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Abstract: Bonded patches are widely used in several industry sectors for repairing damaged plates,
cracks in metallic structures, and reinforcement of damaged structures. Composite patches have
optimal properties such as high strength-to-weight ratio, easiness in being applied, and high flexibility.
Due to recent rapid growth in the aerospace industry, analyses of adhesively bonded patches
applicable to repairing cracked structures have become of great significance. In the present study, the
fatigue behavior of the aluminum alloy, repaired by a double-sided glass/epoxy composite patch,
is studied numerically. More specifically, the effect of applying a double-sided composite patch
on the fatigue life improvement of a damaged aluminum 6061-T6 is analyzed. 3D finite element
numerical modeling is performed to analyze the fatigue performance of both repaired and unrepaired
aluminum plates using the Abaqus package. To determine the fatigue life of the aluminum 6061-T6
plate, first, the hysteresis loop is determined, and afterward, the plastic strain amplitude is calculated.
Finally, by using the Coffin-Manson equation, fatigue life is predicted and validated against the
available experimental data from the literature. Results reveal that composite patches increase the
fatigue life of cracked structures significantly, ranging from 55% to 100% for different applied stresses.

Keywords: aluminum 6061-T6; composite patch; finite element modeling; plasticity; fatigue life

1. Introduction

Nowadays, composite patches, due to their unique properties such as lightness, ease
of application, high flexibility, and high stiffness, are increasingly being used in industrial
applications such as aerospace structures and automobile industries. Investigation of the
tensile strength and fatigue behavior of aluminum alloys is still capturing the attention of
researchers. Traditional methods of repairing aluminum alloys, for instance, mechanical
fastening, could lead to new defects. Composite patches, unlike traditional methods,
do not cause any damage to the parent plate and can be replaced several times [1–6].
Fiber-reinforced polymer composites are the right choice for being used as a patch since
these materials have a high stiffness-to-weight ratio, good fatigue resistance, and excellent
corrosion resistance [7–10].

Using composite patches for repairing structures was first introduced by Baker et al. [11]
in the early 1970s in Australia for military aircraft. Afterward, this technology was imple-
mented for repairing structures in the aerospace and automobile industries [12]. Several
researchers have analyzed the repairing efficiency of composite patches and have done
several optimization analyses on the patch design. Seo et al. [13] investigated the fatigue
crack growth in thick aluminum plates repaired by a composite patch. They conducted
an experimental study for 10 mm thick specimens repaired by graphite/epoxy patches.
The stress intensity factor was determined by both experimental test and finite element
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method (FEM), and the results were compared. Ergun et al. [14] examined the fatigue life
of damaged aluminum 2024-T3 reinforced by composite patches under the hygrothermal
effect. The effect of patch thickness and humidity was analyzed. The results revealed that
the numbers of patch layers and hygrothermal conditions significantly affect fatigue life.

