

Delft University of Technology

Computation-in-Memory
From Circuits to Compilers
Yu, J.

DOI
10.4233/uuid:9f2a640e-0f19-4d4d-9feb-e27e3e963fcb
Publication date
2021
Document Version
Final published version
Citation (APA)
Yu, J. (2021). Computation-in-Memory: From Circuits to Compilers. [Dissertation (TU Delft), Delft University
of Technology]. https://doi.org/10.4233/uuid:9f2a640e-0f19-4d4d-9feb-e27e3e963fcb

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:9f2a640e-0f19-4d4d-9feb-e27e3e963fcb
https://doi.org/10.4233/uuid:9f2a640e-0f19-4d4d-9feb-e27e3e963fcb

Computation-in-Memory
From Circuits to Compilers

Computation-in-Memory
From Circuits to Compilers

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus, prof.dr.ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates

to be defended publicly on Friday, 5 February 2021 at 10:00 o’clock

by

Jintao Yu

Master of Engineering in Computer Science and Technology,
PLA Information Engineering University, China,

born in Heilongjiang, China.

This dissertation has been approved by the

Promotor: Prof. dr. ir. S. Hamdioui
Copromotor: Dr. ir. M. Taouil

Composition of the doctoral committee:

Rector Magnificus, chairman
Prof. dr. ir. S. Hamdioui, Delft University of Technology, promoter
Dr. ir. M. Taouil, Delft University of Technology, copromoter

Independent members:
Prof. dr. ir. P.F.A. Van Mieghem Delft University of Technology
Prof. dr.-ing. D. Fey Friedrich-Alexander-University of

Erlangen-Nürnberg, Germany
Prof. dr. G.C. Sirakoulis Democritus University of Thrace, Greece
Prof. dr. A. Kumar Dresden University of Technology, Germany
Dr. ir. J.S.S.M. Wong Delft University of Technology

Reserved members:
Prof. dr. ir. A.J. van der Veen Delft University of Technology

Keywords: In-memory computing, memristive devices, automata processing

Copyright © 2021 by J. Yu

ISBN 978-94-6384-196-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To my parents

Contents

Summary ix

Samenvatting xi

Acknowledgements 1

1 Introduction 3
1.1 Introduction to Memristive Devices 4

1.1.1 Motivation . 4
1.1.2 Memristive Devices. 6
1.1.3 Memristive Devices for Logic 7
1.1.4 Memristive Devices for Memories 11

1.2 Opportunities and Challenges . 14
1.2.1 Opportunities . 14
1.2.2 Challenges . 16

1.3 Research Topics . 16
1.4 Contributions . 17

1.4.1 Circuit Level . 17
1.4.2 Architecture Level . 18
1.4.3 Design Automation. 18

1.5 Thesis Organization . 19

2 Circuit Level 21
2.1 Problem Statement . 22
2.2 Main Contributions . 22
2.3 Evaluation . 23

3 Architecture Level 25
3.1 Problem Statement . 26
3.2 Main Contributions . 26
3.3 Evaluation . 27

4 Design Automation 31
4.1 Problem Statement . 32
4.2 Main Contributions . 33
4.3 Evaluation . 34

5 Conclusion 37
5.1 Summary . 38
5.2 Future Research Directions. 39

vii

viii Contents

References 41

A Publications - Circuit Level 53

B Publications - Architecture Level 67

C Publications - Design Automation 81

Curriculum Vitæ 107

List of Publications 109

Summary

Memristive devices are promising candidates as a complement to CMOS devices.
These devices come with several advantages such as non-volatility, high density,
good scalability, and CMOS compatibility. They enable in-memory computing paradigms
since they can be used for both storing and computing. However, building in-
memory computing systems using memristive devices is still in an early research
stage. Therefore, challenges still exist with respect to the development of devices,
circuits, architectures, design automation, and applications.

This thesis focuses on developing memristive device-based circuits, their usage in
in-memory computing architectures, and design automation methodologies to cre-
ate or use such circuits.

Circuit Level – We propose two logical operation schemes based on memristive
devices. The first one uses resistive sensing to perform logical operations. It mod-
ifies the sense amplifier in such a way that it can compare the overall current with
references and output the logical operation result. During sensing, the resistance of
memristive devices remains unchanged. Therefore, endurance and lifetime are not
reduced. This scheme provides a solution for maintaining a relatively long lifetime
in logic operations for memristive devices that have low endurance. The second
scheme is the enhanced version of the first one. It uses two different sensing
paths for AND and OR operations. In this way, the correctness of logic operations
can be guaranteed even if large resistance variation exists in memristive devices.

Architecture Level – We present three in-memory computing architectures based
on memristive devices. The first one is a heterogeneous architecture containing an
accelerator for vector bit-wise logical operations and a CPU. The accelerator commu-
nicates with the CPU or accesses the external memory directly. The second one is
to accelerate automata processing. In this architecture, memristive memory arrays
store configuration information and conduct computation as well. This architecture
outperforms similar ones that are built with conventional memory technologies. The
third one is an improved version of the second one. It breaks the routing network
into multiple pipeline stages, each processing a different input sequence. In this
way, the architecture achieves a higher throughput with a negligible area overhead.

Design Automation – A synthesis flow for computation-in-memory architectures
and a compiler for automata processors are presented. The synthesis flow is pro-
posed based on the concept of skeletons, which relates an algorithmic structure to
a pre-defined solution template. This solution template contains scheduling, place-
ment, and routing information needed for the hardware generation. After the user

ix

x Summary

rewrites the algorithm using skeletons, the tool generates the desired circuit by
instantiating the solution template. The automata processor compiler generates
configuration bits according to the input automata. It uses multiple strategies to
transform given automata, so that constraint conflicts can be resolved automati-
cally. It also optimizes the mapping for storage utilization.

Samenvatting

Geheugenweerstanden zijn veelbelovende kandidaten als aanvulling op CMOS-tran-
sistors. Deze geheugenweerstanden hebben verschillende voordelen, zoals niet-
vluchtigheid, hoge dichtheid, goede schaalbaarheid en CMOS-compatibiliteit. Daar-
naast kunnen ze gebruikt worden in gegevensverwerking-in-geheugenarchitecturen,
omdat ze zowel als opslagmedium als computer gebruikt kunnen worden. De ont-
wikkeling van gegevensverwerking-in-geheugenarchitecturen met behulp van ge-
heugenweerstanden bevindt zich echter nog in een vroege onderzoeksfase. Daar-
door zijn er nog steeds uitdagingen met betrekking tot de ontwikkeling van geheu-
genweerstanden, circuits, architecturen, ontwerpautomatisering en toepassingen
die opgelost moeten worden.

Dit proefschrift richt zich op het ontwikkelen van geheugenweerstandcircuits, het
gebruik hiervan in gegevensverwerking-in-geheugenarchitecturen, en ontwerpau-
tomatiseringsmethodologieën om dergelijke circuits te creëren of te gebruiken.

Circuitniveau - We presenteren twee ontwerpen van binaire logica op basis van
geheugenweerstanden. Het eerste ontwerp voert logische bewerkingen uit middels
een weerstandsmeting. Dit wordt bereikt door de detectieversterker zodanig aan
te passen dat deze de totale stroom kan vergelijken met meerdere referenties en
vervolgens het resultaat van de logische operatie kan uitvoeren. Tijdens de weer-
standsmeting verandert de weerstand van de geheugenweerstanden niet. Hierdoor
worden het uithoudingsvermogen en de levensduur niet verminderd. Dit ontwerp
biedt dus een oplossing om de levensduur van geheugenweerstanden met een laag
uithoudingsvermogen te maximaliseren bij het uitvoeren van logische bewerkingen.
Het tweede ontwerp is een verbeterde versie van het eerste. Het gebruikt twee ver-
schillende detectiepaden voor logische EN- en OF-bewerkingen. Op deze manier
kan de juiste uitkomst van de logische bewerkingen worden gegarandeerd, zelfs als
er grote weerstandsvariaties bestaan in de geheugenweerstanden.

Architectuurniveau - We presenteren drie gegevensverwerking-in-geheugenar-
chitecturen op basis van geheugenweerstanden. De eerste is een heterogene ar-
chitectuur bestaande uit een accelerator voor binaire logische bewerkingen en een
processor. De accelerator communiceert met de processor of heeft rechtstreeks
toegang tot het externe geheugen. De tweede architectuur versnelt de berekening
van eindigetoestandsautomaten. In deze architectuur slaat het geheugenweer-
standsgeheugen de configuratie-informatie op en voert het ook de berekeningen
erop uit. Deze architectuur presteert beter dan vergelijkbare architecturen die zijn
gebaseerd op conventionele geheugentechnologieën. De derde architectuur is een
verbeterde versie van de tweede. Deze verdeelt het verdeelnetwerk in meerdere

xi

xii Samenvatting

pijplijnfasen, die elk een andere invoer verwerken. Hierdoor bereikt deze archi-
tectuur een hogere datadoorvoer ten koste van een verwaarloosbare toename in
chipoppervlakte.

Ontwerpautomatisering – We presenteren een syntheseproces voor gegevens-
verwerking-in-geheugenarchitecturen en een compiler voor eindigetoestandsauto-
maatprocessors. Het syntheseproces wordt gepresenteerd op basis van skeletsja-
blonen, die een algoritmische structuur relateren aan vooraf gedefinieerde oplos-
singssjabloon. Dit oplossingssjabloon bevat informatie over de planning, plaatsing
en netwerkstructuur die nodig is om de hardware te genereren. Nadat de gebrui-
ker het algoritme middels de skeletsjablonen heeft herschreven, genereert de tool
het gewenste circuit door het oplossingssjabloon te instantiëren. De compiler voor
de eindigetoestandsautomaatprocessor genereert configuratiebits op basis van de
ingevoerde eindigetoestandsautomaten. Hij gebruikt verschillende strategieën om
bepaalde eindigetoestandsautomaten te transformeren, zodat conflicten automa-
tisch kunnen worden opgelost. Tevens optimaliseert de compiler de toewijzing voor
het gebruik als een geheugen.

Acknowledgements

The years in Delft are the highlights of my life. I will take this opportunity to express
my gratitude to the people who helped me along this incredible journey.

First of all, I would like to acknowledge my promoter Prof. dr. ir. Said Hamdioui.
He sets an example of a diligent and rigorous researcher to all of his students. He
insisted on having weekly meetings with us despite his fully packed agenda. I have
to leave the Netherlands two years ago, but he still cared about me as much as be-
fore. Without his guidance, this dissertation would be never finished. I also want to
thank Dr. ir. Mottaqiallah Taouil, not only my copromoter but also a colleague and
friend. He corrected my papers and helped me get through the difficulties in pursu-
ing the PhD degree. Special thanks go to Prof. dr. ir. Koen Bertels for admitting me
into the Computer Engineering group and hosting various social events. I thank Dr.
ir. Stephen Wong for working together and being a defense committee member. I
have received guidance from Răzvan Nane and Imran Ashraf as well. Thank you all.

Secondly, I shall thank the memristor team in our group, i.e., Lei, Anh, Muath, and
Adib. You all have contributions to this dissertation. Tom and Uljana also joined
the team shortly. We share ideas, help each other with writings and presentations,
and travel together for conferences and meetings. I am lucky to be able to work
with all of you.

Thanks to previous office mates including Innocent, Abdulqader, Dániel, and Houssem.
We had meaningful discussions and funny chats, which altogether create a produc-
tive and joyful environment. It is nice to have you around.

I am grateful to the colleagues on the ninth floor, Lizhou, Daniël, Moritz, Troya,
Haji, Guilherme, and Abdullah. We usually have lunch together, which is a sweet,
relaxed time on a busy day. In particular, a big thanks to Moritz for translating the
summary of this dissertation to Dutch. Then, I extend my thanks to the colleagues
on the tenth floor, Jian, Xiang, Joost, Shanshan, Yande, Leon, Lingling, Nicoleta,
Savvas, He, Baozhou, and Mahroo. We present our researches during lunch collo-
quium, and have fun in group barbecue, beer nights, Christmas parties, and other
lovely events.

The facilitation from group staff is crucial for my work as well. I thank Erik for
maintaining the servers, Lidwina, Joyce, and other sectaries for all kinds of admin-
istration work.

1

0
2 Samenvatting

I have the warmest memory with the Chinese community in TU Delft. I enjoyed the
gatherings with Yue, Jiapeng, Fanyu, Tiantian, HaoHua, Hai, Shuai, Minghe, Qiang,
Zhenji, Yu, Wenjie, and many other friends. I wish for your bright futures!

Last but not least, I appreciate the support of my parents. They always encourage
me with love and understanding. Therefore, I dedicate this dissertation to them.

1
Introduction

Data-intensive applications are becoming more important and demand more
computing power. However, conventional computing architectures and the
CMOS technology that they are based on face various challenges such as the
bottleneck between CPUs and the memory. In-memory computing paradigms
can alleviate such problems by placing computing cores inside the memory.
Memristive devices, which support both storage and computing, are promis-
ing enablers of the in-memory computing paradigm. We investigate various
aspects of building systems based on in-memory computing with memristive
devices, including the circuit level, the architecture level, and their design
automation to explore the potential of such systems.
This chapter introduces first the motivation behind building in-memory com-
puting architectures using memristive devices. Thereafter, it presents their
opportunities and challenges. Subsequently, it describes the research topics
of this thesis briefly followed by the main contributions. Finally, it discusses
the organization of the remaining chapters.

3

1

4 1. Introduction

1.1. Introduction to Memristive Devices
In this section, we first present the motivation of investigating memristive devices
in Section 1.1.1. Thereafter, Section 1.1.2 gives an introduction on memristive
devices. Subsequently, Section 1.1.3 and Section 1.1.4 summarize the usage of
memristive device for logic and memory, respectively.

1.1.1. Motivation
Data-intensive applications have gained more importance in varies domains such as
health-care [1], artificial intelligence [2], and economics [3]. They demand more
computing power, larger storage, and higher energy efficiency [4]. This motivates
the scientific community to innovate the current technologies and architectures to
meet these demands.

In the last decades, the advancement of computing systems was mainly driven by
CMOS scaling [5]. However, this trend will not sustain forever due to the following
three walls [6]:

• The reliability wall: As the transistor dimensions are reduced towards their
physical limit, CMOS transistors will suffer from a reduced lifetime and in-
creased failure rate [7].

• The leakage wall: As the threshold voltage decreases with scaling, the
relative sub-threshold leakage increases [8]. Since CMOS is volatile, the static
leakage may become dominant and exceed dynamic power [9].

• The cost wall: Economical benefits brought by technology scaling is reduced
because of the increased design complexity and test difficulty [10].

In addition, current computer architectures also face three walls [11]:

• The memory wall: The data processing speed of CPUs is greater than the
data bandwidth provided by the memory, as shown in Figure 1.1. As the
numbers of cores or processing elements increase over time, the memory
bandwidth deficit increases.

• The power wall: Due to the constraints of cooling, there is a limit to the
operating frequency of microprocessors. This limit has been reached already
around 2005 as shown in Figure 1.2. As a consequence, the performance of
a single thread saturated. Note that the energy consumption is critical for
devices that are powered by batteries, such as laptop computers, tablet, and
smartphones. These devices are becoming more important in daily life.

• The instruction-level parallelism (ILP) wall: Since around 2005, the
main way of improving the performance has been realized by increasing the
number of logical cores as shown in Figure 1.2. With more and more cores,
the difficulty of extracting sufficient parallelism from the application has sig-
nificantly increased.

1.1. Introduction to Memristive Devices

1

5

Figure 1.1: Memory bandwidth deficit for feeding processors [12].

Figure 1.2: Microprocessor trend data [13, 14].

These walls have decelerated the advancements of conventional computing sys-
tems. Therefore, alternative computing paradigms and technologies are explored [15–
18] to alleviate the above problems. Among these paradigms, in-memory comput-
ing is promising as it may overcome the memory wall [19, 20]. It refers to a com-
puting paradigm where information is stored and processed at the same physical

1

6 1. Introduction

location, e.g, in the memory [21]. Memristive devices [22] are promising candidates
to build in-memory computing architectures because they support both storage and
logical operations [23]. In addition, they have advantages such as non-volatility,
high density, good scalability, and CMOS compatibility [24, 25]. Therefore, in-
memory computing based on memristive devices has a huge potential and is worth
to be investigated thoroughly.

1.1.2. Memristive Devices
A memristive device, or amemristor in short, is the fourth fundamental two-terminal
element next to the resistor, capacitor, and inductor. Its existence is predicted by
Leon Chua in 1970s [26]. He noticed that the relationship between flux and charge
was missing, which is indicated by the dashed line in Figure 1.3(a). This relationship
can be described using memristance 𝑀, i.e., 𝑀 = 𝑑𝜙/𝑑𝑞. When 𝑀 is a function
of the charge 𝑞, the memristor yields special properties that cannot be simulated
by the combination of other fundamental elements. A crucial characteristic of a
memristor is the ‘pinched hysteresis loop’ current-voltage curve as illustrated in
Figure 1.3(b). It presents a memristive device that has two stable states: high 𝑅H
and low 𝑅L resistive states. The device switches from a resistive state to another
when the voltage across the memristive device is greater than the absolute value
of its threshold voltage 𝑉th. Therefore, the internal state of the device is decided by
the external voltage history.

v

φ q

i

ᵠd
td

v =
dv
id

R= dq
vd

C=

ᵠd
id

L = i = dq
td

ᵠd
qd

M=
R

L

R
H

I

V
V

th

-V
th

(a) The four fundamental elements (b) Pinched hysteresis loop

Figure 1.3: Basic of a memristor

After a silent period of more than 30 years, memristive devices became renowned
in 2008 when the first physical memristor device was confirmed by HP Labs [27].
They built a metal-insulator-metal device using a titanium oxide as an insulator
sandwiched by two metal electrodes. They successfully identified the memristive
behavior over its two-terminal node as described by Leon Chua. When applied with
different voltages, the device tunes its resistance by controlling positive charged
oxygen vacancies in the insulator layer. The research in this field has rapidly grown
since then and many non-volatile memories (NVMs) based on different types of
materials, such as HfOx, TaOx, SiOx, have emerged [28, 29]. These NVM elements
exhibit many properties of a memristor (e.g., device resistance changes under ex-
ternal stimulation). These cells have two or more stable resistance states. They
switch from one state to another when a voltage or current is applied that exceeds

1.1. Introduction to Memristive Devices

1

7

the threshold of the device. Although there are differences between the devices
(e.g., in some devices the resistance changes abruptly instead of continuously), it
is common to refer to them as memristive devices.

1.1.3. Memristive Devices for Logic
In this section, we first classify existing memristor-based logic design styles. There-
after, the working principle of a logic design style is presented in more details. Fi-
nally, we compare these design styles qualitatively.

Many logic design styles have been proposed [30–37] based on memristive devices.
They can be divided into several classes using the following criteria:

• Input Data Representation: the input data is represented by either a volt-
age or resistance.

• Output Data Representation: the output data is represented by either a
voltage or resistance.

• Processing Elements: the data is processed either based on memristors
only or by using a hybrid CMOS/memristor combination. Note that the control
of the memristors is always done using CMOS circuits.

Voltage Resistance

M
em-only

Hybrid

Ratioed

Snider

CMOS-like

Stateful

CRS

Prog. Threshold
Cur. Mirror

Input

Re
si

st
an

ce
Vo

lta
ge

O
ut

pu
t

Processing

PLA-like

Magic

VVH
VRM RRM

RVH

VVM RVM

VRH RRH

? ?

Pinatubo

Parallel input

Normally-off

Figure 1.4: Classification of memristor-based logic design styles [38].

The classification result is illustrated in Figure 1.4, including eight classes in total.
We name each class according to the input and output representation signals, and
the processing element. For instance, Pinatubo [39] is located in the RVH class
where R indicates the input data representation, V the output data representation
and H hybrid CMOS/memristor processing. It is indicated by the classification result
that current logic designs fit in six defined classes, and that two classes have not
been explored yet.

1

8 1. Introduction

• VVH: This class includes Memristor Ratioed Logic [30], PLA-like [31], Current
Mirror based Threshold Logic [32], and Programmable Threshold Logic [33].
Both input and output data are represented using voltages. CMOS gates, such
as inverters [30–32] and D Flip-Flop [33], perform as a threshold function.
These logic styles use memristors as either configuration switches [30, 31] or
input weights [32, 33].

• VVM: A Parallel Input Processing Logic [40] belongs to this class. This logic
style uses voltages to represent input and output data. Its processing ele-
ments are memristors with asymmetric voltage thresholds that are connected
in various ways. Note that it still needs CMOS circuitry for resetting the mem-
ristors, summing up the inputs, and reading out the result.

• RVH: Pinatubo [39] is the work published in this class. It uses a resistance
to represent the input data and a voltage to represent the output data. It
performs logical operations by modifying memory read operations.

• RVM: This class contains only CMOS-like Logic [34], which represents the
input data using a resistance and the output data using a voltage. The MOS-
FETs in the pull-up and -down network of the conventional CMOS logic are
replaced with memristors.

• VRM: Complementary Resistive Switching (CRS) Logic [35] is the only pub-
lished work in this class. The input data is represented using a voltage and the
output data is represented using a resistance. The logical operations in CRS
logic are performed by modified memory write operations. In another work,
the CRS logic gates are extended with other Boolean logic gates to decrease
the execution steps [41].

• RRM: This class includes Snider [36], Stateful Logic [37], Normally-off Logic [42].
They represent both the input and output data using resistances. Memristors
are used as voltage dividers to perform logical operations, which conditionally
switch the output memristors. Stateful Logic is extended to support more
types of logical operations such as AND-IMP and OR-IMP by Lehtonen et
al. [43]. Snider Logic is extended to support more types of logical operations
such as AND and OR by Kvatinsky et al. [44] and Xie et al. [45]. Normally-
off Logic differs from the others by connecting the memristors sequentially
instead of in parallel.

We use Stateful Logic [37] as an example to illustrate the methodologies of imple-
menting logical operations with memristive devices. Stateful Logic supports material
implication (IMP) as a primitive logical operation. The IMP operation is denoted by

IMP: 𝑞ᖣ = 𝑝 → 𝑞 = �̄� + 𝑞 (1.1)

where 𝑝 and 𝑞 are inputs while 𝑞ᖣ is the output. Logic 0 and 1 are represented by
𝑅ፇ and 𝑅ፋ, respectively, for both the inputs and outputs. There are two memristors
(i.e., Mp and Mq) and a resistor 𝑅፬ (𝑅ፋ≪𝑅፬≪𝑅ፇ) in an IMP gate. Mp and Mq store

1.1. Introduction to Memristive Devices

1

9

input 𝑝 and 𝑞, respectively, and the output 𝑞ᖣ is stored in Mq after the operation.
Control voltages 𝑉፡ and 𝑉፰ are applied to Mp and Mq, respectively, to perform the
IMP operation. The control voltages typically satisfy the following relationship:

0 < 𝑉፡ =
𝑉፰
2 < 𝑉th < 𝑉፰ < 2𝑉th (1.2)

We use the IMP gate with inputs 𝑝 = 1 and 𝑞 = 0 as an example to illustrate the
working principle of Stateful Logic. The operation is illustrated in Figure 1.5, which
consists of three steps. First, voltages 𝑉፩ = 𝑉፪ =GND and 𝑉፱ = 𝑉፰ are applied to all
the memristors to reset them to 𝑅ፇ (see Figure 1.5(a)). Then, voltages 𝑉፩ = 𝑉፰,
𝑉፪ = 𝑉፡ and 𝑉፱ = 0 are applied to Mp to program it to 𝑅ፋ (𝑝 is logic 1) (see
Figure 1.5(b)). 𝑉፡ is applied to Mq to prevent it from undesired switching. Finally,
the IMP gate is evaluated by applying voltages 𝑉፩ = 𝑉፡, 𝑉፪ = 𝑉፰ to Mp and Mq,
respectively, and keeping the row floating (see Figure 1.5(c)). As a result, 𝑉፱≈𝑉፡
(𝑅ፋ≪𝑅፬≪𝑅ፇ) and the voltage across Mq is 𝑉፪ − 𝑉፱ ≈ 𝑉፰ − 𝑉፡ < 𝑉፭፡. Therefore, Mq
stays in 𝑅ፇ. The output of the IMP gate is interpreted as logic 0. We refer the
reader to [37, 43, 44] for more details and the latest progress.

Mp=RL Mq=RH

Float

Vp=Vh Vq=Vw

Vx≈Vh

RL<<Rs <<RH
Rs

Mp=RH Mq=RH

Vw

Vp=0 Vq=0

Vx=Vw

RL<<Rs <<RH
Rs

Mp=RL Mq=RH

0

Vp=Vw Vq=Vh

Vx=0

RL<<Rs <<RH
Rs

(a) RESET all memristors (b) Program input memristors (c) Evaluate the output memristor

Figure 1.5: The IMP operation in Stateful Logic.

Finally, we use the following metrics to evaluate existing memristor logic design
styles qualitatively.

• Array Compatibility: whether the logic style is compatible with normal 1R
and/or 1T1R memory arrays.

• CMOS Controller Requirement: whether the logic style needs a CMOS
circuit for control.

• Nonvolatility: whether the logic style can store the data when it is powered
off.

• Area: area-efficiency of the logic style to perform logical operations.

• Speed: time-efficiency of the logic style to perform operations.

• Energy: energy-efficiency of the logic style to perform logical operations.

• Scalability: how well the logic style can be scaled to implement more com-
plex circuits.

1

10 1. Introduction

Table 1.1: Comparison Between Existing Logic Styles

Style Class Array Control NV Speed Area Energy Scalability Robustness
Memristor Ratioed Logic VVH No No No + ++ ++ ++ +
PLA-like Memristor Logic VVH No No No + ++ ++ ++ ++

Current Mirror Threshold Logic VVH No No No + ++ ++ ++ ++
Programmable Threshold Logic VVH No No No + ++ ++ ++ ++
Parallel Input Processing Logic VVM No No No + ++ ++ ++ +

Pinatubo RVH Yes Yes Yes + + ++ + +
CMOS-like Logic RVM No Yes Yes - - - - +
CRS Logic VRM Yes Yes Yes - - - - -
Snider Logic RRM Yes Yes Yes - - - - -
Stateful Logic RRM Yes Yes Yes - - - - -

Normally-off Logic RRM No Yes Yes - - - - -

• Robustness: how robust the logic style is to be resilient against the variation
of CMOS and memristor technology.

The comparison result is listed in Table 1.1. Symbols ‘-’, ‘+’, and ‘++’ represent
‘bad’, ‘medium’, and ‘good’, respectively. Following conclusions can be drawn with
respect to the metrics.

• Array Compatibility: Array compatibility is an important requirement to im-
plement resistive computing systems. Design styles in the RVH, VRM and RRM
(except for Normally-off Logic) classes are compatible with memory arrays.
Due to its irregular topology, CMOS-like Logic is not compatible with memory
arrays. Since CMOS inverters or D flip-flops need to be added to memory
arrays, design styles of VVH are not compatible with 1R/1T1R array. Parallel
input processing logic is not compatible with 1R/1T1R array, but can be used
in an array with more complex topology [46].

• CMOS Controller Requirement: Additional CMOS control units are not re-
quired for the logic styles of VVH and VVM since their inputs and outputs are
voltages. On the contrary, the data need to be transduced between volt-
ages and resistances in other logic styles. Several logic design styles require
multiple execution steps and hence a controller is needed to execute these
steps.

• Nonvolatility: Since the inputs and outputs of the design styles in the VVH
and VVM classes are both represented by voltages, these design styles are
volatile. In contrast, other logic styles represent their input and/or output by
resistances and hence are nonvolatile.

• Speed: The design styles in VVH, VVM, and RVH classes are faster than the
others because they can finish logical operations in a single step. Oppositely,
other logic design styles are slow as they need multiple steps.

• Area: Since CMOS controllers are not needed, the design styles in the VVH
and VVM classes require smaller area than the others. Note that Pinatubo

1.1. Introduction to Memristive Devices

1

11

only requires a simple controller as the operation is conducted in a single step
instead of multiple ones [39].

• Energy: Controller necessity, nonvolatiltiy, and speed all impact the energy
consumption. Design styles in the VVH and VVM classes do not require CMOS
controllers and they are fast; therefore, they are likely to consume less energy
compared with the others. Pinatubo is nonvolatile and fast, and hence it is
likely to consume less energy as well. For the other design styles, more energy
are consumed during the logical operations as they need complex controllers
and longer more steps.

• Scalability: The scalability is mainly decided by array compatibility and CMOS
controller requirement. Design styles of VVH and VVM are the easiest to scale
up as CMOS controllers are not required. Pinatubo is relatively easy to scale
since it only needs a simple controller. However, the other design styles are
difficult to scale up as complex controllers are needed.

• Robustness: Since many transistors exist in CMOS controllers, controller
necessity impacts the robustness. In addition, if the memristors do not switch
during logical operations, this design style is more reliable than the others.
The reason is that memristor devices suffer from cycle-to-cycle variation [6].
Design styles of VVH (except for Memristor Ratioed Logic) are likely to be most
robust as CMOS controllers and memristor switching are not needed in logical
operations. Memristor Ratioed Logic and Parallel Input Processing Logic are
less robust because they are more sensitive to the resistance variation of the
memristors. Design styles in RVH and RVM classes are more reliable than
others since memristors are not switched during logical operations.

In summary, design styles of RVM, VRM, RRM, and RRH are suitable to implement
the resistive computing architectures due to their array compatibility. In addition,
the design styles in the VVH and RVM classes are potential alternatives for replacing
CMOS logic.

1.1.4. Memristive Devices for Memories
Many non-volatile memory elements have been proposed such as resistive RAM
(RRAM) [28], ferroelectric field-effect-transistor (FeFET) [47], phase-change mem-
ory (PCM) [48], spin-transfer torque magnetic RAM (STT-MRAM) [49]. Each of these
device classes are based on different technologies and their working principles dif-
fer. As a result, these devices have different benefits and drawbacks, leading to
different appropriate use scenarios. In this section, We will briefly overview these
memristive devices used as memories.

Figure 1.6 summarizes the storage capacity of recently produced NVM chips based
on their classes [50]. The figure shows that many prototypes have been devel-
oped, and the NVM technology is an active research field. We refer the readers to
the first two chapters of the book Resistive Switching [51, 52] for a comprehen-

1

12 1. Introduction

sive introduction into the the topic of memristive memory and the RRAM technology.

Figure 1.6: Memristive device trend data [50].

PCM devices are based on the usage of chalcogenide materials that can change be-
tween an amorphous and a crystalline state [48]. The switching is realized by using
a high write current to heat up a conductive rod reaching through the chalcogenide
material. When a current is flowing through a PCM device, the amorphous and a
crystalline states exhibit different behaviors in their electric resistances. The device
is in low resistance state (LRS) when the chalcogenide is in a crystalline state. Oth-
erwise, it is in a high resistance state (HRS). Furthermore, intermediate states may
exist between these two extremes, i.e., a combination of LRS and HRS. This possibil-
ity leads to the first benefit of such PCM devices, namely its feasible multi-level cell
operation. In addition, the manufacturing technology of PCMs is quite mature and
it is compatible with CMOS technology. The endurance of PCMs, i.e., the maximum
number of possible switching cycles before the device becomes unreliable, is more
than 10ዃ, which is comparable to RRAMs [53]. They have the highest endurance
among current NVM devices. However, there are several challenges regarding the
controlling of such switching processes, including the necessary high write circuits,
a 10× longer switching time than RRAMs due to the slow crystalline process, and
the resistance drift in the amorphous state that has to be compensated for at circuit
level [53].

STT-RAMs are based on a parallel and anti-parallel configuration of a stack of fer-
romagnetic layers that form a magnetic tunnel junction (MTJ) structure [49]. The
magnetization at the terminals of the MTJ stack is fixed on one side. Therefore,
this side is denoted as a fixed layer. The magnetization of the other side can be

1.1. Introduction to Memristive Devices

1

13

switched between two magnetization directions, which is called the free layer. If
both layers are in parallel to each other, the electrons that are spin-polarized with
opposite orientation can pass through the stack with a high probability. Therefore,
the device is in LRS in this case. On the contrary, the probability that an electron
can pass both layers is low if the two layers are polarized anti-parallel to each other.
The reason for this is that the electrons will always encounter a layer with an op-
posite polarization relative to its own one, no matter in which direction the electron
is spin-polarized. Therefore, the device is in a HRS in this case. The main advan-
tage of STT-RAM is the short switching time [54]. Its manufacturing technology
is relatively mature. However, it is challenging to make it compatible with CMOS.
The MTJ stack may consist of more than ten layers of ferromagnetic materials, e.g.
CoFeB or MgO, which are not easy to handle [53]. However, due to its low energy
efficiency STT-MRAM technology is not likely to be used in last-level caches.

We can subdivide the RRAM technology into three categories, i.e., electrochemical
memory (ECM), valence change memory (VCM) (see Figure 1.7), and thermochem-
ical memory (TCM) based on their nanoionic switching mechanisms [28]. Different
ionic mechanisms are used to generate resistances. In TCMs and ECMs, small
metallic bridges are build up and down by a structure called filamentary with the
redoxation and oxidation processes in ionized material layers. These layers consist
of materials such as 𝑇𝑖𝑂ኼ or 𝐻𝑓𝑂ኼ, which are entangled between two metal plates
as terminals. TCMs are unipolar, i.e., the same voltage is applied to the poles and
a filament with low resistance characteristic grows from both sides. Different from
that, two opposite voltages are applied to the terminals in ECM, which are normally
composed of different metals. Using this bipolar control mechanisms, voltage and
reversed voltage signals are used to build up the metallic filament by a redox tran-
sitions and to dissolve it again by launching local oxidation processes [55].

Pt

Cu

SiO2

+

+

+

+

+

++

+

+

Cu
fila-
ment

Cu
ions

+

-

+

Pt

Pt

D
TiO2

TiO2-xw

+ low
resistance

high
resistance

+

++

+

-

memristor symbol

+ -

Figure 1.7: ECM (left) and VCM (right) RRAMs.

In VCMs, a variant of RRAM, the exchange of ions builds up and dissolves not only
a filament but also a complete metallic layer or an area interface. This technique
that was used in the memristors of HP Labs [56]. They are bipolar and offer good

1

14 1. Introduction

scalability because the cell sizes can be made in the namometer range, e.g. 10×10
nm2 or even less [57]. The reason is that the underlying switching process focuses
on much more localized structures. Another advantage is the large HRS / LRS ratio,
which requires a simpler CMOS circuit to evaluate the resistance. Fast switching
is a feature of RRAM as well. This can be realized in the 𝑛𝑠 range, and even
100 ps have been demonstrated [58]. This characteristic origins from two facts:
1. the ions have to move in small distances; 2. the high electrical field forces
that occur in the nanoscale active region causes an effect called Joule heating,
and it further increases the ion mobility. A further advantage of RRAMs is the good
compatibility with CMOS manufacturing processes. The endurance, which is may be
the most important feature for memristive elements concerning their usage either as
memory or as switching element in computing circuits, is reported very differently.
Values from 10ዀ cycles up to more than 10ኻኼ cycles can be found in literature [53].
The power consumption is in the pf range, which makes RRAMs a good candidate
for an use in embedded applications. For example, Panasonic becomes the first
semiconductor manufacturer that integrated RRAM into a microcontroller to store
firmware in 2013 [59].

1.2. Opportunities and Challenges
This section discusses the opportunities and challenges of building in-memory com-
puting architectures using memristive devices.

1.2.1. Opportunities
Memristive devices have the potential to contribute to computing technologies with
respect to the following aspects.

• Memory hierarchy: Due to speed, cost, and endurance limitations, emerging
resistive memories are not likely to replace mainstream memories such as
DRAM and SRAM. However, they may provide other opportunities. Figure 1.8
shows the typical access time of a conventional memory hierarchy versus
resistive memories. From the figure it can be observed that a speed gap
exists between the DRAM and storage (i.e., solid-state drive (SSD) or hard-
disk drive (HDD)). Based on the access time, some of the resistive memories
such as RRAM and PCM can fill this gap. Therefore, it is possible to insert
these NVMs as a new level of memory to fill the gap, which is referred to
as storage-class memory (SCM) by some researchers [60]. As the capacity
of NVMs can be larger than DRAM [60], SCM will decrease the average data
access time and hence improve the performance of conventional computing
systems.

• In-memory computing: In Von-Neumann architectures, a lot of time and en-
ergy is wasted in fetching data from and storing the results back to the mem-
ory. Memristive devices support both storage and computation and hence the
communication cost can potentially be reduced. Many researches have shown

1.2. Opportunities and Challenges

1

15

Figure 1.8: Memory hierarchy and typical access speed [24]

the potentials of in-memory computing with memristive devices [39, 61–64].
It is also the topic of this thesis.

• Neuromorphic computing: Another active research field is to use memris-
tive devices for the hardware implementation of brain-inspired neuromorphic
computing platforms. The multilevel storage capacity of PCRAM and RRAM
allows them to serve as analog devices that can emulate the function of plas-
tic synapses in a neural network. Synaptic weights are modified by the timing
difference between pre- and post-synapses neuron signals, i.e. spike time
dependent plasticity (STDP), which is similar to the resistance changing pro-
cess of memristive devices [65]. In addition, the multiply accumulate (MAC)
function, which is important in neuromorphic computing and artificial intelli-
gence, can be implemented efficiently within an NVM crossbar [66, 67]. Many
implementations in this domain have been demonstrated successfully such as
digit recognizing [68], image classification [69] and natural language process-
ing [70].

• Low-power designs: The non-volatile feature of memristive devices can be
utilized to build low-power hardware. Power and energy consumption are
becoming more critical for computing systems, especially for those depending
on batteries. When a memristive based memory or computing component is
idle, it can be turned off without information loss and hence the stand-by
power can be eliminated. This enables a “normally-off” working style, which
could benefit data centers and Internet-of-things (IoT) devices [24].

• Hardware security: The intrinsic variations of memristive devices can be ex-
ploited in the domain of hardware security. Stochastic behavior has been
observed in the switching process of memristive devices which could be ex-
ploited to create a true random number generator (TRNG) [71]. Similarly, the
resistance variability of memristive devices provides an alternative source of
randomness to implement a physical unclonable function (PUF) [72]. TRNGs
and PUFs are both important primitives for hardware security, which can be

1

16 1. Introduction

used to identify or authenticate specific systems.

1.2.2. Challenges
Although memristive devices have many potentials, several challenges still need to
be addressed.

• Switching speed: Changing the state of a memristive device requires at least
tens of nanoseconds [73]. It is approximately the same latency as writing
a DRAM cell (see Figure 1.4), and much slower than SRAM. Many logical
schemes of memristive devices use the resistance state as output. Therefore,
the speed of such schemes is bounded by the writing latency, especially when
the writing latency dictates the clock frequency.

• Dynamic power: Besides the long latency, the changing of memristive states
also requires a high programming voltage (2 V to 5V), large current (10 µA to
100µA) and high energy (0.1 pJ to 10 pJ) [53]. The need of high voltages and
currents increases the difficulty of the circuit design, and may increase the
energy consumption of other components. The energy consumption to write
a single bit is one to three orders of magnitude higher than that of DRAM.
Nevertheless, NVM does not require a periodical refresh. Therefore, overall
they can still be more energy efficient than DRAM.

• Endurance: Although STT-MRAM has a desirable endurance (10ኻ), FeFET,
PCRAM, and RRAM suffer from low endurance which is typically in the range
10ዀ to 10ኻኼ [53]. In case a memristive device changes its resistance state
with a frequency of 1MHz, its lifetime will be between a second and two
weeks. This is clearly not acceptable for practical usage. As a comparison,
the endurance of commercial SRAM and DRAM is about 10ኻዀ.

• Variability: Due to the intrinsic stochastic switching process, memristive de-
vices and in particular RRAM, suffer from high variability [74]. The high
variability decreases the read margin for sensing amplifiers, leading to more
complex circuit design and less storing bits per device. In addition, the high
variability impacts the robustness of logical operations. The designer must
consider all the corner cases to ensure correct operation.

• Process compatibility: Although STT-MRAM has advantages such as a low
programming voltage, fast write speed, and high endurance [75], its compat-
ibility with current mainstream CMOS technology is relatively poor [53]. The
main reason is that many layers of exotic ferromagnetic materials are used
in the MTJ stack. However, PCRAM and RRAM are compatible with CMOS
technology.

1.3. Research Topics
Many challenges described in Section 1.2 still need to be addressed. The research
carried out in this thesis focuses on the full-stack support for the in-memory comput-

1.4. Contributions

1

17

ing paradigm built with memristive devices. It covers the circuit level, architecture
level, and design automation.

• Circuit Level: At least two directions are worth further exploration for circuit
designing with memristive devices. First, novel designs are still needed as
currently the number of supported operations is limited. Second, the inferior
properties of current memristive devices such as low endurance and large
resistance variation may affect their usage in industrial products. Therefore,
it is worth investigating durable and robust schemes that are resilient to these
properties. This thesis explores the methods of using resistive sensing to
perform logical operations, as it does not change the states of memristive
devices. In addition, we need to guarantee operation correctness even under
large resistance variation.

• Architecture Level: A circuit has to be integrated into architectures before
being able to run applications. This thesis explores efficient architecture de-
signs for different types of applications. Especially, we consider the usage
of memristive devices and the computing kernels proposed in the Chapter of
Circuit Level. Besides designing the architecture, we investigate the methods
for evaluating them and estimating their performance.

• Design Automation: Data-intensive applications often lead to large design
scales that exceed the capacity of manual designing. Hence, design automa-
ton is essential in this scenario. This thesis investigates the methodologies to
assist the users in developing applications on the architectures we propose.
Different from existing syntax tools that target small-scale circuits such as an
adder, we focus on system-level design. In addition, to generate designs with
superior quality, we explore techniques for optimization.

1.4. Contributions
The contributions of this dissertation are directly related to the research topics
presented in the previous section.

1.4.1. Circuit Level
We study existing schemes that use memristive devices for logical operations and
propose two novel ones. With respect to this research topic, the main contributions
are as follows:

1. A durable logical operation scheme [76]. To overcome the short lifetime prob-
lem of memristive devices that is caused by their low endurance, we conduct
logical operations during resistance sensing. We modify the sense amplifier,
making it able to compare the overall sensing current of two input memristive
devices with pre-defined references. According to the comparison result, the
sense amplifier generates the results of logical operations. In this way, the
states of the memristive devices stay unchanged. Thereafter, we evaluate
the scheme and compare it with other designs.

1

18 1. Introduction

2. A robust logical operation scheme [77]. To overcome the high failure rate of
logical operations that are caused by the large resistance variation of memris-
tive devices, we improved the previous scheme by sensing the overall current
through different paths for AND and or operations, respectively. Similarly, we
change the way of setting reference values. Finally, we evaluate this scheme
using the Monte Carlo simulation and compare its robustness against the state
of the art.

1.4.2. Architecture Level
We investigate two types of data-intensive applications and propose three architec-
tures for processing them. With respect to this research topic, the main contribu-
tions are as follows:

1. A heterogeneous architecture for vector bit-wise logical operations [76]. We
combine a conventional von Neumann architecture with an accelerator built
with memristive devices. The accelerator can communicate with the CPU and
directly visit the external memory. It is used to accelerate bit-wise logical
operations. We evaluate this heterogeneous architecture with an analytical
model and compare the result with a multi-core system.

2. Two architectures for automata processing [78, 79]. We investigate existing
hardware accelerators for automata processing and describe a specific group
of them using an abstract model. In this model, memory arrays store con-
figuration information and work as computing components at the same time.
Then, we instantiate this model using memristive devices. This design is eval-
uated with SPICE simulation and compared with similar ones that are based
on other types of memory technologies. Subsequently, we improve the de-
sign with pipelining and time-division multiplexing. These changes increase
the working frequency and hence the throughput. We use SPICE to simulate
the design to determine its maximum throughput and synthesize key com-
ponents to estimate the area. Finally, its throughput and area are compared
with the state of the art.

1.4.3. Design Automation
We investigate the design automation methodologies for the proposed architec-
tures. With respect to this research topic, the main contributions are as follows:

1. A synthesis flow for CIM architectures [80, 81]. We extend the skeleton con-
cept in the software domain with placement and routing information and apply
it to the synthesis flow for CIM architectures. Then, we define four skeletons
that represent common algorithmic structures and develop solution templates
for them. These solution templates contain scheduling, placement, and rout-
ing information. Finally, we verify the synthesis flow with three test cases.

2. A compiler for automata processors [79]. First, we investigate the current
compiling tools for automata processors. Then, we build our complier based
on a graph-partitioning tool. We develop multiple methods for resolving the

1.5. Thesis Organization

1

19

constraint conflicts that may occur during the compilation. In addition, dif-
ferent partitioning strategies are developed for exploring the design space.
Finally, we use a standard benchmark suite to evaluate the compiler and
compare its equality with the state of the art.

1.5. Thesis Organization
The remainder of this thesis is shown in Figure 1.9 and organized as follows.

Chapter 1. Introduction

Chapter 2.
Circuit Level

Chapter 3.
Architecture Level

Chapter 4. Design
Automation

Chapter 5. Conclusion

Figure 1.9: Thesis outline.

Chapter 2 discusses the contributions of this dissertation with respect to the circuit
level. It presents logical operation schemes that utilize current immature memris-
tive devices.

Chapter 3 discusses the contributions of this dissertation with respect to the ar-
chitecture level. It first presents an architecture containing the circuit proposed
in Chapter 2 as an accelerator. Thereafter, it presents two architectures built for
automata processing.

