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Abstract
The posed question arises for instance in regional gravity fieldmodelling usingweighted least-squares techniques if the gravity
field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and
are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with
a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with
the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the
standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not
involve the inverse noise covariance matrix, and an estimator based on Rao’s unified theory of least-squares. Our analysis was
based on a numerical experiment involving a set of height anomalies synthesised from the GGMGOCO05s, which is provided
with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation
parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here,
we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences
between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares
estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one
expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of
the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.

Keywords Local quasi-geoid · Least-squares · Global gravity field model · Noise covariance matrix · Regularisation · Unified
theory of least-squares · Spherical radial basis functions

1 Introduction

In local gravity field modelling, a global gravity field model
(GGM) may be considered as another noisy dataset next
to the local datasets such as terrestrial and shipboard grav-
ity anomalies, airborne gravity disturbances, radar altimeter
deflections of the vertical or along-track height anomaly dif-
ferences. In Stokes-based approaches, part of the information
in the form of noise degree variances is routinely used for the
modification of the Stokes kernel (e.g. Sjöberg 1980, 1981;
Wenzel 1981). Sjöberg (2005, 2011) extended the formalism,

B R. Klees
r.klees@tudelft.nl

1 Delft University of Technology, Stevinweg 1, 2628 CN Delft,
The Netherlands

which now allows to include a full noise covariance matrix
of the spherical harmonic coefficients.

So far, no publication is known to the authors, which
indeed used a full noise covariance matrix of the GGM in
local gravity field modelling. The only exception is Klees
et al. (2017). This may be explained among others by the fact
that in the past, a full noise covariance matrix was not avail-
able or was considered as being not reliable enough. This has
changed recently with the latest generation of GGMs, which
are mainly based on low-low satellite-to-satellite (ll-SST)
tracking data of the Gravity Recovery and Climate Experi-
ment (GRACE)mission, satellite gravity gradiometry (SGG)
data of the Gravity field and steady-state Ocean Circulation
Explorer (GOCE) mission, and high-low satellite-to-satellite
(hl-SST) tracking data of GRACE, GOCE and many other
low-earth orbiters. Post-fit residual analysis (e.g. Farahani
et al. 2013), has become a powerful tool to improve the
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noise model of the satellite data. Numerically efficient algo-
rithms were developed, which propagate the full data noise
covariance matrices into the estimated spherical harmonic
coefficients of the GGM. One example is GOCO05s (Mayer-
Gürr et al. 2015), which is complete to degree 280 and
provided with a full noise covariance matrix. This matrix
has been propagated using the law of covariance propagation
from the noise covariance matrices of the individual datasets
used to compute GOCO05s. The noise covariance matrices
of the individual datasets are based on a post-fit residual anal-
ysis and modelled using empirical covariance functions and
ARMA models, respectively, depending on the dataset.

When estimating a local model of the disturbing potential
using least-squares techniques, there are basically two pos-
sibilities to include ll-SST, hl-SST, and SGG data: i) using
these data directly as observations (e.g. Eicker 2008; Eicker
et al. 2014; Bucha et al. 2015; Naeimi and Bouman 2017)
or ii) using the spherical harmonic coefficients of the GGM
(e.g. Schmidt et al. 2007; Klees et al. 2017). In the former
case, the noise covariancematrices of the satellite datasets are
well-conditioned. However, dealing with original data may
increase the numerical complexity of the parameter estima-
tion significantly, in particular when using ll-SST data of the
GRACE satellite gravity mission with a proper noise model.
However, it also comes at a price. The spherical harmonic
coefficients cannot be used directly as observations in local
gravity field modelling (Klees et al. 2017). Instead, grav-
ity field functionals (e.g. disturbing potential values, height
anomalies, or gravity disturbances) need to be synthesised
from the spherical harmonic coefficients at the Earth’s sur-
face or at altitude. The associated noise covariance matrix
has to be computed from the noise covariance matrix of the
spherical harmonic coefficients using the law of covariance
propagation.

Propagating the noise covariance matrix of spherical har-
monic coefficients, into a set of gravity field functionals over
a local area at the Earth’s surface or at altitude provides a
noise covariance matrix that has a gradually decreasing sin-
gular value spectrumwithout any noticeable gap (cf. Sect. 2).
Depending on the point density, the noise covariance matrix
may be extremely ill-conditioned, meaning that the spectral
norm condition number is much larger than ε−1, where ε

is the relative rounding error unit of IEEE 754 double preci-
sion arithmetic. In this study, we investigate three approaches
to deal with the ill-conditioned noise covariance matrix: (i)
applying Tikhonov regularisation (Tikhonov 1963) to the
noise covariancematrix in combinationwith the standard for-
mula for the weighted least-squares estimator; (ii) using an
alternative formula for the weighted least-squares estimator,
which does not require to invert the noise covariance matrix
(Grafarend and Schaffrin 1993); and (iii) using an estima-
tor based on the theory of unified least-squares (Rao 1971,

1973, 1978), which was designed among others to deal with
a rank-deficient noise covariance matrix.

The reminder of the paper is organised as follows: in Sect.
2, we investigate several parameters, which have an influence
on the condition number of the noise covariance matrix of
gravity field functionals when propagated from a full noise
covariance matrix of spherical harmonic coefficients of a
state-of-the-art GGM. It appears that the condition number
of the noise covariance matrix increases exponentially with
the density of the points at which the gravity field functionals
are synthesised. In Sect. 3, we investigate the minimum point
density, which is required to reduce the functional model
error below the noise level in the data. In Sect. 4, we intro-
duce the three methods investigated in this study. Aspects
such as the experimental setup, and the choice of various
regularisation parameters each method requires to be made
are the subject of Sect. 5. In Sect. 6, we present and discuss
the results of the numerical experiments. Section 7 provides
a summary and the conclusions.

2 The condition number of the noise
covariancematrix of a gravity field
functional synthesised from a
satellite-only GGM

Whenpropagating the full noise covariancematrix of a spher-
ical harmonic model of the Earth’s gravity field into gravity
field functionals using the law of covariance propagation,
the condition number of the gravity field functionals’ noise
covariancematrix essentially depends on a number of param-
eters, among others, the density of the data points, the size of
the data area, the maximum degree of the GGM, the altitude
of the data points, and the type of gravity field functional.

2.1 Impact of the point density

Figure 1depicts the singular values of noise covariancematri-
ces of height anomalies, which were synthesised at the nodes
of Reuter grids of varying density. The Reuter grid (Reuter
1982) is one of the point distributions frequently used in
SRBF modelling (e.g. Eicker 2008). The grid width along
the meridians is constant. Along the parallels, the number
of grid points decreases with increasing latitude to achieve
an equidistant distribution on the sphere. The Reuter grid
knows one control parameter, denoted N , which determines
the distance between the grid nodes, i.e. the point density. The
number of grid nodes is close to but does not exceed 2+ 4