The FEM is an excellent technique to analyze the effect of different repair process
parameters on the overall performance of structures repaired by polymer composite
patches [8,9,14–19]. Calculating stress intensity factor (SIF) is a reliable approach to describ-
ing crack growth behavior [15,17,19–21]. Ouinas et al. [15] studied the effect of the patch
geometry and adhesive properties on the efficiency of the repair process. They calculated
the stress intensity factor using finite element (FE) models. The results indicated that
increasing the patch diameter reduces the SIF. Adhesive properties also have a significant
effect on the repair output. Toudeshky et al. [16] investigated the residual thermal stresses
in structures repaired by a composite patch. Using numerical and experimental approaches,
they examined the effect of thermal expansion coefficient mismatch, which leads to resid-
ual thermal stresses on the crack-front shape. Results indicated that the thermal residual
stresses did not affect the stress intensity factor at the crack-front in the aluminum 2024-T3
plate repaired by patch. Albedah et al. [17] analyzed patch dimensions’ influence on the
efficiency of overall patch performance numerically and experimentally for aluminum
2024-T3 and aluminum 7075-T6. 3D FEM was performed to calculate the SIF to evaluate the
patch’s effectiveness. Results indicated that increasing the patch length leads to decreasing
the fatigue life of repaired plates. Dai et al. [8] studied the effects of resin properties and
composite patch configurations on the repair process of the damaged aluminum alloy
plates. FEM and experimental studies were carried out to examine the failure of the re-
paired structures under tensile loadings. Observation revealed that damage was initiated
in the layers adjacent to the crack surface. Moreover, delamination and fiber breakage is
the main reason for the failure of the composite patch. Mohammadi [18] investigated the
effect of different parameters such as the thickness of a cracked plate on the performance
and durability of a one-sided composite patch repairing process. Results indicated that
the efficiency of the repair process firmly depends upon the parent plate thickness and
patch material. Yousefi et al. [19] studied the effect of composite and nanocomposite patch
volume fraction on the performance of the repair process. They examined the impact of the
patch and adhesive thickness on the efficiency of the repair process. 3D FE analysis was car-
ried out to determine the SIF. Results indicated that SIF significantly depends on the patch
stiffness. Hosseini et al. [22] investigated the fatigue behavior of cracked aluminum 1050
repaired by glass/epoxy patches numerically and experimentally for different stress ratios
ranging between 0 to 1. Results indicated that by employing the double-sided composite
patch, fatigue life is improved significantly for stress ratios 0 and 0.5. Khan Mohammad
et al. [23] examined the effect of different shapes of composite patches on the efficiency
of the repair process experimentally and numerically. Both numerical and experimental
studies showed that composite shape has a significant effect on the repair performance,
and rectangular patches provide the most efficient repair compared to the triangular shape.
Recent studies show that several parameters could affect the fatigue life improvement, such
as the minimization of stress concentration, which improves fatigue life, and environmental
condition also may influence the fatigue life [24,25]. Most of the previous research studies
have investigated the effect of composite patch on the crack growth or fatigue life by
calculating SIF by employing FEM. However, to the authors’s best knowledge, no research
work has been carried out on determining the fatigue life of damaged aluminium plates
repaired by composite patches employing a strain-based approach.

In the present study, the effect of applying double-sided glass fiber/epoxy composite
on the fatigue life improvement of cracked aluminum 6061-T6 plate is investigated numeri-
cally. 3D finite element analysis is performed to investigate the effect of glass fiber/epoxy
patch on the fatigue life of damaged structures. In this regard, the steady-state hysteresis
loop is determined, from which the plastic strain is calculated. It is worth mentioning that
since the strain-based approach is based on the plastic strain, to gain more reliable results
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and calculate strain, the cylindrical volume (part) as representative volume element is con-
sidered near the crack zone in which the strain is calculated by volume averaging of strain
from all elements in this specified cylindrical-shaped volume. To the best of the authors’
knowledge, no research work uses this approach (volume averaging) to calculate the strain
considering the strain-based approach. Finally, the fatigue life of different configurations
(undamaged plate, unrepaired damaged plate, and repaired damaged plate) is predicted.
Therefore, the main novelty of this study is employing the strain-based approach to investi-
gate the effect of applying glass fiber/epoxy composite patch on fatigue life in which the
strain is calculated using representative volume element (cylindrical-shaped volume).

2. Materials and Models

The centrally cracked aluminum 6061-T6 plate (subjected to rolling process) with an
initial crack length of a = 2 mm repaired by the composite patches is illustrated in Figure 1.
The length (2L), width (2w), and thickness (2t) of the aluminum plate are 500 mm, 125 mm,
and 12.5 mm, respectively. As shown in Figure 1a, the crack (blue line) is in the plate’s
center and perpendicular to the applied load. The patch is bonded to the cracked plate by
means of Araldite 2015 (Huntsman Corporation, The Woodlands, TX, USA) [26]. The initial
mechanical properties of the plate and adhesive are listed in Table 1. The Johnson–Cook
material model [27] was used to model the elastic-plastic behavior of the aluminum plate.
This material model is implemented to model material behavior in large deformations,
and it considers the isotropic hardening characteristic. In this study, since the structures
undergo large deformation extents, the Johnson–Cook material model is employed. The
Johnson–Cook constants for Al6061-T6 (Aluminum Alloys) [28] are listed in Table 2. The
mechanical properties of glass fiber/epoxy composite patch are extracted from the work of
Devireddy et al. [29], which is reported in Table 3.