Chapter 4 discusses the contributions of this dissertation with respect to design
automation. It first presents a synthesis flow for computation-in-memory architec-
tures. Thereafter, it presents a compiler that maps automata to the architecture
proposed in Chapter 3.

Chapter 5 concludes this dissertation and discusses possible future research direc-
tions.

2
Circuit Level

This chapter presents two logical operation circuits based on memristive de-
vices. The first one uses resistive sensing to perform logical operations, and
hence does not require state changes of memristive devices. It improves the
delay and power compared to the state of the art. The second logic scheme
enhances the first one by using different sensing paths for AND and OR op-
erations. It guarantees the correctness of logic operations even under the
presence of large resistance variations.

The content of this chapter consists of the following research articles:

1. L. Xie, H. A. Du Nguyen, J. Yu1, A. Kaichouhi, M. Taouil, M. Alfailakawi, S.
Hamdioui, Scouting Logic: A Novel Memristor-based Logic Design for Resistive
Computing, IEEE Computer Society Annual Symposium on VLSI (ISVLSI’17),
Bochum, Germany, July 2017, pp. 151-156.

2. J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, S. Hamdioui, Enhanced
Scouting Logic: A Robust Memristive Logic Design Scheme, The 15th IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH’19), Qing-
dao, China, July 2019, pp. 1-6.

1J. Yu contributed to the variation resilient design and SPICE simulation.

21

2

22 2. Circuit Level

2.1. Problem Statement
Memristive devices such as RRAM suffer from a low endurance and large resistance
variation [24, 53]. Endurance refers to the number of times the resistance state
of a memristive device can change. Low endurance may lead to a short lifetime.
Resistance variation refers to the resistance difference between different memristive
devices. Large resistance variations may affect the robustness of the computations.
To utilize immature memristive devices for logical operations, we must develop logic
schemes that are resilient to these drawbacks. This chapter proposes such logic
schemes.

• Durable Logic Scheme: Many memristive logic design schemes, such as Snider [36,
76], Stateful Logic [31, 37, 43], CRS [32, 35], MRL [30], and MAGIC [44],
change the states of memristive devices frequently. For example, in MAGIC
the output device (i.e., the device that will store the result) needs to be initial-
ized to low resistance before applying a NOR operation. In case the previous
output value of this device was high resistance and the new output value as
well, this output device will undergo unnecessary transitions. The endurance
of RRAM devices is between 10ዀ and 10ኻኼ [53]. Hence, in case an RRAM
device changes its resistance state with a frequency of 1MHz, the lifetime
of this device will be between a second and two weeks. This is clearly not
acceptable for practical usage. Therefore, there is a need to develop logic
schemes that do not require frequent state changes.

• Robust Logic Scheme: The resistance variation of RRAM devices originates
from the fluctuations in filament radius and constriction geometry [82]. There-
fore, it is an intrinsic characteristic of RRAM devices. Unfortunately, many
memristive logic design schemes do not consider the resistance variation in
their verification methodology [30, 39, 44, 83], or assume a very small re-
sistance variation (e.g., resistance difference / mean < 10%) [76, 84–87].
However, the resistance variation of current RRAM devices is much larger
than these assumed values [88–93]. In some cases, the upper bound of the
resistance range is several times higher than the lower bound. Most existing
memristive logic design schemes produce wrong results under such variation
conditions. Therefore, a novel robust logic scheme is required.

2.2. Main Contributions
The main contributions with respect to the above aspects are as follows.

• Durable Logic Scheme: We propose a durable logic scheme referred to as
Scouting Logic [76]. Its main idea is illustrated in Figure 2.1. It uses re-
sistive sensing to perform logical operations. The input values are stored in
the memristive devices inside the memory array in the form of resistance.
During logical operations, multiple memory columns are enabled at the same
time (see Figure 2.1(a)). The modified sense amplifier compares the over-
all current with references and outputs the result in the form a voltage (see

2.3. Evaluation

2

23

Figure 2.1(b)). During this process, the resistance of the memristive devices
does not changed. Therefore, these operations do not affect the lifetime.
In addition, by avoiding changing the states of memristive devices, Scouting
Logic accelerates the operation speed and reduces the energy consumption.
Evaluation results show that Scouting Logic achieves less delay and lower
power than the state of the art for a similar area overhead.

SA

Vr

Vr

M1

M2

(a) Memory

Iin

Vout

Vr/RL 2Vr/RL2Vr/RH
Iin

1110/0100 Input

OR

Output10

S1

S2

Iref

Iin

Input

Read
Iref

Output

Vr/RH

0

0

Vr/RL

1

1

Iref

(b) References of Primitive Operations

Iin
AND

Iin
XOR

Iref1 Iref2

Output0 1

Output10 0

Vr/RL 2Vr/RL2Vr/RH

Vr/RL 2Vr/RL2Vr/RH

1110/0100 Input
Iref

1110/0100 Input

Figure 2.1: Main idea of Scouting Logic [76].

• Robust Logic Scheme: Considering robustness against resistance variation,
we propose another logic scheme named Enhanced Scouting Logic (ESL) [77].
Its circuit is illustrated in Figure 2.2(a). Similar to Scouting Logic, it conducts
logical operations during sensing. However, it uses two different paths for
AND and OR operations, which connect the input memristive devices in series
(see Figure 2.2(b)) and in parallel (see Figure 2.2(c)), respectively. In this
way, ESL can guarantee operation correctness even if large variation exists in
these devices. Monte Carlo simulations validate that the robustness of ESL
exceeds the state-of-the-art schemes as shown in Table 2.1. In this table, the
second to the fifth columns list the number of failed test cases under different
input Boolean values. ESL provides a method to build reliable logic circuits
using today’s immature devices.

Table 2.1: The Numbers of Failed Cases in 10,000 Monte Carlo Iterations

00 01 10 11 Total

Scouting Logic [76] 0 75 97 202 374

Pinatubo [39] 0 142 176 332 650

ESL (This work) 0 0 0 0 0

2.3. Evaluation
In this chapter, we presented two logic schemes that tolerate the drawbacks of
current RRAM devices, which were overlooked by many state-of-the-art designs.

2

24 2. Circuit Level

WL2
i

WL1
i

To SA

WL2
j

WL1
j

WL1
WL2

V
Pro

Pro

M
i

M
j

V
Driver

BL1BL2SL

(a) Circuit

WL2
i

WL1
i

WL2
j

WL1
j

WL1
WL2

V
Pro

Pro

M
i

M
j

V
Driver

To SA
BL1BL2SL

(b) OR operation

WL2
i

WL1
i

WL2
j

WL1
j

WL1
WL2

V
Pro

Pro

M
i

M
j

V
Driver

To SA
BL1BL2SL

(c) AND operation

Figure 2.2: ESL circuit [77].

Scouting Logic and ESL can maintain a long lifetime with low-endurance devices
and ESL is robust despite large variations. The followings are the consideration to
extend ESL and alternative methods to handle the variation challenge:

• The types of operations that can be performed by Scouting Logic and ESL
are still limited and hence more research is required. For example, a shift
operation is essential for many arithmetic operations and encryption algo-
rithms [94]. A method to implement the shift operation is to add a CMOS
shifter in each RRAM array and operate on the output of the sense ampli-
fiers [64, 95]. However, this method leads to a larger chip area and higher
power consumption.

• Self-write termination [54] is a promising technology that can alleviate the
resistance variation of RRAM devices. It adds a loop-back from the cell to
the driver during write operations. When the programmed memristive device
reaches the desired resistance, the writing process is terminated. Currently,
it cannot be applied to some devices and may lead to unstable resistance
states [96]. In addition, it is also difficult to achieve a small variation using
SWT schemes for some devices [96]. However, if it can overcome these
drawbacks, the logic computing schemes can be simplified.

• If the memristive devices are used in an approximate computing design, the
resistance variation would not be an issue. It is because that approximate
computing can tolerate inaccuracy to a certain level. In addition, OR and
AND can be used to implement a one-bit full adder in the context of approx-
imate computing [97]. It can be further used for implementing some image
processing applications [97].

3
Architecture Level

This chapter presents three computation-in-memory architectures based on
memristive devices. The first one is a heterogeneous architecture containing
a Scouting Logic component to accelerate vector-based bit-wise logical op-
erations. Its performance-energy efficiency is 10× higher than a multi-core
system. The second architecture accelerates automata processing. It out-
performs similar ones that are based on conventional memory technologies.
The third one is an improved version of the second one. It achieves a higher
throughput by pipelining the routing network and using the pipeline in a time-
division multiplexing manner. SPICE simulations show that the performance
of the last two architectures is higher than prior work.

The content of this chapter consists of the following research articles:

1. J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, Memristive Devices
for computation-in-memory, The 21st Design, Automation & Test in Europe
Conference & Exhibition (DATE’18), March 2018, pp. 1646-1651.

2. J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, S. Hamdioui, Time-division
Multiplexing Automata Processor, The 22nd Design, Automation & Test in
Europe Conference & Exhibition (DATE’19), Florence, Italy, March 2019, pp.
794-799.

25

3

26 3. Architecture Level

3.1. Problem Statement
The circuits proposed in Chapter 2 need to be integrated into architectures to solve
real-life problems. The researches on such architectures can be divided into two
groups according to their scope. The first group focuses on the design of an accel-
erator, e.g., PLiM [63], PRIME [62], Computation-in-Memory (CIM) [61, 98], and
ISSAC [67]. The second group focuses on the system level, considering both the
host processor and the memristive device-based accelerator, e.g., AC-DIMM [99],
Pinatubo [39], and IMP [64].

An architecture contains multiple components and can be used to run certain appli-
cations. We are especially interested in data-intensive applications mainly for two
reasons. Firstly, they are important Big-Data problems [100]. Secondly, conven-
tional von-Neumann architectures suffer from the memory wall in these applica-
tions [11]. Memristive devices support both data storage and logic operations and
thus have the potential to be used in in-memory computing architectures. These
architectures can alleviate the memory-wall problem and outperform conventional
architectures. This chapter will present novel architectures based on memristive
devices for the following applications.

• Applications containing massive logical operations: Vector bit-wise logical op-
erations are commonly seen in multiple applications such as database man-
agement [101], DNA sequencing [102, 103], and graph processing [104].
The operations on each element are simple; however, the vector length is
significant. To process this type of operations on conventional architectures,
all the data needs to be loaded to the cache sequentially, which leads to low
efficiency and high energy consumption.

• Automata processing: Many applications, such as network security [105],
bioinformatics [1], and artificial intelligence [2], need to match an input se-
quence with pre-defined patterns. This type of matching can be modeled
using finite-state automata. However, processing automata on conventional
architectures is not efficient when the automata size is larger than the cache’s
capacity. In that case, the bad data locality of automata will cause many
cache misses. Implementing automata processing with FPGAs have similar
problems as their capacity is limited. Instead, several ASIC-based accelera-
tors have been proposed. Unified automata processor [106] simplifies CPU
cores specially for automata processing. However, its throughput is limited
when the processing automata contains many active states. HAWK [107]
and HARE [108] use logic gates for matching. They process multiple input
symbols of a single input stream in each clock cycle, thus achieving a higher
throughput. However, they do not support all automata.

3.2. Main Contributions
The main contributions with respect to the above aspects are as follows.

3.3. Evaluation

3

27

• Vector bit-wise logical operations [78]: We build an accelerator for vector
bit-wise logical operations based on Scouting Logic [76]. This accelerator is
referred to as Memristive Vector Processor (MVP). MVP can communicate with
CPU and directly visit external memory as shown in Figure 3.1(a). MVP ac-
celerates the program sections that contain bit-wise logical operations while
the rest is still executed by CPU as indicated by Figure 3.1(b). The evalu-
ation shows that MVP achieves a 10× improvement in performance-energy
efficiency over a multi-core system.

CPU

DRAM

External Memory

MVP

Program

loop1:

loop2:

loop3:

MVP

(a) Architecture (b) Expected Application

Cache

Figure 3.1: Memristive Vector Processor architecture.

• Automata processing [78, 79]: First, we propose a general architectural model
based on existing automata processing accelerators such as Micron’s Au-
tomata Processor [109] and Cache Automaton [110]. In this model, the
memory arrays store configuration information and are also used as com-
puting components. Next, we develop an architecture (shown in Figure 3.3a)
based on the proposed model using memristive devices, which is referred to
as RRAM-AP [78]. The memory arrays are fragmented across the entire chip
and we refer to each fragment as a tile. Due to the small intrinsic capaci-
tance of memristive devices, RRAM-AP achieves 35% performance and 59%
energy improvement over Cache Automaton. Finally, we propose an archi-
tecture that further accelerates automata processing using time-division mul-
tiplexing. This architecture breaks the routing network into multiple pipeline
stages as shown in Figure 3.3b. Each pipeline stage processes a different
input sequence. In this way, the architecture reaches higher throughput with
a negligible area overhead. Table 3.1 shows the evaluation results of this
architecture against the state of the art.

3.3. Evaluation
In this chapter, we presented three in-memory computing architectures. Unlike
previous works such as PLIM [63], ReGP-SIMD [111], and MPU [112], the architec-
tures presented in this chapter can cope with the low endurance problem of RRAM.
In MVP and RRAM-AP, the memristive devices are not programmed frequently. In
MVP, we assume that the original database or dataset is stored in memristive arrays,

3

28 3. Architecture Level

ST
E

 1

Symbol Vec s

Input I Routing
Matrix

A
ct

iv
e

V
ec

 a

Follow Vec f

D
ec

od
er

A
cc

ep
t V

ec
 c

Acceptance

ST
E

 2

S
T

E
 N

1 2 3

Figure 3.2: General architecture of Automata Processors [78].

STE

L1

G

STE

L2

TileTile Tile

Tile

STE

Li

g

s
a

f

(a) RRAM-AP

STE

L1

G

STE

L2

TileTile Tile

STE

Li

Buffer

(b) TDM RRAM-AP

Figure 3.3: RRAM-AP and TDM RRAM-AP.

Table 3.1: Evaluation of Automata Accelerators

Frequency (GHz) Throughput (Gbps) Area (mm2)
HARE (w=32) [108] 1.0 3.9 80

UAP [106] 1.2 5.3 5.67
Cache Automaton [110] 2.0 15.6 4.3

This work 3.0 24.0 3.16

and hence they do not change frequently. In RRAM-AP, the RRAM array stores the
configuration of target automata, which does not change during the processing. In
both architectures, the computation occurs during modified read operations, which
does not affect the device endurance. The work presented in this chapter can be
further improved with respect to the following aspects:

• The evaluation of MVP can be conducted in more detail. In [78], we used an
analytic model to evaluate the performance and energy consumption of MVP.
However, it would be more realistic if applications are simulated. Therefore,
in a later publication, we simulated a similar architecture that was application-
aware by using state-of-the-art tools including Cacti, NVSIM, and SiNUCA [113].

• The outputs of RRAM-AP can be improved to provide more information to the
user. In RRAM-AP, a column in each local switch and a 64-to-1 OR gate are
used to report whether a match occurs in each cycle. However, for some
applications such as PROTOMATA, it is also useful to know which state re-
ports the match if a match occurs. It requires additional hardware for such
reporting. MAP has implemented such hardware. However, it becomes a bot-

3.3. Evaluation

3

29

tleneck when matches occur frequently [114]. In those cases, the host CPU
cannot process the reported information fast enough, and hence MAP has to
decrease the processing speed. The hardware structure of match reporting
should be designed carefully to make full use of the IO bandwidth[114].

• The energy consumption of RRAM-AP can be studied in more details. We mea-
sured the energy consumption of an RRAM array with respect to one group of
input data in RRAM-AP [78]. However, the energy consumption of other com-
ponents and the RRAM array regarding other inputs is not analyzed. In [110],
the authors first estimated the average energy consumption of a one-bit hit in
each component. Then, for each benchmark, they simulated the execution of
the automata and summed up the energy consumed in each operation. We
can adopt this process and improve energy consumption evaluation regarding
RRAM-AP.

4
Design Automation

This chapter presents a synthesis flow for CIM architectures and a compiler
for automata processors. The synthesis flow is based on the skeleton con-
cept, which relates an algorithmic structure to a pre-defined solution tem-
plate. This solution template contains scheduling, placement, and routing
information. By rewriting the application using predefined algorithmic struc-
tures, a CIM circuit can be generated accordingly. The compiler for automata
processors uses multiple strategies to transform given automata, so that con-
straint conflicts can be resolved automatically. It also optimizes the mapping
for storage utilization. Evaluation with a standard benchmark suite shows
that the proposed compiler outperforms the state of the art.

The content of this chapter consists of the following research articles:

1. J. Yu, R. Nane, A. Haron, S. Hamdioui, H. Corporaal, K. L. M. Bertels, Skeleton-
based Design and Simulation Flow for Computation-in-Memory Architectures,
The 12th IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH’16),
Beijing, China, July 2016, pp. 165-170.

2. J. Yu, R. Nane, I. Ashraf, M. Taouil, S. Hamdioui, H. Corporaal, K. L. M.
Bertels, Skeleton-based Synthesis Flow for Computation-In-Memory Architec-
tures, IEEE Transactions on Emerging Topics in Computing (TETC), Volume 8,
Issue 2, 2020, pp. 545-558.

3. J. Yu, M. Abu Lebdeh, H. A. Du Nguyen, M. Taouil, S. Hamdioui, APmap: An
Open-Source Compiler for Automata Processors, submitted to IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
undergoing a minor reversion.

31

4

32 4. Design Automation

4.1. Problem Statement
Design automation is essential for developing large applications. Since the archi-
tectures we proposed are different from conventional ones, we should also provide
corresponding tools, such as compilers and synthesis tools, to the users.

In the literature, there are mainly two types of design automation tools with re-
spect to memristive circuits and architectures. One type is synthesis tools that
generate circuits based on hardware description language (HDL) inputs [115–118].
The other type is compilers that generate instructions for specific architectures, e.g.,
for PLiM [119] and IMP [64]. When developing these tools, we have to consider
the application scale and the features of the architectures. This chapter explores
the design automation methodologies for the architectures discussed in previous
chapters.

• CIM architectures: CIM architectures are designed manually in previous re-
search. In [120], authors implement a parallel adder, which calculates the
sum of an array, by placing basic adders in a grid. In [121], authors mapped
a matrix multiplication to adders and multipliers that are placed in an H-tree
style. However, the application presented in these works are naive. For more
complex applications, design automation is required to generate the detailed
structure of the desire architecture, such as the position and routing of the cir-
cuit components. However, developing such a design automation tool is chal-
lenging due to two reasons. First, the application scale is large. As a single
memristive computing component is slower than the one with CMOS tech-
nology, memristive CIM architectures can only achieve higher performance
with a larger number of components operating in parallel. Second, CIM dif-
fers from CMOS-based circuits as the memristive devices are passive. This
feature affects the way of exchanging data among computing components.
Therefore, we cannot reuse the synthesis tools designed for CMOS circuits.

• Automata Processors: Automata Processors also require design automation,
mainly because of the application scale and hardware complexity. For exam-
ple, Cache Automaton (CA) [110] contains ten million configurable bits. These
bits determine the behavior of the hardware. It is nearly impossible to map
a large automaton to such a large number of configurable bits without the
usage of a compiler. However, existing compilers for Automata Processors
are not satisfactory. The official compiler for Micron’s Automata Processor
is closed-source [122]. Therefore, it can not be adapted for other automata
processors. There is a compiler that can map automata to Cache Automaton
as well; however it is also closed-source and secondly not fully automated.
The only open-source tool available is ATR [122] which has been developed
based on an FPGA routing tool to estimate the hardware resource (e.g., the
number of configurable wires between two tiles) needed in an automata pro-
cessor. As a consequence, it is not accurate and does not generate detailed
configurations. Hence, a fully automated open-source tool is still needed for
automata processors.

4.2. Main Contributions

4

33

4.2. Main Contributions
The main contributions with respect to the above aspects are as follows.

• CIM architectures [80, 81]: We propose a skeleton-based synthesis flow for
mapping algorithms to CIM architectures. This flow is illustrated in Figure 4.1.
In conventional hardware design flows, scheduling, placement, and routing
are separated processes that are conducted sequentially. In CIM architec-
tures, circular dependency exists in these processes as the communication
cost is determined by the routing. To generate optimal circuits, we apply the
scheduling, placement, and routing processes simultaneously in the form of
skeletons. These skeletons are pre-defined solution templates for commonly-
used algorithmic structures (Box 2). To use this synthesis methodology, the
user first partitions the original program into software and hardware, and
rewrites the hardware part using skeletons (Box 1). Then, the CIM circuit will
be generated by instantiating pre-defined solution templates with primitive
circuits (Box 3). Box 4 shows the process of developing primitive circuits.

Figure 4.1: Synthesis flow for memristor-based CIM architecture [81].

• Automata Processors [123]: We have developed a compiler named APmap
for Cache Automaton [110] and RRAM-AP [78]. Cache Automaton’s com-
piler cannot resolve constraint conflicts automatically. However, APmap uses
multiple strategies to change the given finite state automaton to equivalent
forms, so that constraint conflicts can be automatically resolved. In addi-
tion, APmap optimizes the mapping result for storage utilization. This means
that the same AP chip can be potentially used for larger automata. Using
a standard automata benchmark suite [124], we compare the performance
of APmap against Cache Automaton’s compiler as shown in Figure 4.2. The
legend items ‘Ideal CA’ and ‘Ideal APmap’ in the figure refer to the minimum
amount of memory required for mapping an automaton in theory, i.e., the
product of the state number and the STE size. The evaluation results show
that the hardware overhead of APmap’s mapping is only 2.79%, which is much
smaller than Cache Automaton.

4

34 4. Design Automation

Sno
rt

Bril
l

Cla
mA
V
Dot
sta
r
Ent
ity

Lev
ens
hte
in

Ham
min
g
Fer
mi

Ran
dom

Pro
tom

ata

Ave
rag
e

ኺ

ኺ

ኻኺኺ

ኻኺ

ኼኺኺ

ኺ

ኺ.

ኻ

ኻ.
U
til
iz
at
io
n
(t
ile
s)

U
til
iz
at
io
n
(M
B)

CA
Ideal CA
APmap (This work)
Ideal APmap

Figure 4.2: Utilization comparison between APmap and Cache Automaton.

4.3. Evaluation
In this chapter, we presented a synthesis flow for CIM architecture and a compiler
for automata processors. The synthesis flow generates hardware designs targeting
performance optimization. The automata compiler optimizes the storage utilization
and outperforms the state of the art. The work presented in this chapter can be
further improved on the following aspects:

• The partition algorithm of APmap can be improved. APmap calls METIS for
partitioning an automaton into smaller parts. METIS tries to cut the least
edges in the partitioning. A cutting edge will be mapped to a global wire
in most cases. However, in other cases, several edges can be mapped to
the same global wire. For example, if State 1 in Tile 1 activates State 2
and 3 in Tile2, only one global wire is needed between Tile 1 and 2. This
type of optimization is not considered by METIS. Therefore, the partitioning
result is not optimal, which affects the final compilation result. If the partition
algorithm is improved, the quality of APmap would be improved as well.

• We can extend automata simulation tools to utilize the compilation result of
APmap. VASim simulates the execution of automata without considering hard-
ware details [125]. Theoretically, it is possible to extend VASim with some
hardware details such as the tiles and the switching network. In this way, it
can simulate automata processing more precisely, and estimate the energy
consumption with respect to different automata testbenches.

• We can further improve the compilation quality by optimizing the mathemati-
cal model of automata. VASim has implemented a left minimization algorithm
that combines functionally identical elements to reduce the size of the au-
tomata [125]. Other algorithms that try to minimize the automata size are
also proposed [126]. Applying these algorithms before the partitioning and
mapping steps of APmap may further decrease the storage utilization of the
applications.

• The generation of automata is also worth investigating. The input of APmap

4.3. Evaluation

4

35

is the automata that describe the application. However, it is not a trivial task
to obtain such automata. High-level languages such as RAPID [127] can be
used to write applications and compile them into automata. The compiler
that works at this level has more optimization chances, such as to reduce the
size of the automata. Therefore, the ideal compiler should transfer the user’s
application into hardware configuration, and conduct various optimization at
different stages of the transformation.

5
Conclusion

This chapter summarizes the overall contributions of this dissertation and
discusses some future research directions. Section 5.1 presents a summary
of the main conclusions of this dissertation. Thereafter, Section 5.2 highlights
possible future research directions.

37

5

38 5. Conclusion

5.1. Summary
Chapter 1, ”Introduction”, briefly introduced in-memory computing with memris-
tive devices. It first presented the motivation of this research field. Thereafter, it
surveyed the state of the art with respect to device, circuit, architecture, design
automation, and application. It also discussed the opportunities and challenges
at each level. Finally, it proposed the contributions of this dissertation, which ad-
dresses some of the major circuit, architecture, and design automation challenges.

Chapter 2, ”Circuit Level”, presented two logical operation schemes based on
memristive devices. The first one uses resistive sensing to perform logical oper-
ations. It modifies the sense amplifier so that it can compare the overall current
with references and output the logical operation result. During sensing, the resis-
tance of memristive devices remains unchanged. Therefore, such operations don’t
affect the lifetime and the scheme helps in the cases where memristors have a low
endurance. The second scheme proposed in this chapter was the enhanced version
of the first one. It uses two different sensing paths for AND and OR operations.
In this way, the correctness of logic operations can be guaranteed even if large
resistance variation exists in memristive devices.

Chapter 3, ”Architecture Level”, presented three computation-in-memory archi-
tectures based on memristive devices. The first one was a heterogeneous architec-
ture containing Scouting Logic to accelerate vector bit-wise logical operations. Its
performance-energy efficiency is 10× higher than a multi-core system. The second
architecture was developed to accelerate automata. In this architecture, memristive
memory arrays store configuration information and conduct computation as well.
This architecture outperforms similar ones that are built with conventional memory
technologies. The third architecture was an improved version of the second one.
It breaks the routing network into multiple pipeline stages, each processing a dif-
ferent input sequence. In this way, the architecture achieves a higher throughput
with a negligible area overhead. Compared with the-state-of-the-art automata ac-
celerators, this design has the highest performance with the smallest area.

Chapter 4, ”Design Automation”, presented a synthesis flow for computation-in-
memory architectures and a compiler for automata processors. The synthesis flow
was proposed based on the concept of skeletons, which relates an algorithmic struc-
ture to a pre-defined solution template. This solution template contains schedul-
ing, placement, and routing information which is needed for hardware generation.
After the user rewrites the algorithm using skeletons, the tool generates the de-
sired circuit by instantiating the solution template. The automata processor com-
piler generates configuration bits according to the input automata. It uses multiple
strategies to transform given automata, so that constraint conflicts can be resolved
automatically. It also optimizes the mapping for storage utilization. Evaluation
with a standard benchmark suite shows that the compiling results of the proposed
compiler occupy less storage than the state of the art.

5.2. Future Research Directions

5

39

5.2. Future Research Directions
Several recommendations are suggested to improve the state of the art further.
They are organized by the different research topics as listed below.

• Circuit Level

1. Develop circuits with more functionality. The operation types of current
circuits that are based on memristive devices are still limited, especially
regarding arithmetic operations. To avoid time and energy penalties
from memory accesses, the accelerator should be able to process coarse-
grained pieces of algorithms. If this piece contains operations that are
not supported by memristive devices, data has to be send to the CPU for
processing. This breaks the in-memory computing paradigm.

2. Develop more practical circuits. To continuously advance the memristive
device technology, participation from the industry is crucial. Companies
will invest more resources in this field if they can develop profitable prod-
ucts based on memristive devices. The precondition of commercializing
this technology is to produce reliable devices and circuits. It means that
we should consider not only theoretical models, but also practical factors
such as yield, variation, and robustness.

3. Develop circuits for neuromorphic computing. The features of memris-
tive devices, such as multi-level and continuous resistance changing, are
similar to the nature of neurons. Therefore, memristive devices have
the potential to conduct neuromorphic computing efficiently [65, 66].
We need to investigate various implementations of the neuron, the MAC,
and other core components. Compared with conventional technologies,
neural networks based on memristive devices are more compact and
consume less power.

• Architecture Level

1. Explore more architecture styles. Automata processor is a nice example
that demonstrates that simple components can be used to implement
complex algorithms. More designs like this are needed. The circuits that
are based on memristive devices are not as powerful as CPUs; however,
they are more flexible and can work in parallel. It provides more possi-
bilities for building novel architectures.

2. Investigate in-memory communication. In-memory computing can alle-
viate the bottleneck between the CPU and the memory. However, as
in-memory computing architectures become more and more complex,
they also have to be divided into parts. Ideally, these parts should oper-
ate independently on different data. At least for some applications data
has to be exchanged among different parts. This data exchange may
become a bottleneck as well. Therefore, we need to investigate such
problems and design better in-memory communication infrastructure.

5

40 5. Conclusion

3. Design artificial intelligence (AI) chips. Neuromorphic circuits and clas-
sical CPUs can be integrated to implement AI applications [128]. Inno-
vations and sophisticated optimizations are essential for designing such
chips. These memristive device based chips are promising to replace
GPUs, which are widely used in current AI systems and power-hungry.
The memristive AI chips will be more portable and more energy efficient.
This will make AI even more popular in our lives.

• Design Automation

1. Synthesis for robustness. Current synthesis tools only consider the log-
ical aspect, i.e., generating connected gates based on the algorithmic
input. However, more factors have to be considered for generating prac-
tical circuits. The synthesis tool should be aware of the characteristics
of the memristive devices and the user’s requirement on the robustness.
Thus, it can output the gates with detailed design, such as the width and
length of each device.

2. Develop application profilers. Developing applications targeting in-memory
computing architectures requires efforts such as modifying legacy ker-
nels. It would be desirable that the users can estimate the performance
before mapping the application to in-memory computing architectures.
This can be achieved with the help of profilers. They can analyze the ap-
plication and recognize the parts that have the potential for acceleration.
However, it is not an easy task to develop such profilers. Recognizing
specific algorithmic structures requires sophisticated methodologies.

3. Develop compilers for AI chips. The compilation for AI chips is differ-
ent from that for CPUs due to the differences of the hardware resources
and their constraints [129]. The compilation involves techniques such as
graph partitioning and integer linear programming. An optimized com-
piler can improve the efficiency of application execution significantly.

References

[1] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru, High performance
pattern matching using the automata processor, in 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2016) pp. 1123–
1132.

[2] K. Zhou, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron, Brill tagging on the
micron automata processor, in Proceedings of the 2015 IEEE 9th International
Conference on Semantic Computing (IEEE ICSC 2015) (2015) pp. 236–239.

[3] J. Hu and Y. Zhang, Discovering the interdisciplinary nature of big data re-
search through social network analysis and visualization, Scientometrics 112,
91 (2017).

[4] C. P. Chen and C.-Y. Zhang, Data-intensive applications, challenges, tech-
niques and technologies: A survey on big data, Information Sciences 275,
314 (2014).

[5] M. T. Bohr and I. A. Young, Cmos scaling trends and beyond, IEEE Micro 37,
20 (2017).

[6] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi, H. M.
Elsayed, H. Corporaal, and K. Bertels, Memristor for computing: Myth or
reality" in Design, Automation Test in Europe Conference Exhibition (DATE),
2017 (2017) pp. 722–731.

[7] A. Kerber, Reliability of metal gate / high-k devices and its impact on cmos
technology scaling, MRS Advances 2, 2973–2982 (2017).

[8] Z. Abbas and M. Olivieri, Impact of technology scaling on leakage power in
nano-scale bulk cmos digital standard cells, Microelectronics Journal 45, 179
(2014).

[9] B. Hoefflinger, The energy crisis, in Chips 2020: A Guide to the Future of
Nanoelectronics, edited by B. Hoefflinger (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012) pp. 421–427.

[10] S. Borkar, Exascale computing - a fact or a fiction" in Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on (2013) pp.
3–3.

[11] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Ap-
proach, 6th ed. (Elsevier, Amsterdam, Netherlands, 2017).

41

http://dx.doi.org/10.1109/IPDPS.2016.94
http://dx.doi.org/10.1109/IPDPS.2016.94
http://dx.doi.org/10.1109/ICOSC.2015.7050812
http://dx.doi.org/10.1109/ICOSC.2015.7050812
http://dx.doi.org/10.1007/s11192-017-2383-1
http://dx.doi.org/10.1007/s11192-017-2383-1
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1109/MM.2017.4241347
http://dx.doi.org/10.1109/MM.2017.4241347
http://dx.doi.org/ 10.23919/DATE.2017.7927083
http://dx.doi.org/ 10.23919/DATE.2017.7927083
http://dx.doi.org/10.1557/adv.2017.504
http://dx.doi.org/https://doi.org/10.1016/j.mejo.2013.10.013
http://dx.doi.org/https://doi.org/10.1016/j.mejo.2013.10.013
http://dx.doi.org/10.1007/978-3-642-23096-7_20
http://dx.doi.org/10.1007/978-3-642-23096-7_20
http://dx.doi.org/ 10.1109/IPDPS.2013.121
http://dx.doi.org/ 10.1109/IPDPS.2013.121
https://www.elsevier.com/books/computer-architecture/hennessy/978-0-12-811905-1
https://www.elsevier.com/books/computer-architecture/hennessy/978-0-12-811905-1

5

42 References

[12] G. Yeric, Ic design after moore’s law, in 2019 IEEE Custom Integrated Circuits
Conference (CICC) (2019) pp. 1–150.

[13] S. H. Fuller and L. I. Millett, Computing performance: Game over or next
level" Computer 44, 31 (2011).

[14] K. Rupp, Microprocessor trend data, (2018).

[15] D. E. Nikonov and I. A. Young, Overview of beyond-cmos devices and a
uniform methodology for their benchmarking, Proceedings of the IEEE 101,
2498 (2013).

[16] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf,
R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G.
Almudever, L. DiCarlo, and K. Bertels, A microarchitecture for a supercon-
ducting quantum processor, IEEE Micro 38, 40 (2018).

[17] C. D. James, J. B. Aimone, N. E. Miner, C. M. Vineyard, F. H. Rothganger,
K. D. Carlson, S. A. Mulder, T. J. Draelos, A. Faust, M. J. Marinella, J. H.
Naegle, and S. J. Plimpton, A historical survey of algorithms and hardware
architectures for neural-inspired and neuromorphic computing applications,
Biologically Inspired Cognitive Architectures 19, 49 (2017).

[18] S. Mittal, A survey of techniques for approximate computing, ACM Computing
Surveys 48 (2016), 10.1145/2893356.

[19] P. Siegl, R. Buchty, and M. Berekovic, Data-centric computing frontiers: A
survey on processing-in-memory, in Proceedings of the Second International
Symposium on Memory Systems, MEMSYS ’16 (ACM, New York, NY, USA,
2016) pp. 295–308.

[20] H. A. Du Nguyen, J. Yu, M. Abu Lebdeh, M. Taouil, S. Hamdioui, and
F. Catthoor, A classification of memory-centric computing, J. Emerg. Technol.
Comput. Syst. 16 (2020), 10.1145/3365837.

[21] M. Di Ventra and Y. Pershin, Memcomputing: A computing paradigm to
store and process information on the same physical platform, 2014 In-
ternational Workshop on Computational Electronics, IWCE 2014 (2012),
10.1109/IWCE.2014.6865809.

[22] L. O. Chua and S. M. Kang, Memristive devices and systems, Proceedings of
the IEEE 64, 209 (1976).

[23] S. Hamdioui, M. Taouil, H. A. D. Nguyen, A. Haron, L. Xie, and K. Bertels,
Memristor: the enabler of computation-in-memory architecture for big-data,
in 2015 International Conference on Memristive Systems (MEMRISYS) (2015)
pp. 1–3.

http://dx.doi.org/10.1109/CICC.2019.8780343
http://dx.doi.org/10.1109/CICC.2019.8780343
http://dx.doi.org/10.1109/MC.2011.15
https://github.com/karlrupp/microprocessor-trend-data
http://dx.doi.org/10.1109/JPROC.2013.2252317
http://dx.doi.org/10.1109/JPROC.2013.2252317
http://dx.doi.org/10.1109/MM.2018.032271060
http://dx.doi.org/ https://doi.org/10.1016/j.bica.2016.11.002
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/ 10.1145/2989081.2989087
http://dx.doi.org/ 10.1145/2989081.2989087
http://dx.doi.org/10.1145/3365837
http://dx.doi.org/10.1145/3365837
http://dx.doi.org/10.1109/IWCE.2014.6865809
http://dx.doi.org/10.1109/IWCE.2014.6865809
http://dx.doi.org/10.1109/IWCE.2014.6865809
http://dx.doi.org/ 10.1109/MEMRISYS.2015.7378391

References

5

43

[24] A. Chen, A review of emerging non-volatile memory (nvm) technologies and
applications, Solid-State Electronics 125, 25 (2016), extended papers se-
lected from ESSDERC 2015.

[25] S. Hamdioui, Computation in memory for data-intensive applications: Beyond
cmos and beyond von- neumann, in Proceedings of the 18th International
Workshop on Software and Compilers for Embedded Systems, SCOPES ’15
(ACM, New York, NY, USA, 2015) pp. 1–1.

[26] L. O. Chua,Memristor-the missing circuit element, Circuit Theory, IEEE Trans-
actions on 18, 507 (1971).

[27] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing
memristor found, nature 453, 80 (2008).

[28] R. Waser, S. Menzel, and V. Rana, Recent progress in redox-based resistive
switching, in 2012 IEEE International Symposium on Circuits and Systems
(ISCAS) (2012) pp. 1596–1599.

[29] J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for comput-
ing, Nature nanotechnology 8, 13 (2013).

[30] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G. Fried-
man, MRL - memristor ratioed logic, in 2012 13th International Workshop on
Cellular Nanoscale Networks and their Applications (2012) pp. 1–6.

[31] J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. Ohlberg, W. Wu, D. R. Stewart,
and R. S. Williams, A hybrid nanomemristor/transistor logic circuit capable
of self-programming, Proceedings of the National Academy of Sciences 106,
1699 (2009).

[32] G. Rose, J. Rajendran, H. Manem, R. Karri, and R. Pino, Leveraging mem-
ristive systems in the construction of digital logic circuits, Proceedings of the
IEEE 100, 2033 (2012).

[33] L. Gao, F. Alibart, and D. B. Strukov, Programmable cmos/memristor thresh-
old logic, IEEE Transactions on Nanotechnology 12, 115 (2013).

[34] I. Vourkas and G. Sirakoulis, A novel design and modeling paradigm for
memristor-based crossbar circuits, Nanotechnology, IEEE Transactions on
11, 1151 (2012).

[35] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, Beyond von
neumann - logic operations in passive crossbar arrays alongside memory
operations, Nanotechnology 23, 305205 (2012).

[36] G. Snider, Computing with hysteretic resistor crossbars, Applied Physics A
80, 1165 (2005).

http://dx.doi.org/https://doi.org/10.1016/j.sse.2016.07.006
http://dx.doi.org/10.1145/2764967.2771820
http://dx.doi.org/10.1145/2764967.2771820
http://dx.doi.org/ 10.1109/ISCAS.2012.6271558
http://dx.doi.org/ 10.1109/ISCAS.2012.6271558
http://dx.doi.org/10.1109/CNNA.2012.6331426
http://dx.doi.org/10.1109/CNNA.2012.6331426
http://dx.doi.org/10.1109/JPROC.2011.2167489
http://dx.doi.org/10.1109/JPROC.2011.2167489
http://dx.doi.org/10.1109/TNANO.2013.2241075
http://dx.doi.org/10.1109/TNANO.2012.2217153
http://dx.doi.org/10.1109/TNANO.2012.2217153
http://dx.doi.org/10.1007/s00339-004-3149-1
http://dx.doi.org/10.1007/s00339-004-3149-1

5

44 References

[37] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.
Williams, ’memristive’ switches enable ’stateful’ logic operations via material
implication, Nature 464, 873 (2010).

[38] H. A. D. Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, and D. Fey, Memristive
devices for computing: Beyond cmos and beyond von neumann, in 2017
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC) (2017) pp. 1–10.

[39] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-volatile
memories, in Proceedings of the 53rd Annual Design Automation Conference,
DAC ’16 (ACM, New York, NY, USA, 2016) pp. 173:1–173:6.

[40] G. Papandroulidakis, I. Vourkas, N. Vasileiadis, and G. C. Sirakoulis, Boolean
logic operations and computing circuits based on memristors, IEEE Transac-
tions on Circuits and Systems II: Express Briefs 61, 972 (2014).

[41] T. You, Y. Shuai, W. Luo, N. Du, D. Bürger, I. Skorupa, R. Hüb-
ner, S. Henker, C. Mayr, R. Schüffny, T. Mikolajick, O. G. Schmidt,
and H. Schmidt, Exploiting memristive bifeo3 bilayer structures for com-
pact sequential logics, Advanced Functional Materials 24, 3357 (2014),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201303365 .

[42] S. Balatti, S. Ambrogio, and D. Ielmini, Normally-off logic based on resistive
switches - part i: Logic gates, IEEE Transactions on Electron Devices 62,
1831 (2015).

[43] E. Lehtonen, J. H. Poikonen, and M. Laiho, Memristive stateful logic, in Mem-
ristor Networks, edited by A. Adamatzky and L. Chua (Springer International
Publishing, Cham, 2014) pp. 603–623.

[44] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, Magic–memristor-aided logic, IEEE Trans-
actions on Circuits and Systems II: Express Briefs 61, 895 (2014).

[45] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, Boolean logic
gate exploration for memristor crossbar, in 2016 International Conference on
Design and Technology of Integrated Systems in Nanoscale Era (DTIS) (IEEE,
2016) pp. 1–6.

[46] G. Papandroulidakis, I. Vourkas, A. Abusleme, G. Sirakoulis, and A. Rubio,
Crossbar-based memristive logic-in-memory architecture, IEEE Transactions
on Nanotechnology PP, 1 (2017).

[47] J. Müller, T. S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Mar-
tin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel,

http://dx.doi.org/10.1109/VLSI-SoC.2017.8203479
http://dx.doi.org/10.1109/VLSI-SoC.2017.8203479
http://dx.doi.org/10.1109/VLSI-SoC.2017.8203479
http://dx.doi.org/ 10.1145/2897937.2898064
http://dx.doi.org/10.1109/TCSII.2014.2357351
http://dx.doi.org/10.1109/TCSII.2014.2357351
http://dx.doi.org/https://doi.org/10.1002/adfm.201303365
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201303365
http://dx.doi.org/ 10.1109/TED.2015.2422999
http://dx.doi.org/ 10.1109/TED.2015.2422999
http://dx.doi.org/10.1007/978-3-319-02630-5_27
http://dx.doi.org/10.1007/978-3-319-02630-5_27
http://dx.doi.org/ 10.1109/TCSII.2014.2357292
http://dx.doi.org/ 10.1109/TCSII.2014.2357292
http://dx.doi.org/10.1109/DTIS.2016.7483889
http://dx.doi.org/10.1109/DTIS.2016.7483889
http://dx.doi.org/10.1109/TNANO.2017.2691713
http://dx.doi.org/10.1109/TNANO.2017.2691713

References

5

45

A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlösser, R. Boschke, R. van Ben-
tum, U. Schröder, and T. Mikolajick, Ferroelectric hafnium oxide: A cmos-
compatible and highly scalable approach to future ferroelectric memories, in
2013 IEEE International Electron Devices Meeting (2013) pp. 10.8.1–10.8.4.

[48] P. Noé, C. Vallée, F. Hippert, F. Fillot, and J.-Y. Raty, Phase-change materials
for non-volatile memory devices: from technological challenges to materials
science issues, Semiconductor Science and Technology 33, 013002 (2017).

[49] J. Zhu, Magnetoresistive random access memory: The path to competitive-
ness and scalability, Proceedings of the IEEE 96, 1786 (2008).

[50] H.-S. P. Wong, C. Ahn, J. Cao, H.-Y. Chen, S. B. Eryilmaz, S. W. Fong, J. A.
Incorvia, H. L. Z. Jiang, C. Neumann, K. Okabe, S. Qin, J. Sohn, Y. Wu, S. Yu,
and X. Zheng, Stanford memory trends, (2019), accessed October 6, 2019.

[51] R. Waser, D. Ielmini, H. Akinaga, H. Shima, H.-S. P. Wong, J. J. Yang,
and S. Yu, Introduction to nanoionic elements for information technology,
in Resistive Switching (John Wiley & Sons, Ltd, 2016) Chap. 1, pp. 1–30,
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527680870.ch1 .

[52] E. Linn, M. Di Ventra, and Y. V. Pershin, Reram cells in
the framework of two-terminal devices, in Resistive Switch-
ing (John Wiley & Sons, Ltd, 2016) Chap. 2, pp. 31–48,
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527680870.ch2 .

[53] S. Yu and P. Y. Chen, Emerging memory technologies: Recent trends and
prospects, IEEE Solid-State Circuits Magazine 8, 43 (2016).

[54] W. H. Chen, W. J. Lin, L. Y. Lai, S. Li, C. H. Hsu, H. T. Lin, H. Y. Lee, J. W. Su,
Y. Xie, S. S. Sheu, and M. F. Chang, A 16mb dual-mode reram macro with
sub-14ns computing-in-memory and memory functions enabled by self-write
termination scheme, in 2017 IEEE International Electron Devices Meeting
(IEDM) (2017) pp. 28.2.1–28.2.4.

[55] I. Valov, Interfacial interactions and their impact on redox-based resistive
switching memories (rerams), Semiconductor Science and Technology 32,
093006 (2017).

[56] R. S. Williams, How we found the missing memristor, IEEE Spectrum 45, 28
(2008).

[57] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T.
Chen, and M. J. Tsai, Metal-oxide rram, Proceedings of the IEEE 100, 1951
(2012).

