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Abstract

Static type systems ensure code correctness by aligning implementations with de-
fined type signatures. Despite their benefits in preventing common errors, complex type
systems increase the likelihood of bugs within type checkers. Correct-by-construction
(CbC) programming offers a solution by using precise types to create intrinsically ver-
ified type checkers, ensuring soundness and potentially completeness. This paper eval-
uates the use of CbC programming for implementing type inference for the simply
typed λ-calculus, focusing on Hindley-Milner (HM) and bidirectional type inference.
Implementations in Agda, a dependently typed language, reveal that while CbC pro-
gramming can eliminate bugs, it introduces significant complexity. HM type inference
proves challenging in terms of soundness and completeness, whereas bidirectional type
inference is easier to implement but still complex to prove complete. The study high-
lights the trade-offs of CbC programming, suggesting it is more suited for research and
in-depth understanding rather than pragmatic programming.

1 Introduction
Static type systems enable programmers to define their intentions within the type signatures
of their programs. This allows type checkers to provide feedback on whether the implementa-
tion aligns with these intentions. By doing so, type checkers can prevent numerous common
errors, such as type mismatches (e.g., providing a Boolean where an Integer is expected),
missing arguments, or looking up data fields that don’t exist.

As an efficient method for early error detection, type checkers are a crucial part of
statically typed programming languages. However, as type systems become more complex
it becomes increasingly more likely that the type checker itself contains bugs [4] [16]. Bugs
can be classified into two categories: some result in a correct program being incorrectly
rejected (a false negative), while others cause an incorrect program to be accepted (a false
positive). The latter is arguably worse, as they can lead to crashes or breaches of safety
assumptions.

Correct-by-construction (CbC) programming [3] is a style of programming that uses
precise types to ensure that a program adheres to its specification. CbC programming can
be used to create specifications for various type systems along with their corresponding type
checkers. If done correctly, the result is an intrinsically verified type checker, which is free
of false positive bugs. This means that the type checker is sound. For some type checkers,
it is also possible to prove that they are free of false negative bugs. Those type checkers are
complete.

This paper presents a qualitative evaluation of the advantages and disadvantages of using
CbC programming to implement type inference for the simply typed λ-calculus (STLC).
We explore two algorithms: Hindley-Milner (HM) type inference [11] [14] and bidirectional
type inference [15]. For the HM algorithm, we provide an implementation in Agda [2], a
dependently typed language designed for CbC programming, that returns a well-formed
type, but not a proof of typing (Section 3.3 goes into more detail about this limitation). For
bidirectional type inference, we use the implementation provided by Wadler, Kokke, and
Siek [19]. These two implementations form the basis for our arguments.
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2 Background
We explain what it means to write CbC programs in Agda and why as a result we get a
bug-free program. We then present the type system (STLC) that we will be type checking.
Finally, we explain type inference.

2.1 Agda
In Agda, types can depend on values, hence the name dependently typed language. This
allows us to create expressive datatypes, encoding rich information such as mathematical
properties or algorithms.

A simple example [5] of a dependent type is the type of vectors Vec A n. This type
contains lists of exactly n elements of type A.

myVec1 : Vec Nat 5
myVec1 = 1 :: 2 :: 3 :: 4 :: 5 :: []

myVec2 : Vec (Bool → Bool) 2
myVec2 = not :: (λ x → x) :: []

myVec3 : Vec Nat 0
myVec3 = []

It might not be obvious yet why dependent types are useful let alone how we express math-
ematical rules. Before we proceed, let’s consider the relation of less-than-or-equal (≤) on
natural numbers in Agda (example taken from Wadler, Kokke, and Siek [19]):

data ≤ : N → N → Set where
z≤n : ∀ {n : N}

--------
→ zero ≤ n

m≤n : ∀ {m n : N}
→ m ≤ n

-------------
→ m+1 ≤ n+1

The above is a datatype with two constructors, z≤n and m≤n. They can be read as deduc-
tions: for example assuming m ≤ n, we conclude m+1 ≤ n+1. In an ordinary programming
language, their types would be the same, e.g. lte (just like a string or int). In contrast,
here they have types dependent on values of N, which accurately represent the mathematical
idea of less-than-or-equal.

