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Abstract

Convolutional Neural Network (CNN) inference has gained a significant amount of traction
for performing tasks like speech recognition and image classification. To improve the accuracy
with which these tasks can be performed, CNNs are typically designed to be deep, encom-
passing a large number of neural network layers. As a result, the computational intensity and
storage requirements increase dramatically, necessitating hardware acceleration to reduce
the execution latency. Field-Programmable Gate Arrays (FPGAs) in particular are well-suited
for hardware acceleration of CNN inference, since the underlying hardware can be tailored
to rapidly and efficiently perform the required operations. To this end, Xilinx introduced the
FINN (Fast, Scalable Quantized Neural Network Inference on FPGAs) framework to leverage
FPGAs for Neural Network (NN) inference. The FINN end-to-end deep learning framework
converts high-level descriptions of CNN models into fast and scalable FPGA inference accelera-
tor designs that are based on a custom dataflow architecture. In this dataflow architecture the
input data are streamed in a feed forward fashion through a pipeline of per-layer dedicated
compute units, that each have on-chip access to the associated NN parameters. In order
to keep the compute units occupied, specific throughput requirements have to be satisfied
by the memory subsystem. These throughput requirements directly dictate the shapes of
the on-chip buffers that contain the NN parameter values. Especially for accelerators that
exploit a high degree of parallelism, these memory shapes map poorly to the available on-chip
memory resources of FPGA devices. As a result, these resources are typically underutilized,
which leads an On-Chip Memory (OCM) deficiency, and limits the amount of parallelism
that can be exploited. In this thesis, a methodology is proposed that improves the mapping
efficiency of NN parameter buffers to the embedded Block RAM (BRAM) resources on FPGAs,
without negatively impacting the accelerator throughput. To accomplish this, an architecture
is proposed where the memory subsystem and compute units are decoupled, and operate as
a producer-consumer system. Within this architecture, the memory subsystem functions at a
higher clock frequency relative to the compute units, which enables the memory subsystem
to match the consumption rate of the compute units when multiple NN parameter buffers are
clustered within the same BRAM instance. Furthermore, a genetic algorithm is used to find
optimal group arrangements for these clusters such that the mapping efficiency is improved,
and the throughput requirements are still met. The proposed methodology has been applied
to a number of CNN accelerators, and demonstrates BRAM reductions of up to 30%. The
observed BRAM reductions enable existing FINN accelerator designs to be ported to smaller
FPGA devices while maintaining the computational throughput.
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Preface

In this thesis a methodology is presented that improves the mapping efficiency of buffers to
the available block RAM resources on FPGA dataflow inference accelerators. Although this
methodology was developed for specific deep learning inference purposes, the techniques
that were employed in this work are universal, and can be applied to improve the memory
utilization efficiency of any FPGA design that has predictable access patterns to its memory
subsystem.

The majority of the work described in this thesis has been performed during my employ-
ment at the Xilinx Research Labs in Ireland under supervision of Dr. Lucian Petrica. The
research team in Ireland consists of a group of researchers who are investigating the potential
of leveraging FPGAs for heterogeneous hardware acceleration of applications to counteract
the limitations imposed by Moore’s Law. One of the fruits that came forth out of these efforts
is FINN, where FPGA accelerated inference of quantized neural networks is explored. FINN
targets a wide variety of FPGA devices, and aims to fully exploit the fabric such that the most
optimal computational throughput is achieved for a targeted device. However, soon after
FINN came to realization, it was discovered that the most prominent obstruction in the way
of achieving this type of scalability was the shortage of on-chip memory. The work described
in this thesis marks the culmination of my efforts to mitigate this problem.
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1
Introduction

Convolutional Neural Networks (CNNs) have demonstrated state of the art performance
on image classification. In image classification the goal is to match input images to a
corresponding class (i.e. the type of animal or vehicle). For CNNs, the accuracy with which
the correct classes can be inferred strongly correlates with the amount of incorporated layers.
For this reason, CNNs that are capable of classifying large datasets (i.e. the 1000 class
ImageNet dataset [1]) with high accuracy, typically consist out of a large amount of layers
[2]. Each of these layers are comprised of a number of neurons, and perform convolutions by
sliding filters across the input feature maps. An input feature map can be the image presented
at the input of the network, or the output generated by neurons from the preceding layer.
Understandably, this process referred to as neural network inference, is very computationally
intensive to perform for deep CNNs.

To enable fast image classification (i.e. for real-time applications), the execution of CNN
inference has been accelerated by means of parallel execution on Graphical Processing Units
(GPUs) [3, 4, 5], and Field Programmable Gate Arrays (FPGAs) [6, 7]. Moreover, traditionally
the numerous multiplication and addition operations that are involved in CNN inference have
been performed using floating point arithmetic. Research has demonstrated that reducing the
bit precision of the CNN parameters (i.e. the filter values) dramatically reduces the storage
and computational requirements at a minor penalty in terms of accuracy [8]. Evidently,
the change from floating point representations of these parameters to quantized integer
and fixed-point representations allows for more efficient implementations of neural network
accelerators on FPGAs.

Indeed, FPGAs as a platform have demonstrated to be capable of reducing the required
energy for neural network inference [9]. FINN is an end-to-end flow developed by Xilinx that
exploits the computational benefits that are obtained from the quantization of neural networks,
and aims to deliver low-latency, high-throughput and low-power FPGA inference accelerator
designs [10, 11]. As input, FINN takes in the the bit precision of the parameters and the
topology of a particular neural network consisting of the amount and types of operations
per layer, and the sequence of the layers. Subsequently, it processes these specifications and
reduces them to a sequence of elementary operations such as matrix-vector products and
activation operations that can be implemented in hardware and mapped to the FPGA fabric.

FINN generates neural network inference accelerators based on a custom dataflow ar-
chitecture (also referred to as a streaming architecture). As shown in Figure 1.1, in this
architecture the input data are streamed in from the host processor, and the operations
corresponding to a particular CNN layer are performed by dedicated compute units that are
located in specific sections of the FPGA. Additionally, all of the compute units and parameter
buffers that are required to implement the functionality of the CNN are instantiated on
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the FPGA fabric, and connected in a pipelined fashion. In the most optimal case there is
sufficient availability of resources on the targeted FPGA device, such that all of the operations
that need to be performed by the compute units can be scheduled in parallel. This would
give each compute unit a latency of one clock cycle, and would allow new input data to
be classified per clock cycle. Realistically, in order to fit the accelerator design on a target
device, the extent to which the compute units can be spatially unrolled is limited, and thus
the execution of the various layers needs to occur by means of time-multiplexing. This means
that certain operations have to be scheduled sequentially across multiple cycles; effectively
sharing resources across time. To attain the best throughput for an accelerator design in
terms of Frames Per Second (FPS), the individual compute units need to be latency matched.
This is realized by modulating the amount of operations each compute unit will execute in
parallel; governed by the amount of processing elements (NPE) contained in each compute
unit, and the amount of Single Instruction, Multiple Data (SIMD) lanes per PE (NSI M D).

Naturally, to keep the compute units occupied, the parameter and input values need to
be present at each clock cycle. This puts a specific constraint on the required throughput that
the memory subsystem must provide. Since the available Block RAM (BRAM) modules on
FPGAs have fixed shapes (i.e. 18-bit wide and 1024 addresses deep on Xilinx FPGAs), and a
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limited amount of ports (thus supporting only a limited amount of read operations per clock
cycle), it is sometimes necessary to partition the data across multiple RAM modules to meet
the throughput requirement; even if the modules are not used to full capacity. As illustrated
in Figure 1.2, especially for large, high performance accelerators that exploit a high degree of
parallelism the mapping of weight buffers (i.e. the logical memory arrays containing the CNN
filter values) to BRAM modules can lead to severe underutilization. This underutilization of
an already scarce resource leads to the problem where FINN typically runs out of BRAM to
store the parameter data before any of the other resources. For this reason, improving the
BRAM utilization enables greater scalability, since this reduces the BRAM requirement for
targeted devices. Although the parameter data for CNNs consist out of the various filter and
threshold data (for activation of the neurons), the work in this thesis exclusively targets the
memory utilization optimization of the filter data, since these dominate in terms of memory
utilization.

The work described in this thesis aims to improve the On-Chip Memory (OCM) utilization
by applying two techniques. Recognizing that the compute units are typically considerably
more complex than the embedded BRAM and read-out logic, a new architecture is proposed
where the memory subsystem is decoupled from the compute units and operated in a separate,
higher frequency clock domain. This technique allows multiple weight buffers that require
simultaneous access to be clustered within the same BRAM instance, while reducing or
even completely eliminating the associated throughput penalties; depending on the attained
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operating frequencies of the two subsystems.
Finally, given the opportunity to cluster multiple weight buffers within the same BRAM

instance, and the fact that the varying computational requirements of different CNN layers
enforce different shapes on these buffers, the remaining problem is how we can form clusters
of weight buffers such that the overall BRAM count is minimized. This problem is referred
to as the memory packing problem [12], and is redefined and framed in this thesis to be
a variant of the classical bin packing problem with custom constraints. The bin packing
problem is a combinatorial optimization problem where items of varying sizes are grouped
into a minimal amount of bins with fixed capacities [13]. To algorithmically identify the
optimal configuration of clusters, a custom bin packing heuristic is proposed and embedded
in simulated annealing and genetic algorithm metaheuristics. The algorithms converge to
a solution within a couple of seconds for all designs that were evaluated within this work,
although the genetic algorithm finds, in general, slightly better results. Furthermore, the
identified packing solutions have been implemented in hardware where BRAM reductions
of up to 30% are demonstrated. Especially within the context of Design Space Exploration
(DSE), rapid convergence of the algorithm is an important factor in the required amount of
time to find an optimal accelerator design; since memory packing needs to be performed for
each design iteration.

1.1. Research Questions
The main objective of the research described in this thesis is to improve the utilization
efficiency of BRAM in FINN style neural network inference accelerators. While striving to
achieve this objective the following questions were central to the research process:

1. “How can the BRAM utilization efficiency be improved without negatively impacting the
system throughput?”

2. “What is the hardware cost to realize this approach?”

These questions are addressed in a recurrent fashion throughout the different stages of
the research described in the thesis, and are answered in the conclusion.

1.2. Contributions
The main contributions of the research described in this thesis are:

• a memory-efficient dataflow architecture for neural network inference accelerators on
FPGAs

• the formulation of the memory packing problem as a variant of the bin packing problem

• a new heuristic for rapidly solving the memory packing problem

• an analysis of the impact of different memory packing strategies on: the maximum
attainable operating frequencies, and BRAM utilization of neural network inference
dataflow accelerators on FPGA
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1.3. Thesis Outline
This thesis is structured as follows. In Chapter 2 relevant background theory is provided
regarding neural networks, FINN, the architectures of the accelerators that were used as
demonstrators, and the underlying FPGA technologies. The proposed architecture that enables
us to cluster multiple buffers within a single BRAM module, without reducing the throughput
of the accelerator is introduced in Chapter 3. The final part of the methodology is covered in
Chapter 4, where we introduce the bin packing problem and reformulate this problem into
the memory packing problem. In Chapter 5, the impact of the developed methodology is
evaluated by applying it to a number of accelerator designs, targeting several FPGA devices.
Finally, the thesis is concluded in Chapter 6, where the research questions and outcome of
the pursued research are discussed, and pointers for future work are provided.



2
Background Theory

In this chapter relevant concepts that are required to understand the proposed methodology
are presented. First, the overall hardware structure and available memory resources of Xilinx
FPGAs are discussed. Subsequently, a brief introduction on neural networks and deep learning
is provided. After establishing this foundation, the connection with the FINN framework is
made, and the process of mapping neural network models to FPGA neural network inference
accelerators is elaborated. Finally, the chapter is concluded with a comprehensive formulation
of the On-Chip Memory (OCM) bottleneck, and introduction of the accelerator designs to be
utilized for the validation and evaluation of the proposed methodology.

2.1. FPGA Infrastructure
Field-Programmable Gate Arrays (FPGAs) are devices that can be reprogrammed to change
their functionality after production. A structural overview of the organization of a typical
FPGA is provided in Figure 2.1. FPGAs primarily consist out of programmable Logic Blocks,
which are commonly referred to as Configurable Logic Blocks (CLB), and programmable
interconnect. These CLBs contain Look-Up Tables (LUTs), which are arrays that can be
programmed to provide the desired output for a corresponding input. As such, these elements
can be utilized to implement combinatorial logic or storage elements.

To satisfy the requirements of performance critical applications, such as Digital Signal
processing (DSP), FPGA vendors also integrate hard-wired, embedded DSP units and Block
RAM (BRAM) modules for fast multiplication and greater amounts of storage, respectively.
The Input/Output Blocks (IOBs) enable fast communication between external devices (con-
nected to the pins of the FPGA) and programmable logic (CLBs, DSPs, etc.) through the
programmable interconnect.

Undeniably, FPGAs have undergone many transformations over the past decades [14].
These changes can be traced back to an increase in computational requirements for appli-
cations in different fields. However, with Moore’s Law coming to a halt, the demand for
heterogeneous computing solutions has risen [15]. The highly customizable and adaptable
nature of FPGAs makes these devices exceptionally well suited to satiate these demands.
Especially in the turbulent field of deep learning, FPGAs are capable of exploiting cutting
edge developments by means of their reconfigurability. However, in order to extract the
full potential of a particular device it is necessary to understand its underlying architecture
and limitations. In this section we delve into the characteristics of the available memory
resources, the AMBA standard and multi-die FPGAs, and touch briefly upon the topic of high
level synthesis.

6
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Figure 2.1: Overview of the Basic Building Blocks of an FPGA [16]

2.1.1. Memory Resources
In this section, the details of the memory resources that are available on Xilinx 7 series
and Ultrascale+ FPGAs are presented. The increasing need for on-chip memory storage
brought some changes to the architecture of FPGA devices. Generally, the trend has been
to integrate larger, higher density memory resources to meet these demands. For efficient
memory mapping it is vital to map smaller logical memories to smaller primitives as this
prevents underutilization. Conversely, mapping large logical memories to small primitives
results in routing congestion and resource depletion.

Distributed RAM
The smallest physical RAM that is present on Xilinx FPGAs is the distributed RAM located
in the CLBs. This resource is also commonly known as LUTRAM and, as the name suggests,
utilizes the memory cells in LUTs for data storage. More specifically, each CLB is subdivided
in slices (containing the LUTs) that can be subdivided in two types: SLICEM and SLICEL.
Exclusively the LUTs in SLICEM slices can be used as RAMs, since the LUTs in SLICEL slices
lack a data input port, and are therefore only configurable at bitstream initialization [17]. It
is, nonetheless, possible to use all LUTs as ROMs.

LUTRAM can be configured to produce RAMs that have specific dimensions and throughput
properties. By default, each 6-input LUT can be used as a 1-bit × 64 addresses single port
RAM. However, it is also possible to create dual and quad port RAMs out of multiple LUTs by
sharing the write address ports of the LUTs. Additionally, as long as only one read/write per
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cycle is requested from the RAM, LUTs can be configured as Simple Dual Port (SDP) RAMs
to efficiently implement wide memory arrays. For example, the 4 LUTs in a SLICEM can be
combined to build a 3-bit × 64 addresses SDP RAM, as opposed to the 6 LUTs required to
build the true dual port equivalent.

Block RAM
BRAM is embedded memory that is located outside of the CLBs. Compared to LUTRAM,
Block RAM is used to implemented larger memories. The dimensions of the BRAM primitives
in Xilinx FPGAs are 18-bit × 1024 addresses for the RAMB18 primitive and 36-bit × 1024
addresses for RAMB36 (essentially two cascaded RAMB18s). BRAM modules support a range
of modes and aspect ratios to improve the mapping efficiency of logical memories.

To start with the aspect ratios, the width of the address and data bus of a BRAM can
be configured to effectively change the dimensions of the memory array. The supported
aspect ratios for the BRAM primitives are listed in Table 2.1. As can be seen, the primitives
essentially support trading in some data bus bits for additional address bits.

Notable within the scope of the work in this thesis are the SDP modes. Since the poorly
mapping weight buffers have shapes that can be characterized as wide and shallow, the SDP
modes are a way to internally improve the mapping efficiency of those buffers. The data buses
of the two read and write ports are combined, which results in a memory array that is twice
as wide and shallow as the default configuration. Ultimately, an equivalent improvement in
mapping efficiency can be obtained by simply utilizing the True Dual-Port (TDP) mode of the
BRAM by packing two memories on top of each other. In general, since these memories have
a greater storage capacity compared to LUTRAM, it is more likely that these resources are
underutilized.

Table 2.1: BRAM: Supported Aspect Ratios [18]

(a) RAMB18

Dataw Addresses

1 16384
2 8192
4 4096
9 2048
18 1024
36 (SDP) 512

(b) RAMB36

Dataw Addresses

1 32768
2 16384
4 8192
9 4096
18 2048
36 1024
72 (SDP) 512

UltraRAM
The last memory resource is UltraRAM (URAM). URAM is the most dense memory resource on
FPGAs, and was integrated in the latest families of Xilinx FPGAs to meet the ever increasing
demand of on-chip memory. URAM modules have a fixed size of 72-bit × 4096 addresses
and do not support any of the previously mentioned aspect ratios nor SDP modes.

Another limitation is that URAM cannot be initialized through the bitstream [19]. This
makes this type of memory the least flexible and most difficult to integrate in FPGA designs.
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Regardless, this memory resource offers vast amounts of storage capacity on the Virtex
Ultrascale+ family of devices and, when efficiently used in a design, can reduce the on-chip
memory shortage problems to a great extent. Furthermore, balancing out the utilization
of the various memory resources is imperative to ease timing closure when working with
multi-die FPGA design. However, the 4× increase in both width and depth relative to the
RAMB18 primitive, combined with the lack of aspect ratio modes, causes the likelihood of
underutilizing this resource to rise significantly.

2.1.2. The AMBA Standard
Aside from having sufficient on-chip memory that provides data at the required throughput,
it is vital to have fast and scalable interconnect at your disposal to transfer that data to the
compute units. The ARM Advanced Microcontroller Bus Architecture (AMBA) is a popular
interconnect standard developed by ARM for the transfer of data between different hardware
components [20]. Part of this standard is the popular and widely adopted interface known as
Advanced eXtensible Interface (AXI).

The fourth generation of this interface, AXI4, is used extensively on Xilinx FPGAs to
communicate with the various hardware blocks [21]. The AXI interface is a synchronous point-
to-point connection between master and slave devices. Communication is established based
on a combination of two handshaking signals. The master always initiates the communication,
and data are transmitted on positive clock edges when the recipient asserts the READY signal,
and the sender asserts the VALID signal. AXI4 supports a maximum burst size of 256 beats,
and allows register slices to be placed on AXI4 interconnect to improve timing. Since AXI4 is
a memory mapped interface, data transfers between the endpoints occur at specific address
ranges.