[58] B. J. Choi, A. C. Torrezan, K. J. Norris, F. Miao, J. P. Strachan, M.-X. Zhang,
D. A. Ohlberg, N. P. Kobayashi, J. J. Yang, and R. S. Williams, Electrical per-
formance and scalability of pt dispersed sio2 nanometallic resistance switch,
Nano letters 13, 3213 (2013).

http://dx.doi.org/10.1109/IEDM.2013.6724605
http://dx.doi.org/10.1109/JPROC.2008.2004313
https://nano.stanford.edu/stanford-memory-trends
http://dx.doi.org/https://doi.org/10.1002/9783527680870.ch1
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527680870.ch1
http://dx.doi.org/https://doi.org/10.1002/9783527680870.ch2
http://dx.doi.org/https://doi.org/10.1002/9783527680870.ch2
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527680870.ch2
http://dx.doi.org/10.1109/MSSC.2016.2546199
http://dx.doi.org/10.1109/IEDM.2017.8268468
http://dx.doi.org/10.1109/IEDM.2017.8268468
http://dx.doi.org/10.1109/MSPEC.2008.4687366
http://dx.doi.org/10.1109/MSPEC.2008.4687366
http://dx.doi.org/10.1109/JPROC.2012.2190369
http://dx.doi.org/10.1109/JPROC.2012.2190369

5

46 References

[59] Y. Hayakawa, A. Himeno, R. Yasuhara, W. Boullart, E. Vecchio, T. Vandeweyer,
T. Witters, D. Crotti, M. Jurczak, S. Fujii, S. Ito, Y. Kawashima, Y. Ikeda,
A. Kawahara, K. Kawai, Z. Wei, S. Muraoka, K. Shimakawa, T. Mikawa, and
S. Yoneda, Highly reliable taox reram with centralized filament for 28-nm
embedded application, in 2015 Symposium on VLSI Circuits (VLSI Circuits)
(2015) pp. T14–T15.

[60] T. Kim and S. Lee, Evolution of phase-change memory for the storage-
class memory and beyond, IEEE Transactions on Electron Devices 67, 1394
(2020).

[61] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels, H. Corporaal,
H. Jiao, F. Catthoor, D. Wouters, L. Eike, and J. van Lunteren, Memristor
based computation-in-memory architecture for data-intensive applications,
in Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, DATE ’15 (EDA Consortium, San Jose, CA, USA, 2015) pp. 1718–
1725.

[62] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, Prime:
A novel processing-in-memory architecture for neural network computation
in reram-based main memory, in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA) (2016) pp. 27–39.

[63] P. E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopad-
hyay, and G. D. Micheli, The programmable logic-in-memory (plim) com-
puter, in 2016 Design, Automation Test in Europe Conference Exhibition
(DATE) (2016) pp. 427–432.

[64] D. Fujiki, S. Mahlke, and R. Das, In-memory data parallel processor, in
Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’18
(ACM, New York, NY, USA, 2018) pp. 1–14.

[65] D. Kuzum, S. Yu, and H. S. Wong, Synaptic electronics: materials, devices
and applications, Nanotechnology 24, 382001 (2013).

[66] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and
D. B. Strukov, Training andoperation of an integrated neuromorphic network
based on metal-oxide memristors, Nature 521, 61 (2015).

[67] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, Isaac: A convolutional neural net-
work accelerator with in-situ analog arithmetic in crossbars, in Proceedings
of the 43rd International Symposium on Computer Architecture, ISCA ’16
(IEEE Press, Piscataway, NJ, USA, 2016) pp. 14–26.

[68] M. V. Nair and P. Dudek, Gradient-descent-based learning in memristive
crossbar arrays, in 2015 International Joint Conference on Neural Networks
(IJCNN) (2015) pp. 1–7.

http://dx.doi.org/10.1109/VLSIC.2015.7231381
http://dx.doi.org/ 10.1109/TED.2020.2964640
http://dx.doi.org/ 10.1109/TED.2020.2964640
http://dl.acm.org/citation.cfm?id=2755753.2757210
http://dl.acm.org/citation.cfm?id=2755753.2757210
http://dx.doi.org/10.1109/ISCA.2016.13
http://dx.doi.org/10.1109/ISCA.2016.13
http://ieeexplore.ieee.org/document/7459349/
http://ieeexplore.ieee.org/document/7459349/
http://dx.doi.org/10.1145/3173162.3173171
http://dx.doi.org/10.1145/3173162.3173171
http://dx.doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1109/IJCNN.2015.7280658
http://dx.doi.org/10.1109/IJCNN.2015.7280658

References

5

47

[69] P. M. Sheridan, D. Chao, and W. D. Lu, Feature extraction using memristor
networks, IEEE Transactions on Neural Networks and Learning Systems 27,
2327 (2016).

[70] T. F. Wu, B. Q. Le, R. Radway, A. Bartolo, W. Hwang, S. Jeong, H. Li, P. Tan-
don, E. Vianello, P. Vivet, E. Nowak, M. K. Wootters, H. . P. Wong, M. M. S.
Aly, E. Beigne, and S. Mitra, 14.3 a 43pj/cycle non-volatile microcontroller
with 4.7us shutdown/wake-up integrating 2.3-bit/cell resistive ram and re-
silience techniques, in 2019 IEEE International Solid- State Circuits Confer-
ence - (ISSCC) (2019) pp. 226–228.

[71] S. Balatti, S. Ambrogio, Z. Wang, and D. Ielmini, True random number gener-
ation by variability of resistive switching in oxide-based devices, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 5, 214 (2015).

[72] R. Liu, H. Wu, Y. Pang, H. Qian, and S. Yu, Experimental characterization of
physical unclonable function based on 1 kb resistive random access memory
arrays, IEEE Electron Device Letters 36, 1380 (2015).

[73] G. Sun, J. Zhao, M. Poremba, C. Xu, and Y. Xie, Memory that never forgets:
emerging nonvolatile memory and the implication for architecture design,
National Science Review , nwx082 (2017).

[74] G. Adam, A. Khiat, and T. Prodromakis, Challenges hindering memris-
tive neuromorphic hardware from going mainstream, Nature Communication
(2018).

[75] L. Thomas, G. Jan, J. Zhu, H. Liu, Y.-J. Lee, S. Le, R.-Y. Tong, K. Pi, Y.-J.
Wang, D. Shen, R. He, J. Haq, J. Teng, V. Lam, K. Huang, T. Zhong, T. Torng,
and P.-K. Wang, Perpendicular spin transfer torque magnetic random access
memories with high spin torque efficiency and thermal stability for embed-
ded applications (invited), Journal of Applied Physics 115, 172615 (2014),
https://doi.org/10.1063/1.4870917 .

[76] L. Xie, H. A. D. Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and
S. Hamdioui, Scouting logic: A novel memristor-based logic design for resis-
tive computing, in 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI) (2017) pp. 176–181.

[77] J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, and S. Ham-
dioui, Enhanced scouting logic: a robust memristive logic design scheme,
in 2019 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH) (2019) pp. 1–6.

[78] J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, and S. Hamdioui, Memristive de-
vices for computation-in-memory, in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE) (IEEE, 2018) pp. 1646–1651.

http://dx.doi.org/10.1109/JETCAS.2015.2426492
http://dx.doi.org/10.1109/JETCAS.2015.2426492
http://dx.doi.org/10.1109/LED.2015.2496257
http://dx.doi.org/ 10.1093/nsr/nwx082
https://www.nature.com/articles/s41467-018-07565-4
https://www.nature.com/articles/s41467-018-07565-4
http://dx.doi.org/10.1063/1.4870917
http://arxiv.org/abs/https://doi.org/10.1063/1.4870917
http://dx.doi.org/10.1109/ISVLSI.2017.39
http://dx.doi.org/10.1109/ISVLSI.2017.39
http://dx.doi.org/10.23919/DATE.2018.8342278
http://dx.doi.org/10.23919/DATE.2018.8342278

5

48 References

[79] J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, and S. Hamdioui, Time-
division multiplexing automata processor, in 2019 Design, Automation Test
in Europe Conference Exhibition (DATE) (IEEE, 2019) pp. 794–799.

[80] J. Yu, R. Nane, A. Haron, S. Hamdioui, H. Corporaal, and K. Bertels,
Skeleton-based design and simulation flow for computation-in-memory ar-
chitectures, in 2016 IEEE/ACM International Symposium on Nanoscale Ar-
chitectures (NANOARCH) (2016) pp. 165–170.

[81] J. Yu, R. Nane, I. Ashraf, M. Taouil, S. Hamdioui, H. Corporaal, and K. Ber-
tels, Skeleton-based synthesis flow for computation-in-memory architec-
tures, IEEE Transactions on Emerging Topics in Computing , 1 (2017).

[82] A. Fantini, L. Goux, R. Degraeve, D. J. Wouters, N. Raghavan, G. Kar, A. Bel-
monte, Y. Y. Chen, B. Govoreanu, and M. Jurczak, Intrinsic switching vari-
ability in hfo2 rram, in 2013 5th IEEE International Memory Workshop (2013)
pp. 30–33.

[83] W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao, In-memory process-
ing paradigm for bitwise logic operations in stt-mram, IEEE Transactions on
Magnetics 53, 1 (2017).

[84] M. Imani, Y. Kim, and T. Rosing, Mpim: Multi-purpose in-memory processing
using configurable resistive memory, in 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC) (2017) pp. 757–763.

[85] F. Parveen, Z. He, S. Angizi, and D. Fan, Hielm: Highly flexible in-memory
computing using stt mram, in 2018 23rd Asia and South Pacific Design Au-
tomation Conference (ASP-DAC) (2018) pp. 361–366.

[86] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, Computing in memory with
spin-transfer torque magnetic ram, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 26, 470 (2018).

[87] F. Parveen, S. Angizi, Z. He, and D. Fan, Imcs2: Novel device-to-architecture
co-design for low-power in-memory computing platform using coterminous
spin switch, IEEE Transactions on Magnetics , 1 (2018).

[88] R. Han, P. Huang, Y. Zhao, Z. Chen, L. Liu, X. Liu, and J. Kang, Demonstra-
tion of logic operations in high-performance rram crossbar array fabricated
by atomic layer deposition technique, Nanoscale Research Letters 12, 37
(2017).

[89] X. Hong, P. A. Dananjaya, S. Krishnia, W. Gan, D. J. Loy, F. Tan, N. CheeMang,
andW. S. Lew, A novel geometry of ecm-based rram with improved variability,
Journal of Physics D: Applied Physics (2018).

[90] Y. Fang, Z. Yu, Z. Wang, T. Zhang, Y. Yang, Y. Cai, and R. Huang, Improve-
ment of hfox-based rram device variation by inserting ald tin buffer layer,
IEEE Electron Device Letters 39, 819 (2018).

http://dx.doi.org/ 10.1145/2950067.2950071
http://dx.doi.org/ 10.1145/2950067.2950071
http://dx.doi.org/10.1109/TETC.2017.2760927
http://dx.doi.org/ 10.1109/IMW.2013.6582090
http://dx.doi.org/10.1109/TMAG.2017.2703863
http://dx.doi.org/10.1109/TMAG.2017.2703863
http://dx.doi.org/ 10.1109/ASPDAC.2017.7858415
http://dx.doi.org/ 10.1109/ASPDAC.2017.7858415
http://dx.doi.org/10.1109/ASPDAC.2018.8297350
http://dx.doi.org/10.1109/ASPDAC.2018.8297350
http://dx.doi.org/10.1109/TVLSI.2017.2776954
http://dx.doi.org/10.1109/TVLSI.2017.2776954
http://dx.doi.org/10.1109/TMAG.2018.2819959
http://dx.doi.org/10.1186/s11671-016-1807-9
http://dx.doi.org/10.1186/s11671-016-1807-9
http://iopscience.iop.org/10.1088/1361-6463/aac2b4
http://dx.doi.org/ 10.1109/LED.2018.2831698

References

5

49

[91] A. Mehonic, M. Munde, W. Ng, M. Buckwell, L. Montesi, M. Bosman,
A. Shluger, and A. Kenyon, Intrinsic resistance switching in amorphous sil-
icon oxide for high performance siox reram devices, Microelectronic Engi-
neering 178, 98 (2017), special issue of Insulating Films on Semiconductors
(INFOS 2017).

[92] A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez, and D. Ielmini,
Siox-based resistive switching memory (rram) for crossbar storage/select el-
ements with high on/off ratio, in 2016 IEEE International Electron Devices
Meeting (IEDM) (2016) pp. 4.3.1–4.3.4.

[93] H. Lv, X. Xu, P. Yuan, D. Dong, T. Gong, J. Liu, Z. Yu, P. Huang, K. Zhang,
C. Huo, C. Chen, Y. Xie, Q. Luo, S. Long, Q. Liu, J. Kang, D. Yang, S. Yin,
S. Chiu, and M. Liu, Beol based rram with one extra-mask for low cost,
highly reliable embedded application in 28 nm node and beyond, in 2017
IEEE International Electron Devices Meeting (IEDM) (2017) pp. 2.4.1–2.4.4.

[94] S. A. Manavski, Cuda compatible gpu as an efficient hardware accelerator for
aes cryptography, in 2007 IEEE International Conference on Signal Process-
ing and Communications (2007) pp. 65–68.

[95] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, Drisa: A
dram-based reconfigurable in-situ accelerator, in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50
’17 (ACM, New York, NY, USA, 2017) pp. 288–301.

[96] Z. Wang, Y. Liu, A. Lee, F. Su, C. P. Lo, Z. Yuan, J. Li, C. C. Lin, W. H. Chen,
H. Y. Chiu, W. E. Lin, Y. C. King, C. J. Lin, P. K. Amiri, K. L. Wang, M. F. Chang,
and H. Yang, A 65-nm reram-enabled nonvolatile processor with time-space
domain adaption and self-write-termination achieving > 4𝑡𝑖𝑚𝑒𝑠 faster clock
frequency and > 6𝑡𝑖𝑚𝑒𝑠 higher restore speed, IEEE Journal of Solid-State
Circuits 52, 2769 (2017).

[97] S. Muthulakshmi, C. S. Dash, and S. Prabaharan, Memristor augmented
approximate adders and subtractors for image processing applications: An
approach, AEU - International Journal of Electronics and Communications
91, 91 (2018).

[98] H. A. D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and K. Bertels,
Computation-in-memory based parallel adder, in Nanoscale Architectures
(NANOARCH), 2015 IEEE/ACM International Symposium on (IEEE, 2015) pp.
57–62.

[99] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, Ac-dimm: Associative
computing with stt-mram, in Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13 (ACM, New York, NY, USA,
2013) pp. 189–200.

http://dx.doi.org/ https://doi.org/10.1016/j.mee.2017.04.033
http://dx.doi.org/ https://doi.org/10.1016/j.mee.2017.04.033
http://dx.doi.org/ 10.1109/IEDM.2016.7838344
http://dx.doi.org/ 10.1109/IEDM.2016.7838344
http://dx.doi.org/10.1109/IEDM.2017.8268312
http://dx.doi.org/10.1109/IEDM.2017.8268312
http://dx.doi.org/10.1109/ICSPC.2007.4728256
http://dx.doi.org/10.1109/ICSPC.2007.4728256
http://dx.doi.org/10.1145/3123939.3123977
http://dx.doi.org/10.1145/3123939.3123977
http://dx.doi.org/10.1109/JSSC.2017.2724024
http://dx.doi.org/10.1109/JSSC.2017.2724024
http://dx.doi.org/ https://doi.org/10.1016/j.aeue.2018.05.003
http://dx.doi.org/ https://doi.org/10.1016/j.aeue.2018.05.003
http://dx.doi.org/10.1109/NANOARCH.2015.7180587
http://dx.doi.org/10.1109/NANOARCH.2015.7180587
http://dx.doi.org/10.1145/2485922.2485939
http://dx.doi.org/10.1145/2485922.2485939

5

50 References

[100] M. Saecker and V. Markl, Big data analytics on modern hardware architec-
tures: A technology survey, in Business Intelligence: Second European Sum-
mer School, eBISS 2012, Brussels, Belgium, July 15-21, 2012, Tutorial Lec-
tures, edited by M.-A. Aufaure and E. Zimányi (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013) pp. 125–149.

[101] K. Wu, FastBit: an efficient indexing technology for accelerating data-
intensive science, Journal of Physics: Conference Series 16, 556 (2005).

[102] R. D. Cameron, T. C. Shermer, A. Shriraman, K. S. Herdy, D. Lin, B. R. Hull,
and M. Lin, Bitwise data parallelism in regular expression matching, in Pro-
ceedings of the 23rd International Conference on Parallel Architectures and
Compilation, PACT ’14 (ACM, New York, NY, USA, 2014) pp. 139–150.

[103] D. Lavenier, J. Roy, and D. Furodet, Dna mapping using processor-in-memory
architecture, in 2016 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM) (2016) pp. 1429–1435.

[104] S. Beamer, K. Asanovic, and D. Patterson, Direction-optimizing breadth-first
search, in SC ’12: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis (2012) pp. 1–10.

[105] M. Roesch, Snort - lightweight intrusion detection for networks, in Proceed-
ings of the 13th USENIX Conference on System Administration, LISA ’99
(USENIX Association, Berkeley, CA, USA, 1999) pp. 229–238.

[106] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, Fast support for unstruc-
tured data processing: The unified automata processor, in 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO) (2015)
pp. 533–545.

[107] P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch, Hawk: Hardware
support for unstructured log processing, in 2016 IEEE 32nd International
Conference on Data Engineering (ICDE) (2016) pp. 469–480.

[108] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch, Hare:
Hardware accelerator for regular expressions, in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO) (2016) pp. 1–12.

[109] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes, An effi-
cient and scalable semiconductor architecture for parallel automata process-
ing, IEEE Transactions on Parallel and Distributed Systems 25, 3088 (2014).

[110] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, Cache automaton, in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50
’17 (ACM, New York, NY, USA, 2017) pp. 259–272.

[111] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar, Resistive gp-simd
processing-in-memory, ACM Trans. Archit. Code Optim. 12, 57:1 (2016).

http://dx.doi.org/ 10.1007/978-3-642-36318-4_6
http://dx.doi.org/ 10.1007/978-3-642-36318-4_6
http://dx.doi.org/ 10.1007/978-3-642-36318-4_6
http://dx.doi.org/10.1088/1742-6596/16/1/077
http://dx.doi.org/10.1145/2628071.2628079
http://dx.doi.org/10.1145/2628071.2628079
http://dx.doi.org/10.1145/2628071.2628079
http://dx.doi.org/ 10.1109/BIBM.2016.7822732
http://dx.doi.org/ 10.1109/BIBM.2016.7822732
http://dx.doi.org/ 10.1109/SC.2012.50
http://dx.doi.org/ 10.1109/SC.2012.50
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dx.doi.org/ 10.1145/2830772.2830809
http://dx.doi.org/ 10.1145/2830772.2830809
http://dx.doi.org/ 10.1109/ICDE.2016.7498263
http://dx.doi.org/ 10.1109/ICDE.2016.7498263
http://dx.doi.org/10.1109/MICRO.2016.7783747
http://dx.doi.org/10.1109/MICRO.2016.7783747
http://dx.doi.org/ 10.1109/TPDS.2014.8
http://dx.doi.org/ 10.1145/3123939.3123986
http://dx.doi.org/ 10.1145/3123939.3123986
http://dx.doi.org/10.1145/2845084

References

5

51

[112] R. B. Hur and S. Kvatinsky, Memristive memory processing unit (mpu) con-
troller for in-memory processing, in 2016 IEEE International Conference on
the Science of Electrical Engineering (ICSEE) (2016) pp. 1–5.

[113] H. A. Du Nguyen, J. Yu, M. Abu Lebdeh, M. Taouil, and S. Hamdioui, A
computation-in-memory accelerator based on resistive devices, in Proceed-
ings of the International Symposium on Memory Systems, MEMSYS ’19 (ACM,
Washington, DC, USA, 2019).

[114] J. Wadden, K. Angstadt, and K. Skadron, Characterizing and mitigating out-
put reporting bottlenecks in spatial automata processing architectures, in
2018 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA) (2018).

[115] H. A. D. Nguyen, L. Xie, M. Taouil, S. Hamdioui, and K. Bertels, Synthesizing
hdl to memristor technology: A generic framework, in 2016 IEEE/ACM In-
ternational Symposium on Nanoscale Architectures (NANOARCH) (2016) pp.
43–48.

[116] F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and M. Graziano,
Topolinano: a cad tool for nano magnetic logic, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems PP, 1 (2017).

[117] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, A mapping
methodology of boolean logic circuits on memristor crossbar, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems PP, 1
(2017).

[118] R. B. Hur, N. Wald, N. Talati, and S. Kvatinsky, Simple magic: Synthe-
sis and in-memory mapping of logic execution for memristor-aided logic, in
2017 IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD) (2017) pp. 225–232.

[119] M. Soeken, S. Shirinzadeh, P.-E. Gaillardon, L. G. Amarú, R. Drechsler, and
G. De Micheli, An mig-based compiler for programmable logic-in-memory
architectures, in Proceedings of the 53rd Annual Design Automation Confer-
ence, DAC ’16 (ACM, New York, NY, USA, 2016) pp. 117:1–117:6.

[120] H. A. D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and K. Bertels, On
the implementation of computation-in-memory parallel adder, IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 25, 2206 (2017).

[121] A. Haron, J. Yu, R. Nane, M. Taouil, S. Hamdioui, and K. Bertels, Parallel ma-
trix multiplication on memristor-based computation-in-memory architecture,
in 2016 International Conference on High Performance Computing Simulation
(HPCS) (IEEE, 2016) pp. 759–766.

http://dx.doi.org/10.1109/ICSEE.2016.7806045
http://dx.doi.org/10.1109/ICSEE.2016.7806045
http://dx.doi.org/10.1145/3357526.3357554
http://dx.doi.org/10.1145/3357526.3357554
http://dx.doi.org/10.1145/2950067.2950098
http://dx.doi.org/10.1145/2950067.2950098
http://dx.doi.org/10.1109/TCAD.2017.2650983
http://dx.doi.org/10.1109/TCAD.2017.2650983
http://dx.doi.org/10.1109/TCAD.2017.2695880
http://dx.doi.org/10.1109/TCAD.2017.2695880
http://dx.doi.org/10.1109/TCAD.2017.2695880
http://dx.doi.org/ 10.1109/ICCAD.2017.8203782
http://dx.doi.org/ 10.1109/ICCAD.2017.8203782
http://dx.doi.org/ 10.1145/2897937.2897985
http://dx.doi.org/ 10.1145/2897937.2897985
http://dx.doi.org/10.1109/TVLSI.2017.2690571
http://dx.doi.org/10.1109/TVLSI.2017.2690571
http://dx.doi.org/10.1109/HPCSim.2016.7568411
http://dx.doi.org/10.1109/HPCSim.2016.7568411

52 References

[122] J. Wadden, S. Khan, and K. Skadron, Automata-to-routing: An open-source
toolchain for design-space exploration of spatial automata processing ar-
chitectures, in 2017 IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM) (2017) pp. 180–187.

[123] J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, and S. Hamdioui, Apmap:
An open-source compiler for cache automaton, (2019), submitted.

[124] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini, K. Wang,
C. Bo, G. Robins, M. Stan, and K. Skadron, ANMLzoo: a benchmark suite for
exploring bottlenecks in automata processing engines and architectures, in
2016 IEEE International Symposium on Workload Characterization (IISWC)
(2016) pp. 1–12.

[125] J. Wadden and K. Skadron, VASim: An open virtual automata simulator for
automata processing application and architecture research, Tech. Rep. (Tech-
nical Report CS2016-03, University of Virginia, 2016).

[126] J. Björklund and L. Cleophas, Aggregation-based minimization of finite state
automata, Acta Informatica (2020), 10.1007/s00236-019-00363-5.

[127] K. Angstadt, W. Weimer, and K. Skadron, Rapid programming of pattern-
recognition processors, in Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’16 (Association for Computing Machinery, New York, NY,
USA, 2016) p. 593–605.

[128] A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and
E. Eleftheriou, Temporal correlation detection using computational phase-
change memory, Nature Communications 8, 1115 (2017).

[129] S. Song, A. Balaji, A. Das, N. Kandasamy, and J. Shackleford, Compiling
spiking neural networks to neuromorphic hardware, in The 21st ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embed-
ded Systems, LCTES ’20 (Association for Computing Machinery, New York,
NY, USA, 2020) p. 38–50.

http://dx.doi.org/10.1109/FCCM.2017.38
http://dx.doi.org/10.1109/FCCM.2017.38
http://dx.doi.org/ 10.1109/IISWC.2016.7581271
http://dx.doi.org/ 10.1007/s00236-019-00363-5
http://dx.doi.org/ 10.1145/2872362.2872393
http://dx.doi.org/ 10.1145/2872362.2872393
http://dx.doi.org/ 10.1145/2872362.2872393
http://dx.doi.org/10.1038/s41467-017-01481-9
http://dx.doi.org/10.1145/3372799.3394364
http://dx.doi.org/10.1145/3372799.3394364
http://dx.doi.org/10.1145/3372799.3394364

A
Publications - Circuit Level

This chapter presents the publications on the circuit level. The following papers are
included:

1. L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. Alfailakawi, S.
Hamdioui, Scouting Logic: A Novel Memristor-based Logic Design for Resistive
Computing, IEEE Computer Society Annual Symposium on VLSI (ISVLSI’17),
Bochum, Germany, July 2017, pp. 151-156.

2. J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, S. Hamdioui, Enhanced
Scouting Logic: A Robust Memristive Logic Design Scheme, The 15th IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH’19), Qing-
dao, China, July 2019, pp. 1-6.

53

Scouting Logic: A Novel Memristor-Based
Logic Design for Resistive Computing

Lei Xie, H.A. Du Nguyen, Jintao Yu, Ali Kaichouhi, Mottaqiallah Taouil, Mohammad AlFailakawi*, Said Hamdioui
Laboratory of Computer Engineering, Delft University of Technology, the Netherlands

*Computer Engineering Department, Kuwait University, Kuwait

Email: {L.Xie,H.A.DuNguyen,J.Yu-1,M.Taouil,S.Hamdioui}@tudelft.nl; alfailakawi.m@ku.edu.kw

Abstract—Memristor technology is a promising alternative to
CMOS due to its high integration density, near-zero standby
power, and ability to implement novel resistive computing. One
of the major limitations of these architectures is the limited
endurance of memristor devices, especially when a logic gate
requires multiple steps/switching to execute the logic operations.
To alleviate the endurance requirement and improve the per-
formance, we present a novel logic design style, called scouting
logic that executes any logic gate by only reading the memristor
devices and without changing their states. Hence, no impact on
the memristors’ endurance. The proposed design is implemented
using two styles (current and voltage based). To illustrate the
performance of scouting logic based designs, the area, delay, and
power consumption are analyzed and compared with state-of-
the-art. The results show that scouting logic improves the delay
and power consumption by at least a factor of 2.3, while having
similar or less area overhead. Finally, we discuss the potential
applications and challenges of scouting logic.

I. INTRODUCTION

As CMOS technology is being continuously scaled down

towards its physical limits, it suffers from major challenges

such as saturated performance improvement, increasing

leakage power, etc [1,2]. Emerging technologies, such as

memristors, nanotube, graphene transistors [1], are under

research as an alternative to CMOS technology. Memristor

is one of the most promising candidates due to its great

scalability, high integration density, and its near-zero standby

power [1,3,4]. Novel memristor-based computing architectures

[5–7] have been proposed as an alternative to today’s von-

Neumann architectures for big-data applications. Preliminary

results of these resistive architectures show several orders of

magnitude improvement for different metrics such as energy

and area efficiency [5,6]. Big-data applications typically need

to process large volume of data resulting in frequent device

switching which poses as a concern for the endurance-limited

memristor technology [3]. As a result, a logic design style

with less switching frequency is required.

Recently, three types of memristor-based logic have been

proposed; they can be classified into [4]: threshold/majority

[8,9], implication [10,11] and Boolean logic [7,12,13]. Since

threshold and majority logic use voltages to represent data,

they are more applicable to von-Neumann architectures [8,9].

Due to the fact that implication and Boolean logic designs

represent data as resistances, it is more efficient to use

such approaches in resistive computing architectures [12,13].

However, in such logic designs, a sequence of primitive

operations is required to execute a simple logic gate (e.g.,

XOR) leading to frequent device switching which reduces

devices’ endurance. Moreover, these logic designs suffer

from a considerable delay hence low speed. To operate logic

gates with limited endurance, the authors of [7] proposed an

approach to implement logic operations using read operations

by modifying the sense amplifier. Unlike previous approaches

in [7], AND and OR gates are executed in one read operation

while the XOR gates executed in two. However, their

approach is area-inefficient and requires two steps to execute

in the worst case.

In this work, we propose a novel logic design style, called

scouting logic to enhance the performance of memristor-based

logic circuits by limiting all gate executions to a single read

operation. The current through the equivalent gate input

resistance or the voltage drop over it is compared with a

reference signal. The proposed design style is implemented

using two types of sense amplifiers (current and voltage

based) and their performance in terms of area, delay and

power consumption are investigated. Moreover, designing

robust scouting logic in presence of variations is discussed.

The remainder of this paper is organized as follows. Section

II provides a background on memristors and briefly describes

the state-of-the-art in memristor-based logic designs. Section

III presents the working principle of scouting logic. Section

IV verifies the designs of scouting logic using simulations and

evaluates their performance. Section V discusses the potential

applications and challenges of scouting logic. Finally, Section

VI concludes the paper.

978-1-5090-6762-6/17/$31.00 c© 2017 IEEE

II. BACKGROUND

A. Memristor

Fig. 1 (a) shows the typical current-voltage relation of a

bipolar memristor [3]. A memristor switches from one resistive

state to another (i.e., a write operation) when the absolute

value of the applied voltage (Vw) across the device is greater

than its threshold voltage (see Fig. 1(b)-(c)). Otherwise, it

stays in its current resistive state. Normally, a memristor

requires different switching threshold voltages for SET (Vts)

and RESET (Vtr) operations where Vtr<Vts [3]. Reading the

A

54 Paper A.1

(a) I-V Curve of Memristor (b) SET (c) RESET

I

V

RL

RH VwVtsVr
-Vtr

RL RH
Vw

GND

I

Vw

GND

I

RH RL

SET

RESET
Vh

Fig. 1: Memristive Behaviour.

Boolean

Memristor-Based Logic Design

ImplicationThreshold/Majority

Memristor Ratioed
Logic [12]CRS Logic [10]

Programmable CMOS/
Memristor Logic [9]

Current Mirror
Threshold Logic [8]

Resistive Boolean
Logic [13]

Material Implication
Logic [11]

Pinatubo [7]

Scouting Logic

Fig. 2: Classification of Memristor-Based Logic

memristor is performed by applying the read voltage Vr; based

on the resistance a low or high current will flow through

the device. An additional control voltage Vh is required in

some of the Boolean and implication logic operations [11,13].

Typically, the control voltages should satisfy the relation:

0<Vr<Vh=Vw/2<Vtr <Vts<Vw<2Vtr (see Fig. 1(a)) [11,13].

B. Classification of Memristor-Based Logic

Several memristor-based logic designs have been proposed

[7–13]. Fig. 2 classifies them into Boolean, implication, and

threshold/majority logic [4]. Note that the logic designs using

resistance to represent data are suitable for crossbar-based

resistive computing. Two of such designs, resistive Boolean

logic and material implication logic, will be discussed next as

they are the most popular candidates for crossbars.

C. State-of-the-Art Resistive Logic Types

Resistive Boolean Logic (RBL) provides three primitive gates:

NOT, AND, and NAND [13]. It uses high resistance RH and

low resistance RL to represent a logic 1 and 0, respectively.

The two-input NAND gate of Fig. 3(a) is used as an example

to explain the working principle of RBL. We assume that the

inputs are stored on memristor M1 and M2, while the output

is produced at Mo. The gate requires an extra resistor Rs

(RL�Rs�RH). To complete the NAND gate, two steps are

performed. First, Mo should be RESET to RH . Next, control

voltages Vh and Vw are applied to the input and output

memristors, respectively. In case one of the inputs is 0, the

equivalent resistance of M1 and M2 is around RL (see e.g.

Fig. 3(a) where M1=RL and M2=RH). Therefore, the voltage

Vx on the nanowire connected to memristors and the resistor

is around Vh as RL�Rs�RH . As a result, the voltage Vom

across the output memristor Mo is Vw−Vx≈Vw−Vh=
Vw

2 <Vts,

and therefore Mo stays at RH (logic 1).

Material Implication Logic (MIL) provides a single primitive

gate only, which is material implication (IMP) as shown in

Fig. 3(b) [11]. MIL uses RH and RL to represent logic 0 and

1, respectively. An IMP gate consists of two memristors M1

and M2 and a resistor Rs (RL�Rs�RH). M1 is used as an

Vh VwVh

Vx ≈ Vh

RL

M2 Mo

(a) NAND of RBL

M1

RH RH Rs

(b) IMP of MIL

Vh Vw

M1 M2

RH RH RL

VX≈GND

Rs

Fig. 3: Logic Designs Suitable for Resistive Computing

input, while M2 is used both as input and output. To perform

the IMP operation, the control voltages Vh and Vw should be

applied to M1 and M2, respectively. In Fig. 3(b), both inputs

are assumed to be logic 0 (RH). After applying Vh and Vw,

Vx≈0 and the output switches to logic 1. Multiple sequential

IMP gates can realize AND, OR, or XOR gates [11].

Both RBL and MIL have several shortcomings. First, they

require several steps to execute a single gate thereby affecting

the delay and power. Second, both require additional CMOS

controllers to apply the control voltages and control the

sequential steps. This impact the performance of the design.

Third, both logic designs require the relative high voltage Vw

to program the memristors, and hence, each primitive gate

consumes more power/energy as compared to having read

operations only [3]. Forth, both designs need to switch the

output memristors frequently, and therefore, the entire design

is strongly limited by the endurance [1,3]. This motivates us

to develop scouting logic as described in the next section.

III. SCOUTING LOGIC

This section first describes the main idea of scouting logic.

Subsequently, it presents two designs of the sense amplifier

used to implement scouting logic.

A. Main Idea

Scouting logic performs its logic operations by modifying

the read operation. Fig. 4(a) shows a resistive memory

based on 1T1R cells. Normally when a cell is read, say

for example Memristor M1, a read voltage Vr is applied

to its row and the switch S1 is activated. Subsequently,

a current Iin will flow through the bit line to the input

of the sense amplifier (SA). This current is compared to

the reference current Iref. If Iin is greater than Iref (i.e.,

when M1 is RL state), the output of the SA changes to

Vdd (logic 1). Similarly, when M1 is RH state, Iin<Iref,

and the output changes to logic 0. For proper operations,

Iref should be fixed between high and low currents of Fig. 4(b).

Inspired by this read operation, we demonstrate how to

implement OR, AND and XOR scouting logic gates, which

are frequently used in bitwise logic operations [14,15].

Instead of reading a single memristor at a time, scouting

logic activates the two inputs of the gate simultaneously

(e.g., M1 and M2 in Fig. 4(a)). As a result, the input current

to the sense amplifier is determined by the equivalent input

resistance (M1//M2). This resistance results in three possible

values: RL

2 , RH

2 and RL//RH≈RL. Hence, the input current

Iin also can have only three values. By changing the value

of Iref different gates can be realized. To implement an OR

gate, Iref should be fixed between 2Vr

RH
and Vr

RL
as depicted in

Scouting Logic

A

55

SA

Vr

Vr

M1

M2

(a) Memory

Iin

Vout

Vr/RL 2Vr/RL2Vr/RH
Iin

1110/0100 Input

OR

Output10

S1

S2

Iref

Iin

Input

Read
Iref

Output
Vr/RH

0

0
Vr/RL

1

1

Iref

(b) References of Primitive Operations

Iin
AND

Iin
XOR

Iref1 Iref2

Output0 1

Output10 0

Vr/RL 2Vr/RL2Vr/RH

Vr/RL 2Vr/RL2Vr/RH

1110/0100 Input
Iref

1110/0100 Input

Fig. 4: Main Idea of Scouting Logic

Vout

Iin

p1 p2 p3 p4 p5

n1 n2 n3n0

2:1 2:1 4:1 4:1 4:1

V1 V2

Sr1 Sr2

Vdd

1:3 2:1
2:1

2:1

Iref1 Iref2

CA

A B

CB

Vr

Vr

M1

M2

S1

S2

CSA

Operation

OR/Read

AND

XOR

Sr1
OFF

ON

OFF

Sr2

OFF

ON

OFF

Switch Configurations

Fig. 5: Current-based SA

Fig. 4(b)). As a result, only when R1//R2=
RH

2 the output is

0. Similarly, to implement an AND operation, Iref should be

fixed between 2Vr

RL
and Vr

RL
. The XOR operation needs two

references and only when R1//R2≈RL the output is logic 1.

Note that it is also possible to support multi-fanin logic gates

by setting proper reference currents.

The above implies that reading logic circuit should satisfy

two requirements. First, it should be operational with a single

or two references. Second, it should support a reconfigurable

reference signal. Different from Pinatubo [7], scouting logic

uses sense amplifiers with a lower delay and smaller area.

Next, we describe the two SA designs that satisfy the above

requirements.

B. Sense Amplifier Design

We propose two SA designs that both satisfy the two

requirements: current-based SA (CSA) shown in Fig. 5, and

voltage-based SA (VSA) shown in Fig. 6. CSA generates its

reference current using transistors p1 and n1. This reference

current is duplicated via p2 and p3 using PMOS current

mirrors. Note that the value of Iref2 is twice larger than that

of Iref1 as p3 has a double size. The input current Iin is also

mirrored twice through n2 and n3. The two pairs of transistors

p2-n2 and p3-n3 implement at the same time two current

comparators [16]; they compare the two reference currents

(i.e., Iref1 and Iref2) with the input current (Iin). Transistors

p4 and p5 determine the logic operation and decide which

reference currents are enabled. The table on the right side

of Fig. 5 summarizes how p4 and p5 are configured for the

different gates. For instance, when an XOR is performed

both p4 and p5 are turned off, i.e. both Iref1 and Iref2 are

considered for the comparison. Assume for this gate that

M1 is RH and M2 is RL. Hence, Iref1<Iin<Iref2 (see right

bottom of Fig. 4(b)). The parasitic capacitor CA of input A is

discharged to ground as Iref1<Iin, while CB is charged to Vdd

as Iin<Iref2. As a result, the output voltage Vout is Vdd. The

Mr1 = 2RL

Mr2 = RL

Mr3 = 2.5RL

Mr1

Mr3

Mr2 Vout
Sr2

Sr3

Sr1

VSA

V2
4:1

4:1

4:1
Vr

Vr

M1

M2

S1

S2

V1 Operation

OR/Read

AND

XOR

Sr1
ON

ON

OFF

Sr2

ON

OFF

OFF

Switch Configurations

Sr3

OFF

OFF

ON

Fig. 6: Voltage-based SA

AND and OR gates work in a similar way.

Fig. 6 shows the VSA. It consists of three reference memristors

(Mri, 1≤i≤3), three switches (Sri, 1≤i≤3), and an XOR gate.

The switches are used to select the reference memristors, while

the XOR gate is used as a threshold function. The table on the

right part of Fig. 6 shows how the switches are configured for

different gates. For instance, to perform an XOR operation,

Sr1 and Sr2 are turned off while Sr3 is turned on. After

switches S1 and S2 are turned on, the input (M1 and M2)

and the reference memristors form a voltage divider. Let us

assume that M1 is RH and M2 is RL for the XOR gate. By

setting Mr1 and Mr3 to appropriate values (e.g., Mr1=2RL and

Mr3=2.5RL), the voltage V1 will be greater than the threshold

voltage of a transistor while V2 will be less than the threshold

voltage. As a result, the output Vout approximates 0V. Note

that the reference memristors only need to be programed once

and may be implemented by resistors.

IV. EVALUATION

This section first verifies scouting logic (SL). Thereafter, it

provides a comparison with state-of-the-art.

A. Design Verification

The SL gate simulations are verified with Cadence Spectre.

The simulation model consists of the 1T1R array of Fig. 4(a)

connected to either CSA or VSA; both SAs have been

verified. The 1T1R array and SAs are described by a SPICE

netlist, while the memristor model [17], CMOS controller

and voltage drivers by Verilog-A modules. The simulation

parameters are extracted from references [11,13,18] and

summarized in Table I. The transistor sizes of the CSA and

VSA designs are depicted in Figs. 5 and 6, respectively and

are simulated with the PTM 90nm [19] library. Here, we

assume that all the memristors already store same data (in

1T1R array).

The AND, OR and XOR gates are verified for all the pos-

sible memristor states. Fig. 7(a) and (b) show an example

of waveforms for the XOR gate based on CSA and VSA,

respectively. Here, the states M1=RH (logic 0) and M2=RL

(logic 1) are simulated. To evaluate the output of the XOR

gate, the switches S1 and S2 of Fig. 5 should be turned on

to read the memristors M1 and M2. To configure the CSA

of Fig. 5 as an XOR gate, the switches Sr1 and Sr2 should

be turned off. As a result, the voltage of node V1 of CSA

is 0.256V<Vth,cmos=0.45V while the voltage of node V2 is

0.59V>Vth,cmos=0.45V (see also Fig. 5). The final output Vout

of the XOR gate is 0.894V (logic 1). VSA-based XOR gate

A

56 Paper A.1

TABLE I: Parameters

Parameter Description Value
Technology

Memristor (TaOx) [1,18]
F (nm) Feature size 90
Vts (V) Threshold voltage for SET 1.17
Vtr (V) Threshold voltage for RESET 1.06
RL (kΩ) Low resistance 200
RH (MΩ) High resistance 10

Acell (μm2) Area of a 1T1R cell 0.0486
Tsw(ns) Switching time (max of SET and RESET) 1.71

CMOS
UMC 90nm Library

Design [11,13]
NR No. of rows in 1T1R array 128
NC No. of columns in 1T1R array 32
Vw (V) Program voltage 1.6
Vh (V) Half-select voltage 0.8
Vr (V) Read voltage 0.9
Vdd (V) CMOS power supply 0.9

works in a similar way as shown in Fig. 7(b). Note that the

VSA based design is faster than the CSA design.

B. Comparison with the State-of-the-art

SL gates (i.e., AND, OR and XOR gates) both based on CSA

(SL CSA) and on VSA (SL VSA) are compared to RBL

and MIL gates in terms of delay, power consumption and

area using a 128x32 1T1R memory array. The considered

components are the 1T1R memory array, the CMOS controller

and SAs. For RBL and MIL, additional memristors required

to store intermediate results and implement Rs as shown in

Fig. 3 are also considered. The delay and power consumption

of the 1T1R memory array are obtained from Cadence

Spectre while the area of a single 1T1R cell is taken from

ITRS [1]. CMOS controllers are synthesized and evaluated

using Cadence RTL Compiler with UMC 90nm library. The

delay and power consumption of the SAs are obtained from

Cadence Spectre while the area of a single SA is obtained

from Cadence Virtuoso using Cadence 90nm PDK [20]. For

the modified SA used by SL, only the additional transistors

are considered as compared to the current SA of [21].

Fig. 8 presents the results of the comparison:

• Delay: CSA-based SL has the lowest delay to execute a

single step as well as the lowest total delay (see Fig. 8(a)

and (b)); its total delay is at least 2.48 times shorter than

RBL and MIL. Although RBL and MIL have a shorter

delay per step than VSA-based SL, their total delay is

longer as they need multiple steps to execute a logic

operation.

• Power: VSA-based SL consumes the lowest power for

all the gates; it consumes at least 2.36 times less power

than RBL and MIL as it can execute a logic operation

in a single step. In addition, the controller dominates

the power consumed by RBL and MIL, while the SAs

dominate the power consumption for SL.

• Area: SL does not need more area than RBL and MIL.

Although CSA- and VSA-based SL need additional area

for the modified SA, it utilizes a simple CMOS controller.

In contrast, RBL and MIL require additional area for their

more complex controller as they need several steps to

execute the gate. The total additional area of the extra

cells for MIL and RBL is negligible.

S1,2

Sr1

Sr2

Sr3

V1

V2

Vout

Time (ns)
(b) VSA-Based XOR

S1,2

Sr1

Sr2

V1

V2

Vout

Time (ns)
(a) CSA-Based XOR

Fig. 7: SPICE Simulation Results

The comparison results clearly show that SL outperforms RBL

and MIL in terms of delay and power consumption while

having the same or less area overhead.

Fig. 9 compares SL with Pinatubo [7] in terms of delay and

area. However, as the authors of [7] provided a design without

implementation details (i.e., W
L ratio of the transistors), we

use the number of computation steps as the delay metric and

the number of required transistors and memristors as the area

metric. Compared to Pinatubo, SL requires only one step

to execute the XOR gate. All other gates can be executed

in a single step. In addition, the current- and voltage-based

sense amplifiers require much less transistors (40% and 64%,

respectively). Therefore, SL is potentially faster with a lower

area overhead than Pinatubo.

V. DISCUSSION

This section discusses potential applications and some chal-

lenges and solutions of scouting logic design.

A. Potential Applications

SL can implement many bitwise logic operations, such as

AND, OR and XOR, in a very efficient manner as pointed out

earlier. Such logic operations are frequently used in many data-

intensive applications such as database queries [15], graph

processing [14], etc. In traditional settings, these applications

need to transfer data between the processor and memory to

perform these bitwise logic operations. The movement of such

large amount of data input/output of the memory results in

considerable amount delay and energy overhead [14,15]. Since

SL can directly perform logic operations within the memory

array, it can eliminate the need for data movement between

processors and memory, thus, significantly reducing execution

time and energy consumption. Moreover, scouting logic based

memories have very good scaling characteristics due to the

fact that only memory controller need to be adapted.

