8.

Now we use this lemma to show that there is no
algorithm for learning t-doped states with a O(poly(t))
computational time scaling in t.

Proposition 8 (No poly(t) algorithm to learn t-doped
states). Assume that cannot be solved by quantum com-
puters in polynomial time. Then there is no quantum
algorithm that, given access to copies of a t-doped
fermionic Gaussian n-qubit state ρ and with a time com-
plexity scaling in t as O(poly(t)), outputs a classical
description of a quantum state ρ̂ such that it can be pre-
pared in polynomial time on a quantum computer and, with
probability at least 2/3, it holds that dtr(ρ, ρ̂) ≤ 1/8.

Proof. Consider an n-qubit state of the form |φ〉 ⊗
∣
∣0n−k

〉

, where |φ〉 is a k-qubit state in the set SPRS defined
in Lemma 17. Let |φ〉 = UPRS

∣
∣0k
〉

, prepared by a unitary
UPRS that can be implemented using Õ(k) Hadamard and
Toffoli gates, as per Lemma 17. The Toffoli gates can be
implemented in turn using Hadamard, CNOT, T gates, and
T gates inverse. For each gate in the system, utilizing a
standard SWAP-exchange trick, we can make any gate act-
ing on some qubits of the system to act only on the first two
qubits through a cascade of SWAP gates. This incurs a total
overhead factor of O(k) in the total number of gates. The
SWAP gates between nearest-neighbor qubits are local non-
Gaussian gates, since they can be expressed as SWAPi,i+1 =
e−i π4 exp

(

iπ4 (XiXi+1 + YiYi+1 + ZiZi+1)
)

, which have Maj-
orana locality equal to 4 (due to the Jordan-Wigner map-
ping). Also the other gates, now acting on the first two
qubits, are (possibly) non-Gaussian gates with Majorana
locality at most 4. This is because the Pauli operators in the
generator of each gate can be expressed in terms of Majo-
rana operators via the Jordan-Wigner transformation. This
results in a total of t = Õ(k2) local non-Gaussian gates
required to prepare the state. Thus, the |φ〉 is a t-doped
Gaussian state with κ = 4 Majorana local non-Gaussian
gates. Now, due to Lemma 17, there exists no learn-
ing algorithm to learn such a state in time O(poly(k)) =

O(poly(t)), with error less than 1/8 and probability of
success at least 2/3. �

2. Learning ω̃(log(n))-doped Gaussian states is hard

The previous proposition rules out efficient algorithms
when t = 
(poly(n)). However, our proposed algorithm is
not anymore efficient when t = ω̃(log(n)), while it is effi-
cient for t = O(log(n)). If we were to make the stronger
assumption, namely that cannot be solved by quantum
computers in subexponential time [46–49], then we can
rule out that the efficient algorithm for t = ω̃(log(n)) exists
(which means faster than ω(log(n)) but hiding polyloglog
factors). For showing this, we need first the following
lemma adapted by Ref. [72].

Lemma 18 (Adapted from Theorem 14 and 15 in
Ref. [72]). Assume that cannot be solved by quantum
computers in subexponential time. Then, there exists a set
SPRS of k-qubit pure quantum states, known as pseudoran-
dom quantum states, with the following properties:

(1) Any state in SPRS can be prepared using Õ(k) Toffoli
and Hadamard gates [here, Õ(·) hides polylog(·)
factors].

(2) Any algorithm to learn states from the set SPRS must
have exp(
(k)) time complexity. More specifically,
let ρ ∈ SPRS be an unknown quantum state. Then
any quantum algorithm that, by querying copies of
ρ, with probability at least 2/3 outputs a classi-
cal description of a state ρ̂, which can be prepared
in subexponential time on a quantum computer
such that dtr(ρ, ρ̂) ≤ 1/8, must have exp(
(k)) time
complexity.

Now we use this to prove the following proposition, also
stated informally in the main text as Theorem 3. It reaches
a stronger conclusion than Proposition 8, but at the cost
of stronger cryptography assumption. The idea of the fol-
lowing proof is to use a more compact qubits-to-fermion
mapping than Jordan-Wigner, namely a modification of
the one introduced by Kitaev [25], which would allow
creation of pseudorandom quantum states with no over-
head in the number of non-Gaussian gates compared to
the number of Toffoli and Hadamard gates. In the follow-
ing, we recall that ω̃(log(n)) is defined as ω̃(log(n)) :=
ω(log(n)polyloglog(n))).