Also part of the AMBA 4 standard is the AXI4-Lite interface. Similar to AXI4, this interface
is also point-to-point and memory mapped. The difference is that the Lite variant does not
support burst mode, which reduces the resource overhead for this interface when compared
to the full AXI4 variant.

The last interface out of the series, AXI4-Stream, is not memory mapped but still point-to-
point. Since AXI4-Stream has no addressing logic, there is less resource overhead. Additionally,
the interface has an unlimited burst length. Beats can be transmitted on each rising clock
edge as long as TREADY and TVALID are both asserted.

2.1.3. Multi-SLR Devices
The trend of developing chips with higher compute capabilities, as well as integrating greater
amounts of memory, leads to an increase in die size [22], with some processor designs nearing
the reticle limit [23]. Reliably manufacturing large chips is challenging and requires extensive
R&D efforts. For this reason, building large monolithic dies rapidly becomes an uneconomical
venture.

A strategy that can be employed in order to circumvent these difficulties, is to create
2.5D System-in-Package devices. Here the large design is partitioned across multiple chiplets
interconnected through an interposer. Xilinx developed the Virtex Ultrascale+ devices using
this design strategy, which they refer to as Stacked Silicon Ínterconnect (SSI) Technology.
VU13P, for example, consists out of four stacked FPGA dies that are called Super Logic
Regions (SLRs). This is illustrated in Figure 2.2. The wires that connect the SLRs through
the interposer are called Super Long Lines (SLL).
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X-Ref Target - Figure 3-1

Figure 2.2: Xilinx Virtex Ultrascale+ 2.5D Planar Die Package [24]

While the SSI technology enables the design of large FPGA devices, these multi-die devices
have inherent drawbacks compared to their monolithic counterparts. The most prominent
problem is controlling clock skew and latency variance (due to potential process corner
differences between dies) when transmitting data across dies [25]. Additionally, while SLLs
might be low-latency compared to long PCB traces, communication across these lines is still
an order of magnitude slower than on-chip wires. The amount of connections between SLRs
is also rather limited, and must be taken into account during design.

Inter-SLR communication is handled by the Laguna tiles. On Ultrascale+ devices each La-
guna tile consists out of four Laguna sites. These sites each contain six full-duplex connections
to SLLs that can optionally be routed through flip-flops for synchronous communications. A
Laguna site and SLL connections to adjacent SLRs are shown in Figure 2.3. In the VU13P
there are 3840 of such Laguna sites on each side of an SLR crossing junction. This shortage
of SLL connections combined with the incurred latency for off chip communication, imply
that it is essential to keep SLR crossings to a minimum if we want to maximize the operating
frequency [26].

2.1.4. High-Level Synthesis
High-Level Synthesis (HLS) is a design process that allows hardware designers to create
hardware through high-level language descriptions. The concept here is that a high-level
language can abstract away many of the tedious details associated with the traditional HDL
development flow [28]. In theory, HLS should therefore allow hardware designers to be more
productive, and function as a bridge to enable software developers to design hardware to
accelerate the computationally intense parts of their code. Additionally, functional verification



2.1. FPGA Infrastructure 11

TXQ0

TXQ1

TXQ2

TXQ5

TX_CLK

TX_CE

TX_SR

TXQ3

TXQ4

Laguna Cell for One SLL RXQ0

RXQ1

RXQ2

RXQ5

RX_CLK

RX_CE

RX_SR

RXQ3

RXQ4

(a) Laguna Site [27]

X-
Re

f T
ar

ge
t -

 F
ig

ur
e 

3-
5

SL
R 

1

SL
R 

0

(b) SLL Routing [24]

Figure 2.3: Interconnect for SLR Crossings

of the hardware can also be realized more easily at a higher level of abstraction.
Vivado HLS is a high-level synthesis tool developed by Xilinx that translates C/C++

descriptions of hardware into Register-Transfer Level (RTL) descriptions [29]. C variables,
for example, are synthesized as wires or registers, and arrays as larger memory primitives
like LUTRAM, BRAM or URAM. Hardware blocks are created with functions, and the function
arguments of the function are inferred as ports. Verification of the hardware block can be
done by creating a C program that calls the function representing the hardware block. After
verification, the designed hardware block can be packaged and exported to Vivado for system
integration. A typical design flow for Vivado HLS is displayed in Figure 2.4.

C/C++ Model

Behavioral Model 
Compilation

Csim

Behavioral C 
Simulation

C Synthesis

RTL Generation

Cosim

RTL / Co-
Simulation

IP Export

Vivado IP 
Package

Figure 2.4: Vivado HLS Design Flow

By default, Vivado HLS does a best effort to find a good schedule and bind resources for
the described hardware based on the target device and its speed grade, but it is possible to
override this behavior. Performance optimizations and resource utilization management, for
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example, are realized by passing directives to the compiler. Variables can be remapped to
different hardware resources, and latency constraints can be specified for the operations. In
practice it is often necessary to optimize the design with directives to ensure that the optimal
resource is selected.

Describing hardware with a high level language is beneficial in several areas, including
address logic generation and the exploration of different architectures. The manual effort is
handled by Vivado HLS on the background, and only the relevant parameters are exposed
to the end user. However, when comparing the hardware generated through HLS with
handcrafted RTL designs on performance and resource utilization, the results are often less
optimal.

2.2. FINN
In this section the FINN end-to-end deep learning framework, the identified BRAM bottleneck,
and neural network inference accelerator designs are detailed. Before we touch upon the
main matter, it is important to first go through the fundamentals of neural networks to gain a
better understanding of the involved concepts and terminology.

2.2.1. Neural Networks
Artificial Neural Networks (ANNs) are computational structures that are modeled after the
human brain, and have as goal to enable a machine to learn to perform a certain task
[30]. The fundamental processing elements within these networks, through which the input
is propagated, are correspondingly named neurons. These neurons are grouped into a
hierarchical structure of layers. As depicted in Figure 2.5, a neuron takes as input the sum
of outputs of neurons from the preceding layer, which are connected through its synapses;
following the model of the perceptron as introduced by Rosenblatt [31]. The value of this sum
is compared to a certain threshold value, and depending on the outcome of this comparison,
might cause the neuron to activate (i.e. produce an output signal). The value that is produced
at the output of a neuron is determined by the employed activation function. This activation
function can be linear or non-linear [32]; commonly employed in FINN accelerators are
the Rectified Linear Unit (ReLU) [33] and unit step functions. The key parameters of the
neuron are the weights wn with which the inputs xn to the synapses of the neuron are scaled,
the activation function used for producing an output value, and the threshold value that
determines whether the neuron should fire.

The value of these parameters are derived for all of the neurons within the network during
a learning process that is referred to as training. Training can be supervised (where examples
with answers are provided), unsupervised (where the goal is to find patterns without answers),
or hybrid which is referred to as semi-supervised learning [34]. In this thesis we limit our
scope to supervised learning, where the network learns to classify input data out of a number
of known classes. When the values of the parameters are derived, the network should be
capable of inferring the class of new data from outside the dataset with a certain accuracy.
This accuracy is typically listed in terms of top-5 and top-1 accuracy, which corresponds to
the case where the correct class is within the five highest or absolute highest probability of
the prediction, respectively.
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Convolutional Neural Networks
For the work that is conducted within this thesis, the main goal has been to improve the
memory utilization of inference accelerators that are targeted at image classification. The
neural networks that are typically used for this purpose belong to a class of networks referred
to as Convolutional Neural Networks (CNNs) [35]. A typical CNN topology is shown in Figure
2.6. These networks deviate from the ANNs that were described previously in a number of
ways.
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Figure 2.6: A Typical CNN Topology [36]

In the first place, CNNs contain so called convolutional layers where for each layer the
convolution of a number of filters with an Input Feature Map (IFM) is performed. More
specifically, each filter is a K × K × NI F M volume that slides across an input feature map
containing NI F M channels (i.e. for the first CNN layer the input feature map is typically an
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RGB image containing three channels). Each convolution produces an output feature map,
where each neuron contributes a single feature to an output feature map. The part of the
filter that overlaps with the input feature map is referred to as the convolution window. The
corresponding output value for the feature that is centered in the window is calculated by
taking the inner-product of the filter and the convolution window. For symmetry purposes,
K is typically chosen to be an odd integer. In contrast to ANNs, neurons in CNNs are only
connected to the K×K×NI F M neurons that are within its convolution window. The exception
are the neurons in the Fully Connected (FC) layers. These layers are included at the end of
CNN topologies to produce the classification results [37], and are structurally similar to the
layers in ANNs as depicted in Figure 2.5.

Finally, CNNs typically use a form of sub-sampling to reduce the size of the network.
This sub-sampling is mostly implemented in the form of a max or mean pooling layer. In
such layers a window is moved over the output of the preceding layer and, respectively, the
maximum or mean values are selected.

Deep Learning
Since neural network layers are interconnected in such a way that each subsequent layer is
capable of extracting a higher degree of abstraction, the accuracy with which predictions can
be made typically increases with the amount of incorporated layers. This notion gave rise
to the development of Deep Neural Networks (DNN) that were trained to accomplish more
complex tasks [38]. The word “deep” refers to the fact that DNNs typically consist out of a
large amount of layers.

It is evident that for large neural networks with many connected neurons the memory
requirement for storing all of the weights and threshold values becomes large. Likewise, the
computational intensity is considerable for performing convolutions and activation function
evaluations for all of the neurons in the network.

Quantized Neural Networks
Following from the high computational requirements of large neural networks, extensive
research has been pursued to improve the performance and reduce the footprint of neural
network inference [39]. One of the explored avenues is quantization of the neural network
parameters. Research has demonstrated that for large networks, it is possible to trade in a
small amount of accuracy, for a significant reduction in terms of storage and computational
requirements [8]. For FPGAs in particular, interesting trade-offs can be made between resource
utilization and classification accuracy [11]. When reducing the parameter precision all the
way down to binary representation, it is even possible to replace the costly multiplication
and addition operations with simple XNOR-popcount operations [10, 40].

In Figure 2.7 a number of accelerators with different quantization configurations are
compared on top-5 accuracy for classification on the ImageNet dataset and LUT utilization.
From these data it can be seen that there is only a 4% accuracy decrease at a 250× reduction
in LUT utilization when reducing the parameter precision from 32-bit floating point down to
8-bit integer.

2.2.2. FPGA Inference Accelerators
There are many different ways in which inference accelerators are implemented on FPGAs
in the literature. Most common are overlay architectures and their variants [41, 42, 43].
Conversely, the accelerators that are used as demonstrators in this thesis are based on a
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Figure 2.7: Quantization vs. Top-5 Accuracy Trade-Off on the ImageNet Dataset [11]

different architecture, which is referred to as a streaming architecture. FINN is based on
this architecture [10]. A schematic representation of overlay architectures and streaming
architectures is provided in Figure 2.8.

Overlay Architectures
The underlying concept of overlay architectures, is that the entire FPGA fabric is dedicated
to execute a subset of the layers in a particular neural network. On one extreme end are
overlay architectures that process neural networks on a layer-by-layer basis. An example of
such an architecture is described in the work of Zhang et. al. [41]. Here, a systolic array of
Processing Elements (PEs) is instantiated on the FPGA fabric, and is commonly shared for
the computation of the operations corresponding to different layers. Once the execution of
the operations pertaining to a single layer have been completed, the produced output data
are stored in buffers, and the NN parameters of the subsequent layer are loaded on chip from
external DDR or High Bandwidth Memory (HBM).

Lin et. al. mention that this “one-size-fits-all” approach leads to underutilization of FPGA
resources, and report significantly higher computational throughput using a layer clustering
approach [42]. In such an architecture, resources are shared between layers that have similar
hardware requirements, and are placed in parallel next to layers that have complementary
hardware requirements. Sharma et. al. take this approach one step further and divide the
entire neural network into slices [43]. These slices consist out of a number of compute
units, where each compute unit performs the functions of a particular layer. The authors
attempt to fit as many compute units corresponding to subsequent layers as possible on the
FPGA to promote data reuse, which ultimately improves performance and memory utilization
efficiency.

Streaming Architectures
An alternative to overlay architectures are streaming architectures. In streaming architectures,
per layer dedicated compute units are generated for each layer in the network. These compute
units are composed out of multiple PEs that each perform the calculations for one neuron, or
multiple neurons if the execution of a particular layer is time-multiplexed over several cycles.
Finally, the compute units are scaled in terms of the number of PEs that are instantiated in
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Figure 2.8: Different Types of Inference Accelerator Architectures

parallel, which happens according to the computational requirements for the corresponding
layer, and the available hardware resources of the FPGA, such that all compute units can be
placed on the device. This approach is similar to that of Sharma et. al., but the difference
lies in the fact that in streaming architectures, all of the dedicated per layer compute units
and parameter values are placed on-chip, such that the data never have to leave the chip.
Off-chip data transfers only take place when the input is streamed into the accelerator,
and classification results are streamed out of the accelerator (typically to and from a host
system). Furthermore, the compute units are pipelined and latency matched such that the
computational throughput is maximized. This latency matching is required, since execution
starts as soon as data are presented at the input of the compute units. In practice, this
implies that the more computationally intense layers require more parallel processing power
to prevent those layers from stalling the pipeline.

The immediate advantage of streaming architectures lies in the fact that their latency
can be significantly lower compared to overlay architectures, as there are less data transfers
involved in moving data between layers; the parameter values and output data are kept
on-chip. Furthermore, the latency matching of layers based on their respective computational
requirements leads to designs that maximally utilize the available resources, such that the
highest possible performance can be obtained for the targeted device. Regardless, fitting the
compute units and parameter data for all network layers on chip remains a challenge.

2.2.3. The FINN Framework
FINN is an end-to-end framework that takes advantage of parameter quantization to generate
fast, scalable and efficient FPGA dataflow inference accelerators. In Figure 2.9 an overview
of the tool flow is shown.
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Figure 2.9: The FINN End-to-End Tool Flow

The description of a neural network is provided at the input, and is translated into an
Intermediate Representation (IR) by the FINN frontend. The FINN compiler then does iter-
ative passes encompassing: the application of transformations to the IR, and carrying out
performance analyses to ensure that the provided throughput constraint can be met. When a
good solution has been found, the compiler translates the IR into a sequence of elementary
operations that can be mapped to hardware primitives from the finn-hls library. As final
step, FINN generates the deployment package for a series of supported FPGA devices. The
elementary operations that are supported by the finn-hls library are matrix-vector products
(including activation), convolution input generation and pooling.

Matrix-Vector-Threshold Unit
The Matrix-Vector-Threshold Unit (MVTU) is the computational unit that is responsible for
performing the matrix-vector products involved in the convolutional and fully connected
layers. As mentioned before, the execution of the layers is time-multiplexed on the FPGA. In
Figure 2.10 a schematic overview of the architecture of the MVTU, and its corresponding
execution scheme are displayed.

The data in the input FIFO of the MVTU correspond to the data in the convolution window
of the neurons. When the MVTU is activated (i.e. once the input FIFO contains data), each PE
reads from the same stream, but applies a different filter to the data, and contains a different
threshold value. Functionally, this correlates to the generation of features corresponding to
neurons that operate on the same convolution window, but are located in different channels.
Since the amount of operations that can be scheduled in parallel is limited, the generation of
features for the entire output feature map is time-multiplexed over several cycles. It can be
seen from the execution scheme that there are two parameters that control this latency: the
synaptic fold SF and the neuron fold NF .

The synaptic fold controls the amount of multiplication and addition operations that
are performed in parallel by each PE. The exact relation between the synaptic fold and the
amount of SIMD lanes per PE is described by Equation (2.1a). As can be seen in the execution
scheme in Figure 2.10, each PE processes its convolution window (i.e. the lightly shaded
volume in the input feature map) in six steps or ‘folds’; the current fold is depicted as a solid,
white cuboid in the input feature map. Therefore, the synaptic fold in the given example is
six, which implies that the generation of a single feature takes six cycles.
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SF =
K2 NI F M

NSI M D
(2.1a)

NF =
NOF M

NPE
(2.1b)

N` = N2
OF D SF NF (2.1c)

The amount of PEs that are instantiated in parallel is controlled by the neuron fold. In
the given example there are four PEs instantiated in parallel, that each generate a feature
corresponding to a different channel. The features that are being generated in the current
fold are indicated by the solid white cuboid in the output feature map. From the execution
scheme we can deduce that the neuron fold in this example is two. The overall latency in
clock cycles of the MVTU for a particular layer can then be calculated by Equation (2.1c).
Here, K is the filter size, NI F M and NOF M the amount of channels in the input and output
feature map, and N2

OF D signifies the amount of features per channel in the output feature
map; assuming the output feature map is square.

It can also be seen from the schematic overview that the weight buffers (i.e. the memory
arrays containing the filter values for the layer) are stationary and partitioned across all PEs;
where each PE requires parallel access to a different filter. This partitioning is necessary
to guarantee that all of the filter values can be accessed in a single clock cycle. When the
computation of the features for all channels has finished (i.e. corresponding to those neurons
that share the same convolution window), the data are written to the output FIFO; activating
the MVTU of the subsequent layer downstream.
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Figure 2.10: Architecture of the MVTU Primitive
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Sliding Window Unit
The Sliding Window Unit (SWU) converts and sequences the input feature map into a stream.
This stream can then be forwarded to the MVTU in order to perform convolutions. In essence,
the SWU sequences the input data such that a convolution can be performed by simply taking
the inner product of the data in the input stream, and the filter values.

Pooling Unit
The pooling unit is responsible for implementing the maxpool sub-sampling functionality.
Conforming to the FINN architecture, the pooling unit is implemented in dataflow style with
line buffers. When the line buffer is filled sufficiently such that it is possible to perform the
maxpool operation, the maximum value in the window is selected and forwarded.

2.2.4. FINN Architecture
The building blocks from the finn-hls library can be used to build custom inference acceler-
ators. Figure 2.11 contains a schematic overview of an inference accelerator created with the
FINN tool flow. As previously mentioned, the accelerator designs created by FINN are based
on a streaming architecture. Starting from the top, the input images are streamed in from
an external host. To accomplish this, the memory on host side is accessed through Direct
Memory Access (DMA) over an AXI interface. Subsequently, the words that were loaded from
the host are converted into a FIFO stream.

From this point forward, all operations are executed in a dataflow environment. This
implies that as soon as the FIFO contains data, the functional unit that reads from this stream
will be activated. In the example in Figure 2.11, the Sliding Window Unit starts converting the
input data into a format that can be readily processed by the MVTU (which is also connected
through a FIFO stream). As soon as the SWU has finished preparing the input data, the
MVTU is activated, and commences with the generation of the rows of the output feature
map. Once the line buffers in the Maxpool (MAX) unit are filled with a sufficient number of
rows (such that the window of the maxpool unit can be filled), the MAX unit is activated and
sub-samples the output feature map. At the very end of the pipeline, the data are passed to a
Fully Connected (FC) layer where the image is classified, and after which the classification
data can be sent back to the host. Since there are no convolutions in fully connected layers,
no SWU is necessary.

