
Typesafe by Definition for Languages with Explicit
Deallocation

Robert Johan van den Berg

July 8, 2018

Abstract

A definitional interpreter is an interpreter which uses the semantics of its own host language
to define those of its object language. Traditionally, a seperate type safety proof is used for
such an interpreter. Using a "typesafe-by-construction" approach, where the typesafety is
proven by expressing the type system of the object language in the type system of the host
language is a new approach recently used for imperative languages.

In this paper a proof-of-concept is made to show that the technique of "typesafe-by-
construction" can be also applied to interpreters for languages with explicit deallocation.
This is done by making such an interpreter for a language called ML-dealloc, which is a basic
version of ML extended with explicit allocation and deallocation. The interpreter is written
in agda, which type system can be used to express ML-dealloc.

1 Introduction
For a programming language, the property of type safety is essential. A well-typed program should
be executed properly. As (Milner, 1978) puts it: “well typed programs do not get stuck”, meaning
that they always stay consistent and progressing. This does not mean that well-typed programs
are always correct, only that they always stay within a programmer defined state.

A programming language semantic can be defined using an interpreter, as explained by (Reynolds,
1972). The language is defined as the interpreter which interprets it. That means that every prop-
erty, including type safety that holds for the interpreter holds for the language. If the interpreter
is typesafe, the language is also typesafe.

Traditionally type safety is established using a seperate proof. Recently, researchers have used
the dependently typed language Agda (Norell, 2008) to construct definitional interpreters which
guarantee type safety intrinsically. This approach is called "typesafe-by-construction".

It has been shown by (Poulsen et al., 2018) that proving type safety through a definitional
interpreter can be done for imperative languages. These researchers did this for the simply typed
lambda calculus with references, and middleweight Java. Neither of these languages have ex-
plicit deallocation. This paper applies this method to proving a weaker version of type safety
for a language with explicit deallocation. This paper applies writing a "typesafe-by-construction"
definitional interpreter for a language which has explicit deallocation.

1.1 Scope
The goal of this research is to show the application of the typesafe-by-construction method for
languages with explicit deallocation. Definitional interpreters written with this method can be used
as a reference for the language. In this reference, some properties of programs, like termination or
well-typedness, can be proven. It is not intended for such an interpreter to be used in a production
system, although it could be used as a reference for an interpreter or compiler that can be used in
such a context.

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

1.2 Research Basis
This paper builds upon (Poulsen et al., 2018). Many techniques that are used in that paper for their
interpreters are used here too. Their interpretation of the simply typed lambda calculus extended
with references forms the basis of the interpreter for the language with explicit deallocation in this
paper.

1.3 Type Safety Property
A type safety property is a property that hold for all valid programs within a language, as explained
by (Pierce, 2002). This is related to the language itself and the guarantees it can make about
programs written in it. The two properties of type safety are progress, meaning that the program
continues executing, and type-preservation, meaning that the type of a value in a program does
not suddenly change.

Type safety can take multiple forms for different programming languages. The strongest form
of type safety requires every terminating program or subroutine to always return a value of the
correct type. This can be problemetic in some languages.

Some languages have weaker type safety properties than others. A language with weaker type
safety could have additional conditions for type safety to apply, like the correct usage of all internal
pointers. Another way for type safety to be weakened is the possibility of run-time errors, like
exceptions, as a result of a function call, instead of always having that function return a correct
value. This is the approach that was chosen for this research to facilitate explicit deallocation in
the object language.

1.4 Explicit deallocation Problem
The method of proving strong type safety by construction within a dependently typed host language
has not yet been applied to a language with explicit deallocation, like C. This can be difficult to
prove for strong type safety as (Pierce, 2002) claims for strong type safety that “... it is extremely
difficult to achieve type safety in the presence of an explicit deallocation operation.” The presence
of a manually called deallocation function “weakens” the type safety property, as the usage of well-
typed pointers might still result to run-time errors or undefined behavior if the pointer points to
a (formally) deallocated value. This is known as the dangling pointer problem.

An example in pseudocode is given below. When q is allocated it might point to the same
memory previously pointed to by p. As such, p now points to a different type of value than earlier,
which is a violation of the strong type safety property, which guarantees consistent typing.

int* p; char* q; alloc p; *p = 42; dealloc p; alloc q; *q = ’h’;
To solve this problem, a weaker version of type safety is used then the strictest possible variation.

