
Adapting unconstrained spiking neural networks to explore the effects of time
discretization on network properties

The effects of time-discretization on spike-based backpropagation as opposed to membrane-potential
backpropagation

Lubov Chalakova1

Supervisor(s): Nergis Tomen, Aurora Micheli

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Lubov Chalakova
Final project course: CSE3000 Research Project
Thesis committee: Nergis Tomen, Aurora Micheli, Lilika Markatou

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The promise of Artificial Neural Networks has
lead to their immense usage intertwined with
concerns over energy consumption. This has led
to development of alternatives, such as Spiking
Neural Networks (SNNs), which allows their
implementation on neuromorphic hardware. In
effect, the network must be time discretized.
SNNs learn through backpropagation, similarly
to ANNs, where two main methods exist:
spike-based backpropagation and backpropagation
through time. This study investigates and
compares the effect of varying timesteps on the
convergence rate of BATS, an example of spike-
based backpropagation, and of SLAYER - an
example of backpropagation through time on the N-
MNIST and MNIST dataset. The results conclude
that BATS withstands growing timestep sizes.
Although SLAYER maintains a good performance
for small timestep sizes, it seems to self-destruct as
they grow.

1 Introduction
Artificial Neural Networks have gained immense popularity
due to their state of the art performance and multitude
of application domains. Concerns over high energy
consumption [8], however, drive the development of efficient
alternatives, one of which are Spiking Neural Networks
(SNNs). SNNs are a biologically plausible neural network
models which enhance energy efficiency by transmitting
information through binary spikes as opposed to analogue
activation, thus enabling efficient deployment of neural
networks on neuromorphic hardware [2], such as SpiNNaker
and Loihi [4].

The state of spiking neurons is represented by membrane
potential and is modeled by differential equations dependent
on time and incoming spikes. These differential equations
are difficult to solve analytically, hence a numerical method
through a sequence of time steps is needed. This approach,
however, affects the accuracy of the model [13].

Recent studies analyze architectural choices and models of
SNNs and their effect on training. An important aspect is
backpropagation, which enables the network to learn from
errors. Dampfhoffer et al. has successfully compiled a
survey comparing backpropagation techniques [3], where
three main categories of backpropagation mechanisms can be
identified. ANN-to-SNN mechanisms involve first training
an ANN through a respective backpropagation mechanisms
and then transferring the weights to an SNN model. In
spike-based backpropagation mechanisms, learning occurs
only when there is a spike in the output layer. Lastly,
in BackPropagation Through Time (BPTT) mechanisms,
errors are backpropagated on every timestep. The survey,
however, alike a large majority of other studies, investigates
constrained SNNs, where neurons may fire at most once.
Unconstrained SNNs, which allow neurons to fire multiple
times, are rarely explored, despite evidence suggesting a
higher convergence rate [11].

Therefore, a research gap can be identified in the study of
backpropagation of unconstrained SNNs. Thus, this paper
compares the effect of time-discretization on spike-based
mechanisms, as introduced in the BATS model [1], and a
Backpropagation Through Time mechanism, as implemented
in SLAYER [12].

Thus this paper answers the research question What
is the effect of time discretization on spike-based
backpropagation as opposed to backpropagation through
time? The following hypothesis was formulated in response:
The convergence rate will increase in both models as the
timestep size grows, but the increase will be more noticeable
in spike-based models as they depend on exact spiking times.

The hypothesis is tested by comparing the effects of
varying time-step sizes on BATS and SLAYER. While both
enable the training of SNNs with continuous time dynamics,
they differ in their specific methodologies. BATS emphasizes
the temporal precision of spike timing, whereas SLAYER
introduces error reassignment to enable backpropagation
through spikes. Both models are modified to allow the
simulation of different timestep sizes and the propagation
mechanisms are adjusted accordingly as described in section
3 and 2. The difference in training convergence rate is derived
for different time-steps on the N-MNIST dataset. Further
details on the experimental set-up and results can be found in
section 4. Subsequently, a comparative analysis is conducted
of the effects of different time-steps on the convergence rate
of both models as discussed in section 5.

2 Preliminaries
2.1 Introducing the CuBa-LIF neuron
Defining The CuBa-LIF Neuron
Spiking neurons are the building units of a Spiking neural
network. This paper develops its analysis on the Current-
Based Leaky Integrate and Fire Neuron (CuBa-LIF) [6]. It
is chosen as it is a common building block of both SLAYER
and BATS and can be easily adapted to various network
architectures and learning algorithms.