Table 1. Mechanical properties of aluminum plate and adhesive [26,30].

Materials Materials Behavior Elastic Modulus (MPa) Poisson’s Ratio Tensile Strength (MPa)

Araldite 2015 elastic isotropic 1850 0.33 21.63

Aluminum 6061-T6 elastic-plastic 72,000 0.35 311

Table 2. The Johnson–Cook model constants for Al6061-T6 [28].

A (MPa) B (MPa) C0 n m0

250 79.7 0.0249 0.499 1.499

Table 3. Mechanical properties of glass fiber/epoxy composite patch [29].

Fiber Volume Fraction (%) E1 (GPa) E2 (GPa) E3 (GPa) V12 V13 V23 G12 (GPa) G13 (GPa) G23 (GPa)

Glass Fiber /Epoxy 60 45 12 12 0.28 0.28 0.4 5 5 5.6

2.1. Numerical Modeling

The cracked aluminum 6061-T6 plate under cyclic loading was analyzed by employing
Abaqus software (V. 6.14, Dassault Systems, France). Figure 2 illustrates a typical 3D FE
model of a cracked aluminum plate repaired by a composite patch. The FE model consists
of three parts: the cracked aluminum plate, the adhesive layer, and the patches. The contact
between the patch–adhesive interface and the adhesive–plate interface is assumed to be
a perfect bond. The perfect bond is applied using Tie constraint in Abaqus software. The
perfect bond is used to define surface-to-surface contact interaction in which the rotational
and translational motion is equal between two connected surfaces. Figure 3 shows a
discretized model of the repaired aluminum plate containing a surface crack. In order to
discretize the repaired plate, the plate was sectioned into three parts using the Partition
tool in Abaqus software. 3D 8-node linear hexahedral elements of type C3D8R were used
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to mesh the areas far away from the crack, while 10-node tetrahedral elements of type
C3D10 were used to mesh the area in the neighborhood of the crack (cylindrical-shaped
volume). To obtain more accurate results, the element size around the cracked region was
smaller than the element size of the area far away from the crack. Eight-node linear wedge
cohesive elements of type COH3D6 are utilized to mesh the adhesive parts. Also, linear
tetrahedral elements of type C3D4 were used to mesh the patch. The boundary conditions
applied on the structures that stimulate a relevant fatigue test are reported in Table 4. In
this study, to examine the effect of patches on fatigue life improvement at different stress
amplitudes, different cyclic displacements were applied.

Figure 1. Geometry of repaired damaged aluminum plate: (a) Perspective view and (b) Front view.
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Figure 2. FE model of cracked aluminum plate repaired by composite patches.

Figure 3. A discretized model of the repaired aluminum plate containing a surface crack.

Table 4. The boundary conditions applied to the structure.

Plane Z = 0 Y = 0 X = 0 Z = 2L

Boundary Condition Uz = 0 Uy = 0 Ux = 0 Uz = cyclic displacement

In the present study, mesh independence analysis was also performed. For this aim,
the element size was reduced (in other words, the number of elements was increased)
systematically until the resulting engineering stress–strain curves converged to the same
amount. As indicated in Figure 4, the stress–strain curves of the repaired plate converged
for element numbers between 120,000 and 160,000. Therefore, in the present study, the
element numbers implemented are at least 160,000.
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Figure 4. Effect of the number of elements on the engineering stress–strain curve.

