

Delft University of Technology

p-multigrid methods and their comparison to h-multigrid methods within Isogeometric
Analysis

Tielen, R.; Möller, M.; Göddeke, D.; Vuik, C.

DOI
10.1016/j.cma.2020.113347
Publication date
2020
Document Version
Final published version
Published in
Computer Methods in Applied Mechanics and Engineering

Citation (APA)
Tielen, R., Möller, M., Göddeke, D., & Vuik, C. (2020). p-multigrid methods and their comparison to h-
multigrid methods within Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering,
372, 1-27. Article 113347. https://doi.org/10.1016/j.cma.2020.113347

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cma.2020.113347
https://doi.org/10.1016/j.cma.2020.113347

Available online at www.sciencedirect.com

t
w
a
f
a
t
m
⃝

(

K

a

fl
c
d

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 372 (2020) 113347
www.elsevier.com/locate/cma

p-multigrid methods and their comparison to h-multigrid methods
within Isogeometric Analysis

R. Tielena,∗, M. Möllera, D. Göddekeb,c, C. Vuika

a Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628XE, Delft, The Netherlands
b Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, Allmandring 5b, 70569, Stuttgart, Germany

c Stuttgart Center for Simulation Science, University of Stuttgart, Pfaffenwaldring 5c, 70569, Stuttgart, Germany

Received 25 September 2019; received in revised form 30 July 2020; accepted 31 July 2020
Available online xxxx

Abstract

Over the years, Isogeometric Analysis has shown to be a successful alternative to the Finite Element Method (FEM).
However, solving the resulting linear systems of equations efficiently remains a challenging task. In this paper, we consider
a p-multigrid method, in which coarsening is applied in the spline degree p instead of the mesh width h, and compare it
o h-multigrid methods. Since the use of classical smoothers (e.g. Gauss–Seidel) results in a p-multigrid/h-multigrid method
ith deteriorating performance for higher values of p, the use of an ILUT smoother is investigated as well. Numerical results

nd a spectral analysis indicate that the use of this smoother exhibits convergence rates essentially independent of h and p
or both p-multigrid and h-multigrid methods. In particular, we compare both coarsening strategies (e.g. coarsening in h or p)
dopting both smoothers for a variety of two and three dimensional benchmarks. Furthermore, the ILUT smoother is compared
o a state-of-the-art smoother (Hofreither and Takacs 2017) using both coarsening strategies. Finally, the proposed p-multigrid

ethod is used to solve linear systems resulting from THB-spline discretizations.
c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Isogeometric analysis; Multigrid methods; p-multigrid; ILUT smoother

1. Introduction

Isogeometric Analysis (IgA) [1] has become widely accepted over the years as an alternative to the Finite
Element Method (FEM). The use of B-spline basis functions or Non-Uniform Rational B-splines (NURBS) allows
for a highly accurate representation of complex geometries and establishes the link between computer-aided design
(CAD) and computer-aided engineering (CAE) tools. Furthermore, the C p−1 continuity of the basis functions offers

higher accuracy per degree of freedom compared to standard FEM [2].
IgA has been applied with success in a wide range of engineering fields, such as structural mechanics [3],

uid dynamics [4] and shape optimization [5]. Solving the resulting linear systems efficiently is, however, still a
hallenging task. The condition numbers of the mass and stiffness matrices increase exponentially with the spline
egree p, making the use of (standard) iterative solvers inefficient. On the other hand, the use of (sparse) direct

∗ Corresponding author.
E-mail address: r.p.w.m.tielen@tudelft.nl (R. Tielen).
https://doi.org/10.1016/j.cma.2020.113347
0045-7825/ c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113347
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113347&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:r.p.w.m.tielen@tudelft.nl
https://doi.org/10.1016/j.cma.2020.113347
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347
solvers is not straightforward due to the increasing stencil of the basis functions and increasing bandwidth of
matrices for higher values of p. Furthermore, direct solvers may not be practical for large problem sizes due to
memory constraints, which is a common problem in high-order methods in general.

Recently, various solution techniques have been developed for discretizations arising in Isogeometric Analysis.
For example, preconditioners have been developed based on fast solvers for the Sylvester equation [6] and
overlapping Schwarz methods [7].

As an alternative, geometric multigrid methods have been investigated, as they are considered among the most
efficient solvers in Finite Element Methods for elliptic problems. However, the use of standard smoothers like
(damped) Jacobi or Gauss–Seidel leads to convergence rates which deteriorate for increasing values of p [8]. It
has been noted in [9] that very small eigenvalues associated with high-frequency eigenvectors cause this behaviour.
This has lead to the development of non-classical smoothers, such as smoothers based on mass smoothing [10–12]
or overlapping multiplicative Schwarz methods [13], showing convergence rates independent of both h and p.

p-Multigrid methods can be adopted as an alternative solution strategy. In contrast to h-multigrid methods, a
hierarchy is constructed where each level represents a different approximation order. Throughout this paper, the
coarse grid correction is obtained at level p = 1. Here, B-spline functions coincide with linear Lagrange basis
functions, thereby enabling the use of well known solution techniques for standard Lagrangian Finite Elements.
Furthermore, the stencil of the basis functions and bandwidth of the matrix is significantly smaller at level p = 1,
reducing both assembly and factorization costs of the multigrid method.

p-Multigrid methods have mostly been used for solving linear systems arising within the Discontinuous Galerkin
method [14–17], where a hierarchy was constructed until level p = 0. However, some research has been performed
for continuous Galerkin methods [18] as well, where the coarse grid correction was obtained at level p = 1.

Recently, the authors applied a p-multigrid method, using a Gauss–Seidel smoother, in the context of IgA [19].
As with h-multigrid methods, a dependence of the convergence rate on p was reported. In this paper, a
p-multigrid method is presented that makes use of an Incomplete LU factorization based on a dual Threshold
strategy (ILUT) [20] for smoothing. The spectral properties of the resulting p-multigrid method are analysed
adopting both smoothers. Numerical results are presented for Poisson’s equation on a quarter annulus, an
L-shaped (multipatch) geometry and the unit cube. Furthermore, the convection–diffusion–reaction (CDR) equation
is considered on the unit square. The use of ILUT as a smoother improves the performance of the p-multigrid
method significantly and leads to convergence rates which are essentially independent of h and p.

Compared to standard h-multigrid methods, both the coarsening strategy and smoother are adjusted in the
proposed p-multigrid method. Therefore, a comparison study is performed in terms of convergence rates and CPU
times between p-multigrid and h-multigrid methods using both smoothers. Furthermore, the p-multigrid method
with ILUT as a smoother is compared to an h-multigrid method adopting a smoother based on stable splittings of
spline spaces [11]. Finally, to show the versatility of the proposed p-multigrid method, it is applied to solve linear
systems of equations resulting from THB-spline discretizations [21].