B. Challenges

Memristor technology has been being extensively studied for

the past few years due to its applicability in logic and memory

designs [4]. Memristor devices have been implemented using

different material and cell structures, but nevertheless all

suffer from the same two major challenges, namely, limited

cell endurance and device variability [4,22]. Performing

logic operations using scouting logic requires only reading

memristors’ states as compared to other memristor-based

logic designs that require switching between resistive states.

Scouting Logic

A

57

(a) Delay

(b) Power

Delay per Step (ns)

0
2.5

5
7.5
10

RB
L

M
IL

SL
_C

SA

SL
_V

SA

Ctrl Cell SW SA

0
4
8

12

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

No. of Execution Steps

0

20

40

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

Total Delay (ns)

0
25
50
75

100

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

Cell+SA Ctrl

0

2

4

6

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

0
200
400
600
800

RB
L

M
IL

SL
_C

SA

SL
_V

SA

Cell SA Ctrl

No. of Extra Cells Total Area Overhead (um2)

(c) Area Overhead

Total Power (uW)

Fig. 8: Comparison Between Different Logic Styles

(a) Delay (b) Area

0
5

10
15
20
25

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

No. of FETs No. of Memristors

0

1

2

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

AND OR XOR

No. of Steps Device Counts

Fig. 9: Comparison with Pinatubo

Requiring only read operations makes scouting logic designs

have better endurance as compared to other approaches

resulting in improved device lifetime.

Similar to all memristor based logic, scouting logic suffers

from CMOS (i.e. transistor mismatch [23]) and memristor

variations (cycle-to-cycle and device-to-device [22]). Such

variations may cause circuit failures if not addressed

appropriately. Extensive research on CMOS process variations

in sense amplifiers has been proposed [23,24]; hence we will

elaborate only on memristor variations and how scouting

logic can be made more resilient to such variations.

Fig. 10 shows a methodology that can be used to realize a

more robust scouting logic design against variations. Firstly,

the design is simulated without variations and the range for

RL and RH are determined. Fig. 11(a) shows the relationship

between the equivalent resistance of two input memristors

(Req) and the normalized output voltage (Vout

Vdd
) of the sense

amplifier of Fig. 5 configured for XOR operation; we assume

here that the output threshold for logic 1 is 0.6Vdd and 0.4Vdd

for logic 0 (see red lines in Fig. 11(a)). Hence, the resistance

ranges for RL and RH can be determined by sweeping the

resistance values of memristors using SPICE simulations.

Since process variations may cause the resistance values to

deviate from their intended values [22,25], the equivalent re-

sistance might fall outside the working range of the memristor

leading to operational failure. Variations are typically modeled

as a normal distribution as shown in Fig. 11(b) [22], where the

Variation-free SPICE simulation
(Cadence Spectre)

Initial design

Ranges of RL and RH

Variation-Injected Monte Carlo
SPICE simulation

(Cadence Spectre)

Select values of RL and RH

considering the worst case

Pass
Fail

Failure
Rate

Robust Design

Fig. 10: Variation Resilient Design Methodology

normalized standard deviation versus the mean (or intended)

resistance values is given. The figure shows that RH suffers

from large variance as compared to RL, and that the standard

deviation reduces when smaller values for RL and RH are

used. It is possible to use the standard deviation to express

the failure rate. To realize a failure rate of e.g., 10-3, the value

of RL or RH should fall in the range of nσ=3σ of the normal

distribution [24] (i.e. μ+3σ and μ−3σ). For example, a robust

XOR gate design considering the variability should satisfy the

following equations:

1

2
(RL + nσσRL

) < (RL||RL)Max (1)

[
(RL − nσσRL

)
]||[(RH − nσσRH

)
]
> (RL||RH)Min (2)

[
(RL + nσσRL

)
]||[(RH + nσσRH

)
]
< (RL||RH)Max (3)

1

2
(RH − nσσRH

) > (RH ||RH)Min (4)

where σRL
and σRH

represent the standard deviation of RL

and RH , respectively. Eq. 1 applies when both XOR inputs

are 1, and hence output is 0. As the maximum value of the

low resistance of each input memristor is RL + nσσRL
, the

maximum equivalent resistance 1
2 (RL + nσσRL

) should be

A

58 Paper A.1

RL

RH

(b) Normalized Deviation
of Resistance [15]

(a) Relation between
Resistance and Output Voltage

Logic 1

Logic 0

Unknown

Fig. 11: Range and Normalized Deviation of Resistance

less than (RL||RL)Max. Eq. 2 and 3 are the constraints for

inputs 01/10 while Eq. 2 for inputs 00.

Once RL and RH are defined, the design is subsequently

simulated using Monte Carlo simulations in Cadence Spectre

[20]. The total number of failed simulations are monitored. If

failure rate is lower than the requirement, then the design is

considered robust; otherwise, the whole process is restarted by

selecting new reference currents (i.e. redesign). Designs can

be modified in two ways; either to modify mean resistance

values, or tune the reference current/voltage value of the sense

amplifier (i.e., W
L of transistors in CSA or Mi of VSA).

Changing mean resistances values can be accomplished by

the writing circuity; e.g., by tuning the voltage pulse duration

or amplitude to map logic states to resistance states as needed.

To verify the robust design methodology of Fig. 10, we apply

the proposed approach to CSA-based scouting logic approach

as a case study. Here, a 3σ design is used which satisfies a

failure rate of 10-3. The initial design (input of Fig. 10) is

compared with the robust design (output of Fig. 10) in terms

of failure rate. To verify the proposed approach, a 1000-

iteration Monte Carlo simulation is conducted using Cadence

Spectre simulator and the output voltage for each simulation

run is monitored. The output voltage for logic 1 requires a

voltage of 0.6×Vdd or higher while for a logic 0 should be

below 0.4×Vdd. Therefore, if a simulation run results in an

output that does not fall in either range will be considered as

an unknown and hence unreliable operation. If the logic state

of the simulated output is different from the expected one,

the design fails; otherwise, it passes. Table II summarizes

technology and Monte Carlo simulation parameters used in

the experiments. Note that the σ of the normal distribution are

extracted from [22] depending on the selected resistance value.

The bottom of Table II shows failure rates as given by the

Monte Carlo simulations. For the OR gate, both the initial and

the robust design versions pass. However, for AND and XOR

gates, the initial version fails when logic states are 01/10 while

the robust version still passes. Therefore, the methodology

proposed in Fig. 10 can enhance the robustness of the design

to deal with resistance variation in scouting logic based design.

VI. CONCLUSION

This paper proposed scouting logic design for resistive com-

puting. Such design does not reduce device endurance. In

addition, it outperforms the existing memristor-based logics

TABLE II: Parameters and Results of Monte Carlo Simulations

Technology Parameters
MOSFET p1,2 p3,4,5 n0,1,2,3

W
L

4 8 4

Version Initial Robust
RH/RL 50
RL(kΩ) 23 30
RH (kΩ) 1150 1500

Monte Carlo Simulation Parameters
Iteration 1000
Version Initial Robust

σRL
/μRL

[22] 0.0261 0.0281
σRH

/μRH
[22] 0.0406 0.0418

VH 0.6×Vdd

VL 0.4×Vdd

Failure Rate
Version Initial Robust��������Gate

Input
00 01/10 11 00 01/10 11

AND 0 19.10% 0 0 0 0
OR 0 0 0 0 0 0

XOR 0 45% 0 0 0 0

in terms of delay and power consumption, while using similar

or less area.

REFERENCES

[1] ITRS ERD report. [Online]. Available: http://www.itrs.net
[2] B. Hoefflinger, Chips 2020: a guide to the future of nanoelectronics,

2012.
[3] J. J. Yang et al., “Memristive devices for computing,” Nat. Nano, 2013.
[4] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in

DATE. IEEE, 2017.
[5] S. Hamdioui et al., “Memristor based computation-in-memory architec-

ture for data-intensive applications,” in DATE. IEEE, 2015.
[6] H. A. Du Nguyen et al., “Computation-in-memory based parallel adder,”

in NANOARCH. IEEE, 2015.
[7] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk

bitwise operations in emerging non-volatile memories,” in DAC. IEEE,
2016.

[8] G. S. Rose et al., “Leveraging memristive systems in the construction
of digital logic circuits,” Proceedings of the IEEE, 2012.

[9] L. Gao et al., “Programmable cmos/memristor threshold logic,” TNANO,
2013.

[10] E. Linn et al., “Beyond von neumannlogic operations in passive crossbar
arrays alongside memory operations,” Nanotechnology, 2012.

[11] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[12] S. Kvatinsky et al., “Mrl: memristor ratioed logic,” in CNNA. IEEE,
2012.

[13] L. Xie et al., “Boolean logic gate exploration for memristor crossbar,”
in DTIS. IEEE, 2016.

[14] V. Agarwal et al., “Scalable graph exploration on multicore processors,”
in SC. ACM, 2010.

[15] J. Chou et al., “Parallel index and query for large scale data analysis,”
in SC. ACM, 2011.

[16] L. Samuel, “Cmos current comparator with regenerative property,”
IJECSE, 2013.

[17] A. Siemon et al., “Simulation of tao x-based complementary resistive
switches by a physics-based memristive model,” in ISCAS. IEEE, 2014.

[18] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals the
mechanism of a high-performance memristor,” Adv. Mat., 2011.

[19] Predictive transistor model. [Online]. Available: http://ptm.asu.edu/
[20] Cadence ic design kit. [Online]. Available: https://www.cadence.com/
[21] M.-F. Chang et al., “An offset-tolerant fast current-sampling-based sense

amplifier for small-cell-current nonvolatile memory,” JSSC, 2013.
[22] A. Fantini et al., “Intrinsic switching variability in hfo 2 rram,” in IMW.

IEEE, 2013.
[23] W. Dehaene et al., “Variability-aware design of low power sram mem-

ories,” 2009.
[24] I. Agbo et al., “Quantification of sense amplifier offset voltage degra-

dation due to zero-and run-time variability,” in ISVLSI. IEEE, 2016.
[25] M. Hu et al., “Geometry variations analysis of tio 2 thin-film and

spintronic memristors,” in ASP-DAC. IEEE, 2011.

Scouting Logic

A

59

Enhanced Scouting Logic:
A Robust Memristive Logic Design Scheme

Jintao Yu Hoang Anh Du Nguyen Muath Abu Lebdeh Mottaqiallah Taouil Said Hamdioui
Laboratory of Computer Engineering, Delft University of Technology

Delft, the Netherlands
{J.Yu-1, H.A.DuNguyen, M.F.M.AbuLebdeh, M.Taouil, S.Hamdioui}@tudelft.nl

Abstract—Memristive devices have the potential to reduce
the memory access bottleneck in conventional computer ar-
chitectures. However, memristive devices also suffer from low
endurance and large resistance variation. To address these
problems, we present a robust logic scheme named Enhanced
Scouting Logic (ESL). It produces logic operation results within
the peripheral circuit of the memory array. During the execution
of logic operations, the resistance states of memristive devices
do not change and hence do not affect the memristor lifetime.
ESL senses the resistance of input memristive devices via two
different paths when different operations such as AND and OR
are performed. These different paths guarantee the operation
correctness even under large resistance variations. We verified
ESL using SPICE simulations and Monte Carlo analysis. Our
simulation results show that ESL is more robust as compared
with state-of-the-art logic schemes.

I. INTRODUCTION

Today’s big-data applications demand high performance and
high energy efficiency, challenging both CMOS technology
and conventional computer architectures [1]. In CMOS tech-
nology, the energy problem worsens as the leakage power
increases with downscaling [2]. In conventional CPU-centric
architectures, the time and energy spent in accessing the main
memory are significant; it can even exceed those of computa-
tions [3]. Therefore, new solutions are needed to alleviate the
architecture and technology challenges. Emerging memristive
devices have the potential to reduce static power due to
their non-volatility. They also enable computation-in-memory
as they can be used for both computing and storage [4].
Preliminary researches have exhibited the huge potential of
memristive computing systems [5], [6]. Nevertheless, memris-
tive devices also face multiple challenges. For instance, RRAM
suffers from large resistance variation and low endurance;
PCRAM requires long write time and high write energy;
STT-MRAM has relatively poor process compatibility with
mainstream silicon CMOS technology, which leads to a high
manufacture cost [7], [8].

Most memristive logic schemes, such as Snider [9] and
IMP [10], generate the results in the form of resistance states
in the array. Therefore, they program the memristive devices
frequently, hence reducing the device endurance. To avoid this
problem, other schemes, such as Pinatubo [5] and Scouting
Logic [11], generate the results in the periphery without

This work was supported by the European Unions Horizon 2020 Research
and Innovation Program through the project MNEMOSENE (Grant 780215).

switching the resistance states in the array; e.g., the results
are produced as voltages at the output of sense amplifiers.
These logic schemes do not affect the endurance, and hence,
they maintain a longer lifetime. However, these schemes may
not guarantee correctness when the input memristive devices
exhibit large resistance variation. As far as we know, state-of-
the-art logic schemes are not able to address both endurance
and variation problems.

In this paper, we propose enhanced scouting logic (ESL), a
logic scheme that improves Scouting Logic [11] by addressing
the two major challenges when performing in-memory logic
operations using RRAM; namely, the low endurance and the
high resistance variation. Similarly as in Pinatubo and Scout-
ing Logic, the proposed solution addresses the low endurance
problem by producing the results in the memory periphery
without changing the resistance states of the involved memory
cells. It also addresses the high resistance variation problem
by using 2T1R cells allowing two separate reading paths for
AND and OR operations. The main contributions of this paper
are:

• It reviews existing logic schemes that produce the outputs
of logic operations within the memory periphery. Our
results show that these schemes were not properly evalu-
ated against realistic resistance variations of the RRAM
devices.

• It proposes a memristive logic scheme that is resilient
to resistance variation without affecting the memory
endurance.

• It validates the proposed scheme and compares the
scheme with the state-of-the-art using SPICE simulation
and Monte Carlo analysis.

This paper is organized as follows. Section II and Section III
review the resistance variation of RRAM devices and the
logic styles that perform in memory peripheral, respectively.
Subsequently, Section IV presents the working principle and
implementation details of ESL. Next, Section V verifies ESL
using SPICE simulation. In addition, Section V applies Monte
Carlo simulation on ESL and other logic schemes. Finally,
Section VI concludes the paper.

II. RESISTANCE VARIATION IN RRAM DEVICES

A typical RRAM device has two stable resistance states; i.e.,
a low resistance state (LRS) and a high resistance sate (HRS).
The SET voltage and the RESET voltage are applied across the

A

60 Paper A.2

LRS Margin HRS

LLR HLR LHR HHR

R

PD
F

(a) Separated ranges

R

PD
F

(b) Overlapped ranges

Fig. 1. Typical resistance distribution of LRS and HRS ranges.

RRAM device to switch its resistance state to LRS and to HRS,
respectively. The resistance (either LRS or HRS) of RRAM
devices may vary as a result of the cycle-to-cycle (C2C) and
device-to-device (D2D) variations [12]. The C2C and D2D
variations have similar distributions [12] and can affect the
correctness of logic operations. Due to their similarity, we do
not distinguish between the C2C and D2D variations.

Fantini et al. observed that the distributions of LRS and
HRS approximately follow a lognormal distribution [13], as
shown in Fig. 1. The x axis represents the resistance in log
scale while the y axis represents probability density function
(PDF). The lower and upper bounds of LRS are named
low low resistance (LLR) and high low resistance (HLR),
respectively. Similarly, the lower and upper bounds of HRS
are referred to as low high resistance (LHR) and high high
resistance (HHR), respectively. We are particularly interested
in the devices that have separate LRS and HRS ranges, i.e.,
LHR is larger than HLR, as shown in Fig. 1a. We refer to the
ratio between LHR and HLR as margin. If LHR is smaller than
HLR (i.e., negative margin) as shown in Fig. 1b, the proposed
logic schemes will not work properly.

The ideal RRAM device should have small LRS and HRS
ranges (i.e., narrow distributions of LRS and HRS) and a
large margin; however, this is usually not the case. The LRS
and HRS ranges can be estimated based on their distribution.
For the LRS of an HfO2 RRAM, σ/ log10 µ is between
0.2% and 10% [13]. As a result, the ratio between HLR and
LLR (HLR/LLR) varies from 1.2 to 1000 considering a 3σ
population. For example, when σ/ log10 µ = 2% and µ =
10 kΩ, the range of LRS is between 6.9 kΩ and 17 kΩ and
HLR/LLR= 2.5.

Grossi et al. assume that LRS variations can be represented
by a natural distribution. They summarize the RRAM’s re-
sistance variation based on seven publications [14]. In most
cases, σ/µ of LRS resistance is larger than 10%. In some
cases, this value is nearly 100%. Considering a 3σ population,
we observe that HLR/LLR> 1.9. Note that the HRS range is
even larger, but less important as it affects the operations less.
This will be more clear in the next sections.

Table I shows the LRS and HRS ranges of recently proposed
RRAM devices and the materials they are made of. The last
column shows the margin between the two resistance states.
The table shows that HLR/LLR∈ (1.5, 5) and margin ∈
(4, 80). This indicates that LRS and HRS both have large
variations, but also that a wide gap exists between them.

III. BULK BITWISE BOOLEAN LOGIC SCHEMES

Seshadri et al. was the first to propose a mechanism
to perform bulk bitwise operations using specially designed

TABLE I
RESISTANCE RANGES OF RECENT RRAM DEVICES

Ref. Material LRS range HLR
LLR HRS range HHR

LHR Margin

[15] Pt-AlOy/HfOx-TiN 200-1k 5 80k-2M 25 80x

[16] Cu-MgO-Ru 400-600 1.5 4k-50k 12.5 8x

[17] Ti-TiN-HfOx 300-600 2 3k-20k 6.6 10x

[12] HfO2-Hf 30k-80k 2.6 300k-1M 3.3 4x

[18] Au-SiOx-Mo 200-350 1.8 2k-10k 5 6x

[19] Ti-SiOx-C 200-350 1.8 2k-10k 5 6x

[20] Ti/Ta-TMOx 10k-50k 5 500k-500M 1000 10x

peripheral circuits of memories [21]. These bitwise operations
are performed on large vectors [31]. This idea inspired many
researchers, including the usage of novel devices such as
memristive devices. They are summarized in Table II.

The table contains for each reference the scheme name,
used memory technology, the operations that are supported,
whether variations are considered, and the worst case latency
of the supported operations. Some articles target general non-
volatile memories or memristive devices [5], [11], [25] while
some other schemes work specifically for a particular memory
such as STT-MRAM [26]–[29]. ESL, added to the last row of
the table, can be applied to any type of memristive devices.
However, it is most useful for devices with large resistance
variations such as RRAM.

The fourth column of the table shows the different
Boolean operations that are supported in the articles. Some
schemes [26], [28], [30] support NAND/NOR operations by
selecting the sense amplifier’s OUT signal during AND/OR.
This is easy to implement in all schemes and not the focus of
this paper. Therefore, such operations are omitted in the table
for simplicity.

We are particularly interested in the fifth column, i.e.,
whether resistance variations have been considered. This is
however not relevant for DRAM and SRAM, as their variation
is very small. In contrast, it is essential for memristive devices
as they may introduce errors. This variation is mentioned as a
percentage in case reported; the percentage represents (HLR-
LLR)/µLRS. Note that the articles not always describe the
variation in this form. For example, Jain et al. assume that
the MTJ oxide thickness has 2% variation. In such cases, we
converted the given variation type into a resistance variation.
The only exception is Chen et al., as they verified their
schemes using real RRAM devices.

The last two columns show the worst case latency in number
of clock cycles required for a logic operation and whether
multiple operands are supported simultaneously, respectively.
Some articles claim that they support multiple operands (exe-
cuted by activating multiple rows in the memory), at least for
the OR operation [5], [11], [25]. However, the ability of the
sense amplifier to be able to distinguish between the outcomes
is extremely difficult or even not possible.

All the bulk bitwise operations based on memristive devices
that are listed in Table II are implemented with similar hard-
ware structures. Fig. 2a represents such a hardware structure.

Enhanced Scouting Logic

A

61

TABLE II
BULK BITWISE BOOLEAN LOGIC OPERATIONS

Reference Scheme name Technology Supported operations Variation considered? Longest delay Multirow

[21] Seshadri et al. DRAM AND, OR No 4 No
[22] Ambit DRAM AND, OR, NOT No 4 No
[23] DRISA DRAM NOR No 2 No
[24] Jeloka et al. SRAM AND, NOR No 1 Yes
[5] Pinatubo NVM AND, OR, XOR, NOT No 2 Yes
[11] Scouting logic Memristor AND, OR, XOR Yes, < 10% 1 Yes
[25] MPIM Memristor AND, OR, XOR Yes, 10% 1 Yes
[26] IMP/NMP STT-MRAM AND, OR, NOT No 1 No
[27] HielM STT-MRAM AND, OR, XOR Yes, < 5% 4 No
[28] STT-CiM STT-MRAM AND, OR, NOT Yes, < 10%, 1 No
[29] IMCS2 STT-MRAM AND, OR, XOR, NOT Yes, < 5% 1 No
[30] Chen et al. RRAM AND, OR, XOR Yes, measurement 1 No

This work ESL RRAM AND, OR, NOT Yes, > 100% 1 No

SA

I
ref

V
r

SA

WL
j

V
r

WL
i

I
ref

(a) Hardware structure

RA RO

2L 1L1H 2H R

PD
F

INi 1 1 0 0
INj 1 0 1 0
OR 1 0

AND 1 0

(b) Parallel resistance

Fig. 2. Working principle of memristive bulk bitwise operations.

The bulk bitwise operations are special read operations. Rows
are activated by drivers (represented by triangles) and operate
at read voltage Vr. The memory cells consist of a 1T1R
structure, i.e. a transistor in parallel with a memristive device
(represented by a rectangle) such as RRAM or STT-MRAM.
During bulk bitwise operations, two or more rows are selected
at the same time. The total current through the two cells in
each column is compared with a reference current Iref by
the sense amplifier. The output of the sense amplifier is the
desired result of the required Boolean function. There are also
other forms of comparison such as using a voltage reference.
However, the essence is to compare the equivalent resistance
of two parallel cells with a reference resistance.

The resistance distribution of two cells (INi and INj) that
are connected in parallel is shown in the top of Fig. 2b. Here,
we assume that a logic one and zero are represented by a
low and high resistance, respectively. There are three possible
combinations: 1) both cells in HRS (2H), 2) one cell in LRS
and one in HRS (1L1H), and 3) both cells in LRS (2L). To
conduct an OR operation, we need to set a reference RO to
distinguish between the cases 2H and 1L1H, as indicated by
the truth table in Fig. 2b. If the device has a large margin
between LRS and HRS like the ones listed in Table I, it would
be easy to define RO. However, it is difficult or impossible to
set a reference RA to distinguish 1L1H from 2L in case an
AND operation is implemented. When HLR/LLR> 2, which
is the case of many devices in Table I, the 2L and 1L1H
regions overlap. Thus, a correct AND operation cannot be

guaranteed regardless of the value of RA.
Chen et al. proposed a self-write termination (SWT) scheme

for RRAM devices to avoid the above mentioned problem [30].
The scheme adds a loop-back from the cell to the driver
during write operations. When the programmed memristive
device reaches the desired resistance, the writing process is
terminated. SWT’s main target is to reduce the write energy
and the standard deviation of the resistance distribution. How-
ever, SWT schemes also have challenges such as premature
ending of write operations that may lead to unstable resis-
tance states [32]. In addition, it is also difficult to achieve
HLR/LLR< 2 using SWT schemes for some devices [32].

IV. ENHANCED SCOUTING LOGIC

In this section, we first introduce the general concept behind
ESL. Thereafter, we present the implementation details.

A. General Concept

To prevent the possibility of overlapping regions of different
equivalent resistance values, ESL changes the connection of
memristive devices based on the operation type. Despite the
large variations, a reference resistance can be still safely
selected. As shown in Fig. 2b, there are no issues in selecting
a reference resistance RO even if the regions 2L and 1L1H
are overlapping. Hence, this part of the circuit does not have
to be changed. This is shown in Fig. 3a. However, for AND
operations, ESL changes the circuit structure and connects the
input cells in series. The overall resistance’s distribution will
be similar to the one shown in Fig. 3b. Notably, the equivalent
resistance (ER) of 1L1H would be approximately HRS instead
of LRS. Therefore, there is a relatively large margin between
2L and 1L1H, and the reference RA can be easily selected.

Considering the fact that most devices have a large margin,
only one reference is needed in ESL. From Fig. 3, we observe
that the following relations must satisfy: LRS<RO<HRS/2
(as ER of 1L1H≈LRS and 2H≈HRS/2 for the OR operation)
and 2LRS<RA<HRS (as ER of 2L=2LRS and 1L1H≈HRS
for the AND operation). From these relations we can easily
observe that for given RO = RA = Rref the equation

A

62 Paper A.2

IN
j

IN
i

RO

2L 1L1H 2H R

PD
F

INi 1 1 0 0
INj 1 0 1 0
ER LRS/2 LRS HRS/2
OR 1 0

(a) OR operation

IN
j

IN
i

RA

2L 1L1H 2H R

PD
F

INi 1 1 0 0
INj 1 0 1 0
ER 2LRS HRS 2HRS

AND 1 0

(b) AND operation

Fig. 3. Resistance distribution of Enhanced Scouting Logic.

WL2
i

WL1
i

To SA

WL2
j

WL1
j

WL1
WL2

V
Pro

Pro

M
i

M
j

V
Driver

BL1BL2SL

(a) Circuit

WL2
i

WL1
i

WL2
j

WL1
j

WL1
WL2

V
Pro

Pro

M
i

M
j

V
Driver

To SA
BL1BL2SL

(b) OR operation

WL2
i

WL1
i

WL2
j

WL1
j

WL1
WL2

V
Pro

Pro

M
i

M
j

V
Driver

To SA
BL1BL2SL

(c) AND operation

Fig. 4. ESL circuit.

2LRS<Rref<HRS/2 must hold. Hence, a single reference
can be used when the resistance margin is larger than 4x. Note
that all the devices listed in Table I meet this requirement.
This feature makes the reference circuit much simpler as
compared to those needed in previous bulk bitwise operation
schemes [5], [11], [25].

B. Implementation

The circuit to implement ESL is shown in Fig. 4a. For
simplicity reasons, Fig. 4a illustrates the concept using only
two cells (Mi and Mj) located in a single column. Other cells in
this column and other columns have similar structures. Besides
the standard bitline BL1 in a 1T1R array, a second bitline BL2
is added to each column to be able to connect two devices in
series which is needed for the AND operation. The two bitlines
share one sense amplifier using two transistors (controlled by
voltages WL1 and WL2, respectively). One more transistor is
added to each cell to connect the device to BL2.

The values of the control signals during each operation are
shown in Table III. The operations are the normal write/read
and the bitwise OR/AND operations. The table contains for
each of the control lines in Fig. 4 the voltage values per
operation type. When we write Mi (i.e. perform a SET or
RESET operation), Pro and WL2i are enabled. The voltage
level of the Driver and VPro depend on the value to be
programmed. For instance, the voltage applied to Mi is VSET
if we want to program a logical one. When we read cell Mi,
WL2i and WL2 are enabled and Driver’s voltage changes to

TABLE III
CONTROL SIGNALS FOR ESL IMPLEMENTATION

Write Read OR AND

VDriver 0/VRESET VRead VRead VRead

VPro VSET/0 – – –
Pro Vdd 0 0 0

WL1i 0 0 0 0
WL2i Vdd Vdd Vdd Vdd

WL1j 0 0 0 Vdd

WL2j 0 0 Vdd 0
WL1 0 0 0 Vdd

WL2 0 Vdd Vdd 0

VRead. In our implementation, VRead=Vdd. However, it can also
be a different value, e.g., to prevent a drift of the memristor
state. During OR/AND operations, the Driver’s voltage is
also VRead. Pro is disabled to disconnect the programming
driver to the circuit. In an OR operation between Mi and Mj,
WL2i and WL2j are on. As a result, Driveri and Driverj drive
the two cells in parallel. Fig. 4b illustrates these signals by
coloring disabled transistors and unused wires gray. In an AND
operation, however, only one driver (e.g., Driveri) is connected
to the cells as shown in Fig. 4c. WL1j and WL1 are enabled
to connect the two cells to the SA in series.

We use the state-of-the-art CSB-SA [33] sense amplifier in
our design. It operates in three phases. In the first phase, it
captures the inputs, i.e., the currents through the memristor
cell and the reference resistor are sampled and stored in
two capacitors, respectively. In the second phase, the stored
charges on the capacitor are amplified. Finally, the output
latch is enabled during the third phase and a digital output is
generated. Note that other sense amplifiers could also be used.
The selected sense amplifier mainly depends on the trade-off
between performance and area.

V. SIMULATION RESULTS

In this section, we first present the simulation setup. Sub-
sequently, we validate ESL using SPICE simulation. Finally,
we conduct Monte Carlo simulation with ESL and other logic
schemes and evaluate their results.

A. Simulation Setup

To verify the proposed scheme, we use SPICE simulations.
The circuit in Fig. 4 is implemented and connected to the CBS-
SA sense amplifier. The simulation parameters are summarized
in Table IV. The supply voltage Vdd is set to 0.9 V. The
resistive device of the 2T1R cell is implemented using the
ASU model [34] configured with the RRAM parameters pre-
sented in [20]. The RRAM device is implemented with 28 nm
technology. To match the transistor sizes, we therefore adopt
the 32 nm PTM model [35], which is the closest technology
node for CMOS transistors in PTM. The sense amplifier uses a
reference resistor that is set to 160 kΩ, which is the geometric
average of HLR and LHR of the RRAM [20]. The three phases
of the sense amplifier are set to be 1 ns.

Enhanced Scouting Logic

A

63

TABLE IV
SPICE SIMULATION PARAMETERS

Parameter Description Value

Vdd CMOS power supply 0.9 V

LLR Low low resistance 10 kΩ

HLR High low resistance 50 kΩ

LHR Low high resistance 500 kΩ

HHR High high resistance 500 MΩ

F Technology node 28 nm

Rref Reference resistance 160 kΩ

ts Sense amplifier phase 1 ns

Monte Carlo simulation

Nσ Number of sigma 3
N Number of iterations 10,000

RL
µ Mean resistance 30 kΩ

σ Standard deviation 0.5

RH
µ Mean resistance 16.6 MΩ

σ Standard deviation 1.68

To verify the robustness of ESL against resistance varia-
tions, all the corner cases have been simulated. These corner
cases are derived from the extreme resistance values for each
of the two inputs. The four extreme resistance values are LLR,
HLR, LHR, and HHR. Therefore, there are 16 combinations
for two inputs. All of these combinations are simulated for
both AND and OR operations, respectively.

To compare our scheme with the with the state-of-the-art
schemes, we also conducted Monte Carlo simulations of the
AND gates of Scouting Logic [11], Pinatubo [5], and ESL,
respectively. We implemented these circuits according to their
papers. Subsequently, we configured the parameters of two
lognormal distributions as listed in the bottom part of Table IV.
Finally, we performed 10,000 Monte Carlo simulations for
each design scheme.

B. Validation of ESL

Based on the simulation of the 16 corner cases, we conclude
that the proposed ESL implementation is robust against resis-
tance variations for both the AND and OR operations. Fig. 5
shows the waveform of all the 16 test cases for the AND
operation. The x axis represents time, and the y axis indicates
the voltage. The bitline voltages in the 16 test cases are divided
into three groups according to the logic values of the input
cells. The 2H group is colored red, 1L1H cyan, and 2L orange.
The voltage of the reference bitline is colored black. The three
phases can be easily identified in the figure. The resistance of
the input cells is sampled in the first phase. The higher the
voltage in the graph, the higher the resistance. We refer the
readers to [33] for more details about the working principle
of the sense amplifier. The reference is set between 1L1H and
2L as shown in Fig. 3b. Note that the 2H and 1L1H groups
overlap. For example, HLR+HHR> 2LHR; while HLR+HHR
belongs to 1L1H and 2LHR to 2H, the resistance of 1L1H
can be still higher than 2H. After the two-step amplification
in phases 2 and 3, the 2L cases generate a logical one while

Fig. 5. SPICE simulation results of AND operation.

TABLE V
THE NUMBERS OF FAILED CASES IN 10,000 MONTE CARLO ITERATIONS

HH HL LH LL Total

Scouting Logic 0 75 97 202 374
Pinatubo 0 142 176 332 650

ESL (This work) 0 0 0 0 0

the remaining cases a logical zero. These results are consistent
with the AND’s truth table.

The waveform of the OR operation is similar to Fig. 5 and
hence not included in the paper for simplicity. Also the 16
cases verified the correctness of ESL.

C. Comparison with State of the Art

Table V summarizes for Scouting Logic, Pinatubo, and
ESL the number of failures observed during Monte Carlo
simulations. A simulation is considered to fail when a wrong
logic value is observed (an output voltage lower than 40%
of Vdd is considered a logic zero and higher than 60% of
Vdd a logic one) or when the sense amplifier output ranges
between 40% and 60% of the Vdd value. Each row in the table
represents a logic scheme. The columns are the four resistance
combination of the two input memristors, i.e. HH, HL, LH,
and LL, and the numbers represent the total failed cases. The
table clearly shows that ESL is robust against variations, while
the other schemes can practically not be used. Note that we
configured the reference resistance for Pinatubo and Scouting
Logic with different values and repeated the simulations. Only
the simulation groups that had the smallest total number of
failed cases are reported in Table V. It is impossible to find
a perfect value that avoids failures for these designs, as the
input resistance ranges of 1L1H and 2L overlap.

D. Discussion

The main advantage of ESL is that it is able to deal with
large resistance variations. Many previous works overlooked
this fact and did not consider this during design. ESL has

A

64 Paper A.2

besides this benefit also other benefits. It requires only one
reference resistor which makes it simpler than previous works.
Finally, like other bulk bitwise logic schemes, ESL does not
write to memristors during process; hence, it does not affect
the endurance during logic operations.

To enhance the robustness, we designed a 2T1R memory
cell structure, which is different from the typical cases such
as 1R, 1T1R, or 1S1R. Compared with these structures, 2T1R
requires more control signals and has a larger cell area.

VI. CONCLUSION

Today’s RRAM devices suffer from large resistance varia-
tions. Existing Boolean logic schemes that based on resistance
sensing cannot guarantee the correctness of these operations
under such variations. To enhance the robustness, we have
proposed a new scheme that senses the resistance via two paths
for AND and OR operations, respectively. SPICE simulation
and Monte Carlo analysis have proved the robustness of our
scheme. This scheme brings the memristive logic circuits a
step closer to reality as the robustness is a primary concern.

REFERENCES

[1] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs et al., “Memristor for
computing: Myth or reality?” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, March 2017, pp. 722–731.

[2] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, 6th ed. Amsterdam, Netherlands: Elsevier, Nov. 2017.

[3] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers, Feb 2014, pp. 10–14.

[4] S. Hamdioui, L. Xie, H. A. D. Nguyen et al., “Memristor based
computation-in-memory architecture for data-intensive applications,”
in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, ser. DATE ’15. San Jose, CA, USA: EDA
Consortium, 2015, pp. 1718–1725.

[5] S. Li, C. Xu, Q. Zou et al., “Pinatubo: A processing-in-memory architec-
ture for bulk bitwise operations in emerging non-volatile memories,” in
Proceedings of the 53rd Annual Design Automation Conference. New
York, NY, USA: ACM, 2016, pp. 173:1–173:6.

[6] J. Yu, H. A. Du Nguyen, L. Xie et al., “Memristive devices for
computation-in-memory,” in 2018 Design, Automation Test in Europe
Conference Exhibition. IEEE, March 2018, pp. 1646–1651.

[7] S. Yu and P. Y. Chen, “Emerging memory technologies: Recent trends
and prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp.
43–56, Spring 2016.

[8] A. Chen, “A review of emerging non-volatile memory (NVM) technolo-
gies and applications,” Solid-State Electronics, vol. 125, no. Supplement
C, pp. 25 – 38, 2016.

[9] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, no. 6, pp. 1165–1172, 2005.

[10] J. Borghetti, G. Snider, P. Kuekes et al., “’Memristive’ switches enable
’stateful’ logic operations via material implication,” Nature, vol. 464,
no. 7290, pp. 873–876, 2010.

[11] L. Xie, H. A. D. Nguyen, J. Yu et al., “Scouting logic: A novel
memristor-based logic design for resistive computing,” in 2017 IEEE
Computer Society Annual Symposium on VLSI, July 2017, pp. 176–181.

[12] L. Zhang, S. Cosemans, D. J. Wouters et al., “Cell variability impact
on the one-selector one-resistor cross-point array performance,” IEEE
Transactions on Electron Devices, vol. 62, no. 11, pp. 3490–3497, Nov
2015.

[13] A. Fantini, L. Goux, R. Degraeve et al., “Intrinsic switching variability
in HfO2 RRAM,” in 5th IEEE International Memory Workshop, May
2013, pp. 30–33.

[14] A. Grossi, E. Nowak, C. Zambelli et al., “Fundamental variability limits
of filament-based RRAM,” in 2016 IEEE International Electron Devices
Meeting, Dec 2016, pp. 4.7.1–4.7.4.

[15] R. Han, P. Huang, Y. Zhao et al., “Demonstration of logic operations
in high-performance RRAM crossbar array fabricated by atomic layer
deposition technique,” Nanoscale Research Letters, vol. 12, no. 1, p. 37,
Jan 2017.

[16] X. Hong, P. A. Dananjaya, S. Krishnia et al., “A novel geometry of
ECM-based RRAM with improved variability,” Journal of Physics D:
Applied Physics, 2018.

[17] Y. Fang, Z. Yu, Z. Wang et al., “Improvement of HfOx-Based RRAM
device variation by inserting ALD TiN buffer layer,” IEEE Electron
Device Letters, vol. 39, no. 6, pp. 819–822, June 2018.

[18] A. Mehonic, M. Munde, W. Ng et al., “Intrinsic resistance switching
in amorphous silicon oxide for high performance siox reram devices,”
Microelectronic Engineering, vol. 178, pp. 98 – 103, 2017, iNFOS.

[19] A. Bricalli, E. Ambrosi, M. Laudato et al., “Siox-based resistive
switching memory (RRAM) for crossbar storage/select elements with
high on/off ratio,” in 2016 IEEE International Electron Devices Meeting,
Dec 2016, pp. 4.3.1–4.3.4.

[20] H. Lv, X. Xu, P. Yuan et al., “Beol based rram with one extra-mask
for low cost, highly reliable embedded application in 28 nm node and
beyond,” in 2017 IEEE International Electron Devices Meeting, Dec
2017, pp. 2.4.1–2.4.4.

[21] V. Seshadri, K. Hsieh, A. Boroum et al., “Fast bulk bitwise AND and
OR in DRAM,” IEEE Computer Architecture Letters, vol. 14, no. 2, pp.
127–131, July 2015.

[22] V. Seshadri, D. Lee, T. Mullins et al., “Ambit: In-memory accelerator
for bulk bitwise operations using commodity DRAM technology,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. New York, NY, USA: ACM, 2017, pp. 273–287.

[23] S. Li, D. Niu, K. T. Malladi et al., “Drisa: A DRAM-based reconfig-
urable in-situ accelerator,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. New York, NY, USA:
ACM, 2017, pp. 288–301.

[24] S. Jeloka, N. B. Akesh, D. Sylvester et al., “A 28 nm configurable
memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling
logic-in-memory,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4,
pp. 1009–1021, April 2016.

[25] M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-memory
processing using configurable resistive memory,” in 22nd Asia and South
Pacific Design Automation Conference, Jan 2017, pp. 757–763.

[26] W. Kang, H. Wang, Z. Wang et al., “In-memory processing paradigm
for bitwise logic operations in STT-MRAM,” IEEE Transactions on
Magnetics, vol. 53, no. 11, pp. 1–4, Nov 2017.

[27] F. Parveen, Z. He, S. Angizi et al., “Hielm: Highly flexible in-memory
computing using STT MRAM,” in 23rd Asia and South Pacific Design
Automation Conference, Jan 2018, pp. 361–366.

[28] S. Jain, A. Ranjan, K. Roy et al., “Computing in memory with spin-
transfer torque magnetic RAM,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 3, pp. 470–483, March 2018.

[29] F. Parveen, S. Angizi, Z. He et al., “Imcs2: Novel device-to-architecture
co-design for low-power in-memory computing platform using cotermi-
nous spin switch,” IEEE Transactions on Magnetics, pp. 1–14, 2018.

[30] W. H. Chen, W. J. Lin, L. Y. Lai et al., “A 16mb dual-mode ReRAM
macro with sub-14ns computing-in-memory and memory functions
enabled by self-write termination scheme,” in 2017 IEEE International
Electron Devices Meeting, Dec 2017, pp. 28.2.1–28.2.4.

[31] D. Knuth, The Art of Computer Programming: Bitwise Tricks & Tech-
niques, 1st ed. Boston, MA: Addison-Wesley, Mar. 2009.

[32] Z. Wang, Y. Liu, A. Lee et al., “A 65-nm reram-enabled nonvolatile
processor with time-space domain adaption and self-write-termination
achieving > 4× faster clock frequency and > 6× higher restore speed,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 10, pp. 2769–2785,
Oct 2017.

[33] M. F. Chang, S. J. Shen, C. C. Liu et al., “An offset-tolerant fast-random-
read current-sampling-based sense amplifier for small-cell-current non-
volatile memory,” IEEE Journal of Solid-State Circuits, vol. 48, no. 3,
pp. 864–877, March 2013.

[34] P. Y. Chen and S. Yu, “Compact modeling of rram devices and its
applications in 1T1R and 1S1R array design,” IEEE Transactions on
Electron Devices, vol. 62, no. 12, pp. 4022–4028, Dec 2015.

[35] NIMO Group, ASU, “Predictive technology model.” [Online]. Available:
http://ptm.asu.edu/

Enhanced Scouting Logic

A

65

B
Publications - Architecture

Level

This chapter presents the publications on the architecture level. The following
papers are included:

1. J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, Memristive Devices
for computation-in-memory, The 21st Design, Automation & Test in Europe
Conference & Exhibition (DATE’18), March 2018, pp. 1646-1651.

2. J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, S. Hamdioui, Time-division
Multiplexing Automata Processor, The 22nd Design, Automation & Test in
Europe Conference & Exhibition (DATE’19), Florence, Italy, March 2019, pp.
794-799.

67

Memristive Devices for Computation-In-Memory

Jintao Yu, Hoang Anh Du Nguyen, Lei Xie, Mottaqiallah Taouil, Said Hamdioui
Laboratory of Computer Engineering, Delft University of Technology, the Netherlands

Email: {J.Yu-1,H.A.DuNguyen,L.Xie,M.Taouil,S.Hamdioui}@tudelft.nl

Abstract—CMOS technology and its continuous scaling have
made electronics and computers accessible and affordable for
almost everyone on the globe; in addition, they have enabled
the solutions of a wide range of societal problems and applica-
tions. Today, however, both the technology and the computer
architectures are facing severe challenges/walls making them
incapable of providing the demanded computing power with
tight constraints. This motivates the need for the exploration
of novel architectures based on new device technologies; not
only to sustain the financial benefit of technology scaling, but
also to develop solutions for extremely demanding emerging
applications. This paper presents two computation-in-memory
based accelerators making use of emerging memristive devices;
they are Memristive Vector Processor and RRAM Automata
Processor. The preliminary results of these two accelerators show
significant improvement in terms of latency, energy and area as
compared to today’s architectures and design.

I. INTRODUCTION

Today’s and new emerging applications, such as data-

intensive/big-data applications (e.g., DNA sequencing) and

internet-of-things (IoT), are extremely demanding with respect

to computing power, energy consumption, and storage. These

applications will not only strongly shape our near future,

but also impact the semiconductor and computer industry.

However, their requirements are difficult to fulfill with today’s

CMOS based computer architectures, as they face sever chal-

lenges both at architectural and device level. Current computer

architectures face three walls [1]: (1) the memory wall due to

the growing gap between processor and memory speed and

the the limited memory bandwidth; (2) the power wall as

the practical power budget for cooling has been reached; (3)

the instruction-level parallelism (ILP) wall due to the growing

difficulties in extracting enough parallelism in software/code

that can run on the mainstream parallel hardware today. The

CMOS devices also face three walls [2]: (1) the leakage wall

as the static power is becoming dominant at small technology

nodes (due to volatile technology and low Vdd) and it may

even be higher than the dynamic power, (2) the reliability wall

as technology scaling leads to reduced device lifetime and

higher failure rate; (3) the cost wall as the cost per device

from a pure geometric scaling of technology point of view

is plateauing. Both architecture and device walls have slowed

down the performance gains of CMOS-based architectures. All

these motivate the need to look for alternative architectures

while considering emerging device technologies.
Many alternatives architectures are under investigations. Re-

sistive computing [3–5] and neuromorphic computing architec-

tures [6,7] using memristive devices, and quantum computing

using quantum dots [8] are couple of examples. Resistive

computing architectures based on memristive devices are at-

tractive, as they enable in-memory computing (reducing the

memory wall) [2,9]. In addition, the memristive devices have

zero standby power [6] (helps reducing both the leakage and

power wall), great scalability (reduces the cost wall), high

density (reduces the cost wall), and they are CMOS compatible

(reduces the cost wall).