The CUBA LIF neuron model is characterized by two
values: the neuron current and the neuron membrane
potential, both of which decrease exponentially over time
until they reach a steady state. Unlike other neuron models
where the membrane potential experiences a discontinuous
jump when a spike is received, the CUBA LIF model raises
the membrane potential in a continuous manner. This
smooth transition allows for more accurate representation and
analysis at varying temporal resolutions, ensuring that the
behavior of the neurons remains consistent across different
timesteps.

The membrane potential u and post-synaptic current I for
neuron j on layer l are described in Equations 1 and 2 [1]:

dI(l,j)

dt
= − 1

τs
I(l,j)(t) +

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

δ(t− t(l−1,i)
z )

(1)

1



du(l,j)

dt
= −1

τ
u(l,j)(t) + I(l,j)(t)− θδ(u(l,j)(t)− θ) (2)

where

δ(x) =

{
+∞ if x = 0

0 otherwise

is the Dirac delta function.
Equation 1 models how the post-synaptic current I decays

exponentially over time and gets instantaneously increased
by incoming spikes from connected neurons. τs, which is the
synaptic time constant, denoting the factor of decay for the
post-synaptic current. An increment is caused by a received
spike at synapse i of a neuron j by an amount w(l)

(i,j), which
denotes the strength of the synaptic connection. The equation
updates I based on each synaptic connection of the current
neuron j and based on the input spikes receives from each
synapse. N (l) denotes the number of neurons on layer l and
n(l,j) denotes the number of spikes fired by neuron j of layer
l. The kth spike fired by a neuron is denoted by t

(l,j)
k .

Equation 2 describes how the membrane potential u
evolves over time, decays, and responds to input currents,
incorporating the neuron’s firing mechanism. u decays over
time with a factor based on τ , the membrane time constant.
The potential increases every time an input spike is received
as determined bu the post-synaptic current. If the membrane
potential reaches a threshold value θ, the neuron fires and the
membrane potential undergoes a soft reset.

SRM Form of the CuBa-LIF Neuron
The Spike Response Model (SRM) is a generalization of the
Leaky Integrate and Fire model where parameters depend
on the time passed from the last output spike produced by
the neuron. This form is used for analysis and derivation
of gradients due to its explicit dependence on time and the
separation of the effect of input spikes (through kernel ϵ)
and of the neuron’s own firing (through kernel η)[5]. It
is introduced here for the sake of better understanding the
derivation of both backward mechanisms, as well as the steps
taken for their discretization.

The SRM form of a neuron’s membrane potential is defined
in Equation 3:

u(l,j)(t) =

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

ϵ(t− tl−1,i
z )−

n(l,j)∑
z=1

η(t−t(l,j)z )

(3)
As outlined by [1], the CuBa-LIF neuron can be expressed
in SRM form by defining ϵ and η as Equations 4 and 5
respectively:

ϵ(t) = Θ(t)
ττs

τ − τs

[
exp

(
−t
τ

)
− exp

(
−t
τs

)]
(4)

η(t) = Θ(t)θ exp

(
−t
τ

)
(5)

where Θ(t) is the Heaviside step-function. These definitions
are derived by equating Equations 2 and 3.

2.2 The SLAYER Model: BackPropagation
Through Time

Spike LAYer Error Reassignment (SLAYER) [12] is a general
method for backpropagation employing temporal error credit
assignment, where credit is distributed back through layers
and through time. The weights are updates on every timestep
based on the spike events observed up to that point.

SLAYER is implemented using the Time-discretized
CuBa-LIF neuron introduced in section 3.2. The
backpropagation mechanisms is derived from the SRM
Model of the CuBa-LIF neuron as expressed in equation 3.
The gradient term in layer l for weight between neuron i in
layer l and neuron j in layer l + 1 is defined with a sampling
time T as follows:

∂E

∂w
(l)
i,j

= T

Ns∑
m=0

a(l,i)[m]

Ns∑
n=m

∂L[n]

∂u(l+1,j)[m]
(6)

where

a(l,i)[t] = ϵ(

n(l−1,i)∑
z=1

δ(t− t(l−1,i)
z )) (7)

and E is the loss function calculated over the interval [0, T ],
whereas L[t] is the loss at time instance t. Ns denotes the
total number of samples in the period [0, T ]. ϵ is defined in
Equation 4.