It is weakened by saying that a well-typed function might raise an error, which causes execution
to terminate. This is different than always returning a value of the correct type, whhic is the
strongest possible form.

1.5 Contributions
The research hypothesis is: "The technique of "typesafe-by-construction" definitional interpreters
is applicable to languages with explicit deallocation."

This paper demonstrates the possibility of a typesafe by construction language with explicit
deallocation, while keeping things as typesafe as the programming language C, which has explicit
deallocation. C allows the possiblility of well-typed programs to raise errors during execution, for
example, a segmentation fault.

Our contribution is proving this method works for languages with explicit deallocation, by
writing a corresponding interpreter in Agda (Norell, 2008), a dependently typed language which
can be used for this purpose. The interpreter is written for a minimal language, hereafter refered
to as ML-dealloc, which has an equivalent of explicit deallocation. (Poulsen et al., 2018) also had
a similar construct for null pointers.

2

1.5.1 Paper Organization

This paper has the following organization: Section 2 describes the methodology of this research,
and why it proves that typesafe-by-construction interpreters work for languages with explicit deal-
location. Section 3 describes the interpreter and its development in incremental steps. It also
includes the usage of Agda lemmas for this interpreter. Section 4 describes the testing that was
performed on the interpreter. Section 5 shows related work, and section 6 discusses the results
of this research and the direction of future work, as well as alternative approaches to the explicit
deallocation problem.

2 Methodology
This section contains the methodology used to prove that typesafety by means of typesafe-by-
construction definitional interpreters works for languages with explicit deallocation.

To show that it is possible to apply the typesafe-by-construction method to languages with
explicit deallocation, an interpreter is written using that method. The interpreter, written in
Agda uses Agda’s dependent type system to ensure that only well-typed programs are able to be
executed.

2.1 Writing a Definitional Interpreter
By writing a definitional typesafe-by-construction interpreter for a small language that will be
called ML-dealloc with explicit deallocation, we show that it is possible to use this method for
such a language. This interpreter is described in section 3. Properties of this interpreter then hold
for the entire language, assuming that the interpreter is a proper representation of the language.
To check whether the interpreter is correct, some test programs are written in ML-dealloc, to show
that every expression works as intended. These are described in section 4.

2.2 Validity
Writing an interpreter in Agda means that Agda’s dependent typesystem can be used for the object
lannguage as well. By defining the semantics of the object language in Agda, we can ensure certain
properties about the programs expressed. If these properties do not hold, Agda does not run the
interpreter with the program as input.

For example, the expression "let int x = true" tries to put a Boolean in place of an integer value
for addition. Addition is only defined for integers, and as such Agda does not run the evaluation
for this expression, should it arise.

2.3 Agda’s Typesystem
Agda has a dependently typed typesystem. That is to say, types can depend on other types and
values. This is used in our interpreter to ensure that types are preserved in expressions. It also
has proving constructs that are able to be used to prove properties of execution, for example, that
the store used only grows with new values. This is used in the interpreter to ensure

2.4 Language
As an object language a small version of ML extended with explicit deallocation is used, called
ML-dealloc. It is a basic language with arithmetic, let bindings, branches and loops, extended
with explicit allocation expressions. Pointers to values in the store can be allocated and freed at
runtime.

In ML-dealloc, pointers are strongly typed, meaning that pointers can never refer to a value of
an incorrect type.

There are no function calls in ML-dealloc.

3

2.5 Execution
Each program in ML-dealloc is an expression. Evaluation is done recursively. Mutable state is
limited to the store.

To model state during execution, stores and environments are used. The environment contains
all static variables in scope. The staic variables are immutable. The store contains all values pointed
to by pointers. The store only grows during program execution. To model explicit deallocation
despite that, any value in the store can be marked as freed, after which no referencing or mutation
is allowed.

Because explicit deallocation is added to this language, some decisions must be made about
how this works in ML-dealloc. The goal here is to be as close to the programming language C in
this regard. This is to ensure that this research applies to "normal" programming languages with
explicit deallocation.