This paper is organized as follows. In Section 2 the model problem, the basics of IgA and the spatial discretization
are considered. Section 3 presents the p-multigrid method in detail, together with the proposed ILUT smoother. A
spectral analysis is performed with both smoothers and coarsening strategies and discussed in Section 4. In Section 5,
numerical results for the considered benchmarks are presented. Finally, conclusions are drawn in Section 6.

2. Model problem and IgA discretization

To assess the quality of the p-multigrid method, the convection–diffusion–reaction (CDR) equation is considered
as a model problem:

− ∇ · (D∇u) + v · ∇u + Ru = f, on Ω , (1)

where D denotes the diffusion tensor, v a divergence-free velocity field and R a source term. Here, Ω ⊂ R2 is
a connected, Lipschitz domain, f ∈ L2(Ω) and u = 0 on the boundary ∂Ω . Let V = H 1

0 (Ω) denote the space
of functions in the Sobolev space H 1(Ω) that vanish on ∂Ω . The variational form of (1) is then obtained by
multiplication with an arbitrary test function v ∈ V and application of integration by parts: Find u ∈ V such
that
a(u, v) = (f, v) ∀v ∈ V, (2)

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 3

H
b
t
f
a
t

where

a(u, v) =

∫
Ω

(D∇u) · ∇v + (v · ∇u)v + Ruv dΩ (3)

and

(f, v) =

∫
Ω

f v dΩ . (4)

The physical domain Ω is then parameterized by a geometry function

F : Ω0 → Ω , F(ξ) = x. (5)

The geometry function F describes an invertible mapping connecting the parameter domain Ω0 = (0, 1)2 with the
physical domain Ω . In case Ω cannot be described by a single geometry function, the physical domain is divided
into a collection of K non-overlapping subdomains Ω (k) such that

Ω =

K⋃
k=1

Ω
(k)

. (6)

A family of geometry functions F(k) is then defined to parameterize each subdomain Ω (k) separately:

F(k)
: Ω0 → Ω (k), F(k)(ξ) = x. (7)

In this case, we refer to Ω as a multipatch geometry consisting of K patches.

B-spline basis functions

Throughout this paper, the tensor product of univariate B-spline basis functions of order p is used for spatial
discretization, unless stated otherwise. Univariate B-spline basis functions are defined on the parameter domain Ω0
and are uniquely determined by their underlying knot vector

Ξ = {ξ1, ξ2, . . . , ξN+p, ξN+p+1}, (8)

consisting of a sequence of non-decreasing knots ξi ∈ Ω0. Here, N denotes the number of univariate basis functions
of order p defined by this knot vector.

B-spline basis functions are defined recursively by the Cox–de Boor formula [22]. The resulting B-spline
basis functions φi,p are non-zero on the interval [ξi , ξi+p+1), implying a compact support that increases with p.
Furthermore, at every knot ξi the basis functions are C p−mi -continuous, where mi denotes the multiplicity of knot
ξi . Finally, the basis functions possess the partition of unity property:

N∑
i=1

φi,p(ξ) = 1 ∀ξ ∈ [ξ1, ξn+p+1]. (9)

Throughout this paper, B-spline basis functions are considered based on an open uniform knot vector with knot
span size h, implying that the first and last knots are repeated p + 1 times. As a consequence, the basis functions
considered are C p−1 continuous and interpolatory only at the two end points.

For the two-dimensional case, the tensor product of univariate B-spline basis functions φix ,p(ξ) and φiy ,q (η) of
order p and q , respectively, with maximum continuity is adopted for the spatial discretization:

Φi⃗, p⃗(ξ) := φix ,p(ξ)φiy ,q (η), i⃗ = (ix , iy), p⃗ = (p, q). (10)

ere, ξ = (ξ, η) and i⃗ and p⃗ are multi-indices, with ix = 1, . . . , nx and iy = 1, . . . , ny denoting the univariate
asis functions in the x and y-dimension, respectively. Furthermore, i = ix nx + (iy − 1)ny assigns a unique index
o each pair of univariate basis functions, where i = 1, . . . , Ndof. Here, Ndof denotes the number of degrees of
reedom, or equivalently, the number of tensor-product basis functions, and depends on both h and p. In this paper,
ll univariate B-spline basis functions are assumed to be of the same order (i.e. p = q). The spline space Vh,p can
hen be written, using the inverse of the geometry mapping F−1 as pull-back operator, as follows:

Vh,p := span
{
Φi⃗, p⃗ ◦ F−1

}
. (11)
i=1,...,Ndof

4 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347

t

B
f

s

B
c

a
b

B
f

s

The Galerkin formulation of (2) becomes: Find uh,p ∈ Vh,p such that

a(uh,p, vh,p) = (f, vh,p) ∀vh,p ∈ Vh,p. (12)

The discretized problem can be written as a linear system

Ah,puh,p = fh,p, (13)

where Ah,p denotes the system matrix resulting from this discretization with B-spline basis functions of order p
and mesh width h. For a more detailed description of the spatial discretization in Isogeometric Analysis, we refer
to [1]. Throughout this paper four benchmarks are considered, to investigate the influence of the geometric factor,
the considered coefficients in the CDR-equation, the number of patches and the spatial dimension on the proposed
p-multigrid solver.

Benchmark 1. Let Ω be the quarter annulus with an inner and outer radius of 1 and 2, respectively. The coefficients
are chosen as follows:

D =

[
1 0
0 1

]
, v =

[
0
0

]
, R = 0. (14)

Furthermore, homogeneous Dirichlet boundary conditions are applied and the right-hand side is chosen such that
he exact solution u is given by:

u(x, y) = −(x2
+ y2

− 1)(x2
+ y2

− 4)xy2.

enchmark 2. Here, the unit square is adopted as domain, i.e. Ω = [0, 1]2, and the coefficients are chosen as
ollows:

D =

[
1.2 −0.7

−0.4 0.9

]
, v =

[
0.4

−0.2

]
, R = 0.3. (15)

Homogeneous Dirichlet boundary conditions are applied and the right-hand side is chosen such that the exact
olution u is given by:

u(x, y) = sin(πx)sin(πy).

enchmark 3. Let Ω = {[−1, 1] × [−1, 1]}\{[0, 1] × [0, 1]} be an L-shaped domain. A multipatch geometry is
reated, by splitting the single patch in each direction uniformly. The coefficients are chosen as follows:

D =

[
1 0
0 1

]
, v =

[
0
0

]
, R = 0. (16)

The exact solution is given by:

u(x, y) =

⎧⎨⎩
3
√

x2 + y2sin
(

2atan2(y,x)−π

3

)
if y > 0

3
√

x2 + y2sin
(

2atan2(y,x)+3π

3

)
if y < 0,

nd the right-hand side is chosen accordingly. Inhomogeneous Dirichlet boundary conditions are prescribed for this
enchmark.

enchmark 4. Here, the unit cube is adopted as domain, i.e. Ω = [0, 1]3, and the coefficients are chosen as
ollows:

D =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , v =

⎡⎣0
0
0

⎤⎦ , R = 0. (17)

Homogeneous Dirichlet boundary conditions are applied and the right-hand side is chosen such that the exact
olution u is given by:

u(x, y) = sin(πx)sin(πy)sin(π z).