Although not explicitly derived in the paper, the SLAYER
change of weight is performed using the ADAM gradient
descent [7].

2.3 The BATS Model: Spike-driven
Backpropagation

The forward propagation of the BATS model is defined based
on the continuous CuBa-LIF This paper discretized the model
as described in section 3.2.

The BATS model generalizes the approach taken by
Fast&Deep by allowing neurons to fire multiple times and
constructing a backpropagation mechanism accordingly [1].
The equations are derived from the SRM form of a CuBa-LIF
neuron as defined in Equation 3. By setting τ = 2τs, a closed
form solution can be derived of the form

0 = −a(l,j)k exp

(
−
t
(l,j)
k

τ

)2

+ b
(l,j)
k exp

(
−
t
(l,j)
k

τ

)
− c

(l,j)
k

(8)
where

a
(l,j)
k :=

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

(
t
(l,j)
k − t(l−1,i)

z

)
exp

(
t
(l−1,i)
z

τs

)

b
(l,j)
k :=

N(l−1)∑
i=1

w
(l)
i,j

n(l−1,i)∑
z=1

(
t
(l,j)
k − t(l−1,i)

z

)
exp

(
t
(l−1,i)
z

τ

)

− ϑ

τ

n(l,j)∑
z=1

(
t
(l,j)
k − t(l,j)z

)
exp

(
t
(l,j)
z

τ

)

2



c := c
(l,j)
k =

ϑ

τ
.

Equation 8 yields the following solution:

t
(l,j)
k = τ ln

(
2a

(l,j)
k

b
(l,j)
k

+ x
(l,j)
k

)
(9)

where x(l,j)
k =

−b
(l,j)
k ±

√
b
(l,j)

k2 −4a
(l,j)
k c

(l,j)
k

2a
(l,j)
k

. Thus, it is possible

to infer the neuron spike trains in an event based manner.
Finally, BATS defines the change of weight ∆w

(l)
i,j as the

sum of all errors δ(l,j)k applied to their corresponding spike k
derivatives:

∆w
(l)
i,j =

n(l,j)∑
k=1

δ
(l,j)
k

∂tl,jk

∂w
(l)
i,j

where

∂tl,jk

∂w
(l)
ij

=

n
(l−1)
i∑
z=1

Θ(t
(l,j)
k − t(l−1,i)

z )

[
f
(l,j)
k exp

(
t
(l−1,i)
z

τs

)

−h(l,j)
k exp

(
t
(l−1,i)
z

τ

)]
and

f
(l,j)
k :=

∂t(l,j)k

∂a(l,j)k
=

τ

a
(l,j)
k

[
1 +

c

x
(l,j)
k

exp

(
t
(l,j)
k

τ

)]
,

h
(l,j)
k :=

∂t
(l,j)
k

∂b
(l,j)
k

=
τ

x
(l,j)
k

3 Methodology
This section introduces the model used to perform
the experiment and outlines the steps taken to apply
time discretization on the CuBa-LIF neuron and adapt
the SLAYER and BATS backpropagation mechanisms
accordingly.

3.1 Defining The Timestep
This paper analyzes the effect of timestep size on network
properties. However, in different models, the implementation
of time can vary.

SLAYER is a time-driven model, which means the model
works at clock intervals. The time is counted in terms
of algorithmic timesteps, where one timestep refers to one
iteration where the neurons are updated and the spikes are
checked. Therefore, the timestep size represents the number
of iterations passed between network updates.

BATS, on the other hand, is event-driven. The network is
updated whenever a spike event is registered in the output
layer at a certain time measured in seconds. Therefore,
the timestep size represents the number of seconds passed
between network updates.

Such discrepancy in definition and implementation must
be accounted for in order to draw meaningful comparisons

between the two models. One approach is to use timebins.
Time bins discretize time into consistent intervals, such as
milliseconds, regardless of whether the models operate in
algorithmic timesteps or real-time seconds.

This paper derives equations in terms of timestep size.
In terms of implementation, however, the timestep size is
determined based on the desired number of timebins for a
given batch. The timestep size for BATS is found as so:

timestep size =
simulation time

#time bins

where simulation time denotes the total total duration over
which the neural network is simulated.

The timestep size for SLAYER can be calculated as so:

timestep size =
sample length

#time bins

where sample length is the duration for which data is sampled
and binned into. This directly affects the number of iterations
as each iteration evaluates one timebin. Thus, it has a notion
similar to the simulation time.