Datatypes are intrinsic proofs of soundness. We can only construct a value of type m
≤ n if m is actually less than or equal to n. This is the essence of correct-by-construction
programming. It is also possible to create an “invalid” datatype, which incorrectly represents
an idea. For example, we can write a datatype for < with the same constructors as the ones
defined for ≤. It is up to the people expressing these ideas to define what is correct and
what isn’t.
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2.2 The Simply Typed λ-calculus
The STLC type checked in this paper has two types, the function type and the type variable.
A type variable is a placeholder for a concrete type (e.g. int, bool). We don’t have concrete
types in our language. While unusual, for the purposes of the paper they are unnecessary.
Type variables are denoted as “# x” where x is a de Bruijn index [9]. The function type is
denoted as “# x -> # y”. For example, the identity function has type:

# 0 -> # 0

The formalization of the STLC in Agda can be found in appendix A.

2.3 Type inference
Type inference deduces the types of terms without explicit type annotations from the pro-
grammer. As an example, consider the map function written in Haskell:

map :: ?
map f [] = []
map f (x:xs) = f x : map f xs

Looking at what the code does, we can deduce the type of the map function to be:

(# 0 -> # 1) -> [# 0] -> [# 1]

Type inference algorithms enable the compiler to perform this deduction automatically.
There are two prevalent methods of type inference: HM and bidirectional type inference.

HM type inference [11] [14] is a classical approach to type inference that dates back
to the 1960s. It is most notably used in the metalanguage family of languages, including
Haskell [7] and OCaml. It always infers the most general type [8] (explained by figure 1)
with no type annotations from the programmer.

(# 3 -> # 4) -> [# 3] -> [# 4]

# 0 -> # 1 -> # 2

# 0 -> [# 3] -> [# 4]

(# 3 -> # 4) -> # 0 -> [# 4]

(int -> # 4) -> [int] -> [# 4]

(# 3 -> # 4) -> [# 3] -> # 2

(string -> int) -> [int] -> [string]

Too general

allows invalid inputs

Too specific

does not allow valid inputs

Most general type

allows the most number


of “instantiations” without


denying any valid ones

Figure 1: A visualization of different types of the map function.
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In contrast, bidirectional type inference is a more recent approach that has gained pop-
ularity in languages with rich type systems such as Rust [18] and TypeScript [10]. This
method is more flexible and can handle more complex type systems such as System F [17].
Bidirectional type inference requires some type annotations from the programmer.

3 Hindley-Milner type inference in Agda
Examples in this section are simplifications, which omit some details for the sake of brevity.
For code examples, a reference to a corresponding appendix with the full implementation is
given. Our implementation is built on top of the specifications of Abel [1]. We can break
down the HM algorithm into 2 steps: constraint generation and unification.

3.1 Constraint generation
Constraints are equations between types, which describe how the types are related to each
other within some term. A term can generate 0 or more constraints, which we call the system
of constraint equations — akin to a system of linear equations. We now show an example
that resembles constraint generation, but takes a few liberties for simplicity. Continuing
with the map function from earlier:

map f [] = []
map f (x:xs) = f x : map f xs

We first see that the function has 2 arguments, a function f and a list. Additionally, we
must return some type. So, the placeholder type t of the map function is:

map :: # 0 -> # 1 -> # 2

Where # 0 is the first argument’s type, # 1 is the second argument’s type and # 2 is the
return type. The only goal of t is to ask the question “Is some substitution instance of t well
typed?”. The answer is given by unification, which either gives a substitution that yields
the most general type or fails if the input was an ill-typed term. As previously mentioned,
the first argument is a function f, so we generate the constraint

# 0 .
= # 3 -> # 4

With # 3 being f’s input type and # 4 being the return type. The second argument is a
list, so we generate the constraint

# 1 .
= [# 3]

Finally, the return type is also a list, so we generate the constraint

# 2 .
= [# 4]

As the example shows, the constraint generation algorithm may create new type variables
as it traverses the term. Intuitively, it is essential that we avoid naming clashes. To that
end we use renamings, denoted as m ⊆ n. A renaming m ⊆ n is a mapping from m type
variables to n type variables. In other words, a renaming tells us the new value of an existing
type variable after a constraint has been generated.