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 5
3. p-Multigrid method

Multigrid methods [23,24] aim to solve linear systems of equations by defining a hierarchy of discretizations. At
each level of the multigrid hierarchy a smoother is applied, whereas on the coarsest level a correction is determined
by means of a direct solver. Starting from Vh,1, a sequence of spaces Vh,1, . . . ,Vh,p is obtained by applying k-
refinement (i.e. increasing the degree and continuity of the basis functions) to solve Eq. (13). Note that, since basis
functions with maximal continuity are considered, the spaces are not nested. A single step of the two-grid correction
scheme for the p-multigrid method consists of the following steps [19]:

1. Starting from an initial guess u(0,0)
h,p , apply a fixed number ν1 of pre-smoothing steps:

u(0,m)
h,p = u(0,m−1)

h,p + Sh,p

(
fh,p − Ah,pu(0,m−1)

h,p

)
, m = 1, . . . , ν1, (18)

where Sh,p is a smoothing operator applied to the high-order problem.
2. Determine the residual at level p and project it onto the space Vh,p−1 using the restriction operator I p−1

p :

rh,p−1 = I p−1
p

(
fh,p − Ah,pu(0,ν1)

h,p

)
. (19)

3. Solve the residual equation at level p − 1 to determine the coarse grid error:

Ah,p−1eh,p−1 = rh,p−1. (20)

4. Project the error eh,p−1 onto the space Vh,p using the prolongation operator I p
p−1 and update u(0,ν1)

h,p :

u(0,ν1)
h,p := u(0,ν1)

h,p + I p
p−1

(
eh,p−1

)
. (21)

5. Apply ν2 postsmoothing steps of (18) to obtain u(0,ν1+ν2)
h,p =: u(1,0)

h,p .

In the literature, steps (2)-(4) are referred to as ‘coarse grid correction’. Recursive application of this scheme
on Eq. (20) until level p = 1 is reached, results in a V-cycle. In contrast to h-multigrid methods, the coarsest
problem in p-multigrid can still be large for small values of h. However, since we restrict to level p = 1, the
coarse grid problem corresponds to a standard low-order Lagrange FEM discretization of the problem at hand.
Therefore, we use a standard h-multigrid method to solve the coarse grid problem in our p-multigrid scheme,
which is known to be optimal (in particular h-independent) in this case. As a smoother, Gauss–Seidel is applied
within the h-multigrid method, as it is both cheap and effective for low degree problems. Applying a single W-cycle
using canonical prolongation, weighted restriction and a single smoothing step turned out to be sufficient and has
therefore been adopted throughout this paper as coarse grid solver.

Note that, for the p-multigrid method, the residual can be projected directly to level p = 1. It was shown in [25]
that the performance of the p-multigrid method is hardly affected, while the set-up costs decrease significantly. In
Appendix A, numerical results are presented for the first benchmark confirming this observation. Throughout this
paper, a direct projection to level p = 1 is adopted for the p-multigrid method, see Fig. 1. Results are compared
to an h-multigrid method, which is shown as well in Fig. 1.

Prolongation and restriction

To transfer both coarse grid corrections and residuals between different levels of the multigrid hierarchy,
prolongation and restriction operators are defined. The prolongation and restriction operator adopted in this paper
are based on an L2 projection and have been used extensively in the literature [26–28]. In this paper, the coarse
grid correction at level p = 1 is prolongated directly to level p by projection onto the space Vh,p. The prolongation
operator I p

1 : Vh,1 → Vh,p is given by

I p
1 (v1) = (Mp)−1Pp

1 v1. (22)

Here, the mass matrix Mp and transfer matrix Pp
1 are defined as follows:

(Mp)(i, j) :=

∫
Φi,pΦ j,p dΩ , (Pp

1)(i, j) :=

∫
Φi,pΦ j,1 dΩ . (23)
Ω Ω

6 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347

s
s

T
V

T
M

Fig. 1. Illustration of the considered p-multigrid (top) and h-multigrid (bottom) method. At p = 1, Gauss–Seidel is always adopted as a
moother (•), whereas at the high order level Gauss–Seidel or ILUT can be applied (▲). At the coarsest level, a direct solver is applied to
olve the residual equation (■).

he residuals are restricted from level p to 1 by projection onto the space Vh,1. The restriction operator I1
p : Vh,p →

h,1 is defined by

I1
p(vp) = (M1)−1P1

p vp. (24)

o prevent the explicit solution of a linear system of equations for each projection step, the consistent mass matrix
in both transfer operators is replaced by its lumped counterpart ML by applying row-sum lumping:

ML
(i,i) =

Ndof∑
j=1

M(i, j). (25)

Numerical experiments, presented in Appendix B, show that lumping the mass matrix hardly influences the
convergence behaviour of the resulting p-multigrid method. Neither does it affect the overall accuracy obtained
with the p-multigrid method. Alternatively, one could invert the mass matrix efficiently by exploiting the tensor
product structure, see e.g. [29].

Note that this choice of prolongation and restriction operators yields a non-symmetric coarse grid correction
and, hence, a non-symmetric multigrid solver. As a consequence, the multigrid solver can only be applied as a
preconditioner for a Krylov method suited for non-symmetric matrices, like the stabilized Bi-Conjugate Gradient
(Bi-CGSTAB) method.

Remark 1. Choosing the prolongation and restriction operator transpose to each other would restore the symmetry
of the multigrid method. However, numerical experiments, not presented in this paper, show that this leads to a less
robust p-multigrid method. Therefore, the prolongation and restriction operator are adopted as defined in Eqs. (22)
and (24), respectively.

Smoother

Within multigrid methods, a basic iterative method is typically used as a smoother. However, in IgA the
performance of classical smoothers such as (damped) Jacobi and Gauss–Seidel decreases significantly for higher

values of p. Therefore, an Incomplete LU factorization is adopted with a dual Threshold strategy (ILUT) [20] to

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 7

C

T
f

H
c
r

approximate the operator Ah,p:

Ah,p ≈ Lh,pUh,p. (26)

The ILUT factorization is determined completely by a tolerance τ and fillfactor m. Two dropping rules are applied
during factorization:

1. All elements smaller (in absolute value) than the dropping tolerance are dropped. The dropping tolerance is
obtained by multiplying the tolerance τ with the average magnitude of all elements in the current row.

2. Apart from the diagonal element, only the M largest elements are kept in each row. Here, M is determined
by multiplying the fillfactor m with the average number of non-zeros in each row of the original operator
Ah,p.

The ILUT factorization considered in this paper is closely related to an ILU(0) factorization. This factorization has
been applied in the context of IgA as a preconditioner, showing good convergence behaviour [30].