3.2 The Time-Discretized CuBa-LIF Neuron
To simulate the functions of continuous models on hardware
operating on discrete time intervals, approximation in
discrete timesteps is necessary. The Lava software
framework1, which contains the implementation of the
SLAYER architecture, defines a time-discretized version of
the CuBa-LIF neuron based on Loihi [4] according to the
following equations:

I(l,j)[t] = (1− α)I(l,j)[t− 1] +

N(l−1)∑
i

w
(l)
i,js[t] (10)

u(l,j)[t] = (1− β)u(l,j)[t− 1] + I(l,j)[t] + bias (11)

where s[t] is a vector representing the binary spike inputs
from all pre-synaptic neurons at time t. α and β are decay
constants which can be substituted by the membrane and
synaptic time constants − 1

τ and − 1
τs

respectively to better
model equations 2 and 1. Additionally, the model considered
uses no bias, so the term can be omitted.

The membrane potential is reset whenever the neuron emits
a spike according to the following equation:

u(l,j)[t] = u(l,j)[t](1− s(l,j)o [t]) (12)

where so[t] is a binary function defining whether the neuron
has fired at time t or not. The equation for membrane
potential used in this experiment embeds soft reset by
redefining u[t] as so:

u(l,j)[t] = (1− 1

τ
)u(l,j)[t− 1] + I(l,j)[t]− θS[t] (13)

where
S[t] = Θ(u(l,j)[t]− θ) (14)

1https://github.com/lava-nc/lava-dl

3



and Θ is the Heaviside side-step function. This omits the need
for equation 12.

Additionally, the experiment strives to determine the effect
of timestep size on the network. Therefore, timestep size ∆t
is embedded as so:

I(l,j)[t] = (1− ∆t

τs
)I(l,j)[t−∆t] +

N(l−1)∑
i

w
(l)
i,js[t] (15)

u(l,j)[t] = (1− ∆t

τ
)u(l,j)[t−∆t] + I(l,j)[t]− θS[t] (16)

Lastly, the neuron emits a spike when the following condition
is satisfied:

u(l,j)[t] > θ (17)
This implementation is introduced in both the BATS and

SLAYER models.

3.3 The Time-Discretized SLAYER Model
SLAYER is a clock-driven method, meaning the model
is updated at every algorithmic timestep. In the Lava-
dl implementation of SLAYER, the default size of each
algorithmic timestep is 1. This means that one timestep
corresponds to the time required to update every neuron in
the system consecutively. In SLAYER and other time-driven
systems, the timestep size refers to the number of algorithmic
timestepes defined withing an interval.

The code has been modified to allow for tuning the
timestep size ∆t as illustrated by Algorithm 1. Whereas the
original algorithm calculates a gradient for every timestep per
neuron, the modified version calculates the gradient only at
the correct timestep intervals. To maintain code stability, on
timesteps indivisible by the desired timestep size, the gradient
value of the previous timestep is passed along.

It can be noted that this backpropagation mechanism
functions on the basis of timesteps. A change in timestep
of size ∆t will affect the total number of samples Ns, thus no
further derivation is required.

The backpropagation method and the implementation of
the CuBa-LIF neuron has been implemented according to the
equations in section3.2 2.

3.4 The Time-Discretized BATS Model
In an event-driven model, such as BATS, the output layer will
be checked for spikes in intervals of the stepsize ∆t. Thus,
a spike will be detected within a time dl,jk after it has fired.
Therefore, if a spike occurs at time tl,jk , then the discretized
spike-time t

(l,j)
∼k can be expressed as so:

t
(l,j)
∼k = t

(l,j)
k + d

(l,j)
k (18)

where
d
(l,j)
k = ∆t− mod (t

(l,j)
k ,∆t) (19)

The new spike-time calculation must be taken into account
when calculating the gradient used during backpropagation.
This paper utilizes a straight-through estimator (STE) [9],

2http://repository.tudelft.nl/

which propagates the same gradient from the output to the
input of the neuron. Thus, although the values used during
forward propagation are the discretized spikes t

(l,j)
∼k , the

gradient considered during backpropagation remains ∂tl,jk

∂w
(l)
ij

.

Algorithm 1 The modified SLAYER model.