This paper discusses two memristive device based accelera-

tors to demonstrate how computation-in-memory architectures

can realize significant improvements, due both to the archi-

tecture itself as well as to the used technology to implement

them. First, a memristive based vector processor, referred to

as Memristive Vector Processor (MVP), is presented; MVP

can be used as an accelerator for conventional machines and

shows approximately one order of magnitude improvement in

performance and energy efficiency. Thereafter, a general model

for hardware-based automata processing is introduced and

implemented with memristive devices. This implementation

is referred to as RRAM-AP; RRAM-AP’s key kernel (i.e., the

vector dot product operator) outperforms the state-of-the-art

SRAM-based implementation by 40% less delay and 27% less

energy, at even smaller chip area.

The reminder of this paper is organized as follows. Sec-

tion II describes briefly the fundamentals of memristive

devices. Section III and IV present MVP and RRAM-AP,

respectively. Finally, Section V concludes the paper.

II. BASICS OF MEMRISTIVE DEVICES

The memristive device, or memristor for short, is the fourth

type of fundamental two-terminal electrical components, next

to the resistor, capacitor, and inductor. It was initially predicted

in 1971 by the circuit theorist Leon Chua [10]. He observed

a missing element that can be described as a function of flux

φ and charge q, as shown (with the dashed line) in Fig. 1a.

In theory, a memristive device is a passive element that can

be described by the current integral (charge q) through or

voltage integral (flux φ) across its two terminals; The beauty

of the memristive device is its ability to memorize the history

(i.e., the internal state). The essential fingerprint of memristive

devices is the pinched current-voltage hysteresis loop, as

illustrated in Fig. 1b. When a memristive device is floating

or when the voltage v(t) across it equals zero, the current

i(t) is also zero. Therefore, based on its hysteresis curve, the

memristor has at least two distinctive states: a high (RH)

and low (RL) resistive state. A memristive device switches

B

68 Paper B.1

v

φ q

i

ᵠd
td

v =
dv
td

R = dq
vd

C=

ᵠd
id

L = i = dq
td

ᵠd
qd

M=

f

Ron

Roff

I

V
Vth

-Vth

(a) The fourth fundamental elements (b) Memristive pinched hysteresis loop

(c) Device symbol

Switching
Device (I-Layer)

Top Electrode

Bo
tto
m
Ele
ctr
od
e

(d) Device structure

-VRESET

VSET

Fig. 1. Main characteristics of a memristive device.

from high (low) to low (high) state by applying a voltage

VSET (VRESET) with an absolute value larger than its threshold

voltage Vth. Another signature of the memristive devices is that

the pinched hysteresis loop shrinks with a higher excitation

frequency f as shown in Fig. 1b. Fig. 1c shows the two typical

symbols used to denote memristive devices; the black square

represents the positive terminal.

After a silent period for more than thirty years, a practical

memristive device was fabricated and demonstrated by HP

in 2008 [11]. HP built a metal-insulator-metal device using

titanium oxide as an insulator and identified the memristive be-

haviour over its two-terminal node as described by Leon Chua;

as shown in Fig. 1d. The device resistance is modulated by

controlling positive charged oxygen vacancies in the insulator

layer using different voltages. After the first memristive device

was fabricated, several memristor devices based on different

types of materials have been proposed such as spintronic,

amorphous silicon, and ferroelectric memristors [6].

III. MEMRISTIVE DEVICES FOR VECTOR PROCESSING

Memristor-based Computation-In-Memory (CIM) concept

was proposed to eliminate the communication between the

CPU and memory by leveraging memristors for both storage

and computation in the same physical crossbar [3,12,13]. Here,

we use the CIM to realize an accelerator we refer to as

Memristive Vector Processor (MVP). The rest of this section

will describe the working principle of MVP, the targeted

applications and some analytical evaluation results to show

the potential of such an architecture.

A. Working principle

MVP is proposed to accelerate applications with a huge

number of vector operations. It can be used as an accelerator

for a conventional processor, as shown in Fig. 2a. Similarly as

in conventional architectures, the processor fetches, decodes

and executes a program using a memory hierarchy consisting

of cache(s), DRAM, and external memory. The part of the

program which is memory intensive will be offloaded to

CPU

DRAM

External Memory

MVP

Program

loop1:

loop2:

loop3:

MVP

(a) Architecture (b) Expected Application

Cache

Fig. 2. Memristive Vector Processor architecture.

SA

Vr

Vr

M1

M2

(a) Memory

Iin

Vout

Vr/RL 2Vr/RL2Vr/RH
Iin

1110/0100 Input

OR

Output10

S1

S2

Iref

Iin

Input

Read
Iref

Output
Vr/RH

0

0
Vr/RL

1

1

Iref

(b) References of Primitive Operations

Iin
AND

Iin
XOR

Iref1 Iref2

Output0 1

Output10 0

Vr/RL 2Vr/RL2Vr/RH

Vr/RL 2Vr/RL2Vr/RH

1110/0100 Input
Iref

1110/0100 Input

Fig. 3. Scouting logic [14].

MVP. The distinct feature of MVP is its crossbar memory

implementation using memristive devices, which enables not

the storage of huge amount of data (due to its nano scale size),

but also the processing of operations within the memory (i.e.,

no need for data movement).

The processing in MVP is performed based on scouting

logic operations [5,14] ; they transform memory read opera-

tions into logical operations. Normally, when a memory cell

is being read, a read voltage Vr is applied to the activated

row as shown in Fig. 3a. Subsequently, a current will flow

through the bit line to the input of the sense amplifier (SA)

where it is compared to a reference current. Depending on

the cell value (either low (RL) or high (RH) resistance), the

output of the SA will produce either logic 1 or 0. Inspired by

this read operation, scouting logic is able to implement OR,

AND and XOR gates. Instead of reading a single memristor

at a time, scouting logic activates two (or more) memory rows

simultaneously. As a result, the input current to the sense

amplifiers is determined by the equivalent input resistance of

the activated rows. This resistance results in three possible

values: RH , RH //RL ≈ RL, or RL/2; by changing the

reference current of the SA, different gates can be realized (as

shown in Fig. 3b). Therefore, using this scheme allows MVP to

perform logical operations by just a small modification of the

peripheral circuit of the crossbar mememory. It eliminates the

necessity of temporary registers, loading latency and energy

to move data from memory to registers. It also increases the

parallelism of the architecture and does not impact the the

endurance of the memristive devices.

B. Potential targeted applications

With its unique capability, MVP is able to accelerate data

intensive applications. These applications consist of inten-

sive memory accesses that consume an enormous amount

of energy and degrade the overall performance due to data

Memristive Devices for Computation-in-Memory

B

69

Fig. 4. Evaluation results for MVP and multicore architectures.

movements through the memory hierarchy; note that loading

a word from the on-chip SRAM or off-chip DRAM costs

much more energy (50x and 6400x, respectively) as compared

with an ALU operation [15,16]. Therefore, eliminating data

movements/ communication significantly improves the overall

performance.

An example of a program that could benefit from MVP is

illustrated in Fig. 2b. The program consists of multiple loops

processing a dataset that is preloaded and mapped on MVP.

Each time a loop is called, the processor sends a (macro)-

instruction to MVP; the instruction is locally decoded and

executed. The result is returned to the processor. This feature

occurs in multiple applications such as database management

[17], DNA sequencing [18–20], and graph processing [21].

C. Evaluation Results

To evaluate MVP architecture, its estimated performance

is compared to a multicore architecture. The models and as-

sumptions for the multicore architecture and MVP are similar

to those in [3,9]; e.g., the multicore architecture consists of 4

cores (ALU only), two levels of caches (32 KB L1 and 256

KB L2) and 4 GB DRAM. The MVP architecture consists of

one core (ALU only), two levels of caches (32 KB L1 and

256 KB L2), 2 GB DRAM, and a MVP with a 2 GB non-

volatile crossbar memory with a modified read-out circuity (as

explained in [14]) in order to enable computation-in-memory.

Three metrics are used for the evaluation: (1) performance

energy efficiency ηPE (defined by MOPs/mW), (2) energy

efficiency ηE (defined by pJ/op), and (3) performance area

efficiency ηPA (defined by MOPs/mm2).

Fig. 4 shows the results of the evaluation metrics for both

architectures for different L1 and L2 cache misses (up to

60%)and by assuming that 70% of the program instructions

can be accelerated on MVP (%Acc=0,7); i.e., the 30% non-

accelerated instructions is executed by the conventional pro-

cessor and the 70% accelerated part by MVP; see Fig. 2.

As MVP architecture contains a conventional part (i.e., CPU,

caches, DRAM and external memory), only 10x improvement

is obtained with respect to the performance-energy efficiency.

MVP architecture also achieves one order of magnitude energy

efficiency improvement in comparison with the multicore

architecture, and has a higher performance area efficiency.

Therefore, the MVP architecture has the potential of realizing

(a) NFA (b) Homogeneous automata

Fig. 5. Example notations for NFAs and homogeneous automata.

significant improvements, despite the high switching latency

and low endurance of memristor devices. The improvements

are the result of a significant reduction of cache and DRAM

accesses, and the usage of non-volatile memory. The reduction

of memory accesses leads to a lower latency and lower energy

consumption, while the non-volatile memory reduces the static

power practically to zero.

IV. MEMRISTIVE DEVICES FOR AUTOMATA PROCESSING

Automata-based processing is widely used in diverse fields,

including network security [22], computational biology [23],

and data mining [24]. Its hardware implementation, referred

to as automata processors (APs), has significant advantages

over von Neumann architectures regarding throughput and

energy efficiency as they enable computation-in-memory [25–

27]. Memristive devices, which are the enablers of Resis-

tive Random-Access Memories (RRAM) and computation-in-

memory, are potential candidates for implementing the APs

as it will be shown in this section. We will refer to this

implementation as RRAM-AP. Moreover, it will be shown that

RRAM-AP outperforms the two known hardware implementa-

tions of APs, being the Micron Automata Processor [25] which

is based on SDRAM, and the Cache Automation [27] which

is based on SRAM; we will refer to them by SDRAM-AP

and SRAM-AP, respectively, to maintain the naming consistent

with RRAM-AP. Next, we will first introduce basic knowledge

and notations of automata. Subsequently, we propose a generic

model for automata processors. Thereafter, we present RRAM-

AP implementation, and show its superiority.

A. Automata Basics

A Non-deterministic Finite Automata (NFA) can be rep-

resented by a 5-tuple: (Q,Σ, δ, q0, C). Q represents a finite

set of states (which are denoted with circles in the illustrative

example of Fig. 5a), Σ is a finite set of possible input symbols

(that can be used to generate an input sequence), δ is the

transition function describing the set of possible transitions

B

70 Paper B.1

Fig. 6. General architecture for automata processors.

among the states, q0 is one of the states from Q and presents

the start state, C is a subset of Q and contains the final states
or accepting states; they are denoted with a double circle in

the state diagram af Fig. 5a as shown for the final state S3.

During operation (i.e., execution of an input sequence),

some states can be active; they are denoted by P . Initially,

P equals to q0. At each processing step, the NFA consumes

one symbol I from the input sequence. Based on I and δ, P is

updated. Once all symbols of the input sequence are processed,

the NFA output is determined by P and C. If P ∩C �= ∅, then

we say that the NFA accepts the input sequence; otherwise,

the sequence is rejected. The acceptance of the input sequence

can be represented by a Boolean value A.

Homogeneous automaton is a special type of NFA that is

relatively easy to implement by APs [25]. It requires that a

state can only be reached by transitions with the same input

symbol(s). These input symbols belong to the symbol class of

this state. For example, in the NFA shown in Fig. 5b, S3 can

be reached by two transitions (from S1 and S2, respectively)

both with the same symbol b; b belongs to the symbol class

of S3. Here, the NFA shown in Fig. 5a is a homogeneous

automaton and can be therefore redrawn as depicted in Fig. 5b.

Note that the input symbols are only related to the states
in homogeneous automata and not the state transitions as is

the case for normal NFAs; e.g., the symbol b is not on the

incoming edges/transition of the state S3 (see Fig. 5a) but

rather within the node representing S3 (see Fig. 5b). Any NFA

can be translated into its equivalent homogeneous automaton

and therefore implemented using APs [25].

B. Generic Automata Processor Model

Before implementing RRAM-AP, we need to understand the

key operations conducted by an AP. Therefore, we next present

a generic model for APs to identify these operations. This

generic model is shown in Fig. 6 and consists of three major

processing steps:

1) Input symbol processing: It decodes each symbol I (pre-

sented with W bits) of the input sequence by activating

only one of the 2W wordlines, and identifies all states

that have an incoming transition occurring on I . These

states and the remaining sates are presented by column

vectors called State Transition Elements (STEs), and

are pre-configured based on Q and the corresponding

symbols (symbol class). Each STE presents one state of

the N states of Q. The result of this step is mapped to

a vector called Symbol Vector s.

2) Active state processing: It generates: (1) all the possible

states that can be reached from the current active states

P (stored in a vector called Active Vector a) based

on these states and the transition function δ (stored in

the routing matrix), and stores the result in the Follow

Vector f ; (2) the next active states (i.e., Active Vector)

by bit-wise ANDing s and f .

3) Output identification: In order to decide about the value

of A (i.e., whether the input sequence is accepted or

not), the intersection of a and the Accept Vector c (pre-

configured based on C) is checked. That is, if P∩C �= ∅,

then A = 1 (accept), otherwise A = 0 (reject).

Next we will elaborate the above three processing steps.

1) Input symbol processing: As mentioned, the purpose of

this is to calculate the Symbol Vector s for each input symbol.

This is done based on the selected row (from the 2W rows)

and the configuration of STEs. Let’s assume that for each

input symbol, an Input Vector i of 2W elements is generated

where only one element is high (corresponding to the selected

wordline); the remaining elements are 0. In addition, assume

that the configuration of STEs can be presented by a matrix

V where each column Vn presents the STE of the state n.

Then the nth element of the Symbol Vector s corresponding

to Vn can be calculated as:

s[n] = i · Vn =
2W∑
k=0

i[k]vn[k], ∀n ∈ [1, N] (1)

In this equation, the addition and the multiplication repre-

sent the Logic OR and AND, respectively. For the example of

Fig. 5b, if we assume Σ = {a, b, c, d}, then,

V =
[
V1 V2 V3

]
=

⎡
⎢⎢⎣

1 0 0
1 0 1
1 1 0
0 0 0

⎤
⎥⎥⎦ .

This means that S1’s symbol class is {a, b, c}, S2’s is {b},

and S3’s is {c}. If we further assume that the current input

symbol is b, then i = [0 1 0 0], and s = [1 0 1]. This means

that b is in the symbol classes of S1 and S3.

2) Active states processing: This step calculates the Follow

Vector f which presents the possible states that can be reached

from the current active states stored in the Active Vector a.

The transition function is implemented by the routing matrix

as shown in Fig. 6, and can be conceptually presented as a

two-dimensional vector R. Hence, the nth element of Follow

Vector f can be calculated as:

f [n] = a · Rn =
N−1∑
i=0

a[i]Rn[i], ∀n ∈ [1, N]. (2)

The interpretation of the addition and the multiplication in

this equation is the same as in Equation (1). The next active

states (to be also stored in the Active Vector a) are easily

calculated by using bitwise AND operation.

Memristive Devices for Computation-in-Memory

B

71

(a) Used as STEs (b) Used as routers

Fig. 7. Vector dot product operator used as switches and STEs.

a[n] = f [n] & s[n], ∀n ∈ [1, N]. (3)

For the example of Fig. 5b, the matrix R that belongs to

the transit function is

R =
[
R1 R2 R3

]
=

⎡
⎣

0 1 1
0 0 1
0 0 0

⎤
⎦ .

This means that S1 cannot be reached from all the states (R1),

S2 can only be reached from S1 (R2), and S3 from both

S1 and S2 (R3). For a = [1 0 0] (only S1 is active), f =
[0 1 1] according to Equation (2). This means S2 and S3 are

reachable states from the active states. If we assume the next

input symbol is b, which leads to s = [1 0 1] as discussed

above, then the new active vector a = [0 0 1] according to

Equation (3). This means that S3 becomes the next active state.

3) Output identification: The output value A of NFA is

easily calculated using the Active Vector a and the Accept

Vector c. The former stores the active states generated by the

input sequence while the later stores the defined accepting

states of NFA.

A = a · c� =
N−1∑
n=0

a[n]c[n]. (4)

A = 1 means that the input symbol sequence is accepted

by the NFA; otherwise, the string is rejected. For the example

of Fig. 5b, c = [0 0 1]. This means only S3 is an accepting

state. If we assume the same example as above (a = [0 0 1]),
then A = 1.

C. RRAM-AP Implementation

The automata processing model described above contains

only two types of logic operations, which are vector dot

product (Equation 1, 2, and 4) and vector bit-wise AND

(Equation 3). In practice, we cannot implement the complete

routing matrix of Equation 2, as it requires too much resource.

SDRAM-AP and SRAM-AP both use hierarchical routers to

implement the routing matrix. Their implementations do not

support all NFA transitions; nevertheless, there is enough

flexibility to route all possible transitions of typical appli-

cations [25,27]. While SDRAM-AP does not reveal many

implementation details, SRAM-AP uses a two-level structure

that consists of global and local switches [27]. These global

and local switches also conduct vector dot product operations.

For our implementation, we adopt SRAM-AP’s for the

routing matrix, use the hardware structure shown in Fig. 7a for

STEs, and the one in Fig. 7b both for global and local switches.

(a) Program circuit (b) RRAM cell (c) SRAM cell [27]

Fig. 8. Different implementations of a configurable bit.

The black and white boxes represent different configuration

bits. Each column generates the vector dot product of the input

vector and the configuration bits of this column.

An NFA is configured to RRAM-AP by programming

RRAM devices to either low or high resistance. We use one

transistor and one RRAM device (1T1R) to implement a

configurable bit as shown in Fig. 8b. During the configuration,

the word line WL selects the row to be programmed, and the

programming voltage is applied to the bit line BL as shown

in Fig. 8a. The programming voltage can be either SET or

RESET voltage. Logic 1 corresponds to the memristor’s low

resistance, and logic 0 to high resistance. The bit line is pre-

charged before evaluation, and the word lines are selected,

e.g., by the input symbols. Note that for the routing matrix,

multiple word lines can be activated in parallel. The vector

dot product is calculated when all the word lines are set; if

all the corresponding selected cells contain a high resistance

(i.e., logic 0), then the pre-charged bit line remains high, and

the sense amplifier (SA) will read a logic 0 (inverted output).

Similarly, if at least one of the cells contains a low resistance

(i.e., logic 1), then BL will be discharged. The SA’s output

will subsequently be a logic 1.

The characteristics of memristors provide opportunities for

RRAM-AP to outperform previous designs. For example,

SRAM-AP uses eight transistors to implement the configurable

bit as shown in Fig. 8c [27], whose area is much larger than

the 1T1R structure. In addition, the SRAM cells also suffers

from leakage power. As memristors are non-volatile devices,

RRAM-AP can resume the last configured NFA after shut

down and reboot without reprogramming it. On the other hand,

RRAM-AP also inherits some drawbacks, such as the longer

and power-hungry programming phase, and lower endurance,

in comparison with SDRAM and SRAM.

D. Preliminary Results

The APs can be built by using only vector dot product and

bit-wise AND operators. Except for the vector dot product

operator, we assume that the remaining part of RRAM-AP is

implemented in a similar way as SRAM-AP (incl. bit-wise

AND, wiring, and sense amplifiers). Hence, we compare only

the dot product operator. Note that SRAM-AP outperforms

SDRAM-AP regarding the throughput and energy consump-

tion; therefore, we limit our comparison to SRAM-AP.

The simulated circuit consists of a single vector dot product

operator with a length of 256 as shown in Fig. 9a. We use

B

72 Paper B.1

(a) Simulated circuit (b) SPICE simulation result

Fig. 9. SPICE simulation results of a vector dot product operator.

32 nm PTM model for CMOS transistors and ASU model [28]

for RRAM. We configure RRAM’s parameters based on a two-

state device, similarly as presented in [29], e.g., the RRAM’s

high and low resistances are approximately 100 MΩ and 1 kΩ
respectively; the SET and RESET threshold voltages are 1.3 V
and 0.5 V. To simulate the slowest discharge process, only the

first cell is configured to logic 1 (indicated by the black box),

and the remaining 255 cells are configured to be 0 (indicated

by white boxes). The bit line BL is pre-chared to 0.4 V (lower

than RRAM’s threshold voltages). When BL is discharged to

0.1 V, the sense amplifier (not included in the circuit) will read

a 1. The reference voltage of the SA is set to 0.25 V.

The HSPICE simulation results are shown in Fig. 9b.

The word line WL is enabled at 1 ns, and then BL starts

discharging. BL’s voltages in SRAM and RRAM-based de-

signs are illustrated with solid blue line and dashed red line,

respectively. The discharge time through RRAM (104 ps) is

35% less than the SRAM-based implementation (161 ps). This

is mainly because transistors have relatively large intrinsic

capacitance. During bit-line discharge, the RRAM cell of

Fig. 8b has only one transistor in its path while the SRAM-

based design has two (See Fig. 8c). The energy consumed

during the charge and discharge processes is 2.09 fJ for the

RRAM-based design and 5.16 fJ for the SRAM-based design.

The former is 59% less than the latter. Considering that the

remainder part of RRAM-AP is implemented in a similar way

as SRAM-AP, RRAM-AP outperforms SRAM-AP at the chip

level regarding latency, energy, and area.

V. CONCLUSION

In this work, we have discussed two potential applications of

memristive devices and computation-in-memory, i.e., Memris-

tive Vector Processor and RRAM Automata Processor. Mem-

ristors’ unique properties provide us an important opportunity

to improve conventional designs at both architectural and de-

vice level. However, the drawbacks of memristor technology,

such as the impact of endurance, require further research.

REFERENCES

[1] J. L. Hennessy et al., Computer architecture: a quantitative approach.
Elsevier, 2011.

[2] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2017, pp. 722–731.

[3] ——, “Memristor based computation-in-memory architecture for data-
intensive applications,” in DATE’15. EDA Consortium, 2015, pp. 1718–
1725.

[4] P. E. Gaillardon et al., “The programmable logic-in-memory (plim)
computer,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2016, pp. 427–432.

[5] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC’16.
New York, NY, USA: ACM, 2016, pp. 173:1–173:6.

[6] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-
nology, vol. 8, pp. 13–24, 2013.

[7] S. Furber, “Large-scale neuromorphic computing systems,” Journal of
neural engineering, vol. 13, p. 051001, 2016.

[8] X. Fu et al., “A heterogeneous quantum computer architecture,” in
CF’16. ACM, 2016, pp. 323–330.

[9] H. A. Du Nguyen et al., “On the implementation of computation-
in-memory parallel adder,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2017.

[10] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, pp. 507–519, 1971.

[11] D. B. Strukov et al., “The missing memristor found,” nature, vol. 453,
pp. 80–83, 2008.

[12] M. Barbareschi et al., “Memristive devices: Technology, design automa-
tion and computing frontiers,” in DTIS’17. IEEE, 2017, pp. 1–8.

[13] H. A. Du Nguyen et al., “Memristive devices for computing: Beyond
cmos and beyond von neumann,” in 25TH IFIP/IEEE International
Conference on Very Large Scale Integration. IEEE, 2017, pp. 1–8.

[14] L. Xie et al., “Scouting logic: A novel memristor-based logic design for
resistive computing,” in VLSI (ISVLSI), 2017 IEEE Computer Society
Annual Symposium on. IEEE, 2017, pp. 176–181.

[15] A. Danowitz et al., “Cpu db: recording microprocessor history,” Com-
munications of the ACM, vol. 55, pp. 55–63, 2012.

[16] A. Pedram et al., “Dark memory and accelerator-rich system optimiza-
tion in the dark silicon era,” IEEE Design & Test, vol. 34, pp. 39–50,
2017.

[17] K. Wu, “Fastbit: an efficient indexing technology for accelerating data-
intensive science,” in Journal of Physics: Conference Series, vol. 16,
no. 1. IOP Publishing, 2005, p. 556.

[18] K. K. Soni et al., “Efficient string matching using bit parallelism,” In-
ternational Journal of Computer Science and Information Technologies,
2015.

[19] R. D. Cameron et al., “Bitwise data parallelism in regular expression
matching,” in Proceedings of the 23rd international conference on
Parallel architectures and compilation. ACM, 2014, pp. 139–150.

[20] D. Lavenier et al., “Dna mapping using processor-in-memory architec-
ture,” in Workshop on Accelerator-Enabled Algorithms and Applications
in Bioinformatics, 2016.

[21] S. Beamer et al., “Direction-optimizing breadth-first search,” Scientific
Programming, vol. 21, pp. 137–148, 2013.

[22] F. Yu et al., “Fast and memory-efficient regular expression matching
for deep packet inspection,” in 2006 Symposium on Architecture For
Networking And Communications Systems, Dec 2006, pp. 93–102.

[23] I. Roy et al., “Discovering motifs in biological sequences using the
micron automata processor,” IEEE/ACM Trans. Comput. Biol. Bioinfor-
matics, vol. 13, pp. 99–111, Jan. 2016.

[24] K. Wang et al., “Sequential pattern mining with the micron automata
processor,” in CF’16. ACM, 2016, pp. 135–144.

[25] P. Dlugosch et al., “An efficient and scalable semiconductor architecture
for parallel automata processing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, pp. 3088–3098, Dec 2014.

[26] C. Bo et al., “Entity resolution acceleration using the automata proces-
sor,” in Big Data, Dec 2016, pp. 311–318.

[27] A. Subramaniyan et al., “Cache automaton,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 259–272.

[28] P. Y. Chen et al., “Compact modeling of rram devices and its applications
in 1t1r and 1s1r array design,” IEEE Transactions on Electron Devices,
vol. 62, pp. 4022–4028, Dec 2015.

[29] X. A. Tran et al., “High performance unipolar aloy/hfox/ni based rram
compatible with si diodes for 3d application,” in 2011 Symposium on
VLSI Technology - Digest of Technical Papers, June 2011, pp. 44–45.

Memristive Devices for Computation-in-Memory

B

73

Time-division Multiplexing Automata Processor
Jintao Yu Hoang Anh Du Nguyen Muath Abu Lebdeh Mottaqiallah Taouil Said Hamdioui

Laboratory of Computer Engineering, Delft University of Technology
Delft, the Netherlands

{J.Yu-1, H.A.DuNguyen, M.F.M.AbuLebdeh, M.Taouil, S.Hamdioui}@tudelft.nl

Abstract—Automata Processor (AP) is a special implementa-
tion of non-deterministic finite automata that performs pattern
matching by exploring parallel state transitions. The implementa-
tion typically contains a hierarchical switching network, causing
long latency. This paper proposes a methodology to split such
a hierarchical switching network into multiple pipelined stages,
making it possible to process several input sequences in parallel
by using time-division multiplexing. We use a new resistive RAM
based AP (instead of known DRAM or SRAM based) to illustrate
the potential of our method. The experimental results show that
our approach increases the throughput by almost a factor of 2
at a cost of marginal area overhead.

Index Terms—time-devision multiplexing, automata, parallel
processing

I. INTRODUCTION

Finite State Automata (FSA) is a commonly used computing
model to match sequences with predefined patterns; examples
are network security [1], bioinformatics [2], and artificial
intelligence [3]. It can also be used for other functions, such
as edit distance calculation [4, 5], tree structure traversal [6],
and path recognition [7]. However, executing FSA using von
Neumann machines such as CPUs and GPUs is generally
not efficient. For example, applications such as Snort [1] and
Protomata [2] contain thousands of predefined patterns, which
easily exceed the size of first-level caches. Moreover, they have
a bad data locality as states can transit to any other state. In
addition, automata processing is difficult to parallelize due to a
strong input sequence dependency [8]. Hence, there is a need
of dedicated and efficient FSA hardware implementations.

Many solutions have been proposed. FPGA-based accel-
erators [9, 10] are still limited by the FPGA’s architecture
and capacity. Therefore, their throughput is low and their
scalability is limited as compared to ASIC designs [11].
Custom hardware accelerators [11, 12] for FSA can avoid
such problems by providing a large memory and having
customized optimizations. For instance, Micron Automata
Processor (MAP) (based on DRAM technology) [11] stores
up to 48k states on a single chip, which is large enough
for configuring the automata of most applications including
Snort and Protomata [13]. It processes one input symbol
in each cycle [11]. For pattern matching applications, this
means that all the patterns are matched simultaneously. As a
result, these accelerators achieve a much higher throughput as
compared with CPU or GPU implementations [12, 13]. Unified
Automata Processor (UAP) [12] contains multiple cores that

This work was supported by the European Unions Horizon 2020 Research
and Innovation Program through the project MNEMOSENE (Grant 780215).

are simplified for automata processing. It processes multi-
ple input streams simultaneously to increase the throughput.
For each input stream, however, it processes activated states
sequentially. Therefore, its throughput degrades when many
states are active. HAWK [14] and HARE [15] use logic gates
for matching. They process multiple input symbols of a single
input stream in each clock cycle, thus achieving a higher
throughput. However, they are designed for regular expression
matching only. To the best of our knowledge, Cache Automa-
ton [16] has the highest single-stream throughput reported. It is
based on SRAM technology and is much faster than DRAM-
based MAP [11]. Cache Automaton uses a two-stage pipeline
to process an input symbol. One of these stages contains a
hierarchical switching network that consists of global and local
routers; the switching network implements the automata’s state
transitions. It is relatively complex as the number of states
can be huge. Therefore, this pipeline stage is the bottleneck
that limits Cache Automaton’s speed and throughput. RRAM-
AP concept [17] shows the potential of building an automata
accelerator using Resistive Random Access Memory (RRAM)
arrays, which are even faster than SRAM arrays. However, a
complete design was not given.

In this paper, we further improve the throughput of automata
accelerators. The main contributions of this paper are:

• It proposes a methodology to process multiple input
streams simultaneously with a higher frequency using
Time-Division Multiplexing (TDM). We realize this by
pipelining the hierarchical switching network and adding
multiplexing circuitry. At any moment, each stage pro-
cesses a symbol of a different input stream without affect-
ing the other streams. Although the processing time for a
single input stream remains nearly the same, multiple input
streams are processed in parallel. Therefore, the overall
throughput is increased significantly at the cost of marginal
area overhead.

• It implements an RRAM-based automata accelerator and
integrates the proposed TDM methodology in it. Note that
the methodology can be implemented with any technology
(DRAM, SRAM and RRAM).

• It evaluates the performance and area overhead of the
TDM RRAM-based automata accelerator. In addition, it
compares the automata accelerator to existing solutions.

The rest of the paper is organized as follows. In Section II,
we explain the basic principle of a popular automata accelera-
tor type. Section III presents the TDM methodology and how
it can be integrated in an RRAM-based automata accelerator.

B

74 Paper B.2

ST
E

 1

Symbol Vec s

Input I Routing
Matrix

A
ct

iv
e

V
ec

 a

Follow Vec f

D
ec

od
er

A
cc

ep
t V

ec
 c

Acceptance

ST
E

 2

S
T

E
 N

1 2 3

Fig. 1. General architecture of Automata Processors [17].

Section IV evaluates the performance and the area overhead
of the TDM RRAM-based automata accelerator. Section V
contains a brief discussion. Finally, VI concludes the paper.

II. BACKGROUND

In this section, we provide a background on automata
processors and highlight their performance bottleneck.

A. Automata Processors

The TDM methodology proposed in this paper can only be
applied to a specific type of automata accelerators, referred
to as Automata Processors (APs); they have similar working
principle as MAP. MAP is one of the most successful hardware
implementations of Non-deterministic Finite Automata (NFA),
whose high efficiency has been proved by many researches [2–
7, 12]. Recent works such as Cache Automaton [16] and
RRAM-AP [17] intend to improve MAP by using different
memory technologies while maintaining its basic structure.
These designs have the following features in common:
• They all model homogeneous automata; in these au-

tomata, a state can only be reached by transitions with
the same input symbol(s). Any NFA can be translated
into its equivalent homogeneous automaton and therefore
implemented using APs [11].

• They all use memory arrays in the implementation. MAP
uses DRAM, Cache Automaton uses SRAM, and RRAM-
AP uses RRAM.

• They all use hierarchical switching networks for imple-
menting the state transitions.

The generalized architecture of APs is shown in Fig. 1 [17].
An input symbol I is processed using three major steps:

1 Input symbol matching. In this step, all states that have
an incoming transition occurring on I are identified. The
N states are presented by column vectors called State
Transition Elements (STEs) which are pre-configured
based on the targeted automaton. Each input symbol
activates one wordline and the content in an STE cell
specifies for that particular state whether the current
input symbol has an incoming transition. The result of
this step is mapped to a vector called Symbol Vector s.

2 Active state processing. It generates: (1) all the possible
states that can be reached from the current active states
(stored in Active Vector a) based on the transition
function (stored in the routing matrix), and stores the
result in the Follow Vector f ; (2) the next active states
(i.e., Active Vector) by bit-wise ANDing s and f .

STE

L1

G

STE

L2

TileTile Tile

Tile

STE

Li

g

s
a

f

(a) Original

STE

L1

G

STE

L2

TileTile Tile

STE

Li

Buffer

(b) Adapted for TDM

Fig. 2. Adapting the hierarchical switching network for TDM.

3 Output identification. In order to decide whether the
input sequence is accepted or not, the intersection of
a and pre-configured Accept Vector c is checked; it
contains the states that the automaton accepts.

Among these steps, Step 2 is the most critical and time
consuming. In the existing designs, this step is implemented
using a routing matrix. In the next subsection, we explain its
working principle.

B. Routing Matrix

As the STE matrix can be huge, it is fragmented across
the entire chip and we refer to each fragment as a tile. To
determine the next states, existing AP designs use hierarchical
switching networks to implement the routing matrix. For
example, Cache Automaton uses a network that consists of
global and local switches as shown in Fig. 2a [16]. If the
communication takes place inside a tile, only local routing is
used; otherwise, global routing is used as well.

In the figure, the Active Vector a is divided into several
groups. Each group has some signals that enter global switches
(represented by the box G in the figure) which are used for
inter-tile communication. The outputs of the global switches
combined with the initial vector a forms a vector (referred
to as Global Vector g) and is used as the input to the local
switches, which are presented by boxes L1, L2, and L3. The
outputs of local switches form the Follow Vector f . As the
global switches are used to form an interconnection between
the different tiles, they suffer from long global wires. They
affect the latency of the active state processing step (Step 2
in Section II-A) as it is determined by the sum of the latency
of global and local switches. It is the performance bottleneck
of MAP and Cache Automaton. In the following section, we
will show how to improve its performance using pipelining
and TDM.

III. TIME-DIVISION MULTIPLEXING AP

In this section, we first introduce the TDM methodology.
Thereafter, we present the hardware implementation required
to support TDM. Finally, we provide the implementation
details of the RRAM-AP combined with TDM.

A. Methodology

In this section, we first examine the data flow of an AP
without pipelining and then apply TDM on it. We use Fig. 3a
to explain Cache Automaton’s working principle. Each row of

Time-division Multiplexing Automata Processor

B

75

CC I s a g f
1 I1 – a0 –

g1

2 I2 s1 a1 f1
g2

3 I3 s2 a2 f2
g3

4 – s3 a3 f3

(a) No pipline

CC I s a g f
1 I1 – a0 – –

2 I2 s1 a1 g1 –

3 I3 s2 a2 g2 f1

4 – s3 a3 g3 f2

(b) Naive pipeline

CC I s a g f

1 – – a0 – –
2 I1 – – g1 –
3 – s1 a1 – f1
4 I2 – – g2 –
5 – s2 a2 – f2
6 I3 – – g3 –

(c) Slow pipeline

CC I s a g f

1 – – a0 – –
2 I1 – a′

0 g1 –
3 I′1 s1 a1 g′

1 f1
4 I2 s′1 a′

1 g2 f ′1
5 I′2 s2 a2 g′

2 f2
6 I3 s′2 a′

2 g3 f ′2

(d) TDM pipeline
Fig. 3. Pipelining of global and local switches for APs.

the table represents a clock cycle (CC), while the columns
contain the values of the input symbol I and key vectors
introduced in Section II (i.e., s, a, g, and f). The arrows
indicate the data flow; for example, the arrow from I1 to s1
means that I1 determines the value of s1, and the arrows from
s1 and f1 to a1 mean that the value of a1 is derived based
on those of s1 and f1. Dashes (–) represent don’t cares. It is
important to note that the vector g is generated between each
two cycles; e.g., in Fig. 3a, a0 is initialized at CC = 1, s1,
f1, and a1 are generated at CC = 2, while g1 is generated
between CC = 1 and CC = 2.

To increase the clock frequency of the AP, we can convert
the routing matrix into a pipeline by processing the vector
g in a full clock cycle. However, without other necessary
modifications, the AP will produce wrong results as shown
in Fig. 3b. When both the global and local switches work as
successive pipeline stages, the Follow Vector, e.g. f1, is only
ready two cycles after the Active Vector a0. Meanwhile, two
input symbols (I1 and I2) have entered the AP. Therefore,
the dependency between the two input symbols has been
destroyed. As a result, all the values colored in red (underline)
are incorrect, including a1, a2, and a3.

We can solve this problem by decreasing the input frequency
as shown by Fig. 3c. If an input symbol is processed every two
cycles instead of every cycle, then it can match the speed of
the switching network. The dependency among all the values
are the same as Fig. 3a. Therefore, the results are correct.
However, it requires more cycles to process all the three input
symbols (which is not completely shown in Fig. 3c). All the
stages make meaningful use (and produce results) of only half
of the cycles; e.g., local switches produce outputs f1 and f2
at CC = 3 and 5 while they are idle at CC = 4 and 6.

To make full use of the hardware, we use TDM methodol-
ogy and insert another input sequence to the original one as
shown in Fig. 3d. The values related to the second sequence
are marked with a prime and colored in blue, e.g., I ′1. Both
sequences do not interfere with each other as there are no
arrows connecting black and blue values. The switches process

ST
E

 1

Symbol Vec s

Input I
1

Routing
Matrix

A
ct

iv
e

V
ec

 a

Follow Vec f

D
ec

od
er

ST
E

 2

ST
E

 N

1 2

M
U

XInput I
2

Input I
M A

cc
ep

t V
ec

 c

Acceptance

3

DEMUX

SEL

Fig. 4. Architectural modifications required to support TDM in AP.

one input sequence in odd cycles and one in even cycles.
Fig. 3 clearly shows that the TDM methodology may

improve the performance. Both Fig. 3a and Fig. 3d process
one symbol every cycle; nevertheless, the clock frequency
of the implementation in Fig. 3d can be much higher. The
length of the clock period for Fig. 3d equals the latency
of a single switching operation (i.e. the worse case latency
between the global and local switches), while the one for
Fig. 3a is approximately twice as long (sum of global and local
switches). Although we use a two-phase switching network as
an example, the TDM can be generalized for networks with
more phases. The number of different active input sequences
equals the number of switching phases. Note that the proposed
TDM scheme is independent from the memory technology it
uses; therefore, it can be applied to MAP (based on DRAM),
Cache Automaton (based on SRAM), and RRAM-AP (based
on RRAM).

B. Hardware Adaption

To support TDM in APs, we need to modify several
components of the architecture as indicated by the red colored
(bold) components in Fig. 4. First, a multiplexer (MUX) is
added prior to Step 1 (input symbol matching). Assuming
the switching network works in M phases, the MUX merges
M input streams into a single one by fetching in each cycle
a symbol from an input stream in a round-robin fashion. For
example, the example provided in Fig. 3d shows that the MUX
of Fig. 4 will have two input streams I and I ′. The merged
sequence will be decoded and processed in the same way as
executed in a normal AP.

Next, the routing matrix (implemented by a hierarchical
switching network) needs to be updated as shown in Fig. 2b
for two phases (M=2). The control signals of global and local
switches (not shown in the figure) should be changed due to
the additional M − 1 pipelines. Extra buffer stages have to be
inserted between the Active Vector a and the local switches in
order to balance all paths between Active Vector a and Follow
Vector f to two clock cycles.

Finally, a demultiplexer (DEMUX) is added to split the
acceptance bit stream into multiple ones as shown in Fig. 4.
Each output stream corresponds to the input stream that is
provided two cycles earlier, due to one cycle latency of
Step 1 to produce a and one cycle latency of Step 3 to
produce Acceptance. Therefore, DEMUX can share the same
control signals with MUX but delayed with two buffers.

B

76 Paper B.2

Row
decoder

SL

SA

V
ref

WE

V
SL

Data

Global Vector

Row
address

V
BL

LogicColumn Clock

Column
decoder

Column
address

BL

WLRow Clock

Follow Vector

g
1

g
2

g
3

L
1,1

L
2,1

L
3,1

RRAM array

Fig. 5. Local switch implementation.

C. RRAM-based Implementation

We develop an RRAM-based AP to demonstrate the pro-
posed TDM methodology. Its top level structure is shown in
Fig. 2b, which generally follows the performance-optimized
design used in Cache Automaton [16]:
• The chip contains 64 tiles, 8 global switches, and the

circuitry enabling TDM (a multiplexer, a demultiplexer,
and two buffers between them; see also Fig. 4).

• A tile consists of an STE array (containing 256 STEs and
a decoder), a local switch, an Accept Vector, a bit-wise
AND gate, and a buffer (storing 256 bits).

• The sizes of global and local switches are 128×128 and
280× 256, respectively.

The STE arrays, global and local switches, and the Accept
Vector are all implemented with one-Transistor-one-RRAM
(1T1R) arrays. These arrays compute a vector-matrix product
where the binary vector is applied as input to the word lines
and the binary configuration matrix is stored in RRAMs [17].
This operation is performed by special read instructions. For
example, for the RRAM array in a local switch as shown in the
dashed box in Fig. 5, this operation is between Global Vector
g and the array’s configuration L. During a read operation, the
bit lines are first precharged to a high voltage. Subsequently,
g is applied to the word lines; note that multiple word lines
can be activated simultaneously. Each column computes the
inner product of g and a column vector of L. If at least
one RRAM cell is configured as a low resistance (logic 1
in the configuration matrix) and its word line is active (logic
1 in the input vector), then the bit line discharges to a low
voltage; otherwise, the bit line remains high. Note that before
any processing, the RRAM arrays must be configured.

In this paper, we present the design of a local switch as an
example. The STE arrays and global switches are implemented
in a similar way. Fig. 5 illustrates our implementation of
the local switch. It consists of a 1T1R memory array and
peripheral circuits around it. Its bit line (BL) and source line
(SL) are connected to column voltage drivers. The logic block
of Fig. 5 is responsible for providing control signals and
setting up the circuit in one of the two modes: configurable
mode or operational mode; this depends on the input control
signals shown in Table I. In the configurable mode, the write
enable (WE) signal is 1, and the local switch is initialized

TABLE I
COLUMN AND ROW VOLTAGES IN A LOCAL SWITCH

Inputs Outputs

WE Column sel. Data VSL VBL VWL

1
1

1 GND VSET Row
0 VRESET GND decoder

0 – Float Float output

0 – – GND VRead Global Vector

(i.e., configured) based on the targeted automaton. During
the configuration, either SET or RESET voltages (VSET and
VRESET) are applied to the RRAM device by the column
voltage drivers based on the values in Data signal. As word
line (WL) is long (256-bit wide), we assume a single word
is written in multiple cycles (e.g., 64 bits a time) by using a
column select signal. In case the column select value is zero,
the cells in those lines are kept floating during writing. In
the operational mode, WE = 0 and the memory is used for
reading; i.e., it generates the value of the next Follow Vector
based on the Global Vector (see Section III-A).

It is worth noting that the Accept Vector is implemented
together with the local switches using an extra column in the
array. As there are 64 tiles, the outputs of these columns in all
the tiles together are used to generate the acceptance bit via
a 64-to-1 OR operation. This operation is implemented using
three levels of 4-input NOR, NAND, and OR gates.

IV. EVALUATION

In this section, we first present the simulation setup. Subse-
quently, we present the performance results and area overhead.
Note that the latency of each step listed in Section II-A can
be divided into several parts:

1 Input symbol matching. It equals to the latency of an
STE array operation, which includes symbol decoding
and the operation of RRAM array;

2 Active state processing. It consists of global switching
phase and local switching phase. The former includes the
latency of an AND gate, signal transferring via a global
wire, and a global switch. The later includes global wire
transmission and a local switch;

3 Output identification. It consists of the latency of Ac-
cept Vector (= local switch) and 64-to-1 OR operations.

A. Simulation Setup

We conducted SPICE simulation to measure the la-
tency of these operations mentioned above. We assume
that each memory cell of the 1T1R array contains an
Pd/Al2O3/HfO2/NiOx/Ni RRAM device [18], with a high and
a low resistance of 109 and 103 Ω, respectively. Its top and
bottom electrodes are connected to the bit line and the pass
transistor and have a width of 40 nm and 80 nm, respectively.
The RRAM device is simulated using the ASU model [19]
configured using the device characteristics of [18].

For the CMOS part of the AP implementation, we use
TSMC 40 nm technology. To simplify and speed up the simu-
lation, only one complete row and column of the STE arrays,

Time-division Multiplexing Automata Processor

B

77

Fig. 6. SPICE simulation result of the local switch.

global, and local switches are simulated. In such columns,
only one cell is configured to a low resistance. During the
computation of an inner product, this configuration results in
the highest discharge time [17] and therefore, it determines
the minimum clock period. To guarantee a correct sense
amplifier output, we need to make sure that the difference
between the bit line and reference voltage VRef is larger than
∆Vmin, which is the minimum voltage difference that the
sense amplifier requires to operate correctly. When the RRAM
cells in a column are all configured as logic 0, the voltage drop
in the bit line is negligible due to the high resistance of the
RRAM devices. As a result, we set Vdd = 1.1 V, VRef =
0.95 V, and ∆Vmin = 150 mV. The sense amplifier design
is adopted from [20]. With respect to the latency of global
wires, we follow the assumption of [16]; i.e., their pitch and
length are 1 µm and 1.5 mm, respectively, with a latency of
66 ps/mm. Therefore, the latency introduced by the global
wire is 99 ps.