An efficient implementation of ILUT is available in the Eigen library [31] based on [32]. Once the factorization
is obtained, a single smoothing step is applied as follows:

e(n)
h,p = (Lh,pUh,p)−1(fh,p − Ah,pu(n)

h,p), (27)

= U−1
h,pL−1

h,p(fh,p − Ah,pu(n)
h,p), (28)

u(n+1)
h,p = u(n)

h,p + e(n)
h,p, (29)

where the two matrix inversions in Eq. (28) amount to forward and backward substitution. Throughout this paper,
the fillfactor m = 1 is used (unless stated otherwise) and the dropping tolerance equals τ = 10−12. Hence, the
number of non-zero elements of Lh,p + Uh,p is similar to the number of non-zero elements of Ah,p. Fig. 2 shows
the sparsity pattern of the stiffness matrix Ah,3 and Lh,3 + Uh,3 for the first benchmark and h = 2−5. Since an
approximate minimum degree (AMD) ordering [33] is applied during the ILUT factorization to reduce the fill-in,
sparsity patterns differ significantly. However, the number of non-zero entries is comparable.

Fig. 2. Sparsity pattern of Ah,3 (left) and Lh,3 + Uh,3 (right) for h = 2−5.

oarse grid operator

At each level of the multigrid hierarchy, the operator Ah,p is needed to apply smoothing or compute the residual.
he operators at the coarser levels can be obtained by rediscretizing the bilinear form in (2) with low-order basis

unctions. Alternatively, a Galerkin projection can be adopted:

AG
h,p−1 = I p−1

p Ah,p I p
p−1. (30)

owever, since the condition number when using the Galerkin projection is significantly higher compared to the
ondition number of the rediscretized operator, the coarse grid operators in this paper are obtained by using the
ediscretization approach.

8 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347

b
a

t
l
b
c
s
fl
i
s

s
f
O

w
o
c
a
s

e

Computational costs

To investigate the costs of the proposed p-multigrid method, the assembly costs, factorization costs and the costs
of a single multigrid cycle are analysed. Assuming a direct projection to level p = 1, both Ah,p and Ah,1 have to

e assembled. Furthermore, the (variationally lumped) mass matrices ML
1, ML

p and transfer matrix P1
p have to be

ssembled.
Assuming an element-based assembly loop with standard Gauss-quadrature, assembling the stiffness matrix or

ransfer matrix at level p costs O(Ndof p3d) floating point operations (flops). More efficient assembly techniques
ike weighted quadrature [34], sum factorizations [35] and low tensor rank approximations [36] exist, but will not
e explored in this paper. However, since assembly costs might dominate the overall computational costs, assembly
osts will be presented separately in Section 5 to illustrate the potential for improving this part of the proposed
olution algorithm separately. Assembling the (variationally lumped) mass matrices ML

1 and ML
p costs O(Ndof)

ops. At the high order level an ILUT factorization of Ah,p needs to be determined, costing O(Ndof p2d) flops [30]
n case m = 1 and τ = 10−12. Alternatively to ILUT, Gauss–Seidel can be applied as a smoother, without any
et-up costs.

At the high order level both pre- and postsmoothing is applied. Given the ILUT factorization, applying a single
moothing step costs O(Ndof pd) flops. Applying Gauss–Seidel as a smoother at level p = 1, costs O(Ndof1d)
lops [30]. For both prolongation and restriction, a sparse matrix–vector multiplication has to be performed, costing
(Ndof pd) flops for each application.
Finally, the residual equation (20) is approximately solved by applying a single W-cycle of an h-multigrid method,

hich uses Gauss–Seidel as a smoother. Prolongation and restriction operators of the h-multigrid method are based
n canonical interpolation and weighted restriction, respectively. Table 1 provides an overview of the computational
osts of the proposed p-multigrid method at level k (where k equals 1 or p). Note that, due to the element-based
ssembly loop, assembly costs dominate the set-up costs. Furthermore, the ILUT factorization leads to significant
et-up costs, in particular for higher values of p.

Table 1
Overview of the computational costs with p-multigrid for general values of the approximation
order p and dimension d .

Set-up costs

Level k Assembly Ah,k Assembly ML
k Assembly Pk−1

k ILUT factorization
1 O(Ndof13d) O(Ndof) O(Ndof12d)
p O(Ndof p3d) O(Ndof) O(Ndof p3d) O(Ndof p2d)

Costs multigrid cycle

Level k Presmoothing Restriction Prolongation Postsmoothing
1 – – O(Ndof pd) –
p O(Ndof pd) O(Ndof pd) – O(Ndof pd)

The memory requirements of the proposed p-multigrid method are strongly related to the number of nonzero
ntries of each operator. For the stiffness matrix in d dimensions, the number of nonzero entries at level k equals
O(Ndofkd). Table 2 shows the number of nonzero entries for all operators in the p-multigrid method for each level.

Table 2
Number of nonzero entries with p-multigrid for general values of the approximation order p and
dimension d .

Level k Ah,k Mk Pk−1
k ILUT factorization

1 O(Ndof1d) O(Ndof) O(Ndof1d) O(Ndof1d)
p O(Ndof pd) O(Ndof) O(Ndof pd) O(Ndof pd)

Note that, compared to h-multigrid methods, the p-multigrid method consists of one extra level. Since initially
k-refinement is applied, the dimensions of the matrix remain of O(Ndof). However, at level p = 1, coarsening in
h is applied which leads to a reduction of the number of degrees of freedom with a factor of 2d from one level to
the other, as with h-multigrid. Furthermore, the number of nonzero entries significantly reduces due to the smaller
support of the piecewise linear B-spline basis functions. A more detailed comparison between h-multigrid and
p-multigrid methods, also in terms of CPU times, can be found in Sections 4 and 5.

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 9

w
c

H
b
f
r
t
a
S
o
i
c
e
o
s
t

b
t
s

I

m
B
o
a
r
m
C
T
r

4. Spectral analysis

In this section, the performance of the proposed p-multigrid method is analysed and compared with h-multigrid
methods in different ways. First, a spectral analysis is performed to investigate the interplay between the coarse grid
correction and the smoother. In particular, we compare both smoothers (Gauss–Seidel and ILUT) and coarsening
strategies (in h or p). Then, the spectral radius of the iteration matrix is determined to obtain the asymptotic
convergence factors of the p-multigrid and h-multigrid methods. Throughout this section, the first two benchmarks
presented in Section 2 are considered for the analysis.

