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Abstract

Data assimilaiton, a procedure in which observed data is combined with prior knowledge, is
widely used in geophysical systems and especially popular in atmospheric and oceanic models.
In this study a Monte Carlo based data assimilation method referred as a bootstrap Particle
Filter (PF) and a time lag sampling technique are combined together to perform Sequential
Data Assimilation (SDA) of borehole observation into a Seismo-Thermo-Mechanical model
(STM). The aim of this study is to estimate the state of faults in subduction zones. The STM,
a strongly non-linear model, is taken to be a perfect model and serves as a source for both
observed data and model realizations termed ”particles” or ensemble members. The ensemble
is being generated by drawing particles out of a seismic cycle with a constant time lag. Results
demonstrate that assimilation strongly depends on the choice of time lag since, small time
lags provided with better results. Changing the time lag for sampling leads to a trade off
between ensemble spread and resolution due to presence of trends in some of the observed state
variables. Although the sampling technique in its current setup is computationally efficient, it
was found to be insufficient in representing the model errors. Comparison between the current
study of the PF and recent work involving the Ensemble Kalman Filter (EnKF) suggests that
the success of the EnKF is related to its error covariance matrix correlating the various state
variables. Based on the results and comparison to the EnKF improvements and possible next
steps are discussed.
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Chapter 1

Introduction

According to the National Geophysical Data Center (NGDC) online database, in the last
decade 26 earthquakes occurred for which the number of deaths is above 100; these include
the 2010 devastating earthquake in Haiti with a staggering 316,000 deaths. At least 10 out of
the 26 earthquakes are situated at or near the margin of a subducting plate. In addition to
death toll, earthquakes and the tsunamis they trigger, inflict a heavy price on the economy,
making prediction and forecasting of earthquakes an important tool.

While earthquake prediction is considered by some impossible (due to non-linearity and sen-
sitivity to earth’s state; Geller, 1997) and therefore mainly based on precursors including
seismic velocity, electric conductivity and hydrological changes, radon emission and electro-
magnetic signals, earthquake forecasting includes a variety of operational methods [Jordan et
al., 2011]. Forecasting involves a probabilistic estimation of earthquake occurrence and each
method rely on different assumptions (time-dependent\independent) and models [Jordan et
al., 2011]. Forecasting is divided into long-term (years or more) and short-term (months
or less). Short term forecasting concerns mainly aftershocks triggered by large earthquakes,
while long term focuses on earthquake damage and plays a significant role in risk management
and risk reducing engineering [Jordan et al., 2011]. Since forecasting mainly relies on physical
models, knowledge about rupture processes and the physical state of faults can possibly lead
to better earthquakes forecasting ability [Jordan et al., 2011; van Dinther et al., 2017]. Var-
ious models exist today, address different aspects of earthquake dynamics, from small scale
rupture models to large scale and long term deformation [van Dinther, 2013]. One type of
model focusing on the seismic cycle in subductiong zones is the STM model developed by van
Dinther et al. (2013b). This state of the art model combines short term rupture dynamics
with long term deformation. The STM model was later used by van Dinther et al., 2017
to perform Sequential Data Assimilation (SDA) using the Ensemble Kalman Filter (EnKF);
their work served as a proof of concept to the ability of estimating and forecasting the state of
a fault in subduction zones and results were remarkably good. Nevertheless, the underlying
assumption for using the EnKF is the Gaussianity of the probability densities involved. As
an alternative to the EnKF, I suggest a fully non-linear bootstrap particle filter with a unique
sampling method.
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2 Introduction

Particle Filters have a wide range of applications, such as parameter and state estimation
for dynamic models (e.g. atmosphere and ocean models; Vossepoel & van Leeuwen, 2007,
van Leeuwen, 2010; Liu & West, 2001; Stroud et al., 2018), navigation, positioning and
tracking [Gustafsson et al., 2001], robotics [Thrun, 2002], subsidence estimation and reservoir
characterization [Vossepoe et al., 2017; Beers, 2018], ground water flow modeling [Hendricks
Franssen & and Kinzelbach, 2008] etc. Particle filtering combines a discrete representation
of the model space distribution with observed data in a Bayesian frame of work. The major
advantage of the bootstrap filter (or generic particle filter) is its ability to assimilate highly
non-linear and in some cases high dimensionality problems. Nonetheless, specifying a prior
could be a difficult and sometimes impossible task if the prior distribution is too complex.

In 1983, Hoffman & Kalnay proposed the Lagged Average Forecast (LAF) technique which
is a method based on time lagged versions of the physical model referred to as the ordinary
dynamical forecast (ODF). This method was originally designed as a forecasting method in
weather prediction, where ensemble members are sampled from an ODF at different time lags:
ti = (i − 1)∆t, computed as different model realizations and averaged into a single forecast.
This method proved to be superior to other methods such as the ODF, MCF (Monte Carlo
Forecast) and PCF (Persistence Climatology Forecast).

In this thesis I combine the bootstrap particle filter together with a LAF based sampling
technique, in order to assimilate observed data onto a seismic cycle model. Observations are
generated using the STM Model at a predefined location corresponding to a borehole at a
depth of approximately 5 km from the surface. The assimilated data consists of five state
variables: horizontal velocity vi, vertical velocity vj , normal stress σii, shear stress σij and
pressure P as would be observed from a borehole measurements. Particles are sampled with
a time lag from a second evolution generated by the STM model. Performance of the PF will
be evaluated at the borehole and at several other locations on the fault. If successful, the
suggested sampling technique can serve as an efficient way to sample the search space.
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Chapter 2

Theory

Contrary to traditional view, earthquakes are a frictional phenomenon and rarely occur by
the emergence of a new fault [Scholz, 1998]. The relative motion between adjacent tectonic
blocks builds up stress in their contact zone, eventually leading to the mechanical failure of
the material, a short period of rupture and the release of accumulated elastic strain as seismic
energy which is then expressed as ground movement known to us as an earthquake [Scholz,
1998; Corbi et al., 2013]. This period of material failure accompanied by a pressure drop and
fast movement along the fault is termed “slip” (coseismic period) while the state of partial
locking of the fault and elastic strain accumulation is termed “stick” (interseismic period;
[Brace & Byerlee, 1966; van Dinther, 2013]).

There exist several approaches to model faulting and/or earthquakes: geodynamic, dynamic
rupture, seismic cycle and analog models [see van Dinther, 2013 and references therein]; each
computes the evolution of an earthquake-prone region at a different time and length scale,
from hundreds of seconds over hundreds of kilometers in rupture dynamics to million years
over thousands of kilometers in geodynamic modeling [van Dinther, 2013]. In order to express
both long term deformation and short term rupture process characteristic of the earthquake
cycle, van Dinther (2013) developed a Seismo-Thermo-Mechanical (STM) model based on the
geodynamic model of Gerya & Yuen (2007) and a slip rate dependent friction [van Dinther et
al., 2013b]. In their model, van Dinther et al., 2013b incorporated the principle of stick-slip
mechanism [Brace & Byerlee in 1966] together with rate dependent friction, slow tectonic
loading and visco-elastic stress relaxation in order to simulate the seismic cycle in subduction
zones.

Van Dinther et al. (2017) introduced a procedure as a proof of concept, that combines the
forward model of a fault slip computed by the STM model with the Ensemble Kalman Filter
(EnKF) in order to assimilate data and obtain a better estimation of the system’s hidden
state. A possible alternative to the EnKF is the method discussed in this thesis: Particle
Filtering. In the next subsections I describe the STM model and the two mentioned data
assimilation methods.
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6 Theory

2-1 Forward model: Seismo-Thermo-Mechanical model

The STM model (van Dinther, 2013) is a numerical model used to compute the evolution of
the physical state of a 2D domain, using conservation equations and rheological constitutive
equations with rate-dependent friction coefficient. In particular, the model can simulate the
subduction of an oceanic slab under a continent [van Dinther et al., 2013a]. To account for
long-term deformation processes van Dinther (2013) based her work on the I2ELVIS code: a
continuum-mechanics-based dynamical model for visco-elasto-plastic material introduced by
Gerya & Yuen (2007) and extended it with a slip-rate-dependent friction.

The I2ELVIS code uses a combination of conservative, implicit finite-difference scheme and a
non diffusive characteristics-based marker-in-cell (MIC) technique on a staggered grid [Gerya
& Yuen, 2007]. The MIC technique is a methodology that dates back to the MAC and PIC
techniques of Harlow & Welch (1965) and Brackbill & Ruppel (1986). It enables tracking
of complex flow features by markers discretization of grid cells in a Lagrangian framework
[Duretz et al., 2011; Gerya & Yuen, 2007].