A pointer on which the free() function is called still refers to the memory that it pointed to
before the call. Dereferencing this pointer now results in an error. Trying to mutate the value
referred to is also invalid.

In C a double free() on the same pointer also results in an error, provided that the memory is
still out of bounds. If the same address is allocated again however, it might result in undefined
behaviour, as the new value might have a different type. In our interpreter this last option cannot
occur, for no address is reused in this way. As such, double deallocation could be made legal in
our interpreter. However, the absense of an error in our interpreter indicates the absense of both
an error and undefined behaviour in the actual program.

Allocation is also done explicitly, to keep as close to C as possible. That means that some
pointers point to undefined values. The same rules for derefencing freed pointers apply, namely
that it results in an error. Setting a value is allowed, after which the value is no longer undefined.
Dereferencing is also permitted as normal.

3 Implementation
This section describes the definitional interpreter for ML-dealloc. This section starts with describ-
ing a basic interpreter for various expressions. In each following section, something is added to the
interpreter, which is described together with required changes to the interpreter. Agda code for
the interpreter, and the language representations is also included.

The complete final interpreter can be found in the repository at: https://gitlab.ewi.tudelft.nl/sv/typesafe-
c-flat.agda/tree/master in the src/interpreter.agda file.

3.1 Basics
In this subsection the basic parts of ML-dealloc are explained.

3.1.1 Types and Values

The only types that are implemented in this subsection are boolean, integer and void. The Agda
code for this part is:

data MType : Set where
mIntType : MType
mBoolType : MType
mVoidType : MType

data MValue : (t : MType) → Set where
mInt : (num : Int) → MValue mIntType
mBool : (bool : Bool) → MValue mBoolType
mVoid : MValue mVoidType

Note that every MValue is indexed by a MType. This is how the interpreter tracks the types
of values, and later expressions, to ensure that they match. An expression requiring a integer but
given a bool will not be evaluated because of this.

4

3.1.2 Expressions

Every program in ML-dealloc is basically one expression, which might contain other expressions,
which are evaluated recursively. For example, addition is an expression requiring two other expres-
sions.

constants which contain values.

branches in the form of if statements.

arithmetic with addition and multiplication.

data MExpression : MType → Set where
mConstant : ∀ {type : MType} → (value : (MValue type)) → MExpression type
mAdd : (l : MExpression mIntType) → (r : MExpression mIntType) → MExpression mIntType
mMult : (l : MExpression mIntType) → (r : MExpression mIntType) → MExpression mIntType
mIf : ∀ {t : MType} → (c : MExpression mBoolType) →
(l : MExpression t) → (r : MExpression t) → MExpression t

mSeq : ∀ {t : MType} → MExpression mVoidType → MExpression t → MExpression t

The expressions are typed, and can contain other expressions, which can have requirements for
types as well.

3.1.3 Interpretation

Interpretation is done by the eval function given in the following code.

eval : ∀ {ty : MType} → MExpression ty → MValue ty
-- constants
eval (mConstant val) = val
--- arithmatic
eval (mAdd l r) =
bind (eval l) ń {
(mInt nl) → bind (eval r) ń {
(mInt nr) → mInt (nl + nr)}}

eval (mMult l r) = bind (eval l) ń {
(mInt nl) → bind (eval r) ń {
(mInt nr) → mInt (nl * nr)}}

-- branches
eval (mIf c l r) =
bind (eval c) ń {
(mBool true) → eval l;
(mBool false) → eval r}

eval (mSeq a b) = eval b --There is no mutable state, so evaluating a does nothing yet.

A bind function is used to avoid with statements. This function is given in figure 4.

bind : ∀ {A B : Set} → (a : A) → (f : (A → B)) → B
bind a f = f a

3.2 Environments
To add variables to this language an environment is used. This environment is passed recursively
by the eval function, as such its signature changes, as shown in fugure 6.

An environment for ML-Dealloc is defined as a list of values indexed by type, as shown in figure
5:

An environment is indexed by a list of types, called an MTypeContext.