Reduction factors

To investigate the effect of a single smoothing step or coarse grid correction, a spectral analysis [37] is carried out
for different values of p. For this analysis, we consider −∆u = 0 with homogeneous Dirichlet boundary conditions
and, hence, u = 0 as its exact solution. Let us define the error reduction factors as follows:

rS (u0
h,p) =

∥Sh,p(u0
h,p)∥2

∥u0
h,p∥2

, rCGC(u0
h,p) =

∥CGC(u0
h,p)∥2

∥u0
h,p∥2

, (31)

here Sh,p(·) denotes a single smoothing step and CGC(·) an exact coarse grid correction. We denote a coarse grid
orrection obtained by coarsening in p and h by CGC p and CGCh , respectively. For CGC p, a direct projection to

p = 1 is considered. As an initial guess, the generalized eigenvectors vi are chosen which satisfy

Ah,pvi = λi Mh,pvi , i = 1, . . . , Ndof. (32)

ere, Mh,p is the consistent mass matrix as defined in (23). The error reduction factors for the first benchmark for
oth smoothers and coarsening strategies are shown in Fig. 3 for h = 2−5 and different values of p. The reduction
actors obtained with both smoothers are shown in the left column, while the plots in the right column show the
eduction factors for both coarsening strategies. In general, the coarse grid corrections reduce the coefficients of
he eigenvector expansion corresponding to the low-frequency modes, while the smoother reduces the coefficients
ssociated with high-frequency modes. However, for increasing values of p, the reduction factors of the Gauss–
eidel smoother increase for the high-frequency modes, implying that the smoother becomes less effective. On the
ther hand, the use of ILUT as a smoother leads to decreasing reduction factors for all modes when the value of p
s increased. The coarse grid correction obtained by coarsening in h (e.g. CGCh) is more effective compared to a
orrection obtained by coarsening in p. Note that, for higher values of p, both types of coarse grid correction remain
ffective in reducing the coefficients of the eigenvector expansion corresponding to the low-frequency modes. The
scillatory behaviour of the reduction rates in Fig. 3 has been observed in the literature for a similar benchmark,
ee [37], although the exact cause is unknown and requires further investigation. Note that, the reduction rates of
he smoother itself are uniformly smaller than 1, implying the smoother is a solver as well.

Fig. 4 shows the error reduction factors obtained for the second benchmark, showing similar, but less oscillatory,
ehaviour. These results indicate that the use of ILUT as a smoother (with ν1 = ν2 = 1) could significantly improve
he convergence properties of the p-multigrid and h-multigrid method compared to the use of Gauss–Seidel as a
moother.

teration matrix

For any multigrid method, the asymptotic convergence rate is determined by the spectral radius of the iteration
atrix. To obtain this matrix explicitly, consider, again, −∆u = 0 with homogeneous Dirichlet boundary conditions.
y applying a single iteration of the p-multigrid or h-multigrid method using the unit vector ei

h,p as initial guess,
ne obtains the i th column of the iteration matrix [38]. Fig. 5 shows the spectra for the first benchmark for h = 2−5

nd different values of p obtained with both multigrid methods using Gauss–Seidel and ILUT as a smoother. For
eference, the unit circle has been added in all plots. The spectral radius of the iteration matrix, defined as the
aximum eigenvalue in absolute value, is then given by the eigenvalue that is the furthest away from the origin.
learly, the spectral radius significantly increases for higher values of p when adopting Gauss–Seidel as a smoother.
he use of ILUT as a smoother results in spectra clustered around the origin, implying fast convergence of the

esulting p-multigrid or h-multigrid method.

10 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347

s

Fig. 3. Error reduction in (v j) for the first benchmark with p = 2, 3, 4 and h = 2−5 obtained with different smoothers (left) and coarsening
trategies (right).

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 11

c

Fig. 4. Error reduction in (v j) for the second benchmark with p = 2, 3, 4 and h = 2−5 obtained with different smoothers (left) and
oarsening strategies (right).

12 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347

o

a
p
t
c
d

a
c
t
F
a
i
t
c
t

The spectra of the iteration matrices for the second benchmark are presented in Fig. 6. Although the eigenvalues
are more clustered with Gauss–Seidel compared to the first benchmark, the same behaviour can be observed.

The spectral radii for both benchmarks, where ν1 = ν2 = 1, are presented in Table 3. For Gauss–Seidel, the
spectral radius of the iteration matrix is independent of the mesh width h and coarsening strategy, but depends
strongly on the approximation order p. The use of ILUT leads to a spectral radius which is significantly lower for
all values of h and p. Although ILUT exhibits a small h-dependence, the spectral radius remains low for all values

f h and both coarsening strategies. As a consequence, the p-multigrid and h-multigrid method are expected to
show essentially both h- and p-independent convergence behaviour when ILUT is adopted as a smoother.

Table 3
Spectral radius for the first and second benchmark using p-multigrid and h-multigrid for different values of the mesh width
h and approximation order p.

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT

h = 2−4 0.635 0.014 h = 2−4 0.849 0.003 h = 2−4 0.963 0.003
h = 2−5 0.631 0.039 h = 2−5 0.845 0.019 h = 2−5 0.960 0.029
h = 2−6 0.647 0.058 h = 2−6 0.844 0.017 h = 2−6 0.960 0.023

(a) p-multigrid for the first benchmark

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT

h = 2−4 0.630 0.012 h = 2−4 0.848 0.004 h = 2−4 0.963 0.003
h = 2−5 0.627 0.039 h = 2−5 0.845 0.018 h = 2−5 0.960 0.029
h = 2−6 0.646 0.059 h = 2−6 0.844 0.014 h = 2−6 0.960 0.023

(b) h-multigrid for the first benchmark

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT

h = 2−4 0.352 0.043 h = 2−4 0.703 0.002 h = 2−4 0.916 0.003
h = 2−5 0.351 0.037 h = 2−5 0.699 0.011 h = 2−5 0.913 0.020
h = 2−6 0.352 0.042 h = 2−6 0.699 0.017 h = 2−6 0.914 0.016

(c) p-multigrid for the second benchmark

p = 2 GS ILUT p = 3 GS ILUT p = 4 GS ILUT

h = 2−4 0.367 0.043 h = 2−4 0.698 0.002 h = 2−4 0.916 0.003
h = 2−5 0.367 0.036 h = 2−5 0.696 0.008 h = 2−5 0.913 0.020
h = 2−6 0.359 0.042 h = 2−6 0.698 0.006 h = 2−6 0.913 0.016

(d) h-multigrid for the second benchmark

5. Numerical results

In the previous Section, a spectral analysis showed that the use of ILUT as a smoother within a p-multigrid or
h-multigrid method significantly improves the asymptotic convergence rate compared to the use of Gauss–Seidel
s a smoother. In this Section, p-multigrid and h-multigrid are both applied as a stand-alone solver and as a
reconditioner within a Bi-CGSTAB method to verify this analysis. Results in terms of iteration numbers and CPU
imes are obtained using Gauss–Seidel and ILUT as a smoother. Furthermore, the proposed p-multigrid method is
ompared to an h-multigrid method using a non-standard smoother. Finally, the p-multigrid method is adopted for
iscretizations using THB-splines.