Proposition 9 (Learning ω̃(log(n))-doped Gaussian
states is hard). Assume that cannot be solved by quantum
computers in sub-exponential time. Then, there is no effi-
cient (i.e., O(poly(n)) time) quantum algorithm that, by
querying copies of a ω̃(log(n))-doped Gaussian state ρ,
with probability at least 2/3 outputs a description of a state
ρ̂, which can be prepared in polynomial time on a quantum
computer such that dtr(ρ, ρ̂) ≤ 1/8.
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Proof. Following a similar approach as in the proof of
Proposition 8, we begin by defining a state |φ〉 ⊗ ∣∣0n−k

〉

,
where |φ〉 = UPRS

∣
∣0k
〉

represents a k-qubit state in the set
SPRS as defined in Lemma 18. This state can be efficiently
prepared using a unitary UPRS with Õ(k) Hadamard and
Toffoli gates, which, in turn, can be implemented using
Hadamard gates, CNOTs, T gates, and their inverses. In con-
trast to the previous proof in Proposition 8, an application
of the same argument would not yield the desired conclu-
sion due to the unfavorable quadratic overhead introduced
by the SWAP-exchange trick in the number of non-Gaussian
gates. That trick was necessary due to the use of Jordan-
Wigner transformation. However, we can employ a more
efficient qubit-to-fermion mapping, specifically a modified
version of the one introduced by Kitaev [25]. Hereafter,
we will refer to it as the “Kitaev encoding.” Our objec-
tive is to construct a fermionic state encoding |φ〉 using a
circuit of size Õ(k) composed of Gaussian and κ = 4 local
non-Gaussian gates. We employ a mapping of k qubits into
2k fermionic modes using Majorana operators {γα,j | j ∈
[k], α ∈ {0, x, y, z}}. These 4k Majorana operators are
defined in terms of 4k Pauli strings via Jordan-Wigner,
with an arbitrarily fixed operator ordering. We are now
going to leverage the formalism and basics of stabilizer
codes, for more in-depth information, refer to Ref. [88].
The Kitaev encoding involves defining a stabilizer code of
2k physical qubits encoded in k logical qubits, character-
ized by the following k stabilizer generators {sj }k

j =1 and
logical Pauli operators {X KE

j , ZKE
j }k

j =1:

sj := γ0,j γx,j γy,j γz,j , (E1)

X KE
j := iγy,j γz,j , (E2)

ZKE
j := iγx,j γy,j , (E3)

for each j ∈ [k]. Note that these operators explicitly satisfy
the algebraic conditions on stabilizer generators and logi-
cal Pauli operators. The Kitaev encoding is associated to a
Clifford transformation VKE such that

VKEXj V†
KE = X KE

j , (E4)

VKEZj V†
KE = ZKE

j , (E5)

for each j ∈ [k], and

VKEZj V†
KE = sj , (E6)

for each j ∈ {k + 1, . . . , 2k}. The last equation ensures that
VKE

∣
∣02k
〉

is an eigenstate with +1 eigenvalue for each of
the stabilizer generators {sj }k

j =1, while Eq. (E5) implies
that VKE

∣
∣02k
〉

is an eigenstate with +1 eigenvalue for each
{ZKE

j }k
j =1. Thus, VKE

∣
∣02k
〉

is a valid “logical zero” stabilizer
state. Exploiting the fact that VKE

∣
∣02k
〉

is an eigenstate with

+1 eigenvalues of {ZKE
j }k

j =1 and {sj ZKE
j }k

j =1, its density
matrix can be written as

VKE
∣
∣02k〉 〈02k

∣
∣V†

KE

=
k
∏

j =1

(

I + sj ZKE
j

2

)
2k
∏

j =k

(

I + ZKE
j

2

)

=
k
∏

j =1

(
I − iγ0,j γz,j

2

) 2k
∏

j =k

(
I + iγx,j γy,j

2

)

. (E7)

From this, we observe that VKE
∣
∣02k
〉

is a fermionic Gaus-
sian state because it can be written in the form of Eq. (A4),
noting that signed permutation matrices are orthogo-
nal matrices. Moreover, we denote YKE

j := −iZKE
j X KE

j =
iγx,j γz,j . The Kitaev encoding, as defined, ensures that the
local qubit gates are mapped onto local fermionic ones. In
particular, the gates of the circuit UPRS that prepares the
pseudorandom state |φ〉 = UPRS

∣
∣0k
〉

— the Hadamard H ,
CNOT, and T gate—are, up to an overall phase, mapped
onto

H KE
j := VKEHj V†

KE = VKE

(

Zj
I + iYj√

2

)

V†
KE

= ZKE
j

I + iYKE
j√

2
= e− π

2 γx,j γy,j e− π
4 γz,j γx,j , (E8)

CNOTKE
j ,l := VKECNOTj ,lV

†
KE = ei π4 (1−ZKE

j )(I−X KE
l )

= ei π4 (I−iγx,j γy,j )(I−iγy,lγz,l), (E9)

TKE
j := VKETj V†

KE = ei π8 ZKE
j = e− π

8 γx,j γy,j , (E10)

for each j �= l ∈ [k]. The only non-Gaussian among these
is the encoding of the CNOT gate, which has Majorana
locality κ = 4. This implies that the encoding of the circuit
UPRS, i.e., UKE