The equations of conservation of mass, momentum and energy for an incompressible material

∂vx
∂x

+
∂vz
∂y

= 0, (2-1)

∂σ′xx
∂x

+
∂σ′xz
∂z
− ∂P

∂x
= ρ

Dvx
Dt

, (2-2)

∂σ′zx
∂x

+
∂σ′zz
∂z
− ∂P

∂z
= ρ

Dvz
Dt
− ρg, (2-3)

where vx and vz are horizontal and vertical velocities, σ′ij are the deviatoric stress tensor

components, P is the pressure and g = 9.81 ms−2 is gravitational acceleration, are solved on
an Eulerian grid, while material properties are advected according to the calculated velocity
field using markers in a Lagrangian framework. The exchange of information between the
two frameworks occurs by interpolation of material properties from the Eulerian nodes to
Lagrangian markers and vice versa; this is especially useful for tracking non diffusive material
properties like lithology and rheological parameters, even through sharply varying material
properties [van Dinther et al., 2013b].

Van Dinther et al. (2013b) introduced an inertial term (density multiplied by the Lagrangian
time derivative of the velocity) in eq. 2-2 and 2-3 to regularize high slip rates with decreasing
time steps. Notice that since the incompressibility assumption is used, only shear waves are
generated [van Dinther et al., 2013b]. The above conservation equations can be solved by
using a non-linear visco-elasto-plastic relationship between the deviatoric stress and strain
rate; ε′ij

ε̇′ij =
1

2η
σ′ij +

1

2G

Dσ′ij
Dt

+

{
0 for σ′II < σyield

χ
∂gplastic
∂σ′
ij

for σ′II = σyield
, (2-4)

where η is the effective viscosity, G is the shear modulus, χ is a plastic multiplier relating
plastic strain rates to stresses, gplastic is the plastic flow potential and σyield is the plastic
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2-1 Forward model: Seismo-Thermo-Mechanical model 7

strength of the material. The first, second and third terms on the right hand side of eq.2-4
are the viscous, elastic and plastic strains respectively. Apart from the addition of the inertial
term, van Dinther et al. (2013b) incorporated a strongly rate dependent friction in the code.
This key ingredient describes brittle instabilities with an effective steady state friction that
is a function of the slip velocity

µ = µs(1− γ) + µs
γ

1 + V
Vc

, (2-5)

where γ = 1− µd
µs

, µd and µs are the dynamic and static friction coefficients. Vc is the velocity
at which friction occurrence reached its half. The above equations are only a small part of
the full code. For an extensive description about the I2ELVIS and STM models, please refer
to Gerya & Yuen (2007) and van Dinther et al. (2013b).

The setup of the numerical model can be seen in Figure 2-1.(b). In order to control the be-
havior of the topography in the upper boundary of the wedge (overriding plate), van Dinther
et al. (2013) set a low viscosity body known as ’sticky air’ to the upper part of the domain
(white color in Figure 2-1; van Dinther et al., 2013a). Apart from GPS-recorded surface dis-

Figure 2-1: (a) Laboratory setting simulating the seismicity along a subduction megathrust .
A visco-elastic gelatin wedge with dimensions of 60 X 11 X 34 cm3 representing a
380 km long and 70 km deep section of forearc lithosphere rotated to have a dip of
10 degrees [Corbi et al., 2013]. A backstop on the rear part of the gelatin holds it
while the plate is driven in the direction of the green arrow at a constant velocity.
(b) Numerical version of the analog model. A gravity acceleration of 9.81 ms−2 is
applied on the gelatin surface with respect to a 10 degrees dip angle. Grey and red
colors in (a) and (b) under the gelatin wedge represent the aseismic and seismogenic
zones of the thrust fault. Adapted from van Dinther et al. (2013b).

placements and natural, seismological and field observations [van Dinther, 2013], van Dinther
et al., 2013b also validated the STM model with an accompanying laboratory experiment
(see Corbi et al., 2013). The analog model consists of a visco-elastic gelatin wedge that is
placed on a flat plastic covered plate with sand paper on a portion of it. The contacts of
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8 Theory

gelatin-plastic and gelatin-sand paper simulate aseismic and seismogenic zones (respectively)
in the interface of a thrust fault (Figure 2-1; Corbi et al., 2013). Model parameters as well
as time were scaled in the model to represent the process in nature [Corbi et al., 2013]. The
time scale in the model varies throughout the evolution as the model was originally scaled
such that 1 s of interseismic period in the model is equivalent to 286 yr in nature and 1 s of
coseismic period in the model is equivalent to 800 s in nature.

2-2 Sequential data assimilation

Data assimilation (DA) is a general name for a variety of techniques integrating two sources
of information: data and a model, of a physical process (either probabilistic or deterministic),
with the aim of obtaining an estimation of the true state evolution of the system. Data and
model spaces are inhabited by observations and mathematical/numerical model describing a
physical process (respectively). DA is widely used in oceanography (e.g. ocean circulation
models) and meteorology (e.g. numerical weather prediction models) and it includes three
main approaches: variational DA, sequential DA or a mix of both [Lahoz et al., 2010; and
Evensen, 2009]. While variational DA is looking for the best fitted estimate over the whole
assimilation time window (therefore, require storage of an entire assimilation time window),
sequential DA proceeds in a chronological order, by repeating steps of analysis when new
observations are available and forecasts until the next observation time [Evensen, 2009; Lahoz
et al., 2010; Bannister, 2017; Lang & Owens, 2018].

A tracking problem with state variable ψ and measurement data d both at discrete time k,
can be defined as [Arulampalam et al., 2002],

ψk = Fk(ψk−1, vk−1), (2-6)

dk = Hk(ψk, nk), (2-7)

for k = 1, 2, 3... . For a non linear problem, Fk and Hk are non linear functions relating ψk−1

to ψk and ψk to dk with v the process noise and n measurement noise. The process noise v
associated with the model and initial conditions includes inaccuracies, numerical truncation
and discretization while the measurement noise n associated with observed data includes
random, systematic and representative errors. By combining observations and the model,
we account for uncertainties and shortcomings of one and compensate it with the other to
obtain improved estimates [Lahoz et al., 2010]. Integration of two information sources can
be performed through Bayesian inference [Bayes & Price 1763], in which probability densities
reflects the uncertainty in a value, may it be a model or observed data. p(ψ0:k|d1:k), the
conditional probability known as the posterior, is

p(ψ0:k|d1:k) =
p(d1:k|ψ0:k)p(ψ0:k)

p(d1:k)
(2-8)

where p(d1:k|ψ0:k) and p(ψ0:k) are the likelihood and prior distributions and p(d1:k) =∫
p(d1:k|ψ0:k)p(ψ0:k)dψ0:k is a normalizing factor [van Leeuwen, 2009; Särkkä, 2013]. The

August 28, 2018
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Figure 2-2: Illustration of a tracking problem, possibly nonlinear with observed data d, hidden
state ψ and connecting them are H and F operators.

above equation calculates the full posterior distribution of the states for all available obser-
vations. As number of observation fed to the system increases, the calculation becomes
computationally too expensive. In order to make calculation more simple and applica-
ble, only marginal distributions are being calculated and distributions are approximated as:
p(ψ0:k|d1:k) ∼ p(ψk|dk), p(d1:k|ψ0:k) ∼ p(dk|ψk) and p(ψ0:k) ∼ p(ψk|ψk−1) [Särkkä, 2013].
The latter approximation describes a transition probability distributions of a Markov chain
process where ψk is independent of steps preceding k-1 and succeeding k. The observation
vector d is assumed to be a discrete vector of measurements at t ∈ [t1, tk]. Recursive appli-
cation of this Bayesian based approach consists of two main stages: prediction and updating
at each assimilation step [Arulampalam et al., 2002]. Prediction consist of propagating the
current system’s state and its corresponding probability density function (pdf) in time to the
next step and the update consist of modifying this predicted state using measured data and
corresponding pdf [Arulampalam et al., 2002].

Within the filtering category there are optimal algorithms which compute a closed form solu-
tion such as the Kalman filter and suboptimal algorithms which approximate solutions such as
the Extended Kalman Filter (EKF), the Ensemble Kalman Filter (EnKF) and Particle Filters
[Arulampalam et al., 2002; Evensen, 2009; van Leeuwen, 2009; van Leeuwen, 2010; Särkkä,
2013]. The problems that are being solved by methods like KF (linear) and EKF (linearized
problem) have normally distributed probability densities fully characterized by their mean
and covariance. On the other hand, problems that are either non-linear or have non-Gaussian
behavior, can be solved among other options using EnKF if Gaussianinity assumption hold or
Particle Filter for fully non-linear and non-Gaussian distributions [Arulampalam et al., 2002].