For all numerical experiments, the initial guess u(0)
h,p is chosen randomly, where each entry is sampled from

uniform distribution on the interval [−1, 1] using the same seed. Furthermore, we choose ν1 = ν2 = 1 for
onsistency. Application of multiple smoothing steps, which is in particular common for Gauss–Seidel, decreases
he number of iterations until convergence, but does not qualitatively or quantitatively change the p-dependence.
urthermore, since the smoother costs dominate when solving the linear systems, CPU times are only mildly
ffected. The stopping criterion is based on a relative reduction of the initial residual, where a tolerance of ϵ = 10−8

s adopted. Boundary conditions are imposed by eliminating the degrees of freedom associated to the boundary. For
he h-multigrid method, the use of a V-cycle or W-cycle led to the same number of iterations. However, since the
omputational costs per cycle is lower for V-cycles, they are considered throughout the remainder of this paper for
he h-multigrid method.

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 13
Fig. 5. Spectra of the iteration matrix for the first benchmark obtained with p-multigrid (left) and h-multigrid (right).

14 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347
Fig. 6. Spectra of the iteration matrix for the second benchmark obtained with p-multigrid (left) and h-multigrid (right).

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 15
p-Multigrid as stand-alone solver

Table 4 shows the number of multigrid cycles needed to achieve convergence using different smoothers for all
benchmarks. For the first three benchmarks, the number of multigrid cycles needed with Gauss–Seidel is in general
indepen-dent of the mesh width h, but strongly depends on the approximation order p. For some configurations,
however, the use of Gauss–Seidel leads to a method that diverges, indicated with (−). The p-multigrid method was
said to be diverged in case the norm of the relative residual at the end of a V-cycle was significantly higher than at
the end of the previous V-cycle. In general, the use of ILUT as a smoother leads to a p-multigrid which converges
for all configurations and exhibits both independence of h and p. Only for the third benchmark, a logarithmic
dependence in h is visible for p = 2. Furthermore, the number of iterations needed for convergence is significantly
lower.

For Poisson’s equation on the unit cube (Benchmark 4), the p-dependence when Gauss–Seidel is adopted as
smoother is stronger compared to the dependence for the twodimensional benchmarks. Furthermore, the number
of iterations slightly decreases for smaller values of the meshwidth h. The number of iterations needed with ILUT
as a smoother is effectively independent of the approximation order p. An h-dependence is visible, however, for
higher values of p.

h-Multigrid as stand-alone solver

Table 5 shows the number of multigrid cycles needed to achieve convergence using an h-multigrid method.
As expected from the spectral analysis, the number of multigrid cycles needed with Gauss–Seidel is in general
independent of the mesh width h, but strongly depends on the approximation order p. The use of ILUT as a
smoother leads to an h-multigrid which converges for all configurations and exhibits both independence of h and
p. Furthermore, the number of iterations needed for convergence is significantly lower. Compared to the use of
p-multigrid as a method, the results are very similar. For Benchmark 3, however, the number of iterations needed
with h-multigrid using ILUT as a smoother is slightly lower compared to the p-multigrid method.

p-Multigrid as a preconditioner

As an alternative, the p-multigrid method can be applied as a preconditioner within a Bi-CGSTAB method. In
both preconditioning phases of each iteration, a single multigrid cycle is applied. Numerical results can be found
in Table 6. When applying Gauss–Seidel as a smoother, the number of iterations needed with Bi-CGSTAB is
significantly lower compared to the number of p-multigrid cycles and even restores stability for higher values of
p (see Table 4). However, a dependence of the iteration numbers on p is still present. When adopting ILUT as a
smoother, the number of iterations needed for convergence slightly decreases compared to the number of p-multigrid
cycles for all configurations and benchmarks. Furthermore, the number of iterations is independent of both h and
p.

h-Multigrid as a preconditioner

Table 7 shows the results when h-multigrid is applied as preconditioner. Note that, since the h-multigrid method
is symmetric, a Conjugate Gradient (CG) method can be applied as well. In general, a single iteration performed
with a Bi-CGSTAB method is twice as expensive compared to a single CG iteration. Results with a CG method
have been added between brackets.

With a Bi-CGSTAB method, results with h-multigrid are very similar to the use of p-multigrid as a precondi-
tioner. Note that, the use of CG as outer Krylov solver, approximately doubles the number of iterations when ILUT
is applied as a smoother. For Gauss–Seidel, the use of Bi-CGSTAB yields significant lower iteration numbers
compared to the use of CG.

16 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347
Table 4
Number of multigrid cycles needed to achieve convergence with p-multigrid.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 61 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

(a) Poissons’s equation on quarter annulus

h = 2−6 5 − 3 − 3 − 4 −

h = 2−7 5 − 3 − 4 − 4 −

h = 2−8 5 − 3 − 3 − 4 −

h = 2−9 5 − 4 − 3 − 4 −

(b) CDR-equation on unit square

h = 2−6 6 24 6 53 5 115 5 333
h = 2−7 7 24 6 53 5 133 5 325
h = 2−8 8 25 5 54 6 127 6 322
h = 2−9 9 25 5 55 5 131 5 327

(c) Poissons’s equation on L-shaped domain

h = 2−2 3 65 3 405 3 3255 5 22 788
h = 2−3 3 59 3 339 3 2063 3 8128
h = 2−4 4 57 3 281 3 1652 5 7152
h = 2−5 4 55 4 273 6 1361 10 6250

(d) Poissons’s equation on the unit cube

Table 5
Number of multigrid cycles needed to achieve convergence with h-multigrid.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 175 3 492
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 60 3 163 3 473
h = 2−9 5 32 3 61 3 164 3 452

(a) Poissons’s equation on quarter annulus

h = 2−6 5 − 3 − 3 − 4 −

h = 2−7 5 − 3 − 4 − 4 −

h = 2−8 5 − 3 − 3 − 4 −

h = 2−9 5 − 3 − 3 − 4 −

(b) CDR-equation on unit square

h = 2−6 6 25 3 53 3 113 3 332
h = 2−7 7 25 3 53 3 133 3 325
h = 2−8 8 26 3 54 3 127 3 322
h = 2−9 9 26 3 55 3 131 3 327

(c) Poissons’s equation on L-shaped domain

h = 2−2 3 65 3 405 3 2269 5 22 785
h = 2−3 3 59 3 339 3 2065 3 8135
h = 2−4 3 57 3 281 3 1652 5 7148
h = 2−5 4 55 3 273 5 1361 10 6248

(d) Poissons’s equation on the unit cube

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 17
Table 6
Number of iterations needed to achieve convergence with Bi-CGSTAB, using p-multigrid as preconditioner.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 2 10 2 14 2 27 2 39
h = 2−7 2 10 2 15 2 25 2 37
h = 2−8 3 11 2 14 2 25 2 37
h = 2−9 3 11 2 14 2 26 2 41

(a) Poissons’s equation on quarter annulus

h = 2−6 2 6 2 11 2 20 2 39
h = 2−7 2 6 2 11 2 20 2 37
h = 2−8 2 6 2 11 2 21 2 39
h = 2−9 2 6 2 10 2 20 2 41