PRS := VKEUPRSV†
KE, is a t-doped fermionic

Gaussian unitary with local non-Gaussian gates and t =
Õ(k). Thus, we have that the Kitaev encoding of the
pseudorandom state |φ〉 = UPRS

∣
∣0k
〉

is

|φ〉KE := VKE |φ〉 ⊗ ∣∣0k〉 = VKEUPRS
∣
∣02k〉

= UKE
PRSVKE

∣
∣02k〉 . (E11)

Since VKE
∣
∣02k
〉

is a Gaussian state and UKE
PRS is a t-doped

Gaussian unitary with t = Õ(k), then VKE |φ〉 ⊗ ∣∣0k
〉

is
a t-doped Gaussian state with t = Õ(k). The Majorana
locality of each non-Gaussian gate is at most 4.

Using an arbitrary algorithm A for learning a t-doped
fermionic Gaussian state, we will now define a protocol
for learning the pseudorandom state |φ〉. Given a copy of
a state |φ〉 on k qubits, we use k auxiliary qubits in state
|0〉 and apply the Clifford transformation VKE. This means
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it can be produced by a circuit with O(k2) two-qubit gates
[89]. The resulting |φ〉KE can be input to A as a copy of
a t-doped fermionic Gaussian state for t = Õ(k). Using
the number of copies of |φ〉 given by sample complexity
of A, we learn a description of a state ρ̂KE, which, with
probability at least 2/3, satisfies

dtr(ρ̂KE, ρKE) ≤ 1
8

, (E12)

where we defined ρKE to be the density matrix associated
with |φ〉KE. By defining ρ̂ := Tr{k+1,...,2k}

(

V†
KEρ̂KEVKE

)

,
where Tr{k+1,...,2k}(·) indicates the partial trace with respect
to the qubits {k + 1, . . . , 2k}, we also have

dtr(ρ̂, |φ〉 〈φ|) ≤ dtr(V
†
KEρ̂KEVKE, |φ〉 〈φ| ⊗ ∣∣0k〉 〈0k

∣
∣)

= dtr(V
†
KEρ̂KEVKE, V†

KEρKEVKE)

= dtr(ρ̂KE, ρKE) ≤ 1
8

, (E13)

where in the first step we used that the partial trace does
not increase the trace distance between two states [90].
Hence, we found a state ρ̂, which is in trace distance
close to the target state |φ〉〈φ|. To recap, we produced the
learning algorithm for a pseudorandom state |φ〉 from a
learning algorithm for t-doped fermionic Gaussian states.
The pseudorandom state learning algorithm has the same
sample complexity as the fermionic one, and the time com-
plexity TPRS = Sf · O(k2)+ Tf where Tf and Sf are time
and sample complexity of the fermionic learner. If there
is a fermionic learner whose time and sample complexity
scale subexponentially in k, the same property carries over
to the pseudorandom states’ learner. By Lemma 18, this
would contradict the cryptographic assumption that cannot
be solved by quantum computers in subexponential time.
Hence, the time complexity of the fermionic learner needs
to be exp(
(k)). If k = ω(log(n)), then this implies that
any algorithm to learn t-doped fermionic Gaussian states
with t = Õ(k) = ω(log(n)polyloglog(n)) must be ineffi-
cient, i.e., its time complexity must be ω(poly(n)). �

APPENDIX F: GENERALIZATION TO THE
MIXED-STATE SCENARIO AND

NOISE-ROBUSTNESS OF THE ALGORITHM

Many of the concepts introduced in our work can be
extended to the more realistic mixed-state scenario. We
start by providing the definition for t-compressible mixed
states.

Definition 17 (Mixed t-compressible state). A possibly
mixed state ρ is a t-compressible (Gaussian) state if and

only if it can be represented as

ρ = G(σ ⊗ ∣∣0n−t〉 〈0n−t
∣
∣)G†, (F1)

where G is a Gaussian operation, and σ is a state supported
solely on the first t qubits.

As in the pure-state scenario (Proposition 5), saying that
a quantum state is t compressible is equivalent to the fact
that at least n − t normal eigenvalues of the state’s corre-
lation matrix are equal to one (i.e., its Gaussian dimension
is ≥ n − t and its Gaussian nullity is ≤ t).

Proposition 10 (Equivalent definition of t-compressible
state). A possibly mixed n-qubit state ρ is t compress-
ible if and only if at least n − t normal eigenvalues of the
correlation matrix of ρ are equal to one.

The proof is analogous to that of Proposition 5.
For the tomography algorithm, analogous guaran-

tees extend from the t-compressible pure case to the
t-compressible mixed-state scenario. In this case, the
unknown state is promised to be a t-compressible Gaus-
sian (possibly mixed) state. However, in this mixed-state
scenario, the algorithm is simpler, since measuring the last
n − t qubits in the computational basis is not necessary
because we do not require the output state to be pure, i.e.,
step 5 in Algorithm 1 is not necessary. Instead, the full-
state tomography of the first t qubits can be applied right
after having applied the Gaussian operation to the state. We
explicitly show this in Algorithm 3 of the following sub-
section, whose proof of correctness is shown in the (more
general) Theorem 9.