π
N 2

over the whole surface of the sphere (Reuter 1982; Freeden
et al. 1998). The grids were located on the Earth’s surface
and covered an area bounded by 44◦–68◦N and 11◦W–15◦E.
Each height anomaly noise covariance matrix was computed
by covariance propagation from the full noise covariance
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Fig. 1 Singular values in units of square metres of noise covariance
matrices of height anomalies on Reuter grids of different densities
(cf. Table 1 for details about the grids). The insert shows the Reuter
grid control parameter N , which controls the point density. A grid
parameter of N provides the minimum number of data points to repre-
sent a spherical harmonic model of the disturbing potential complete to
degree N −1 (cf. Freeden et al. 1998). The noise covariance matrix was
computed using covariance propagation from the full noise covariance
matrix of the unregularised GOCO05s spherical harmonic model com-
plete to degree 200. All computations were done with 38 decimal digits
using the AdvanpixMultiprecision Toolbox forMATLAB, to avoid that
small singular values are computed with large relative errors

matrix of the unregularised GOCO05s spherical harmonic
model complete to degree L = 200. Truncating GOCO05s at
degree 200 makes sense here as beyond that degree the com-
mission error grows exponentially and may quickly attain
values much larger than the uncertainty of local datasets (e.g.
terrestrial gravity anomalies) used in local gravity field mod-
elling. For instance, over the data area defined above, we
found that the average height anomaly noise standard devi-
ation from the unregularised GOCO05s GGM complete to
degree 280 can be modelled as e0.03676L−6.5191 m, which is
2.3 cm at L = 200, but already about 15 cm at L = 250
and more than 40 cm at L = 280. This exponential grow
of the commission error implies that in local gravity field
modelling, it does not make sense to use GOCO05s up to
the maximum degree, except some areas in the world where
terrestrial gravity datasets have an even poorer quality.

Figure 1 and Table 1 reveal that the condition number
increases exponentially with increasing point density. It may
easily exceed 1015, which implies the loss of all significant
digits in IEEE 754 double precision arithmetic when com-
puting its inverse.

The point density needs to be chosenwith care. The results
of Table 1 suggest that a low point density is to be preferred.
On the other hand, the point density must be high enough (i)
to preserve all information contained in the GGM over the
area of interest, and (ii) to guarantee that the error of the local
model of the disturbing potential is negligible compared to
the effect of the data noise. Therefore, in Sect. 3, we will

Table 1 Characteristic numbers of the Reuter grids used in Fig 1 and
the condition number of the noise covariancematrix of height anomalies
synthesised on these grids from the GOCO05s noise covariance matrix
of spherical harmonic coefficients complete to degree 200

N # Points Mean point distance Condition number

200 435 0d54m00s 9.7 · 108
220 516 0d49m05s 6.3 · 1012
240 617 0d45m00s 1.4 · 1016
260 729 0d41m32s 6.6 · 1019
280 834 0d38m34s 7.0 · 1022
300 958 0d36m00s 1.9 · 1027
350 1297 0d30m51s 4.0 · 1034
The gridwas located on the Earth’s surface and covered an area bounded
by 44◦–68◦N and 11◦W–15◦E. The condition numbers were computed
with 38 decimal digits using the Advanpix Multiprecision Toolbox for
MATLAB, to avoid that small singular values are computed with large
relative errors

determine the minimum point density needed to reconstruct
a GGM over a local area of interest with a model error sig-
nificantly below the effect of the data noise.

2.2 Impact of the size of the data area

We also found that the condition number of the data noise
covariance matrix depends on the size of the data area. Over
the range of data areas we investigated (up to a size of
34◦×36◦),we found that the larger the data area, the larger the
condition number. For instance, if the height anomalies were
located on aReuter gridwith N = 240, the condition number
of the height anomaly noise covariance matrix was 4.0 ·1010
for a data area of 49◦−63◦N, 6◦W–10◦E, and increased
to 1.4 · 1016 and 1.9 · 1022 for a data area of 44◦−68◦N,
11◦W–15◦E and 39◦−73◦N, 16◦W–20◦E, respectively. Sim-
ilar condition numbers were obtained when other areas on
the globe were chosen. On the other hand, it is well known
that if the data area is not global, the disturbing potential is
distorted with the largest distortions along the border of the
data area. These distortions, which are usually referred to as
edge effects, reduce towards the centre of the data area (e.g.
Schachtschneider et al. 2010). Hence, to reduce the distor-
tions, the data area has to be chosen larger than the area of
interest. For instance, Naeimi (2013) suggested an extension
of the data area beyond the area of interest by 10,000

Lmin
km

assuming that the data have no energy at spherical harmonic
degrees ≤ Lmin. In our study, we found empirically that an
extension of 5◦ reduces the distortions over the area of inter-
est to a level below 2 mm. This result is independent of the
size of the area of interest as shown in (Schachtschneider
et al. 2010). Hence, only for data areas much smaller than
the one considered in the numerical experiments of Sect. 5,
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the condition number of the noise covariance matrix may be
small enough to allow for a stable computation of the inverse.

2.3 Impact of other parameters

Other parameters which may influence the condition number
of the data noise covariance matrix, comprise the maximum
degree of the GGM, the type of gravity field functional, and
the altitude of the data grid.

The dependency on themaximum degree of the GGMwas
found to be moderate. To understand this result, we must
remember that when increasing the maximum degree of the
GGM, we also have to use a denser dataset. For instance,
whenwe usedGOCO05s complete to degree 200 and located
the data points on a Reuter grid with N = 201, the condition
number was 9.7 · 108. When we used GOCO05s complete
to degree 280 and located the data on a Reuter grid with
N = 281, the condition number increased to 2.6 · 1010. We
obtained similar results when using larger values of N .

The effect of the type of gravity field functionals and
the altitude of the data grid on the condition number of the
data noise covariance matrix appeared to be marginal. For
instance,whenweused gravity disturbances instead of height
anomalies, the condition number increased by a factor of only
4.6; when we used data at an altitude of 250 km instead of
data on the Earth’s surface, the condition number increased
by a factor of only 1.6.

Supported by these results, we will represent the GGM
in terms of height anomalies at points located on the Earth’s
surface, and will use a data area which is 5◦ larger than the
area of interest in Sects. 3, 5, and 6.

3 Model error as function of the data point
density

To investigate the model error as function of the data point
density, we first needed to select a local model of the disturb-
ing potential. Without loss of generality, we used a spherical
radial basis function (SRBF) model. SRBFs have been used
successfully inmany studies of local gravity field and (quasi-)
geoid modelling (e.g. Klees et al. 2008; Eicker 2008; Wit-
twer 2009; Bentel et al 2013; Naeimi 2013; Slobbe 2013;
Lin et al. 2014; Bentel and Schmidt 2016; Lieb et al. 2016;
Bucha et al. 2016; Naeimi and Bouman 2017).

The following experimental setup was chosen. The dis-
turbing potential was set equal to the regularised GOCO05s
spherical harmonic model from degree 151–200. The area
of interest was bounded by 49◦–63◦N and 6◦W–10◦E (i.e.
the size is 1500 × 1000 km). Noise-free height anomalies
were generated on a Reuter grid with control parameter N
located on the Earth’s surface. The latter was represented by
a smoothed version of the General Bathymetric Chart of the

Oceans 2008 (GEBCO_08) grid, a terrain model for ocean
and land with a spatial resolution of 30′′ (www.gebco.net).
The local model of the disturbing potential comprised Pois-
son wavelets of order 3 (Holschneider et al. 2003), which
were truncated at the maximum degree 200 of the disturbing
potential. The poles of the Poisson wavelets were located at a
constant depth beneath the data points. Thoughworking with
truncated Poisson wavelets is not necessary for the experi-
ments of Sect. 5, it is a prerequisite when combining the
GGM dataset with high-resolution local datasets as shown in
(Klees et al. 2017). It ensures spectral consistency between
the GGM dataset and its noise covariance matrix and the
SRBF model of the disturbing potential.