2.2.5. The BRAM Bottleneck
The underlying problem that causes the BRAM bottleneck is a mismatch between the di-
mensions of the weight buffers and BRAM modules. What follows in this section is a deep
investigation into the root cause of the BRAM bottleneck. In the process, the necessity of the
proposed methodology is motivated, and the associated terminology is introduced.

Memory Shapes
To fully understand why the weight buffers map poorly to BRAM, we need to revisit the
topology of CNNs. Convolutional layers perform convolutions by sliding a filter over the
input feature map. In a typical CNN, as illustrated in Figure 2.6, we start with an image and
attempt to extract meaningful features by applying various filters. Evidently, the amount of
produced feature maps increases as we go deeper into the network.

Notice that the shapes of the cuboids reveal much about the computational requirements
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of the corresponding layers. The greater the frontal area of the cuboid corresponding to the
preceding layer is, the higher the degree of data reuse for that layer will be. This follows
logically when we consider that the same filter values will be moved across more data points.
Now, the depth of the cuboid multiplied by the depth of the one in front of it is directly
proportional to the memory footprint of the corresponding layer. Consider that different
filters are required for processing each channel of an output feature, and that the depth of the
filter equals the amount of channels of an input feature map. Finally, the volumes of these two
cuboids reflect the computational requirement for the layer, since the amount of convolutions
that have to be performed is equal to the amount of channels in the output feature map
and the amount features inside each channel, and the complexity of each convolution grows
with the amount of channels in the input feature map. The memory footprint of the weight
buffers for a particular layer M` in terms of bits is as formulated in Equation (2.2a), and the
computational intensity of a particular layer in terms of multiplications and additions is given
in Equation (2.2b). The newly introduced variable WP is the bit precision of the filter values.

M` = K2 NI F M NOF M WP (2.2a)

O` = 2 K2 N2
OF D NOF M NI F M (2.2b)
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Owing to the fact that in FINN-style accelerators the execution of each layer is time-
multiplexed or folded by a certain factor, only OP operations are executed per cycle. To
execute these operations within one cycle, parallel access to OP ×WP bits of data is required.
From this we can immediately derive that the width MW and depth MD of the weight buffers,
are governed by Equations (2.3a) and (2.3b). The buffers are partitioned into multiple
memories across PEs to ensure that the throughput constraints are met. These memories as
depicted in Figure 2.12 are referred to as partitions from this point on.

MW = OP WP = NPE NSI M D WP (2.3a)

MD =
M`

MW
=

K2 NI F M NOF M

NPE NSI M D
(2.3b)
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Figure 2.12: Terminology and Dimensions in Relation to Partitions

Taxonomy
Clearly, when we increase the amount of parallel accesses, MW increases and MD decreases
correspondingly. Due to the different computational requirements of the individual layers, it
is necessarily to modulate OP to match their latencies. In a typical CNN one would therefore
encounter partitions with the following shapes:

• ‘Wide’ and ‘shallow’: corresponding to layers that are computationally intense and
exploit a significant amount of parallelism.

• ‘Narrow’ and ‘deep’: corresponding to layers that are less computationally intense
and are time-multiplexed to save resources.

It is these wide and shallow buffers that have low mapping mapping efficiencies, and
are the main contributors to underutilization problems of BRAM resources. The mapping
efficiency of a partition is as defined in Equation (2.4). The numerator in this equation
denotes the memory footprint for a particular layer M`, while CBRAM stands for the ‘BRAM
bits’ we actually allocate to store the corresponding weight buffers on chip (i.e. the storage
capacity of a BRAM module multiplied by the amount of synthesized BRAM modules).

ηBRAM =
NPE NSI M D WP MD

CBRAM
(2.4)
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Figure 2.13: Packing Strategies

Mapping Efficiency Optimizations
The central objective in this thesis is to improve the mapping efficiency of weight buffers to
BRAMs. A selection of possible mapping optimization strategies are displayed in Figure 2.13.
In Figure 2.13a, the simplest optimization strategy is shown. Here we pack multiple poorly
mapping partitions on top of each other to fill up the empty space and improve utilization.
However, an important aspect to keep in mind is the K2 factor in Equation (2.3b). Typically,
filters are centered around features for symmetry; popular dimensions are 3×3, 5×5 and
7×7. Resultant from this, are buffers that have depths (MD) equal to odd multiples of powers
of two and potentially map poorly to BRAM, which is an 18-bit × 1024 addresses deep array.
In Figure 2.13b we can see that simply packing multiple of these buffers on top of each other
might not immediately improve their mapping efficiencies, since each individual partition
does not evenly divide the depth of the BRAM.

Due to latency matching, it might be possible to combine partitions from layers with
different folding factors, such that their combined depths approaches the depth of a BRAM
primitive, or an integer multiple thereof. We define the case where we combine partitions
from the same layer as intra-layer packing. Conversely, when we combine partitions from
different layers as depicted in Figure 2.13c, we denominate it as inter-layer packing.

Regardless, since each BRAM module contains only two ports, we can not access all
partitions in parallel if we cluster more than two parameters in a single module. As such, the
computational throughput of the accelerator would be degraded if the strategies as displayed
in Figure 2.13a or 2.13c were directly applied in the architecture as discussed in the previous
sections. Consequently, a new architecture is proposed in Chapter 3 that allows the BRAM
to operate at a higher frequency, which allows each BRAM to serve more than two requests
on the same data port within one compute cycle. Considering that this strategy allows us to
pack more than two partitions without violating the throughput constraints, and we have the
possibility to combine partitions from the same or different layers, there is now a potentially
vast amount of packing configurations to explore. This very problem is what we refer to as
the memory packing problem, which is addressed in Chapter 4.



2.2. FINN 23

Table 2.2: Accelerator Specifications

Accelerator FPS kLUTs Fclk (MHz) Efficiency Dataset Device

CNV-W1A1 632 25.7 100 69.3% CIFAR-10 Z-7020
CNV-W1A2 632 37.7 100 69.3% CIFAR-10 Z-7020
CNV-W2A2 206 32.9 100 79.9% CIFAR-10 Z-7020
RN50-W1A2 2015 787 205 52.9% ImageNet VU13P

2.2.6. Accelerator Designs
The proposed methodology has been implemented, validated and evaluated on several
inference accelerators. The specifications and implementation details of the accelerators and
targeted FPGA devices are provided in this section.

BNN-PYNQ
The first class of accelerators are targeted at low-power embedded platforms like the PYNQ-
Z1/Z2 and Ultra96 that are based on, respectively, the Zynq-7020 and Ultrascale+ ZU3EG
SoCs. The BNN-PYNQ suite [44] contains three relatively simple CNNs that support CIFAR-10
[45] and SVHN [46] classification. The topologies of these networks can be found in Figure
2.14. Table 2.2 contains the throughput for each accelerator design in terms of Frames
Per Second (FPS) as evaluated on the respective datasets, the amount of required LUTs to
implement the accelerator designs, the attained clock frequency, and the mapping efficiency
of exclusively the weight buffers to BRAM resources as defined in Equation (2.4).

As can be seen in Figure 2.14, the three CNV accelerators that are included in this work all
share the exact same topolgies, but differ in parameter precision, and thus, the extent to which
the accelerator designs are spatially unfolded. CNV-W1A1 and CNV-W1A2 share the same
folding factors SF and NF , but have different values for the precision of the activations (i.e. the
produced features). Since exclusively the optimization of weight buffers to BRAM mapping is
targeted in this work, CNV-W1A2 was omitted from the evaluation. More interestingly, the
CNV-W2A2 accelerator shares the same topology with the two aforementioned accelerators,
but contains ternary (2-bit) weights as opposed to binary weights. As such, in order to fit the
CNV-W2A2 accelerator design on the Z-7020 FPGA, the folding factor had to be increased.
Looking at Table 2.2, it can be seen that the increase in the folding factor is directly reflected
in the mapping efficiency for the weight buffers. Since the amount of exploited parallelism
is decreased relative to the CNV-W1A1 and CNV-W1A2 designs, the weight buffers are less
shallow, which results in less underutilization of BRAM resources.

ResNet-50
The quantized ResNet-50 accelerator was designed for high-throughput and high-accuracy
image classification on the ImageNet dataset. This accelerator targets the Alveo U250 board
that is based on the Virtex Ultrascale+ VU13P FPGA.

The ResNet-50 network was developed by He et. al. from the Microsoft research team.
This team decisively won the Large Scale Visual Recognition Challenge of 2015 [2]. He
et. al. introduced the concept of residual learning to solve the vanishing gradient problem,
which significantly improved the accuracy of deep neural networks. The topology of the
Resnet-50 accelerator used in this work is laid out in Figure 2.14. The network consists out
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Figure 2.14: Network Topologies of the Accelerators

of a sequence of 16 residual blocks, with fully connected layers at the very top and bottom.
Each residual block consists out of a number of convolutional layers and a bypass path. The
exact configuration differs per type of residual block, which are displayed in Figure 2.15.
The main difference is that the Type-A blocks (i.e. ResBlock: *A) have 1× 1 (referring to the
dimensions of the filter) convolutional layers on the bypass path, while the Type-B blocks
(ResBlock: *B-F) simply forward the input.

In total, the entire quantized ResNet-50 network consists out of 52 convolutional layers
and 2 fully connected layers. As expected, it is quite challenging to fit all of the layers on a
single device; especially, when we consider the poor memory utilization figures as displayed
in Table 2.2. This design was mapped to the largest commercially available device: the VU13P.
Since this is a multi-die FPGA, there are additional floorplanning difficulties associated with
this design.

The floorplan for the ResNet-50 design is given in Figure 2.16. Here the aim is to distribute
the residual blocks across the SLRs such that the resource utilization is spread evenly, and the
amount of SLR crossings are minimized. This balancing of resources primarily consists out of
balancing the BRAM requirements to implement the weight buffers. The Res2x blocks have a
small memory footprint, and have their weight buffers mapped to LUTRAM. The residual
blocks with the largest storage requirements are the Res5x blocks and, for this reason, are
each placed on separate SLRs. In total, the ResNet-50 design has 12 SLR crossings.
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2.3. Conclusion
In the first part of this chapter we covered the infrastructure of Xilinx FPGAs, and found that
these FPGAs consist primarily out of programmable interconnect and logic elements (LUTs).
Additionally, modern FPGAs incorporate hard-wired, embedded devices for vast amounts of
storage and fast arithmetic. The AMBA standard is used for communication between different
hardware blocks, and the largest Xilinx FPGAs consist out of multiple dies that are connected
through a silicon interposer.

In the second part, the FINN framework was introduced, which aims to generate fast
and scalable neural network inference accelerators for FPGAs. The accelerators that are
generated by FINN can be built with a set of elementary hardware blocks from the finn-hls
library. We explored different inference accelerator architectures, and found that FINN
generates accelerators based on a streaming architecture, which have a lower associated
latency compared to overlay architectures. The drawback of streaming architectures, is that
it can be difficult to fit all of the hardware on the FPGA. Relating to this, we investigated the
BRAM bottleneck, and found that these resources are easily depleted when the degree of
exploited parallelism is increased. Finally, the accelerator designs that are to be utilized for
validation and evaluation have been introduced.

In the next chapter, we propose a new architecture that enables more efficient utilization
of the BRAM resources.



3
Decoupled Architecture

In this chapter the first part of the methodology is discussed. Here a new architecture is
proposed in which the memory subsystem is operated in a separate, higher frequency clock
domain. This allows us to scale up the operating frequency of the memory, and pack more
buffers within the BRAM modules. The aim of this approach is to allow for more flexible
allocation of memory, such that the BRAM resources can be utilized more efficiently.

This chapter is structured as follows. First an overview of the proposed architecture is
provided. Subsequently, the concept of asynchronous FIFOs is clarified. Lastly, the operations
of the involved hardware, and the access to the external memory are addressed.

3.1. Architectural Overview
In the original FINN architecture, all of the weight buffers were assumed to fit on chip, and
were integrated as buffers in the compute units. As previously mentioned, this assumption
combined with the limited amount of ports, and specific dimensions of the BRAM modules
leads to a memory bottleneck. An overview of the proposed architecture is shown in Figure
3.1. Compared to the original architecture in Figure 2.11, it can be seen that the MVTU
now reads from an additional stream, the weight stream, which contains the filter values
for each of the PEs. This streaming interface allows us to store the filter values in different
locations, and essentially separates or ‘decouples’ the memory subsystem from the MVTU.
For example, in Figure 3.1 we can see that the filter values for the CNV layer are streamed
from the on-chip memory, while the filter values for the FC layer are streamed from the
external memory. From this point forward, the original FINN architecture is referred to as the
integrated weights architecture, and the proposed architecture is denominated as the decoupled
weights architecture.

Figure 3.2 displays the differences between the integrated weights and decoupled weights
architectures in more detail. It can be seen that in the integrated weights architecture the
weight buffers are directly accessed by the PEs, and thus we have as requirement that both
elements are clocked at the same frequency. By contrast, we do not have such constraints in
the decoupled weights architecture. Additionally, we can see that in the decoupled weights
architecture, the stream generator is responsible for fetching the various partitions of the
weight buffers, concatenating them and then streaming them to the MVTU. Now the MVTU
requires a stream splitter to dissect the streamed data, and forward them to the designated
PE.

Since the memory subsystem may now reside in a different clock domain, there is a need
for synchronization. This is handled by an asynchronous AXI Stream FIFO [47]. The stream
generator in the memory clock domain fills up the FIFO until it is full, and refills the FIFO
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as parameter values are requested and read out by the MVTU. This essentially creates a
producer-consumer system where the stream generator is the producer, and the MVTU the
consumer. If the memory subsystem is clocked at a higher frequency than the MVTUs, this
structure allows for a latency of greater than one memory clock cycle, without stalling the
pipeline. The amount of memory partitions that can be packed in a single BRAM without
incurring throughput penalties HB, is now dictated by the ratio of the memory clock Fm,
and compute clock Fc, multiplied with the amount of ports of the memory primitive Np, as
defined in Equation (3.1). From this point forward, max{HB} is referred to as the maximum
bin height.

HB ≤max{HB} =
�

Np
Fm

Fc

�

(3.1)

As can be seen in Equation (3.1), in order to increase the maximum bin height by one, the
operating frequency of the memory subsystem must be increased by Fc/Np. Regardless, due
to the producer-consumer mechanism, the computational throughput decreases gracefully if
the maximum attainable value for Fm does not fully satisfy Equation (3.1). To illustrate this
notion, consider the case where we have an accelerator design in which the MVTU operates
at 200 MHz, and we try to pack four partitions in BRAM. Additionally, suppose that it is
at most possible to meet timing closure at 395 MHz for the memory subsystem. Then the
expected computational throughput will only be slightly impaired compared to the case where
Equation (3.1) would have been satisfied (i.e. for Fm = 400 MHz). As such, the decoupled
weights architecture can offer a fine-grained trade-off between computational throughput
and BRAM utilization.
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3.2. Asynchronous FIFO
Moving data from one clock domain to another domain that appears asynchronous to it, leads
to data hazards. In such multi-clock systems, the data are sampled at irregular intervals, which
leads to a phenomenon that is referred to as metastability. More specifically, the flip-flops in
digital circuits have specific hold and setup time constraints. If the sampled data are changed
within this time window, the values of the data at the output of the flip-flop are unpredictable.
In general, when dealing with multiple clock signals, some form of synchronization is required
at the boundaries where signals cross between clock domains.

Metastability can be avoided by transferring data through asynchronous FIFOs. These
storage elements can be filled up to a certain capacity (referred to as the FIFO depth), and can
be read out sequentially when filled. An asynchronous FIFO as supported on Xilinx FPGAs is
depicted in Figure 3.3. The read and write operations are performed in their respective clock
domains. The synchronization of data that are transmitted between these clock domains is
accomplished through a number of auxiliary signals. The signals ‘full’ and ‘empty’ respectively
flag whether there is space left to store data, or that there are data available to be read out.
In order to know whether the FIFO is full or empty, the read and write pointers have to be
synchronized and compared. This synchronization implies that a certain amount of latency
is incurred in the comparison of these pointers. A write operation, for example, affects the
empty signal in the read clock domain several clock cycles later. The same is true for read
operations and the full signal in the write clock domain. In such scenarios, the ‘programmable’
or ‘almost’ full and empty signals are necessary to anticipate whether the respective limits
are neared; which are triggered when a predefined fill level is reached.

3.3. Stream Generator
The stream generator is responsible for fetching all the weight values for a specific layer. In
each memory clock cycle it reads out the required data for all PEs in a particular layer, and
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concatenates the partial words into an SW wide word. The value of SW is given in Equation
(3.2). Here NPE is the amount of PEs that are instantiated in parallel for a particular layer,
NSI M D is the amount of SIMD lanes per PE, and WP is the precision of the weight values.
This wide word therefore contains all the required data for one cycle of execution of the
corresponding MVTU. After these data are concatenated, the word is streamed through an
AXI Stream interface, and written into a FIFO.

SW = NPE NSI M D WP (3.2)

The transactions between the MVTU and stream generator are arbitrated by a set of
handshaking signals. When the FIFO is not full, parameter values are written into the FIFO,
and TVALID is asserted. From the MVTU side, processing can commence by asserting TREADY
when the FIFO is not empty, and TVALID is asserted. Due to this mechanism, it is important
that the stream generator streams words fast enough to keep the MVTU occupied.

3.4. Hardware Costs
Efficiently transferring data between clock domains is essential to maintain throughput. As
previously mentioned, asynchronous FIFOs are used as synchronizer structures between
clock domains. In principle, the FIFO should simply be deep enough to cover for the latency
between read out from the MVTU side, and refill from the stream generator side. For the
accelerator designs that were included in this work, the asynchronous FIFOs were most
efficiently implemented with a FIFO depth of 32. This FIFO depth maps well to the LUTRAM
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resources in SDP configuration.
The hardware cost for applying this methodology is largely due to the required LUTRAM to

implement the FIFOs. As can be seen in Equation (3.3), this cost CLU T is linearly proportional
to the width of the stream. For this reason, the memory packing strategy needs to be
considered on a case by case basis, to determine whether or not the LUTRAM expenditure is
worth the savings in terms of BRAM.

CLU T ≈
2 SW

3
(3.3)

3.5. External Memory Access
As shown in Figure 3.1, the decoupled weights architecture also allows us to store the
weight values in external memory. Unfortunately, FPGA devices typically have relatively low
bandwidth to the external memory compared to alternative platforms that are typically used
for neural network inference (i.e. GPUs). This makes the options to store data in external
memory without affecting the throughput of the accelerator rather limited.