Furthermore, the following inequalities can be helpful to
test how much a possibly mixed state ρ deviates (in trace
distance) from the set of mixed t-compressible Gaussian
states.

Proposition 11 (Minimum distance between a possi-
bly mixed state and the set of t-compressible states). Let
ρ be a possibly mixed quantum state, and let {λi}n

i=1 be
the normal eigenvalues of its correlation matrix, ordered
in increasing order. The following trace distance upper
and lower bounds between the state and the set of t-
compressible mixed Gaussian states Gt hold

√
√
√
√

n
∑

k=t+1

(1 − λk)

2
≥ min

σt∈Gt
dtr(ρ, σt) ≥ 1

2
(1 − λt+1). (F2)

The proof of this theorem is analogous to those of Propo-
sition 6 and Proposition 7, which held for the pure-state
scenario but readily apply to the more general mixed-state
scenario.
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Thus, with the previous inequalities in hand, we can
also provide a property testing algorithm that applies to a
possibly mixed quantum state.

Theorem 8 (Efficient t-compressible Gaussian testing).
Let ρ be an n-qubit possibly mixed quantum state. Assume
εB, εA ∈ [0, 1] such that εB >

√
(n − t)εA, δ ∈ (0, 1], and

εcorr = (ε2
B/(n − t)− εA

)

. Assume that ρ is such that
minσt∈Gt dtr(ρ, σt) ≤ εA or minσt∈Gt dtr(ρ, σt) > εB. Then,
Algorithm 2 can discriminate between these two scenar-
ios using N = �16(n3/ε2

corr) log
(

4n2/δ
)� single-copy mea-

surements of the state ρ with a probability of success at
least 1 − δ.

The proof of this theorem is similar to that of Theorem 7.

1. Tomography of approximately t-compressible states

In this subsection, we address the problem of tomog-
raphy for “approximate t-compressible states,” i.e., states
with n − t normal eigenvalues of their correlation matrix
that are not exactly one, but almost.

This approach is particularly useful for the tomogra-
phy of states where most of the normal eigenvalues are
very close to one, such as states obtained when consider-
ing impurity models [45], as we will explore in more detail
in the next section. Moreover, when preparing a target t-
compressible state in a quantum device (e.g., a target pure
state prepared by a 1D matchgate circuit doped with a few
SWAP gates), noise can cause an effective state ρ to be pre-
pared instead of the target t-compressible state. Therefore,
an algorithm that allows for perturbations from the set of
t-compressible states is experimentally motivated.

We provide such an algorithm in Table 3. Note that
this differs from Algorithm 1 because in this mixed-state
scenario we do not need to measure the last n − t qubits
in the computational basis before performing full-state
tomography on the first t qubits.

Theorem 9 (Efficient learning of approximate t-compre-
ssible Gaussian states). Let ε, δ ∈ (0, 1]. Let ρ be a
quantum state. By utilizing N = O(n5/(ε4) log

(

n2/δ
))+

Ntom(t, ε/2, δ/2) single-copy measurements and T =
O(n3)+ Ttom(t, ε/2, δ/2) computational time, Algorithm 3
yields a classical representation of a state ρ̂, satisfying

dtr(ρ̂, ρ) ≤ ε + εt, (F3)

with probability ≥ 1 − δ. Here, εt :=
√
∑n

j =t+1(1 − λj )/2,
where {λj }n

j =1 are the normal eigenvalues of the correla-
tion matrix of ρ ordered in increasing order. Moreover,
Ntom(t, ε/2, δ/2) and Ttom(t, ε/2, δ/2), respectively, denote
the number of copies and computational time sufficient for
full-state tomography of a mixed t-qubit state with an ε/2
accuracy and a failure probability of at most δ/2.

Proof. The learning procedure is outlined in Algorithm 3
and we now establish its correctness. According to
Lemma 11, Nc(n, εc, δ/2) single copies of ρ are suffi-
cient to construct an antisymmetric real matrix Ĉ such
that ‖Ĉ − C‖∞ ≤ εc with a probability of at least 1 − δ/2,
where C is the correlation matrix of ρ. Then, we can put
Ĉ in its normal form Ĉ = Ô�̂ÔT, where Ô ∈ O(2n) is an
orthogonal matrix and �̂ is a matrix of the form �̂ =
i
⊕n

j =1 λj (Ĉ)Y, where {λj (Ĉ)}n
j =1 are the normal eigenval-

ues of Ĉ. We can then construct [38,58,59] the Gaussian
unitary Ĝ associated to Ô. Subsequently, we consider the
state ρ ′ := Ĝ†ρĜ. For m ∈ {t + 1, . . . , n}, we have