We selected a number of Reuter grids with different con-
trol parameters ranging from N = 201 to N = 350. For
each grid, we generated noise-free height anomalies and
estimated the SRBF model parameters using ordinary least-
squares. We always applied Tikhonov regularisation with a
unit regularisation matrix. The estimated SRBFmodel of the
disturbing potential was used to synthesise height anomalies
on an equal-angular control grid of width 27′00′′ covering
the area of interest, and comprising 1085 grid points. The
differences between them and the height anomalies directly
synthesised from the spherical harmonic coefficients of the
disturbing potential are referred to as “model errors”.

Table 2 shows the statistics of the model errors for various
choices of the Reuter grid control parameter N . For each N ,
the statistics refer to a least-squares solution obtained for a
depth of the Poisson wavelets and a regularisation parameter
providing the smallest model error among a set of candidate
depths and regularisation parameters. As expected, themodel
error decreases with increasing point density. What model
error is acceptable depends on the impact of data noise on
the estimated quasi-geoid model. An indication of the latter
is obtained when propagating the GOCO05s noise covari-
ance matrix into height anomalies. For GOCO05s complete
to degree 200, the height anomaly noise standard deviations
range from 1.6 to 2.7 cm over the area of interest. The max-
imum absolute model error should be significantly smaller
than 1.6 cm. Table 2 shows that the choice N = 240 provides
a maximum absolute model error of 2 mm, i.e. a factor of 8
below the smallest height anomaly noise standard deviation.
Therefore, we used N = 240 in the numerical experiments
of Sect. 5.

The condition number of the height anomaly noise covari-
ance matrix for data on a Reuter grid with N = 240 is
1.4 · 1016 (cf. Table 1). A straightforward inversion of this
matrix would imply the loss of all significant digits in IEEE
754 double precision arithmetic. Reducing the SRBF model
error further would require an even denser grid of height
anomalies, which further increases the condition number
according to Fig. 1 and Table 1. For instance, using a Reuter
grid with N = 350 reduces the model error to 0.2 mm, but
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Table 2 SRBF model error in
terms of height anomalies (in
units of cm) as a function of the
Reuter grid control parameter N

N # Points Distance (km) Min Max Mean RMS

201 435 99 − 6.66 7.24 9.6 · 10−3 1.77

210 470 95 − 3.28 2.93 3.5 · 10−2 0.87

220 516 91 − 0.84 0.68 7.82 · 10−3 0.20

240 617 83 − 0.20 0.19 − 6.4 · 10−4 0.04

260 729 77 − 0.05 0.05 − 3.0 · 10−4 0.01

280 834 72 − 0.03 0.03 − 1.7 · 10−4 0.01

300 958 67 − 0.03 0.03 − 2.0 · 10−6 0.01

350 1297 57 − 0.02 0.02 − 4.8 · 10−6 0.01

increases the condition number of the height anomaly noise
covariance matrix 4.0 · 1034. How to deal with extremely ill-
conditioned noise covariance matrices of height anomalies
is the subject of Sect. 4.

Note that themodel error depends on various settings such
as the type of the SRBF, the grid used to locate the poles of the
SRBFs and the data points, respectively, the area of interest,
the extension of the parameterisation area beyond the data
area, etc. Hence, each choice may lead to a different model
error as function of the data point density.

In our experiments, the parameterisation area was chosen
identical to the data area. Several studies suggest to extend
the parameterisation area beyond the data area (e.g. Naeimi
2013; Bentel et al. 2013a; Eicker et al. 2014; Bucha et al.
2016). This raises the question whether in this case themodel
error can bemade small enough to avoid any oversampling at
the benefit of a condition number small enough to allow for
a direct inversion without regularisation. In “Appendix A”,
we present the results of a series of experiments designed to
investigate this question. They reveal thatwhen extending the
parameterisation area beyond the data area, the model error
statistics improve, though we still need to oversample by at
least a factor of 1.2 to obtain a maximum absolute model
error which is comparable to the one obtained without an
extension of the parameterisation area.

Next to the experiments presented in “Appendix A”, we
did a series of experiments with different types of SRBFs
[Shannon kernel (Freeden et al. 1998) and point mass kernel
(Hardy andGöpfert 1975)] anddifferent point distributions to
locate the poles of theSRBFs and the data points, respectively
[Reuter grid, Fibonacci grid (Gonzalez 2010), triangle vertex
grid (Eicker 2008)]. For each chosen setup, we could find
parameter settings, which provide model error statistics as
function of the data point density similar to the ones shown
in Table 2. Importantly, we always needed to oversample
by at least a factor of 1.2 to reduce the model errors to a
level below the effect of data noise by at least a factor of 5.
Moreover, the condition numbers of the corresponding data
noise covariance matrices were identical to within a factor
of 5.

4 Dealing with the ill-conditioned noise
covariancematrix

In this study, we investigate three approaches to deal with
the high condition number of the noise covariance matrix:
(i) apply Tikhonov regularisation (Tikhonov 1963) to the
ill-conditioned data noise covariancematrix and use the stan-
dard formula for theweighted least-squares estimator, (ii) use
a formula of theweighted least-squares estimator,which does
not require the computation of the inverse of the noise covari-
ance matrix (Grafarend and Schaffrin 1993), and (iii) use
Rao’s generalised least-squares estimator (Rao 1971, 1973,
1978).

The functional model of the GGM dataset is written as a
linear Gauss–Markov model,

E{d} = Ac, D{d} = C = σ 2Q, (1)

where E is the expectation operator and D is the dispersion
operator, d is the vector of height anomalies, c is the vector of
SRBF coefficients,C is the height anomaly noise covariance
matrix,Q is the cofactor matrix, and σ 2 is the variance factor.
An element A ji of the design matrix is equal to Ψ (x j , zi ),
where Ψ is the SRBF, zi is the coordinate vector of the i-th
SRBF pole, and x j is the coordinate vectors of the j-th data
point, i.e.

A ji = Ψ (x j , zi ) = R

|x j |
L∑

l=0

λl

( |zi |
|x j |

)l
Ql(x̂ j · ẑi ),

x ∈ extσR, zi ∈ intσR . (2)

L is the degree up to which the GGM is used when synthesis-
ing the data, {λl : l = 1 . . . L} are the Legendre coefficients
of the SRBF with respect to the surface σR of a sphere of
radius R, x̂ j = x j

|x j | and ẑi = zi|zi | are points on the unit sphere,
and Ql is the reproducing kernel of the space of spherical har-
monics of degree l. For the Poisson wavelets of order 3, it is
λl = l3.
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4.1 Regularisation of the noise covariancematrix

Suppose the singular value decomposition (SVD) of the
cofactor matrix Q of Eq. (1) is

Q = UΣU′, (3)

where U is the orthonormal matrix of singular vectors, U′ is
the transpose of U, and Σ is the diagonal matrix of singular
values. We assume that the singular values are ordered as
σ1 ≥ σ2 ≥ · · · ≥ σn , where n is the number of columns
and rows of the matrix Q. Here, we use Tikhonov regulari-
sation with a unit regularisation matrix. It is equivalent to an
approximation Q tikh of Q, which is defined as

Q tikh := UΣ tikhU′, (4)

where

Σ tikh = Σ + λ′ I, (5)

and I is the unit matrix, and λ′ is the regularisation parame-
ter. Hence, Tikhonov regularisation with unit regularisation
matrix is equivalent to replacing each of the n singular values
σi ofQwith σi +λ′. Then, the spectral norm condition num-
ber of Q tikh reduces from

σ1
σn

to σ1
λ′ , which when λ′ � σn is

much smaller than σ1
σn
. The inverse of the regularised cofactor

matrix Q tikh, is then computed as the Caley inverse of Q tikh,
i.e.