On the Zynq-7000 devices, the fastest access to the external memory is through a 64-bit
wide AXI4 interface with a maximum burst length of 256. The Alveo U250 has access to four
banks of 64 bits each, resulting in an aggregate interface width of 256 bits. The externally
stored weight values, once loaded, can then be streamed to the MVTU after performing a data
width conversion from the interface width to SW bits (i.e. the stream width). Naturally, this
cannot be done in a single cycle if SW is greater than the interface width. The most suitable
layers for storage in external memory are typically the final fully connected layers for three
reasons:

1. In this latency matched dataflow architecture the fully connected layers have the lowest
bandwidth requirements, and thus should not stall the pipeline when accessing data
externally.

2. Fully connected layers have many connections between neurons, and therefore many
weight values to be stored. This increases the likelihood that the memory footprint of
the weight values becomes too large to fit in the on-chip memory.

3. The fully connected layers have the lowest amount of data reuse, which implies that
the weight values can be loaded and consumed sequentially, as required by the MVTU.

Because of the reasons listed above, the bottom fully connected layer in the ResNet-50
design is streamed from DDR. The memory footprint of the weight values for the evaluated
BNN-PYNQ networks is in all cases small enough to fit in the on-chip memory.
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3.6. Conclusion
In this chapter the decoupled weights architecture was proposed, in which the memory
subsystem is decoupled from the compute units. First, we looked at an overview of the
decoupled weights architecture, and established that this architecture allows for more flexible
memory resource allocation. The maximum amount of buffers that can be clustered within
the same BRAM instance was expressed as a function of the operating frequencies of the
memory subsystem and compute units, and we found that the decoupled weights architecture
can provide a fine-grained trade-off between BRAM savings and computational through-
put. Asynchronous FIFOs were identified as a suitable method to avoid metastability when
working with multiple clock domains, and we characterized the associated LUT overhead
for the hardware implementation of the proposed architecture. Lastly, guidelines to mitigate
throughput penalties when storing data in external memory were proposed.

In the next chapter, two new memory packing algorithms are proposed that are capable
of quickly identifying ideal cluster configurations.



4
Memory Packing

In this chapter two new algorithms to solve the memory packing problem are proposed. The
concept of memory packing entails algorithmically clustering multiple buffers into BRAM
such that the BRAM cost is reduced, and no penalty in terms of computational throughput is
incurred. In this thesis we consider memory packing to be a Bin Packing Problem (BPP) with
a number of unique hardware implementation related constraints. For this reason, a brief
introduction on the classical BPP is provided, after which simple heuristics for solving this
problem are discussed. Subsequently, more advanced state-of-the-art algorithms that were
proposed in previous work are presented. Next, a new definition of the memory packing
problem is provided, after which the imposed hardware implementation constraints are
discussed. Finally, genetic algorithms and simulated annealing are introduced and hybridized
with a novel heuristic to rapidly solve the memory packing problem.

4.1. The Bin Packing Problem
The bin packing problem is the problem of trying to pack a set of objects of varying sizes
into bins with fixed capacities, with as goal to utilize as few as possible bins to pack all
the objects. This problem is illustrated in Figure 4.1. Since this problem is NP-hard [13],
good heuristics are needed to find acceptable solutions in a reasonable amount of time. The
memory packing problem can be considered to be a BPP if we consider the various logical
memories corresponding to the weight buffers to be the items or objects, and the physical
BRAM instances to be the bins into which we have to fit the objects.

The primary factors that make the memory packing problem different from the classical
bin packing problem, is that the bins in this case (the BRAM instances) have a limited amount
of ports, and can therefore contain only a limited amount of objects if we want to maintain
the same throughput. This constrained version of the BPP is referred to as a BPP with
cardinality constraints [48]. There is also the fact that the bins can have variable widths,
and therefore variable capacities, depending on the weight buffer partitions that are mapped
to the corresponding BRAM instances. Due to these differences, the efficacy of classical
heuristics, e.g., first-fit, next-fit, etc., are not sufficient for solving this particular constrained
problem [49, 50, 51], so alternative strategies were explored.

4.1.1. Asymptotic Worst Case Ratio
In the literature, bin packing heuristics are usually compared in terms of their theoretical
worst-case performance ratio. This performance ratio is defined as follows: let L be any list
of items to pack {a0, . . . , an}, A(L) the amount of bins the heuristic requires to pack the items,
and COPT (L) the amount of bins that are minimally required to pack the items, then the
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Figure 4.1: Illustration of the Bin Packing Problem

asymptotic worst case performance ratio is given by Equation (4.1) [52]. Thus, R
∞

A gives a
tight upper bound for the packing solutions found by a particular heuristic, compared to the
optimal solution for any combination of items.

R
∞

A = lim sup
k→∞

max
L
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COPT (L) = k
ª

(4.1)

4.1.2. Deterministic Heuristics
The classical deterministic approximations to the unconstrained BPP are rather simple and
fast, but offer sub-optimal results. Figure 4.2 illustrates how various classical heuristics are
approaching the BPP. The first-fit heuristic places each item from the list into the first bin
that has sufficient capacity left to store it. As can be seen in Table 4.1, this heuristic has a
worst-case ratio of 17

10 and has time complexity O(n log n).

Table 4.1: Worst-Case Ratios for a Number of Classical BPP Heuristics [53, 54]

Heuristic R
∞

A Time Complexity

Next-Fit 2 O(n)
First-Fit 17

10 O(n log n)
Next-Fit Decreasing 1.691 O(n log n)
First-Fit Decreasing 11

9 O(n log n)



4.2. State-of-the-Art Algorithms 35

0

1

2

3

5

4

(a) First-fit

0

1

2

3

4

5

(b) Next-fit

L =
�

a0, a1, a2, a3, a4, a5

	

Figure 4.2: Packing Solutions Obtained by Applying Various BPP Heuristics

Next-fit works similarly to first-fit, but in contrast to first-fit, bins are not revisited. When
items do not fit into a bin, that bin is closed, and the item is stored in a new bin. Knowing
this, the higher worst-case performance ratio relative to first-fit is unsurprising. Regardless,
by not revisiting closed bins, the complexity of this heuristic is reduced.

The last two entries in the table refer to the case where the list of items that are to be
packed, are sorted in descending order with regards to size. Intuitively, this is what one
would typically do when packing items in boxes as well. And indeed, from Table 4.1 we
can deduce that the order of the list has a significant impact on the quality of the obtained
packing solutions.

4.2. State-of-the-Art Algorithms
Within the body of literature there also exist approaches that aim to solve the cardinality
constrained BPP. Karchmer and Rose apply a a branch and bound algorithm to solve the
problem [12]. They pose the constraint that partitions can only be clustered together when
they have non-overlapping memory access patterns. This methodology is however not very
effective in streaming architectures that typically have many overlapping memory accesses.
Furthermore, the authors report a high worst-case time complexity of O(mn) for the algorithm;
with m being the amount of bins, and n the amount of partitions that are to be packed.

Vasiljevic and Chow propose a simulated annealing algorithm [55]. They essentially
solve a two-dimensional bin-packing problem, since they also consider width-wise packing
opportunities. Width-wise packing refers to the fact that buffers are placed next to each
other (i.e. words from different buffers are concatenated into a long word, which are then
stored in a single address of the RAM). The authors report fast convergence on all of the
designs that were included in their evaluation. However, the evaluated designs contain a
comparatively small amount of buffers. The authors perform an extensive throughput analysis
for the various packing configurations, but do not compensate for the incurred penalties.
The simulated annealing algorithm as proposed in the paper explores the search space with
random movements of buffers between bins; referred to as buffer swaps. This buffer swap
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method, which is denoted SA-S within this thesis, was replicated based on the information
provided in the paper, and used as a baseline in the evaluation of the proposed memory
packing algorithms.

4.3. Hardware Constraints
We arrived at the conclusion that the memory packing problem we aim to solve has unique
constraints that requires a different approach from the classical bin packing problem. Some
of these constraints are hard, while others are referred to as soft constraints. The difference
between hard and soft constraints lies in the feasibility of a solution. A solution that violates
one or more soft constraints is deemed undesirable, while violating a hard constraint immedi-
ately renders the packing solution unfeasible. In this section the imposed hardware related
constraints are defined and classified.

4.3.1. Problem Definition
Let us first reformulate the classical bin packing problem into our specific memory packing
problem.

Definition 1 “The memory packing problem is a bin packing problem where the items
correspond to buffers, and the bins correspond to the physical memories into which the
buffers are to be packed. Bins have variable storage capacities and an upper bound to the
amount of discrete partitions they can contain.”

Aside from the cardinality constraints, a fundamental difference with the classical bin packing
problem is that we can have bins of variable sizes. Ultimately, the items that are to be packed
are the weight buffers, and one or more of their dimensions might exceed the capacity of a
BRAM primitive. BRAM also supports aspect ratios that can alter its dimensions, depending
on the width of the buffers that are mapped to it. Note that it is instead possible to slice the
buffers into smaller segments and keep the bin capacity constant. However, this approach
significantly increases the problem size.

Now that we have defined the memory packing problem, we can impose the following
constraints:

1. A bin can contain no more partitions than as specified in Equation (3.1) (hard)

2. Ceteris paribus, homogeneous bin configurations have precedence (soft)

3. Ceteris paribus, shallow bin configurations have precedence (soft)

The first constraint is self-explanatory and requires no further elaboration. The second
constraint, however, pertains to the concept of intra and inter-layer packing configurations as
defined in section 2.2.5. While inter-layer packing configurations offer greater potential for
memory reductions, they do have drawbacks associated with them. In particular, the routing
becomes more complicated when we pack buffers belonging to layers that are located in
completely different sections of the FPGA. This problem is exacerbated on multi-SLR devices,
where we should avoid memory accesses across different dies to improve timing closure.
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Knowing this, we give precedence to bin configurations that combine partitions from as few
as possible different layers.

Similarly, from a hardware perspective, the LUT cost increases proportionally with respect
to the amount of addresses spanned by a particular packing configuration. The address
decoding becomes more complex, and it is in general a waste of resources to clock the RAM
higher, and spend additional LUTs on CDC logic when a packing configuration does not yield
any benefits. For this reason, it is necessary to actively discriminate between constructive
actions that improve the mapping efficiency, and those that are simply non-deteriorative.

4.4. Metaheuristics
In this section the genetic algorithm and simulated annealing metaheuristics are introduced.
These metaheuristics form the basis of the proposed algorithms, and serve as tools to perform
a guided random search through the vast amount of potential packing solutions.

4.4.1. Simulated Annealing
Simulated annealing was introduced by Kirkpatrick et. al. as a simple optimization strategy
[56]. It is rather similar to general hill climbing algorithms, but its distinguishing feature is
that the algorithm occasionally jumps between hills to prevent getting stuck in a local optimum.
This jumping of hills is modeled by random thermal motion that forces the algorithm to
sometimes perform bad actions. By default, the algorithm accepts an action if it leads to
a solution that optimizes a certain cost function. If the action leads to a worse solution,
that action might still be accepted with a certain probability PA(T ), as described in Equation
(4.2). This probability approaches one for high temperatures, and decays exponentially as
the temperature decreases. As a result, the algorithm frequently jumps between hills at the
start of the annealing process, and selects a hill to climb in the final phase.

PA(T ) = e
−∆E

T (4.2)

4.4.2. Genetic Algorithm
Genetic algorithms, as introduced by Holland, are optimization algorithms that belong to a
class of algorithms known as evolutionary algorithms [57]. These algorithms operate on a
set of individuals, referred to as a population, that are subjected to genetic manipulations
that are inspired by natural selection. Individuals represent candidate solutions with a range
of properties that are encoded into chromosomes. The individuals compete against each
other in order to procreate and evolve. The quality or fitness of an individual is determined
by a cost function that is to be minimized. The strategy is to improve the fitness of the
population across multiple generations by applying mutation, crossover (procreation), and
selection. This entails having the fittest individuals pass on their genes in the form of creating
offspring, and having mutants develop positive traits. In order to avoid getting trapped in a
local optimum, genetic algorithms promote genetic diversity by means of random mutation
and easing the selective pressure.
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4.5. Proposed Algorithms
In this thesis, a new heuristic named Next-Fit Dynamic (NFD) is introduced that improves upon
previous works [58, 59, 60]. This heuristic enables fast exploration of the search space, aims
to deliver hardware optimal packing solutions, and can be embedded in genetic algorithms
and simulated annealing approaches. This section covers the details of the algorithms that
incorporate this heuristic.

4.5.1. The Next-Fit Dynamic Heuristic
Next-fit dynamic is based on the simplest bin packing heuristic next-fit (i.e. it has time
complexity O(n)), but explicitly takes the cardinality constraints and variable bin size into
account. As can be seen in Algorithm 1, out of a particular packing solution, those bins that
map poorly to BRAM are marked for recombination. The mapping efficiency to BRAM is
calculated as defined in Equation (2.4). If the mapping efficiency of a bin is below the given
threshold, the bin is marked for repackaging. Repackaging implies that the bin is emptied,
and the buffers that it contained are added to a list of items that are to be packed.

Subsequently, next-fit dynamic attempts to optimize the placement of the buffers belonging
to these bins. As previously mentioned, the order of the items in the list strongly impacts
the efficacy of bin packing heuristics like next-fit and first-fit. As such, the order of the list is
shuffled before packaging, which allows for the exploration of new packing configurations.
Since next-fit dynamic is based on next-fit, the packing list is traversed linearly. This means
that the first item in the list is placed into a new bin. If the next item does not ‘fit’ in the
already opened bin, that bin is closed and the item is placed in a new bin.

Dynamic Bin Capacity
Since we have bins of variable capacity, we need to redefine the fullness of bins. In next-fit
dynamic the fullness of a bin is determined by three factors:

• the cardinality constraints (i.e. max bin length)

• the current width of the bin

• the current height of the bin

If the opened bin already contains an amount of buffers equal to the maximum bin length
(i.e. HB as defined in Equation (3.1)), the bin is closed, and the buffer under consideration is
placed in a new bin.

The two remaining points are related to the mapping efficiencies of the bins. As can be
seen in Figure 4.3b, the mapping efficiency of a bin is determined by the empty space that
would be left if the bin were to be mapped to BRAM. Since the width of a bin is equal to the
maximum width of all buffers that are packed inside it, the bin’s mapping efficiency typically
diminishes if we group buffers with different widths. For this reason, the bin is closed if the
width of the buffer that is to be packed, is different from the width of the opened bin.

The height of a bin is equal to the sum of the heights of all the buffers that are packed
inside. As shown in Figure 4.3b, a buffer can be added to a bin if it improves the mapping
efficiency of that bin; which implies that the gap as indicated in the figure is minimized. More
specifically, if the sum of the bin height and the height of the buffer under consideration better
approaches an integer multiple of the depth of the memory resource (i.e. 1024 addresses for
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BRAM) than the current bin height, the mapping efficiency is improved, and the buffer can
be placed in the bin.

To avoid getting stuck in local optima there are small admission probabilities Padm,w and
Padm,h that cause the heuristic to occasionally permit the exploration of solutions that do
not immediately improve the mapping efficiency. This strategy enables fast exploration of
large search spaces, and gives more control over bin compositions; i.e. not unnecessarily
packing buffers if it won’t lead to BRAM savings. Moreover, this additional control also
enables restrictions like intra-layer packing to potentially obtain less routing congestion on
the FPGA.
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Algorithm 1: Next-Fit Dynamic (NFD) Heuristic
Input: list of packed bins
Output: list of repackaged bins

1 sublist = calculateMapEfficiency(list, threshold);
2 shuffle(sublist);
3 for buffer in sublist do
4 if bin height == 0 then
5 bin← buffer;
6 update(bin width, bin height);
7 else
8 calculate(new bin height);
9 gap = calculateGap(BRAM height, bin height);

10 new gap = calculateGap(BRAM height, new bin height);
11 if length bin < max bin length AND
12 ((new gap < gap OR rnd() < Padm,h) AND
13 (bin width == buffer width OR rnd() < Padm,w)) then
14 bin← buffer;
15 update(bin width, bin height);
16 else
17 list← bin;
18 reset(bin, bin width, bin height);
19 bin← buffer;

20 if length bin > 0 then
21 list← bin;

4.5.2. Simulated Annealing Approach
In this section, the simulated annealing approach that incorporates the next-fit dynamic
heuristic (denoted SA-NFD) is presented. The general flow of the simulated annealing
approach is as described in Algorithm 2. First a random, yet feasible solution is generated
that adheres to the aforementioned constraints. Then, the BRAM cost for this solution is
calculated according to the developed model for BRAM resource utilization, which is listed in
Algorithm 3. This model takes the different aspect ratios and SDP modes into account.

Finally, the annealing optimization process commences as described before. Next-fit
dynamic is used to “perturb” the candidate solution. If the perturbation was beneficial, the
candidate solution is immediately accepted. Otherwise, the acceptance probability PA is
calculated according to the current temperature, and the acceptance of the bad move might
be reconsidered.

The efficacy of this algorithm is largely determined by selecting an appropriate annealing
schedule for a given problem. If the temperature is reduced too fast, the algorithm converges
quickly, but might get stuck in a local minimum. Conversely, reducing the temperature too
slowly also causes the algorithm to converge slowly, and causes oscillations because of the
high probability of accepting good and bad moves alike.
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Algorithm 2: Simulated Annealing
Input: list of partitions, max bin height
Output: BRAM cost, list of packed bins

1 initilize(solution, T);
2 cost = costFunction(solution);
3 while not converged do
4 T = calculateTemperature();
5 candidate = perturb(solution);
6 new cost = costFunction(candidate);
7 PA = probability(cost, new cost, T);
8 if new cost < cost OR rnd() < PA then
9 solution = candidate;

4.5.3. Genetic Algorithm Approach
Many of the approaches in the literature use genetic algorithms to solve the unconstrained
bin packing problem [58, 60]. However, the heuristics that are mentioned in the literature
are not directly compatible with the imposed hardware related constraints. In this section
the details of the proposed genetic algorithm are be provided.