1: procedure TRAIN-ORIGINAL(data, dt)
2: data← data in batches
3: for batch in data do
4: Forward-Propagation(batch,dt)
5: Calculate loss for batch
6: Backward-Propagation(batch,dt)
7: end for
8: end procedure
9:

10: procedure FORWARD-PROPAGATION(batch, dt)
11: for neuron in network do ▷ network is an attribute
12: for timestep in timesteps passed do
13: if timestep mod dt ̸= 0 then
14: record old neuron state
15: Do not check for spiking
16: end if
17: Update neuron state
18: Check if neuron is spiking
19: end for
20: end for
21: end procedure
22:
23: procedure BACKWARD-PROPAGATION(batch, dt)
24: for each time step n from last to first do
25: if timestep mod dt ̸= 0 then
26: Calculate gradient for timestep
27: else
28: Carry over previous gradient
29: end if
30: end for
31: end procedure

3.5 Dataset
MNIST
The MNIST dataset is a frequently seen benchmark in neural
network evaluations. It contains images of handwritten digits
split into a training set of 60,000 examples, and a test set of
10,000 examples. The images have shape 28x28.

This training set is used to evaluate the time-discretized
BATS algorithm. This decision was made as BATS has been
implemented to work well on static image data.

N-MNIST
N-MNIST [10] is a widely used dataset in SNN evaluation
and study methods. It is a spiking version of the original
MNIST dataset, also consisting of 60 000 training and 10 000
testing samples captured at a scale 28x28 pixels. The original
static MNIST images were presented to a neuromorphic
vision sensor that generated a stream of spikes in response
to the visual stimuli.

4



The N-MNIST dataset is used to train and evaluate
the discretized SLAYER model. Using N-MNIST allows
SLAYER to leverage its strengths in processing and learning
from spike-based temporal data. Additionally, N-MNIST
provides a direct exploration of temporal dynamics due to its
inherent temporal structure.

An attempt was made to train BATS on this dataset.
However, changes beyond the scope of the project were
required to make the necessary changes.

3.6 Convergence Rate Metric
Convergence Rate (CR) is a metric which illustrates the speed
with which the model increases its accuracy and learns. It is
derived by calculating the area under the curve of an accuracy
vs. epochs graph. A higher convergence rate denotes that the
network is learning more efficiently.

This paper looks at the convergence rate achieved during
training. The area under the curve is calculated using the
Python function trapz from the scipy library.

In this paper, the convergence rate is calculated for the non-
discretized versions of the models. This is be considered as
the benchmark convergence rate. Next, the convergence rate
data is derived for each timestep size - these are the data
points. In order to measure the change in convergence rate
caused by the timestep size, the benchmark is subtracted from
each data point and then normalized as so:

change in CR =
(data point CR)− (benchmark CR)

(benchmark CR)

4 Experimental Setup and Results
4.1 Experimental Set-up
The experiment is carried out on a Lenovo Yoga Creator
7 laptop with 16GB Ram, 2.60GHz Intel(R) Core(TM) i7
processor, NVIDIA GeForce GTX 1650 GPU and Windows
11. The Lava-dl SLAYER Python library3 and the bats
repository4 were used as a basis for implementation.

Model Set-up
The two networks consist of an input layer, one hidden layer
and an output layer. The input layer of SLAYER has 34*34*2
neurons, which is the input size of the N-MNIST dataset on
which it is trained. The input layer of BATS consists of 28x28
neurons, which is the input size of the MNIST dataset. Both
networks have 512 neurons in the hidden layer and 10 output
neurons. Weight normalization is applied on all layers and
synaptic delays are included.

SLAYER uses the Spike Rate Loss function, whereas
BATS uses the Spike Count Class Loss function. Out of the
loss function options in both models, these two loss functions
were most suitable for the task and had the greatest overlap.
Both models employ ADAM gradient descent.

The two models were instantiated with equal parameters
where possible. However, changes were made in values such
as thresholds and time constants for the sake of enabling the
network to train. The parameter values differentiate in cases

3https://github.com/lava-nc/lava-dl
4https://github.com/Florian-BACHO/bats

Model Parameter Name Parameter Value
Both Batch size 32

Output threshold θ 1.25
membrane time constantτ 0.26
ADAM learning rate 0.001
Epochs 15

SLAYER Hidden threshold θ 1.25
Synaptic time constant τs 0.25
tau grad 0.03
Scale grad 3
Loss - true rate 0.2
Loss - false rate 0.03
Sample time 300

BATS Spike Buffer Size 30
Hidden threshold θ 0.2
Synaptic time constant τs 0.13
Learning rate decay epoch 10
Learning rate decay factor 1.0
Loss function False Target 3
Loss function False Target 15
Dataset time window 0.1
Dataset max value 255

Table 1: The hyper-parameters of the models.

when setting them as equal prevented the non-discretized
benchmark model from training. For further information
about the parameters refer to Table 1.