2-2-1 Particle Filter

Particle Filtering is a recursive Bayesian filter and a type of sequential Monte Carlo method,
in which model posterior is represented by a set of random particles, each of which is a
different realization of the model [Arulampalam et al., 2002; Kitagawa, 1996]. Particle Filters
are particularly useful in cases of non-linear problems with non-Gaussian state distributions
and considerable dimensionality of ψ where various types of Bayesian filters such as Kalman
filters cannot be applied due to their basic assumptions [Arulampalam et al., 2002]. In the
most basic form of the Particle filter, particles are drawn randomly from a prior distribution
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{
ψ

(1)
0 , ψ

(2)
0 , ..., ψ

(s)
0

}
∼ p0(ψ), (2-9)

such that the model prior is represented by a sum of Ns delta functions

p(ψ) =
1

Ns

Ns∑
i=1

δ(ψ − ψi) = 1, (2-10)

where δ is the Dirac function [van Leeuwen, 2009]. If the number of particles N → ∞ the
particle filter converges to the true distributions (under some conditions; Crisan & Doucet,
2002). By drawing samples out of a continuous distribution, the prior and eventually the
posterior are being represented in a discrete manner such that closed form computation of
statistical quantities are avoided and the number of computations required at each assimila-
tion step remains constant [Särkkä, 2013]. The posterior distribution is determined through
”importance sampling” where the posterior is approximated in the following way:

p(ψ|d) =

Ns∑
i=1

wiδ(ψ − ψi) (2-11)

where wi is a weighting function given by:

wi =
p(d|ψi)

Ns∑
j=1

p(d|ψj)
(2-12)

The expected value of state variable ψ would then be a weighted average of all particles:

E[ψ] =

Ns∑
i=1

ψip(d|ψi)

Ns∑
j=1

p(d|ψj)
=

Ns∑
i=1

ψiwi (2-13)

Another type of importance sampling commonly discussed in literature uses an approximated
distribution π(ψ) (could also appear as q(ψ)) from which samples are drawn, such that wi
becomes an ”importance weight” [Doucet et al.,2001]:

wi ∝
p(ψi)

π(ψi)
(2-14)

An approximated or proposed distribution is used when either p(ψ) is too complex or the
variance when sampling it is too large. By proposing a distribution, one can focus sampling
to the important region of the distribution.

The likelihood p(d|ψi) can be computed using a Gaussian distribution [Van Leeuwen, 2009]:

p(d|ψi) = Aexp

{
−1

2
[d−H(ψi)]

T (σ2)−1[d−H(ψi)]

}
(2-15)
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or a Lorenz distribution [Vossepoel & Van Leeuwen, 2007]:

p(d|ψi) =
1

1 + [d−H(ψi)]2

σ2

(2-16)

where A is an amplitude factor, H(ψi) is the measurement operator acting on the ith particle,
d is the observation, [d − H(ψi)] is called the innovation and σ2 is the standard deviation.
σ is a scalar or a Matrix depending on the number of variables being observed and it is
proportional to observational errors. If the observational errors are correlated, σ becomes the
error covariance as in van Leeuwen (2009). The Lorenz distribution has its shape similar to
a Gaussian, though it is much broader away from its peak. This characteristics of the Lorenz
distribution enables more particles to influence the estimate [Vossepoel & van Leeuwen, 2007]
therefore, making it more favorable when the distribution is too narrow using a Gaussian.
The final product of eq. 2-15 and 2-16 is a distribution of weights that are based on the
distance of each particle to the observation. This importance sampling procedure is relatively
easy to implement and it is repeating itself also in next analysis steps. Nonetheless, van
Leeuwen (2009) describes two problems arising from the basic particle filter:

1) If particles are moving away from the observation, they would not be pulled back since
only the weight of the particles is being modified at each analysis step and not the particles
themselves.
2) Particle filters suffer from degeneracy, resulting in most particles having negligible weight
after few analysis steps, turning the analysis to be statistically meaningless.

A useful way to measure a filter’s degeneracy is to calculate an estimate of the effective sample
size Neff [Arulampalam et al., 2002],

Neff ≈
1

Ns∑
i=1

(wi)2

(2-17)

where wi was already introduced in eq. 2-12. To overcome degeneracy one could use very
large ensemble or choose the importance density such that the variance can be decreased
[Arulampalam et al., 2002]. Option 1 is impractical in most applications where computa-
tional effort will increase dramatically due to large data sets. Another option is to perform
resampling: once Neff reduces below a threshold value, low weight particles are eliminated
from the ensemble and copies are made from high weight particles to rebuild the ensemble’s
original size [Arulampalam et al., 2002].

2-2-2 Ensemble Kalman Filter (EnKF)

This subsection is meant to be a short summary of the EnKF method according to how it
was implemented in van Dinther et al. (2017). For a more comprehensive description the
reader is referred to van Dinter et al. (2017) and Evensen (2009). The EnKF [Evensen, 1994]
is a stochastic alternative of the MCMC (Markov chain-Monte Carlo) type for the Extended
Kalman Filter (EKF) and it is suited for solving large dimensional non-linear problems.
The EKF has two major drawbacks: 1) it uses a closure approximation scheme to the error
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covariance evolution 2) it is impractical in high dimensional dynamical models due to the size
of the error covariance matrices [Evensen, 2009]. The EnKF circumvent these by using an
ensemble of model states. Instead of computing explicitly the evolution of the mean state
and forecast error covariance Cfψψ, the EnKF computes the evolution of an ensemble of model
states whose sample covariance matrix approximates the error covariance matrix [Evensen,
2009].

The two probability densities pf (ψ) (forecast states) and pa(ψ) (analyzed states resulting
from the EnKF procedure) corresponding to ψf and ψa are approximated by N ensemble
members [van Dinther et al., 2017]. In van Dinther et al. (2017) the ensemble was generated
using small perturbations resulting from small difference in cell markers distribution. The
ensemble members were running in parallel as separate models until reaching an assimilation
step where each of the ensemble members is manipulated into a new value ψai as part of

the analysis stage (see explanation below). The error covariance matrix Cfψψ is initially
approximated by a forecast-best estimate

Cfψψ ≈ C
f,e
ψψ =

1

N − 1

N∑
i=1

[
(ψfi )p − (ψf )p

] [
(ψfi )q − (ψf )q

]T
(2-18)

where (ψf ) is the mean ensemble states forecast and (p,q) are matrix entries. Notice that due
to the true value being unknown, the covariance matrix is determined by the distance of each
ensemble member to the ensemble’s mean value. The model states are propagated using the
dynamic model described in section 2-1 and at each assimilation step every ensemble member
is analyzed and updated according to:

ψai = ψfi + Cf,eψψM
T (MCf,eψψM

T + Cedd)
−1(di −Mψfi ) (2-19)

where Cedd = εd,iε
T
d,i is the measurement error covariance matrix (with εd,i being the measure-

ment error) and M is the measurements matrix, within it locations of observation are stored
and di is the observation corresponding to ensemble member i. As mentioned before propa-
gation of the state in time also propagate its uncertainty in time, this enables the estimation
of the error covariance by sampling the analyzed models of the ensemble:

Ca,eψψ =
[
(ψai )p − (ψa)p

] [
(ψai )q − (ψa)q

]T
(2-20)

By doing so, it is also necessary to add artificial random perturbations to the observed data
in order to have a correct propagation of the error statistics [Burgers et al., 1998].

di = d+ εd,i (2-21)

The result is a vector of observed data corresponding to the different ensemble members. The
best estimate is obtained by taking a mean value of the analyzed ensemble members ψa. In
contrast to the EnKF, unless a re-sampling technique is applied (then the composition of
the ensemble is changed) particles do not change during the updating stage using the PF.
In addition to that, the two methods differ in representation of model errors. While in the
EnKF model errors are represented by the ensemble and its corresponding covariance matrix,
in the PF model errors are fully represented by the choice of the ensemble.
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2-2-3 Ensemble smoother

In literature smoothers differ from filters by calculating an estimate at time k based on
past and future measurements (observed data) p(ψk|d1:T ) [Särkkä, 2013]. As opposed to
the PF where information is carried only forward in time, in smoothers information is carried
backward and forward in time and the best estimate for each time step is based on all observed
data in the time series [Evensen & Van Leeuwen, 2000]. For that reason Smoothers are a
useful tool for studying the process’ characteristics and gaining further understanding. The
Ensemble Smoother (ES) solution discussed here was introduced as ”Direct ensemble method”
in van Leeuwen & Evensen (1996) and since then it has been investigated with regards to
non-linear dynamics and found a wide use in flow problem and petroleum reservoir history
matching [Skjervheim & Evensen, 2011; Emerick & Reynolds, 2013; Crestani et al.,2013]. In
their paper, Evensen & Van Leeuwen (2000) derive a general formulation of the smoother
into a sequential smoother, that for the time interval t ∈ [t1, tk] would take the form

p(ψ1, ..., ψk|d1, ..., dk) =
p(d1, ..., dk|ψ1, ..., ψk)p(ψ1, ..., ψk)∫
p(d1, ..., dk|ψ1, ..., ψk)p(ψ1, ..., ψk)dψ