5

MTypeContext = List MType
MEnv : MTypeContext → Set
MEnv x = All (ń t → MValue t) x

De-Bruijn style indices are used to refer to those environments in the MVar expression. The
environment is a mapping from a list of types to values of those types, and the "a in b" pointer
refers to it

When a variable is added to the environment the expression MAssign is used. MAssign is an
expression which takes two expressions, adds the result of one expression to its environment to
create a new environment, and interprets the other expression with the new environment. This
value will never change after assignment This is equivalent to a let-binding.

An expression also refers to an environment. As such the signature for expression becomes:
Values added to the environment have limited scope. To illustrate this clearly, the following

expression is written in pseudocode below:
(let (int a = 4) b); c
Where a is added to the environment of expression b, but not to that of expression c.

M̋Seq just executes two statements in succesion. As there is no way to pass any information
from the first expression to the last, it is redundant right now, except to show the limited scope
of environments. It has more relevant applications later when mutable state is added, which are
described in the following subsections.

But note that the environment of the expression marked with b does not contain the value
added in the expression marked with a.

3.3 Mutable Stores
In this section mutable stores are introduced. A value on the store is referenced by a pointer using
a de-Bruijn style index. Values in the store are mutable. The Agda code describing these types
and values is below.

mPointerType : (t : MType) → MType

To use de-Bruijn style indices, the store has to grow in a monotone way. That means that
stores only grow and never shrink.

Agda needs to know the store only grows. To that end we use the following lemma for supersets.
These supersets are stricter then normal, because the order of elements matter. This means that
a superset always ends with it subset. In other words, no new elements are present after the start
of the subset.

data _⊇_ : ∀ {A : Set} (a : List A) (b : List A) → Set where
extension : ∀ {A : Set} {tl1 l2 : List A} → {hd : A} → tl1 ⊇ l2 → (hd :: tl1) ⊇ l2
equal : ∀ {A : Set} → (l : List A) → l ⊇ l

-- This function returns a predicate that a ends with c from two predicates.
-- One that says a ends with b and one that says that b ends with c.
-- That is correct because a superset contains all subsets of a set.
⊇trans : ∀ {A : Set} {a b c : List A} → (a ⊇ b) → (b ⊇ c) → (a ⊇ c)

-- This function returns a predicate that an element in list a is also in a superset of a.
⊇complete : ∀ {A : Set} {x : A} {l1 l2 : List A} → (x ∈ l2) → (l1 ⊇ l2) → x ∈ l1

We also prove transitivity meaning that if a is a superset of b and b is a superset of c then
a is a superset of c. We also introduce a small proof guerenteeing that the superset contains all
elements of the subset.

Note that values now refer to a typecontext. This means that values and expressions need to
refer to new typecontexts during execution if the store grows. We introduce weakening functions
to make values and expressions refer to a new typecontext.

weaken-val : ∀ {ty : MType} {ctx ctx2 : MTypeContext} → (MVal ty ctx) →
((ctx2 ⊇ ctx)) → (MVal ty ctx2)

6

weaken-env : ∀ {Γ ctx ctx2 : MTypeContext} → (MEnv Γ ctx) →
((ctx2 ⊇ ctx)) → (MEnv Γ ctx2)

weaken-expr : ∀ {ty : MType} {ctx ctx2 Γ : MTypeContext} → (MExpr ctx Γ ty) →
(ctx2 ⊇ ctx) → (MExpr ctx2 Γ ty)

weaken-store′ : ∀ {ctx ctx2 ctx3 : MTypeContext} → (MStore′ ctx ctx2) →
(ctx2 ⊇ ctx) → (ctx3 ⊇ ctx2) → MStore′ ctx ctx3

weaken-store : ∀ {ctx ctx2 : MTypeContext} → (MStore ctx) →
(ctx2 ⊇ ctx) → MStore′ ctx ctx2

These functions rebind a language element to refer to a new typecontext.
The approach of using lemmas and weakening stores was also done by (Poulsen et al., 2018)
Stores are defined using the following code:

MStore : MTypeContext → Set
MStore ctx = All (ń t → MVal t ctx) ctx

But in a head-tail list construction, sometimes it becomes needed to have only a part of the
store. This however produces a problem, because the typecontext of the value needs to be the
same as that of the store.