Q−1
tikh = UΣ−1

tikh U
′. (6)

The weighted least-squares estimator of c,

ĉ tikh = (A′Q−1
tikhA)−1A′Q−1

tikh d, (7)

is still unbiased, but its dispersion matrix,

D(ĉ tikh) = σ 2(A′Q−1
tikhA)−1, (8)

is not minimum anymore. In the numerical experiments of
Sect. 5, the matrix A′Q−1

tikhA appears to be ill-conditioned
and requires some regularisation. Here, we use Tikhonov
regularisation with unit regularisation matrix and replace the
unbiased estimator, Eq. (7), with the biased estimator

ĉ tikh,reg = (A′Q−1
tikhA + λI)−1A′Q−1

tikh d, (9)

where λ is another regularisation parameter. In this study,
Eq. (9) is referred to as the “regularised weighted least-
squares (WLS-reg) estimator”, where “regularised” refers to
the regularisation of the cofactor matrix and not to the term
λI of Eq. (9)

When using Tikhonov regularisation directly applied to
the cofactor matrix, we need to find a suitable value of the
regularisation parameter λ′. This can be done, e.g. using a
measure of closeness of QQ−1

tikh and Q−1
tikhQ, respectively, to

the unit matrix I. As Q and Q−1
tikh do not commute, we may

use the symmetric part of this product, i.e.

Ĩ := 1

2
(QQ−1

tikh + Q−1
tikh Q), (10)

and measure its distance to the unit matrix I using a suitable
matrix norm, for an overview of matrix norms. However,
numerical experiments revealed that the matrix Ĩ can be
indefinite. Then, several popular metrics like the Förstner–
Moonen metric (Förstner and Moonen 1999) or the trace of
the matrix Ĩ cannot be used to find a suitable regularisation
parameter. The same numerical experiments showed that the
log-Euclideanmetric and the spectral norm of I− Ĩ decreased
monotonously with decreasing regularisation parameter, and
therefore, are also not suited to choose the regularisation
parameter. Based on these results, we did not use matrix
norms to find a suitable regularisation parameter for the noise
cofactor matrix, but used the criteria to be discussed in Sect.
5. The same criteria were also used to choose the regularisa-
tion parameter of Eq. (9).

4.2 Inversion-free weighted least-squares estimator

According to Grafarend and Schaffrin (1993), there is an
equivalent expression for the weighted least-squares estima-
tor, ĉ = (A′Q−1A)−1A′Q−1 d, which does not require the
computation of the inverse of the cofactor matrix:

ĉ = A′(AA′ + QBQ)−1 d, (11)

where

B = I − A(A′A)−1A′. (12)

In the numerical experiments of Sect. 5, the matrix A′A in
Eq. (12) and the matrix AA′ + QBQ in Eq. (11) appeared
to be ill-conditioned and required some regularisation. Here,
we use in both cases Tikhonov regularisation with a unit
regularisation matrix. That is, Eq. (11) is replaced by

ĉ reg = A′(AA′ + QB regQ + λI)−1 d, (13)

with

B reg = I − A(A′A + λ′I)−1A′. (14)

The two regularisation parameters λ and λ′ are chosen as

λ = λ eff

Tr(AA′ + QBQ)

n
, λ′ = λ eff

Tr(A′A)

m
, (15)
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where n is the number of observations, m is the number of
parameters, and λ eff is referred to as the “effective regulari-
sation parameter”. This choice of λ and λ′ implies that the
amount of regularisation applied to A′A when computing
B reg and applied to AA′ + QB regQ when solving the normal
equations, respectively, is the same.

4.3 Least-squares solution according to Rao’s unified
theory of least-squares

Another approach to deal with an ill-conditioned noise
covariance matrix is offered by Rao’s unified theory of least-
squares (Rao 1971, 1973, 1978). Though this theory has
been developed to address among others rank-deficient noise
covariance matrices, we applied it to the ill-conditioned
height anomaly noise covariancematrixC. According to Rao
(1971, 1973, 1978), the unbiased, minimum-dispersion esti-
mator for the model of Eq. (1) is

ĉ rao := (A′T− A)−1A′T− d, (16)

where

T = Q + αAA′, (17)

α is a positive constant, andT− is any symmetric g-inverse of
T.Wedid somenumerical experimentswith the setup of Sect.
5 and found that choosing a value of α different from 1 has a
negligible effect on the generalised least-squares estimate. In
particular, we found that the spectral norm condition number
of T does not improve when choosing α different from 1.
Therefore, the generalised least-squares estimate of Sect. 6
is computed with α = 1.

In the numerical experiments of Sect. 6, the normal matrix
A′T− A appeared to be ill-conditioned. As in Sects. 4.1 and
4.2, we again used Tikhonov regularisation with a unit regu-
larisation matrix:

ĉ rao,reg = (A′T− A + λI)−1A′T− d. (18)

In this study, we refer to ĉ rao,reg of Eq. (18) as the “generalised
least-squares (GLS) estimator".

Note that the g-inverse T− does not need to be a g-inverse
ofQ (Rao 1978). In the strictly rank-deficient case, it can be
computed as the pseudo-inverse of a truncated singular value
decomposition ofT, where the truncation index r is identical
to the rank of T where r < n. In our case, the choice of
the truncation index is not straightforward as the singular
value spectrum of T gradually decreases to zero without any
noticeable gap.

In this study, we test a whole range of truncation indices
q, and compute the g-inverse T− as

T− = UrΣ
−1
r Ur

′, (19)

where

r = argmin
q

‖TT−
q T − T‖
‖T‖ =: argmin

q
κ(q), (20)

and

T−
q = UqΣ

−1
q Uq . (21)

Here, Σq is the matrix of the q largest singular values of T,
and Uq is the associated matrix of singular vectors.

4.4 Dispersionmatrices

The estimators of Sects. 4.1, 4.2, and 4.3 can be written as

ĉ = Sd, (22)

where the matrix S is equal to (A′Q−1
tikhA + λI)−1A′Q−1

tikh ,
A′(AA′+QB regQ+λI)−1, and (A′T− A+λI)−1A′T− for the
WLS-reg, WLS and GLS estimators, respectively. Then, the
dispersionmatrix of the estimated SRBF coefficients follows
from the law of covariance propagation, i.e.

D(ĉ) = σ 2(SQS′), (23)

where σ 2Q is the noise covariance matrix of the data vector
d. Moreover, the dispersion matrix of a linear function As ĉ
of the estimated SRBF coefficients is

D(As ĉ) = σ 2AsSQS′A′
s . (24)

5 Experimental setup, quality assessment,
and parameter choice rule

5.1 Experimental setup

The performance of the afore-mentioned methods were
investigated using numerical experiments. We used the
experimental setup of Sect. 3. The height anomalies were
synthesised on a Reuter grid with N = 240, comprising 617
data points over the data area. The condition number of the
noise covariance matrixC is 1.4 ·1016 (cf. Sect. 3). Contrary
to the data used in Sect. 3, we added zero-mean Gaussian
noise to the noise-free height anomalies. The noise was gen-
erated using a SVD of the height anomaly noise covariance
matrix C. The noisy height anomalies form the elements of
the vector d.
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5.2 Quality assessment

To investigate the quality of the weighted least-squares solu-
tions, we use two different measures.

1. From every least-squares estimate ĉ of the SRBF coeffi-
cients, we synthesise height anomalies on a control grid,
d̂s = As ĉ. The true height anomalies, ds , are synthe-
sised from the spherical harmonicmodel of the disturbing
potential.As a qualitymeasure of a least-squares estimate
ĉ, we use the RMS of the errors {d̂s,i −ds,i : i = 1 . . . q},
i.e.