We use Cadence Virtuoso [21] to place and route the sense
amplifier, column and row drivers, and the buffer, and measure
their area. The area of the other digital components, including
the AND gate and the decoders, are acquired from Cadence
Genus [21]. For example, we describe the behavior of the
peripheral circuit in Table I using Verilog and subsequently
synthesize it using Genus. Note that Genus reports only the
total area of the cells. To be on the safe side, we add a 25 %
extra overhead to account for routing.

B. Performance Results

Fig. 6 shows the simulation result of an operation in the
local switch, i.e., the inner product between the Global Vector
g and a configuration vector. The bit line is first precharged to
Vdd, which is controlled by the active low signal Precharge.
Then, g is used to activate the word lines. As a result, the bit
line starts to discharge as one cell has a low resistance path.
After a while, the sense amplifier is enabled and it finally
generates a positive output. The period between the rising
edges of g and sense amplifier’s output is the latency of the
local switch; it is approximately equal to 178 ps.

Similarly, other simulation shows that the latency of an STE
array, an AND gate, a global switch, and a 64-to-1 OR gate

STE array Local switch Global switch
0

0.5

1

1.5

2
·104

Area
(µm2)

RRAM cell
Sense amplifier
Column decoder

Row decoder

Fig. 7. Area breakdown of STE array and switches.

are 258 ps, 11 ps, 129 ps, and 32 ps, respectively. Therefore,
the latency of each step can be decided:

1 258 ps.
2 Global switching phase: 11 +99 +129 =239 ps. Local

switching phase: 99 +178 =277 ps.
3 178 +32 =210 ps

The clock period of TDM RRAM-AP is determined by the
pipeline stage with the highest latency. Without TDM, RRAM-
AP’s clock period is the sum of the latency of the global and
local switching phases, i.e., 239 +277 =516 ps. With TDM,
the clock period equals the latency of the local switching
phase, i.e., 277 ps. Therefore, the TDM methodology leads
to a frequency and throughput improvement of 1.86×.

C. Overhead

Implementing TDM requires additional hardware. In this
subsection, we evaluate this overhead. NVSim [22] estimates
the area of a 1T1R cell using the following equation:

Area1T1R = 3(W/L + 1)(F 2)

where W/L = 3 is the width-length ratio of the access/pass
transistor and F = 80 nm the feature size.

The area breakdown of the area of STE, local switch and
global switch is shown in Fig. 7. For each memory, the area of
the RRAM cells, sense amplifiers, and the column and the row
decoder are included. Note that the drivers and combinational
logic are considered as part of the decoders. We first observe
that the area of the STE array and local switch are similar,
as they have approximately the same number of rows and
columns. Second, the RRAM cells only contribute to a small
proportion of the total area due to the small RRAM feature
size. Third, the column decoder is relatively large as it also
contains the control logic block shown in Fig. 5.

Based on the result of Fig. 2b, we can estimate the total area
of our AP design; it is given in Table II. The first column lists
the name of the components, and the second and third columns
indicate the size and area of the component, respectively. The
fourth and fifth columns present how many of them are used in
our AP chip and their combined area. The relative area of the
components with respect to the whole chip area is listed in the
last column. The first row (MUX+) represents the multiplexer,
demultiplexer, and the buffers between them. The buffers are
inserted between the AND gates and the local switches (see
Fig. 2b). The other rows contain the memories described above
and the global wires.

B

78 Paper B.2

TABLE II
COMPONENT AREA OF TDM RRAM-AP

Component Array size Area
(µm2)

Total area
(mm2)

%

Global switch 128× 128 7842 8 0.063 2.5%

MUX+* 1× 8 134.6 1 0.000 0.0%

STE array 256× 256 17907 64 1.146 45.4%

Local switch 280× 256 19168 64 1.227 48.6%

Accept Vector 280× 1 59.74 64 0.004 0.2%

AND gate 1× 256 271.0 64 0.017 0.7%

Buffer* 1× 256 1091 64 0.083 2.8%

* Overhead introduced by TDM Sum 2.527 100%

The area overhead introduced by TDM includes the area of
the MUX+ circuits and the buffers (denoted by a star (*) in
the table), and does not exceed 2.8 %. The total area of our AP
chip would be 3.16 µm2 considering 25 % routing overhead.

V. DISCUSSION

A. TDM Methodology

Introducing TDM to APs increases their throughput signif-
icantly. The RRAM-AP design presented in Section IV-B has
a shortest path of 277 ps. Assuming that the chip operates at
a frequency of 3.0 GHz, its throughput will be 24.0 Gbps as
each input symbol is 8 bit wide. This RRAM-AP design out-
performs the state-of-the-art designs as indicated by Table III.
Compared to Cache Automaton, a throughput increase of 53 %
can be achieved at 26 % less area.

TDM can be applied to APs with any memory technology.
In Cache Automaton, which is based on SRAM technology,
the latency of the global and local switch phases equal 227 ps
and 263 ps, respectively [16]. When TDM is applied to it, a
similar frequency and throughput improvement of 1.86× can
be expected due to a similar design1.

The area overhead introduced by TDM is marginal. This is
because that TDM only requires several minor modifications to
the hardware, such as additional multiplexer and buffers. The
majority of the design, such as the STEs, global, and local
switches remains the same. Therefore, we expect that TDM’s
energy overhead is marginal as well.

B. Applicability

Many FSA applications require the processing of multiple
input streams. Their throughput can be improved by using the
TDM methodology. For instance, Snort is a network secu-
rity application which matches data packages with particular
patterns (called rules) to detect viruses and attacks [1]. The
processing of multiple input sequences (i.e., data packages)
is common when it is deployed to protect a local network.
Similarly, Protomata analyzes protein samples against amino
acid patterns called motifs [2]. Usually, there are many samples
to be analyzed. Other examples include natural language

1In Cache Automaton, four STEs share an SA to save area. Therefore, the
input symbol matching step (Step 1 in Section II-A) has a much longer
latency than the local switching phase. Here, we assume no SA sharing and
Step 1 ’s latency is smaller than the one of the local switching phase

TABLE III
COMPARISON BETWEEN TDM RRAM-AP AND THE STATE-OF-THE-ART

Designs Frequency Throughput Area
(GHz) (Gbps) (mm2)

HARE (w=32) [15] 1.0 3.9 80
UAP [12] 1.2 5.3 5.67

Cache Automaton [16] 2.0 15.6 4.3
TDM RRAM-AP (this work) 3.0 24.0 3.16

processing [3], string matching [4], and path recognition [7].
This methodology can also be used in conjunction with Sub-
ramaniyanet’s method to accelerate a single input stream [8].

VI. CONCLUSION

In this paper, we proposed a methodology of pipelining APs
with TDM technique to improve their throughput. We devel-
oped an RRAM-based AP design to prove the concept. This
prototype exhibits 1.86× performance improvement with 2.8%
area overhead. The proposed methodology can be applied to all
the AP designs and may benefit a wide variety of applications.

REFERENCES

[1] Roesch, “Snort - lightweight intrusion detection for networks,” in LISA
’99. Berkeley, CA, USA: USENIX Association, 1999, pp. 229–238.

[2] Roy et al., “High performance pattern matching using the automata
processor,” in IPDPS’16. IEEE, May 2016, pp. 1123–1132.

[3] Zhou et al., “Brill tagging on the micron automata processor,” in
International Conference on Semantic Computing, 2015, pp. 236–239.

[4] Tracy et al., “Nondeterministic finite automata in hardware-the case of
the levenshtein automaton,” ASBD’15, 2015.

[5] Roy et al., “Finding motifs in biological sequences using the micron
automata processor,” in IPDPS ’14. IEEE, 2014, pp. 415–424.

[6] Tracy et al., “Towards machine learning on the automata processor,” in
High Performance Computing. Springer, 2016, pp. 200–218.

[7] Wang et al., “Using the automata processor for fast pattern recognition
in high energy physics experiments – a proof of concept,” Nucl Instrum
Methods Phys Res A, vol. 832, pp. 219 – 230, 2016.

[8] Subramaniyan et al., “Parallel automata processor,” in ISCA ’17. New
York, NY, USA: ACM, 2017, pp. 600–612.

[9] Wang et al., “Min-max: A counter-based algorithm for regular expres-
sion matching,” TPDS, vol. 24, pp. 92–103, Jan 2013.

[10] Yang et al., “High-performance and compact architecture for regular
expression matching on fpga,” TC, vol. 61, pp. 1013–1025, July 2012.

[11] Dlugosch et al., “An efficient and scalable semiconductor architecture
for parallel automata processing,” TPDS, vol. 25, pp. 3088–3098, 2014.

[12] Fang et al., “Fast support for unstructured data processing: The unified
automata processor,” in MICRO-48 ’15, Dec 2015, pp. 533–545.

[13] Wadden et al., “Anmlzoo: a benchmark suite for exploring bottlenecks
in automata processing engines and architectures,” in IISWC, 2016.

[14] Tandon et al., “Hawk: Hardware support for unstructured log process-
ing,” in ICDE’16. IEEE, May 2016, pp. 469–480.

[15] Gogte et al., “Hare: Hardware accelerator for regular expressions,” in
MICRO-49 ’16. New York, NY, USA: ACM, Oct 2016, pp. 1–12.

[16] Subramaniyan et al., “Cache automaton,” in MICRO-50 ’17. New York,
NY, USA: ACM, Oct 2017, pp. 259–272.

[17] Yu et al., “Memristive devices for computation-in-memory,” in
DATE’18. IEEE, March 2018, pp. 1646–1651.

[18] Dong et al., “Demonstrate high roff/ron ratio and forming-free rram for
rfpga application based on switching layer engineering,” in IEEE 12th
International Conference on ASIC (ASICON), Oct 2017, pp. 851–854.

[19] Chen et al., “Compact modeling of rram devices and its applications in
1t1r and 1s1r array design,” TED, vol. 62, pp. 4022–4028, Dec 2015.

[20] Agbo et al., “Comparative analysis of rd and atomistic trap-based bti
models on sram sense amplifier,” in DTIS’15, April 2015, pp. 1–6.

[21] Cadence Design Systems, “Tools,” accessed: 2018-11-27.
[Online]. Available: https://www.cadence.com/content/cadence-
www/global/en US/home/tools.html

[22] Dong et al., “Nvsim: A circuit-level performance, energy, and area
model for emerging nonvolatile memory,” TCAD, vol. 31, July 2012.

Time-division Multiplexing Automata Processor

B

79

C
Publications - Design

Automation

The content of this chapter consists of the following research articles:

1. J. Yu, R. Nane, A. Haron, S. Hamdioui, H. Corporaal, K. L. M. Bertels, Skeleton-
based Design and Simulation Flow for Computation-in-Memory Architectures,
The 12th IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH’16),
Beijing, China, July 2016, pp. 165-170.

2. J. Yu, R. Nane, I. Ashraf, M. Taouil, S. Hamdioui, H. Corporaal, K. L. M.
Bertels, Skeleton-based Synthesis Flow for Computation-In-Memory Architec-
tures, IEEE Transactions on Emerging Topics in Computing (TETC), Volume 8,
Issue 2, 2020, pp. 545-558.

3. J. Yu, M. Abu Lebdeh, H. A. Du Nguyen, M. Taouil, S. Hamdioui, APmap: An
Open-Source Compiler for Automata Processors, submitted to IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
undergoing a minor reversion.

81

Skeleton-Based Design and Simulation Flow for
Computation-In-Memory Architectures

Jintao Yu Razvan Nane Adib Haron Said Hamdioui Henk Corporaal* Koen Bertels
Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

*Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
{J.Yu-1, R.Nane, M.A.B.Haron, S.Hamdioui, K.L.M.Bertels}@tudelft.nl

H.Corporaal@tue.nl

ABSTRACT
Memristor-based Computation-in-Memory is one of the
emerging architectures proposed to deal with Big Data prob-
lems. The design of such architectures requires a radically
new automatic design flow because the memristor is a pas-
sive device that uses resistance to encode its logic value.
This paper proposes a design flow for mapping parallel al-
gorithms on the CIM architecture. Algorithms with similar
data flow graphs can be mapped on the crossbar using the
same template containing scheduling, placement, and rout-
ing information; this template is named skeleton. By con-
figuring such a skeleton with different pre-designed circuits,
we can build CIM implementations of the corresponding al-
gorithms in that class. This approach does not only map an
algorithm on a memristor crossbar, but also gives an estima-
tion of its performance, area, and energy consumption. It
also supports user-defined constraints and parallel SystemC
simulation. Experimental results demonstrate the feasibility
and the potential of the approach.

1. INTRODUCTION
Big Data Analytics is becoming increasingly difficult to

solve using classical Von Neumann-based computer archi-
tectures because of limited bandwidth (due to memory-
access bottlenecks), energy inefficiency and limited scala-
bility (due to CMOS technology). Computation-in-Mem-
ory (CIM)-based [1, 2] architectures address the aforemen-
tioned problems by enabling in-memory computations us-
ing non-volatile memristor technology [3, 4]. They have
huge potential and they could outperform the state-of-the-
art with orders of magnitude [2, 5]. Exploring the poten-
tial of such architectures and appropriately evaluating their
performance and scalability for larger applications require
automatic flows and methods that efficiently map high-level
algorithmic description to low-level memristor crossbar.

VLSI (Very-Large-Scale Integration) CAD (Computer
Aided Design) flows for CMOS-based hardware solutions are
not applicable to memristor-based CIM because of different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Nanoarch ’16, July 18-20, 2016, Beijing, China
c© 2016 ACM. ISBN 978-1-4503-4330-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2950067.2950071

signal propagation styles. In CMOS circuits, logic values
are represented by the voltage; they propagate along wires
implicitly and the propagation finishes within one clock cy-
cle [6]. Because memristors are passive devices that use
resistance to encode logic values, data has to be copied by
controllers explicitly. This requires specific commands and
several clock cycles; In addition, it depends not only on the
relative positions of the source and sink [7], but also on
their 1orientations on the crossbar. In conventional VLSI
CAD flows, placement and routing are performed based on
the High-Level Synthesis (HLS) scheduling results [8]. How-
ever, in memristor-based CIM, placement and routing infor-
mation is required before scheduling can be performed. As
a consequence, a new methodology is required to appropri-
ately design a memristor-based CIM architecture.

In this work, we propose a design and simulation flow
that performs scheduling, placement, and routing simulta-
neously; the flow is based on the algorithmic skeleton [9]
concept, or a skeleton in short. A skeleton provides an im-
plementation template for a specific class of algorithms that
have similar Data Flow Graph (DFG)s. It uses this knowl-
edge for optimising communication and hides its implemen-
tation details from the user. Skeleton-based design flows
have been used in parallel programming for supercomput-
ers [10], GPU [11], grid structures [12], and hybrid archi-
tectures [13]. Benkrid et al. extended this concept into a
hardware skeleton with placement information and applied
it to FPGA (Field Programmable Gate Arrays)-based de-
signing [14, 15]. Hardware skeletons do not contain routing
information since it can be generated by FPGA back-end
tools. However, the routing information is an essential part
of mapping algorithms on the memristor crossbar. We fur-
ther extend the hardware skeleton concept with routing in-
formation and refer it as 2CIM skeleton. This skeleton can
be configured with different predesigned circuits for imple-
menting corresponding algorithms. Furthermore, complex
algorithms can be implemented by composing simple skele-
tons. The main contributions of this paper are:
• Extending the hardware skeleton concept by append-

ing routing information. The extended skeleton in-
tegrate information about scheduling, placement, and
routing for a class of algorithms.
• Developing a design and simulation flow for memristor-

based CIM architecture based on the extended skele-
ton. By using a few carefully designed skeletons, many

1Direction of source/sink input/output ports, i.e., North,
South, East, West.
2In the rest of the paper, skeletons refer to CIM skeletons.

C

82 Paper C.1

Logic Memory

Memory

Memory

Memory Logic

Memory

Memory

Memory

Controller/Communication

R
o

w
 V

o
lt

ag
e

C
o

n
tr

o
lle

r

Column Voltage Controller

CPU

CIMRRAM

Figure 1: CIM/CPU Heterogeneous Computing and
Memristor Crossbar Configuration

parallel algorithms can be implemented rapidly. Both
a SystemC model and a layout are generated through
the flow.

The rest of the paper is organized as follows. After intro-
ducing the CIM architecture in Section 2, Section 3 presents
the design and simulation flow. Section 4 shows the ex-
perimental results for three study cases. Finally, Section 5
concludes the paper and discusses future research directions.

2. BACKGROUND
Figure 1 shows the heterogeneous CIM/CPU computing

scenario. The CPU works with memristor-based memory,
including Resistive Random Access Memory (RRAM) and
CIM. Besides of storing data, CIM also performs computing
as an accelerator of CPU.

2.1 CIM Architecture
CIM architecture [2] consists of a memristor layer and a

CMOS layer. The former is a dense crossbar with a memris-
tor at each cross point while the latter is used to implement
the controller as shown by Figure 1. Any part of the cross-
bar can be configured as either memory or logic, depending
on the commands of the controller. The communication be-
tween logic and memories within the crossbar can be in any
direction, as shown in the figure. Due to the high density of
memristor technology [16, 17], a CIM chip could contain as
many as 106 functional units. As a result, manually explor-
ing the design space is impossible. To transfer data between
functional units, we have two options. One is through the
CMOS layer, which has a bandwidth limit. The other one
is on the memristor crossbar, which is named as the copy
operation [7]. The latter one is preferred, because it has
higher parallelism. The state of a memristor can be copied
to another in one cycle if they share the column or the row.
Otherwise, this operation will take a minimum of two cycles
and temporary registers will be needed. In Figure 2, A and
C represent source memristors on the output ports of two
multipliers while B and D are destinations memristors on
two input ports of an adder. Since A and B share the row,
copying the data from A to B needs only one cycle. The
pseudo command of the controller is:

S1 : Move (25, 25) to (35, 25) {A→ B}.
The controller addresses the memristors with their coordi-
nates. Different from this case, C and D are not in the same
column or row. Thus, we need to divide the communication
into two steps:

S1 : Move (25, 10) to (40, 10) {C → E}

10 20 30 40 50

10

20

30

O
x

y

MUL

MUL ADD

•C

•A •B

•
D

•E

Figure 2: CIM Crossbar Communication

+

x

+

120

0 30

x x

60 90

x

+60

140

(a) One Multiplier

+

x

+

60

0 30x x x

+30

80

(b) Two Multipliers

Figure 3: ASAP Scheduling of Inner Product

S2 : Move (40, 10) to (40, 20) {E → D}.

2.2 Requirements for a New Flow
The data transfer mechanism on memristor crossbar has

a significant influence on the design flow, especially for
scheduling. Scheduling is a process that assigns time steps
to operations. If a design cannot meet the constraint, the
compiler will allocate more resources and try to schedule
again. Figure 3 illustrates the scheduling results of the

vector inner product function: ~a · ~b =
∑n

i=1 aibi. Here,

~a = (a1, a2, ... , an), ~b = (b1, b2, ... , bn)ᵀ, and the vector
size n = 4. For explanation purposes, we set a latency con-
straint of 100 cycles for this function. We assume the mul-
tiplication’s latency is 30 cycles and addition is 20. Now, if
three adders and only one multiplier are allocated, the low-
est latency of the function is 160 cycles. It can be achieved
by using ASAP (As-Soon-As-Possible) scheduling algorithm.
The start cycle of each operation is marked in Figure 3a.
This scheduling cannot meet the constraint, so the compiler
will allocate more resources and schedule again. Figure 3b
shows the scheduling results with two multipliers and three
adders. The overall latency is 100, which meets the con-
straint. From this case, we learn that scheduling validates
resource allocation. Because the placement and routing are
based on the allocated resources, they can only be performed
after the scheduling process.

The scheduling process for memristor-based CIM also de-
pends on routing results. Let A and B be two operations and
B have a data dependency on A. For conventional CMOS
technology, the data transfer from A to B is done once op-
eration A finishes in no more than one cycle. Therefore, we
can schedule B to the next time step after A without con-
sidering the routing. In CIM architecture, the data transfer
needs one or more cycles, depending on the routing between
them. As a result, the scheduler cannot decide the numbers
of time steps between A and B without routing information.
In conclusion, the scheduling, placement and routing depend
on each other in CIM architecture. Hence, conventional de-
sign flows cannot be applied directly to CIM designing.

It is possible to adapt the conventional flow to CIM by
iteratively executing it. However, even to get a subopti-
mal result, a long execution time is needed. The idea is to

Skeleton-based Design and Simulation Flow

C

83

Skeleton
repository

CIM/SW
compiler

Application

CIM/SW
implementation

CIM
compiler

Algorithm

Library
function

constraints

Skeleton
specification

Hardware
specification

Hardware designer

Skeleton designerLibrary developerUser

Primitive circuit

Function
library

4

3

2
1

Figure 4: CIM Compilation Tool-chain

make assumptions on data transfers during the scheduling
phase. Later, we convert these assumptions into constraints
on placement and routing. If these cannot be met, then we
need to increase the assumed costs and restart from schedul-
ing. Placement and routing are time-consuming processes,
so this iteration leads to a long time. Alternatively, we can
make a trade-off between the quality of the solution and the
execution time. In this case, the result is suboptimal.

Different from this approach, we solve the scheduling,
placement and routing all together for a class of problems
with a particular structure. We obtain the optimal solution
without the need to iterate. This methodology is introduced
next.

3. SKELETON-BASED DESIGN AND
SIMULATION FLOW

Figure 4 shows the overview of the complete CIM/SW
compilation tool-chain, which consists of four components.
At the highest level (Box 1 in the figure), the user programs
an application in a high-level language, such as C, with an-
notations of using CIM library functions. These functions
are the most time-consuming algorithms in the application,
which are designed by library developers (Box 2). Their
work is based on the support of skeleton designers and hard-
ware designers, who provide the specification of fundamental
skeletons (Box 3) and primitive circuits (Box 4) respectively.

In this paper, we address only the flow for the library
developer, i.e., the CIM compiler. It translates algorithms
into CIM implementations, including configuration files for
the memristor crossbar and the controller circuits. In cur-
rent research phase, we generate SystemC models for sim-
ulation, together with files that indicate the function-level
layout. Section 3.1 introduces the compiler’s working basis,
i.e., primitive circuits and skeletons. Section 3.2 uses three
examples to show the system generation process. Section 3.3
presents the support for parallel simulation.

3.1 Primitive Circuits and Skeletons
Primitive circuits form the basic structures with which

we build higher-level functional blocks. They are crossbar
memristor implementations of widely used operators, such
as Boolean logic gates [18], adders [19], multipliers. We
use SystemC models to represent them. Along with these
models, the hardware designer also needs to provide the at-
tributes of the primitive circuits, which are latency, energy,
and area (i.e., width and height within the crossbar). They
are used by the CIM compiler to calculate the attributes of
generated functions. When a circuit is idle, it consumes no
energy, due to the zero-leakage property of memristors [20].
We regard the boundary of a circuit as a rectangle. Its width
and height are given by the number of memristors used in
each side. We assume CIM works at a fixed frequency, and

the attributes are evaluated at this frequency.
In this work, a skeleton consists of several nodes. It spec-

ifies the parallelism, communication, and synchronization
of these nodes, without defining their functionality. These
nodes can be configured as either primitive circuits or skele-
tons. When a node is configured as a primitive circuit, its
functionality is decided. Configuring a node as a skeleton
is called skeleton nesting. By using nesting repetitively, the
function designer can build large and complex skeletons.

In Figure 4, the skeletons stored in the repository are pro-
vided by skeleton designers. They are called fundamental
skeletons. The skeleton designer first needs to decide the
set of fundamental skeletons, according to their expressive-
ness, reuse-ability, and designing difficulty. Then, he defines
the scheduling, placement, and routing algorithms for each
skeleton. When a skeleton is used to create library functions,
the library designer does not need to care about its imple-
mentation details. We choose the fundamental skeleton set
following the classification proposed by Campbell [21] and
for which the DFGs are shown in Figure 5; the nodes with
the same letters are configured with the same primitive cir-
cuit or skeleton. These fundamental skeletons are:

• Recursively partitioned. Problems are partitioned
into a small size, and they are solved separately. After
that, the solutions are collected in a recursive style.
• Task queue. These problems are solved by repeated

concurrent execution of many instances of a task.
• Systolic. It consists of nodes that have data flowing

between them and that may operate concurrently in a
pipelined fashion.
• Crowd. Similar to the Systolic skeleton except for

that there is no data flow between the concurrently
operating nodes. A one-dimensional Crowd skeleton
is an array of nodes while a two-dimensional one is a
matrix.

To represent the layout, every skeleton is extended with a
coordinate system. The placement of its nodes is performed
under this system. A circuit rectangle may have eight differ-
ent orientations, which is sufficient to be represented by an
angle (0, 90, 180, and 270), and whether it reflects over the
x-axis [22]. We use the coordinate of the bottom left corner
as the position of the node. When skeletons are nested, their
layout coordinate systems are also nested. Ports are also re-
garded as rectangles. Their placement is described under
the coordinate system of a primitive circuit or a skeleton.

A skeleton is associated with a placement and routing
algorithm. In the Recursively partitioned skeleton, nodes
are arranged following the H-tree [23] pattern to minimize
the communication cost. In this pattern, an output port is
linked with a direct path to an input port if there is a data
flow in between. Since all the corresponding bits share same
rows or columns, their communication costs are just one
cycle. Figure 6 shows a layout of a three-level Recursively

C

84 Paper C.1

b

a 0

T
a
+1

T
a
+T

b
+2

T
a
+2T

b
+3

a

b

a a

b

b

a a

b

a a

b

b

(a) Recursively Partitioned

a

b b b

c

T
a
+2

T
a
+T

b
+4

0

(b) Task Queue

a a a a

b b b b

T
b
+10

T
a
+2T

b
+3 T

a
+3T

b
+4T

a
+T

b
+2T

a
+1

2T
b
+2 3T

b
+3

(c) Systolic

a a

a a

0 0

0 0

(d) Crowd

Figure 5: DFGs, Scheduling, and Parallel Simulation Support of Fundamental Skeletons

a

b

a

b

aa

b a

b

a

b

a

a

b

b

Legend: input ports output ports routing

Figure 6: Three-level H-tree Layout

partitioned skeleton as an example. In other skeletons, the
nodes are placed next to each other in a matrix style.

Since a skeleton also defines the placement and routing
algorithms, it knows the communication cost between op-
erations during the scheduling phase. For instance, all the
communication costs are only one cycle in Recursively par-
titioned skeletons while some of them are two cycles in Task
queue skeletons. In Figure 5, the starting moments of the
nodes’ execution are marked besides the skeletons. Tx rep-
resents the latency of node x in these expressions.

3.2 System Generation
In functional programming languages, skeletons are

higher-order functions. They take functions as parameters.
Via these parameters, a skeleton’s nodes are configured as
primitive circuits or skeletons. If a skeleton is scalable, it
also has parameters for configuring the size.

Suppose we want to implement the matrix multiplication
algorithm:

AB =
(
~a1

ᵀ ~a2
ᵀ · · · ~an

ᵀ)ᵀ (~b1 ~b2 · · · ~bn
)

=

~a1 · ~b1 ~a1 · ~b2 · · · ~a1 · ~bn
~a2 · ~b1 ~a2 · ~b2 · · · ~a2 · ~bn

...
...

. . .
...

~an · ~b1 ~an · ~b2 · · · ~an · ~bn

 ,

where ~ai is a row vector of matrix A and ~bi is a column
vector of B. This is a complex algorithm that does not fit
any fundamental skeleton. However, we can see that it con-
tains repetitive patterns. Each element of the result matrix
is an inner product of two vectors. Thus, we can divide it
into two levels. The top level is a two-dimensional Crowd
skeleton, because there are no data flows between these ele-
ments. The lower level is the vector inner product function.
This function suits a Recursively partitioned skeleton, with
“a” and “b” nodes in Figure 5 configured as multipliers and
adders. They are predefined operators that can be found in
the primitive circuit library.

To implement the matrix multiplication, we need to build
the system bottom-up. First, we declare instances of the

...

...

...

...

...

Figure 7: Multiplication of Two 16× 16 Matrices

adder and the multiplier. Subsequently, we instantiate a Re-
cursively partitioned skeleton based on these primitive cir-
cuit library elements. Constraints can be applied to the
skeleton if necessary. Finally, we build a two-dimensional
Crowd skeleton on top of the inner product and generate
SystemC codes. We assume both matrices are 16 × 16, so
the vector size of the inner product is also 16. Figure 7
represents the generated system. The symbols “×” and “+”
stand for multipliers and adders while dashes between them
are communication paths. Each subsystem, as shown in the
dashed box, has a detailed layout following the H-tree pat-
tern. If an application cannot fit any existing skeleton, it is
necessary to develop a new one. In this case, the skeleton
repository should be extended.

In a similar way, we can calculate all the results of discrete
convolution on range [−M, M]:

(f ∗ g)[n] =

M∑
m=−M

f [n−m] · g[m], n ∈ [−M, M],

where f and g are two functions, and n is a variable. we
can use the Systolic skeleton as the low level, and instanti-
ate a one-dimensional Crowd skeleton on top of that. An
instance of the Systolic skeleton produces the result of one
input value, so all the results can be acquired with multiple
instances simultaneously.

3.3 Parallel Simulation Support
The standard SystemC implementation [24] does not sup-

port parallelism. It limits the performance and scale of the
simulation since the resources on a single machine are finite.
Therefore, we add parallel simulation support in code gen-
eration for acceleration and for enlarging the system scale.

Different skeletons require different support strategies.
Figure 5 illustrates one possible parallelization method for
each skeleton. The parts marked with dotted boxes can be

Skeleton-based Design and Simulation Flow

C

85

100 102 104 106
101

106

1011

Vector size

C
y
cl

e
/

fJ
/

M
em

ri
st

o
r

Inner Product

100 101 102

101

106

1011

Matrix size
C

y
cl

e
/

fJ
/

M
em

ri
st

o
r

Matrix Multiplication

100 101 102 103
101

106

1011

Variable range

C
y
cl

e
/

fJ
/

M
em

ri
st

o
r

Convolution

Latency Area Energy Latency(CSTR) Area(CSTR) Energy(CSTR)

Figure 8: Experimental Results

simulated in parallel by different threads (possibly on differ-
ent machines). The sizes of these boxes are decided by the
number of available threads. The communication between
these threads is implemented with MPI (Message Passing
Interface).

4. EXPERIMENTAL RESULTS
To validate the design flow, we first demonstrate the ap-

proach for vector inner product. Thereafter, we analyze its
scalability while considering not only the inner product but
also matrix multiplication and convolution. Finally, the abil-
ity of the proposed approach to perform large simulation will
be shown. It is worth noting that these experiments are per-
formed on a high-performance computer with 20 Intel Xeon
E5-2670 HT cores, running at 2.50 GHz.

4.1 Placement and Routing Results
We use the graphic output of inner product to show

the placement and routing results. We configured the Re-
cursively partitioned skeleton with multipliers and a sub-
system, which is the combination of an adder and two regis-
ters. Registers are needed to change the orientations of the
input ports so that the adders and the multipliers can be
arranged in a H-tree style. The attributes of these primitive
circuits are listed in Table 1 [2, 18, 19]; they are synthetic
data used only for illustration purpose. Here, the latency
is the number of clock cycles (CC) between the inputs and
the corresponding output. The width and height are ex-
pressed in the number of memristors. The energy is valued
for producing one (set of) result(s) in terms of femtojoule
(fJ). Figure 9 shows the graphic output generated by our
flow when the vector size is 16. Adders and multipliers are
marked with“A”and“M”while registers are squares without
labels. The input ports (orange triangles) are aligned with
the output ports (violet triangles), and the circuit is mapped
according to the H-tree pattern. The graphical output al-
lows us to verify that the placement algorithm defined by
the skeleton works correctly.

4.2 System Scaling
We varied the system sizes to evaluate the scaling capa-

bilities without putting any constraint, and generated three
cases: inner product, matrix multiplication, and convolu-
tion; we assume the matrices to be square N ×N . The re-
sults are shown in Figure 8 for Latency, Area, and Energy.

Table 1: Primitive Circuit Attributes

Module Latency/CC Width Height Energy/fJ
Adder 20 80 100 67

Multiplier 30 120 160 134
Register 1 33 33 1

Figure 9: Graphic Output of Inner Product

The area is defined based on the total number of memristors
used by the implementation. The time complexities of the
inner product and matrix multiplication are O(logN) while
that of the convolution is O(N). They are confirmed by the
experimental results.

Next, we put area constraints to investigate the flow’s abil-
ity to handle them; the constraint specifies that the width
and height should not exceed 50,000 memristors each. We
have to point out that this is only a hypothetical setting. In
reality, a CIM chip could be much bigger than this. These
experiment results are also shown in Figure 8; they are
marked with CSTR in the legend. Comparing these with
those for which no constraints was assumed, we can see that
the trends of latency and area change. The area stops grow-
ing, which shows that the constraint is applied. However,
the latency grows in a polynomial manner due to hardware
reuse.

4.3 Parallel Simulation
We enabled the parallel simulation support to examine its

effect. First, we simulated the baselines which are based on

C

86 Paper C.1

100 101 102

100

101

Speedup

IP

MM

Con

Alg Size Base/s

IP 218 590.1
MM 64 275.4
Con 256 718.4

MPI nodes

Figure 10: Speedup of Parallel Simulation

sequential simulations. The results are shown on the right
side of Figure 10; it lists the simulation sizes and the corre-
sponding simulation time. The abbreviations IP, MM, and
Con stand for Inner Product, Matrix Multiplication, and
Convolution respectively. Thereafter, we fixed the system
size and changed the number of MPI nodes. For each con-
figuration, we performed the simulation ten times and cal-
culated the average execution time after removing the max-
imum and minimum values. Figure 10 shows the speedup
of each configuration over the sequential simulation as the
baseline. The output data of all the parallel simulations
are verified and found to match those of the sequential one.
When MPI nodes are less than 16, the speedups are almost
the same as the thread number. This result shows a good
scalability.

5. CONCLUSION AND FUTURE WORK
In this work, we explained why a skeleton-based flow is

required for CIM, and we presented a high-level description
of this flow with a focus on the collaboration between dif-
ferent designers. We extend hardware skeletons with rout-
ing information. An extended skeleton provides scheduling,
placement, and routing algorithms for a class of problems
that have similar structures. With composition operations,
complex skeletons can be built from simple ones.

In future work, we will address each of the specific tool-
chain compilers in detail.

6. REFERENCES
[1] Y. Pershin and M. Ventra, “Memcomputing: A compu-

ting paradigm to store and process information on the
same physical platform,” in IWCE, 2014, pp. 1–2.

[2] S. Hamdioui, L. Xie, H. A. D. Nguyen et al., “Memris-
tor based computation-in-memory architecture for data-
intensive applications,” in DATE. EDA Consortium,
2015, pp. 1718–1725.

[3] L. O. Chua, “Memristor-the missing circuit element,”
Circuit Theory, IEEE Transactions on, vol. 18, no. 5,
pp. 507–519, 1971.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart et al., “The
missing memristor found,” Nature, vol. 453, no. 7191,
pp. 80–83, 2008.

[5] H. A. D. Nguyen, L. Xie, M. Taouil et al., “Computa-
tion-in-memory based parallel adder,” in NANOARCH,
July 2015, pp. 57–62.

[6] C. L. Seitz, “System timing,” Introduction to VLSI sys-
tems, pp. 218–262, 1980.

[7] L. Xie, H. A. D. Nguyen, M. Taouil et al., “Interconnect

networks for memristor crossbar,” in NANOARCH,
July 2015, pp. 124–129.

[8] S. H. Gerez, Algorithms for VLSI design automation.
Wiley New York, 1999, vol. 8.

[9] M. Cole, Algorithmic Skeletons: Structured Manage-
ment of Parallel Computation. Cambridge, MA, USA:
MIT Press, 1991.

[10] M. Zandifar, M. Abdul Jabbar, A. Majidi et al., “Com-
posing algorithmic skeletons to express high-performan-
ce scientific applications,” in ser. ICS ’15. New York,
NY, USA: ACM, 2015, pp. 415–424.

[11] C. Nugteren and H. Corporaal, “Bones: An automatic
skeleton-based c-to-cuda compiler for gpus,” ACM
Trans. Archit. Code Optim., vol. 11, no. 4, pp.
35:1–35:25, Dec. 2014.

[12] Y. Wang and Z. Li, “Gridfor: A domain specific lan-
guage for parallel grid-based applications,” Interna-
tional Journal of Parallel Programming, pp. 1–22, 2015.

[13] M. Goli and H. Gonzalez-Velez, “Heterogeneous algo-
rithmic skeletons for fast flow with seamless coordina-
tion over hybrid architectures,” in PDP, Feb 2013, pp.
148–156.

[14] K. Benkrid, D. Crookes, J. Smith, and A. Benkrid,
“High level programming for fpga based image and
video processing using hardware skeletons,” in FCCM
’01, March 2001, pp. 219–226.

[15] K. Benkrid and D. Crookes, “From application descrip-
tions to hardware in seconds: a logic-based approach to
bridging the gap,” VLSI, vol. 12, no. 4, pp. 420–436,
April 2004.

[16] K. Eshraghian, K. R. Cho, O. Kavehei et al., “Memris-
tor mos content addressable memory (mcam): Hybrid
architecture for future high performance search engi-
nes,” VLSI, vol. 19, no. 8, pp. 1407–1417, Aug 2011.

[17] E. Linn, R. Rosezin, S. Tappertzhofen et al., “Beyond
von neumann - logic operations in passive crossbar
arrays alongside memory operations,” Nanotechnology,
vol. 23, no. 30, p. 305205, 2012.

[18] L. Xie, H. A. D. Nguyen, M. Taouil et al., “Fast boo-
lean logic mapped on memristor crossbar,” in ICCD,
Oct 2015, pp. 335–342.

[19] S. Kvatinsky, G. Satat, N. Wald et al., “Memristor-ba-
sed material implication (imply) logic: Design princi-
ples and methodologies,” VLSI, vol. 22, no. 10, pp.
2054–2066, Oct 2014.

[20] H. Lee, Y. Chen, P. Chen et al., “Low-power and nano-
second switching in robust hafnium oxide resistive me-
mory with a thin ti cap,” EDL, vol. 31, no. 1, pp.
44–46, Jan 2010.

[21] D. K. Campbell, “Clumps: a candidate model of effi-
cient, general purpose parallel computation,” Ph.D. dis-
sertation, University of Exeter, 1994.

[22] M. A. Riepe and K. A. Sakallah, “Transistor level mi-
cro-placement and routing for two-dimensional digital
VLSI cell synthesis,” in ser. ISPD ’99, New York, NY,
USA: ACM, 1999, pp. 74–81.

[23] A. L. Fisher and H. Kung, “Synchronizing large systo-
lic arrays,” in 1982 Technical Symposium East, 1982,
pp. 44–52.

[24] Accellera Systems Initiative, SystemC. [Online]. Avai-
lable: http://accellera.org/

Skeleton-based Design and Simulation Flow

C

87

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 1

Skeleton-based Synthesis Flow for
Computation-In-Memory Architectures

Jintao Yu, Student Member, IEEE, Răzvan Nane, Member, IEEE, Imran Ashraf, Member, IEEE,
Mottaqiallah Taouil, Member, IEEE, Said Hamdioui, Senior Member, IEEE, Henk Corporaal, Member, IEEE,

and Koen Bertels, Member, IEEE

Abstract—Memristor-based Computation-in-Memory (CIM) is
one of the emerging architectures for next-generation Big Data
problems. Its design requires a radically new synthesis flow as the
memristor is a passive device that uses resistances to encode its
logic values. This article proposes a synthesis flow for mapping
parallel applications on memristor-based CIM architecture. First,
it employs solution templates that contain scheduling, placement,
and routing information to map multiple algorithms with similar
data flow graphs to the memristor crossbar; this template is
named skeleton. Complex algorithms that do not fit a single
skeleton can be solved by nested skeletons. Therefore, this
approach can be applied to a wide range of applications while
using a limited number of skeletons only. Secondly, it further
improves the design when spatial and temporal patterns exist
in input data. To accelerate simulation of generated SystemC
models, we integrate MPI in skeletons. The synthesis flow and its
additional features are verified with multiple applications, and
the results are compared against a multicore platform. These
experiments demonstrate the feasibility and the potential of this
approach.

Index Terms—Memristor, algorithmic skeleton, SystemC.

I. INTRODUCTION

Big-Data analytics is becoming increasingly difficult to
solve using CMOS-based Von Neumann computer architec-
ture [1]. The reasons include, but are not limited to, the
access bottleneck between the processor and memory, energy
inefficiency [2], and the limited scalability of CMOS tech-
nology [3]. Memristor-based [4], [5] Computation-in-Memory
(CIM) architectures [6]–[9] address the aforementioned prob-
lems by enabling in-memory processing using emerging non-
volatile technologies. Manually designed case studies revealed
their enormous potential by outperforming the state-of-the-art
with orders of magnitude [10]–[13]. Exploring the potential
of such architectures and appropriately evaluating their perfor-
mance and scalability for larger applications require automatic
flows and methods that efficiently map high-level algorithmic
description to low-level memristor crossbar configuration.

Existing Computer-Aided Design (CAD) flows for CMOS-
based VLSI (Very-Large-Scale Integration) are not applicable

J. Yu, R. Nane, I. Ashraf, M.Taouil, S. Hamdioui, and K. Bertels are with
the Department of Quantum Engineering, Delft University of Technology,
2628 CD Delft, The Netherlands (e-mail: j.yu-1, r.nane, i.ashraf, m.taouil,
s.hamdioui, k.l.m.bertels@tudelft.nl).

H. Corporaal is with Department of Electrical Engineering, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands (e-mail:
h.corporaal@tue.nl).

Manuscript received 29 December 2016; revised 31 May 2017; accepted
30 July 2017. Date of publication 20 October 2017.

to memristor-based CIM because of different signal propa-
gation styles. In CMOS circuits, logic values are represented
by their voltage. The voltage change of a source automatically
propagates to the sink along a dedicated wire within one clock
cycle [14]. However, in a memristor crossbar, logic values can
only propagate to other positions with the help of controllers,
because they are encoded by the memristors’ resistance. The
controller transfers the data in one or multiple steps, each of
which is conducted along a vertical or horizontal nanowire
shared by many memristors. Therefore, the number of steps
equals to the number of turnings in the path between the source
and the sink [15]. In addition to computation, memristor-based
CIM needs extra clock cycles for communication, and the
communication latency is determined by the routing result.
In conventional VLSI CAD flows, placement and routing are
performed based on the High-Level Synthesis (HLS) schedul-
ing results [16]. However, it is not applicable for memristor-
based CIM since the routing result is required to schedule
communications. As a consequence, a new methodology is
needed to eliminate the cyclic dependency among scheduling,
placement, and routing.

In this work, we propose a synthesis flow that simultane-
ously performs scheduling, placement, and routing. This is
inspired by the skeleton concept used in parallel computing
domain [17]–[21]. A skeleton is a scheduling template for a
specific class of algorithms that share a similar Data Flow
Graph (DFG) in the sense of data dependency. A scheduling
template handles parallelism, synchronization, and communi-
cation among threads, regardless of their functionality. It can
be optimised according to the characteristic of DFG structures,
thus achieving better performance than generic scheduling al-
gorithms. FPGA developers extended this concept into a hard-
ware skeleton with placement information [22], [23]. Routing
is not included in hardware skeletons since it is generated by
FPGA back-end tools. Nevertheless, the routing information
is essential for mapping algorithms to memristor crossbar.
Hence, we further extend the hardware skeleton concept with
routing information and refer it as 1CIM skeleton [24]. The
skeletons can be configured for different predesigned circuits
and implement their corresponding algorithms. Furthermore,
complex algorithms can be implemented via skeleton nesting.
This article is built on our preliminary work, where the main
focus was laid on the general idea of applying skeletons to
CIM architecture design. Compared to the preliminary work,

1Skeletons refer to CIM skeletons in the rest of the paper.

C

88 Paper C.2

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 2

we have made the following contributions:
• We developed memristor-based computational units in-

cluding a 32-bit adder and a 16-bit multiplier. The adder
outperforms state-of-the-art memristor adder designs in
terms of delay. Currently, no binary multipliers have been
proposed for the memristor crossbar.

• We specified a methodology that allows us to integrate
multiple computational units in the crossbar while main-
taining parallel computing.

• We considered data input and output processes and iden-
tified possible patterns in the input/output data.

• We provided new test cases. All the skeletons are covered
by the updated test cases.

The rest of the paper is organized as follows. First, Sec-
tion II presents our memristor-based designs and systems.
Subsequently, Section III presents the skeleton-based synthesis
flow. Section IV explains implementation details of its key
parts. Experimental results of three case studies are shown
in Section V. Finally, Section VI concludes the paper and
discusses future research directions.

II. HARDWARE PLATFORM

Section II-A presents the primitive circuits; they are a 32-
bit adder and a 16-bit multiplier. Subsequently, Section II-B
presents the hardware organization at the system level.