The Naïve Approach
A straightforward approach to solve the memory packing problem with genetic algorithms is
with the “item per gene” representation. As depicted in Figure 4.4, the genes represent the
buffer partitions, and the value of each gene decides in which bin the corresponding partition
is to be packed. The search space can be explored by randomly changing the value of some
of the partitions, which effectively places the partitions into different bins, or by means of
recombination where genes from two parents are combined.
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Figure 4.4: Item Per Gene Chromosome Encoding

As Falkenauer demonstrated, this chromosome encoding scheme was found to be highly
inefficient [59]. The transmission of genes from parents with high fitness to their offspring
is mostly meaningless, since the quality of a gene is determined by the ensemble in which
it is grouped; this context is lost when individually transmitted. Furthermore, in the case
of cardinality constrained bin packing, this method had a high probability of generating
unfeasible solutions.
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Algorithm 3: BRAM Cost Model
Input: list of packed bins
Output: BRAM cost

1 for bin in list do
2 if bin width == 1 then

// "narrow" 1-bit x 16384 adr. aspect ratio
3 new BRAM height = 16 * BRAM height;
4 new BRAM width = BRAM width / 16;
5 else if bin width == 2 then

// "narrow" 2-bit x 8192 adr. aspect ratio
6 new BRAM height = 8 * BRAM height;
7 new BRAM width = BRAM width / 8;
8 else if bin width <= 4 then

// "narrow" 4-bit x 4096 adr. aspect ratio
9 new BRAM height = 4 * BRAM height;

10 new BRAM width = BRAM width / 4;
11 else if bin width <= 9 then

// "narrow" 9-bit x 2048 adr. aspect ratio
12 new BRAM height = 2 * BRAM height;
13 new BRAM width = BRAM width / 2;
14 else

// "regular" 18-bit x 1024 adr. aspect ratio
15 new BRAM height = BRAM height;
16 new BRAM width = BRAM width;

17 if length bin == 1 AND bin height <= 512 then
// "wide" 36-bit x 512 adr. aspect ratio (SDP)

18 new BRAM height = BRAM height / 2;
19 new BRAM width = 2 * BRAM width;

20 BRAM cost += ceil(bin height / new BRAM height) * ceil(bin width / new BRAM width);

Grouping Genetic Algorithm
The chromosome encoding scheme that is employed in this work is referred to as the so
called group based, or simply “bin per gene” chromosome representation as introduced by
Falkenauer and Delchambre [58]. This time, as illustrated in Figure 4.5, a gene represents a
bin that contains as value a list of buffers that are to be packed together. The bin per gene
representation enables targeted manipulation of genes to improve the quality of a solution.

The genetic operators used in the algorithm are: mutation, and tournament selection
where the best solution is picked out of a randomly selected batch of solutions. The selection
process is repeated until the new generation has the same population count as the preceding
generation. The pseudocode for the genetic algorithm is listed in Algorithm 4.

Mutation: The mutation operator is the driving factor in the process of exploring the search
space. Two exploration methods are employed in this thesis. For what is from here on referred
to as GA-S, the buffer swap method that was introduced in [55] is used for mutation. GA-S
serves as an ablation test in the evaluation of the proposed algorithms, where we attempt to
determine the impact of the next-fit dynamic heuristic. The proposed algorithm, GA-NFD,
incorporates the next-fit dynamic heuristic as mutation operator. Here a number of genes are
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Algorithm 4: Genetic Algorithm
Input: list of partitions, max bin height
Output: BRAM cost, list of packed bins

1 initialize(population);
2 while not converged do
3 for individual in population do
4 if rnd() < Pmut then
5 mutate(individual);

6 calculateFitness(individual);

7 while new population count < population count do
8 new individual = tourSelect(population, tour size);
9 new population← new individual

10 population = new population;

selected, after which the contents of the corresponding bins are emptied, and marked for
recombination with the next-fit dynamic heuristic.
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Figure 4.5: Bin Per Gene Chromosome Encoding

Selection: In order to distinguish good solutions from bad solutions, we need to select based
on a quantifiable metric. After exploration through mutation, the best solutions of a particular
generation are selected through tournament selection. As can be seen in Algorithm 4, each
tournament has a single victor that makes it into the next generation.

The factor that determines which individual (solution) wins the tournament, is the fitness
of that particular individual. In this work a multi-objective cost function is employed, where
a weighted sum between BRAM cost and layer count per bin is computed. Packing solutions
that result in the lowest BRAM cost, and do so with bin configurations that contain buffers
from as few as possible different layers, are more likely to make it into the next generation.
As time progresses, only the solutions that best meet these criteria remain.

Hyperparameters
Similar to the simulated annealing algorithm, the performance of the genetic algorithm
depends on the chosen hyperparameter values. The population size effectively controls how
many candidate solutions are still being considered at any given generation. Incrementing
this value generally leads to higher quality results at the cost of slower convergence.

The tournament size (Nt) determines how many candidate solutions are selected per
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tournament to directly compete against each other. If this value is low, the selection process is
essentially random. For high values, the solutions with the poorest quality have low chances
of survival. While the latter may lead to faster convergence, it reduces the genetic diversity,
and increases the likelihood of getting stuck in a local optimum.

Finally, the probabilities Pmut , Padm,w and Padm,h determine how the search space is
explored. Increasing Pmut causes the mutation operator to be invoked for a larger portion of
the population, which leads to a greater amount of explorations. Increasing this value too
high, however, eventually leads to the deterioration of good solutions. Likewise, increasing
Padm,w and Padm,h causes the algorithm to explore more packing configurations, even if these
do not improve the mapping efficiency.

4.6. Conclusion
In this chapter two new algorithms to rapidly solve the memory packing problem were
proposed. We introduced the bin packing problem, and deduced that the memory packing
problem is an instance of the bin packing problem with custom constraints. We then inves-
tigated several state of the art algorithms, of which the most promising one was based on
a simulated annealing approach. Subsequently, we formally defined the memory packing
problem, and composed a list of hardware implementation related constraints. At the end, a
new heuristic was proposed, and was embedded in simulated annealing and genetic algorithm
metaheuristics.

In the next chapter, the algorithms that were introduced in this chapter, and the architec-
ture that was proposed in Chapter 3 are evaluated.



5
Evaluation

The methodology as described in the previous chapters was applied and validated on a range
of accelerator designs that were built upon the FINN framework. What follows in this chapter
is an analysis of the merit of the decoupled architecture and memory packing algorithms for
a range of real-world use cases. First, the developed algorithms are compared in terms of
runtime and obtained quality of results. Next, a selection of the solutions are implemented in
hardware, and evaluated in terms of BRAM reductions and hardware costs. Finally, we study
how the computational throughput and power consumption are impacted by the attained
frequency of the memory subsystem in the decoupled weights architecture. In this chapter,
the BRAM count is expressed in terms of RAMB18 primitives, unless otherwise specified.

5.1. Memory Packing Algorithm
The memory packing algorithms are evaluated on several CNN-based object detection and
classification accelerators that were selected from previous work, and are listed in Table
5.1. The table indicates the source publication for each accelerator, and also the shapes and
number of weight buffers of each accelerator, which serve as input for the packing algorithms.

Small Image Classifiers
The CNV CNNs belong to the BNN-PYNQ suite of object classification accelerators. As men-
tioned in Chapter 2, the BNN-PYNQ suite consists of FINN-style FPGA accelerators, and target
embedded FPGA devices such as the Zynq-7020. CNV-W1A1 utilizes binary quantization
while CNV-W2A2 utilizes ternary (2-bit) quantization [61]. Both CNNs are trained on the
CIFAR-10 [45] dataset, and are able to distinguish between ten classes of common objects
(e.g. birds, cars, dogs, etc.).

Mid-Size Image Classifiers
DoReFaNet and ReBNet are medium-size CNNs trained for object classification on the 1000-
class ImageNet dataset. These CNNs are both quantized versions of AlexNet [1], a popular
image classification CNN topology. The accelerators use binary weights, and consist of five
convolutional layers and three fully-connected layers. However, DoReFaNet and ReBNet differ
in the folding factors utilized for their implementation, and therefore in the shapes of their
weight buffers, and as such are treated separately in the evaluation. DoReFaNet was first
binarized in [62] and implemented in FPGA in [10]. ReBNet was described and implemented
in FPGA in [63] where it is denoted ‘Arch3’.

45
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Large Image Classifiers
As mentioned in Chapter 2, ResNet-50 [2] is a high-accuracy classification CNN designed
for high-accuracy image classification on the ImageNet dataset. The accelerator has been
implemented according to the design principles of FINN accelerators [10], uses binarized
weights, and targets the largest commercially available Xilinx FPGA, the Alveo U250. Larger
ResNet variants are also included in the evaluation — ResNet-101 and ResNet-152 – which
are approximately two and three times deeper than ResNet-50, respectively, but share the
overall structure.

Object Detectors
Tincy-YOLO was first published in [11] and is a binarized-weight variant of YOLO [64], a
popular object detection CNN. The design consists exclusively out of convolutional layers, six
of which utilize binary weights, while two utilize 8-bit weights.

5.1.1. Test Methodology
Packing Algorithm Comparison: First, the Genetic Algorithm (GA) and Simulated Anneal-
ing (SA) packing algorithms are compared with and without Next-Fit Dynamic, in terms
of wall-clock time to convergence and quality of results, for each of the accelerators under
evaluation. For all algorithms a cardinality constraint of a maximum of four weight buffers
per physical BRAM is imposed. The reported time to convergence is defined as the amount of
time it takes each algorithm to attain a packing result that is within 1% of the discovered
minimum. The reported BRAM count is defined as the amount of RAMB18 primitives that are
required to implement the weight buffers. For each convergence experiment, ten different
initial random seeds are evaluated.

Mapping Efficiency Increase: The mapping efficiency of the weight buffers to BRAM is cal-
culated for each of the CNN accelerators (according to Equation (2.4)), targeting a maximum
bin height of four, and utilizing both inter-layer (unconstrained) and intra-layer packing
strategies. In this set of experiments, the GA with the NFD heuristic is used for optimization.

5.1.2. Experiment Setup
The GA and SA packing algorithms are implemented in Python code utilizing the DEAP
(Distributed Evolutionary Algorithms in Python) evolutionary computation library (version
1.3.0) [65]. The packing algorithms are executed in single-thread mode on a server equipped
with Intel Xeon Silver 4110 CPUs, 128 GB of system RAM, and SSD storage. The run-time is
measured using Python’s time package.

5.1.3. Convergence Time
In this section the performance of the proposed heuristic is evaluated. As baseline, the SA and
GA that incorporate Next-Fit Dynamic (SA-NFD and GA-NFD), are compared against SA and
GA implementations that use the buffer swap methodology (SA-S and GA-S). Both versions of
the GA and SA were applied to solve the memory packing problem for the accelerator designs
as listed in Table 5.1. The corresponding hyperparameter settings can be found in Table 5.2.

The runtime comparison results are displayed in Table 5.3 for all accelerator designs, with
the best results highlighted in bold where a clear winner could be distinguished. It has to be
mentioned that for the GA implementations (i.e. GA-S and GA-NFD) the minimum BRAM
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Table 5.1: Baseline Dataflow Accelerators

(a) Small Image Classifiers

Accelerator: CNV-W1A1 [10] CNV-W2A2 [10]

Memory Shapes 16× (32,144, 1) 8× (16, 576,2)
NPE × (NSI M D, MD, WP) 16× (32,288, 1) 8× (16, 1152,2)

4× (32,2304, 1) 4× (1, 8192,2)
4× (1,8192, 1) 4× (8, 9216,2)

1× (32,18432, 1) 3× (2, 65536,2)
1× (4,32768, 1) 1× (8, 73728,2)
1× (8,32768, 1)

Total Buffers: 43 28

(b) Object Detectors

Accelerator: Tincy-YOLO [11]

Memory Shapes 16× (32, 144,1)
NPE × (NSI M D, MD, WP) 25× (8, 320,1)

16× (32, 144,1)
80× (32, 2304,1)

Total Buffers: 137

(c) Mid-Size Image Classifiers

Accelerator: DoReFaNet [11] ReBNet [63]

Memory Shapes 136× (45, 72,1) 64× (54, 256,1)
NPE × (NSI M D, MD, WP) 64× (34,108, 1) 64× (25, 384,1)

32× (64,108, 1) 64× (36, 384,1)
68× (3, 144,1) 64× (32, 576,1)

8× (8, 64000,1) 128× (64, 1152, 1)
4× (64, 65536,1) 40× (50, 2048, 1)
8× (64, 73728,1) 128× (64,2048, 1)

Total Buffers: 320 552

(d) Large Image Classifiers

Accelerator: RN50-W1A2 RN101-W1A2 RN152-W1A2

Memory Shapes 368× (32,256, 1) 1456× (32, 256,1) 2288× (32,256, 1)
NPE × (NSI M D, MD, WP) 32× (64,256, 1) 32× (64, 256,1) 32× (64, 256, 1)

192× (64,288, 1) 736× (64, 288,1) 1152× (64,288, 1)
176× (32,1024, 1) 176× (32, 1024,1) 176× (32, 1024, 1)
32× (64,1024, 1) 32× (64, 1024,1) 32× (64, 1024,1)
96× (64,1152, 1) 96× (64, 1152,1) 96× (64, 1152, 1)

Total Buffers: 896 2528 3776

count of all candidate solutions in a particular generation is tracked.
All the algorithms are capable of quickly solving the memory packing problem for the

smaller CNV accelerator designs. However, as the problem size is increased (e.g. Tincy-YOLO,
DoReFaNet and ResNets) the NFD versions of the algorithms are capable of solving the
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Table 5.2: SA and GA Hyperparameters

GA SA

Accelerator Np Nt Padm,w Padm,h Pmut T0 Rc

CNV-W1A1 50 5 0 0.1 0.3 30 1
CNV-W2A2 50 5 0 0.1 0.3 30 2
Tincy-YOLO 75 5 0 0.2 0.4 30 1
DoReFaNet 50 5 0.1 0.3 0.4 30 1
ReBNet Arch3 75 5 1 0.2 0.4 30 1
RN50-W1A2 75 5 0 0.1 0.4 40 0.004
RN101-W1A2 75 5 0 0.1 0.4 40 0.004
RN152-W1A2 75 5 0 0.1 0.4 40 0.004

memory packing problem considerably faster, and with higher quality of results. For the
ResNets in particular, the NFD algorithms are capable of finding solutions that require up to
8% less BRAM to implement, and reduce the required runtime by a factor of more than 200×
compared to SA-S. GA-S provides poor quality of results especially for larger networks and is
also slower than all other algorithms. In general, GA-NFD achieves the best quality of results,
while SA-NFD is the fastest.

The outlier here is the ReBNet Arch3 accelerator design. This design contains weight
buffers with a large variety in widths (SIMD lanes), which causes difficulty for NFD as it is
forced to pack together buffers with misaligning widths. In order to compete on the metrics
as presented in Table 5.3 (i.e. BRAM cost and runtime), the hardware constraints had to be
relaxed significantly, as is reflected by the high admission probabilities — Padm,w and Padm,h
— as listed in Table 5.2. Nevertheless, the NFD-based algorithms (especially SA-NFD) arrive
at a packing solution significantly faster than buffer swap based GA and SA.

To emphasize the differences in quality of results, aside from potentially greater BRAM
reductions, the NFD algorithms also provide packing solutions with more ideal bin configura-
tions from a hardware design perspective. The reason for this is that the heuristic typically
only packs buffers into bins when it improves the mapping efficiency of these bins. As a
consequence, the NFD algorithms typically provide packing solutions that contain, on average,
bins of lower height, which results in a lower LUT overhead.

5.1.4. Mapping Efficiency
In this section, the impact of the two different memory packing strategies (intra- and inter-
layer packing) on the mapping efficiency of weight buffers to BRAM is evaluated. The
results are displayed in Table 5.4, and were obtained by utilizing the GA-NFD algorithm,
which achieved the best overall packing performance in terms of quality of results in Table
5.3. As mentioned in Chapter 2, the term “intra” refers to the fact that exclusively buffers
corresponding to the same neural network layer are packed together, while in inter-layer
packing configurations no such constraints are imposed. The results are presented in terms
of the amount of required BRAM resources to implement the weight buffers, the resulting
mapping efficiency as dictated by Equation (2.4), and the reduction in memory footprint
∆BRAM .

While the smaller accelerators benefit from the GA-NFD memory packing, the largest
impact is observed for the ResNet accelerators, which are configured for high throughput,
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Table 5.3: Memory Packing Comparison for the different Heuristics

(a) Buffer Swap

Buffer Swap

Accelerator tSA−S (s) tGA−S (s) NSA−S
BRAM N GA−S

BRAM

CNV-W1A1 0.1 0.2 96 96
CNV-W2A2 0.1 0.1 188 190
Tincy-YOLO 1.8 1.7 420 428
DoReFaNet 1.0 1.6 3823 3826
ReBNet Arch3 40.1 57.5 2301 2313
RN50-W1A2 239 290 1404 1472
RN101-W1A2 615 935 2775 3055
RN152-W1A2 1024 1354 3864 4422

(b) Next-Fit Dynamic

Next-Fit Dynamic

Accelerator tSA−N F D (s) tGA−N F D (s) NSA−N F D
BRAM N GA−N F D

BRAM

CNV-W1A1 0.1 0.1 97 96
CNV-W2A2 0.1 0.1 190 188
Tincy-YOLO 0.1 0.2 430 420
DoReFaNet 0.1 0.2 3849 3794
ReBNet Arch3 2.2 28.9 2483 2352
RN50-W1A2 0.8 1.7 1368 1374
RN101-W1A2 0.9 3.3 2616 2616
RN152-W1A2 1.5 4.9 3586 3584

and therefore have a low initial memory mapping efficiency. It is worth mentioning that
the added constraint of intra-layer mapping does not significantly degrade the achievable
efficiency; in most cases the intra-layer efficiency is within 5% of the inter-layer efficiency.

5.2. Hardware Implementations
A selection of the accelerators as listed in Table 5.1 have been implemented in hardware
based on the decoupled weights architecture as laid out in Chapter 3. The specifications
and implementation details of the original accelerator designs based on the integrated
weights architecture can be found in Section 2.2.6. In this section, the synthesis results for
the decoupled weights accelerator designs are presented, and the impact of the operating
frequency of the memory subsystem on the power consumption and computational throughput
of the accelerator is examined.

5.2.1. Timing Closure
The efficacy of the memory packing methodology strongly depends on the available headroom
to increase the memory subsystem’s operating frequency Fm, relative to that of the compute
units Fc . The obtained results show that the ability to increase the frequency strongly depends
on the target platform, and how constrained the device is for resources. The implementation
results for attempting to increase Fm for several accelerators are presented in Table 5.5.



5.2. Hardware Implementations 50

Table 5.4: Mapping Efficiency Increase (GA-NFD)

Accelerator BRAM Efficiency ∆BRAM

CNV-W1A1 120 69.3%
CNV-W1A1-Intra 100 82.3% 1.20×
CNV-W1A1-Inter 96 86.6% 1.25×

CNV-W2A2 208 79.9%
CNV-W2A2-Intra 192 86.6% 1.08×
CNV-W2A2-Inter 188 88.4% 1.11×

Tincy-YOLO 578 63.6%
Tincy-YOLO-Intra 456 80.7% 1.27×
Tincy-YOLO-Inter 420 87.6% 1.38×

DoReFaNet 4116 78.8%
DoReFaNet-Intra 3797 85.4% 1.08×
DoReFaNet-Inter 3794 85.5% 1.08×

ReBNet 2880 64.1%
ReBNet-Intra 2363 78.1% 1.22×
ReBNet-Inter 2352 78.4% 1.22×

RN50-W1A2 2064 57.9%
RN50-W1A2-Intra 1440 82.9% 1.43×
RN50-W1A2-Inter 1374 86.9% 1.50×

RN101-W1A2 4240 52.4%
RN101-W1A2-Intra 2748 80.9% 1.54×
RN101-W1A2-Inter 2616 84.9% 1.62×

RN152-W1A2 5904 50.9%
RN152-W1A2-Intra 3758 80.0% 1.57×
RN152-W1A2-Inter 3584 83.9% 1.65×

To find the maximum attainable clock frequencies, all accelerator designs are converted
to the decoupled weights architecture, and implemented in Vivado (version 2019.1). Fc is
kept constant compared to the original implementation, while for Fm an initial estimate of 2
×Fc is chosen; initially aiming for a ratio of 2× between the two clock domains. If the design
fails in timing closure, the ratio between the clock domains is decreased by 0.5. If the design
meets timing closure, and has not failed to meet timing closure before, the experiment is
repeated with a higher ratio. The highest attainable clock frequencies are recorded for the
highest ratio at which the design met timing closure.