4



To generate constraints algorithmically, we define a function generate that takes as input
an untyped term e alongside its context Γ and returns the constraint generation datatype
denoted as Γ ⊢ e : A ⊣ E | η. It is dependent on 5 types:

• a context Γ, which maps variables to types

• a term e (variable, abstraction, application)

• a type A, which is the placeholder type of the expression

• a constraint E, the actual constraint generated

• a renaming η, which shows how constraint generation changed the type variables

The datatype can be read as “the term e has type A under the context Γ and it is accompanied
by a constraint E and a renaming η”. The full definition of the constraint generation datatype
and generate can be found in appendix B. This is the function signature:

generate : Γ → e → Γ ⊢ e : A ⊣ E | η

Both the function and datatype are broken down into 3 cases: variable, abstraction, and
application. The data constructor for variable constraints is:

var : Γ ⊢ var x : (lookup Γ x) ⊣ ϵ | id

It states that if we have a variable x and a context Γ, we can infer the type of x by looking it
up in the context. id is the identity renaming (type variables are not changed in any way),
and no constraints are generated (ϵ stands for empty constraint). Its corresponding case in
the generate function is

generate Γ (var x) = var (Γ (var x) (lookup Γ x) ϵ id)

The function and constructor are virtually identical. Indeed, the same applies for the appli-
cation and abstraction case in the sense that the constructor is so precise that the function
is a direct translation.

There is one notable difference compared to a regular (non-CbC) implementation. We
explicitly keep track of the number of type variables, denoted with Ξ. Contexts, renam-
ings, types and constraints are all dependent on Ξ. Strictly speaking, this is necessary to
implement a terminating unification algorithm. However, it also exposes nuanced details
to us about what the individual pieces consist of and how they are changed. This aids our
understanding of the algorithm and prevents bugs: it is not hard to imagine a scenario in
a regular implementation, which has an off-by-one bug related to renamings. Simple bugs
like these are impossible thanks to the types we use.

3.2 Unification
Once the constraints are generated, they must be solved by unification. The result of
unification is a substitution, which makes both sides of an equation equal. Formally, a
unification gives some substitution S, such that if x = y is a constraint, then S(x) = S(y).
Note that unification can fail, in which case there is no equalising substitution. After solving
a constraint, we record its resulting substitution and apply it to all other constraints. We
generated 3 constraints for our map example:
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map :: # 0 -> # 1 -> # 2
# 0 .

= # 3 -> # 4
# 1 .

= [# 3]
# 2 .

= [# 4]

Solving the constraint # 0 .
= # 3 -> # 4 generates the substitution

# 3 -> # 4 for # 0

At this point we replace all occurrences of # 0 with # 3 -> # 4 in all other constraints.
However, no constraints in our example contain # 0. Thus, we just record the substitution.
Solving all the constraints gives us a composition of substitutions, which we can apply to
the placeholder type to get the most general type for that term. For our example:

# 3 -> # 4 for # 0; [# 3] for # 1; [# 4] for # 2

applying it to the placeholder type # 0 -> # 1 -> # 2, we get the familiar type signature
of the map function:

(# 3 -> # 4) -> [# 3] -> [# 4]

3.2.1 The occurs-check

Solving constraints involves replacing type variables with other types. However, we must be
careful not to create infinite types. For example:

# 0 .
= # 0 -> # 1

If we were to replace # 0 with # 0 -> # 1 in the other constraints, we wouldn’t make any
progress. Additionally, we wish to express the fact that if some # x does not occur in a
type, the number of unique type variables has decreased. This is precisely what guarantees
termination. Thus, a simple boolean check does not suffice. Instead, we map each type
variable from a system of suc1 X unique type variables to a system with X type variables
while maintaining uniqueness. This mapping is called the thick function. Figure 2 (inspired
by McBride [12], which introduced the algorithm) illustrates the point.

0 0

2

3

2

1 1

0 0

2

3

2

1 1

0 0

2

3

2

1 1

Figure 2: The thick function mapping. The colors highlight the two ways variables are
mapped.