ε RMS := ‖d̂s − ds‖√
q

. (25)

For a good least-squares estimate ĉ, ε RMS should not dif-
fer much from the noise SDs of the height anomalies
at the control points, which are computed by covari-
ance propagation from the full noise covariance matrix
of spherical harmonic coefficients of the unregularised
GOCO05smodel complete to degree 200. Figure 2 shows
a spatial rendition of the noise variances over the area of
interest. The noise standard deviations range from 1.6 to
2.7 cm (cf. Sect. 3) and have a mean of 2.3 ± 0.2 cm.

2. We compute the dispersion D(d̂s) and compare it with
the dispersion D(ds). The latter is computed by covari-
ance propagation from the full noise covariance matrix
of spherical harmonic coefficients of the unregularised
GOCO05s model. As a quality measure, we use the rel-
ative error

ε rel := ‖D(d̂s) − D(ds)‖
‖D(ds)‖ , (26)

where ‖ · ‖ is the spectral norm.

5.3 Parameter choice rule

Each of the three methods presented in Sect. 4 requires the
choice of a suitable regularisation parameter λ to stabilise
the normal matrix. Moreover, each method requires to fix a
secondparameter, i.e.λ′ ofEq. (5) forWLS-reg,λ′ ofEq. (14)
for WLS, and r of Eq. (20) for GLS.

When computing the WLS-reg estimate (cf. Sect. 4.1),
λ′ of Eq. (5) is the regularisation parameter of the cofactor
matrix. This parameter has an impact on the condition num-
ber of the normal matrix of Eq. (9). Therefore, we need to
search a two-dimensional parameter space to find suitable
values for the two regularisation parameters λ and λ′. The
task to choose the two regularisation parameters λ and λ′
when computing the WLS estimate (cf. Sect. 4.2) is reduced
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Fig. 2 Height anomaly noise standard deviations (in units of cm) of the
unregularised GOCO05s GGM complete to degree 200 over the area of
interest 49◦–63◦N and 6◦W–10◦E

to finding the single parameter λ eff of Eq. (15). The compu-
tation of the GLS estimate (cf. Sect. 4.3) requires to fix λ

and r . For the latter, we use the relative error κ of Eq. (20).
This makes the search for r independent of the search for λ.
Therefore, fixing the two parameters λ and r reduces to two
one-dimensional problems.

Finding suitable values for these parameters requires a
parameter choice rule. Standard parameter choice rules such
as the L-curve (Hansen and O’Leary 1993), generalised
cross-validation (Wahba 1990) or variance component esti-
mation (Koch and Kusche 2002) cannot be used here, as
there are as many data as SRBF coefficients. In this study,
we considered the quality measure ε RMS of Eq. (25) and ε rel

of Eq. (26) as potential candidates. Numerical experiments
revealed that ε rel is more sensitive to the choice of these
parameters than ε RMS. Therefore, we used the minimum of
ε rel as the parameter choice rule. In some cases, this choice
also provided the smallest value of ε RMS. If not, we found
that the parameter(s), which minimised ε rel provided a value
of ε RMS, which did not differ more than 0.05 mm from the
smallest ε RMS.

6 Results and discussion

Table 3 shows themain statistics for the three estimators con-
sidered in this study. They are complemented by a weighted
least-squares estimator, which uses the inverse of the diago-
nal approximation of the full data noise covariance matrix as
weight matrix. In all cases, we only show the statistics for the
best solutions, i.e. the ones which minimise ε rel of Eq. (26).
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Table 3 The WLS-reg, WLS,
and GLS estimates, which
minimise ε rel, Eq. (25)

Estimator ε RMS (cm) ε rel e RMS (cm) λ eff RD

WLS-reg, λ′
eff = 1.9 · 10−2 2.71 1.0 · 10−3 0.013 1.0 · 10−10 0.852

WLS 2.72 9.8 · 10−4 0.010 1.6 · 10−12 0.866

GLS, r = 492 2.72 1.2 · 10−3 0.082 1.0 · 10−9 0.797

WLS-diag 2.72 9.5 · 10−1 0.012 1.0 · 10−11 0.853

λ′
eff is the effective regularisation parameter for the data noise covariance matrix; r is the truncation index

when computing the g-inverse T− using a truncated singular value decomposition; e RMS is the RMS of the
least-squares residuals; λ eff is the effective regularisation parameter for the regularisation of the normalmatrix;
RD is the model resolution degree of Eq. (27). WLS-diag refers to a weighted least-squares solution, which
ignores all covariances of the data noise covariance matrix

Table 3 reveals that the amount of regularisation to be
applied to the normal matrix is significantly different among
the three estimates. One may expect that the WLS estimate
requires more regularisation than the WLS-reg estimate due
to the ill-conditioned noise covariance matrix. This is, how-
ever, not the case. The effective regularisation parameter is
the smallest for theWLS estimate and the largest for the GLS
estimate; the latter is a factor 330 larger than the former. This
is also reflected in the model resolution degree (RD), which
is defined as

RD = Tr R

n
, (27)

where R is the resolution matrix (i.e. the matrix SA, if the
least-squares estimate is ĉ = Sd), and n is the number of
parameters (e.g. Aster et al. 2013). RD is an indication of the
contribution of the data to the estimated SRBF coefficients
in the presence of regularisation; the larger R, the higher
the contribution of the data to the estimated SRBF coeffi-
cients. According to Table 3,WLS-reg andWLS perform the
samewith amodel resolution degree of 85–87%,whereas the
model resolution degree for GLS is smaller, about 80%. The
somehow lower model resolution degree for GLS may be
due to the choice of the g-inverse of the matrix T of Eq. (17),
which is a challenging task due to the gradually decreasing
singular value spectrum of this matrix.

Figure 3 shows ε rel as function of (λ eff, λ
′
eff). The mini-

mum is attained at (λ′
eff = 1.9 · 10−2, λ eff = 1.0 · 10−10).

A value of λ eff = 1.0 · 10−10 indicates that the WLS-reg
estimate is more sensitive to the regularisation of the normal
matrix compared to theWLS estimate (cf. Fig 4) and theGLS
estimate (cf. Fig 5), respectively. Figure 3 also shows that a
good least-squares solution requires a heavy regularisation of
the noise covariance matrix. The solution which minimises
ε rel is obtained with an effective regularisation parameter
λ′

eff = 1.9 · 10−2. Solutions not that far from the optimal one
are also obtained for effective regularisation parameters λ′

eff

of the order of O(1) or larger. Such an exceptionally strong
regularisation is unexpected in the sense that it is orders of
magnitude stronger than one would expect based on the sin-

Fig. 3 Parameter choice for the regularisedweighted least-squares esti-
mator (WLS-reg). ε rel in percentage as function of λ′

eff and λ eff. Values
larger than 1% are shown in white for better readability. The minimum
of ε rel = 1.0 · 10−3 = 0.1% is attained for λ′

eff = 1.9 · 10−2 and
λ eff = 1 · 10−10
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Fig. 4 Parameter choice for the weighted least-squares estimator. ε rel

as function of λ eff. The minimum is attained at λ eff = 1.6 · 10−12

gular value spectrum of the noise covariance matrix and the
effect of rounding errors on the computed inverse.