Tr(Zmρ
′) = C(ρ ′)2m−1,2m (F4)

≥ (�̂)2m−1,2m − εc (F5)

= λm(Ĉ)− εc (F6)

≥ λm(C)− 2εc, (F7)

where Zm = −iγ2m−1γ2m is the Z-Pauli operator acting
on the mth qubit. In the second step, we used that
|C(ψ ′)j ,k − (�̂)j ,k| ≤ εc, as follows by C(ρ ′) = ÔTC(ρ)Ô,
�̂ = ÔTĈÔ, Cauchy-Schwarz and the definition of infinity
norm. In the last step we used that, because of Lemma 12,
we have |λj (Ĉ)− λj (C)| ≤ εc for each j ∈ [n], where

ALGORITHM 3. Learning algorithm for approximately t-compressible fermionic Gaussian states (possibly mixed).
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{λj (C)}n
j =1 are the normal eigenvalues of C. Therefore, we

also have

Tr(|0〉〈0| 0mρ
′) = 1

2
+ 1

2
Tr(Zmρ

′)

≥ 1 −
(

εc + 1 − λm(C)
2

)

. (F8)

By using the quantum union bound (Lemma 13), we have

dtr(ρ
′, ρ ′

post ⊗ ∣∣0n−t〉 〈0n−t
∣
∣) ≤

√

(n − t)εc + ε2
t , (F9)

where εt :=
√
∑n

j =t+1(1 − λj (C))/2, and ρ ′
post ⊗

∣
∣0n−t

〉〈

0n−t
∣
∣ is the postmeasurement state after having mea-

sured the outcomes corresponding to
∣
∣0n−t

〉

in the last n − t
qubits. Let ρ ′

t be the reduced state of ρ ′ over the first t
qubits. We have

dtr(ρ
′, ρ ′

t ⊗ ∣∣0n−t〉〈0n−t
∣
∣)

≤ dtr(ρ
′, ρ ′

post ⊗ ∣∣0n−t〉〈0n−t
∣
∣)

+ dtr(ρ
′
post ⊗ ∣∣0n−t〉〈0n−t

∣
∣ , ρ ′

t ⊗ ∣∣0n−t〉〈0n−t
∣
∣) (F10)

= dtr(ρ
′, ρ ′

post ⊗ ∣∣0n−t〉〈0n−t
∣
∣)+ dtr(ρ

′
post, ρ

′
t) (F11)

≤ 2dtr(ρ
′, ρ ′

post ⊗ ∣∣0n−t〉〈0n−t
∣
∣) (F12)

≤ 2
√

(n − t)εc + ε2
t , (F13)

where in the first step we used the triangle inequality,
in the second step we used the unitary invariance of
the trace distance, in the third step we used the data-
processing inequality [90] (with respect to the operation
of tracing out a subsystem), i.e., dtr(ρ

′
post, ρ

′
t) ≤ dtr(ρ

′
post ⊗

∣
∣0n−t

〉〈

0n−t
∣
∣ , ρ ′), and in the last step we used Eq. (F9).

Using now Ntom(t, ε/2, δ/2) copies of the state ρ ′ = Ĝ†ρĜ,
we perform full-state tomography on the first t qubits,
obtaining σ̂ such that

dtr(σ̂ , ρ ′
t) ≤ ε/2, (F14)

with ≥ 1 − δ/2 probability. Our output state is ρ̂ :=
Ĝ(σ̂ ⊗ ∣∣0n−t

〉〈

0n−t
∣
∣)Ĝ†, and the information about such a

state is provided in the output by providing the orthogo-
nal matrix Ô ∈ O(2n), which identifies Ĝ, and the t-qubit
state σ̂ . Considering the trace distance between ρ̂ and ρ,

we have

dtr(ρ̂, ρ) = dtr(σ̂ ⊗ ∣∣0n−t〉〈0n−t
∣
∣ , Ĝ†ρĜ) (F15)

= dtr(σ̂ ⊗ ∣∣0n−t〉〈0n−t
∣
∣ , ρ ′) (F16)

≤ dtr(σ̂ ⊗ ∣∣0n−t〉〈0n−t
∣
∣ , ρ ′

t ⊗ ∣∣0n−t〉〈0n−t
∣
∣)

+ dtr(ρ
′
t ⊗ ∣∣0n−t〉〈0n−t

∣
∣ , ρ ′) (F17)

≤ dtr(σ̂ , ρ ′
t)+ dtr(ρ

′
t ⊗ ∣∣0n−t〉〈0n−t

∣
∣ , ρ ′) (F18)

≤ ε

2
+ 2
√

(n − t)εc + εt, (F19)

where in the last step we used Eqs. (F13) and (F14). By
setting εc := ε2/(16(n − t)), we get

dtr(ρ̂, ρ) ≤ ε

2
+ 2

√

ε2

16
+ ε2

t ≤ ε + εt, (F20)

where we used that
√

a + b ≤ √
a + √

b for each a, b ≥
0. The total failure probability of the algorithm, by union
bound, is ≤ δ. �

As a consequence of the previous theorem, we present
the following proposition, which states that if the unknown
quantum state is sufficiently close in trace distance to the
set of t-compressible Gaussian states, then our learning
algorithm (Algorithm 3) can still be effectively applied.