. (2-22)

Eq.2-22 assume d to be a discrete data vector. With the additional assumptions that (1) the
process is a first order Markov chain and (2) a data point within d at time t ∈ [t1, tk] depends
only on the current state (see Evensen & Van Leeuwen, 2000), the smoother formulation
becomes:

p(ψ0, ψ1..., ψk|d1, ..., dk) =
p(dk|ψk)p(ψ0, ψ1, ..., ψk−1|d1, ..., dk−1)p(ψk|ψk−1)∫
p(dk|ψk)p(ψ0, ψ1, ..., ψk−1|d1, ..., dk−1)p(ψk|ψk−1)

(2-23)

If k=2 in the above equation, the data is assimilated based on the time interval t ∈ [t1, t2]
and as k increases more data influences the solution. van Leeuwen & Evensen (1996) and
Evensen & Van Leeuwen (2000) applied the ES in the context of the EnKF, such that the

addition to ψfi in eq.2-19 is determined by integration of all data defined in the time interval
for the smoother. For an ensemble smoother in the context of the PF, refer to section 3-3.
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Chapter 3

Methods

The work of constructing a suitable particle filter was based on: 1) generating an evolution
in time and space of a seismic cycle in a subduction zone, using the previously mentioned
STM model (chapter 2) and 2) writing a code which reads the evolution of state variables,
sample (generate) particles from it, attach a weight to each particle and eventually calculate
an estimation to the true state variables.

3-1 STM model: setup and output

For running a simulation of the seismic cycle, we require initial geometry and parameters;
those were chosen to be the same as in van Dinther et al. (2017), since one of the goals of
this thesis is to compare the performance of EnKF with that of PF. However, it is important
to mention that full comparison between the two based on a model generated by the current
STM code is not possible, due to the fact that markers inside the cells of the model are
distributed randomly and therefore, each time a different state evolution is obtained. As part
of the simulation, files containing the model geometry and the state variables are outputted at
user predefined time steps. The state variables Vi, Vj , σii, σij and P at a subsurface location
serve as observed data for data assimilation.

The time step was set to 0.066 seconds. Van Dinther et al. (2013b) explained this choice
of time step with the stability of the solution for a range of models (see Appendix A2 in
their paper). The model generated by the STM code was set to contains 701x136 nodes
corresponding to the x and z directions respectively. The model was set to output state
variables for points of interest (markers) at each time step (can be seen in Figure 3-1): 10
markers situated on the top of the gelatin wedge (GPS markers) and 14 Markers situated
on the fault (contact surface between the slabs) or above it. The point marked with a black
circle is the location of the borehole which can be regarded as a five km deep borehole [van
Dinther et al., 2017].
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Figure 3-1: Model domain consisting of 701x136 nodes. Properties differ inside the domain
according to the material: Air (white), Gelatin (orange), Fault (red- seismic and
gray- aseismic zones), backstop wall (magenta). Dots represent markers of interest:
GPS markers (light blue) borhole location (black) and Fault markers (blue).

3-2 Particle Filter

The particle filter introduced here, is a basic bootstrap particle filter described in detail in
section 2-2-1 in which particles have been generated with a time lag sampling technique rooted
in the LAF of Hoffman & Kalnay (1983). As discussed before, the basic particle filter does
not require an assumption of linearity of the model or Gaussianity of the probability densities
thus, it is an appropriate DA technique for the STM model. Nonetheless, there are other
assumptions that had to be made in order to use the particle filter:

• The model is a Markov chain process, meaning it is stochastic and the current state
depends on former state [Evensen & Van Leeuwen (2000)]:

dψ = F (ψ)dt+ dv (3-1)

where F is the non-linear model operator and dv is random noise increment.

• Observed errors are uncorrelated between state variables.

• The model has finite model space with ensemble size corresponding to the model space
size.

Since the work done here is only in its early stages and serve as a proof of concept, a fourth
assumption is:

• regarding the STM model as a perfect model, meaning that it truthfully and completely
reflects the physical process.

The standard PF performs an importance sampling, using an importance distribution q (which
might be quite different from the true distribution p). Here I use time lag sampling, which
does not sample randomly out of a distribution. If the system is ergodic, meaning that a single
realization averaged over time is equal to the model space average [Walters, 2000], time lag
sampling of one evolution should in theory represent the model space. Lagged time sampling
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3-2 Particle Filter 17

presents several advantages over other techniques of particle generation: it limits the model
space to a finite number of combinations of the state variables, it forces the ensemble to contain
only values which are physically meaningful and exist within the modeled process and most
importantly by choosing lagged versions of an already existing evolution, computation of the
ensemble models is spared. However, it loses its advantage if the ensemble is not constructed
correctly or if the size of the ensemble is still not large enough to have a good representation
of the model distribution. Moreover, model errors might not be correctly represented due to
realizations being time lagged versions of the same model. To truly stand within the limits of
the second part of the 3rd assumption in cases of large model space, one is required to have a
very large ensemble that may not be feasible or practical if computation increases remarkably
with increasing number of ensemble members.

3-2-1 Ensemble generation

The PF performs the sampling of an existing combination of state variables Vi, Vj , σii, σij
and P out of an evolution generated by the STM model; this is done by using a time lag ∆t

and its multipliers. At each ta (assimilation time step where a=1,2,3...n), a time lag
Ns∑
n=1

n ·∆t

is used to sample Ns particles consisting of 5 state variables and generate an ensemble. For
the time being ∆t is chosen to be constant, but random ∆t that results in random time
separation between the various particles, is also possible. The concept of doing so is to make
copies of different stages of the true evolution of the seismic cycle, as simulated using the
STM model and artificially force them to ta. To illustrate the idea of time lag sampling,
Figure 3-2 shows an ensemble of four time lagged particles. The blue line is a model run and
the other colored lines are the time delayed versions (particles trajectories) forced to t ≈ 141
s. For each assimilation step the ensemble will include four possible combinations of the state
variables that are simply the states of the system at different times in the seismic cycle.

Referring back to eq. 2-10, the prior using a PF with time lag sampling would take the form:

p(ψ) =
1

Ns

Ns∑
i=1

δ(ψ − ψt+i∆t) (3-2)

The prior is now a collection of delta functions of time lagged states existing in one model run
which ideally represent the statistical uncertainty. To further demonstrate the idea of time
lag sampling, Figure 3-3 shows two evolutions: evolution from which particles are sampled
(blue) and the true evolution (brown). The figure also shows the true state (big red bullet)
at a specific assimilation step ta ≈ 141 s and an ensemble consisting of four particles (small
colored bullets), sampled by a constant time lag from a single evolution. Figures 3-4 and
3-5 show an ensemble of four particles in five subsequent assimilation steps for Vi and σii
respectively.

3-2-2 Assimilation: calculating weights and estimation

To be as realistic as possible for this assimilation experiment, errors were added to each state
variable in the true state. The errors were created and added to each state variable separately,
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Figure 3-2: Visualization of the time lagged particle sampling technique discussed. Each colored
line represents a time lagged version of the seismic cycle evolution in blue.

by randomly sampling a normal distribution around zero with a standard deviation that
corresponds to the state variable uncertainty. The standard deviations used here were taken
from van Dinther et al. (2017) and appear in table 2 in their paper. These errors reflect the
uncertainty in the measurement.

The posterior of a marginal distribution of the model space in a time lagged form reads

p(ψ|d) =

Ns∑
i=1

wiδ(ψ − ψt+i∆t). (3-3)

Recall wi from eq.2-12. The likelihood appearing in wi was calculated using a Lorenz distri-
bution. The final form of the calculated posterior is given by:

p(ψt+i∆t|d) =

Ns∑
i=1

(
1 +

[d−H(ψt+i∆t)]
2

σ2

)
δ(ψ − ψt+i∆t)

Ns∑
i=1

(
1 +

[d−H(ψt+i∆t)]2

σ2

) (3-4)

where d−H(ψt+i∆t) is the innovation vector with M elements (M being the number of state
variables), indicating distance/misfit between the observed data and the particle and σ2 is
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Figure 3-3: Illustration of assimilation step with the true evolution (brown line) and the true state
indicated at ∼ 141 seconds by the red bullet. The ensemble of particles sampled
from a separate evolution (blue line) is indicated by the small colored bullets. In
order to use the true state as observed data, errors are added to each assimilated
state with a corresponding error size.

the variance matrix with M ×M dimensions. For the ith particle at the ath assimilation step

[da −Ha(ψi)]
2

σ2
=


V a
i,obs − V a

i,i

V a
j,obs − V a

j,i

σaii,obs − σaii,i
σaij,obs − σaij,i
P aobs − P ai


T 

σ2
εVi

0 0 0 0

0 σ2
εVj

0 0 0

0 0 σ2
εσii

0 0

0 0 0 σ2
εσij

0

0 0 0 0 σ2
εP



−1 
V a
i,obs − V a

i,i

V a
j,obs − V a

j,i

σaii,obs − σaii,i
σaij,obs − σaij,i
P aobs − P ai

 (3-5)

To justify the choice to use the Lorenz function and the prove that it is indeed broader than
a Gaussian distribution, the reader is refereed to Figure 3-6. The figure shows that for the
same ensemble composition, a Gaussian distribution would always be narrower than a Lorenz
distribution enabling less particles and thus less statistical information to be incorporated.
This choice later proved to be crucial when it comes to the first two state variables Vi and Vj .