1suc stands for successor, e.g. if x = 1 then (suc x) = 2.
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Our formalization of the unification algorithm requires a sound and complete implemen-
tation of the thick function. Thus, we define a datatype StrTyVar [1] that encompasses the
idea of thick. As Figure 2 shows, there are 2 cases for soundness: the new type variable
is smaller than the removed type variable (suc-zero), in which case the mapping is direct
(shown in purple), or it is bigger (zero-suc), in which case the mapping is shifted by 1
(shown in orange) . The formalization is recursive; therefore, it also includes a suc-suc
case.

-- X is the type variable that is removed
-- Y is the type variable we wish to map
-- Z is the new , mapped type variable
data StrTyVar : (X : TyVar (suc Ξ)) (Y : TyVar (suc Ξ)) (Z :
TyVar Ξ)
zero -suc : StrTyVar zero (suc Y) Y
suc -zero : StrTyVar (suc X) zero zero
suc -suc : StrTyVar X Y Z → StrTyVar (suc X) (suc Y) (suc

Z)

To prove that thick is complete, we must return evidence that we can not construct
StrTyVar when X = Y . The explanation of the proof is greatly simplified. The chap-
ter “Decidable” in Wadler, Kokke, and Siek [19] goes into great detail about the techniques
we are using. We use the Decidable datatype, which is a type that can be either yes
<proof> or no <proof>. We return Z and StrTyVar as a tuple.

thick : (X Y : TyVar Ξ) → Decidable (∃[ Z ] StrTyVar X Y Z)
thick zero zero = no ()
thick zero (suc Y) = yes (Y , zero -suc)
thick (suc X) zero = yes (zero , suc -zero)
thick (suc X) (suc Y) with thick X Y
... | yes (X’ , proof) = yes (suc X’ , suc -suc proof)
... | no ¬StrTyVarXYZ = no (¬StrTyVarXYZ → ¬(StrTyVar -sX-sY-
sZ))

In the case of thick zero zero, Agda can infer that it is impossible to construct StrTyVar
with the given arguments. In the recursive case, we essentially give the inverse of the
suc-suc constructor. For the valid cases, we return the corresponding Z and constructor of
StrTyVar.

On top of thick, we define the check function, which propagates thick through the
structure of a type. The implementation of check is sound, but not complete. It is trivial
to make it complete since thick is complete, but for our unification algorithm it is not nec-
essary. The complete definition of both functions and their datatypes are given in Appendix
C.

3.2.2 Unification Implementation in Agda

We introduce the Agda implementation piece by piece, explaining the individual cases of
pattern matching. The full implementation can be found in appendix D. First, let’s look at
the type signature:

solve : E → Maybe (∃[ σ ] E ↘ σ)
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The function takes a constraint E as input and outputs either nothing, in which case there
is no unifying subsitution or the datatype E ↘ σ, which states that the constraint E is
solved by the substitution σ of type Subst Ξ Ξ1 (from Ξ to Ξ1 type variables). The Subst
Ξ Ξ1 type is well-scoped and well-typed [13].2 The substitution σ and the corresponding
constructor are returned as a tuple. Let’s begin with the simplest case: the constraint is
empty (ε).

solve ε = just (id , ε)

We return the identity substitution alongside the empty constructor.3 Next, we examine the
case where the equation has a type variable X on one side and some type A on the other
side.

solve (tyvar X .
= A) = do

(A’ , proof) ← check X A
just (A’ for X , X .

= proof)

We first check that the type variable X is not present in A using the check function. It
returns A′, which has 1 less type variable than A, and a proof of X’s absence. Finally,
we return the substitution that maps X to A′ and leaves everything else unchanged. The
constructor X .

= requires the proof as input to ensure correctness. This case is also defined
the other way around, where the type variable is on the right-hand side. Functionally,
everything stays the same.

The next case is when we have functions on both sides of the equation.

solve (A ⇒ B .
= A’ ⇒ B’) = do

(σ , proof) ← solve (A .
= A’ · B .

= B’)
just (σ , ⇒E proof)

We break this case up to two separate cases based on the idea that their inputs must be
equal and their outputs must be equal. Thus, we can break the constraint into two separate
constraints and compose them to be solved individually.