Theorem 10 (Noise robustness of learning t-compressible
Gaussian states). Let ε, δ ∈ (0, 1]. Let ρ be a quantum
state such that

min
σt∈Gt

dtr(ρ, σt) ≤ ε2

4(n − t)
, (F21)

i.e., it is sufficiently close to the set of possibly mixed
t-compressible states Gt. Then, there exists a learning
algorithm, which, utilizing

N = O
(

n5

ε4 log
(

n2

δ

))

+ Ntom

(

t,
ε

4
,
δ

2

)

(F22)

single-copy measurements, yields a classical representa-
tion of a state ρ̂, satisfying dtr(ρ̂, ρ) ≤ ε with probability
≥ 1 − δ.

Here, Ntom(t, ε/4, δ/2) denotes the number of copies
sufficient for full-state tomography of a mixed t-qubit
state with an ε/4 accuracy and a failure probability of at
most δ/2.

Proof. By applying the previous Theorem 9 with accu-
racy ε/2 (instead of ε), we get

dtr(ρ̂, ρ) ≤ ε

2
+ εt, (F23)

where εt :=∑n
j =t+1(1 − λj )/2, and {λj }n

j =1 are the nor-
mal eigenvalues of the correlation matrix of ρ ordered in
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increasing order. Let us upper bound εt. First of all, by
assumption, it follows that there exists a t-compressible
Gaussian state σt such that

dtr(σt, ρ) ≤ ε2

4(n − t)
. (F24)

Then, we have

εt :=
√
√
√
√

n
∑

j =t+1

(1 − λj )

2
(F25)

≤
√

(n − t)
(1 − λt+1)

2
(F26)

≤
√

(n − t)
2

‖C(σt)− C(ρ)‖∞ (F27)

≤
√

(n − t)dtr(σt, ρ) (F28)

≤ ε

2
, (F29)

where in the third step we used Lemma 12, in the fourth
step we used that the one-norm difference between two
(possibly non-Gaussian) quantum states upper bounds the
infinity norm difference of their correlation matrix, i.e.,

‖C(σt)− C(ρ)‖∞ ≤ 2dtr(σt, ρ), (F30)

as it can be seen by the variational definition of trace dis-
tance [see the derivation of Eq. (D14) for an analogous
and explicit proof of the latter inequality]. In the last step,
we used Eq. (F24). Thus, substituting in Eq. (F23), we
conclude. �

APPENDIX G: DETAILS OF NUMERICAL
SIMULATIONS

This section concerns a few additional details about the
numerical results on impurity model dynamics, presented
in Sec. I F and Fig. 2 of the main text.

In the main text we touch upon the question: can the
compressibility shown in Fig. 2 be derived from our
Theorem 1 for t-doped circuits simply using the Trotter
approximation? If true, this would render our numerical
results less surprising; the reasoning for such a derivation
could go as follows. The evolution unitary e−iHT can be
approximated with a product formula using some num-
ber t′ of Trotter steps, which for any impurity model
yields a t′-doped circuit. Such a Trotter-approximated
state |ψ(T)〉Trot;t′ would then be t compressible for t =
κt′ (where κ is the locality of the impurity term; for
Hgraph and HTFIM, κ = 4) due to Theorem 1. To test
whether this explains the observed compressibility, we
numerically check the number of Trotter steps needed to
approximate |ψ(T)〉 such that dtr(|ψ(T)〉 , |ψ(T)〉Trot;t′) ≤

ε2
trunc/(4(n − κt′)). Because of Eq. (F29), this would imply

that
√
∑n

m=t+1
1
2 (1 − λm) ≤ εtrunc [i.e., Eq. (6)] is satisfied.

We find that the prediction from the Trotter approxima-
tion and compression theorem, as explained above, does
not capture the dynamics of the Gaussian nullity we have
observed. For example, at minimal resolved time T =
0.05 for both impurity models, the Trotter approximation
already predicts t = 14 as the minimal Gaussian nullity
(see vertical dotted lines in Fig. 2, left panel). In real-
ity, however, the expander model dynamics still allows
approximate t-compression with t = 4 all the way up to
T = 0.4 (and the TFIM model even up to T = 1.1).