A. Primitive Circuits in CIM

In memristor-based CIM architectures, a primitive circuit
or a circuit in short, is a memristor circuit that performs a
computational operation in the crossbar, such as addition and
multiplication. These circuits can be implemented in various
manners. Design styles where the applied voltages are data-
independent may use shared controllers. Examples are material
implication logic [25], Boolean logic [26], [27], majority
logic [28], and MAGIC (Memristor-Aided loGIC) [29]. Other
designs cannot have a shared controller, such as CRS [30]
as their control signals are data-dependent. In this work, we
design the primitive circuits based on MAGIC due to its
simplicity. In principle, any of the above logic schemes that
support a shared controller can be used.

CIM regards memristors as digital devices that have two
stable states. In MAGIC, logic ‘1’ is represented by low
resistance (ON) and ‘0’ by high resistance (OFF) [31]. The
operations that switch a memristor to the ON/OFF states are
respectively called SET/RESET. They can be achieved by
applying positive or negative voltages that are larger than the
SET/RESET threshold voltages of the memristor [29].

In MAGIC, memristors are placed on a 2-dimensional grid,
where each memristor is connected to a horizontal and a
vertical nanowire [29] (see Fig. 1). Appropriate voltages are
applied to nanowires by the CMOS controlled voltage drivers.
The voltage drivers consist of a set of voltage sources and
switches as shown in Fig. 2; the three switches select the
required supply voltage. MAGIC uses up to nine voltage
levels, including the three levels shown in the figure. Here, V0

is the execution voltage, which is used together with ground
(GND) to execute a logic operation. VV S is the isolation

Fig. 1. A 32-bit adder implemented with MAGIC logic.

Fig. 2. Voltage controller implementation in CIM.

voltage and is applied to the columns where the memristor
states must keep their values. Examples of the other voltages
are SET, RESET and READ voltages. The number of required
voltage levels is much more than for typical RRAMs, which
typically require four voltage levels [32].

MAGIC supports only one logic operation in the crossbar,
an n-input NOR operation [29]. The input and output values
of the NOR operation are stored in memristors that share
the same row or column. Note that when n = 1, the NOR
operation reduces to a NOT operation. As NOR is functionally
complete, we can use it to build various circuits. Talati et al.
presented a 1-bit full adder [29] using the red memristors
shown in Fig. 1. First, the inputs are copied to the adder
(step 1). Then, several NOR operations are conducted in
the first row and the carry bit is obtained at the seventh
column step 2). Subsequently, step 3 and step 4 are used
as intermediate computation steps. Finally, the sum bit S is
obtained from its complement S (step 5). We designed an
n-bit adder based on this adder. The n-bit adder is also shown
in Fig. 1. Two main changes have been made. The first one
is that we inserted two steps (6 and 7) between step 2
and 3 to move the carry output bit to the carry input bit of
the next 1-bit adder. The second change is to conduct step
5 horizontally (as shown by 5’) instead of vertically, to

allow parallel operations. We have listed the detailed control
steps in the supplementary material of this article. Talati et
al. also presented an n-bit adder in which multiple 1-bit
adders are linked together, with an overall latency of 10n+3
cycles [29]. We have improved it to 8n+ 8 by leveraging the
data parallelism as indicated by the dashed box in Fig. 1. Our
design is also faster than the MAGIC-based design provided
in [33].

We have also implemented a 16-bit multiplier, inspired by

Skeleton-based Synthesis Flow

C

89

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 3

Fig. 3. CIM multiplier design: (a) diagram of a 4-bit CSAS multiplier; (b)
implementation overview in CIM architecture.

TABLE I
ATTRIBUTES OF PRIMITIVE CIRCUITS USED IN THE ARTICLE

Circuits Latency (CC) Width Height Energy (pJ)
Adder 264 10 96 265.19

Multiplier 499 81 64 3084.53
3-input XOR 32 12 32 169.28

the Carry-Save Add-Shift (CSAS) algorithm [34]. Fig. 3(a)
shows a 4-bit CSAS multiplier, which contains four AND gates
and three 1-bit full adders. For more details regarding this
algorithm, we refer the reader to Gnanasekaran’s article [34].
CSAS algorithm suits a memristor implementation due to the
parallel AND and add operations. However, the shift operation
(required to shift the sum Si) might be a bottleneck. When no
dedicated hardware is provided for this shift operation, its time
complexity equals O(N), with N representing the amount of
bits to shift [35]. We try to accelerate the shift operation in
CIM using additional hardware as shown by Fig. 3(b). The left
part (donated by Computation) contains all AND gates, 1-bit
full adders, and intermediate results. The right part (donated
by Shift) contains four mirrors (M1 to M4); a mirror is a small
square crossbar that only contains memristors on diagonal
positions used to link horizontal and vertical nanowires [15].
Mirror M2 is a special mirror in which its memristors are
located on a line parallel to the diagonal. Therefore, this mirror
shifts a signal by one position as shown by the red and green
lines. More details, including control steps, can be found in
the supplementary material.

The latency, area, and energy consumption of the primitive
circuits are listed in Table I. The latency, expressed in clock
cycles, is directly obtained from the number of cycles the con-
troller needs (see also the supplementary material). The area,
expressed in number of required memristors, is determined
from the number of rows (Height) and columns (Width). The
energy, expressed in picojoules, is calculated from the number
of operations per cycle and the data width. We assume one
memristor to be written for each bit during each operation.
Note that the energy consumption is ideally input-depended.
The cost to write a memristor (SET/RESET) lies in the range
of 0.1 fJ [36] to 230 fJ [37]. We assume the worst case of
230 fJ. The static power consumption is ignored here and will
be part of the future work.

B. Circuits Organization in CIM

Fig. 5 shows one of the possible CIM’s working scenar-
ios [9], [24]. It consists of a CIM accelerater and a Resistive
Random Access Memory (RRAM) used as the main memory.

Fig. 4. The linkage of three primitive circuits.

It exchanges data with CPU and storage in the same way
as conventional technologies. Since the memristor crossbar
is not continuous, we need to add additional nanowires to
transfer main inputs and outputs to/from the internal circuits.
RRAM and CIM both have memristor and CMOS layers. Their
controllers are both implemented in CMOS. CIM is connected
to the RRAM via nanowires in a dedicated layer as shown
in the part of Fig. 5(b). Each nanowire creates a connection
between RRAM and one or more primitive circuits as shown
in the front view. A nanowire transfers at most a single data
bit during each clock cycle.

CIM’s memristor layer consists of primitive circuits that
satisify two conditions. First, these circuits must operate in
parallel to achieve better performance, and second, they should
not conflict with each other during operation. Therefore, we
avoid placing input/output ports on the same rows or columns
and link them by using two or more mirrors. Fig. 4 shows for
example three primitive circuits A, B, and C; A exchanges
data with B and C. The horizontal and vertical lines related
to communication are colored red and green respectively.
In CIM, we assume that all data words are 32-bit wide,
and that all the bits are transferred in parallel. When A
transfers a word to B, it is first copied to M1, then to M2,
and finally to B. The nanowires between M1 and B are
disconnected. This created isolated islands of primitive circuits
except where I/O takes place. The isolated nanowires in B
are colored brown. Breaking the nanowires allows A and B
to operate independently since they do not share nanowires
or memristors. Communication is conducted when A and B
are not operating. Similarly, the nanowires between B and C
are also broken. For brevity, nanowires not related to previous
discussion are not shown. The negative affect of this solution
is that it decreases the density of the crossbar and, more
importantly, increases the manufacturing complexity.

The latency of the communication described above equals
to the number of mirrors plus one. Therefore, transferring data
from A to C needs one more cycles for A to transfer data to
C than from A to B in Fig. 4. This feature has a significant
influence on the design automation, which will be analyzed in
Section III-A.

We have synthesized the CMOS controller for the 32-bit
adder with Cadence’s RTL Compiler and NanGate’s 15 nm
library [38]; the reported area is 30 µm2. However, Interna-
tional Technology Roadmap for Semiconductors 2.0 (ITRS
2.0) predicts that the density of memristor crossbar will
reach 2.38× 1011 bit/cm2 in 2020 [39]. With this density,
a crossbar of 96 rows and 10 columns (i.e. the size of the
adder) is only 0.23 µm2. This means that the CMOS controller
is 130x larger than the memristor crossbar. If we assign a

C

90 Paper C.2

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 4

Fig. 5. CIM/CPU heterogeneous computing: (a) Overall structure; (b)
Communication between RRAM and CIM.

dedicated a controller to every primitive circuit, then CMOS
controller’s area dominates the chip area and we cannot exploit
the high density of the crossbar. Therefore, the controller
must be shared between the logic circuits. Furthermore, this is
possible due to the nature of memristor logic as discussed in
Section II-A. Sharing the same controller requires the circuits
to operate synchronously. In Section V, we will show that the
controller can handle 104 to 105 circuits simultaneously. As a
result, the crossbar area becomes dominant. Due to the small
area of the controller, it will be ignored in the rest of this
paper.

RTL Compiler reports the power of the 32-bit adder to be
13.59 µW with a frequency of 1GHz. It leads to an energy
consumption of 3.588 pJ for a time period of 264 ns as the
latency of the adder is 264 cycles. It is less than 2% compared
to the energy consumption in the memristor crossbar. When
the controller is shared with many primitive circuits, the
percentage will be even smaller. Therefore, we will also omit
the energy consumption of CMOS layer in the rest of the
article.

III. SKELETON-BASED SYNTHESIS FLOW

Section III-A motivates the reason why a radically new de-
sign flow is required. Subsequently, we introduce the skeleton-
based synthesis flow in Section III-B, III-C, and III-D.

A. Requirement for a New Flow

The communication characteristics of the memristor cross-
bar make the scheduling routing dependent, as the communi-
cation latency is determined by the routing. Fig. 6(a) shows
the HLS flow used for CMOS circuit design. It consists of
sequential processes; they are resource allocation, scheduling,
placement, and routing. Only when a process fails meeting
the performance or resource constraints, it goes back to
the previous process. It is worth noting that scheduling is
conducted before routing; hence, this flow is not applicable
to CIM.

We can try to adapt the regular HLS flow to CIM, but these
variants all lead to unsatisfactory situations. Since routing
information is not available at scheduling phase, we can
assume all communication has a maximum latency, like six or
eight cycles. Based on this assumption, the operators can be
scheduled. Then, after the routing phase, the communication
latency is updated. Scheduling is conducted again to get a
more accurate design. This adapted flow is shown in Fig. 6(b).

Fig. 6. Regular HLS flow and its variants for CIM: (a) HLS flow for CMOS;
(b) Flow with communication latency assumption; (c) Flow with an adjusted
sequence.

Placement and routing are time-consuming processes, so these
iterations are extremely time consuming. If we make a trade-
off between the quality of the solution and the execution time,
then the performance of the generated design will be only
suboptimal.

Fig. 6(c) shows an alternative variant, i.e. conducting place-
ment and routing before scheduling. In this scenario, the
scheduler has accurate information on communication latency.
The drawback of this flow is that we need to go through all
the processes before knowing whether the latency constraint
is met. Similarly to Fig. 6(b), the long execution time of
placement and routing will impair either the productivity or
the quality of the design.

The fundamental problem of these adaptions is that they
cannot eliminate the cyclic dependence among scheduling,
placement, and routing. In a regular HLS flow, placement
and routing should be conducted based on the scheduling
result. However, in CIM architecture, the communication
mechanism makes scheduling depend on the routing result.
Therefore, a radically new approach is required. Different from
these adapted flows, we solve the scheduling, placement, and
routing altogether using CIM skeletons. The optimal solution
is guaranteed without the need of iteration. This methodology
is introduced in the next section.

B. Hardware/Software Partitioning

Fig. 7 shows the overview of the complete CIM synthesis
flow, which consists of four components. At the application
level (Box 1), the user partitions the original program into
software and hardware, taking the hint given by the profiling
tool. The hardware part needs to be rewritten to fit prede-
fined skeletons. A skeleton contains scheduling, placement,
and routing algorithms for a specific type of DFG structure
(Box 2). The compilation at the kernel level (Box 3) is
to instantiate skeletons with Primitive Circuits, which are
predefined function units like adders and multipliers. The
design of the circuit level (Box 4) has been presented in
Section II-A In the flowing subsections, we will elaborate each
of the rest boxes.

Before the compilation at the kernel level, we need to
identify the favorable algorithms for hardware implementation.
The best candidates should meet the following criteria:

Skeleton-based Synthesis Flow

C

91

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 5

Fig. 7. Synthesis flow for memristor-based CIM architecture.

1 # d e f i n e I n p u t S i z e 8192
2 # d e f i n e TAPS 64
3 i n t p r e [TAPS] , coe [TAPS] , o u t ;
4 void FIR (i n t i n) {
5 i n t temp = 0 ;
6 f o r (i n t j =TAPS−1; j >0; j −=1)
7 p r e [j] = p r e [j −1];
8 p r e [0] = i n ;
9 f o r (i n t j =0 ; j<TAPS ; j ++)

10 temp+= p r e [TAPS−j −1]∗ coe [j] ;
11 o u t = temp ;
12 }
13 void main () {
14 i n t i , t o t a l = 0 ;
15 f o r (i =1 ; i<=I n p u t S i z e ; i ++){
16 FIR (i) ; t o t a l += o u t ;
17 }
18 p r i n t f (” t o t a l :%d\n ” , t o t a l) ;
19 }

Fig. 8. FIR filter source codes.

 coe

256 B

 FIR

99%, 8192

2.0 MiB

 pre

256 B

2.0 MiB

 out

4 B

32.0 KiB

4.0 MiB

 main

0%, 1

32.0 KiB

252 B

252 B

65.7 KiB

Fig. 9. MCProf profiling
result.

• They form a large percentage of the execution time. Ac-
cording to Amdahl’s law [40], accelerating such kernels
can generate a recognizable overall speedup.

• They are coarse-grained, which means they do not change
a large quantity of data with other parts of the application.

• They have inherent massive parallelism so that they have
the potential to be accelerated.

• Their structures are easy to be implemented by hardware.

In order to highlight the computing and memory intensity
parts of an application and to obtain the communication
among these parts, we utilize MCProf [41], [42]. MCProf
is a runtime memory and communication profiler based on
Intel Pin dynamic binary instrumentation framework [43].
MCProf takes the binary of an application as input to generate
profiling results in various formats. Based on the information
generated by MCProf, developers can partition the application
into software and hardware parts, as shown in Box 1 in Fig. 7.
Later, the hardware part enters the kernel-level design flow
which will be explained in Section III-C.

To illustrate the utilization of MCProf to extract the required
information from an application, let us consider the C program
of a Finite Impulse Response (FIR) filter modified based on
LegUp’s [44] testbench as shown in Fig. 8. The initialization

of the coefficient array coe is omitted for concision. MCProf
generates the output shown in Fig. 9. The functions are
represented by ovals, which contains the name of the function,
its percentage execution contribution, and the total number of
calls; e.g. FIR function consumes 99% of the overall execution
time and is called 8192 times. The rectangles represent objects,
such as the pre and coe arrays in this case. The arrows
represent the communication with the data amounts marked
near the lines. Dense communication is indicated by red
color (bold lines), and the rest is green. Clearly, the FIR
function consumes most of the execution time, and most of
the communication is between it and arrays pre and coe. If we
implement the FIR function in main memory using the CIM
concept, then the data transfer between the processor and the
memory will be several orders of magnitudes smaller than the
original version. In this example, the profiling is performed
at the function level. By using markers, it is also possible to
obtain profiling information at lower granularity levels, such
as the loop level.

C. CIM Skeletons

In this skeleton-based synthesis flow, targeting problems are
mapped to the crossbar by instantiating predefined solution
templates with primitive circuits. Each skeleton can map a
specific class of problems that share a similar DFG structure.
In this paper, we generally follow the classification defined
by Campbell [45] and define four structures as shown in
Fig. 10. We chose this classification because it contains a
relatively small number of classes while covering a broad
range of problems. Each box in Fig. 10 represents an operation
or a DFG consisting of multiple operations, and boxes with
the same labels represent the same operation(s). The arrows
between them indicate data dependency. The four structures
are:

• Recursively partitioned. Problems are partitioned into a
small size, and they are solved separately. After that, the
solutions are collected in a recursive style.

• Farm. The same function is applied potentially in parallel
to a list of independent jobs. The results are combined
by a controlling process.

C

92 Paper C.2

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 6

Fig. 10. DFGs, scheduling, and parallel simulation support of fundamental skeletons: (a) Recursively Partitioned; (b) Farm; (c) Systolic; (d) Crowd.

• Systolic. It consists of processes that have data flowing
between them, and that may operate concurrently in a
pipelined fashion.

• Crowd. Similar to the Systolic skeleton except for that
there is no data flow between the concurrently operating
processes.

Note that we are not using Campbell’s Task queue skeleton,
as it is a generalized version of Farm as which not suited
for hardware implementation. It is also worth noting that
the sizes of these structures are unfixed. For example, a
Recursively Partitioned skeleton also suits problems with more
layers as long as the solutions are collected recursively. Other
classifications, e.g. the one used in STAPL framework [18], can
also be adopted in the synthesis flow.

For each problem class, we specify the scheduling, place-
ment, and routing algorithms, and store them in a repository
as shown in Box 2 of Fig. 7. With respect to the placement,
primitive circuits and the hardware design they constitute are
represented by their bounding rectangles. These rectangles are
not allowed to overlap each other. We take Recursively Parti-
tioned skeleton as an example of the solution templates. The
placement algorithm specified in this skeleton places boxes a
and b following a binary-tree patternas shown in Fig. 11(a).
All the intermediate data are transferred via two mirrors, which
are minimum number required (see Section II-B). Since the
communication cost is known as three cycles, the problem
can be scheduled as the expressions shown in Fig. 10(a).
The expressions are the starting moments of corresponding
operations, in which Tx represents the latency of box x, e.g.,
Ta means a’s latency. The dash-dot lines divide the DFG into
several regions. Boxes in each of them execute in parallel.
For other skeletons shown in Fig. 10, the scheduling results
are also marked in a similar way.

The skeleton can break the cyclic dependence of scheduling,
placement, and routing that we discussed in Section III-A. The
reason is that these algorithms are defined altogether instead
of separately. Limiting the problems’ DFG structures facilities
the development of these algorithms. For instance, the binary-
tree placement algorithm improves the performance for the
Recursively Partitioned skeleton, but it cannot be applied to
other problems.

D. Skeleton Instantiation

A skeleton generates a hardware design after instantiated
with primitive circuits or other hardware designs. In the
latter case, we can solve complex problems that do not fit

Fig. 11. Skeleton layout and nesting: (a) Binary-tree layout pattern; (b) 4×4
matrix multiply.

any fundamental skeleton. One advantage of the skeleton-
based flow is that the users do not need to take care of
implementation details. Instead, they just need to analysis the
DFG and apply the right skeleton.

Suppose we intent to map the matrix multiply algorithm on
CIM:

AB =
(
~a1

ᵀ ~a2
ᵀ · · · ~an

ᵀ)ᵀ (~b1 ~b2 · · · ~bn

)

=

~a1 · ~b1 ~a1 · ~b2 · · · ~a1 · ~bn
~a2 · ~b1 ~a2 · ~b2 · · · ~a2 · ~bn

...
...

. . .
...

~an · ~b1 ~an · ~b2 · · · ~an · ~bn

 , (1)

where ~ai is a row vector of matrix A, and ~bi is a column vector
of B. It is a complex algorithm that does not fit any skeleton.
However, we can see that it contains repetitive patterns. Each
element of the result matrix is an inner product of two vectors.
Thus, we can divide it into two levels. The top level is a
Crowd skeleton because there are no data flows between these
elements. The lower level is the vector inner product function.
This function suits a Recursively partitioned skeleton, with “a”
and “b” boxes in Fig. 10 replaced as multipliers and adders.

To implement the matrix multiply, we need to build the
system bottom-up. First, we instantiate a Recursively parti-
tioned skeleton with the multiplier and the adder. After that,
we instantiate the Crowd skeleton with the inner product just
generated. We assume both matrices are 4 × 4, so the vector
size of the inner product is also 4. Fig. 11(b) represents
the generated system. The symbols “×” and “+” stand for
multipliers and adders while dashes between them are com-
munication paths. Each subsystem, as shown in the dashed
box, has a detailed layout following the binary-tree pattern. If

Skeleton-based Synthesis Flow

C

93

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 7

Fig. 12. DFGs, scheduling, and parallel simulation support of fundamental skeletons with hardware reuse: (a) Recursively Partitioned; (b) Farm; (c) Systolic;
(d) Crowd.

an application cannot fit any existing skeleton, it is necessary
to develop a new one. In this case, the skeleton repository
should be extended.

In a similar way, we can implement the FIR function
shown in Fig. 8. The for loop at line 9 and 10 suits the
Systolic skeleton, where “a” and “b” boxes are instantiated
with multipliers and adders. To further accelerate the program,
we instantiate the Crowd skeleton with the generated FIR
kernel to enable the high-level parallelism represented by the
for loop in the main function (line 15 and 16).

IV. CONSTRAINTS AND OPTIMIZATIONS

Next, we introduce more implementation details of CIM’s
synthesis flow. First, we present the methods that satisfy the
area constraints in Section IV-A. Then in Section IV-B, we
analyze data transfer patterns and use them to decrease the
bandwidth and optimize the design. Thereafter, we describe
in Section IV-C the tool’s parallel SystemC simulation feature
used to deal with large designs.

A. Area Constraint and Hardware Reuse

Our skeleton-based flow supports user-defined area con-
straint, which represents the chip size or the area reserved for a
hardware design. When the design area exceeds the constraint,
we need to allocate less hardware and reuse it over time. We
first adjust the DFGs to preserve the functionality. Then, the
scheduling, placement, and routing algorithms are modified
accordingly.

The modified DFGs are shown in Fig. 12. Boxes in these
DFGs execute n times instead of just once in Fig. 10. Loop-
backs are introduced to accumulate the result generated in
different iterations. Comparing Fig. 10(a) and Fig. 12(a) as
examples, we can find the box b at the lowest level both accepts
two inputs. In the former DFG, these two inputs come from
two sub-DFGs at higher levels simultaneously. In the latter
one, they are from the same sub-DFG sequentially. The result
would be the same as long as b is correctly initialized. For
instance, if b is an adder, its initial output should be set to
zero.

The mapping and routing algorithms for these skeletons are
similar to the flattened designs, i.e. the skeletons without hard-
ware reuse. A demultiplexer, or a demux in short, is introduced
into each box that has a loop-back routing. The demux can
route the output signal to loop-back during computing, and
send it to the output port of the whole design at the final

Data: Area constraint Ac, problem size Sp

Result: A valid hardware design
1 Calculate flattened design’s area Af ;
2 if Af < Ac then return The flattened design ;
3 Nu ← Sp,Nl ← 1 ; // Upper & lower bounds
4 while Nl + 1 < Nu do // Search space > 1
5 Nc ← (Nu +Nl)/2; // Set reuse times
6 Build a design for problem size Ceil(Sp/Nc);
7 Calculate current design’s area Ar;
8 if Ar < Ac then // Shrink search space
9 Nu ← Nc;

10 else
11 Nl ← Nc;
12 end
13 end
14 return The design for problem size Ceil(Sp/Nu);

Fig. 13. Build designs under area constraint.

stage. The scheduling results are also indicated in Fig. 12;
Ti in these expressions means the largest latency among all
the boxes. It is usually called initiation interval, which is the
number of cycles that must elapse between two sets of inputs.

Fig. 13 shows the procedure of constructing designs with
hardware reuse. First, we build a flattened design without
hardware reuse (line 1). If the area meets the constraint,
this design will be returned immediately (line 2). Otherwise,
hardware reuse is required. In this case, we use binary search
to decide how many times the hardware needs to be reused
(line 3 to line 13). The initial search space is between one and
the problem size Sp (line 3), and the exit condition is that the
search space has shrunk to one (line 4). When the hardware
is reused for Nc times, each time the hardware only needs to
process Sp/Nc inputs. We build a new hardware design for
this problem size (line 6) and calculate its area (line 7). Then
we update the upper or lower bounds depending on whether
the area meets the constraint (line 8 to line 12). The final
design is for problem size Sp/Nu, which has lowest latency
and meets the area constraint.

B. Data Transfer and Bandwidth Constraint

After building the hardware for computation following
previous sections, we need to consider their input/output data
transfer, which also has an important impact on the overall per-
formance. This section focuses on the communication between

C

94 Paper C.2

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 8

Fig. 14. Data transfer for spatial and temporal patterns and shift operation: (a)
Shifts; (b) Duplication; (c) Offset Value; (d) Shift operation implementation.

RRAM and CIM (See Fig. 5). In this paper, we assume the data
has been stored in the RRAM. The communication between
RRAM and other components, such as CPU and storage, is
beyond the scope.

Before presenting our data transfer solution, let us examine
the patterns in the input/output data. In the FIR function shown
in Fig. 8, lines 9 and 10 specify the computation while lines
6 to 8 describe the input data transfer. The computation part
has two input arrays named pre and coe. In each execution,
pre is shifted from the previous iteration (lines 6 to 8).
Similar patterns are common in other programs. By leveraging
these patterns, the data can be transferred more efficiently.
These patterns can be either temporal or spatial. The temporal
patterns we recognized include:

• Constants. The data does not change in all/some itera-
tions, like the coe array in FIR function. (The initializa-
tion of coe array is omitted as shown in Fig. 8.)

• Shifts. The data should be shifted before it is applied to
different iterations. This is the case of pre array in FIR
function.

• None. No aforementioned temporal relations among the
data.

The spatial patterns are:

• Duplication. The same data is used in different parts of
the design. E.g., ~a1 is the input array for all the inner
product in the first row of the matrix multiply as shown
in Formula 1.

• Offset Value. The original data and its shifted versions
are applied to different parts of the design. In Sec-
tion III-D, we introduced that the FIR function can be
implemented with the Crowd and the Systolic skeletons.
It means duplicated hardware work in parallel. In this
case, the pre array has an Offset Value pattern.

• None. No aforementioned spatial relations among the
data.

Next, we will show the way to deal with the above patterns
in case of CIM design. Fig. 14 shows the data transfer
procedures for different patterns. The dotted box represents
CIM, and the boxes inside it are logic units. The rectangle on
the left symbolizes the input data arrays stored in RRAM. We

Data: Input matrices dimensions: m, n, and k
Result: Hardware design of matrix multiply Am×n ×Bn×k

1 SetAreaCon(1e5, 1e5);
2 Multiplier mul(a, b);
3 Adder add;
4 Recur ske inner〈mul, add, n〉(NONE, NONE);
5 Crowd ske row〈inner, m, HORZ〉(DUPL, NONE);
6 Crowd ske mm〈row, k, VERT〉(NONE, DUPL);
7 return mm.GenSystem();

Fig. 15. Pseudo codes of specifying matrix multiply in CIM compiling
flow.

will not show the solution for the Constants pattern since the
data does not change. Other solutions are listed below.
• Shifts. As shown in Fig. 14(a), first the original data A

is transferred to CIM. Then, it is shifted in RRAM. After
one iteration of execution, the new data A′ is transferred
to CIM for the next iteration.

• None. Data is transferred from RRAM to CIM column
by column.

• Duplication. Data is simultaneously transferred to mul-
tiple columns as shown by Fig. 14(b), following the
broadcast method proposed by Xie [15]. It is faster and
more energy efficient compared with column-by-column
data transfer.

• Offset Value. Similar to the solution for the Shifts pattern
except that the shifted data A′ is now transferred to other
parts of the design within the same iteration as A, as
illustrated by Fig. 14(c).

The solutions for Offset Value and Shifts patterns both require
the shift operation. This is conducted by using two groups
of mirrors following the steps shown in Fig. 14(d). First, the
data A is copied to mirrors D. Then, all the bits are shifted
to mirrors D′ in parallel. Finally, the data is copied back as
A′, which is the shifted version of A.

We use matrix multiply as an example to show the usage
of data patterns. Fig. 15 specifies the matrix multiply with
three skeletons. First, we set the area constraint (line 1), which
represents a crossbar with 105 × 105 memristors. Then we
define primitive circuits including the multiplier (line 2) and
the adder (line 3). After that, three skeletons are instantiated:
one Recursively Partitioned skeleton and two Crowd skeletons
(lines 4 to 6). This instantiation is based on primitive circuits
(such as mul and add), matrix parameters (such as m and n), as
well as other skeletons; e.g., the instantiation of row makes use
of inner (line 5), which is a Recursively Partitioned skeleton.
Note that Crowd skeleton make use of two constants, HORZ
and VERT, to specify the direction of duplicating circuits.
HORZ in line 5 indicates inner is duplicated and placed in
a horizontal direction (i.e., forming a row of inner). On the
other hand, VERT in line 6 indicates that the former row of
inner is duplicated and placed vertically, resulting in a matrix
of inner. The parameters in parenthesises indicate the data
patterns. Matrix multiply has two duplication (DUPL) patterns
for rows and columns.

The communication bandwidth between RRAM and CIM

Skeleton-based Synthesis Flow

C

95

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 9

is also a significant constraint on the hardware design. The
product of the bandwidth and initiation interval indicates the
maximum data amount that can be transferred between two
pipelining stages. If the computation kernel expects more data,
it will stall. We can limit the size of hardware design to avoid
such stall, so that the same performance can be achieved with
a smaller area. The Duplication pattern reliefs the bandwidth
constraint because it requires fewer data transfers from RRAM
to CIM. If no bandwidth constraint is specified by the user,
the theoretical maximum bandwidth is used. The theoretical
bandwidth is N bits per Clock Cycle (CC), where N denotes
the number of nanowires across the interface.

C. Parallel Simulation Support

Our compiler integrates parallel SystemC simulation support
into skeletons’ specification for acceleration and enabling
large simulation scale. At the current development phase, the
compiler generates SystemC files for behavior verification.
However, the standard SystemC implementation [46] does
not support parallelism, which limits the performance and
scale of the simulation. Therefore, we replace some channels
with Message Passing Interface (MPI)-based communication.
Subsequently, we can distribute the simulation to multiple
machines.

Fig. 10 and Fig. 12 illustrate our parallel simulation support
for each skeleton. The parts surrounded with dotted boxes are
simulated in parallel by different threads (possibly on different
machines). The number and sizes of these boxes are decided
by the number of available threads, which is set by the user.

V. EXPERIMENTAL RESULTS

We conducted three sets of experiments to validate the
design flow. Section V-A uses the inner product, FIR filter, and
Tiny Encryption Algorithm (TEA) as case studies to show the
source codes and graphic outputs. After that, we analyze the
scalability of the flow in Section V-B while considering FIR
filter. Parallel SystemC simulation results will be presented in
Section V-C. Finally, we discuss the strength and limitations
of the proposed synthesis flow in Section V-D.

A. Case Studies

We use the inner product of vector size four (see Fig. 16(a))
and FIR filter with tap size three (see Fig. 16(b)) as two
examples to show the generated graphic layout of the skeleton-
based synthesis flow. The large and small rectangles represent
multipliers and adders, respectively. Within them, the light
yellow and dark blue triangles denote the input and output
ports, and the light blue fields represent the area dedicated for
wiring. The figures clearly show the usage of the binary tree
and systolic patterns in these figures.

Next, we use a more complex case study, i.e. the TEA, to
show how the skeleton-based design methods can be used to
implement real-life applications. TEA is a simple block cipher
that uses a 128-bit key to encrypt 64-bit data blocks [47].
Fig. 17 shows its C implementation. The function accesses the
plaintext and the key with pointers (line 1), and the ciphertext

(a)

Legend: Multiplier

Input port Mirror

Output port

AdderWiring

(b)

Fig. 16. Generated graphic output of study cases: (a) Inner product; (b) FIR
filter.

1 void e n c r y p t (unsigned∗ v , unsigned∗ k) {
2 unsigned v0=v [0] , v1=v [1] , sum =0 , i ;
3 unsigned d e l t a =0 x9e3779b9 ; / / key s c h e d u l e c o n s t
4 f o r (i =0 ; i < 3 2 ; i ++) {
5 sum += d e l t a ;
6 v0 += ((v1<<4)+k [0]) ˆ (v1+sum) ˆ ((v1>>5)+k [1]) ;
7 v1 += ((v0<<4)+k [2]) ˆ (v0+sum) ˆ ((v0>>5)+k [3]) ;
8 }
9 v [0] = v0 ; v [1] = v1 ;

10 }

Fig. 17. Tiny Encryption Algorithm source codes.

Fig. 18. Tiny Encryption Algorithm’s hardware implementation with the Farm
and Systolic skeletons.

is also returned via a pointer (line 9). A 32-bit constant
(0x9e3379b9, line 3) is used to prevent simple attacks based on
the symmetry of the rounds. The encryption process consists
mainly of a loop of 32 iterations (line 4 to 8). Each iteration
contains shift, addition, and XOR operations (line 6 and 7).

We manually designed a hardware unit as shown in the right
part of Fig. 18 to implement one iteration of TEA. This unit
has eight adders and two 3-input XOR operators, represented
by rectangles with “+” and “ˆ” symbols, respectively. As
shown in the source code (line 6 and 7 in Fig. 17), most
adders have one constant input. These constants are also
provided in Fig. 18. “Si” means variable sum’s value in the ith
iteration, which is available during compilation. The mirrors
are represented by black slashes. They link the horizontal and
vertical nanowires, which are illustrated by colored stripes.
Different colors are used to indicate different data. Polylines
(“ ” and “ ”) represent special mirrors whose memristors
are located in a line parallel to the diagonal. These special
mirrors are used to implement shift operations. Next, this

C

96 Paper C.2

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 10

101 102

100

103

106

Matrix size

(a) Matrix Multiply

102 103 104

101

103

105

Input size

(b) FIR Filter

103 104 105

101

103

105

Plaintext (Byte)

(c) TEA

Latency (ns) Energy (µJ) Bandwidth (GB/s) Width Height

Fig. 19. Latency, energy, bandwidth, and area of scaling applications in CIM.

101 102

10−2

100

102

104

21
.4

9

22
.3

0

19
.6

9

30
.7

2 91
.5

5 34
1.

0 10
82

14
18

Matrix size

(a) Matrix Multiply

102 103 104

10−1

100

101

102

103

2.
30 3.

28 5.
24 9.

17 17
.0 31

.7 60
.2 11

2.
4

12
0.

4

16
1.

8

19
7.

9

Input size

(b) FIR Filter

103 104 105

10−1

100

101

102

103

2.
11 2.
30 3.

30 5.
20 8.

86 14
.6 24

.7 42
.8 59

.3 83
.5

Plaintext (Byte)

(c) TEA

Execution time (ms) Energy (mJ) Speedup

Fig. 20. Latency and energy of scaling applications on the multicore platform.

unit is duplicated using the Systolic skeleton as shown in the
bottom left part of Fig. 18. The resulting circuit (worker)
implements all the 32 iterations, thus representing an entire
TEA function. This circuit is further duplicated by the Farm
skeleton to speedup encrypting different parts of the plain text
in parallel. The Farm skeleton uses two helper circuits (mapper
and reduce) to split the plaintext and merge the ciphertext as
shown in the left part of Fig. 18.

B. System Scaling

In this section, we compare CIM’s performance against
a multicore system to show the quality of our compiler’s
generation. The targeted multicore system is Intel Xeon X7460
processor that consists of six cores on a die of 503mm2,
running at 2.66GHz each [48]. We assume the CIM chip to
be only 10% of the area of Xeon X7460, and only 10% of the
CIM chip is used for computation (the rest is used as RRAM,
see Fig. 5). Then, the computation part contains about 1010

memristors according to the density predicted by ITRS [39].
Therefore, we add an area constraint 105×105 to the synthesis
flow.

We varied the problem sizes to evaluate the scaling capa-
bilities with area constraint and generated three cases: matrix
multiply, FIR filter, and TEA. We assume the matrices to
be square n × n. In the FIR application, the taps number is

fixed as 64, and input size changes; see Fig. 8. The problem
size of TEA can be valued by the plaintext size. We assume
CIM’s clock frequency is 1GHz, considering the memristor
switching time is in the range of a hundred picoseconds [49].
The performance and the cost of generated designs are shown
in Fig. 19. In all three cases, the latency increases faster when
the area limit is reached. This indicates that the hardware is
reused to meet the area constraint. Whether the hardware is
reused or not, the energy consumption increases almost at the
same rate as it is determined by the total number of operations.
For matrix multiply and FIR, there is a positive correlation
between the bandwidth and the crossbar height, since the
data in different rows can be transferred in parallel (see
Section II-B). On the other hand, TEA’s bandwidth remains
constant, because it uses a mapper circuit to split sequential
inputs to the worker threads (see Fig. 18). In all three cases,
the width and the height do not increase when they approach
105, due to the area constraint we set.

To show the quality of the synthesized designs, we evaluated
the execution time and energy consumption of these applica-
tions on a multicore platform and compared the execution time
against CIM. This evaluation is conducted with Sniper [50],
and the energy consumption is reported by McPAT [51]. We
employed a simulator instead of using real hardware because
it benefits the reproducibility. The targeted hardware platform

Skeleton-based Synthesis Flow

C

97

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 11

TABLE II
COMPARISON AMONG DESIGN METHODOLOGIES

Application Design quality Development
Design methodologies Type Size Latency Area Efforts Execution time

Manual Regular Large Low Large Much -
Skeleton-based (this work) Half-regular Large Low Large Medium Short

Fully automated Irregular Medium Slightly high Small Little Long

TABLE III
BASELINES OF PARALLEL SIMULATION

Applications Size Base (s)
Matrix multiply 64 1686

FIR filter 512 1036
TEA 4096 1859

100 101

100

101

MPI nodes

Sp
ee

du
p

Matrix multiply
FIR filter
TEA

Fig. 21. Parallel simulation speedup.

is an Intel Xeon X7460 processor, which consists of six cores,
each running at 2.66GHz. These cores have 64 kB L1 cache
each and share a 16MB L3 cache. Every two cores share an
L2 cache of 3MB. The experimental results, including the
speedup of CIM over the multicore platform, are shown in
Fig. 20. The values of the speedup are marked beside the line.
The maximum speedup for matrix multiply, FIR filter, and
TEA is 1418x, 197.9x, and 83.5x, respectively. The energy
consumption of multicore is about one order of magnitude
larger than CIM for all the three cases.

C. Parallel Simulation

We enabled parallel simulation support to be able to simu-
late large designs. The parallel experiments are performed on
a high-performance computer with 20 Intel Xeon E5-2670 HT
cores, running at 2.50 GHz each. First, we obtained the base-
line execution time which are based on sequential simulations.
Table III shows the sizes of simulated applications and the
corresponding simulation time. After that, we fixed the system
size and changed the number of MPI nodes and generated
eight configurations. For each of these configurations, we
performed the simulation ten times and calculated the average
execution time after removing the maximum and minimum
values. Fig. 21 shows the speedup of each configuration over
the sequential simulation as the baseline. The output data of all
the parallel simulations are verified and found to match those
of the sequential one. When MPI nodes are less than 16, the
speedups are almost the same as the thread number. When
the nodes number increases beyond 16, the speedup tends to
saturation. It is understandable since the cores in hardware are
limited. This result shows a good scalability.

D. Discussion

We compared the skeleton-based design flow, the manual
design flow, and a potential fully automated flow in Table II
to identify their characteristics. The fully automated flow
is similar to existing VLSI design flows that can map any
application to the hardware without using predefined solu-
tions. Such a flow is currently not available due to design
constraints of memristor-based CIM architectures that have
been discussed in Section II-B and III-A. In addition, existing
research on manual designs, such as [10], [52], have different
assumptions on primitive circuits, hardware platforms, and ap-
plications as compared to this work. Therefore, the comparison
is qualitative instead of quantitative. We first compare the
supported applications of these three design methodologies.
Manual designs can only handle regular applications such as
parallel addition [52] and matrix multiply [10] due to design
complexity. Skeleton-based flow requires the application to
be regular at the top level while it has no restriction for the
computational kernel at low level, as demonstrated in the TEA
case study. The fully automated flow is the most flexible one
with regard to the application type. However, the application
size supported by the automated flow is not as large as the
skeleton-based flow because the former has to explore the
compute design space. Secondly, with respect to the quality of
the generated designs, automated design flow cannot achieve
optimal communication cost as discussed in Section III-A.
However, since communication latency (typically 2-6 cycles)
is relatively small compared to computation latency (tens to
hundreds of cycles), the difference in performance between
optimal design and suboptimal one would be minor. From an
area point of view, the manual and skeleton-based flows have
large white space in the designs, and hence require a larger
design area than the automated flow. Finally, comparing their
design efforts, the automated flow would be the easiest one to
use. For the skeleton-based flow, the user is required to identify
the patterns in the application; hence, it needs more effort. A
skeleton-based synthesis tool executes quickly because it does
not require design space exploration.

Despite the huge potential of this synthesis flow, memristor-
based CIM architectures are still in their infancy stage and
facing many challenges. The implementation of primitive cir-
cuits affects the performance of memristor-based computation,
including CIM. The latency of the multiplier (499 CC) and the
adder (264 CC) that we proposed in the experiments are still
much greater than those operators implemented with CMOS
technology. Therefore, even greater performance improvement
can be achieved if these primitive circuits are improved.
On the other hand, only few arithmetic operators have been
implemented in memristor crossbars. It limits the number of

C

98 Paper C.2

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 12

algorithms that we can map to CIM. Since memristor-based
computation is emerging, future research will produce more
and better circuits designs, and they will also benefit CIM.

Endurance is another concern [6], [53]. It restricts the po-
tentials of memristor-based computation and CIM. Currently,
the largest number of allowed write/erase operations on a
memristor is only around 1012 [54], [55], but this number
is believed to be able to reach 1015 [56] in the future.
Nevertheless, CIM is an accelerator that typically has a lower
workload profile than CPUs. For instance, CIM can be used in
specific applications that are mostly in power-off state, such
as wearable devices, smart IDs, and sensors [57], [58]. These
applications have a lower endurance requirement.

VI. CONCLUSION AND FUTURE WORK

Memristor-based CIM architecture requires a radically new
development flow due to the characteristics of the memris-
tor crossbar. We built a desirable synthesis flow for CIM
based on an extension of algorithmic skeletons. In this flow,
scheduling, placement, and routing algorithms are specified
according to problems’ DFG structures. We also investigated
data patterns existing in stream applications and combined
them with skeletons. To accelerate SystemC simulation, we
integrated it with MPI. This work is verified using three
applications, and their latency is compared against a multicore
system. Primary results show the feasibility and potential of
the proposed approach.

In future work, we will further investigate the communica-
tion between the RRAM and other components, such as the
storage and the CPU. We are also developing a new Domain-
Specific Language (DSL) to better describe CIM skeletons,
especially with data patterns.

REFERENCES

[1] M. Saecker and V. Markl, Big Data Analytics on Modern
Hardware Architectures: A Technology Survey. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 125–149. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36318-4 6

[2] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra et al., “Top ten exascale
research challenges,” DOE ASCAC, Tech. Rep., 2014.

[3] T. Skotnicki, J. A. Hutchby, T.-J. King, H. S. P. Wong, and F. Boeuf,
“The end of cmos scaling: toward the introduction of new materials and
structural changes to improve mosfet performance,” IEEE Circuits and
Devices Magazine, vol. 21, no. 1, pp. 16–26, Jan 2005.

[4] L. O. Chua, “Memristor-the missing circuit element,” Circuit Theory,
IEEE Transactions on, vol. 18, no. 5, pp. 507–519, 1971.

[5] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, pp. 80–83, 2008.

[6] A. Morad, L. Yavits, S. Kvatinsky, and R. Ginosar, “Resistive
gp-simd processing-in-memory,” ACM Trans. Archit. Code Optim.,
vol. 12, no. 4, pp. 57:1–57:22, Jan. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2845084

[7] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo:
A processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories,” in Proceedings of the 53rd
Annual Design Automation Conference, ser. DAC ’16. New York,
NY, USA: ACM, 2016, pp. 173:1–173:6. [Online]. Available:
http://doi.acm.org/10.1145/2897937.2898064

[8] P. E. Gaillardon, L. Amar, A. Siemon, E. Linn, R. Waser,
A. Chattopadhyay, and G. D. Micheli, “The programmable logic-in-
memory (plim) computer,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 427–432. [Online].
Available: http://ieeexplore.ieee.org/document/7459349/

[9] S. Hamdioui, L. Xie, H. A. D. Nguyen, M. Taouil, K. Bertels,
H. Corporaal, H. Jiao, F. Catthoor, D. Wouters, L. Eike, and J. van
Lunteren, “Memristor based computation-in-memory architecture for
data-intensive applications,” in Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, ser. DATE ’15.
San Jose, CA, USA: EDA Consortium, 2015, pp. 1718–1725. [Online].
Available: http://dl.acm.org/citation.cfm?id=2755753.2757210

[10] A. Haron, J. Yu, R. Nane, M. Taouil, S. Hamdioui, and K. Bertels, “Par-
allel matrix multiplication on memristor-based computation-in-memory
architecture,” in 2016 International Conference on High Performance
Computing Simulation (HPCS). IEEE, July 2016, pp. 759–766.

[11] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design
principles and methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, Oct 2014.

[12] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[13] L. Xie, H. A. D. Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. Al-
Failakawi, and S. Hamdioui, “Scouting logic: A novel memristor-based
logic design for resistive computing,” in 2017 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), July 2017, pp. 176–181.

[14] C. L. Seitz, Introduction to VLSI systems. Reading, MA: Addison-
Wesley, 1980, ch. System timing, pp. 218–262.

[15] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “In-
terconnect networks for memristor crossbar,” in Nanoscale Architectures
(NANOARCH), 2015 IEEE/ACM International Symposium on. IEEE,
July 2015, pp. 124–129.

[16] S. H. Gerez, Algorithms for VLSI design automation. New York: Wiley,
1999, vol. 8.

[17] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. Cambridge, MA, USA: MIT Press, 1991.