2.2. Fatigue Life Analysis

In the present study, in order to determine the fatigue life, the strain-based approach
was employed. In this regard, the stress–strain hysteresis loop was plotted. The total strain
amplitude was determined, which was divided into two components, elastic strain and
plastic strain [31]. By considering the hysteresis loop, the plastic strain can be determined
by obtaining the intercept of the loop curve on the strain axis. The stress-life curve could
be linearized on the log scale. The curve is described by:

σa = σ́f (2N f )
b (1)

where 2N f is the number of life cycles until failure, σ́f is the fatigue strength coefficient,
and b is the fatigue strength exponent. Coffin and Manson [31] found the strain-life data
could also be linearized on the log scale and be expressed as:

∆εave−p

2
= έ f (2N f )

c (2)

where ∆εave−p/2 is the volume averaging plastic strain amplitude, έ f is the fatigue ductility
coefficient, and c is the fatigue ductility exponent.

It is worth mentioning that in order to calculate the strain, the homogenized variables
(strain) are determined by volume averaging from all elements in the cylindrical-shaped
volume around the crack. This specified volume has a diameter equal to the patch’s
diameter; the height equals the plate thickness, and the crack is exactly in the center of this
cylinder. The total strain is calculated as:

εave =
1

Vm

∫
εmdV (3)

In Equation (3), εave is volume averaging total strain (consist of elastic and plastic
strain), εm is the local strain in each element, and Vm is the total volume of the specified
cylindrical-shape part. After calculating volume averaging total strain by Equation (3),
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the steady-state hysteresis loop is plotted for different conditions in Abaqus software, the
volume averaging plastic strain amplitude is determined.

In the next step, to predict the fatigue life, Equation (2) was implemented, so the number
of cycles to failure was calculated using a MATLAB (MathWorks, Natick, MA, USA) code
based on the Newton–Raphson method. The material constants in Equations (1) and (2) are
reported in Table 5 [32].

Table 5. Materials parameters for aluminum 6061-T6 [32].

Materials Constant Aluminum 6061-T6

Fatigue Ductility Coefficient, έ f (mm/mm) 0.77

Fatigue Ductility Exponent, c −1.01

Fatigue Strength Coefficient, σ́f (MPa) 386

Fatigue Strength Exponent, b −0.036

3. Results
3.1. Validation

To verify the proposed model, FEM results were compared with available experimen-
tal data [33]. In order to validate the proposed model in the present study, the dimensions
of the aluminum plate for comparison of FEM results with experimental data were chosen
based on fatigue test standard reported in Ref. [33]. Figure 5 compares the FEM results
of the fatigue life for the undamaged aluminum 6061-T6 plate for different stress ampli-
tude against the available experimental data [33]. As shown in Figure 5, there is a good
agreement between experimental data and FEM results. The maximum differences be-
tween experimental and FEM results are about 20%, although, at a stress amplitude of
140 MPa, this difference is less than 3%. It should be mentioned that at stress amplitude of
∆σ/2 =260 MPa, there is about a 23% difference in the numbers of cycles to failure reported
by the experimental study. Therefore, these differences between the proposed model and
experimental data (ranging from 3% to 20%) could be acceptable for the proposed model
in the present study.

Figure 5. Stress amplitude versus cycles for undamaged aluminum 6061-T6 for both FEM in the present study and
experimental data [33].
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3.2. Hysteresis Loop

Figure 6 shows a typical hysteresis loop for three types of aluminum plates, namely
unrepaired damaged aluminum plate, repaired damaged aluminum plate, and the undam-
aged plate.

Figure 6. Hysteresis loop for different plate conditions.

The stress–strain hysteresis loop is drawn in Figure 6 for the fatigue loading condition
of stress ratio of R = −1, and stress amplitude of ∆σ/2 = 280 MPa is applied to all the
cases. At σ = 0, the total strain equals plastic strain. According to Equation (2), by
increasing the plastic strain amplitude, the fatigue life decreases. Figure 6 shows that
the undamaged plate has the lowest strain extent at σ = 0, which equals plastic strain
amplitude. Furthermore, the unrepaired damaged plate has the highest plastic strain
amplitude. The strain extent of the curve of the repaired damaged plate lies in the area
between the curves of the undamaged plate and the unrepaired damaged plate, which
demonstrates the improvement that repairing the damaged plate has made.