One may ask, why exactly is this analysis, by Trot-
terization and Theorem 1, coming so short of explaining
the observed compressibility. In our opinion, this should
be related to the fact that the non-Gaussian gates in the
Trotterized evolution circuits are close to identity. One
intuitively expects that states produced in such circuits
would be much more compressible (approximately), than
if the involved non-Gaussian gates were generic, far from
identity. However, Theorem 1 does not account for this
difference, and gives the same compressibility guarantee
if the number of non-Gaussian gates is the same; also,
importantly, Theorem 1 deals only with exact and not
approximate compressibility. It is at present unclear how to
account for the nature of non-Gaussian evolution beyond
gate counting, so that our numerical results on compress-
ibility of impurity model dynamics could be explained
analytically.

To run the simulations of |ψ(T)〉 = e−iHT |0n〉 pre-
sented in Fig. 2, we employed sparse matrix multiplication
routines. Specifically, we approximated the exponential
operator as e−iHT � (1 − iHδT)T/δT, followed by state

0.000 0.001 0.002 0.003
Time step size δT

0.04

0.05

0.06

0.07

0.08

0.09

ε t
ru

nc

δT = 0 extrapolation

εtrunc data
Quadratic fit

FIG. 3. Extraction of truncation error εtrunc from sparse sim-
ulation via δT → 0 extrapolation, used to produce Fig. 2. The
displayed extrapolation is for the most challenging case of the
expander model on n = 16 qubits. Here the evolution time is
T = 0.4 and the truncation nullity is t = 4. The relevant scale
for the error is the truncation value εtrunc = 0.05, used in Fig. 2.
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renormalization. To ensure that our results are as accurate
as possible, the value of εtrunc for each |ψ(T)〉 was obtained
from a δT → 0 extrapolation. In particular, it was com-
puted εtrunc for δT ∈ {0.0005, 0.001, 0.0015, 0.002, 0.0025}
and then extended to δT = 0 via a parabolic fit (see Fig. 3).
This approach enabled simulations for systems up to n =
16 qubits in Fig. 2.
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[69] M. Gută, J. Kahn, R. Kueng, and J. A. Tropp, Fast state
tomography with optimal error bounds, J. Phys. A Math.
Theor. 53, 204001 (2020).

[70] J. Gao, Quantum union bounds for sequential projective
measurements, Phys. Rev. A 92, 052331 (2015).

[71] A. Abbas, R. King, H.-Y. Huang, W. J. Huggins, R. Movas-
sagh, D. Gilboa, and J. R. McClean, in Thirty-seventh Con-
ference on Neural Information Processing Systems (2023),
https://openreview.net/forum?id=HF6bnhfSqH.

[72] H. Zhao, L. Lewis, I. Kannan, Y. Quek, H.-Y. Huang,
and M. C. Caro, Learning quantum states and unitaries
of bounded gate complexity, PRX Quantum 5, 040306
(2024).

[73] V. Lyubashevsky, C. Peikert, and O. Regev, in Advances
in Cryptology – EUROCRYPT 2010, edited by H. Gilbert
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2010),
p. 1.

[74] O. Regev, On lattices, learning with errors, random linear
codes, and cryptography, J. ACM 56, 34 (2009).

[75] D. Aggarwal, H. Bennett, Z. Brakerski, A. Golovnev, R.
Kumar, Z. Li, S. Peters, N. Stephens-Davidowitz, and V.
Vaikuntanathan, in Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, STOC 2023 (Asso-
ciation for Computing Machinery, New York, NY, USA,
2023), pp. 1516–1526.

[76] L. Bittel, A. A. Mele, J. Eisert, and L. Leone, Optimal
trace-distance bounds for free-fermionic states: Testing and
improved tomography, arXiv:2409.17953 [quant-ph].

[77] K. G. Wilson, The renormalization group: Critical phe-
nomena and the Kondo problem, Rev. Mod. Phys. 47, 773
(1975).

[78] D. Vollhardt, K. Byczuk, and M. Kollar, in Strongly Corre-
lated Systems (Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011), p. 203.

010319-31

https://doi.org/10.1126/science.aay2354
https://doi.org/10.1038/nature22362
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1103/physrevlett.131.060601
https://doi.org/10.1007/s00220-017-2976-9
https://arxiv.org/abs/2207.14266
https://arxiv.org/abs/2302.14860
https://arxiv.org/abs/2204.02550
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRevLett.132.080402
https://doi.org/10.1103/PhysRevA.109.022429
https://doi.org/10.1006/aphy.2002.6254
https://arxiv.org/abs/2312.10399
https://doi.org/10.1038/s41534-024-00854-5
https://doi.org/10.1063/1.1724294
https://doi.org/10.1088/2058-9565/ab8963
https://doi.org/10.1103/physrevapplied.19.034052
https://doi.org/10.1103/PhysRevX.10.031064
https://doi.org/10.1103/physrevlett.127.110504
https://doi.org/10.1007/s00220-023-04844-0
https://doi.org/10.1088/1751-8121/ab8111
https://doi.org/10.1103/physreva.92.052331
https://openreview.net/forum?id=HF6bnhfSqH
https://doi.org/10.1103/prxquantum.5.040306
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/3564246.3585227
https://arxiv.org/abs/2409.17953
https://doi.org/10.1103/RevModPhys.47.773


ANTONIO ANNA MELE and YAROSLAV HERASYMENKO PRX QUANTUM 6, 010319 (2025)

[79] The asymptotic notation t = O(log
(

ε−1
)

) hides a logarith-
mic dependence on the inverse of the spectral gap of the
free-fermionic Hamiltonian Hfree. For more details, see Ref.
[45].