[18] M. Zandifar, M. Abdul Jabbar, A. Majidi, D. Keyes, N. M. Amato,
and L. Rauchwerger, “Composing algorithmic skeletons to express high-
performance scientific applications,” in Proceedings of the 29th ACM on
International Conference on Supercomputing, ser. ICS ’15. New York,
NY, USA: ACM, 2015, pp. 415–424.

[19] C. Nugteren and H. Corporaal, “Bones: An automatic skeleton-based
c-to-cuda compiler for gpus,” ACM Trans. Archit. Code Optim., vol. 11,
no. 4, pp. 35:1–35:25, Dec. 2014.

[20] Y. Wang and Z. Li, “Gridfor: A domain specific language for
parallel grid-based applications,” International Journal of Parallel
Programming, vol. 44, no. 3, pp. 427–448, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10766-014-0348-z

[21] M. Goli and H. Gonzalez-Velez, “Heterogeneous algorithmic skeletons
for fast flow with seamless coordination over hybrid architectures,” in
Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on. IEEE, Feb 2013, pp. 148–156.

[22] K. Benkrid, D. Crookes, J. Smith, and A. Benkrid, “High level pro-
gramming for fpga based image and video processing using hardware
skeletons,” in Field-Programmable Custom Computing Machines, 2001.
FCCM ’01. The 9th Annual IEEE Symposium on. IEEE, March 2001,
pp. 219–226.

[23] K. Benkrid and D. Crookes, “From application descriptions to hardware
in seconds: a logic-based approach to bridging the gap,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 4,
pp. 420–436, April 2004.

[24] J. Yu, R. Nane, A. Haron, S. Hamdioui, H. Corporaal, and K. Ber-
tels, “Skeleton-based design and simulation flow for computation-in-
memory architectures,” in 2016 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), July 2016, pp. 165–170.

[25] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “’memristive’ switches enable ’stateful’ logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[26] J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. Ohlberg, W. Wu,
D. R. Stewart, and R. S. Williams, “A hybrid nanomemristor/transistor
logic circuit capable of self-programming,” Proceedings of the National
Academy of Sciences, vol. 106, no. 6, pp. 1699–1703, 2009.

[27] L. Xie, H. A. D. Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast boolean logic mapped on memristor crossbar,” in Computer Design
(ICCD), 2015 33rd IEEE International Conference on. IEEE, Oct 2015,
pp. 335–342.

[28] G. Rose, J. Rajendran, H. Manem, R. Karri, and R. Pino, “Leveraging
memristive systems in the construction of digital logic circuits,” Pro-
ceedings of the IEEE, vol. 100, no. 6, pp. 2033–2049, June 2012.

[29] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (magic),” IEEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650, July 2016.

Skeleton-based Synthesis Flow

C

99

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 13

[30] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser,
“Beyond von neumann - logic operations in passive crossbar arrays
alongside memory operations,” Nanotechnology, vol. 23, no. 30, p.
305205, 2012.

[31] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic–memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, Nov 2014.

[32] P. J. Kuekes, D. R. Stewart, and R. S. Williams, “The crossbar latch:
Logic value storage, restoration, and inversion in crossbar circuits,”
Journal of Applied Physics, vol. 97, no. 3, p. 034301, 2005. [Online].
Available: http://dx.doi.org/10.1063/1.1823026

[33] P. L. Thangkhiew, R. Gharpinde, P. V. Chowdhary, K. Datta, and
I. Sengupta, “Area efficient implementation of ripple carry adder using
memristor crossbar arrays,” in 2016 11th International Design Test
Symposium (IDT), Dec 2016, pp. 142–147.

[34] R. Gnanasekaran, “A fast serial-parallel binary multiplier,” IEEE Trans.
Comput., vol. 34, no. 8, pp. 741–744, Aug. 1985. [Online]. Available:
http://dx.doi.org/10.1109/TC.1985.1676620

[35] E. Lehtonen, J. H. Poikonen, and M. Laiho, Memristive Stateful Logic.
Cham: Springer International Publishing, 2014, pp. 603–623. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-02630-5 27

[36] C.-L. Tsai, F. Xiong, E. Pop, and M. Shim, “Resistive random access
memory enabled by carbon nanotube crossbar electrodes,” Acs Nano,
vol. 7, no. 6, pp. 5360–5366, 2013.

[37] S. Lee, J. Sohn, Z. Jiang, H.-Y. Chen, and H.-S. P. Wong, “Metal oxide-
resistive memory using graphene-edge electrodes,” Nature communica-
tions, vol. 6, no. 8407, pp. 1–7, 2015.

[38] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker,
L. Rech, and J. Michelsen, “Open cell library in 15nm
freepdk technology,” in Proceedings of the 2015 Symposium on
International Symposium on Physical Design, ser. ISPD ’15. New
York, NY, USA: ACM, 2015, pp. 171–178. [Online]. Available:
http://doi.acm.org/10.1145/2717764.2717783

[39] International RoadMap Committee, “International technology roadmap
for semiconductors 2.0,” Tech. Rep., 2015. [Online]. Available:
www.itrs2.net/

[40] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring).
New York, NY, USA: ACM, 1967, pp. 483–485. [Online]. Available:
http://doi.acm.org/10.1145/1465482.1465560

[41] I. Ashraf, V. Sima, and K. Bertels, “Intra-application data-
communication characterization,” in Proc. 1st International Workshop
on Communication Architectures at Extreme Scale, Frankfurt, Germany,
July 2015, pp. 1–11.

[42] I. Ashraf, “Communication driven mapping of applications on multicore
platforms,” Ph.D. dissertation, Delft University of Technology, Delft,
Netherlands, April 2016.

[43] C. Luk and et al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in PLDI ’05. New York, NY, USA: ACM,
2005, pp. 190–200.

[44] A. Canis, J. Choi, B. Fort, B. Syrowik, R. L. Lian, Y. T. Chen, H. Hsiao,
J. Goeders, S. Brown, and J. Anderson, LegUp High-Level Synthesis.
Cham: Springer International Publishing, 2016, pp. 175–190. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-26408-0 10

[45] D. K. Campbell, “Clumps: a candidate model of efficient, general
purpose parallel computation,” Ph.D. dissertation, University of Exeter,
1994.

[46] Accellera Systems Initiative, “Systemc,” 2016. [Online]. Available:
http://accellera.org/downloads/standards/systemc

[47] D. J. Wheeler and R. M. Needham, TEA, a tiny encryption algorithm.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 363–366.
[Online]. Available: http://dx.doi.org/10.1007/3-540-60590-8 29

[48] Intel, “Xeon processor x7460,” 2008. [Online]. Avail-
able: http://ark.intel.com/products/36947/Intel-Xeon-Processor-X7460-
16M-Cache-2 66-GHz-1066-MHz-FSB

[49] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S.
Williams, “Sub-nanosecond switching of a tantalum oxide memristor,”
Nanotechnology, vol. 22, no. 48, p. 485203, 2011. [Online]. Available:
http://stacks.iop.org/0957-4484/22/i=48/a=485203

[50] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Trans. Archit.
Code Optim., vol. 11, no. 3, pp. 28:1–28:25, Aug. 2014. [Online].
Available: http://doi.acm.org/10.1145/2629677

[51] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power, area,

and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: ACM, 2009, pp. 469–480. [Online]. Available:
http://doi.acm.org/10.1145/1669112.1669172

[52] H. A. D. Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, and
K. Bertels, “Computation-in-memory based parallel adder,” in Nanoscale
Architectures (NANOARCH), 2015 IEEE/ACM International Symposium
on. IEEE, July 2015, pp. 57–62.

[53] P. Pouyan, E. Amat, and A. Rubio, “Memristive crossbar memory
lifetime evaluation and reconfiguration strategies,” IEEE Transactions
on Emerging Topics in Computing, vol. PP, no. 99, pp. 1–1, 2016.

[54] F. Miao, J. Yang, J. Strachan, W. Yi, G. Ribeiro, and R. Williams,
“Memristor with channel region in thermal equilibrium with containing
region,” Mar. 1 2016, uS Patent 9,276,204. [Online]. Available:
https://www.google.com/patents/US9276204

[55] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-
B. Kim, C.-J. Kim, D. H. Seo, S. Seo et al., “A fast, high-endurance
and scalable non-volatile memory device made from asymmetric ta2o5-
x/tao2- x bilayer structures,” Nature materials, vol. 10, no. 8, pp. 625–
630, 2011.

[56] K. Eshraghian, K. R. Cho, O. Kavehei, S. K. Kang, D. Abbott, and
S. M. S. Kang, “Memristor mos content addressable memory (mcam):
Hybrid architecture for future high performance search engines,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19,
no. 8, pp. 1407–1417, Aug 2011.

[57] X. Li, K. Ma, S. George, J. Sampson, and V. Narayanan, “Enabling
internet-of-things: Opportunities brought by emerging devices, circuits,
and architectures,” in 2016 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), Sept 2016, pp. 1–6.

[58] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi,
H. M. Elsayed, H. Corporaal, and K. Bertels, “Memristor for computing:
Myth or reality?” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, March 2017, pp. 722–731.

Jintao Yu (S’17) received the M.Sc degree in China
in 2013. He is currently a Postdoctoral Researcher
at Delft University of Technology. He is currently a
pursuing the Ph.D. degree with the Computer Engi-
neering Laboratory, Delft University of Technology.
His current research interests include memristor-
based computing systems and domain-specific lan-
guages.

Razvan Nane (S’11—M’14) received his Ph.D.
in Computer Engineering from Delft University of
Technology, The Netherlands in 2014. He is cur-
rently a Postdoctoral Researcher at Delft Univer-
sity of Technology. He is the main developer of
the DWARV C-to-VHDL hardware compiler. His
current research interests are high-level synthesis
for reconfigurable architectures, hardware/software
co-design methods for heterogeneous systems, and
compilation and simulation techniques for emerg-
ing memristor-based in-memory computing high-

performance architectures.

C

100 Paper C.2

TRANSACTIONS ON TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020 14

Imran Ashraf (S’10—M’15) is a Postdoctoral re-
searcher at Delft University of Technology. He re-
ceived his Ph.D. in Computer Engineering from
Delft University of Technology, The Netherlands in
2016. His research interests were advanced profiling,
code parallelization, communication driven mapping
of applications on multicore platforms. Currently,
Imran is working as Post-Doctoral Researcher at
Quantum Computing Lab, QuTech, TU Delft. His re-
cent research also focuses on compilation techniques
for quantum computing.

Mottaqiallah Taouil (S’10—M’15) received the
M.Sc. and Ph.D. degrees (both with Hons.) in
computer engineering from the Delft University of
Technology, Delft, The Netherlands. He is currently
a Post-Doctoral Researcher with the Dependable
Nano-Computing Group, Delft University of Tech-
nology. His current research interests include recon-
figurable computing, embedded systems, very large
scale integration design and test, built-in-self-test,
and 3-D stacked integrated circuits, architectures,
design for testability, yield analysis, and memory test

structures.

Said Hamdioui (M’99—SM’11) is currently a Chair
Professor on Dependable and Emerging Computer
Technologies and head of the Computer Engineer-
ing Laboratory of the Delft University of Technol-
ogy (TUDelft), the Netherlands. Prior to joining
TUDelft, Hamdioui worked for Intel Corporation
(Califorina, USA), Philips Semiconductors R&D
(Crolles, France) and for Philips/ NXP Semicon-
ductors (Nijmegen, The Netherlands). His research
focuses on two domains: Dependable CMOS nano-
computing (including Reliability, Testability, Hard-

ware Security) and emerging technologies and computing paradigms (in-
cluding 3D stacked ICs, memristors for logic and storage, in-memory-
computing). He owns one patent and has published one book and co-authored
over 170 conference and journal papers. He delivered dozens of keynote
speeches, distinguished lectures, and invited presentations and tutorial at
major international forums/conferences/schools and at leading semiconductor
companies. Hamdioui is a Senior member of the IEEE, Associate Editor of
IEEE Transactions on VLSI Systems (TVLSI), and he serves on the editorial
board of IEEE Design & Test, and of the Journal of Electronic Testing: Theory
and Applications (JETTA). He is also member of AENEAS/ENIAC Scientific
Committee Council (AENEAS = Association for European NanoElectronics
Activities).

Henk Corporaal received the Ph.D. degree in elec-
trical engineering, in the area of computer archi-
tecture, from the Delft University of Technology,
The Netherlands. Currently, he is a Professor of
embedded system architectures with the Eindhoven
University of Technology, The Netherlands. He has
co-authored over 300 journal and conference papers
in the (multi)processor architecture and embedded
system design area. Furthermore, he invented a new
class of very long instruction word architectures, the
Transport Triggered Architectures, which is used in

several commercial products and by many research groups. His current re-
search interests include single and multiprocessor architectures, deep learning,
and the predictable design of soft and hard real-time embedded systems.

Koen Bertels (M’05) received the Ph.D. degree in
computer information systems from the University
of Antwerp, Antwerp, Belgium. He is currently a
Professor and the Head of the Computer Engineering
Laboratory, Delft University of Technology, Delft,
The Netherlands, where he is researching on quan-
tum computing as a Principle Investigator with the
Qutech Research Center. He has co-authored more
than 30 journal papers and 150 conference papers.
His current research interests include heterogeneous
multicore computing, investigating topics ranging

from compiler technology, runtime support, and architecture. Prof. Bertels
has been the General and Program Chair for various conferences such as
FPL, RAW, and ARC.

Skeleton-based Synthesis Flow

C

101

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 2021 1

APmap: An Open-Source Compiler for
Automata Processors

Jintao Yu, Student Member, IEEE, Muath Abu Lebdeh, Student Member, IEEE, Hoang Anh Du Nguyen,
Mottaqiallah Taouil, Member, IEEE, and Said Hamdioui, Senior Member, IEEE

Abstract—A novel type of hardware accelerators called au-
tomata processors (APs) have been proposed to accelerate finite-
state automata. The bone structure of an AP is a hierarchical
routing matrix that connects many memory arrays. With this
structure, an AP can process an input symbol every clock
cycle, and hence achieve much higher performance compared
to conventional architectures. However, the design automation
for the APs is not well researched. This paper proposes a fully
automated tool named APmap for mapping the automata to APs
that use a two-level routing matrix. APmap first partitions a
large automaton into small graphs and then maps them. Multiple
transformations are applied to the automaton by APmap to meet
hardware constraints. The experiments on a standard benchmark
suite show that our approach leads to around 19% less storage
utilization compared to state of the art.

Index Terms—Automata Processor, design automation, map-
ping, graph partitioning.

I. INTRODUCTION

F INITE-state automata (FSA) are widely used in domains
such as network security [1], bioinformatics [2], and

artificial intelligence [3]. Some innovative hardware designs
re-purpose memory array for accelerating FSA execution, e.g.,
Micron Automata Processor (MAP) [4], Cache Automaton [5],
and RRAM-AP [6]. These accelerators store many states in
memory arrays and distribute each input symbol to all the
states simultaneously. Based on the input symbol, a state
activates other states via a hierarchical routing matrix. These
actions are repeated every clock cycle, and hence these ac-
celerators achieve much high throughput [4], [5], [7]. We
refer to these accelerators as automata processors (APs). The
routing matrix mimics the transition function of FSA. It is
implemented with memory arrays that are connected with rich
wiring. The routing matrix is configured for specific FSA by
writing configurable bits to the memory array. For example,
the routing matrix of Cache Automaton connects 32k states
and contains 10M configurable bits [5]. Therefore, design
automation is required for mapping FSA to the APs.

Currently, there are no open-source design tools available
for the APs. The authors of Cache Automaton described their
methodology of mapping FSA to the hardware [5]. However,
not all the details are explained, and their tool is not publicly
available. Following their methodology, some FSA cannot
be mapped directly due to the constraints on the routing
matrix. As a result, these FSA have to be transformed into

The authors are with the Laboratory of Computer Engineering,
Delft University of Technology, Delft, the Netherlands. E-mail: {J.Yu-1,
M.F.M.AbuLebdeh, H.A.DuNguyen, M.Taouil, S.Hamdioui}@tudelft.nl.

other equivalent forms [5]. This step is iterative and requires
experience. As for other related works, Micron provides a
commercial software development kit (SDK) for MAP. Since
this SDK is closed-source, it cannot be adapted for other
architectures such as Cache Automaton. The compiler of
RAPID can generate mapping by duplicating an initial result,
e.g., produced by MAP SDK [8]. Therefore, it cannot be
used alone. Wadden et al. have developed an open-source tool
named ATR to estimate the resource needed for mapping an
application to MAP [9]. This tool is based on VPR, a routing
tool that targets a 2D-mesh structure such as FPGAs. This
structure is different from the hierarchical routing matrix of
APs, and hence ATR cannot produce accurate results. While
open-source tools, such as REAPR [10] and Grapefruit [11],
have been proposed to map applications to FPGAs, a similar
one that targets APs is still needed.

This paper addresses the above issues and presents APmap1

(Automata Processor mapping tool), an open-source compiler
for APs that are based on a two-level routing matrix, such as
Cache Automaton and RRAM-AP. Note that APmap cannot be
applied to MAP due to its algorithm limitation. APmap uses
multiple strategies to change given FSA to equivalent forms
so that they can meet the constraints of the routing matrix.
Therefore, the compilation process does not require any user
involvement. The main contributions of this paper are:
• A methodology to automatically map automata to APs

that are based on a two-level routing matrix. The method-
ology optimizes the storage utilization;

• An open-source tool APmap based on the proposed
methodology. This tool can be adapted to various designs
by altering its parameters;

• An evaluation of APmap and comparison with state of
the art.

The rest of the paper is organized as follows. In Section II,
we explain the working principle and the routing matrix of
APs. Section III presents the methodologies of APmap. Next,
Section IV evaluates APmap’s performance using ANMLzoo.
After a brief discussion in Section V, Section VI concludes
the paper.

II. BACKGROUND

A. Automata Processors
The APs share a generalized architecture as shown in

Fig. 1 [6]. In every clock cycle, an input symbol I is processed
using three major steps:

1APmap can be downloaded at https://github.com/yjt98765/apmap

C

102 Paper C.3

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 2021 2

ST
E

 1

Symbol Vec s

Input I Routing
Matrix

A
ct

iv
e

V
ec

 a

Follow Vec f

D
ec

od
er

A
cc

ep
t V

ec
 c

Acceptance

ST
E

 2

S
T

E
 N

1 2 3

Fig. 1. General architecture of Automata Processors [6].

1 Input symbol matching. All the states that have incom-
ing transitions occurring on I are identified in this step.
Each state is presented by column vectors called state
transition element (STE) that are pre-configured based
on the targeted automaton. The decoder activates one of
the word lines according to the input symbol I . If an STE
has an incoming transition occurring on I , its output is
logic 1; otherwise, the output is logic 0. The outputs of
all STEs are mapped to a vector called Symbol Vector s.

2 Active state processing. It generates all the possible
states that can be reached from the currently active
states (stored in Active Vector a) based on the transition
function (stored in the routing matrix), and stores the
result in the Follow Vector f . This step also generates
the next active states by bit-wise ANDing s and f .

3 Output identification. Accept Vector c is pre-configured
based on the automaton’s accepting states C. This step
checks the intersection of a and c to decide whether the
input sequence is accepted.

Multiple components, including STEs, the routing matrix,
and Accept Vector c, need to be configured based on the
targeted FSA. The configuration will be generated by APmap.

B. Routing Matrix
The routing matrix implements the transition function of

an automaton. Its input and output are Active Vector a and
Follow Vector f , respectively. The lengths of these two vectors
are both N , i.e., the state number of the automaton. Each
member in the vectors is a Boolean value, corresponding to
an automaton state. The routing matrix of the existing APs all
consist of multiple components that are linked in a hierarchical
style. The routing matrix of MAP contains four levels; Cache
Automaton and RRAM-AP contain two, i.e., global and local
switches. In Cache Automaton and RRAM-AP, the global
switches are located at the center of the chip while the local
switches are distributed. 256 STEs, a local switch, 256 AND
gates, and a decoder are grouped as a tile, as shown in Fig. 2a.
The input symbol I is sent to all the tiles in parallel.

APmap targets the routing matrix of the space-optimized
design of Cache Automaton, which consists of 128 tiles,
eight 1-way global switches, and a 4-way global switch. The
connection between the tiles and global switches is shown in
Fig. 2b. Each tile has two input wires from and two output
wires to every 1-way global switch. Each tile also has eight
input wires from and eight output wires to the 4-way global
switch. In total, a tile has 24 input and 24 output wires.

III. APMAP METHODOLOGIES

We suggest several other tools to be used together with
APmap to develop applications targeting APs. The appli-

STE

L1

G

STE

L2

TileTile Tile

Tile

STE

Li

g

s
a

f

(a) AP chip structure

Tile 0

Global
switch 0

Tile 1 Tile 127

Global
switch 8

(b) Routing matrix
Fig. 2. Detailed structure of Cache Automaton and RRAM-AP.

cation can be coded in RAPID, a high-level programming
language designed for pattern-recognition processors such as
APs [8]. RAPID’s compiler generates Automata Network
Markup Language (ANML), an XML-based format for de-
scribing automata [12], files as output. ANML can be parsed
by VASim [13], a tool that simulates the execution of a
homogeneous automaton. It also supports some important
automata transformations, such as prefix merging. We mod-
ified VASim to preprocess the automata and generate the file
formats used by APmap. These files describe the automata
as a collection of connected components (CCs), i.e., non-
overlapping subsets of the original automata. Finally, APmap
produces the configuration files for APs.

APmap first sorts the CCs by their state numbers and then
maps them one by one. In each iteration, APmap picks the
largest unmapped CC and maps it to one or multiple tiles. In
some cases, not all the space of these tiles are occupied by
this CC. Therefore, APmap tries to find some small CCs to
fill in the remaining space. This process repeats until all the
CCs are mapped.

When a CC contains more than 256 states, it has to be
mapped to multiple tiles. First, this CC is partitioned into
several parts, which will be presented in detail in Section III-A.
To increase the chance of mapping success, the partitioning
process produces multiple solutions. Then, APmap examines
the partitioning results with the hardware constraints on a
tile. If there are conflicts, an extra process is applied to
resolve the conflicts, which will be presented in Section III-C.
Next, APmap tries to generate the configuration for the global
switches and the tiles, which will be presented in Section III-B.
If the configuration of global switches cannot be generated,
APmap selects the next partitioning solution and repeats the
previous processes. If none of these partitioning solutions leads
to a valid configuration, the mapping flow fails.

A. CC Partitioning

APmap partitions a CC with the help of METIS [14], a
widely-used graph partitioning tool. METIS divides an undi-
rected graph into k non-overlapping parts while trying to cut
the least number of edges. An edge is cut in a division means
that the two nodes linked by the edge are assigned to different
parts. First, we transform the CC to an undirected graph to
make it acceptable for METIS. Self-loops are removed in this
transformation. Then, we invoke METIS with two types of
input parameters: the number of parts and the size constraints
on those parts. The size of a part means the number of nodes
contained in that part, and a size constraint is the desired
size of a part. METIS produces the same number of parts as
required; however, the size constraints are not guaranteed to

Compiler for Cache Automaton

C

103

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 2021 3

P3P1 P3P2 P3P3

T1 T2 T3

(a) Balanced partitioning

P3P1 P3P2
P1'

T1 T2 T3

P3
P2'

T4

(b) Unbalanced partitioning

Fig. 3. Different styles of partitioning a graph.

be satisfied. Therefore, we need to check the size of each part
after the partitioning. If any part contains more than 256 nodes,
we need to modify parameters and invoke METIS again.

This partitioning process is iterated with different parame-
ters to lower the storage utilization, or utilization for short,
which is referred to as the number of tiles that the automaton
is mapped to. It is influenced by the partitioning result from
three aspects. Firstly, each partitioned part will be mapped to
different tiles; therefore, the number of parts is the most impor-
tant factor for the final utilization. Secondly, the cutting edges
will be mapped to global wires, i.e., the wires connecting tiles
and global switches. The wire resource is limited. Therefore,
a partitioning result that contains many cutting edges may
lead to overhead for resolving the constraint conflict. Thirdly,
the balancing of partitioned parts may also affect utilization.
Fig. 3 shows two possible partitioning styles of a CC. It is
partitioned into three parts, i.e., P1, P2, and P3, represented
by gray rectangles. The size of the rectangle indicates the size
of the part, and the total size of the three parts are equal in the
two partitioning styles. These parts are mapped to three tiles,
i.e., T1, T2, and T3, represented by transparent rectangles.
In the balanced partitioning, as shown in Fig. 3a, all the parts
have similar sizes. In the unbalanced partitioning, as shown in
Fig. 3b, the sizes of the first two parts are close to the size of a
tile, while the third part is relatively small. This is an important
feature as the whitespace in T3 can be used for mapping a
small CC. Alternatively, it can also be used to map a part of
another large CC (indicated by P1′ and P2′ in Fig. 3b). On the
contrary, the whitespace in Fig. 3a is only enough for fitting
tiny CCs, which are rare in automata benchmarks. We prefer
the unbalanced style during partitioning since it provides more
optimizing opportunities.

B. Mapping Method

This section focuses on the configuration of the routing
matrix, i.e., the global and local switches. The configuration
of STEs, i.e., their associated input symbols and whether they
are the start or final states, is generated by VAsim. APmap
simply copies this information to the final configuration file.

The transitions among the states in different tiles are
mapped to multiple global and local switches in two steps:
first to configure global switches and then the local switch
part. Fig. 4 uses an example to illustrate these steps. Assume
the four states in the automaton are partitioned into three
parts, i.e., {S2}, {S2 and S4}, and {S3}, and these parts
will be mapped to Tile 1, 2, and 3, respectively. For both
global and local switches, the input signals connect to the
rows, and the columns generate the output signal. Dots indicate
that the column is connected to the row, i.e., when the row
is activated, the column also activates. First, APmap selects

S3

S1

S2

S4

Local switch 1 Local switch 3

Local switch 2

Global
switch 1

S1

S4

S2

S2

S3

Fig. 4. Mapping an example automaton to AP. The automaton is partitioned
into three parts, which are mapped to Tile 1 to 3, respectively. The input
signal of the global switches origin from the blue region of the local switches
while the output signals enter the yellow region of the local switches. The
black dots indicated that the row can activate the corresponding column.

a global switch, e.g., Global switch 1, that has at least one
free wire with Tile 1. Here, free means that it has not been
assigned for mapping other transitions. Next, APmap checks
the connections between Global switch 1 and Local switch
2 and 3. Similarly, it requires at least one free wire. If the
above requirements are all satisfied, then the global switch
part is successfully mapped. S1 will be placed at the slot that
connects Global switch 1. Note that only 24 slots can output
its signal to global switches, and these slots are illustrated
by the blue region. Similarly, only 24 slots receive signals
from the global switches, and they are colored yellow. All the
wires assigned in this step are colored red in Fig. 4. If any
condition is not satisfied, then APmap selects the next global
switch and checks again. If none of the global switches meet
the requirement, the mapping process fails.

After all the transitions being mapped to global switches,
detailed mapping to local switches consists of two parts. The
first part is to map the transitions within a tile, e.g., two
dots are placed in the row of S2 in Fig. 4, implementing the
transitions from S2 to S2 and S4. The second part is to map
the signals that come from global switches, i.e., configuring
the dots on the red region in Local switch 2 and 3 in Fig. 4.
They can be conducted similarly.

C. Meeting Constraints

Constraint violation is a result of hardware resource limits
and unsatisfactory partitioning. When a large CC is partitioned
into several parts, the number of transitions among these parts
is unconstrained. Although METIS tries to minimize the total
transition numbers, it is possible that the transition number
exceeds the number of wires that connect a tile with global
switches. In this case, we need to resolve this conflict before
mapping it to the tile.

In this section, we first present the methods for resolving
output constraint conflicts and then the input. As introduced
in Section II-B, a tile has only 24 output wires that connect
to global switches. Any state that transits to states in other
tiles, referred to as an outgoing state, has to be mapped in
those 24 slots. Assume that a partitioned part contains more
outgoing states than the constraint, including two states, S2
and S3. We duplicate this part and keep only half of them as
outgoing states in each copy. Fig. 6 shows a possible mapping
result where these two parts are mapped to Tile 2 and 2’,
respectively. S2 is regarded as an outgoing state in Local
switch 2 but not in Local switch 2’. S3 is the opposite. In this

C

104 Paper C.3

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 2021 4

Snort Brill ClamAV Dotstar Entity Levenshtein Hamming Fermi Random Protomata Average
0

50

100

150

200

0

0.5

1

1.5

14.04%
69.04%

16.31% 21.98%

55.98%
5.93%

7.73%

4.94%
7.52%

14.82%

21.83%2.43%

2.83%

2.84%
2.92%

3.43% 1.05%

4.64%

3.22%
3.18%

1.39%

2.79%

U
til

iz
at

io
n

(t
ile

s)

U
til

iz
at

io
n

(M
B

)

Cache Automaton
Ideal Cache Automaton
APmap (This work)
Ideal APmap

Fig. 5. Utilization comparison between APmap and Cache Automaton. The numbers above the bars illustrate the percentages that the actual utilization exceeds
the ideal one.

Local switch 1 Local switch 2'

Local switch 2

Global
switch 1

S1

S3

S2

S2

S3

S3
S2

S2S3

S2
S1

S3

Fig. 6. Example of resolving an output constraint conflict. Assume a part
contains more outgoing states than the constraint. To resolve this conflict,
Local switch 2, including input signals (e.g., coming from S1), is duplicated
as Local switch 2’. The outgoing states (e.g., S2 and S3) are split between
these two tiles.

way, they can both activate other states. Note that all the input
signals are also duplicated. Assume that S1, which is mapped
to Tile 1, activates S2 and S3. After the duplication, the global
switch maps the output of S1 to both Local switch 2 and 2’.
Therefore, the execution process of the CC is unchanged.

APmap resolves input constraint conflicts by duplicating as
well. However, comparing with output constraint resolving,
one additional configuration is required. Assume a part con-
tains 30 input signals named from I1 to I30, which exceeds
the 24-input constraint. It is duplicated and assigned to Tile 1
and 1’, respectively. The 30 inputs are also divided into two
groups and assigned to those tiles. For the outgoing states
in this part (e.g., S1), the duplicates activate the states in
other parts together as shown in Fig. 7. This configuration
guarantees the correctness of automata execution. Assume S1
can be activated by (one of) the input signals I1 to I30. After
the duplication, the S1 in either Local switch 2 or 3 is (or both
of them are) activated, and it (or they) will further activate
other states through the red or the green paths in the figure.

In general, if a part contains N outgoing states or incoming
signals, it will be duplicated dN24e−1 times, and these states or
signals are distributed equally in these duplicates. If a part has
both output and input constraint conflicts, it is duplicated for
resolving the output constraint conflict first, and then the input
constraint conflict in each duplicate is resolved individually.

IV. EVALUATION

A. Evaluation Methodology

We adopt ANMLzoo as the benchmark suite in the evalu-
ation since it is widely used for evaluating APs, especially
Cache Automaton [5]. Two benchmarks in this suite, i.e.,
BlockRings and CoreRings, contain large CCs that exceed
the capacity of an RRAM-AP or Cache Automaton chip.
Therefore, they are excluded from this evaluation.

I16 - I30

Global
switch 2

I1 - I15
S1

Local
switch 1

S1

Local
switch 1'

Local
switch 2

S1
I1

I2

I30

Fig. 7. Example of resolving an input constraint conflict. Assume a part
requires 30 incoming signals (i.e., I1 to I30), which exceeds the constraint.
To solve this conflict, Local switch 1 is duplicated as Local switch 1’. The
incoming signals are split between these two switches. The outgoing states
(e.g., S1) in these two switches activate other states together.

We use the latest commit of VASim to parse and optimize
ANMLzoo benchmarks. Only the optimized automata will
be used in the evaluation because their CC sizes are larger
and hence more challenging for mapping tools. The state
numbers after optimization are slightly different from that in
Cache Automaton’s paper [5], probably because of the usage
of different VASim versions. The two notable exceptions are
PowerEN and SPM. The state numbers are so different in the
two works that they are not representing the same benchmark.
Therefore, we will exclude them from the evaluation.

In the first experiment, we evaluate the performance of
APmap. The hardware target for the mapping is two AP chips
with a full routing matrix. No wires are connecting these chips.
In the second experiment, we explore the hardware design
space by removing the 4-way global switch and altering the
number of 1-way global switches.

B. Experimental Results

When mapping the benchmarks to the full routing matrix,
the utilization of the results is shown in Fig. 5. The utilization
of Cache Automaton’s mapping tool [5] and the ideal uti-
lization for these two cases are also shown as a comparison.
The results in [5] are reported using MBs (see the right Y-
axis) and it is interchangeable with the number of tiles. A tile
contains 256 STEs whose size is 32 bytes each, and hence a
tile occupies 8 kB. Ideal utilization is referred to the minimum
amount of memory required for mapping an automaton in
theory, i.e., the product of the state number and the STE size.
The ideal utilization may never be achieved due to the input
and output constraints and the imperfect partitioning. However,
it can be used to measure the ability of the mapping tools.
The overhead, the percentage by which the actual utilization
exceeds the ideal, of both tools is illustrated above the bars.

Compiler for Cache Automaton

C

105

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 2021 5

4 5 6 7 8
0

2

4

6

8

Global switches

E
xt

ra
til

es

Snort Brill ClamAV
Dotstar Entity Levenshtein
Hamming Fermi Random
Protomata Average

Fig. 8. Extra tiles needed when mapping the benchmarks to routing matrix
with less global switches. The comparison baseline is the case with the full
routing matrix, i.e., Fig. 5.

As the overhead is calculated using separate bases, it is a
fair comparison for these two tools. For all the benchmarks,
APmap achieves a lower overhead than Cache Automaton.
In addition, APmap’s overhead is always below 5%, with an
average of 2.79%. On the Cache Automaton side, however, the
average overhead is 21.83%, and the highest is more than 50%
(Brill and Entity). No tiles are duplicated in this evaluation as
all the input/output constraints are satisfied.

Fig. 8 illustrates the extra tiles used in routing matrix design
space exploration. The comparison baseline is the utilization
of mapping the benchmarks to the full routing matrix, i.e.,
the result shown in Fig. 5. The values plotted in Fig. 8 is
the difference between the actual utilization and the baseline.
These differences are mainly introduced in the tile duplica-
tion process of input/output constraint resolution. The trends
showed that with less global switches, more input/output
constraints are violated. As a result, more tiles are duplicated,
which leads to a larger utilization overhead. Note that in some
cases, e.g., mapping Levenshtein to 4 global switches, APmap
failed, and hence no value is plotted in the corresponding
columns.

V. DISCUSSION

This section highlights two main advantages brought with
APmap: allowing more applications deployed in a chip and
assisting hardware design space exploration.

Deploy more applications. Imagine an application is
mapped to Tile 1 and 2, which are connected by Global switch
1. Now, we map another application to Tile 3 and 4, which
are connected by Global switch 1 as well. As indicated by
different colors, the transitions in an application do not affect
the other. Note the connections between Global switch 1 and
Local switch 3 or 4 exist before the mapping of the second
application. Therefore, the new mapping does not occupy any
resources that have been used in the previous mapping. As
proof, APmap successfully mapped Snort and Brill together
to two AP chips, with the utilization of 243.4 tiles (95.1%
of all the tiles in two chips). This is impossible for Cache
Automaton as the sum of their reported utilization exceeds
the capacity of two chips.

Assist hardware design. APmap provides methodologies
to solve hardware constraints on the number of input and
output signals. As shown in Fig. 8, APmap can map all the
benchmarks to a routing matrix with only six 1-way global

Local
switch 1

Local
switch 2

Local
switch 4

Global switch 1
S1

S4

S2

Local
switch 3

S3

Fig. 9. Example of two applications sharing a global switch. There is no
interference between the two groups of paths as indicated by the red and
green colors.

switches and no 4-way global switch. It allows the hardware
to be more compact, and hence achieving better performance.
Especially, the 4-way global switch is much slower than the 1-
way global switch and STEs [5], which affects the throughput
of the whole chip [7]. Therefore, APmap can become a crucial
member in a hardware/software co-design toolchain.

VI. CONCLUSION

In this article, we proposed an open-source tool named
APmap for mapping automata to AP chips. It employs multiple
optimizations to automate the mapping process and decrease
storage utilization. An evaluation with ANMLzoo benchmark
suite shows that APmap achieves low overhead and signifi-
cantly outperforms state of the art.

REFERENCES

[1] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
ser. LISA ’99. USENIX Association, 1999, pp. 229–238.

[2] I. Roy et al., “High performance pattern matching using the automata
processor,” in 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), May 2016, pp. 1123–1132.

[3] K. Zhou et al., “Brill tagging on the micron automata processor,” in
International Conference on Semantic Computing, 2015, pp. 236–239.

[4] P. Dlugosch et al., “An efficient and scalable semiconductor architecture
for parallel automata processing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, pp. 3088–3098, Dec 2014.

[5] A. Subramaniyan et al., “Cache automaton,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-50 ’17. New York, NY, USA: ACM, Oct. 2017, pp. 259–272.

[6] J. Yu et al., “Memristive devices for computation-in-memory,” in 2018
Design, Automation Test in Europe Conference Exhibition (DATE).
IEEE, March 2018, pp. 1646–1651.

[7] ——, “Time-division multiplexing automata processor,” in 2019 Design,
Automation Test in Europe Conference Exhibition (DATE), 2019.

[8] K. Angstadt et al., “Rapid programming of pattern-recognition proces-
sors,” ser. ASPLOS’16. ACM, 2016, pp. 593–605.

[9] J. Wadden et al., “Automata-to-routing: An open-source toolchain for
design-space exploration of spatial automata processing architectures,”
in FCCM’17, April 2017.

[10] T. Xie et al., “Reapr: Reconfigurable engine for automata processing,”
in 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), Sep. 2017, pp. 1–8.

[11] R. Rahimi et al., “Grapefruit: An open-source, full-stack, and customiz-
able automata processing on fpgas,” in FCCM’20, 2020, pp. 138–147.

[12] H. B. Noyes, “Microns automata processor architecture: Reconfigurable
and massively parallel automata processing,” in Proc. of Fifth Int’l Symp.
on Highly-Efficient Accelerators and Reconfigurable Technologies, 2014.

[13] J. Wadden et al., “VASim: An open virtual automata simulator for
automata processing application and architecture research,” Technical
Report CS2016-03, University of Virginia, Tech. Rep., 2016.

[14] G. Karypis et al., “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM Journal on Scientific Computing,
vol. 20, pp. 359–392, 1998.

C

106 Paper C.3

Curriculum Vitæ

Jintao Yu was born on August 20, 1987, in Kedong, Heilongjiang, China. He ob-
tained a BSc. degree in Mechanical Engineering and Automation from Tsinghua
University with an Excellent Graduate award in 2010. Thereafter, he received an
MSc. degree in Computer Science and Technology from PLA Information Engineer-
ing University in 2013. His master’s research was on high-level synthesis for FPGAs.
Then, in 2015, He joined the Computer Engineering group at the Faculty of Electri-
cal Engineering, Mathematics, Computer Science at Delft University of Technology
to pursue the Ph.D. degree under the supervision of Prof. dr. ir. Said Hamdioui. His
research interests include resistive computing, automata processing, and domain-
specific languages.

107

List of Publications

International Journals

3. J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, S. Hamdioui, APmap: An Open-
source Compiler for Cache Automaton, submitted to IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), undergoing a minor rever-
sion.

2. J. Yu, R. Nane, I. Ashraf, M. Taouil, S. Hamdioui, H. Corporaal, K. L. M. Bertels,
Skeleton-based Synthesis Flow for Computation-In-Memory Architectures, IEEE Trans-
actions on Emerging Topics in Computing (TETC), Volume 8, Issue 2, 2020, pp. 545-
558.

1. H. A. Du Nguyen, J. Yu, M. Abu Lebdeh, M. Taouil, S. Hamdioui, F. Catthoor, A clas-
sification of Memory-centric Computing, ACM Journal on Emerging Technologies in
Computing (JETC), Volume 16, Issue 2, 2020.

International Symposiums and Conferences

12. J. Yu, M. Abu Lebdeh, H. A. Du Nguyen, M. Taouil, S. Hamdioui, The Power of
Computation-In-Memory Based on Emerging NVM, The 25th Asia and South Pacific
Design Automation Conference (ASP-DAC’20), Beijing, China, January 2020, pp. 1-8.

11. J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, S. Hamdioui, Enhanced Scouting
Logic: A Robust Memristive Logic Design Scheme, The 15th IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH’19), Qingdao, China, July 2019,
pp. 1-6.

10. J. Yu, H. A. Du Nguyen, M. Abu Lebdeh, M. Taouil, S. Hamdioui, Time-division Multi-
plexing Automata Processor, The 22nd Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE’19), Florence, Italy, March 2019, pp. 794-799.

9. J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, Memristive Devices for
Computation-in-memory, The 21st Design, Automation & Test in Europe Conference
& Exhibition (DATE’18), March 2018, pp. 1646-1651.

8. J. Yu, R. Nane, A. Haron, S. Hamdioui, H. Corporaal, K. L. M. Bertels, Skeleton-
based Design and Simulation Flow for Computation-in-Memory Architectures, The 12th
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH’16), Bei-
jing, China, July 2016, pp. 165-170. (Best Student Paper Award)

109

110 List of Publications

7. H. A. Du Nguyen, J. Yu, M. Abu Lebdeh, M. Taouil, S. Hamdioui, A Computation-In-
Memory Accelerator Based on Resistive Devices, The 5th International Symposium on
Memory Systems (MEMSYS’19), Washington DC, USA, September 2019, pp. 1-14 (to
appear).

6. H. A. Du Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, D. Fey, Memristive Devices
for Computing: Beyond CMOS and Beyond von Neumann, The 25th IFIP/IEEE Inter-
national Conference on Very Large Scale Integration (VLSI-SoC’17), Abu Dhabi, UAE,
October 2017, pp. 1-10.

5. A. Haron, J. Yu, R. Nane, M. Taouil, S. Hamdioui, K. L. M. Bertels, Parallel Matrix Multi-
plication on Memristor-based Computation-in-Memory Architecture, The 14th Interna-
tional Conference on High Performance Computing & Simulation (HPCS’16), Innsbruck,
Austria, July 2016, pp. 759-766.

4. L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. Alfailakawi, S. Hamdioui,
Scouting Logic: A Novel Memristor-based Logic Design for Resistive Computing, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI’17), Bochum, Germany, July
2017, pp. 151-156.

3. H. A. Du Nguyen, L. Xie, J. Yu, M. Taouil, S. Hamdioui, K.L.M. Bertels, Interconnect
Networks for Resistive Computing Architectures, The 12th IEEE International Con-
ference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS’17),
Palma de Mallorca, Spain, April 2017, pp. 1-6.

2. L. Xie, H. A. Du Nguyen, J. Yu, M. Taouil, S. Hamdioui, On the Robustness of Memristor
Based Logic Gates, The 20th IEEE International Symposium on Design and Diagnostics
of Electronic Circuits & Systems (DDECS’17), Dresden, Germany, April 2017, pp. 158-
163.

1. A. Banagozar, K. Vadivel, S. Stuijk, H. Corporaal, S. Wong, M. Abu Lebdeh, J. Yu,
S. Hamdioui, CIM-SIM: Computation In Memory SIMuIator, The 22nd International
Workshop on Software and Compilers for Embedded Systems (SCOPES’19), St. Goar,
Germany, May 2019, pp. 1-4.

Workshops & Posters

5. J. Yu, L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, Memristor-based Automata
Processor, The 5th Workshop on Memristor Technology, Design, Automation and Com-
puting (MDAC’18) in conjunction with HiPEAC, Manchester, United Kingdom, January
2018.

4. J. Yu, R. Nane, S. Hamdioui, K. L. M. Bertels, Data Patterns for Skeleton-base Pro-
gramming Flows, The 4th Workshop on Memristor Technology, Design, Automation
and Computing (MDAC’17) in conjunction with HiPEAC, Stockholm, Sweden, January
2017.

3. J. Yu, H. A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, K.L.M. Bertels,
Memristor-based Computation-in-Memory Synthesis Framework, ICT.OPEN, Amers-
foort, Netherlands, March 2017.

List of Publications 111

2. J. Yu, R. Nane, A. Haron, S. Hamdioui, H. Corporaal, K. L. M. Bertels, Hardware Reuse
for Skeleton-based Implementation of Computation-In-Memory Architecture, The 1st
International Workshop on In-Memory and In-Storage Computing with Emerging Tech-
nologies (IMISCET’16) in conjunction with PACT, Haifa Israel, September 2016.

1. L. Xie, H. A. Du Nguyen, J. Yu, M. Taouil, S. Hamdioui, FPGA Implementations Based
on Memristor Logic Circuits, ICT.OPEN, Amersfoort, Netherlands, March 2017.

	Summary
	Samenvatting
	Acknowledgements
	Introduction
	Introduction to Memristive Devices
	Motivation
	Memristive Devices
	Memristive Devices for Logic
	Memristive Devices for Memories

	Opportunities and Challenges
	Opportunities
	Challenges

	Research Topics
	Contributions
	Circuit Level
	Architecture Level
	Design Automation

	Thesis Organization

	Circuit Level
	Problem Statement
	Main Contributions
	Evaluation

	Architecture Level
	Problem Statement
	Main Contributions
	Evaluation

	Design Automation
	Problem Statement
	Main Contributions
	Evaluation

	Conclusion
	Summary
	Future Research Directions

	titleReferences
	Publications - Circuit Level
	Publications - Architecture Level
	Publications - Design Automation
	Curriculum Vitæ
	List of Publications