We solve this by introducing partial stores:

MStore′ : MTypeContext → MTypeContext → Set
MStore′ x ctx = All (ń t → MVal t ctx) x

Just as environments, stores are indexed by a typecontext. This also has relevance for expres-
sions:

Loops are also introduced, to make non-terminating programs possible. This was not done
earlier because of the lack of mutable state, which would make using them ineffective,as without
mutable state, a loop cannot terminate. To use them in a way Agda can use, Agda needs a
way to ensure it does terminate when evaluated by Agda. To ensure this, we introduce a fuel
counter, which decreases for every expression evaluated until it reaches zero or all subexpressions
are evaluated. This is added to the evaluation function, after the example of (Poulsen et al., 2018)

Which makes our evaluation function signature:
Because programs can now run out of fuel, in which case they do not return a valid value, some

sort of error mechanism needs to be introduced. In the above code, it refers to a result, which can
be a success or a timeout.

data MResult (A : Set) : Set where
success : (x : A) → MResult A
timeout : MResult A

To use them in a propagating manner, the bind and return functions are redefined to work with
results instead of values:

bind : ∀ {A : Set} {B : Set} → MResult A → (A → MResult B) → MResult B
return : ∀ {A : Set} → A → MResult A

Note that the store is passed along as a result, together with a lemma guarenteeing that the
new store contains all variables of the old store. These variables may have changed values, but
their types and location stay the same.

The difference between a store and an environment is that a store does not have a scope. When
a value is changed in the store, all following expressions use the changed value, no matter the
scope.

The following expressions are added to make use of the store:

mDeref : {t : MType} → MExpr ct Γ (mPointerType t) → MExpr ct Γ t
mAssign : {t : MType} → MExpr ct Γ t → MExpr ct Γ (mPointerType t)

The M̋Assign expression adds a value to the store. The M̋Deref expression retrieves the value
from the store, and the M̋Mut expression changes a value in the store. Explicit deallocation is
added later.

The following new rules are added to the evaluation function:

7

3.4 Explicit Allocation and Deallocation
Adding explicit allocation and deallocation requires the possibility of freed memory. To do that,
we make it so that the store does not hold values anymore, but rather StoreValues, which can
either contain correct values, or a FreedVal, or an UnassignedVal. All of those are still refered to
by types in the same way.

data StoreVal : (t : MType) → (ctx : MTypeContext) → Set where
storeVal : {t : MType} {ctx : MTypeContext} → MVal t ctx → StoreVal t ctx
freedVal : (t : MType) (ctx : MTypeContext) → StoreVal t ctx
unassignedVal : (t : MType) → (ctx : MTypeContext) → StoreVal t ctx

To account for the possibility of code dereferencing out of bounds memory, we will add the
following possibility to the Result, which is returned on either reading or writing to a deallocated
value, or reading from an unintialized value. All of these are invalid in C.

error : MResult A

An error works similar to a timeout. Instead of meaning the interpreter is out of fuel an error
means that memory was used in an invalid way.

The following expressions are added:

mAlloc : (t : MType) → MExpr ct Γ (mPointerType t)
mFree : {t : MType} → (MExpr ct Γ (mPointerType t)) → MExpr ct Γ mVoidType

And the evaluation function now has the following rules added:

-- add unassigned variable to strore
eval {ctx = ctx} (suc x) env store (mAlloc t) =
return (t :: ctx , (mPointer ((t :: ctx)) (here refl) ,
(add-to-store t store , extension (equal ctx))))

-- Free variable in store
eval {Γ = Γ} {ctx = ctx} (suc x) env store (mFree a) =
bind (eval x env store a) ń {
(ctx1 , val , store1 , p1) → bind (free-store val store1) ń store2 →
return (ctx1 , ((mVoid ctx1) , store2 , p1))}

So now the language has explicit deallocation.

4 Testing
To test the interpreter, some test cases were made. They can be found in the repository at:
https://gitlab.ewi.tudelft.nl/sv/typesafe-c-flat.agda/tree/master in the src/tests.agda file.

Testing was done in Agda. Proper interpreter functionality was checked by writing unit tests
for specific expressions. No testing for typechecking was done, as the interpreter is typesafe-by-
construction.