3.3. Fatigue Life Prediction

As partially mentioned above, in order to predict the fatigue life of both the repaired
and unrepaired cracked aluminum plates, first, the hysteresis loop is determined. In this
regard, to calculate the hysteresis loop, stress amplitude (y-axis in Figure 7), the amount of
stress in the area far from the crack area, is calculated. However, the strain is calculated
in the specified cylindrical part. Therefore, at a stress amplitude of 150 MPa (far from
crack), the stresses in some elements in the cylindrical part reach yield stress, so plastic
strain exists and is determined by Equation (3). Therefore, Equation (2), which is based on
plastic strain amount, can be employed even though the stress far from the crack area does
not reach the yield amount. The hysteresis loops for three cases (undamaged, damaged,
and repaired damaged plate) at each specific stress amplitude are drawn. Afterward, the
plastic strain amplitude is calculated based on drawn hysteresis loops for each plate and at
each specific stress amplitudes. Finally, by using the Coffin–Manson equation, fatigue life
is predicted.
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Figure 7. Stress amplitude versus fatigue life for different plate conditions.

Figure 7 compares the fatigue life of unrepaired and repaired aluminum plates to one
another as well as to the fatigue life of the undamaged plate. Figure 7 is a semi-log graph
in which the x-axis (cycle to failure) has a logarithmic scale. As shown in this figure, using
a composite patch at high-stress amplitude is more effective on the increasing fatigue life
as compared to when it is used in low-stress amplitude. At ∆σ/2 = 280 MPa, applying a
double-sided composite patch on the damaged aluminum plate increases the logarithmic
fatigue life by almost 100%. In comparison, at ∆σ/2 =140 MPa, applying a double-sided
composite patch increases the logarithmic fatigue life by 55%.

The main reason for the improvement of fatigue life is that by applying the composite
patch at each applied stress amplitude (which is determined far away from the crack area),
the stress in the area near the crack is decreased and is lower than the plate without the
composite patch. Therefore, the amount of plastic strain is decreased, so according to
Equation (2), the numbers of cycles to failure (N f ) increases. In the higher applied stresses
amplitude (for example, at 280 MPa), applying a composite patch could even have a more
significant effect on reducing stress (as well as plastic strain) in the area near the crack in
comparison to lower applied stresses (at 140 MPa). Therefore, at higher applied stress, the
applied composite patch is more effective.

4. Conclusions

In the present study, the effects of applying a composite patch on the fatigue life
of cracked aluminum plates were studied numerically. In this regard, the stress–strain
hysteresis loops were drawn for three specimens: cracked aluminum plate, repaired
aluminum plate, and undamaged aluminum plate. Based on the strain-based approach,
the fatigue life was calculated for three types of specimens. The results showed that:

1. The aluminum plate repaired by composite patches has a narrower hysteresis loop in
the strain direction compared to the unrepaired damaged plate. Therefore, the plastic
strain amplitude of the repaired plate is lower than the unrepaired plate. For example,
at ∆σ/2 = 280 MPa, the plastic strain amplitude of the repaired plate becomes 50.3%
less than the plastic strain amplitude of the unrepaired damaged plate.

2. Using the composite patch improves the logarithmic fatigue life significantly (at
∆σ/2 = 280 MPa, by 100% and at ∆σ/2 = 140, by 55%).
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3. The higher the applied load level, the higher the effect of applying a double-sided
composite patch is on the damaged aluminum plate’s fatigue life improvement.

In this paper, the modeled structure was composed of materials that are common
materials used in industry. For instance, Araldite 2015 (Huntsman Corporation, The
Woodlands, TX, USA) as an adhesive was employed and used for applying patches to the
aluminum plate; in addition, glass fiber/epoxy composite was used as a patch, which is
highly utilized in industry for repairing damaged structures. Furthermore, the results in
the present study were compared with available experimental data to verify the proposed
model. Therefore, the results reported in this article could be reliable and give new insight
into the fatigue life improvement of the repaired aluminum plate by composite patches.
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