[80] F. A. Mele, A. A. Mele, L. Bittel, J. Eisert, V. Giovannetti,
L. Lami, L. Leone, and S. F. E. Oliviero, Learning quantum
states of continuous variable systems, arXiv:2405.01431
[quant-ph].

[81] M. Oszmaniec, N. Dangniam, M. E. Morales, and Z. Zim-
borás, Fermion sampling: A robust quantum computational
advantage scheme using fermionic linear optics and magic
input states, PRX Quantum 3, 020328 (2022).

[82] Z. Jiang, K. J. Sung, K. Kechedzhi, V. N. Smelyanskiy,
and S. Boixo, Quantum algorithms to simulate many-body
physics of correlated fermions, Phys. Rev. Appl. 9, 044036
(2018).

[83] D. Miller, L. E. Fischer, K. Levi, E. J. Kuehnke, I. O.
Sokolov, P. K. Barkoutsos, J. Eisert, and I. Tavernelli,

Hardware-tailored diagonalization circuits, Npj Quantum
Inf. 10, (2024).

[84] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics
(Springer New York, 1996).

[85] R. O’Donnell and R. Venkateswaran, The quantum union
bound made easy, arXiv:2103.07827 [quant-ph].

[86] S. Aaronson, QMA/qpoly is contained in PSPACE/poly:
De-merlinizing quantum protocols, arXiv:quant-ph/0510
230 [quant-ph].

[87] R. O’Donnell and J. Wright, Efficient quantum tomography,
arXiv:1508.01907 [quant-ph].

[88] J. Roffe, Quantum error correction: An introductory guide,
Contemp. Phys. 60, 226 (2019).

[89] J. Dehaene and B. De Moor, Clifford group, stabilizer
states, and linear and quadratic operations over GF(2),
Phys. Rev. A 68, 042318 (2003).

[90] M. M. Wilde, in Quantum Information Theory (Cambridge
University Press, Cambridge, 2017), p. xi.

010319-32

https://arxiv.org/abs/2405.01431
https://doi.org/10.1103/PRXQuantum.3.020328
https://doi.org/10.1103/physrevapplied.9.044036
https://doi.org/10.1038/s41534-024-00901-1
https://arxiv.org/abs/2103.07827
https://arxiv.org/abs/quant-ph/0510230
https://arxiv.org/abs/1508.01907
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1103/physreva.68.042318

	I.. INTRODUCTION
	A.. Preliminaries
	B.. Structure of t-doped Gaussian states
	C.. Learning algorithm
	D.. Time-complexity lower bound
	E.. Testing Gaussian dimension
	F.. Numerical simulations: t-compressible states in many-body physics
	G.. Conclusions

	. ACKNOWLEDGMENTS
	. APPENDIX
	. APPENDIX A: PRELIMINARIES
	1.. Notation and basics
	2.. Basics of probability theory
	3.. Fermionic Gaussian states
	4.. Particle-number-preserving unitaries

	. APPENDIX B: STRUCTURE OF t-DOPED GAUSSIAN UNITARIES AND STATES
	1.. Compression of t-doped Gaussian unitaries and states
	2.. Compression of t-doped Gaussian particle-number-preserving unitaries
	3.. Circuit complexity of t-doped Gaussian unitaries and states
	4.. t-compressible Gaussian states

	. APPENDIX C: TOMOGRAPHY ALGORITHM
	1.. Useful lemmas and subroutines
	2.. Joining the pieces: proof of correctness

	. APPENDIX D: TESTING t-COMPRESSIBLE STATES
	1.. Upper bound on the trace distance from the set of t-compressible states
	2.. Lower bound on the trace distance from the set of t-compressible states
	3.. Testing the Gaussian dimension of a state

	. APPENDIX E: PSEUDORANDOMNESS FROM T-DOPED GAUSSIAN STATES AND TIME-COMPLEXITY LOWER BOUND
	1.. t-doped Gaussian states cannot be learned in polynomial time in t
	2.. Learning ((n))-doped Gaussian states is hard

	. APPENDIX F: GENERALIZATION TO THE MIXED-STATE SCENARIO AND NOISE-ROBUSTNESS OF THE ALGORITHM
	1.. Tomography of approximately t-compressible states

	. APPENDIX G: DETAILS OF NUMERICAL SIMULATIONS
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