Experiment Variables
The convergence rate of each model was derived for 5
different timebin sizes. The model was ran three times per
timebin size. The tested timebin sizes and their corresponding
timestep sizes can be found in table ??.

Timebin size BATS timestep ∆t SLAYER timestep ∆t
150 0.002 2.0
75 0.004 4.0
50 0.006 6.0
37 0.008 8.0
30 0.010 10.0

Table 2: The independent variables of the experiment. The timebin
sizes selected for the experiments and the corresponding timestep
size for each model.

4.2 Results
The experiment has been ran on SLAYER and BATS.

Time bin SLAYER Avg. CRC BATS Avg. CRC
150 -0.0067 0.4386
75 -0.0860 0.1477
50 -0.1924 - 0.0027
37 -0.7071 -0.0041
30 -0.8970 -0.0605

Table 3: The change in convergence rate (CRC) for each of the
models for each timebin.

5



Figure 1: A plot of change in convergence rate vs time bin sizes for
the SLAYER algorithm.

Figure 2: A plot of change in convergence rate vs time bin sizes for
the BATS algorithm.

5 Discussion
This section discusses the results drawn from the experiment.

5.1 SLAYER
The result for SLAYER shown in 1 demonstrate that change
in convergence rate decreases logarithmically as the number
of time bins grows. This indicates that the more timebins
there are, i.e. the more refined the time is, the closer
the performance to the baseline. This makes sense since
a larger number of timebins means that the timestep is
smaller. A smaller timestep size, in effect, is a more closer
approximation to continuous time.

Furthermore, it must be noted that 50 or more timebins
(meaning timestep sizes less 6) are very close to the
benchmark performance. Afterwards there is a sudden drop
to a low value which indicates that the network achieves
minimal performance and no longer learns. This could be

explained by the fact that a lot of information is not taken
into consideration when the timestep size is so large.

Lastly, it can be noticed that the convergence rate change is
negative for all data points. Hence, the time discretized model
is always slower to converge than the benchmark continuous
model.

5.2 BATS
The result for BATS shown n 2 demonstrate an interesting
dynamic. When there are more than 75 timebins, the
model appears to converge faster than the baseline model
with a significant difference. This contradicts the initial
hypothesis of this paper. A possible explanation is that
time discretization in for the MNIST dataset filters some
noise present in the data. Another possibility is that for low
timestep values, the spike time approximation is accurate.

For less than 75 timebins, however, the change in
convergence rate become negative and the model learns
slower than the baseline. It can be explained by the
less accurate approximation of continuous time where the
approximated gradient no longer accurately represents the
true gradient. Regardless, the change in convergence rate
remains minimal.

5.3 Comparing BATS and SLAYER
The results lead to a conclusion opposing the original
hypothesis. Whereas it was initially assumed that SLAYER
would demonstrate a less drastic change in convergence rate
due to its implementation based on timesteps, the results
show that the opposite holds. Moreover, BATS remains close
to the benchmark performance even for very large timestep
sizes, whereas SLAYER seems to stop learning. Overall,
BATS seems to be more resilient to time-discretization than
SLAYER even for a small amount of timebins. BATS further
indicates a possible improvement in performance.

6 Responsible Research
To ensure reproducibility of the methods, the selected model
and its configuration have been explained in detail with
additional details regarding the system it was run on. The
modified code is publicly available and the dataset is open-
source.

To ensure ethical research, all sources have been properly
cited and for a given piece of information, the original source
has been examined and referenced.

7 Conclusions and Future Work
This paper investigated and compared the effect of varying
timestep sizes on the change in convergence rate of Spiking
Neural Networks employing event-driven backpropagation
as opposed to backpropagation through time. The models
SLAYER and BATS where used to represent a spike-based
model and a time-driven model respectively. These models
were time-discretized and trained on N-MNIST and MNIST
respectively where hyperparameters were aligned as much as
possible. The following conclusions can be drawn from the
results:

6



• The SLAYER model maintains a convergence rate close
to the benchmark for small timestep sizes. However,
once the timestep size grows larger than 6, the model
appears to self-destruct.