The result of eq.3-4 for a single particle is a scalar which is a weighted average of all five states
in this particle. Each of the particles is assigned a weight (posterior) according to eq.3-4 and
the estimated state is a weighted average of the particles.

Recall from section 2-2-2 describing the EnKF as applied in van Dinther et al. (2017), that
as opposed to the PF, the EnKF does not weigh particles, but rather calculates and applies a
correction of the misfit multiplied by the Kalman gain to each particle, leading to creation of
a new ensemble of analyzed particles out of which the best estimate is calculated as a mean
value. This difference between the two methods does not only affect the goodness of estimate
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Figure 3-4: Illustration of an ensemble in subsequent five assimilation steps (a-e) for the state
variable Vi. Colored bullets are the particles constituting the ensemble.
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Figure 3-5: Illustration of an ensemble in subsequent five assimilation steps (a-e) for the state
variable σii. Colored bullets are the particles constituting the ensemble.
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Figure 3-6: Comparison between Lorenz and Gaussian distributions of particle weights for the
same ensemble of particles.

but also the computation time. PF requires only computation of the posterior while particles
remain unchanged. Whereas in the EnKF particles are being updated for each of the states
and future state is then predicted based on the new ensemble. Another advantage of the PF
is that it does not require running the assimilation while running the STM model; this is not
the case when using the EnKF where assimilation is performed online while running the STM
model.

3-3 Particle Smoother

The smoother could be implemented based on existing particle filter implementation. The
smoother only requires storing the observed data and particles for all assimilation steps.
Storing all data as a single vector, the smoother routine is performed using

p(ψ1:k
t+i∆t)|d1:k) =

Ns∑
i=1

(1 +
[d1:k−H(ψt+i∆t)

1:k]2

σ2 )
1

A

A∑
k=1

δ(ψ − ψkt+i∆t)

Ns∑
i=1

(1 +
[d1:k−H(ψt+i∆t)1:k]2

σ2 )

, (3-6)

where A is the total number of assimilation steps. This equation indicates that only a single
weight is calculated to the ith particle based on the entire assimilation sequence in time. For
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the ith particle, d1:k −H(ψt+i∆t)
1:k would take the form:

V 1
i,obs

V 1
j,obs

σ1
ii,obs

σ1
ij,obs

P 1
obs

V 2
i,obs
...

V k
i,obs


−



V 1
i,i

V 1
j,i

σ1
ii,i

σ1
ij,i

P 1
i

V 2
i,i
...
P ki


and the variance matrix σ2 is constant for all particles

σ2
εVi

0 0 0 0 0 ... 0

0 σ2
εVj

0 0 0 0 ... 0

0 0 σ2
εσii

0 0 0 ... 0

0 0 0 σ2
εσij

0 0 ... 0

0 0 0 0 σ2
εP

0 ... 0
0 0 0 0 0 σ2

εVi
.... 0

...
...

...
...

...
...

. . . 0
0 0 0 0 0 0 0 σ2

εP


The estimated state for each assimilation step is a weighted average of all particles in that
step. As mentioned before, the ith particle would be multiplied by the same weight for all
assimilation steps. If we look at a matrix with size K × N (K number of assimilation steps
and N number of particles) containing all weights, for the PF the elements in the rows and
columns will vary, while for the smoother the rows are simply copies.
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Chapter 4

Ensemble generation

The previous chapter described the PF, PS and the time lag particle sampling technique.
In order to find the proper ensemble that characterizes/describes the system, different pa-
rameters for creating an ensemble were tested. The two most important parameters which
characterize the ensemble are time lag ∆t (time separation between particles) and number of
particles Ns (size of the ensemble). Given a simulation time step size ∆t of 0.066 s, assimila-
tion step size for all the experiments was chosen to be 2 s corresponding to 30 simulation time
steps (taken to be same as in van Dinther et al. (2017)). Apart from being a measure to find
a suitable ensemble, these tests are also indicators for the sensitivity of the representation of
model error to the sampling technique.

4-1 Early analysis and representation of process physics

In different experiments (even when repeating an experiment) the error being added to the
data is random and thus, different each time. To make sure that random errors do not signif-
icantly affect the results and that the PF is robust, an experiment was repeated several times
in which only the random error (added to the data) varies. It was found that the deviation of
errors from the mean error (difference between the true and the expected evolutions over 10
experiments), does not exceed 3.3% in the borehole location and 2.3% (except for vi where
velocity is of the order of 10−5 and deviation goes up to 8.7%) at the F11 marker location
(see fig.3-1). Considering that the errors are around 10−3 − 10−5 [cm/s] for the velocities
and 100 − 101 [Pa] for the stress and pressure state variables, deviation of the error between
experiments is at least one order smaller than the mean error over all experiments. It is
therefore concluded that the PF is robust and that variation of the results between different
experiments due to randomization of the measurement error can be disregarded.

As a starting point and as a way to gain insight into the PF and physical system, the ensemble
of particles is drawn out of an evolution considered to be the ’true evolution’. Particles
are being sampled with respect to the true state at the current assimilation time step. To
distinguish past and future sampling in time, sampling particles from future evolution to
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26 Ensemble generation

current true state will be termed forward sampling and sampling particles from both past
and future times to current true state will be termed Backward-Forward sampling.

Looking at figure 4-1 it is observed that σii and P exhibit a trend with time. The term trend
here is used to describe a consistent increase or decrease of the mean value with time. To
illustrate the problem of sampling data with an embedded trend, Figures 4-2 and 4-3 show a
time window of 199 seconds assimilated with Forward and Backward-Forward sampling and
∆t = 6.63 seconds.

Figure 4-1: Particles sampled from evolution of vi, vj , σii, σij and P with a constant time lag
∆t.

The dark pink background in figures 4-2 - 4-3 is created by plotting ensemble paths consisting
of 150 particles. The blue and black lines are the true evolution (without added errors) and
expected evolution respectively. The mean absolute error for σii, σij and P is 5 times lower
when sampling past and future states as opposed to sampling only future states with respect
to current assimilated state. The results for the two velocities are surprising, also exhibiting
better fit even though no trend is apparent. The pink envelope of ensemble paths bounding
the expected value can be also viewed as a representation of the model error. Thus, the true
state has to be enveloped by the ensemble of particles in each state from above and below, in
order to be properly assimilated.

In order to successfully perform DA using the PF, the ensemble has to reflect the physics of the
system/process. Observing figure 4-1, one could divide the seismic cycle as simulated by the
STM model into two periods: inter- and co-seismic. During the interseismic period loading
of stress and pressure occur and during the short coseismic period a slip occurs, resulting in
stress and pressure decrease and sharp increase in the magnitude of velocity. Since the process
is a cycle, it is expected to exhibit dominant frequencies of occurrence. These frequencies can

August 28, 2018



4-1 Early analysis and representation of process physics 27

Figure 4-2: Fit of expected value to true evolution for GPS marker S1. Sampling particles
forwards in time with ∆t = 6.63s

Figure 4-3: Fit of expected value to true evolution for GPS marker S1. Sampling particles
Backward and forward in time with ∆t = 6.63s
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28 Ensemble generation

be obtained by performing Fast Fourier Transform (FFT) on a time window within the states’
time series. Figure 4-4 shows the frequency spectrum of state variables vi and σii respectively.

(a)

(b)

Figure 4-4: Frequency spectrum of (a) vi and (b) P evolutions in time. Time window for FFT
is ∼ 144 -1989 seconds.

Due to similarity of vj to vi and σij and P to σii, it is sufficient to look at the frequency
spectra of vi and P . The frequency spectra shows high amplitudes for a wide range of
frequencies: the earthquake cycle is more complex than only few re-occurrence frequencies.
Two frequencies are shared by both spectra are: 0.04282 and 0.04661 Hz, those are translated
to 1

f = T = ∆t: 23.4 and 21.5 seconds respectively. van Dinther et al., (2013b) point out an
average re-occurrence time interval of 19.3 s. In the context of time lag sampling, the FFT
results suggest that in order to sample a full cycle, the sampling window ∆t×Timestep×Ns

should be at least 20 s.