What can be observed from the results as listed in Table 5.5 is that there is a larger
headroom on designs that are relatively constrained for resources. The Z-7020 is rather
constrained for LUTs, and struggles to meet timing closure past 100 MHz for the CNV-W2A2
design. By contrast, it is relatively easy to meet timing closure with Fm at 200 MHz, yielding
a ratio of 2×.

Mapping the same designs to the ZU3EG, that has significantly more resources available
on-chip, demonstrates that it is difficult to maintain a ratio of 2× for devices that are not
constrained for resources. The compute units are almost capable of reaching 300 MHz, but
unsurprisingly, meeting timing closure at 600 MHz for the memory subsystem proves to be
impossible.

Determining the maximum clock frequencies for ResNet-50 is not as straightforward.
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Table 5.5: Timing Closure for a Number of Accelerator - FPGA Configurations

Device Accelerator Fc (MHz) Fm (MHz) Fm / Fc

Z-7020 CNV-W1A1 100 250 2.5×
Z-7020 CNV-W2A2 100 200 2×
ZU3EG CNV-W1A1 299 449 1.5×
ZU3EG CNV-W2A2 299 449 1.5×
VU13P RN50-W1A2 180 360 2×

While the compute units were rather constrained at 205 MHz, the overhead of the stream
generators and FIFOs introduced additional routing congestion, which negatively impacted
the maximum attainable frequency. Moreover, meeting timing closure at 360 MHz for the
memory subsystem on this multi-SLR device was not trivial. Initially, the operating frequency
of the memory subsystem was bounded at 225 MHz. The critical path was, as depicted in
Figure 5.1a, from the reset pin to the stream generators on remote SLRs. The reset was routed
through all SLRs, and crossed multiple Laguna sites in the process, and thus introduced a
considerable amount of delay. Additionally, the reset is a signal with a high fan-out, which
significantly increases the net delay. As depicted in Figure 5.1b, to reduce the inter-SLR path
delay, the reset is pipelined on each SLR. To reduce the skew within each SLR, the reset
is distributed evenly by routing it through clock buffers (BUFGs). The ResNet-50 design
demonstrates that in order to fully leverage the potential of this methodology on multi-SLR
devices, more extensive design considerations might be required.

5.2.2. Synthesis Results
After deriving the cardinality constraints from the maximum synthesis frequencies for the
accelerator designs on each targeted device, the memory packing algorithm was used to
generate efficient packing solutions. All of the identified bin configurations are translated
to stream generators with asynchronous FIFOs and corresponding CDC logic. Both inter-
and intra-layer configurations were explored, and are compared on attained accelerator
throughput in terms of FPS, LUT utilization, and BRAM utilization for implementing the
weight buffers in Table 5.6.

A point of attention is that the BRAM utilization and efficiency data in Table 5.6 might
deviate from the data as displayed in Table 5.4. These deviations are caused by a difference
in resource binding; some weight buffers that were assumed to be mapped to LUTRAM
are instead mapped to BRAM in the hardware implementation. Furthermore, for the small
CNV networks, the weight buffers corresponding to layers that do not require the frequency
overhead (i.e. none of the buffers of a particular layer are grouped in bins with HB > 2) are
implemented as integrated weights rather than streamed weights to save LUTs. However,
this optimization was not applied to ResNet-50 due to the complexity of this design. Instead,
all of the weight buffers are implemented in a streaming fashion. Finally, to improve timing
closure for the ResNet-50 design, the memory packing problem was solved individually for
each SLR. This implies that only weight buffers belonging to residual blocks that are placed
on the same SLR, as indicated in the floorplan displayed in Figure 2.16, can be grouped
together.
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Figure 5.1: VU13P: Reset Routing

As can be seen in Table 5.6, the impact of the memory packing methodology varies greatly
across the different accelerator designs. For CNV-W1A1 a reduction in memory footprint of
1.25× is observed at a 17% increase in LUTs in inter-layer configuration. The intra-layer
configuration yields slightly less savings and introduces a similar LUT overhead. Regardless,
these BRAM reductions enable the possibility to port the CNV-W1A1 accelerator design to
the Zynq-7012S, at the same computational throughput. To emphasize the importance of
this result, the fact that the original design can be ported to smaller devices implies that it is
possible to significantly reduce the financial cost of, for example, edge computing solutions.

The CNV-W2A2 design does not benefit significantly from the memory packing strategy.
The amount of parallelism that is exploited in this design is notably lower compared to
the binary variant (CNV-W1A1), which was necessary to make the design fit on the Zynq-
7020. Hence, the weight buffers already mapped reasonably well to the BRAM resources.
Consequently, the BRAM reduction is insufficient to fit the design on smaller devices.

As expected, the ResNet-50 design benefits the most from the memory packing methodol-
ogy in terms of BRAM savings. Since this accelerator design exploits a substantial amount of
parallelism, many of the BRAM resources are underutilized in the original implementation.
After applying the intra- and inter-layer packing strategy, the required amount of BRAM
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Table 5.6: Packing Results

Accelerator FPS kLUTs RAMB18s Fc (MHz) Fm (MHz) Efficiency

CNV-W1A1 632 25.7 120 100 100 69.3%
CNV-W1A1-Intra 632 29.7 100 100 200 82.3%
CNV-W1A1-Inter 632 30.0 96 100 200 86.6%

CNV-W2A2 206 32.9 208 100 100 79.9%
CNV-W2A2-Intra 206 34.9 192 100 200 86.6%
CNV-W2A2-Inter 206 34.8 188 100 200 88.4%

RN50-W1A2 2015 787 2320 205 205 52.9%
RN50-W1A2-Intra 1468 968 1632 180 360 75.3%
RN50-W1A2-Inter 1468 968 1588 180 360 77.3%

resources to implement the weight buffers was reduced by respectively 1.45× and 1.46×, at
an increase in LUT overhead of 23%. Similar to the CNV accelerators, there is no difference
in maximum attained frequency between the intra- and inter-layer packing strategies. Re-
markably, the throughput of the accelerator was reduced by 1.37×. While lower throughput
was expected, due to the added LUT overhead and the impact of this overhead on the op-
erating frequency of the compute units, the reduction in clock frequency does not account
for the 27% loss in computational throughput. This problem could potentially be caused by
an insufficient FIFO depth (which was chosen to be 32 deep), but further investigation is
required to ascertain the exact cause for this discrepancy.

5.2.3. Memory Subsystem Frequency Scaling
One of the aforementioned merits of the decoupled weights architecture is the fact that the
design trade-off between the computational throughput and BRAM utilization can be made
with a significantly higher degree of granularity. In this section, the impact of the maximum
attainable frequency of the memory subsystem (Fm) on the computational throughput, and
power consumption of the accelerator is investigated.

For this experiment, the inter-layer ResNet-50 accelerator design as listed in Table 5.6
is utilized. To reiterate, this design targets the Alveo U250, is implemented based on the
decoupled weights architecture, and is packed with a cardinality constraint of four (i.e. we
require Fm/Fc = 2× to prevent throughput penalties). The synthetic benchmark from the
Xilinx ResNet50-PYNQ repository [66] was used to measure the power and throughput of the
accelerator. In this benchmark, the accelerator repeatedly classifies 1000 images for 100 times
in an unbroken sequence (i.e. without data transfers between the host and the accelerator).
The batch size is deliberately chosen to be large in order to measure the maximum attainable
throughput (framerate), and the associated power draw more closely. To obtain the power
readings, the supply voltage rail of the FPGA is monitored during inference through the Power
Management Bus (PMBus), and the mean value over the entire inference process is reported
as the final (average) FPGA power draw. Lastly, Fm is increased from 180 MHz to 360 MHz
in steps of 5 MHz, while Fc is kept constant at 180 MHz.

The measurements displayed in Figure 5.2 clearly demonstrate that the throughput
increases gradually as the operating frequency of the memory subsystem is incremented.
Equally, a gradual rise in power consumption is observed; the power consumption increases
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by 25% (10W) between the two endpoints. These results indicate that interesting trade-offs
could be made with respect to throughput and BRAM utilization. If some degradation in
computational throughput is tolerated, several memory packing strategies can still be applied,
even if it is not possible to meet timing closure at the desired frequency.
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Figure 5.2: Impact of the Memory Subsystem Operating Frequency on Power
Consumption and Framerate

5.3. Conclusion
We evaluated the two parts of the proposed methodology in this chapter. The algorithms
based on the next-fit dynamic heuristic demonstrated to be capable of solving the memory
packing problem significantly faster than the state of the art simulated annealing algorithm,
and typically also found better solutions; resulting in a greater amount of BRAM savings.

After experimentally deriving the maximum attainable clock frequencies for several
accelerators, the identified solutions were implemented in hardware based on the decoupled
weights architecture, and were compared against the original implementations. For all
designs a trade-off between additional LUT expenditure and BRAM savings was observed.
It strongly varies per case whether this trade-off is advantageous. Nevertheless, we found
that the CNV-W1A1 accelerator design can be ported to smaller devices without any loss
in throughput. Additionally, we investigated the impact of the frequency of the memory
subsystem on the computational throughput, and found that the applied techniques offer a
great amount of flexibility, even if the desired clock frequency can not be attained.

In the next chapter the research questions are answered, and recommendations for future
work are provided.



6
Conclusions

Central to the conducted work in this thesis was a set of two research questions: “How
can the BRAM utilization efficiency of FPGA neural network inference accelerators be improved
without negatively impacting the system throughput?” and “What is the hardware cost to realize
this approach?”. To answer these questions, relevant literature was explored in the field of
FPGA technology and neural network inference accelerator architectures in Chapter 2, after
which the fundamental cause of the BRAM bottleneck was uncovered. As an outcome of
this research, a new memory-efficient architecture for dataflow neural network inference
accelerators was proposed in Chapter 3, and its associated cost in terms of hardware was
characterized. Furthermore, in Chapter 4 two algorithms were proposed to reduce the BRAM
utilization by intelligently clustering weight buffers. These algorithms were evaluated in
conjunction with the proposed architecture in Chapter 5. In this final chapter, the posed
research questions are answered, and pointers for future work are provided.

6.1. Research Questions
How can the BRAM utilization efficiency be improved without negatively impacting the
system throughput?
In dataflow inference accelerator architectures the BRAM utilization inefficiencies are caused
by a mismatch between the shapes of the weight buffers, which are dictated by the throughput
requirements of the corresponding neural network layers, and the physical dimensions of the
BRAM modules on FPGA devices.

Opportunities to reshape the weight buffers, in order to improve their mapping efficiencies
to BRAM, exist in decoupling the memory subsystem from the compute units. Here the
memory subsystem is placed in a higher frequency clock domain relative to the compute units.
With this approach, multiple parameters that require simultaneous access can be clustered
within a single BRAM instance, while preventing degraded computational throughput of
the accelerator. The obtained results indicate that it is readily possible to increase the clock
frequency of the memory subsystem on small embedded devices. However, it can potentially
be more challenging to meet timing closure on 2.5D planar die packages. Regardless, for
accelerator designs that are constrained for resources (i.e. the designs that would benefit
the most from memory reductions), it proved to be possible to attain operation frequencies
for the memory subsystems that were a factor of 2 - 2.5× higher than that of the compute
units. This allows four to five buffers to be clustered within the same physical 2-port BRAM,
without degrading the computational throughput.

The possibility to cluster more buffers within the same BRAM instance gave rise to the
following problem: “How can the buffers be clustered such that the overall BRAM cost is
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reduced?”. Algorithmically finding the optimal configuration of clusters, such that the amount
of utilized BRAM modules is minimized, can be considered to be a custom, constrained variant
of the bin packing problem. Hybridized metaheuristics like simulated annealing and genetic
algorithms that incorporate traditional bin packing heuristics, demonstrate to be capable
of quickly converging to optimal packing solutions. The applied strategies yield BRAM
reductions of up to 30%. Furthermore, no loss in computational throughput is observed on
embedded devices, where the the memory subsystem’s operating frequency is twice that of
the compute units.

Moreover, all of the cluster configurations were generated within 5 seconds, which allows
the memory packing algorithm to be integrated within design space exploration tools for
CNN inference accelerators. To elaborate on the last statement, design space exploration
tools often have to perform numerous evaluations to identify Pareto optimal designs [67].
Since the memory packing algorithm would have to be invoked for each of the candidate
solutions, this algorithm must be fast in order to be feasible for integration into the toolchain.

What is the hardware cost to realize this approach?
The cost to implement the decoupled weights architecture, as proposed in this thesis, is
dominated by the hardware cost associated with implementing the CDC synchronization logic
and asynchronous FIFOs. On its turn, the hardware cost for implementing the CDC logic
and FIFOs depends on: the amount of neural network layers that are packed and streamed
across different clock domains, and the width of these streams. In order to justify the LUT
overhead associated with the application of the memory packing strategy to a particular layer,
the savings have to be considered on a case-by-case basis.

Aside from the additional CDC logic, certain memory packing strategies might introduce
additional routing congestion. Within this work both inter- and intra-layer packing configu-
rations were evaluated on monolithic, as well as, multi-die FPGA devices. The intra-layer
memory packing strategy enforces the restriction that only weight buffers from the same
neural network layer can be clustered together, while the inter-layer memory packing strategy
considers all packing configurations, such that the BRAM cost can be reduced as much as
possible. From the obtained results no significant impact on the attained clock frequency
was observed between the two packing strategies. However, the impact of the additional
routing congestion should be evaluated per design, and as of such, no general statement can
be made.

6.2. Outcome
The proposed methodology has been applied to several neural network inference accelerators,
and has demonstrated to be capable of significantly reducing the BRAM cost. The CNV-W1A1
accelerator design can be ported to the Zynq-7012S that contains considerably less LUT and
BRAM resources than the Zynq-7020. The alternative strategy to fit this design would be to
increase the folding factors (as defined in section 2.2.3), and thus exploit less parallelism.
This strategy is clearly sub-optimal as it reduces the throughput of the accelerator. Evidently,
the ability to port accelerator designs to smaller devices does not solely increase scalability,
but also essentially reduces the monetary cost for a particular computing solution.

The obtained BRAM savings did not immediately yield benefits for all of the cases that
were included in the evaluation. The CNV-W2A2 accelerator design already utilizes the BRAM
resources efficiently, which results in the fact that even after applying memory packing, the
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design can not be ported to smaller devices.
The situation for the ResNet-50 accelerator design is more complicated. The operating

frequency is negatively impacted by the incurred LUT overhead, and thus, a regression in
computational throughput is observed. The identified candidate devices to port the design to
are the Alveo U200 and U280. However, since these devices have different SLR configurations
(i.e. both devices are composed of three SLRs, but contain different amounts of LUTs and
BRAM per SLR), and thus require different floorplans, it is arduous to predict the impact on
the computational throughput. Nonetheless, the resource utilization estimates generated
by FINN, and the obtained synthesis results from the design as implemented on the U250,
suggest that there is a possibility to port the design to the U280. Similarly, due to the BRAM
utilization reduction, there exists an opportunity to increase the bit precision of the weight
values to two bits on the U250, which enables inference at a higher accuracy.

Aside from modifying existing accelerator designs, an alternative strategy would be
to address the problem at the source. When FINN generates the accelerator designs, the
proposed memory packing algorithm can provide more accurate estimates for the required
amount of BRAM to implement the design on FPGA. Highly parallel accelerator designs that
would otherwise be deemed unfeasible, can then potentially still be implemented; effectively
increasing the performance of the accelerator designs created by FINN. Since the proposed
memory packing algorithm converges fast (even for large multi-die accelerator designs), the
algorithm can be integrated within the FINN framework.

6.3. Contributions
In this thesis, research was pursued to improve the memory utilization efficiency of neural
network inference accelerators on FPGAs. The main contributions of this research are:

• a memory-efficient dataflow architecture for neural network inference accelerators on
FPGAs that demonstrates BRAM reductions of up to 30% compared to the integrated
weights architecture.

• the formulation of the memory packing problem as a variant of the bin packing problem
with custom hardware related constraints.

• a new heuristic that is embedded in simulated annealing and genetic algorithm ap-
proaches. Both approaches rapidly solve the memory packing problem, and are over
200× faster than a state-of-the-art simulated annealing algorithm for large accelerator
designs.

• an analysis of the impact of different memory packing strategies on the maximum
attainable operating frequencies, and BRAM utilization of FPGA dataflow accelerators.
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6.4. Future Work
The memory packing algorithm and decoupled weights architecture that are proposed in this
thesis enable increased memory resource utilization efficiency in modern FPGAs. The applied
techniques in this approach are universal, and can be applied to any digital circuit where
parameter values are read out in a predictable manner. Regardless, the obtained results
suggest that the methodology should be applied with care, since there is a trade-off between
BRAM savings and a LUT overhead.

Improvements can be made on this front by performing multi-objective optimization that
explicitly takes throughput, BRAM and LUT utilization of the design into consideration during
the evolution process. As demonstrated on the ResNet-50 accelerator designs, reducing the
BRAM count while disregarding the additional LUT expenditure might adversely impact the
performance of the design. Since these are strongly conflicting objectives, more advanced
multi-objective optimization strategies for evolutionary algorithms should be adopted to
obtain a set of Pareto optimal design points [68, 69, 70].