Last but not least, we have the case where both sides of the equation are type variables.
This case is to handle the edge case of the form # x .

= # x. This is a solvable constraint,
but it would fail with the cases defined so far, as # x is present on both sides. Thus, we
have to treat it separately.

solve (tyvar X .
= tyvar Y) with thick X Y

... | yes (Z , proof) = just (Z for X , X .
= proof)

... | no ¬proof = just (id , X .
=X ¬proof)

If the function succeeds, X and Y were different and we can return the substitution that
replaces X with Z. If it fails, X and Y must be equal and we return the identity substitution
and the proof that they are the same.

2These properties are described in a draft paper, which forms the basis for the Data.Fin.Substitution
module in the Agda standard library. This module, in turn, is what underpins the Subst Ξ Ξ1 type we are
using.

3Agda allows using the same name, in this case ε, for the constructors of different datatypes.
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So far, we have closely followed McBride [12]: we are looking at cases with just one
constraint. However, the algorithm presented by McBride is not for HM type inference, but
for first-order logic. We will now deviate from it and go to the case of a constraint being a
composition of constraints.

solve (E · F) = do
(σ , proof1) ← solve E
(τ , proof2) ← solve (subEqs σ F)
just (τ ◦ σ , proof1 ◦ proof2)

We solve E, which gives a substitution σ. We then solve F , but first apply the substitution
σ to F . Solving the substituted F gives another substitution, τ . We return the composition
of the subsitutions and the corresponding proof. However, there is a problem with this
case. In the eyes of the Agda compiler, the function subEqs could extend F with additional
constraints and thus lead to infinite recursion. To ensure termination, we’d have to [6]:

• define a small-step version of the unification algorithm that just does a single unifica-
tion step and returns the new equations

• prove that the relation this defines on unification states is well-founded

• take the fixpoint of the solver, which uses the proof of well-foundedness (Agda’s stan-
dard library defines this)

This is a major limitation – the above steps are non-trivial and require a deep understanding
of certain proving techniques in Agda. To get around this, there are 2 options. The first
option is to use either the TERMINATING or NON-TERMINATING pragma. The downside of these
is obvious: there is no guarantee that the function terminates anymore. The second option
is to include a fuel argument, which is a (arbitrary) natural number that decreases with
each recursive call. If it reaches 0, we return nothing. The downside is that the algorithm
can no longer be proven complete. Either way, both options lead to a situation where we
can no longer prove that the algorithm is correct. For this paper, proving correctness is
out of scope. Thus, we have decided to circumvent the problem by implementing the fuel
argument.

There are a few differences compared to a regular implementation. Just as with con-
straint generation, we have to keep track of the number of type variables to create valid
substitutions. The necessity of the fuel argument might seem like an inconvenience, but it
is rather beneficial: an infinitely looping type checker would cause plenty of frustration to a
programmer.

9



3.3 Combining constraint generation and unification
We now show the complete inference algorithm. It’s a combination of everything we’ve
introduced so far. It takes as input a context Γ and a term e and returns the most general
type of the term. The full implementation can be found in appendix E.

infer : Γ → e → Maybe (∃[ Ξ2 ] Ty Ξ2)
infer Γ e = do

let (_ , _ , A , E , _) = generate Γ e
(Ξ2 , σ , _) ← solve E 100000
just (Ξ2 , subTy σ A)

The context Γ has Ξ type variables. Constraint generation returns the placeholder type A
with Ξ1 type variables and the constraint E. We attempt to solve the constraint E with a
fuel of 100000. If successful, it returns a substitution σ that maps Ξ1 to Ξ2 type variables.
We then apply the substitution to the placeholder type A to get the most general type of
the term.