All expressions have at least one test case. 22 test cases were made in total.
An example of a basic unit test for the expression (3 == 3) is shown below. 17 for correct

interpretation of expressions that return a success result. 1 to check if timeouts work properly,
which checks whether the interpreter indeed returns a timeout. 1 to check if a loop can be made
non-terminating and timeout in that case. 3 test were made for successful handling of expressions
that throw errors.

test-eq-true-int : interp 100 [] [] (mEq (mConstant (mInt (+ 3) [])) (mConstant (mInt (+ 3) []))) ≡
success ([] , (mBool true []))

test-eq-true-int = refl

In this test (mEq (mConstant (mInt (+ 3) [])) (mConstant (mInt (+ 3) []))) is the equivalent of
(̋3 == 3). Agda checks if the expression equals the expected success result. In this case, it expects
a boolean value true.

8

Interp is the same as eval, except only the typecontext and the return-value are returned. The
store and extension lemmas are purposely removed. Although the store is not passed along for the
result, the typecontext of the store is part of the return value. As such, the typecontext of the
store is also returned by the interp function.

The success means interpretation was a success. In this example, it contains a boolean value
true, to indicate 3 equals 3.

The t̋est-eq-true-int = refl line means that Agda automatically sees that the interpreted ex-
pression returns the expected result. Other expressions might return an error or timeout, in which
the same construction can still be used.

Other tests are done in a similar way. A test case saying interpreting an expression should
return a certain result is made, after which it is proven with Agda through a refl statement.

5 Discussion
The analysis of this research shows that it is possible to write a definitional interpreter which in-
corporates typesafe-by-construction for a language with explicit deallocation. By marking memory
as freed so that using that memory causes an error an effective model of deallocation can be made.
As this model can be used to distinguish between errors and results, memory safety of programs
can be reasoned about as well. One could use this model to prove a program does not cause an
error at any point. Any extended version of this model, as well as other models incorporating this
technique, will have this property as well.

Some programming languages have other sources of unsafe behavior. For example, pointer
arithmetic is unsafe. This work cannot be used prove these techniques do not cause error inside
of a program, as the language we implemented did not have those constructs. The technique we
used considering memory (de)allocation might still be implemented in such research. However, it
is not applicable to all such languages though. For example, reasoning about pointer arithmetic
requires numerical pointers, while we used de-Bruijn indices. Using pointer arithmatic would also
require knowing the size of the memory pointed to by a pointer, which basically means a seperate
store per pointer inside the store, which would require additional work as well.

The technique we used was to mark memory as inaccesible, either because it contains no valid
value yet (so it cannot be correct to access) or because it is freed. This could apply to other causes
of inaccessibility as well. For example, for concurrent programming it could be useful to show that
no memory is in use that is locked by a different thread. A security system that restricts certain
code from accessing certain parts of memory, could also benefit from this.

5.1 Alternative Approaches
In this paper memory was marked in the store as freed, to indicate the possibility of inaccessible
memory. There are other approaches possible, two of which were briefly considered. They are
listed here.

A seperate list of Booleans which indicate availability was another possible solution. Doing
so could have allowed a store of values directly instead of a unassigned/freed/actual value con-
struction. However, it would have been more complicated to implement, because it means an
extra list as argument for evaluation. Lemmas for extending that list would also have to be made.
The adaptation to apply marked memory as locked or otherwise inaccesible to model concurrent
programs would be preserved, however.

Another possible way of marking memory as inaccessible would be to actually remove the values
from the list. This is similar to an actual free function. However, using De-Bruijn indices would
be very hard. Firstly, our lemmas for only monotonely grow stores would be impossible to use, as
values can now be removed. By removing values, and thus invalidating the "x in y" construction
of pointers, one would have to correct those pointers during execution, which means checking the
environment, the store, and all not yet executed expressions for such a value. This is very complex
to do, as you basically rewrite the program during execution.

If another kind of index was used, like a numerical one, lemmas can be avoided. This causes
another issue, however. A position might be freed, and that position could later be assigned a

9

different value, of a possibly different type. If this was allowed, it could cause type-safety errors,
or possible undefined behavior. It would be an error in both cases, as a programmer should not
expect a freed pointer to suddenly point to another correct value. That means that we would need
to check for this situation. This could be solved by not allowing memory to be reused, however
that would remove the advantage of freeing memory, as no memory gets freed for the interpreter for
later use. Another approach is to check every pointer in the program during execution and mark
those who should not be usable. Again, this completely rewrites programs during execution. This
would be a lot of work, and we could not reuse most of (Poulsen et al., 2018), because that uses
de-Bruijn indices. Marking memory as locked for other reasons then deallocation, for example,
concurrency, would also require the same work that was done to mark values as freed, as you
cannot "unfree" memory in this approach.