Figure 4 shows ε rel as function ofλ eff for theWLSestimate.
The minimum is attained at λ eff = 1.6 · 10−12. However, the
curve is very flat over a broad range of effective regularisation
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Fig. 5 Parameter choice for the
generalised least-squares
estimator. Left: relative error κ

as function of the truncation
index q. The minimum is
attained at q = r = 492. The
relative error is
κ(492) = 3.2 · 10−9. Right: ε rel

as function of λ eff for
q = r = 492. The minimum is
attained at λ eff = 1 · 10−9
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parameters between about 10−12 and 10−8. The correspond-
ing least-squares estimates of the SRBF coefficients are very
close to each other, and the estimates do not differ more than
0.02 cm in terms of height anomalies over the area of inter-
est. We consider this as a positive result as it makes it easy
to find a suitable regularisation parameter.

The results for the GLS estimate are shown in Fig 5. The
left plot of Fig 5 shows the relative error κ of Eq. (20) as func-
tion of the truncation index q. A clear minimum is attained
at q = r = 492. The relative error is κ(492) = 3.2 · 10−9.
This indicates that finding a good g-inverseT− usingEq. (19)
may be possible with a truncated singular value decomposi-
tion despite the gradually decreasing singular value spectrum
ofT.Whether this applies to other datasets and areas of inter-
est, as well, remains open, and may be considered as a weak
point of the GLS estimator. The right plot of Fig. 5 shows
ε rel as function of the effective regularisation parameter λ eff,
which is used to regularised the normal matrix. The min-
imum is attained at λ eff = 1 · 10−9. Similar to what was
found for the WLS estimate, the curve is very flat around
the minimum over a broad range of effective regularisation
parameters from 10−10 to 10−3. Again, the corresponding
least-squares estimates of the SRBF coefficients are almost
identical. In terms of height anomalies, the solutions do not
differ more than 1 mm.

Table 3 shows that the smallest value of ε rel is about 10−3

for the three methods investigated in this paper. Hence, the
noise covariance matrix of the height anomalies at the con-
trol grid always agrees very well with the noise covariance
matrix directly propagated from the noise covariance matrix
of the spherical harmonic model of the disturbing potential.
The same applies to the fit of each solution to the control data;
the RMSmisfit is ε RMS = 2.7 cm for all threemethods. This is
at the upper limit of the height anomaly noise standard devia-
tions directly propagated from the noise covariance matrix of
GOCO05s over the area of interest (which range from 1.6 to
2.7 cm, cf. Fig 2). The estimator that ignores the data noise
covariances provides the same RMS misfit of 2.7 cm. How-
ever, the error ε rel is 0.95, i.e. almost three orders ofmagnitude
larger than for the other three estimators. This is in line with
what we expect from theory. When applying weighted least-

squares to a single dataset, errors in the data noise covariance
matrix have a minor effect on the least-squares estimate, but
a significant effect on the dispersion of linear functionals of
the estimate.

Figure 6 shows a spatial rendition of the differences WLS
estimate minus WLS-reg estimate and WLS estimate minus
GLS estimate, respectively, in terms of height anomalies at
the control points. The spatial patterns are random, indicating
that there are no systematic differences between the three esti-
mates. The differences are very small; themaximumabsolute
difference between theWLS estimate on the one hand and the
WLS-reg estimate and the GLS estimate on the other hand
is just 0.3 and 2.3 mm, respectively.

ε rel measures the difference in the spectral norm between
the height anomaly noise covariancematrix associatedwith a
least-squares estimate and the one directly propagated from
the noise covariance matrix of spherical harmonic coeffi-
cients of the disturbing potential. A measure which is easier
to interpret are the differences in the standard deviations of
the two noise covariancematrices at the control data points as
shown in Fig 7. The differences are comparable for theWLS-
reg estimate and WLS estimate and significantly larger for
the GLS estimate.

7 Summary and conclusions

In this study, we investigated three methods to deal with
the high condition number of the noise covariance matrix
of a state-of-the-art GGM after propagation into gravity field
functionals over a local data area. This problem is relevant
when estimating a local model of the disturbing potential
considering all available datasets as being noisy.

We showed that the noise covariance matrix of height
anomalies propagated from the full noise covariance matrix
ofGOCO05s, has a gradually decreasing singular value spec-
trumwithout anynoticeable gap and ahigh conditionnumber.
The latter depends among others on the density of the points
where the height anomalies are synthesised. The density has
to be chosen high enough to guarantee that the error of the
local SRBF model of the disturbing potential is negligible
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Fig. 6 Spatial rendition of the differences WLS estimate minus WLS-reg estimate (left) and WLS estimate minus GLS estimate (right). The
maximum absolute difference is 0.3 mm (left) and 2.3 mm (right)

Fig. 7 Histogram of differences in height anomaly noise standard deviations at the control points in units of metres. From left to right: WLS-reg
estimate, WLS estimate, and GLS estimate. The differences are comparable for the WLS-reg estimate and the WLS estimate, but larger for the
GLS estimate

compared to the effect of the noise in the data.We showed that
this requires a point density, which is higher than the max-
imum degree of the GGM suggests. The associated height
anomaly noise covariance matrix had a condition number
larger than the reciprocal value of the relative rounding error
unit of IEEE 754 double precision arithmetic. Therefore,
a straightforward computation of the weight matrix would
imply the loss of all significant digits.

To deal with the high condition number of the noise
covariance matrix, we investigated three methods: Tikhonov
regularisation of the noise covariance matrix in combina-
tion with the standard formula of the weighted least-squares
estimator, an alternative formula of the weighted least-
squares estimator, which does not require to compute the

inverse of the noise covariance matrix, and Rao’s generalised
least-squares estimator. Our experiments indicate that these
methods and the main findings of Sect. 6 are not dependent
on the chosen experimental setup.

We showed that all three methods provide least-squares
estimates of the SRBF coefficients which were identical
within noise. Moreover, the dispersion matrices of the esti-
mated SRBF coefficients and of height anomalies at a set of
control points agreed very well with each other and with the
height anomaly noise covariance matrix directly propagated
form the full noise covariance matrix of spherical harmonic
coefficients of the GGM. Prerequisite was that the two regu-
larisation parameters each of the three methods knows, were
chosen properly. We demonstrated that a parameter choice
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rule which uses the dispersion matrix of height anomalies at
a control dataset allowed such a choice.

Among the three methods, we prefer the inversion-free
weighted least-squares estimator. We showed that the choice
of the two regularisation parameters can be reduced success-
fully to the choice of a single parameter, and the least-squares
estimate and its dispersionmatrix appeared to be quite robust
against this choice in the numerical experiments. The fact that
the inversion-free weighted least-squares estimator requires
the solution of a system of linear equations of a size equal
to the number of data does not pose numerical problems in
real applications. We found that the weak point of Rao’s
generalised least-squares estimator is the need to compute
a g-inverse of a matrix with a gradually decreasing singu-
lar value spectrum without any noticeable gap. In this study,
we computed such a g-inverse successfully with a truncated
singular value decomposition. However, whether this applies
to other situations than considered in this study, is an open
question. Using Tikhonov regularisation of the data noise
covariance matrix in combination with the standard formula
for the weighted least-squares estimator, required an excep-
tionally strong regularisation of the data noise covariance
matrix to obtain a good least-squares estimate of the SRBF
coefficients and an accurate dispersion matrix of the esti-
mated SRBF coefficients. We found that the major drawback
of this method is the need to search a two-dimensional space
to find optimal values of the two regularisation parameters.
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Appendix A: Extension of the parameterisa-
tion area

In this appendix, we investigate whether an extension of the
parameterisation area beyond the data area provides a model
error, which does not require any oversampling. Such an
extension is suggested in several papers about local grav-
ity field modelling using SRBFs (e.g. Naeimi 2013; Bentel
et al. 2013a; Eicker et al. 2014; Bucha et al. 2016). In the
following, the setup chosen in the numerical experiments of
Sect. 5 (i.e. Poisson wavelets and data points on a Reuter grid
with control parameter 240, denoted RG 240, no extension
of the parameterisation area) is referred to as the “reference
setup”. Moreover, the area of interest and the data area are
the same as in the reference setup.