While the individual components of the inference algorithm are sound, the function itself
is not. For that, we’d have to return a well-typed term with the following signature [1]:

Tm (subCxt σ (wkCxt η Γ)) e (subTy σ A)

The context Γ is modified by first applying the renaming η and then the substitution σ.
The term itself does not change and the type is substituted with σ. One might expect that
since the individual components are sound, it would be trivial to combine them in a sound
way. However, the crux of the problem is that constraint generation and unification compose
renamings and subsitutions in a way that requires a multitude of lemmas to transform into
the aforementioned structure. As an example, when inferring application, we’d have to prove
the following transformation for contexts:

subCxt (renSub R.wk ◦ σ) (wkCxt η2 (wkCxt η1 Γ))
≡
subCxt σ (wkCxt (η1 ⊙ (η2 ⊙ R.wk)) Γ)

The exact mechanisms of the new elements (e.g. R.wk and renSub) are not important.
Instead, we take away a lesson: it is not enough to have sound components. Complex
datatypes transform types in complex ways and combining them in a generic way is difficult.

3.3.1 Example

An example can be shown via unit-testing. Since Agda has such a powerful type system, the
tests are written in type signatures. Let’s consider the Church numeral two as an example
(in Haskell):

\x -> \y -> x (x y)

And in our type system:

two = λ (λ var 1 · (var 1 · var 0))

Let’s input this term into the infer function with the empty context (since it is a closed-form
term):

infer -two : Maybe (∃[ Ξ2 ] Ty Ξ2)
infer -two = infer [] two
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We expect to infer the type (# 0 -> # 0) -> (# 0 -> # 0) with 1 unique type variable.
We write this expectation as a test in Agda:

test -two : infer -two ≡ just (1 , (# 0 ⇒ # 0) ⇒ (# 0 ⇒ # 0))
test -two = refl

The type x ≡ y has only one constructor, refl (short for reflexivity) and can only be
instantiated if x and y are of the same type. The full implementation of the test can be
found in appendix F.

4 Discussion
On the one hand, the basic implementation of the HM algorithm in Agda is relatively
simple. The complexity does not lie in CbC programming, but rather in the algorithm
itself. Still, a decent understanding of Agda is necessary. On the other hand, proving
soundness and completeness is extremely difficult. The added complexity is intertwined
with CbC programming. From the perspective of eliminating bugs, we should be proving
those properties. Otherwise, our implementation is just as prone to bugs as a regular
implementation.

Implementing bidirectional type inference in Agda is considerably simpler. Since bidi-
rectional type inference doesn’t require a global view of the program, the algorithm can
directly deduce whether a well-typed term can be given or not. Thus, soundness is easy to
achieve. Completeness is still difficult to prove and requires extensive knowledge of Agda.
Figure 3 puts the comparison of HM and bidirectional type inference in a table.

Basic Sound Complete
HM moderate hard very hard
Bidir easy easy hard

Figure 3: Subjective difficulty of implementing type inference in Agda.

Both methods scale relatively poorly. Soundness and completeness are not a one and
done deal. As we extend our type checker, we must extend our proofs as well. For some
features this is difficult with no existing implementations to draw inspiration from.

In many scenarios CbC programming “forces” the programmer to declare a multitude of
bespoke datatypes for seemingly no reason. For example, when the familiar list would suffice
for the constraints in a regular implementation, using CbC, we must define our own datatype.
These datatypes add up and make it difficult for someone unfamiliar with the codebase to
quickly grasp the main ideas. However, we argue that this is actually desirable. The types
encode the ideas of the type checker. It is essentially impossible to contribute without
deeply understanding them. We can think of them as puzzle pieces with an incredible level
of fidelity. It is not possible to put them together in the wrong way and finding the right
piece demonstrates understanding.

Dependent types are a powerful tool to describe our ideas and subsequently prevent
bugs. However, as CbC type checkers quickly become complex (the datatype for constraint
generation has five dependent types, each consisting of at least another dependent type), it
is not obvious that the datatypes are correct. In a collaborative setting, it would be hugely
beneficial if they were accompanied by a detailed explanation alongside an example or two.
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In conclusion, we’ve shown an example implementation of the HM algorithm in Agda
and discussed multiple trade-offs of using the CbC approach for implementing a type checker
with type inference. Its value depends on the goals of a project. If the goal is to merely
avoid some bugs, then the CbC approach can work, but probably adds too much additional
complexity for pragmatic programmers. However, if the goal is to research type checkers,
gain a deeper understanding of them, or to develop new features, then the CbC approach is
invaluable.