Furthermore, while the proposed methodology targeted the optimization of the utilization
efficiency for BRAM, the methodology can be extended to URAM as well. These memory
resources are larger than BRAM modules, and combined with the fact that these resources
do not support the various aspect ratios, are more likely to be underutilized. For some
of the designs that were involved in the evaluation, the BRAM utilization efficiency was
approaching the theoretical maximum in both inter- and intra-layer configurations with
an imposed cardinality constraint of four. Since URAM is both wider and deeper than
BRAM, the same packing strategies would still leave a significant portion of these modules
underutilized. Moreover, aside from packing buffers on top of each other, width-wise packing
where separate words are stored next to each other at the same address, should also be
considered to compensate for the lack of aspect ratios and added width (72-bit vs 18-bit).
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ABSTRACT
Convolutional neural network (CNN) dataflow inference acceler-
ators implemented in Field Programmable Gate Arrays (FPGAs)
have demonstrated increased energy efficiency and lower latency
compared to CNN execution on CPUs or GPUs. However, the com-
plex shapes of CNN parameter memories do not typically map well
to FPGA on-chip memories (OCM), which results in poor OCM
utilization and ultimately limits the size and types of CNNs which
can be effectively accelerated on FPGAs. In this work, we present a
design methodology that improves the mapping efficiency of CNN
parameters to FPGA OCM. We frame the mapping as a bin pack-
ing problem and determine that traditional bin packing algorithms
are not well suited to solve the problem within FPGA- and CNN-
specific constraints. We hybridize genetic algorithms and simulated
annealing with traditional bin packing heuristics to create flexible
mappers capable of grouping parameter memories such that each
group optimally fits FPGA on-chip memories. We evaluate these
algorithms on a variety of FPGA inference accelerators. Our hy-
brid mappers converge to optimal solutions in a matter of seconds
for all CNN use-cases, achieve a reduction of up to 65% in OCM
required for deep CNNs, and are up to 200× faster than current
state-of-the-art simulated annealing approaches.
ACM Reference Format:
Mairin Kroes, Lucian Petrica, Sorin Cotofana, and Michaela Blott. 2020.
Evolutionary Bin Packing for Memory-Efficient Dataflow Inference Accel-
eration on FPGA. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2020 (GECCO ’20). ACM, New York, NY, USA, 9 pages.
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1 INTRODUCTION
Convolutional Neural Networks (CNNs) have achieved state of the
art performance on image classification, object detection, image
semantic segmentation and other computer vision tasks and have
become an important part of both data-center and embedded work-
loads. Modern high-accuracy CNNs are typically deep, i.e. they con-
sist of a large number of convolutional layers, each trained through
backpropagation. The large number of layers is a key enabler of
CNN performance but creates difficulties for their implementation
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due to the large total number of parameters and the high latency of
executing very deep CNNs which makes real-time inference diffi-
cult. To reduce inference latency, modern systems typically utilize
parallel computing accelerators for CNN inference, either GPUs
or Field Programmable Gate Arrays (FPGAs). To date, on FPGA,
custom dataflow CNN inference accelerators have achieved the
best combination of low latency, high throughput, and low power
dissipation [1]. In the custom dataflow approach, each CNN layer
is executed on a dedicated section of the FPGA and its parameters
are stored in a dedicated part of the FPGA on-chip memory (OCM),
such that the inference process can occur without data ever leaving
the FPGA chip, eliminating the high latency and power dissipation
associated with external memory reads and writes.

Of course, a key prerequisite for the custom dataflow approach
is for the CNN parameters to fit in FPGA on-chip memory. While
quantization and pruning techniques have been successful in re-
ducing the overall size of the CNN parameter memories, one aspect
of CNN accelerator design has not been approached in previous
work: how to optimally map the diversely-shaped CNN parameter
memories to FPGA OCM. In the case of several of the published
CNN accelerators, the mapping efficiency is below 70%, i.e. for
structural reasons 30% of the FPGA OCM bits cannot be utilized.
This inefficiency is proportional to inference throughput in frames
per second and also increases with the CNN depth.

In this paper we introduce a CNN accelerator memory subsys-
tem construction methodology which enables increased memory
mapping efficiency. We achieve this by co-locating multiple CNN
parameter memories in a single bank of FPGA OCM, and taking
advantage of the multi-port capability of the FPGA memories to
minimize the impact to CNN inference performance. Given this de-
sign approach, the challenge becomes how to optimally pack CNN
parameter memories into available physical memories to achieve
the highest memory utilization efficiency within certain through-
put constraints. Additionally, given the recent popularity of design
space exploration (DSE) techniques for automatically discovering
pareto-optimal CNN accelerator configurations [19, 22], any mem-
ory packing algorithm must be very fast to be able to run in the
inner loop of a DSE process. Given these considerations, the contri-
butions of this paper are as follows:

• We present a novel heuristic which hybridizes Genetic Algo-
rithms and Simulated Annealing with traditional bin packing
algorithms to achieve high-efficiency mapping of CNN pa-
rameter memories to FPGA OCM
• We apply the proposed algorithms on a number of CNN
accelerators from previously published work, as well as 3
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Figure 1: CNN Mapped to Dataflow Accelerator on FPGA

new accelerators, and demonstrate an increase of up to 33%
in the mapping efficiency, or 65% reduction in required FPGA
OCM size, achieved after running the optimization for under
5 seconds in most cases.
• We compare our proposed algorithms against the state-of-
the-art simulated annealing based algorithm in the field and
observe 8% increase in efficiency as well as over 200× in-
crease in optimization speed.

The rest of the paper is structured as follows. Sections 2 and 3
provide background and state the problem. In section 4 we present
our genetic algorithm and simulated annealing based mapping
algorithms. We show in section 5 that our algorithms improve on
previous work in this domain [7, 24] in both quality of results (i.e
final mapping efficiency) and optimization speed for large dataflow
CNN accelerators.

2 FPGA ACCELERATED CNN INFERENCE
2.1 Accelerator Architectures
We distinguish two typical approaches of accelerating CNN infer-
ence on FPGAs. The first approach leverages a GPU-like matrix of
processing engines implemented in FPGA, where the correspond-
ing scheduler determines how to best map the operations of the
CNN onto the hardware architecture, typically resulting in a layer
by layer compute pattern. The second approach, which is the target
of our efforts, leverages feed forward dataflow implementations
where the accelerator implements a pipeline of per-layer dedicated
compute and associated on-chip parameter memories, as illustrated
in Fig. 1. All layers of the neural network are in essence spatially un-
rolled. Benefits are typically lower latency and and higher through-
put. However, as all weights remain in OCM, this becomes the
primary bottleneck and limits the layer depth and type of CNN that
can be deployed on a single device.

To alleviate this bottleneck, but also to help with the overall
computational burden, many optimization techniques have been
proposed, with quantization and pruning being two of the most pop-
ular schemes [10]. Quantization is a particularly effective optimiza-
tion for neural network inference. On smaller image classification
tasks such as MNIST, SVHN and CIFAR-10, heavily quantized CNNs
can achieve significant memory reduction, directly proportional to
the reduction in precision, with small loss in accuracy, even when
reducing the precision to 1 or very few bits [3, 25]. Furthermore,

novel quantization schemes such as [2], and new training and opti-
mization techniques [18, 26] can potentially recoup the accuracy.
Similarly, pruning can dramatically reduce the size of CNN param-
eter memory by removing all convolutional filters with sensitivity
(sum of magnitude of all included weights) below a set threshold.

The progress on quantization and pruning has enabled the imple-
mentation of multiple dataflow accelerators and accelerator frame-
works [1, 9, 23] for binarized and quantized CNNs in FPGA. Nev-
ertheless, most dataflow accelerators described in previous work
still target relatively small binarized CNNs which achieve accept-
able accuracy on simple image and speech processing tasks (e.g.
classification for MNIST, CIFAR10, SVHN datasets). Dataflow-style
FPGA-accelerated binarized CNNs for the Imagenet [5] 1000-class
classification problem have been developed utilizing the FINN [1]
and ReBNet [9] accelerator frameworks, but have limited Top-1
accuracy compared to equivalent GPU and CPU inference solutions,
in the range of 40-50%.

To date, achieving state of the art accuracy with dataflow accel-
erators in FPGA remains a challenge. While approaches such as
utilizing higher weight precision, e.g. 2-bit ternary quantization
[17] instead of binary, or deeper NNs such as ResNet-50 [11] have
the potential to increase achievable accuracy, they also significantly
increase the size of the required on-chip weight storage, making
dataflow acceleration difficult.

2.2 Memory Efficiency vs. Throughput in
Dataflow CNNs

For the remainder of this paper, unless otherwise indicated, we
assume FPGA dataflow accelerators are constructed using the archi-
tectural principles of the FINN framework [23]. In FINN-style accel-
erators, convolutions are lowered to matrix multiplications which
are computed by carefully scheduling data to multiply-accumulate
(MAC) circuitry on the FPGA fabric. The computational throughput
of each layer of the accelerator is controlled by several parallelism
variables: the number of vector processing elements (PEs), denoted
NPE , the vector length of the PE, denoted NSIMD , and the number
of pixels processed in parallel, denoted NMMV . The total number
of MAC operations executing in parallel at any given time for any
layer is equal the product NPE × NSIMD × NMMV . To fully utilize
the fabric computational resources (Look-up Tables - LUTs - and
embedded DSP processors) and therefore maximize throughput, we
must perform many MACs in parallel.

However, this approach forces specific shapes on the parameter
memory, in order to achieve parameter readback at the same rate
as the compute. Specifically, in each clock cycle and for each layer,
the parameter memory must deliver NPE × NSIMD parameters
to the MAC circuits (NMMV is not relevant because pixels share
parameters). As such, the memories storing the parameters must
have a word width equal to the product NPE ×NSIMD ×W , where
W is the bitwidth of each parameter. Therefore, as the parallelism
(and inference throughput) increase, parameter memories must
become wider, and because the total number of parameters for
each layer is constant, the depth of the parameter memory must
become smaller. In contrast, FPGA OCM consists of block RAM
memories (BRAMs) which have a fixed narrow and deep aspect
ratio, e.g. 18-bit wide 1024-deep in Xilinx FPGAs. Because of this
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Figure 2: Efficiency decreases with increased parallelism

shape mismatch, CNN parameter memories map inefficiently to
BRAM, and given the link between CNN parameter memory shapes
and MAC parallelism, high computational throughput implies low
BRAM efficiency, and vice-versa.

Figure 2 illustrates this effect. We start from an ideal case of the
parameter memory (weight buffer) mapping perfectly to one BRAM.
If NSIMD increases by a factor of 2, the shape of the weight buffer
must adjust accordingly, and now two adjacent BRAMs must be
utilized to each store one half of the buffer. Because the depth has
been reduced to half, the efficiency is now 50%, and can be reduced
even further if we increase NSIMD more.

In each case, as the parameter memory becomes wider to provide
more parameters in each read cycle, it also becomes shallower and
utilizes more BRAMs for implementation. We define the physical
RAM mapping efficiency as in Equation 1, where D is the depth of
the parameter memory, ⌈⌉ denotes rounding up to nearest integer,
andWBRAM and DBRAM denote the width and depth of one BRAM
respectively, in bits. Here, the numerator indicates the bits required
to be stored and the denominator indicates the total capacity of the
BRAM required to actually implement the weight buffer, defined as
the product of the width and depth of each physical RAMmultiplied
by the number of utilized RAMs. The efficiency scales inversely
proportional to the exploited parallelism, an undesirable effect.

E =
NPE · NSIMD ·W · D

WBRAM · DBRAM ·
⌈
NPE ·NSIMD ·W

WBRAM

⌉
·
⌈

D
DBRAM

⌉ (1)

Secondly, in the FINN dataflow approach, buffer depth D is pro-
portional to the product of the convolutional kernel size K and the
number of channelsC .K is typically an odd number, most often 3 or
5 in modern CNN topologies, while C is typically a power of 2 but
can be odd if e.g. pruning has been applied to the CNN parameters.
Therefore D most of the time does not evenly divide the depth of
a physical BRAM, leading to frequent under-fill of the allocated
BRAMs.

2.3 DSE for CNN accelerators
It is typically the responsibility of a framework-specific resource
allocator or design space exploration tool to set the correct value
for each parallelism variable in each layer of the CNN dataflow
accelerator to maximize overall throughput while remaining within
the OCM capacity and LUT/DSP constraints of the target FPGA.
Previous work in this area [19, 22] has demonstrated that exten-
sive automated search in the design space can identify accelerator
configurations better than human designers. As FPGA-accelerated
CNNs become deeper and the total number of parallelism variables
increases, we expect this trend to continue, as long as appropriate
tools exist to quickly estimate the LUT, DSP and OCM require-
ments of an accelerator from a given set of values of the parallelism
variables.

3 PROBLEM STATEMENT
Given the strict constraints on the shape of CNN parameter mem-
ories, and the fixed shape of FPGA BRAMs, solving the efficiency
problem is a matter of finding a way to utilize the space left after
one parameter memory has been mapped to a (set of) BRAMs. A
straight-forward way to utilize this space is to map a second pa-
rameter memory (or more, if possible) in the empty space. In this
approach, the efficiency maximizing problem is analogous to a bin
packing problem: the problem of trying to pack a set of objects of
varying sizes into bins of certain capacities, with a goal to utilize
as few as possible bins to pack all the objects. Here we consider the
various CNN parameter memories as the objects, and the physical
BRAM instances (or combinations thereof) as the bins into which
the objects should be packed. Since this problem is NP-hard, good
heuristics are required to obtain acceptable solutions fast.

The primary factors that make our memory packing problem
different from the classical bin packing problem, is that the bins in
this case (the block RAM instances) have a limited number of ports
which can be used to for parameter reads. For example, if using
Xilinx FPGAs, memories have 2 ports, and if we pack 2 parameter
memories in one BRAM, we can read one parameter in every clock
cycle from each of the packed memories, and the original through-
put of the accelerator is maintained. However, beyond 2 parameter
memories per BRAM, access to the parameter memories is achieved
through time multiplexing of ports, which implies the MAC unit
of the accelerators will not be fed parameters in every cycle and
the inference throughput suffers. Therefore, beyond simply filling
the bin, a good algorithm must also minimize the number of items
per bin in order to preserve the inference throughput. In practice,
we desire to set an upper limit to the number of items per bin,
a so-called cardinality constraint. Secondly, block RAMs can be
combined in various ways such that the bins in our case can have
variable widths and depths, and therefore have variable capacities.

These differences significantly deteriorate the efficacy of classi-
cal bin packing heuristics that are covered in the literature, since
these heuristics build on the concept that an unlimited amount
of small items can be used to fill up bins that are almost full. The
cardinality constrained version of the bin packing problem was
initially explored by Krause et. al. [14] and Kellerer and Pferschy
[12]. Though despite taking the cardinality constraints explicitly
into account, they obtain poor packing results and assume fixed bin
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sizes, which make these algorithms unsuitable for mapping CNN
parameter memories to physical RAMs on FPGA.

Some of the highest performing bin packing algorithms explored
in recent literature use genetic algorithms to solve the bin packing
problem [6, 20]. In these works, genetic algorithms are combined
with classical bin packing heuristics to deliver high quality packing
results. More importantly, the proposed strategies utilize an efficient
chromosome encoding scheme that was introduced by Falkenauer
and Delchambre [7]. This scheme allows for better exploration of
the search space. Since these implementations do not take cardinal-
ity constraints into account, some modifications are required before
these strategies can be applied to the memory packing problem.

The specific problem of efficient mapping of logical buffers to
block RAMs has also been approached in MPack [24], where a sim-
ulated annealing algorithm is utilized to discover a good mapping
of multiple logical buffers in a single block RAM, but is only demon-
strated on relatively small examples compared to modern inference
accelerators.

4 PACKING CNN MEMORIES TO FPGA
Previously we established that solving the memory packing prob-
lem equates to solving a bin packing problemwith a set of hardware
constraints, and that genetic algorithms (GA) and simulated an-
nealing (SA) are promising approaches to solve the bin packing
problem within the stated constraints. Existing realizations of GA
bin packers incorporate recombination techniques that yield good
results when there is no upper limit on the amount of items that
can be packed into a bin of fixed capacity. Conversely, Vasiljevic
and Chow solve the memory packing problem with a simulated
annealing approach that explores the search space with random
movement of items between bins, referred to as buffer swaps, which
can be inefficient for large numbers of bins. We improve on these ap-
proaches by introducing next-fit dynamic, which is a new heuristic
that explicitly takes the custommemory packing related constraints
into account and enables a faster and more efficient exploration of
the search space. We then embed this heuristic into GA and SA.

4.1 Next-Fit Dynamic Heuristic
Next-fit dynamic (NFD) is a recombination technique that is based
on the simplest bin packing heuristic next-fit, which has time com-
plexityO(n). As can be seen in Algorithm 1, the NFD heuristic takes
as input a list of bins, where each bin contains one or more items.
Out of this list we mark the bins that map poorly to BRAM, using
an efficiency threshold, decompose the bins into their constituent
buffers, and subsequently try to re-pack the buffers into new bins,
dynamically adjusting the size of the bin currently being packed
according to known BRAM composition rules, e.g. a bin can have
widths multiple ofWBRAM bits and depths multiple of DBRAM .

By design, NFD only adds an additional buffer into an already
populated bin if the resulting bin composition leads to less BRAM
space being wasted. We allow, however, small admission probabil-
ities (Pwadm and Phadm ) that occasionally accept packing configu-
rations that do not immediately improve the mapping efficiencies
of the width and height of a bin respectively, to increase the ex-
ploration ability of the heuristic and its embedding optimization
algorithm.
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Figure 3: Bin Per Gene Chromosome Encoding

The NFD strategy enables us to explore large search spaces faster
and gives us more control over bin compositions (i.e. not unneces-
sarily packing buffers if it won’t lead to BRAM savings). Moreover,
this additional control also enables us to add supplementary restric-
tions. One example of such a restriction is to exclusively explore bin
packing configurations that contain buffers belonging to the same
neural network layer (referred to as intra-layer packing), which
reduces the average distance between parameter memories and
their corresponding MAC circuits on FPGA after the resulting ac-
celerator is implemented, maximizing the operating frequency of
the inference accelerator.

Algorithm 1: Next-Fit Dynamic (NFD) Heuristic
Input: list of packed bins
Output: list of repackaged bins

1 sublist = calculateMapEfficiency(list, threshold);
2 shuffle(sublist);
3 for buffer in sublist do
4 if bin height == 0 then
5 bin← buffer;
6 update(bin width, bin height);
7 else
8 calculate(new bin height);
9 gap = calculateGap(BRAM height, bin height);

10 new gap = calculateGap(BRAM height, new bin height);
11 if length bin < max bin height AND
12 ((new gap < gap OR rnd() < Padm,h ) AND
13 (bin width == buffer width OR rnd() < Padm,w )) then
14 bin← buffer;
15 update(bin width, bin height);
16 else
17 list← bin;
18 reset(bin, bin width, bin height);
19 bin← buffer;

20 if length bin > 0 then
21 list← bin;

4.2 Genetic Algorithm Bin Packing
In this work we employ a genetic algorithm that utilizes the so
called “bin per gene” chromosome representation as illustrated in
Figure 3. Here a bin refers to a group of CNN parameter memories
that will be packed together, so each gene is a list of CNN parameter
memories.

The genetic algorithm pseudocode is listed in Algorithm 2 and
consists of repeating rounds of evolution. In each round, on a given
population of bin packing solutions, we apply mutation with a
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probability Pmut for each individual in the population, and then
perform fitness evaluation of the population. Using the fitness
values, we perform tournament selection where we extract the
best solution out of a randomly selected subset of solutions from
the current population, and add it to a new population. The selection
process is repeated until the new population has the same count as
the preceding population, which it replaces and the next evolution
round starts.