The disturbing potential used in the numerical exper-
iments of Sect. 5 is limited to a maximum degree 200.
Therefore, we located the poles of the Poisson wavelets on
RG 201, and generated height anomalies on RG 201 (i.e. no
oversampling).

Table 4 shows the model error statistics for various exten-
sions of the parameterisation area ranging from 0◦ to 5◦.

It appears that an extension of the parameterisation area
without oversampling does not improve the model error.
In particular, the maximum absolute model error is about
6 cm. This is even larger than the effect of data noise on
the estimated quasi-geoid model, which was found to have a
standard deviation between 1.6 and 2.7 cm over the area of
interest.

In the second experiment, we wanted to investigate
whether an extension of the parameterisation area in combi-
nationwith someoversampling (which shouldbe less than the
oversampling factor of 1.2, we used in the reference setup),
provides a smaller model error. The setup was identical to
the one in the previous experiment except that the data were
located on RG 221, which corresponds to an oversampling
factor of 1.1. From the results shown in Table 5, we conclude
that (i) an extension of the parameterisation area beyond the
data area in combination with an oversampling factor of 1.1
indeed reduces the model error; (ii) though the improvement
is significant, it is still not sufficient. That is, the smallest

Table 4 SRBF model error in
terms of height anomalies (in
units of cm) as a function of the
extension of the
parameterisation area beyond
the data area

Extension # SRBFs # Data points Min (cm) Max (cm) Mean (cm) SD (cm)

0◦ 435 435 − 6.05 5.85 0.05 2.20

1◦ 503 435 − 6.44 6.07 0.05 2.07

2◦ 576 435 − 6.51 5.70 0.03 2.29

3◦ 650 435 − 6.35 6.96 0.01 2.36

4◦ 761 435 − 6.51 6.32 0.00 2.34

5◦ 850 435 − 6.66 6.06 0.01 2.32

The Poisson wavelet is used. Data are not oversampled. If the number of SRBFs exceeds to number of data,
a minimum norm solution is computed
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Table 5 SRBF model error in
terms of height anomalies (in
units of cm) as a function of the
extension of the
parameterisation area beyond
the data area

Extension # SRBFs # Data points Min (cm) Max (cm) Mean (cm) SD (cm)

0◦ 435 516 − 5.36 4.70 0.12 1.62

1◦ 503 516 − 0.95 1.33 0.01 0.28

2◦ 576 516 − 1.46 1.06 0.00 0.32

3◦ 650 516 − 0.85 0.77 0.01 0.24

4◦ 761 516 − 0.60 0.74 0.00 0.19

5◦ 850 516 − 0.76 0.80 0.00 0.20

The Poisson wavelet is used. Data are oversampled by a factor of 1.1. If the number of SRBFs exceeds to
number of data, a minimum norm solution is computed

Table 6 SRBF model error in
terms of height anomalies (in
units of cm) as a function of the
extension of the
parameterisation area beyond
the data area

Extension # SRBFs # Data points Min (cm) Max (cm) Mean (cm) SD (cm)

0◦ 435 617 − 5.44 5.54 0.25 1.74

1◦ 503 617 − 0.87 0.94 −0.01 0.37

2◦ 576 617 − 0.45 0.39 0.00 0.08

3◦ 650 617 − 0.24 0.20 0.00 0.05

4◦ 761 617 − 0.37 0.28 0.00 0.07

5◦ 850 617 − 0.16 0.13 0.00 0.03

The Poisson wavelet is used. Data are oversampled by a factor of 1.2. If the number of SRBFs exceeds to
number of data, a minimum norm solution is computed

Table 7 SRBF model error in
terms of height anomalies (in
units of cm) as a function of the
extension of the
parameterisation area beyond
the data area

Extension # SRBFs # Data points Min (cm) Max (cm) Mean (cm) SD (cm)

0◦ 435 617 − 4.95 4.60 0.00 1.77

1◦ 503 617 − 1.03 1.06 0.00 0.42

2◦ 576 617 − 0.43 0.40 0.00 0.07

3◦ 650 617 − 0.28 0.25 0.00 0.07

4◦ 761 617 − 0.42 0.42 0.00 0.09

5◦ 850 617 − 0.08 0.07 0.00 0.02

The Shannon kernel is used. Data are oversampled by a factor of 1.2. If the number of SRBFs exceeds to
number of data, a minimum norm solution is computed

maximum absolute model error of 0.7 cm is attained for a
4◦ extension, which is still a factor of 3.5 larger than for
the reference setup. The condition number of the data noise
covariance matrix is 6.2 · 1012. Computing a weighted least-
squares estimate of the quasi-geoid model without applying
any regularisation to this data noise covariance matrix pro-
vided a useless solution, indicating that some regularisation
is needed.

In the next experiment, we located the poles of the Poisson
wavelets on RG 201 and the data on RG 240. This corre-
sponds to the same oversampling factor of 1.2 as used in
the reference setup. Table 6 shows that now, an extension
of the parameterisation area provides indeed a reduction of
the maximum absolute model error to a level comparable to
or even below the values obtained for the reference setup.
For instance, an extension of 3◦ gives a maximum absolute
model error of 0.2 cm, which is identical to the one we found
for the reference setup.

Finally, we repeated the last experiment now using the
Shannon kernel instead of the Poisson wavelet. The SRBF
poles were located on RG 201, and the data points were
located on RG 240 (i.e. the oversampling factor is equal to
1.2). Table 7 shows that the results are almost identical to the
results with the Poisson wavelet, which are shown in Table
6.

Based on the numerical results, we conclude that even
when we extend the parameterisation area beyond the data
area, we need to oversample by at least a factor of 1.2 (i.e.
with the same factor as used in the reference setup), to obtain
a maximum absolute model error which is a factor of 5–10
smaller than the effect of data noise on the estimated quasi-
geoid model. Moreover, the results shown in Tables 6 and 7
demonstrate that the model error is essentially identical no
matter whether the Poisson wavelet of the Shannon kernel is
used.
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Appendix B: Least-squares data combination
in local quasi-geoidmodelling

The motivation for this study is local quasi-geoid modelling
using a GGM as a (low-resolution) noisy dataset and com-
bining it with (high-resolution) local noisy datasets, e.g.
terrestrial gravity anomalies, airborne gravity disturbances
and along-track quasi-geoid height differences from satellite
radar altimetry, using weighted least-squares.

There are several options for the combination of a low-
resolution GGM dataset with high-resolution datasets. For
instance, one may complete the low-resolution GGM dataset
and its noise covariance matrix to make it spectrally consis-
tent with the high-resolution datasets (e.g. Schuh et al. 2015).
Alternatively, one may low-pass filter the high-resolution
datasets to make them spectrally consistent with the low-
resolution GGM dataset. The latter requires a careful choice
of the functional model for the high-resolution and the low-
resolution datasets, respectively,which for broadband signals
is frequently offered by amulti-scale model (e.g. Chambodut
et al. 2005; Lieb et al. 2016). Moreover, as extensively dis-
cussed in this paper, the noise covariance matrix of the GGM
dataset may be ill-conditioned. The disadvantage of the for-
mer approach is that the completion of the low-resolution
GGM dataset requires some assumptions about the power
spectrum of the Earth’s gravity field, isotropy and station-
arity (e.g. Schuh et al. 2015). Though the completed noise
covariance matrix is invertible on a global scale, there is no
guarantee that this still applies for data synthesised over a
local domain in local quasi-geoid modelling. For instance,
when we just use the diagonal elements of the noise covari-
ance matrix of GOCO05s in the spherical harmonic domain
and propagate it into height anomalies (or gravity anomalies)
on a local grid (where the grid size is properly chosen to avoid
loss of information, see Sect. 2), the condition number of the
propagated noise covariance matrix is as high as when using
the full noise covariance matrix in the spherical harmonic
domain.