4-2 Particle separation

In a real case, the true evolution is not available. Therefore, the former example where the
prior is fully consistent with the observation is not realistic. How would the PF Perform in
a more realistic setting where particles are to be sampled from a different evolution to that
of the true evolution? To answer that, experiments were constructed in which particles are
sampled out of a different model run to that of the true state.

The time lag, or in other words the sampling frequency, determines the members of which the
ensemble consists of. Therefore, it determines what stages of the seismic cycle are represented
within the ensemble. So far it was suggested that the ensemble should accommodate the
frequency of slip occurrence and that its range of values should be large enough to ensure
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4-3 Ensemble size 29

that the true value is within the ensemble’s envelope of available states for assimilation.
Ideally, the spread of the ensemble (minimum to maximum range) should be larger than the
variance of the measurement error in order to account for it. If the ensemble’s spread is too
small, it might not include particles that are sufficiently close to the observation, lowering the
chance of a successful data assimilation using the PF.

One way of testing the goodness of an ensemble is through looking at its prior distribution.
Essentially, an ensemble is a collection of models, together these models compose a model
distribution. Since it is approximated to be discrete, the model distribution should have a) a
wide spread (range of values) for proper statistical representation and b) enough values that
are smoothly scattered around the observation. These criteria were tested by looking at a
histogram of ensemble values for increasing sampling time lag (figure 4-5).

vi and vj exhibited poor spreads with concentration of particles around zero velocity (inter-
seismic period) even for increasing time lag. This is not surprising given that the interseismic
period, in which velocity perturbations are fairly small, dominates the evolution. On the other
hand σii and P have shown to be very sensitive to different time lags, with approximately 50
Pa difference going from smallest to largest time lag. One possibility for this sensitivity could
be the presence of trends with time (see figure 4-1). Yet, the variance of the measurement
error is covered well already for time lag as small as 5 s for both σii and P . It can be observed
in figure 4-5.(c) that the spread in σij values within the ensemble remains smaller for all
tested ∆t’s. This suggests that the model error which depend on the variability of σij with
time is too small relative to the measurement error.

4-3 Ensemble size

It has been shown that for an ensemble containing 150 particles, the majority of particles have
vi and vj around 0, with only few particles having velocities away from 0. In addition to that,
the spread of σij is smaller than the observational error. The main question in this subsection
is whether it is possible to complement the frequency of sampling (time lag), by increasing the
number of particles, in order to properly represent the interseismic and coseismic periods and
avoid filter degeneracy. Figure 4-6 compares the spread of the ensemble for different number
of particles. It comes as no surprise that the main difference between the different histograms
of the same state is the form of the histogram rather than the variance. As the number of
particles increases the ensemble takes the form of the true prior distribution. The increase
in ensemble spread for σii and P in (b) and (c) is a combination of increasing the number
of particles thus, sampling later in time, and an existing trend in those state variables with
time.

Figures 4-5 and 4-6 present possible contradictions between the (fitting) choice of time lag
and number of particles. Looking at vi, ∆t = 0.06 s enables a higher sampling resolution of
possible states during a seismic cycle, such that there are more particles away from 0 velocity.
On the other hand σii, σij and P show larger spread as ∆t increases.

As a summary, ensemble sampling window should be at least 20 s in order to capture a
full cycle consisting of inter- and coseismic periods. Ensemble spread for state variables σii
and P is very sensitive to change in ∆t and number of particles, as opposed to other state
variable such as vi and vj . vi and also vj (not shown but exhibit the same behavior) display
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30 Ensemble generation

very little sensitivity, especially for large ∆t’s due to dominant interseismic period which is
characterized by only minor perturbations around the 0. σij has variability that is lower than
the measurement error, suggesting that very little information is added by assimilating it.
There is a trade off between the resolution with which the ensemble can represent the seismic
cycle and the spread of the ensemble when varying the time lag.
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Chapter 5

Results and analysis

Analysis in chapter 4 suggests that there is a trade off between ensemble coverage of possible
states throughout a seismic cycle and its spread when changing the time lag with which the
evolution is sampled. This trade off was tested with various combinations of time lags and
ensemble sizes. In following sections two of these experiments are presented as representative
examples. Both experiments were based on an ensemble consisting 300 particles in order to
maximize coverage of possible states.

5-1 Particle Filter

One experiment was conducted with ∆t = 9.9 s and 300 particles. Data fit and fit for marker
F11 are displayed in figures 5-1 and 5-2 respectively. Recall from Figure 3-1 that the F11
marker is situated in the middle part of the seismogenic zone, where we would like to have
state estimation. Although expected evolution (black) mimics the true evolution (blue) it
does not fit it well and exhibits severe irregularities. The fit of the expected evolution to the
true evolution is even poorer for the F11 marker, especially for the stress and pressure. The
expected evolution remains around a certain value for each of the states, although smoother
than for the fit of the borehole data, it is still noisy. The mean number of particles with
effective weight Neff for the entire assimilation window is 67.5±41.1 with 50% of assimilations
steps having Neff lower than 57.5. This means that for half of the assimilation steps, only
fifth of the particles effectively contribute to the expected value while the rest of the particles
have negligible weight.

The second experiment was conducted with ∆t = 0.33 s (covering almost 5 cycles) and 300
particles. Results in figure 5-3 show an improvement from previous experiment of 300 particles
and ∆t = 9.9. Irregular shapes appear in the expected evolution at the borehole location as
in previous experiment. For both experiments, velocity state variables exhibit the poorest fit
compared to other state variables. Neff has also improved with mean of 138.3 ± 50.3 and
50% of assimilation steps with Neff lower than 141.6. This is a significant improvement in
the effective number of particles. Results for marker F11 appearing in figure 5-4 also show an
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34 Results and analysis

Figure 5-1: Data fit at the borehole location for experiment with 300 particles and ∆t = 9.9 s.
Mean absolute error vi: 0.0032 ± 0.0065 [cm/s], vj : 0.0023 ± 0.0044 [cm/s], σii:
6.08± 3.71 [Pa], σij : 2.10± 1.71 [Pa] and P : 3.12± 3.97 [Pa].

Figure 5-2: Fit of expected and true evolutions in F11 marker, for experiment with 300 particles
and ∆t = 9.9 s. Mean absolute error vi: 0.0040± 0.0076 [cm/s], vj : 7.72 · 10−5 ±
1.90 · 0.00018 [cm/s], σii: 12.41 ± 13.87 [Pa], σij : 14.43 ± 16.71 [Pa] and P :
9.58± 9.83 [Pa].
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5-1 Particle Filter 35

Figure 5-3: Data fit at the borehole location for experiment with 300 particles and ∆t = 0.33 s.

Figure 5-4: Fit of expected and true evolutions in F11 marker, for experiment with 300 particles
and ∆t = 0.33 s.
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36 Results and analysis

improvement in σij and P fit. Improvement was also evident at other fault markers outside
the seismogenic zone. MAE (mean absolute error) and SD (standard deviation) for time lag of
0.33 s are displayed in Figure 5-5 and corresponding RE (relative error) is displayed in Table
5-1. The equations for calculation of statistical values are detailed in appendix C. Comparison
between errors at different marker locations reveals that the largest errors between true and
expected evolutions are within the seismogenic zone while the smallest errors are observed
downdip the aseismic zone (F14). This can be explained by the different rheological behavior
of the down-dip aseismic part of the fault which compared to the seismogenic zone, experiences
less events and weaker amplitudes.
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Figure 5-5: The mean absolute error between true and expected evolutions resulting from as-
similating 300 particles that were sampled with time lag ∆t = 0.33. The MAE
and corresponding SD are displayed for few chosen markers on the fault and for the
borehole. F10, F11 and F12 markers situated within the seismogenic zone.

State variable Borhole F4 F10 F11 F12 F14

vi 534.41 102.53 90.39 65.68 219.35 214.89
Relative vi 153.72 1370.43 823.13 1462.39 230.50 -
error [%] σii 3.35 9.88 159.92 142.53 870.50 284.25

σij 3.23 14.53 20.55 23.56 12.60 3.04
P 3.00 1.76 6.69 2.01 3.35 0.16

Table 5-1: Relative errors corresponding to previous figure (5-5) showing errors resulting from
assimilating 300 particles that were sampled with time lag ∆t = 0.33 .