Algorithm 2: Genetic Algorithm
Input: list of partitions, max bin height
Output: BRAM cost, list of packed bins

1 initialize(population);
2 while not converged do
3 for individual in population do
4 if rnd() < Pmut then
5 mutate(individual);
6 calculateFitness(individual);
7 while new population count < population count do
8 new individual = tourSelect(population, tour size);
9 new population← new individual

10 population = new population;

Mutation. The mutation operator is the driving factor in the
process of exploring the search space. Two different operators are
utilized in this work. The first method is the buffer swap method
mentioned in [24]. Buffer swapping entails moving buffers to dif-
ferent bins, which changes the packing configuration and its as-
sociated BRAM cost. The second method is the next-fit dynamic
recombination technique - we select a number of genes, unpack
the corresponding bins and mark these memories for repackaging
with NFD.

Fitness and Selection. The factor that determineswhich individual
(solution) wins the tournament, is the fitness of that particular
individual. In our work we employ amulti-objective fitness function
where we compute a weighted sum between BRAM cost and the
layer count per bin. Solutions that result in the lowest BRAM cost,
and do so with bin configurations that contain buffers from as few
as possible different layers are more likely to make it into the next
generation. As time progresses, only the solutions that best meet
these criteria will remain.

4.3 Simulated Annealing Bin Packing
Simulated Annealing is an optimization algorithm first introduced
by Kirkpatrick et. al. in [13]. It is similar to general hill climbing al-
gorithms, but its distinguishing feature is that it occasionally jumps
between hills (i.e. makes large optimization steps) to prevent get-
ting stuck in a local optimum. This escaping behaviour is modeled
by random thermal motion that forces the algorithm to sometimes
perform (locally) disadvantageous actions. By default, the algorithm
accepts an action if it leads to a solution that optimizes a certain
cost function. If the action leads to a worse solution, that action
might still be accepted with a certain probability PA(T ) as described
in Equation 2. This probability approaches 1 for high temperatures

and decays exponentially as the temperature decreases. As a result,
the algorithm will frequently jump between hills at the start of the
annealing process, and then selects a hill to climb in the final phase.

PA(T ) = e
−∆E
T (2)

Our implementation of the simulated annealing memory packer
follows the approach as described in [24], and the general flow
is as described in Algorithm 3. We first generate a random, yet
feasible memory packing solution that adheres to the cardinality
constraint. Then we calculate the BRAM cost for this solution.
Finally, the optimization process commences as described before.
For the different versions of the SA either the simple buffer swap or
next-fit dynamic are used to “perturb” the solution. If a perturbation
was beneficial, the perturbed solution is immediately accepted.
Otherwise, the acceptance probability PA is calculated according to
the current temperature, and the acceptance of the bad move might
be reconsidered.

Algorithm 3: Simulated Annealing
Input: list of partitions, max bin height, T0, Rc
Output: BRAM cost, list of packed bins

1 initilize(solution, T);
2 cost = costFunction(solution);
3 iter = 0;
4 while not converged do
5 T = calculateTemperature(T0,Rc ,iter);
6 candidate = perturb(solution);
7 new cost = costFunction(candidate);
8 PA = probability(cost, new cost, T);
9 if new cost < cost OR rnd() < PA then
10 solution = candidate;
11 increment iter;

In all, we have defined three novel algorithms for solving the
CNN parameter memory to FPGA OCM mapping problem: genetic
algorithm using buffer swap and NFD as mutation operators, de-
noted GA-S and GA-NFD respectively, and simulated annealing
using NFD as perturbation mechanism, denoted SA-NFD. The simu-
lated annealing with buffer swap, denoted SA-S, has been published
in [24] but not evaluated for systems of the size of modern CNN
inference accelerators.

5 EVALUATION
5.1 CNN Use-Cases
We evaluate our buffer to BRAM mapping algorithms on several
CNN-based object detection and classification accelerators selected
from previous work and listed in Table 1. The table indicates the
source publication for each accelerator and also the shapes and
number of parameter memories of each accelerator, which serve as
input for our buffer to BRAM packing algorithm.

Small Image Classifiers. CNV-WxAy CNNs belong to the BNN-
Pynq1 suite of object classification accelerators. They are FINN-
style [23] FPGA accelerators and target embedded (relatively small)
1https://github.com/Xilinx/BNN-PYNQ
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FPGA devices such as the Zynq-7020. CNV-W1A1 utilizes binary
(1-bit) quantization [4] while CNV-W2A2 utilizes ternary (2-bit)
quantization [17]. Both CNNs are trained on the CIFAR-10 [15]
dataset and are able to distinguish between 10 classes of common
objects (e.g. birds, cars, dogs, etc.).

Mid-Size Image Classifiers. DoReFaNet and ReBNet are medium-
size CNNs trained for object classification on the 1000-class Im-
ageNet [5] dataset. These CNNs are both quantized versions of
AlexNet [16], a popular image classification CNN topology, use
binary (1-bit) weights, and consist of 5 convolutional layers and 3
fully-connected layers. However, they differ in the folding factors
utilized for their implementation and therefore in the shapes of
their weight memories, and as such are treated separately in our
evaluation. DoReFaNet was first binarized in [25] and implemented
in FPGA in [23]. ReBNet was described and implemented in FPGA
in [9] where it is denoted ’Arch3’.

Large Image Classifiers. ResNet-50 [11] is a high-accuracy classi-
fication CNN designed for high-accuracy image classification on
the ImageNet dataset. To our knowledge, no ResNet-50 dataflow
implementation currently exists, so we develop a folding solution
(i.e. define values for the parallelism variables of each layer) accord-
ing to the design principles of FINN accelerators [23], assuming
binarized weights and aiming to fit within the LUT capacity of the
largest commercially available Xilinx FPGA, the Alveo U250. We
also implement larger ResNet variants: ResNet-101 and ResNet-
152 which are approximately 2 and 3 times deeper than ResNet-50
respectively but share the overall structure.

Object Detectors. Tincy-YOLO was first published in [1] and is a
binarized-weight variant of YOLO [21], a popular object detection
CNN. It is a fully convolutional design consisting of 9 layers, 6 of
which utilize binary weights while two utilize 8-bit weights.

5.2 Methodology
GA Fine-Tuning. We first analyze the effect of population size on

the quality of results (packing efficiency) and convergence speed
of GA-NFD to pack the ResNet-50, in order to derive guidelines
with regard to the optimal population sizes. We evaluate a range
of population sizes from 5 to 400, with each experiment repeated 5
times with different random seeds to reduce variability. For each ex-
periment we run the optimization process for 7 minutes, which was
empirically determined to ensure convergence for all population
sizes under evaluation.

Packing Algorithm Comparison. We compare the GA and SA
packing algorithms with and without NFD, in terms of wall-clock
time to convergence and quality of results, for each of the accelera-
tors under evaluation. For all algorithms we impose a cardinality
constraint of a maximum of 4 parameter memories per physical
BRAM. The reported time to convergence is defined as the amount
of time it takes each algorithm to attain a packing result that is
within 1% of the discovered minimum. For each convergence ex-
periment, we evaluate 10 different initial random seeds.

Mapping Efficiency Increase. We calculate the efficiency of map-
ping parameter memories to FPGA OCM for each of the CNN
accelerators, targeting a maximum bin height of 4 and utilizing

Figure 4: QoR comparison for different population sizes on
ResNet-50 optimization (GA-NFD)

both inter-layer (unconstrained) and intra-layer packing strategies.
In this set of experiments, we utilize a single packing algorithm, to
be selected from the comparisons described above.

5.3 Experimental set-up
We implemented the GA and SA packing algorithms in Python code
utilizing the DEAP evolutionary computation library [8] (version
1.3.0). We execute the packing algorithms in single-thread mode
on a server equipped with Intel Xeon Silver 4110 CPUs, 128 GB of
system RAM, and SSD storage. We measure time using Python’s
time package.

To enable us to check the BRAM counts of a packing solution in
hardware, we implemented in Verilog HDL code a circuit represent-
ing a bin, (i.e. a set of assembled BRAMs with associated addressing
logic for up to 6 co-located CNN parameter memories) and a Python-
based post-processor which takes a packing solution and generates
a Vivado 2019.1 project and Block Design consisting of bin instances
configured according to the packing solution. We synthesize the
resulting Vivado project and compare the post-synthesis BRAM
counts to the software-estimated counts. We observe no difference
in practice between these measurements.

6 RESULTS
6.1 Effect of GA Population Size
The run-time and QoR (Quality of Results) of genetic algorithms
in general depends on the population size utilized. The population
size essentially dictates how many candidate solutions are subject
to selection and probabilistic mutation at any particular generation.
In Figure 4 the results of solving the memory packing problem for
ResNet-50 with GA-NFD at varying population sizes are displayed.
As can be observed, the algorithm is able to find slightly better
results as we scale the population size up to 50. Past this population
size we observe a slight regression in performance, however the
range of variation in final result after 7 minutes of optimization
is very small. Overall, we conclude that population size does not
greatly affect the QoR.

Generally we expect that genetic algorithm experiments utiliz-
ing larger population sizes will converge in a smaller number of
iterations but those iterations will each be longer in duration than
a corresponding iteration for a smaller population size. In this work
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Table 1: Baseline dataflow accelerators

Accelerator: CNV-W1A1 [23] CNV-W2A2 [23] Tincy-YOLO [1] DoReFaNet [1] ReBNet [9] RN50-W1A2

Memory Shapes 16 × (32, 144, 1) 8 × (16, 576, 2) 16 × (32, 144, 1) 136 × (45, 72, 1) 64 × (54, 256, 1) 368 × (32, 256, 1)
NPE × (NSIMD , D ,W ) 16 × (32, 288, 1) 8 × (16, 1152, 2) 25 × (8, 320, 1) 64 × (34, 108, 1) 64 × (25, 384, 1) 32 × (64, 256, 1)

4 × (32, 2304, 1) 4 × (1, 8192, 2) 16 × (32, 144, 1) 32 × (64, 108, 1) 64 × (36, 384, 1) 192 × (64, 288, 1)
4 × (1, 8192, 1) 4 × (8, 9216, 2) 80 × (32, 2304, 1) 68 × (3, 144, 1) 64 × (32, 576, 1) 176 × (32, 1024, 1)
1 × (32, 18432, 1) 3 × (2, 65536, 2) 8 × (8, 64000, 1) 128 × (64, 1152, 1) 32 × (64, 1024, 1)
1 × (4, 32768, 1) 1 × (8, 73728, 2) 4 × (64, 65536, 1) 40 × (50, 2048, 1) 96 × (64, 1152, 1)
1 × (8, 32768, 1) 8 × (64, 73728, 1) 128 × (64, 2048, 1)

Total Buffers: 43 28 137 320 552 896

Figure 5: Convergence speed for different population sizes
on ResNet-50 optimization

we are interested in optimizing wall-clock time to solution. To iden-
tify the population size that minimizes wall clock time, we pack the
respective networks using increasingly larger population sizes and
analyze the convergence curves. The results of the population size
analysis for ResNet-50 and GA-NFD are illustrated in Fig. 5. The
best compromise between rapid convergence (in wall-clock time)
and quality of results is achieved at a relatively small population
size of 50 while the largest population size experiment converged
the slowest. This indicates that there is limited benefit from increas-
ing population size to large values. For the experiments performed
in this paper, population sizes of approximately 50 appear optimal.

6.2 Packing Algorithm Comparison
In this section the performance of the developed heuristic will be
evaluated. As baseline we compare the SA and GA that incorporate
next-fit dynamic against SA and GA implementations that use the
buffer swap methodology. Both versions of the GA and SA were
applied to solve the memory packing problem for the networks as
listed in Table 1. We performed extensive hyperparameter tuning
for all algorithms to ensure optimal quality of results. The cor-
responding hyperparameter settings can be found in Table 2 for
simulated annealing and for the genetic algorithm.

The runtime comparison results can be found in Table 3 for all
networks, with best results highlighted in bold where a clear win-
ner could be distinguished. It has to be mentioned that for the GA

Table 2: SA and GA Hyperparameters

Accelerator GA SA
Np Nt Pwadm Phadm Pmut T0 Rc

CNV-W1A1 50 5 0 0.1 0.3 30 1
CNV-W2A2 50 5 0 0.1 0.3 30 2
Tincy-YOLO 75 5 0 0.2 0.4 30 1
DoReFaNet 50 5 0.1 0.3 0.4 30 1
ReBNet Arch3 75 5 1 0.2 0.4 30 1
RN50-W1A2 75 5 0 0.1 0.4 40 0.004
RN101-W1A2 75 5 0 0.1 0.4 40 0.004
RN152-W1A2 75 5 0 0.1 0.4 40 0.004

the minimum BRAM count of all candidate solutions in a particu-
lar generation is tracked. All the algorithm are capable of quickly
solving the packing problem for the smaller CNV networks. How-
ever, as we increase the problem size (e.g. Tincy-YOLO, DoReFaNet,
ResNets) the NFD versions of the algorithms are capable of solving
the packing problem much faster, and with higher quality of results.
For the ResNets in particular, the NFD algorithms are capable of
finding solutions that require up to 8% less BRAM to implement
and reduce the required runtime by a factor of more than 200×
compared to SA-S. GA-S provides poor QoR especially for larger
networks and is also slower than all other algorithms. In general,
GA-NFD achieves the best QoR while SA-NFD is the faster.

The outlier here is the ReBNet Arch3 accelerator design. This
design contains memory partitions with a large variety in widths
(SIMD lanes), which causes difficulty for NFD as it is forced to pack
together parameter memories with misaligning widths. In order to
compete on the metrics as presented in Table 3 (i.e. BRAM cost and
runtime) the hardware constraints had to be relaxed significantly, as
is reflected by the high admission probabilities — Pwadm and Phadm
— as listed in Table 2. Nevertheless, the NFD-based algorithms
(especially SA-NFD) arrive at a packing solution significantly faster
than buffer swap based GA and SA.

To emphasize the differences in QoR, aside from potentially
greater BRAM reductions, the NFD algorithms also provide pack-
ing solutions with more ideal bin configurations from a hardware
design perspective. The reason for this is that the heuristic typi-
cally only packs buffers in bins when it improves the mapping of
these bins. As a consequence, the NFD algorithms typically provide
packing solutions that contain, on average, bins of lower height,
which results in lower throughput penalty.
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Table 3: Memory packing comparison of SA and GA

Buffer Swap Next-Fit Dynamic

Accelerator tSA−S (s) tGA−S (s) N SA−S
BRAM NGA−S

BRAM tSA−N FD (s) tGA−N FD (s) N SA−N FD
BRAM NGA−N FD

BRAM

CNV-W1A1 0.1 0.2 96 96 0.1 0.1 97 96
CNV-W2A2 0.1 0.1 188 190 0.1 0.1 190 188
Tincy-YOLO 1.8 1.7 420 428 0.1 0.2 430 420
DoReFaNet 1.0 1.6 3823 3826 0.1 0.2 3849 3794
ReBNet Arch3 40.1 57.5 2301 2313 2.2 28.9 2483 2352
RN50-W1A2 239 290 1404 1472 0.8 1.7 1368 1374
RN101-W1A2 615 935 2775 3055 0.9 3.3 2616 2616
RN152-W1A2 1024 1354 3864 4422 1.5 4.9 3586 3584

6.3 Achievable Efficiency Increase
Finally, we applied the memory packing methodology to the accel-
erators as listed in Table 1, utilizing GA-NFD which achieved the
best overall packing performance in Table 3. The packing results of
the accelerators in original and two different packed configurations
are presented in Table 4.

As briefly mentioned before, the term “intra” refers to the fact
that we only pack buffers corresponding to the same neural network
layer together, while in inter-layer packing configurations we do
not impose such constraints. The results are presented in terms
of BRAM necessary to store the CNN parameters, the resulting
mapping efficiency as dictated by Equation 1 and the reduction in
memory footprint ∆BRAM .

While the smaller accelerators benefit from the GA-NFD packing,
the most benefit is achieved for the ResNet accelerators, which are
configured for high throughput and therefore have a low initial
memory mapping efficiency roughly around 50%. We also note that
the added constraint of intra-layer mapping does not significantly
degrade the achievable efficiency - in most cases the intra-layer
efficiency is within 5% of the inter-layer efficiency.

7 DISCUSSION AND FUTUREWORK
The memory packing methodology presented in this work enables
increased memory resource utilization efficiency in modern FPGAs.
Our approach is general, i.e. can be utilized for any digital circuit
utilizing large parameter memories that are read in predictable
fashion at run-time, and is fast compared to the published state-of-
the-art. In the specific context of dataflowNN inference accelerators,
wherememory resource availability is often a design bottleneck, our
technique can enable a specific accelerator design to target smaller
FPGA devices by becoming more efficient in its OCM usage. The
rapid convergence of the NFD-based algorithms to a final packing
solution enables their use within CNN accelerator design space
exploration frameworks.

Beyond the CNN acceleration applications presented in this pa-
per, we believe the algorithms presented have a general applicability
to FPGA design optimization. Advances can be made by perform-
ing multi-objective optimization that takes throughput, memory
and LUT utilization of the design into consideration during the
evolution process. Thus, evolutionary optimization heuristics can
serve to merge many traditional aspects of FPGA electronic design
automation which are typically solved in isolation.

Table 4: Mapping Efficiency Increase (GA-NFD)

Accelerator BRAM Efficiency ∆BRAM

CNV-W1A1 120 69.3%
CNV-W1A1-Intra 100 82.3% 1.20×
CNV-W1A1-Inter 96 86.6% 1.25×
CNV-W2A2 208 79.9%
CNV-W2A2-Intra 192 86.6% 1.08×
CNV-W2A2-Inter 188 88.4% 1.11×
Tincy-YOLO 578 63.6%
Tincy-YOLO-Intra 456 80.7% 1.27×
Tincy-YOLO-Inter 420 87.6% 1.38×
DoReFaNet 4116 78.8%
DoReFaNet-Intra 3797 85.4% 1.08×
DoReFaNet-Inter 3794 85.5% 1.08×
ReBNet 2880 64.1%
ReBNet-Intra 2363 78.1% 1.22×
ReBNet-Inter 2352 78.4% 1.22×
RN50-W1A2 2064 57.9%
RN50-W1A2-Intra 1440 82.9% 1.43×
RN50-W1A2-Inter 1374 86.9% 1.50×
RN101-W1A2 4240 52.4%
RN101-W1A2-Intra 2748 80.9% 1.54×
RN101-W1A2-Inter 2616 84.9% 1.62×
RN152-W1A2 5904 50.9%
RN152-W1A2-Intra 3758 80.0% 1.57×
RN152-W1A2-Inter 3584 83.9% 1.65×
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