• The BATS model maintains a close of better learning
rate in comparison to the benchmark performance. This
disproves the initial hypothesis which assumed the
opposite.

7.1 Further research
This investigation can be extend in the following ways:

• More backpropagation mechanisms. This study tested
one example of each back-propagation technique -
SLAYER for backpropagation through time and BATS
for spike-based backpropagation. Other techniques can
be implemented and compared to ascertain a stronger
relation between the effect of timestep size and the
backpropagation model.

• More datasets. More datasets can be used to train and
evaluate these models. Efforts can be made to input the
same dataset to both models.

• More similar architecture. Although attempts were
made to keep the architecture of the models as close
together as possible, it must be noted that there are
many differences, which could have caused the drstic
difference in performance of the two models.

References
[1] Florian Bacho and Dominique Chu. Exploring Trade-

Offs in Spiking Neural Networks. Neural Computation,
35(10):1627–1656, 09 2023.

[2] Manon Dampfhoffer, Thomas Mesquida, Alexandre
Valentian, and Lorena Anghel. Are snns really more
energy-efficient than anns? an in-depth hardware-aware
study. IEEE Transactions on Emerging Topics in
Computational Intelligence, 7(3):731–741, 2023.

[3] Manon Dampfhoffer, Thomas Mesquida, Alexandre
Valentian, and Lorena Anghel. Backpropagation-based
learning techniques for deep spiking neural networks:
a survey. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–16, 2023. hal-04064177.

[4] Mike Davies, Narayan Srinivasa, Tsung-Han Lin,
Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam,
Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew
Lines, Ruokun Liu, Deepak Mathaikutty, Steven
McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan
Venkataramanan, Yi-Hsin Weng, Andreas Wild,
Yoonseok Yang, and Hong Wang. Loihi: A
neuromorphic manycore processor with on-chip
learning. IEEE Micro, 38(1):82–99, 2018.

[5] Wulfram Gerstner and Werner M. Kistler. Formal
spiking neuron models, page 93–146. Cambridge
University Press, 2002.

[6] Kriener L. Baumbach A. et al. Goltz, J. Fast and energy-
efficient neuromorphic deep learning with first-spike
times. Nat Mach Intell 3, page 823–835, 2021.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2017.

[8] Da Li, Xinbo Chen, Michela Becchi, and Ziliang
Zong. Evaluating the energy efficiency of deep
convolutional neural networks on cpus and gpus. In
2016 IEEE International Conferences on Big Data and
Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and
Communications (SustainCom) (BDCloud-SocialCom-
SustainCom), pages 477–484, 2016.

[9] Z. Liu, K-T. Cheng, D. Huang, E. P. Xing, and
Z. Shen. Nonuniform-to-uniform quantization: Towards
accurate quantization via generalized straight-through
estimation. pages 4942–4952, 2022.

[10] Garrick Orchard, Gregory Cohen, Ajinkya Jayawant,
and Nitish Thakor. Converting static image datasets
to spiking neuromorphic datasets using saccades.
Frontiers in Neuroscience, 9(437), October 2015. Open
Access.

[11] Michael Pfeiffer and Thomas Pfeil. Deep learning
with spiking neurons: Opportunities and challenges.
Frontiers in neuroscience, 12:774, 2018.

[12] Sumit Bam Shrestha and Garrick Orchard. Slayer:
Spike layer error reassignment in time. 2018.

[13] Sergio Valadez-Godı́nez, Humberto Sossa, and Raúl
Santiago-Montero. The step size impact on the
computational cost of spiking neuron simulation. In
2017 Computing Conference, pages 722–728, 2017.

7


	Introduction
	Preliminaries
	Introducing the CuBa-LIF neuron
	Defining The CuBa-LIF Neuron

	The SLAYER Model: BackPropagation Through Time
	The BATS Model: Spike-driven Backpropagation

	Methodology
	Defining The Timestep
	The Time-Discretized CuBa-LIF Neuron
	The Time-Discretized SLAYER Model
	The Time-Discretized BATS Model
	Dataset
	Convergence Rate Metric

	Experimental Setup and Results
	Experimental Set-up
	Model Set-up

	Results

	Discussion
	SLAYER
	BATS
	Comparing BATS and SLAYER

	Responsible Research
	Conclusions and Future Work
	Further research