5 Limitations and future work
The discussion did not go into great detail about proving techniques in Agda. Thus, a
future evaluation could look into proving soundness and completeness of the HM algorithm
in Agda and provide a more informative description of the proving methods while assessing
their difficulty.

Another limitation of the paper is the simplicity of the language that we are type check-
ing. The difficulty of extending it is discussed in a general manner. A future evaluation could
look into extending the type checker with more advanced features and give a comparison of
doing so with and without using CbC programming.

While this paper gives a general overview of the CbC style of programming for type
inference, the preceding paragraphs show that there are many aspects left to be explored.
A deeper dive into CbC programming would be beneficial to the community in a variety
of ways. First of all, it would expose which parts of CbC programming are underrepre-
sented in terms of learning material and which techniques require careful attention when
explained. Secondly, it would aid beginners (and researchers) in deciding whether to use
CbC programming to solve their problem at hand.

6 Responsible Research
This research focuses solely on logic and mathematical methods, avoiding any human or
animal subjects. The results are derived from the created code, which is available for public
audit on GitHub4, ensuring transparency and verification. No external data was used, and
the codebase is accessible for independent validation.

4https://github.com/VincentPikand/cbc-type-checker
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A STLC specification

-- Well -scoped terms.

data Exp : N → Set where
var : (x : Fin n) → Exp n
abs : (e : Exp (suc n)) → Exp n
app : (f e : Exp n) → Exp n

-- Type variables.

TyCxt = N

TyVar : (Ξ : TyCxt) → Set
TyVar = Fin

-- Types.

data Ty (Ξ : TyCxt) : Set where
tyvar : (X : TyVar Ξ) → Ty Ξ
_⇒_ : (A B : Ty Ξ) → Ty Ξ

-- Typing contexts.

Cxt : (Ξ : TyCxt) (n : N) → Set
Cxt Ξ n = Vec (Ty Ξ) n

-- Well -typed terms.

data Tm (Γ : Cxt Ξ n) : (e : Exp n) → Ty Ξ → Set where
var : Tm Γ (var x) (lookup Γ x)
app : (t : Tm Γ f (A ⇒ B)) (u : Tm Γ e A)
→ Tm Γ (app f e) B

abs : (t : Tm (A :: Γ) e B) → Tm Γ (abs e) (A ⇒ B)
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B Constraint generation
The module R declares the subsitution operations for renamings. “wk” stands for weakening
i.e. increasing the number of type variables in a type context.

data Inf : (Γ : Cxt Ξ n) (e : Exp n) (η : Ξ ⊆ Ξ1) (A : Ty Ξ1) (E
: Eqs Ξ1) → Set where

var : Inf Γ (var x) R.id (lookup Γ x) ε

abs : let X = tyvar zero
in Inf (X :: wkCxt1 Γ) e η A E
→ Inf Γ (abs e) (R.wk R.◦ η) (wkTy η X ⇒ A) E

app : Inf Γ f η1 C E
→ Inf (wkCxt η1 Γ) e η2 A F
→ let X = tyvar zero

η′2 = η2 R.◦ R.wk
in Inf Γ (app f e) (η1 R.◦ η′2) X (wkEqs η′2 E · (wkEqs1 F ·

(wkTy η′2 C .
= wkTy1 A ⇒ X)))

----------------------------------------
generate : (Γ : Cxt Ξ n) → (e : Exp n) → Σ[ Ξ1 ∈ TyCxt ] Σ[ η
∈ (Ξ ⊆ Ξ1) ] Σ[ A ∈ (Ty Ξ1) ] Σ[ E ∈ (Eqs Ξ1) ] Inf Γ e η A
E

generate {Ξ} Γ (var x) = Ξ , R.id , (lookup Γ x , (ε , Inf.var)
)

generate Γ (abs e) =
let

(Ξ1 , η , A , E , e’) = generate (tyvar zero :: wkCxt1 Γ) e
in

Ξ1 , R.wk R.◦ η , wkTy η (tyvar zero) ⇒ A , E , Inf.abs e’
generate Γ (app f e) =

let
(Ξ1 , η1 , C , E , f’) = generate Γ f
(Ξ2 , η2 , A , F , e’) = generate (wkCxt η1 Γ) e
X = tyvar zero
η′2 = η2 R.◦ R.wk

in
suc Ξ2 , η1 R.◦ η′2 , X , wkEqs η′2 E · wkEqs1 F · (wkTy η′2 C .