There are several options for the combination of a low-
resolution GGM dataset with high-resolution datasets. For
instance, one may complete the low-resolution GGM dataset
and its noise covariance matrix to make it spectrally consis-
tent with the high-resolution datasets (e.g. Schuh et al. 2015).
Alternatively, one may low-pass filter the high-resolution
datasets to make them spectrally consistent with the low-
resolution GGM dataset. The latter requires a careful choice
of the functional model for both the high-resolution and
the low-resolution datasets, which for broadband signals is
frequently offered by a multi-scale model (e.g. Chambodut
et al. 2005; Lieb et al. 2016). Moreover, as extensively dis-
cussed in this paper, the noise covariance matrix of the GGM
dataset may be ill-conditioned. The disadvantage of the for-
mer approach is that the completion of the low-resolution

GGM dataset requires some assumptions about the power
spectrum of the Earth’s gravity field, isotropy and station-
arity (e.g. Schuh et al. 2015). Though the completed noise
covariance matrix is invertible on a global scale, there is no
guarantee that this still applies for data synthesised over a
local domain in local quasi-geoid modelling. For instance,
even if the data noise covariance matrix in the spherical har-
monic domain is a diagonal matrix, the data noise covariance
matrix of any functional synthesised at a local sufficiently
dense grid will have a similar condition number as the ones
discussed in Sect. 2.

Here, we prefer to use the original low-resolution GGM
dataset and noise covariance matrix. The approach of data
combination is identical to Klees et al. (2017). Using this
approach, we illustrate how the methods investigated in this
paper can be exploited when combining the GGM dataset
with high-resolution datasets.

The low-resolutionGGMdataset {d1(x1k) : k = 1 . . . K1}
is synthesised from the spherical harmonic coefficients of the
GGM as

d1(x1k) =
L1∑

n=0

2n+1∑

m=1

(
ĉnm − c(ref)

nm

)
(F1 Hnm)(x1k),

k = 1 . . . K1, (28)

where {ĉnm} are the spherical harmonic coefficients of the
GGM, {c(ref)

nm } are the spherical harmonic coefficients of the
reference GGM, Hnm is a solid spherical harmonics of
degree n, and F1 is the height anomaly functional. The low-
resolution dataset is band-limited to a degree L1 ≤ LGGM,
where LGGM is the maximum degree of the GGM. The high-
resolution datasets are denoted {d2(x2k) : k = 1 . . . K2}; we
assume that they allow the resolution of wavelengths up to a
maximum degree L2. Defining a kernel

δL(x, y) =
L∑

n=0

1

4πR2

( R

|x |
)n+1( R

|y|
)n+1

Qn(x̂ · ŷ),

x, y ∈ extσR, (29)

a spherical convolution of T with δL as

(δL ∗ T )(x) =
∫

σR

δL(x, y)T (y) dσR(y), (30)

and linear functionals F2k of the disturbing potential T , we
may relate the datasets d1 and d2 to the disturbing potential
T as

E{d1}(x1k) = F1(δL1 ∗ T )(x1k), k = 1 . . . K1, (31)

E{d2}(x2k) = F2k(δL2 ∗ T )(x2k), k = 1 . . . K2, (32)
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where E{·} denotes mathematical expectation. The local
model of T is a two-scale model, i.e.

T (x) =
I1∑

i=1

c1i Ψ1(x, z1i ) +
I2∑

i=1

c2i Ψ2(x, z2i ). (33)

The first term on the right-hand side of Eq. (33) is a low-
resolution model of T comprising degrees from 0 to L1, i.e.
its resolution is identical to the resolution of dataset d1. The
second term on the right-hand side of Eq. (33) complements
the low-resolution model to the maximum resolution L2 of
dataset d2. In the context of amulti-resolution analysis, it rep-
resents a detail space comprising wavelengths from degrees
L1 + 1 to L2. The basis functions Ψ1 and Ψ2 of Eq. (33) are
defined as

Ψ1(x, z) = (P ∗ Φ)(x, z), (34)

Ψ2(x, z) = (δL2 − P) ∗ Φ(x, z), (35)

where

Φ(x, zi ) = R

|x |
L2∑

l=0

φl

( |zi |
|x |

)l
Ql(x̂ · ẑi ),

x ∈ extσR, zi ∈ intσR, (36)

is a SRBF with pole at zi , Ql is the reproducing kernel of the
space of harmonic functions of degree l, φl is the Legendre
coefficient of degree l, x̂ = x

|x | and ẑi = zi|zi | are points on
the unit sphere, and σR is the surface of a sphere of radius R.
The kernel P is defined as

P(x, y) =
∞∑

n=0

1

4πR2

( R

|x |
)n+1( R

|y|
)n+1

hn Qn(x̂ · ŷ),

x, y ∈ extσR . (37)

The Legendre coefficients {hn : n = 0, 1, 2, . . .} are equal
to 1 for degrees n ≤ p1, taper off between degrees p1 <

n < p2, and are zero for all degrees n ≥ p2. An example is
a cosine taper,

hn =

⎧
⎪⎪⎨

⎪⎪⎩

1, n < p1

0.5 + 0.5 cos
(
π

n−p1
p2−p1

)
, p1 ≤ n ≤ p2 ≤ L2

0, n > p2

.(38)

Alternatively, P ∗ Φ may be a Blackman scaling function
(e.g. Schmidt et al. 2007). The coefficients {c1i } and {c2i } of
Eq. (33) are estimated in two steps. First, we use the func-

tional model

E{d2}(x2k) =
I2∑

i=1

c2i F2k(δL2 ∗ Φ)(x2k, zi ),

k = 1 . . . K2, (39)

and estimate the coefficients {c2i } using weighted least-
squares. Suppose {ĉ2i } are the least-squares estimates of
{c2i }. Then, we define a new dataset

d3(x1k) :=
I1∑

i=1

ĉ2i (F1Ψ1)(x1k, z1i ), k = 1 . . . K1. (40)

The resolution of the dataset d3 is identical to the resolution
of the dataset P∗d1. In that sense, d3 and P∗d1 are spectrally
consistent. Then, we use the functional model

(
(P ∗ E{d1})(x1k)

E{d3}(x1k)
)

=
I1∑

i=1

c1i (F1Ψ1)(x1k, z1i ),

k = 1 . . . K1 (41)

to estimate the coefficients {c1i }, using weighted least-
squares techniques. The noise covariance matrix of dataset
d3 is computed from the noise covariance matrix of the
estimated coefficients {ĉ2i } using the law of covariance prop-
agation. Like the noise covariance matrix of the dataset
{P ∗ E{d1}}, it is a full matrix. If {ĉ1i } are the least-squares
estimates of {c1i }, the least-squares estimate of the disturbing
potential it given as

T̂ (x) =
I1∑

i=1

ĉ1i Ψ1(x, z1i ) +
I2∑

i=1

ĉ2i Ψ2(x, z2i ). (42)
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