In order to understand how particles are distributed around each state and how misfits of
multiple state variables are translated into a single posterior, the partitioned weight of each
state variable was calculated and plotted separately for the 24th (Fig.B-5 in appendix B), 40th

(Fig.B-7 in appendix B) and 80th (Fig.5-6) assimilation steps (as marked by colored vertical
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5-1 Particle Filter 37

lines in fig.5-4). In these figures, small blue bullets are 300 particles distributed around the
observation (Big blue bullet). Weight appears as partitioned weight, meaning that weights
were calculated for each state variable independently. For example, the weight for state
variable P was calculated for the ith particle as

wi(P ) =

(
1 +

[P obs−P model
t+i∆t ]2

σ2
P

)
Ns∑
i=1

(
1 +

[P obs−P model
t+i∆t ]2

σ2
P

) . (5-1)

Eq.5-1 simply normalizes the misfit (distance between observed and model state), scales it by
the measurement error and distributes it according to a Lorenz distribution. The red bullet
in these figures is the true value for each state variable and the purple bullet indicates the
particle which has the maximum weight combining all states as shown in eq. 3-4.

According to figure 5-4 assimilation step 80 (marked with a reddish-brown vertical line)
happens during the coseismic phase of the seismic cycle. Figure 5-6 shows that the highest
posterior marked by the purple bullet is a combination of weights that are not necessarily the
highest for each state variable separately. It means that in order to represent multiple states
with a single weight, the states must be consistent in the particle realization. A possible reason
for reduced consistency between the different states in the particle is the random observation
error which differs for each state variable. Notice how velocity is poorly covered by particles;
this might suggest that the ensemble is still missing with the part of the model space that
represent the coseismic period. As expected by early analysis (section 4-2), the misfit of σij
appears as a very flat distribution of partitioned weight due to the variance assumed for this
measurement. Overall, σij contribute less information to the assimilation than other state
variables, due to its variability in the ensemble which is small compared to the variance of
the measurement error.

How would the distribution of the posterior look like for state variables on the fault? Figure 5-
7 shows how the posterior distribution appears at the F11 marker location and which particles
contribute the most to the expected value at that location for assimilation step 80. As in
previous figure, the purple bullet indicates the highest posterior. The fit of the PF estimate
to the true evolution depends on how close high weights are to the true state and although
particles are distributed quite close to the true state (apart from vi which was not captured
by the ensemble) in assimilation step 80, for other assimilation steps particles are distributed
far from the true state and captured by only few low weights. Another interesting point in
assimilation step 80, is the weight distribution for σii. When looking at figure 5-6, σii is well
covered by particles and the highest weight in the posterior distribution (purple bullet) is
very close to σii’s highest partitioned weight located at the middle of the distribution. But
the weights plotted for the F11 marker reveal a different picture. While high weight is around
0, the true state is closer to -10. This is because the weight is determined by the combination
of all state variables’ misfits and not just σii’s. It also suggests that a good fit in a variable at
the borehole location does not necessarily mean that the true state is well estimated at the
fault.
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Figure 5-6: Weight contribution of each state separately at the borehole location for assimilation
step marked by brown in figure 5-4. Particle marked in purple, is the particle with
the highest weight of combined states wi.
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Figure 5-7: Combined posterior (wi) with which particles are weighted at fault marker F11, for
assimilation step marked by brown in figure 5-4.
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5-2 Trend effect 39

5-2 Trend effect

One criterion defining a good ensemble is a constant large envelope made of particle paths
that represents the model distribution for the entire assimilation window. In order to obtain a
good fit to the observation, the ensemble should include many realizations with a state that is
close to the observed state. With large time lags the spread of the ensemble is larger, but does
the ensemble include realizations that are relevant to the observed state? and does the choice
of time lag in the observation point necessarily fit other locations in the domain? To answer
the former, figure 5-8 show a comparison between two distributions of particles sampled with
time lags ∆t = 0.33 and ∆t = 9.9s. Notice that weights in this figure are partitioned
weights (the weight distribution of each state independently) and not the weight combining
all five states.
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Figure 5-8: Comparison of partitioned weight distributions of particles sampled at the borehole
location with ∆t = 9.9s and ∆t = 0.33s.

The effective number of particles is clearly higher for small time lags where weight is dis-
tributed over a larger number of particles. Nevertheless, the larger time lag leads to a wider
weight distribution in the sense that it is covering more values. Figures 5-9 to 5-11 further
demonstrate the problem encountered when using large time lags. In these figures the rela-
tive sampling time of the various particles is highlighted by their color: blue (early) to yellow
(late). Figure 5-9 shows a colored weight distribution (posterior, not partitioned weight!) as
calculated from observations at the borehole, for particles that were sampled with ∆t = 0.33s.
As can be seen, particles sampled at different times are fairly mixed. Nonetheless, for most
states the high weighted particles do not target the observation nor the true value. Figure
5-10 shows the weight distribution of particles that were sampled at the borehole location
with a time lag ∆t = 9.9 s. Weights are separated by their sampling time for state variables
σii and P while they are mixed for the others. High weights are restricted to the blue colored
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particles. The combination of state variables is no longer consistent between early and late
times of the evolution due to a presence of a trend in some state variables but not in others.
The corresponding distribution at the F11 marker location, can be seen in Figure 5-11. Par-
ticles are well mixed around the true state, since trends are not present in data at the fault.
The presence of a trend in the observed data leads to a mismatch between the current state
at the borehole and states that are sampled later in time. Hence, particles that are sampled
later in time would have low weights attached to them and their contribution to the expected
value is reduced, even at locations where no trend is present and they are closer to the true
state.
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Figure 5-9: Posterior distribution of particles sampled with ∆t = 0.33s at the borehole location
for assimilation step 80. Particles are colored by their order relative time in the
evolution, from blue (early) to yellow (later).
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Figure 5-10: Posterior distribution of particles sampled with ∆t = 9.9s at the borehole location
for assimilation step 80. Particles are colored by their order relative time in the
evolution, from blue (early) to yellow (later).
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Figure 5-11: Particles corresponding to the F11 marker location and their attached weights as
calculated at the borehole location (fig.5-10). Particles are colored by their order
of sampling in the evolution, from blue (early) to yellow (late).
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5-3 Ensemble Smoother

Generally speaking, particle filters suffer from weight degeneracy. Recall that degeneracy in
particle filters is expressed as a decrease in number of efficient particle (weights) Neff as data
assimilation progresses. If the PF suffers from degeneracy it will be seen as concentrated
weight in one or very few particles. The reason for degeneracy stems from the inevitable
increase of variance in the ensemble for non-linear processes. Generating particles by sampling
a single evolution with a time lag, limits particles such that they do not diverge much during
assimilation and variance is kept almost constant. Although it could also mean that only
small part of the model space is sampled. Figure 5-12 contains four weight diagrams which
show weights for all assimilation steps using the PF (a and c) and the PS (b and d) methods
for ∆t = 0.33 and ∆t = 9.9 s.

Diagram 5-12.(a) shows weights that are calculated at each assimilation step using the PF
for time lag ∆t = 0.33. Higher weights (relative to other particles) exhibit diagonal and wavy
patterns. The clear diagonal patterns have repetition rate of around 20 s, which is the average
time of event re-occurrence considered in section 4-1. These patterns are no longer visible
when time lag is increased to 9.9 s (diagram 5-12.(c)) and weight distribution becomes more
random and dispersed. Nevertheless, a transition is visible around particle 125th from high
and dispersed to low uniform weight. This is consistent with previous figures for which the
effect of trend on weight distribution was discussed.

The particle filter as shown in figure 5-12.(a) and (c) does not exhibit any noticeable degener-
acy although, figure 5-12.(c) showing the particle filter for ∆t = 9.9 s can be deceiving. In this
diagram the number of effective particles is relatively low with half of the assimilation steps
having Neff below ∼58 particles. Nevertheless, this is does not count as filter degeneracy
since weights do not converge into a single particle.

Figure 5-12.(b) and (d) show particle weights for increasing total number of assimilation
steps. Detailed weight diagrams consisting all assimilation steps are presented for the particle
smoother in order to give further insight into the process of assimilating the seismic cycle
model. As assimilation steps are added (from 1 to 100), more steps are taken into account
in the calculation of the weights. However, the weights that are eventually attached to the
particles are those of the last assimilation step only. Recall from section 3-3 that in the
PS, each realization of the model has a single weight attached to it for the entire assimilation
window. Since weight distribution between particles is changed from one assimilation step to
the next, none of the particles ”accumulate” weight as the assimilation window is lengthened.
Notice how with addition of assimilation steps using the smoother, weight becomes more
equally distributed between particles. Weight patterns visible at the first few assimilation
steps, completely vanish as more assimilation steps are added suggesting a highly non-linear
process. Distinctive particles with high weights are visible until the addition of the 10th

assimilation step, for which weights are becoming more evenly distributed.
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Figure 5-12: Evolution of Particles’ weights with data assimilation for (a) for PF and ∆t = 0.33
s (b) PS and ∆t = 0.33 s (c) PF and ∆t = 9.9 s (d) PS and ∆t = 9.9 s. The size
of the bullet correspond to its weight.
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Chapter 6

Discussion and conclusions

Previous sections introduced data assimilation using an ensemble of particles, generated
through sampling of state variables with a constant time lag. Assimilation of observed data
with ensemble of particles has been performed using a bootstrap Particle Filter. Following
an analysis of ensemble characteristic, two possible approaches were discussed: 1) small time
lag for coverage of more states during the seismic cycle (resolution) or 2) large time lag for
larger ensemble spread. Results of both experiments suggested that coseismic periods are not
being properly captured by expected values of velocity, although results for a small time lag
were showing an improvement.