6 Related Work
Definitional interpretation: (Poulsen et al., 2018) forms the basis for this research. This work on
typesafe-by-construction type systems for definitional interpreters shows this technique is applica-
ble to languages with mutable state and more complex languages then earlier used. This research
was based on their simply typed lambda calculus. Their form of type-safety is stronger then the one
proven here, since they did not include explicit (de-)allocation. Their implentation does not have
an error system, except for the timeout mechanism with fuel that ensures terminating programs.

Dependently typed programming: For this research the dependently typed language agda was
used. Other dependently typed languages which could be used are Coq (Coquand et al., 1984),
and IDRIS (Brady, 2013), to which the techniques used here could potentially be reused.

Typesafety: The idea of typesafety, as in “well-typed programs cannot go wrong” comes from
(Milner, 1978). Type-systems for programming languages are discussed in (Pierce, 2002). This
also includes proving methodology of typesafety. Proving typesafety of systems in a syntactic way
is discussed in (Wright and Felleisen, 1994).

Proving other properties of correctness: The usage of dependently typed programming can be
used for other applications then proving the property of typesafety of a language. (Brady and
Hammond, 2009) proposes using dependently typed languages like IDRIS to ensure non-functional
properties like correct usage of resources like memory in a DSL with explicit (de)allocation, or the
file system. To prove their “correct-by-construction” properties dynamically they use “holes” which
are assumptions the programmer can make, but have to be verified at run-time. This results in
stronger proofs of “soundness” at the expense of having to either assume some axioms or fill holes
with proofs at or before runtime. It would be interesting to know how these techniques can be
applied to existing languages through this paper.

7 Conclusions and Future Work
This work shows that the concept of “typesafe-by-construction” for definitional interpreters is
applicable to languages with explicit deallocation. Although the demonstrated typesafety property
is weaker than other type-safety properties, like in the work of (Poulsen et al., 2018), it is still
as typesafe as the original C concerning deallocation, because C can have segmentation faults or
undefined behaviour at runtime.

Future work might expand on the usage of typesafe-by-construction for languages with explicit
deallocation to prove properties of programs written in those languages. Because we introduced
the error result, work can also be done on proving that programs do not return such a result on
execution. Also, the constructs of our store with marked freed memory might be able to be used
to validate program properties concerning the amount of memory used. Other future work might
expand on other unsafe memory constructs, like typecasting and pointer arithmetic.

10

References
Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and

implementation. Journal of Functional Programming, 23(5):552–593, 2013.

Edwin Brady and Kevin Hammond. Ensuring correct-by-construction resource usage by using
full-spectrum dependent types, 2009.

Thierry Coquand, Gérard Huet, et al. The coq proof assistant, 1984.

Robin Milner. A theory of type polymorphism in programming. Journal of computer and system
sciences, 17(3):348–375, 1978.

Ulf Norell. Dependently typed programming in agda. In International School on Advanced Func-
tional Programming, pages 230–266. Springer, 2008.

Benjamin C Pierce. Types and programming languages. MIT press, 2002.

Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Krebbers, and Eelco Visser.
Intrinsically-typed definitional interpreters for imperative languages. Proceedings of the ACM
on Programming Languages, 2(POPL), 2018.

John C Reynolds. Definitional interpreters for higher-order programming languages. In Proceedings
of the ACM annual conference-Volume 2, pages 717–740. ACM, 1972.

Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

11

	Introduction
	Scope
	Research Basis
	Type Safety Property
	Explicit deallocation Problem
	Contributions
	Paper Organization

	Methodology
	Writing a Definitional Interpreter
	Validity
	Agda's Typesystem
	Language
	Execution

	Implementation
	Basics
	Types and Values
	Expressions
	Interpretation

	Environments
	Mutable Stores
	Explicit Allocation and Deallocation

	Testing
	Discussion
	Alternative Approaches

	Related Work
	Conclusions and Future Work