=
wkTy1 A ⇒ X) , app f’ e’
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C Occurs-check
The delete function is a helper function that removes a type variable from a type context.

delete : (X : TyVar Ξ) → TyCxt
delete {Ξ = suc Ξ} zero = Ξ
delete (suc X) = suc (delete X)

data StrTyVar : (X : TyVar Ξ) (Y : TyVar Ξ) (Z : TyVar (delete
X)) → Set where

zero -suc : StrTyVar zero (suc Y) Y
suc -zero : StrTyVar (suc X) zero zero
suc -suc : StrTyVar X Y Z → StrTyVar (suc X) (suc Y) (suc Z)

data StrTy : (X : TyVar Ξ) (A : Ty Ξ) (A’ : Ty (delete X)) →
Set where

tyvar : StrTyVar X Y Z
→ StrTy X (tyvar Y) (tyvar Z)

_⇒_ : StrTy X A A’
→ StrTy X B B’
→ StrTy X (A ⇒ B) (A’ ⇒ B’)

thick : (x y : TyVar Ξ) → Dec (∃[ z ] (StrTyVar x y z))
thick zero zero = no (λ ())
thick zero (suc y) = yes (y , zero -suc)
thick (suc x) zero = yes (zero , suc -zero)
thick (suc x) (suc y) with thick x y
... | yes (x’ , p) = yes (suc x’ , suc -suc p)
... | no ¬z = no λ{ (suc z , suc -suc snd) → ¬z (z , snd)}

check : (X : TyVar Ξ) → (A : Ty Ξ) → Maybe (Σ (Ty (delete X))
(StrTy X A))

check X (tyvar Y) with thick X Y
... | yes (Z , proof) = just (tyvar Z , tyvar proof)
... | no _ = nothing
check X (A ⇒ B) = do

(A’ , p1) <- check X A
(B’ , p2) <- check X B
just (A’ ⇒ B’ , p1 ⇒ p2)
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D Constraint solver

solve : (E : Eqs Ξ) → N → Maybe (Σ[ Ξ1 ∈ TyCxt ] Σ (Subst Ξ
Ξ1) (E ↘_))

solve _ zero = nothing
solve {Ξ} ε _ = just (Ξ , idSub , ε)
solve {Ξ} (tyvar X .

= tyvar Y) _ with thick X Y
... | yes (y’ , p) = just (delete X , sgSub X R.id (tyvar y’) ,

X .
= (tyvar p))

... | no neg -p = just (Ξ , idSub , X .
=X neg -p)

solve (tyvar X .
= A) _ = do

(A’ , p) <- check X A
just (delete X , (sgSub X R.id A’ , X .

= p))
solve (A .

= tyvar X) _ = do
(A’ , p) <- check X A
just (delete X , (sgSub X R.id A’ , .

=X p))
solve (A ⇒ B .

= A’ ⇒ B’) (suc n) = do
(Ξ1 , σ , p) <- solve (A .

= A’ · B .
= B’) n

just (Ξ1 , (σ , (⇒E p)))
solve (E · F) (suc n) = do

(Ξ , σ , p1) <- solve E n
(Ξ2 , τ , p2) <- solve (subEqs σ F) n
just (Ξ2 , subSub τ σ , p1 · p2)

E Infer function

infer : (Γ : Cxt Ξ n) → Exp n → Maybe (∃[ Ξ2 ] Ty Ξ2)
infer Γ e = do

let (Ξ1 , η , A , E , e’) = generate Γ e
(Ξ2 , σ , p) <- solve E 100000
just (Ξ2 , subTy σ A)

F Example

two : Exp 0
two = abs (abs (app (var (suc zero)) (app (var (suc zero)) (var

zero))))

two -tc : Maybe (∃[ Ξ2 ] Ty Ξ2)
two -tc = infer {zero} [] two

test -two : two -tc ≡ just (1 , (( tyvar zero) ⇒ (tyvar zero)) ⇒
((tyvar zero) ⇒ (tyvar zero)))

test -two = refl
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