In section 4-1 the effect of trends on assimilation of observed data was discussed. Plots of
weight distribution at the borehole and at the F11 marker strongly suggest that the presence
of trends in the observation lowers the effectiveness of the assimilation. Although sampling
with a large time lag increased the spread of the ensemble and resulted in a fairly constant
envelope (one of the criteria for a good ensemble), these extra values were not taken in account
because of their incompatibility in σii and P values. It was later observed for both small and
large time lags that weights of individual state variables calculated into a single posterior
values, might not target the closest particles to the true state for every state variable. It
could indicate that the involved state variables represent a different model state than the
one observed and that the ensemble still lacks the resolution. A support to the latter can be
found in figures 5-6, 5-8 and B-7, where velocity distribution around the observation is very
poor. An ensemble sampled using a time lag as presented here, does not seem to represent
the coseismic period properly. Since the interseismic period dominates the evolution, the
amount of particles representing it in the ensemble is much larger than those capturing an
event for all experimented time lags. less information is fed into the system than expected
due to small variability of σij compared to the variance of the measurement error. This
lack of variability is expressed in (partitioned) weight plots as a flat curve of particles with
low weights. Overall these three factors: 1) Trends in the data, 2) Dominant interseismic
period and 3) low variability of state variables within the ensemble, turn data assimilation of
earthquake cycles (as simulated by the STM model) using a PF and time lag sampling into
a hard task.
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Using the EnKF, van Dinther et al. (2017) managed to estimate the same five states remark-
ably well. Although the model is highly nonlinear and the prior distribution does not seem to
be a Gaussian, still EnKF outperformed the PF in the setup presented here. There are few
major differences in the way EnKF and PF are applied: (a) van Dinther et al. (2017) gen-
erated an ensemble by running 150 models with slightly different initial conditions (markers’
distribution in the cell). Here ensemble members were drawn from the same evolution with
a constant time lag between particles. Particles that are sampled from different stages of the
evolution are subjected to more extreme values because of accumulation of stress and pressure
with time (as shown in section 4-1). Furthermore, variability within a single model run is
extremely limited (as was shown for σij) with particles possibly representing only very small
part of the model space. (b) Using the EnKF, each ensemble member is analyzed according to
its misfit. The misfit is multiplied by the Kalman gain which includes the measurement and
model error covariance matrices that correlate the errors for the various state variables. In
contrast to that, the PF weighs particles by the combination of their state variables’ misfits
and correlation between the various state variables is embedded in the choice of ensemble
members. (c) Apart from the misfit, in the EnKF the updated ensemble members and the
corresponding analyzed covariance matrix are integrated forward in time. In the PF, model
errors and their integration in time are considered through the choice of ensemble which is
not being actively updated. (d) EnKF uses a Gaussian approximation of the probability
densities and therefore, expected values are the mean of the analyzed ensemble. PF assumes
full non-linear process with non-Gaussian PDF’s therefore, the expected value is a weighted
average.

Considering these differences future work should be focused on better ensemble construction.
One possible alternative to current sampling method is to draw particles by running them as
separate models. By doing so, one introduces stochasticity into the model error represented
by the ensemble and the effect of the trends in the observation location is removed without
compromising the spread of the ensemble (and possibly even increasing the spread). However,
this kind of implementation may result in degeneracy of the filter if particles’ trajectories
would continuously diverge with each assimilation step. In such case implementation might
require re-sampling of the ensemble in order to reduce the variance.

Particle filtering in the current setup, does however present some significant advantages in:
a) computation time (even for a very large number of particles), b) the possibility to run data
assimilation off-line to the STM model. It also does not seem to suffer from filter degeneracy
as discussed in sections 2-2-1 and 5-3 and appear in more detail in van Leeuwen (2009) and
Arulampalam et al. (2002). Therefore I would further suggest modifications which might
improve the performance of the Particle Filter:
1. Variation in borehole location and addition of observation points (multiple boreholes).
This might increase the amount of data and constraints on the resulting expected value.
2. Using different combinations of state variables to assimilate the data. For example in van
Dinther et al., (2017) horizontal velocity vj exhibit very little influence on updating of shear
stress.
3. Combining different model realizations using random initial distribution of markers in the
cells (as done in van Dinther et al. (2017)) with time lag sampling, by sampling each separate
model realization with a different time delay. The success of this approach depends heavily
on the consistency in trending of different model realizations. If trends are not consistent
between model runs, the effect of the trend would be removed.
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4. In order to increase the number of particles with states that are within the coseismic
period, one can use random time delays for sampling with an addition of a criterion that
targets more states exceeding a certain threshold.

This study shows that an ensemble generated with time lagged versions of a single simulation
translates into a very small part of the model space. This means that in order to obtain
better results, we must increase the part of the model space that is being sampled. Possible
solution is to introduce stochasticity by adding model runs as independent model realizations
hence, potentially increasing the spread of the ensemble (discretized prior distribution) and
removing trend effects.
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Figure A-1: Ensemble spread at different assimilation steps with ∆t = 0.33 s. Red dot is
the true state, blue dot is the observation (true state+error) and the two black
dots connected by a bar is the variance of the measurement error. σii could be
approximated as a Gaussian however the mean of is not close to might not be close
to the observation or the true state. P does not exhibit a Gaussian prior, therefore
a mean would not target the middle of the distribution as expected in a Gaussian
distribution.
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Appendix B

Results and analysis

Figure B-1: Fit of expected and true evolutions in F9 marker, for experiment with 300 particles
and ∆t = 9.9 s.
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Figure B-2: Fit of expected and true evolutions in F14 marker, for experiment with 300 particles
and ∆t = 9.9 s. This location on the fault consistently exhibit better results than
the rest of the Marker locations.

Figure B-3: Fit of expected and true evolutions in F9 marker, for experiment with 300 particles
and ∆t = 0.33 s.
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Figure B-4: Fit of expected and true evolutions in F14 marker, for experiment with 300 particles
and ∆t = 0.33 s. Although assimilation shows an improvement, the envelope of
particles trajectory which could also be regarded as an approximated error distribu-
tion of the model, does not cover well the true evolution throughout the assimilation
window.
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Figure B-5: Weight contribution of each state separately in the borehole for assimilation step
marked by green in figure 5-4. Particle marked in purple, is the particle with the
highest weight of combined states wi.

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01
0

0.01

0.02

-2 -1 0 1 2 3 4

10-3

0

0.01

0.02

-30 -20 -10 0 10 20 30 40 50
0

0.01

0.02

20 30 40 50 60 70 80 90 100
0

0.01

0.02

410 420 430 440 450 460 470
0

0.01

0.02

Figure B-6: Combined posterior (wi) with which particles are weighted, for assimilation step
marked by green in figure 5-4.
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Figure B-7: Weight contribution of each state separately in the borehole for assimilation step
marked by purple in figure 5-4. Particle marked in purple, is the particle with the
highest weight of combined states wi.
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Figure B-8: Combined posterior (wi) with which particles are weighted, for assimilation step
marked by purple in figure 5-4.

August 28, 2018



Appendix C

Statistics calculation

Each of the statistical values was calculated on a matrix with the first dimension corresponding
to the number of state variables assimilated (five) and the second dimension to the number of
time steps in the assimilation window ’T’. For each state variable a mean value was calculated
separately according to the following:

MAE =
1

T

T∑
t=1

|ψt − ψ̄| (C-1)

The same principles applies to calculating SD and RE but with the following formulas:

SD = σ =

√√√√ 1

T − 1

T∑
t=1

|ψt − ψ̄|2 (C-2)

RE = |ψ
expected − ψtrue

ψtrue
| · 100% (C-3)

August 28, 2018


	Abstract
	Acknowledgements
	Acronyms
	Introduction
	I First Part
	Theory
	Forward model: Seismo-Thermo-Mechanical model
	Sequential data assimilation
	Particle Filter
	Ensemble Kalman Filter (EnKF)
	Ensemble smoother


	Methods
	STM model: setup and output
	Particle Filter
	Ensemble generation
	Assimilation: calculating weights and estimation

	Particle Smoother


	II Second Part
	Ensemble generation
	Early analysis and representation of process physics
	Particle separation
	Ensemble size

	Results and analysis
	Particle Filter
	Trend effect
	Ensemble Smoother

	Discussion and conclusions
	References
	Ensemble generation
	Results and analysis
	Statistics calculation