(b) CDR-equation on unit square

h = 2−6 3 10 2 13 2 21 2 33
h = 2−7 3 9 2 12 2 21 2 33
h = 2−8 3 9 2 12 2 21 2 32
h = 2−9 4 9 2 13 2 20 2 34

(c) Poissons’s equation on L-shaped domain

h = 2−2 2 13 2 28 2 77 3 260
h = 2−3 2 13 2 33 2 65 2 138
h = 2−4 2 14 2 34 2 72 3 146
h = 2−5 2 14 2 34 3 69 3 137

(d) Poissons’s equation on the unit cube

Table 7
Number of iterations needed to achieve convergence with Bi-CGSTAB (CG), using h-multigrid as preconditioner.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 2(4) 8(15) 2(3) 15(23) 2(3) 24(42) 2(4) 43(80)
h = 2−7 2(4) 9(15) 2(3) 15(23) 2(3) 24(42) 2(4) 47(80)
h = 2−8 3(5) 9(16) 2(3) 14(23) 2(3) 25(41) 2(4) 41(78)
h = 2−9 3(5) 10(16) 2(3) 14(23) 2(3) 25(41) 2(4) 43(79)

(a) Poissons’s equation on quarter annulus

h = 2−6 2(4) 6(11) 2(3) 12(18) 2(3) 22(35) 2(4) 36(68)
h = 2−7 2(4) 7(11) 2(3) 11(18) 2(4) 22(33) 2(4) 40(66)
h = 2−8 2(4) 7(11) 2(3) 11(18) 2(4) 21(34) 2(4) 39(64)
h = 2−9 2(4) 6(11) 2(3) 11(18) 2(4) 22(34) 3(4) 40(67)

(b) CDR-equation on unit square

h = 2−6 3(5) 9(15) 2(3) 14(22) 2(3) 23(35) 2(4) 39(62)
h = 2−7 3(5) 10(15) 2(3) 13(22) 2(3) 24(35) 2(3) 37(61)
h = 2−8 3(6) 10(16) 2(3) 13(22) 2(3) 24(35) 2(4) 35(61)
h = 2−9 4(7) 10(16) 2(3) 13(22) 2(3) 24(36) 2(4) 40(61)

(c) Poissons’s equation on L-shaped domain

h = 2−2 2(3) 16(24) 2(3) 37(58) 2(3) 120(158) 3(7) 590(459)
h = 2−3 2(3) 16(25) 2(3) 48(63) 2(3) 103(168) 2(3) 221(490)
h = 2−4 2(3) 17(25) 2(3) 43(65) 2(4) 104(188) 3(8) 286(543)
h = 2−5 2(3) 17(25) 2(3) 44(67) 3(5) 131(197) 3(12) 264(591)

(d) Poissons’s equation on the unit cube

18 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347
Fig. 7. CPU timings for p-multigrid and h-multigrid adopting ILUT and Gauss–Seidel (GS) as a smoother for different values of h for the
first benchmark.

CPU times
Besides iteration numbers, computational times have been determined when adopting p-multigrid and h-multigrid

as a stand-alone solver. A serial implementation in the C++ library G+Smo [39] is considered on an Intel(R)
Core(TM) i7-8650U CPU (1.90 GHz). Fig. 7 illustrates the CPU times obtained for the p-multigrid and h-
multigrid method for the first benchmark. The detailed CPU times can be found in Table C.12 and Table D.13
(see Appendices C and D).

The assembly times denote the CPU time needed to assemble all operators, including the prolongation and
restriction operators. Note that, for the p-multigrid method more operators have to be assembled. However, most
of the operators in the p-multigrid method are assembled at level p = 1, where the number of nonzero entries is
significantly lower compared to the matrices resulting from high order discretizations. As a consequence the total
assembly costs are lower with p-multigrid compared to h-multigrid for higher values of the approximation order p.

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 19

T
m
a

With respect to the setup costs of the smoother, similar observations can be made: For higher values of p, the
ILUT factorization costs are significantly higher for the h-multigrid method. The time needed to solve linear systems
is slightly lower for the h-multigrid methods, since the costs of a single multigrid cycle are lower compared to the
p-multigrid method. When adopting Gauss–Seidel as a smoother, the time needed to solve the linear systems is
significantly higher compared to the use of ILUT. However, since the factorizations costs are relatively high, the
p-multigrid/h-multigrid methods using ILUT as a smoother are faster for only a limited amount of configurations.

Remark 2. For all numerical experiments, the ‘coarse grid’ operators of the multigrid hierarchy have been obtained
by rediscretizing the bilinear form in Eq. (2). Alternatively, all operators of the h-multigrid hierarchy could be
obtained by applying the Galerkin projection. Furthermore, alternative (and more efficient) assembly strategies exist,
as mentioned in Section 3. Therefore, the assembly, smoother setup and solving costs are presented separately in
this section.

Comparison with an alternative smoother
Throughout this paper, the use of ILUT and Gauss–Seidel as a smoother has been investigated within a p-

multigrid and h-multigrid method. However, alternative smoothers have been developed for h-multigrid methods
in recent years, for example, a subspace corrected mass smoother (SCMS) [11] based on stable splittings of spline
spaces. In this section, we compare the ILUT smoother with this smoother for both coarsening strategies. Note
that this smoother has been extended to multipatch domains as well [40]. For this comparison, we consider the
CDR-equation on the unit square with:

D =

[
1 0
0 1

]
, v =

[
0
0

]
, R = 1. (33)

Homogeneous Neumann boundary conditions are applied and the right-hand side is given by:

f (x, y) = 2π2sin
(

π

(
x +

1
2

))
sin

(
π

(
y +

1
2

))
.

able 8 shows the number of iterations needed to reach convergence with the p-multigrid method and the h-multigrid
ethod for the ILUT smoother and the subspace corrected mass smoother. For the ILUT smoother, iteration numbers

re independent of h and p for both coarsening strategies. The smoother from [11] shows iteration numbers
independent of h and p within a h-multigrid method. A slight p-dependency is visible when this smoother is applied
within a p-multigrid method. With the ILUT smoother, the number of iterations needed to reach convergence is
significantly lower for all configurations.

Table 8
Number of iterations with ILUT and the smoother from [11] using p-multigrid and h-multigrid.

p = 2 p = 3 p = 4 p = 5

ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 5 40 5 44 5 47 5 52
h = 2−7 5 40 5 44 4 48 5 53
h = 2−8 5 40 4 44 5 48 4 53
h = 2−9 5 40 4 45 5 48 4 53

(a) Number of iterations with p-multigrid for both smoothers.

ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 4 48 4 48 4 48 4 48
h = 2−7 4 49 3 50 4 49 4 49
h = 2−8 4 49 3 50 5 50 4 49
h = 2−9 4 49 3 50 5 50 4 50

(b) Number of iterations with h-multigrid for both smoothers.

CPU times for assembly, setting up the smoother and solving the linear system once are presented in Fig. 8 (left).
Again, a serial implementation in the C++ library G+Smo [39] is considered on an Intel(R) Core(TM) i7-8650U
CPU (1.90 GHz). Detailed CPU times can be found in Tables E.14 and F.15 (see Appendices E and F). The time
needed to assemble the operators is comparable for the p-multigrid and h-multigrid method. However, setting up

20 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347
Fig. 8. CPU timings for p-multigrid and h-multigrid adopting ILUT and the smoother from [11], respectively, for a single solve (left) and
10 solves (right).

the ILUT smoother is significantly more expensive compared to the smoother from [11]. On the other hand, the
CPU time needed to solve the problem is lower when adopting the ILUT smoother. The total solver costs are lower
for all configurations when adopting the subspace corrected mass smoother. However, in case multiple solves are
necessary with the same system matrix and different right-hand sides, the ILUT smoother becomes relatively seen
more efficient. This is for example the case when ‘snapshot’ solutions are required to apply Proper Orthogonal
Decomposition [41]. Fig. 8 (right) shows that, already when solving the linear system for 10 different right hand
sides, the CPU times with ILUT as a smoother within the p-multigrid method are lower for all values of p. For
the h-multigrid method, however, the use of the smoother from [11] remains more efficient for high values of p.

Truncated hierarchical B-splines (THB-splines)

Finally, to illustrate the versatility of the proposed p-multigrid method, we consider discretizations obtained with
THB-splines [21]. THB-splines are the result of a local refinement strategy, in which a subset of the basis functions
on the fine level are truncated. As a result, not only linear independence and non-negativity are preserved (as with
HB-splines [42,43]), but also the partition of unity property.

In the literature, the use of multigrid methods for THB-spline discretizations is an ongoing topic of research [44–
46]. We consider Poisson’s equation on the unit square, where the exact solution is the same as for the second
benchmark. Starting from a tensor product B-spline basis with meshwidth h and order p, two and three levels of
refinement are added as shown in Fig. 9, leading to a THB-spline basis consisting of, respectively, three and four
levels.

Fig. 9. Two hierarchical mesh adopted for THB-Spline basis with the second (green), third (orange) and fourth (red) refinement levels
coloured. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 21

F
r
s

g
S
F

6

w
S
w
a
a
l

Fig. 10. Sparsity pattern of the stiffness matrix Ah,4 (left) and Lh,4 + Uh,4 (right).

Fig. 10 shows the sparsity pattern of the stiffness matrix and the ILUT factorization for p = 4 and h = 2−5

for configuration (b) (see Fig. 9). Compared to the (standard) tensor-product B-spline basis the bandwidth of the
stiffness matrix significantly increases. Table 9 shows the results obtained with p-multigrid applied as a stand-alone
solver. The number of iterations needed with p-multigrid (and ILUT as a smoother) depends only mildly on p.
Furthermore, the number of iterations are significantly lower compared to the use of Gauss–Seidel as a smoother.

Table 9
Number of multigrid cycles needed for different THB-spline discretizations.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−4 5 16 6 45 5 178 5 713
h = 2−5 5 17 6 40 7 182 5 882
h = 2−6 5 17 5 41 7 189 11 936

(a) THB-spline basis with three levels of refinement

h = 2−4 6 17 8 47 7 177 10 1033
h = 2−5 6 16 7 44 8 182 7 923
h = 2−6 6 17 5 43 6 201 12 1009

(b) THB-spline basis with four levels of refinement

For the configurations denoted in bold, a fillfactor of 2 was adopted, to prevent the p-multigrid from diverging.
ig. 11 illustrates the reason for it in the case p = 4 and h = 2−4 for configuration (a). A fillfactor of 1 does not
educe the norm of the (generalized) eigenvectors, while a fillfactor of 2 reduces the eigenvectors over the entire
pectrum. In general, a higher fillfactor was necessary for only a limited amount of configurations.

For all numerical experiments, smoothing is performed globally at each level of the multigrid hierarchy. In
eneral, local smoothing is often adopted to ensure optimal order of the complexity. Results presented in this
ection should be considered as a first step towards the use of p-multigrid methods for THB-spline discretizations.
uture research should focus on more efficient applications of p-multigrid solvers for THB-spline discretizations.

. Conclusions

In this paper, we presented a p-multigrid method that uses ILUT factorization as a smoother and compared this
ith different smoothers and coarsening strategy (e.g. h-multigrid). In contrast to classical smoothers, (i.e. Gauss–
eidel), the reduction factors of the general eigenvectors associated with high-frequency modes do not increase
hen adopting ILUT as a smoother for higher values of p. This results in asymptotic convergence factors which

re independent of both the mesh width h and approximation order p for both p-multigrid and h-multigrid methods
dopting this smoother. Furthermore, we observed that, assuming an exact coarse grid correction, coarsening in h

eads to a more effective coarse grid correction compared to a correction obtained by coarsening in p.

22 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347

w
a
w

Fig. 11. Reduction factors obtained for fillfactor 1 (left) and 2 (right).

Numerical results, obtained for Poisson’s equation on a variety of domains and the CDR equation on the unit
square have been presented when using p-multigrid and h-multigrid as stand-alone solver or as a preconditioner

ithin a Bi-CGSTAB or CG method. For all configurations, the number of iterations needed when using ILUT as
smoother are significantly lower compared to the use of Gauss–Seidel, while the number of iterations needed
ith p-multigrid are very similar to those needed with an h-multigrid method. Hence, the smoother determines

to a great extent the resulting convergence rate of the multigrid method. CPU times have been presented for the
p-multigrid and h-multigrid method using both smoothers. For low values of p, the use of h-multigrid combined
with Gauss–Seidel as a smoother leads to the lowest CPU times. For higher values of p, however, the use of
p-multigrid adopting ILUT becomes more efficient, due to the lower assembly and factorizations costs. Note that
this is the result of the smaller stencil of the B-spline functions at level p = 1 compared to high order B-spline
functions.

The p-multigrid method using ILUT as a smoother has been compared as well to an h-multigrid method with
a non-standard smoother [11]. Results show that the total solving costs are lower when adopting h-multigrid with
this smoother due to the lower setup costs of the smoother. However, solving the linear systems is significantly
faster with the considered p-multigrid method. Finally, the p-multigrid method has been applied to solve linear
systems of equations arising from THB-spline discretizations. In general, a significantly lower number of iterations
was needed with ILUT compared to the use of Gauss–Seidel as a smoother. For a limited number of configurations,
a higher fillfactor of 2 (instead of 1) was necessary to achieve convergence.

Future research will focus on the application of p-multigrid methods for higher-order partial differential equations
(e.g.. biharmonic equation), where the use of basis functions with high continuity is necessary. Furthermore,
local smoothing within the p-multigrid method should be considered to make it more efficient for THB-spline
discretizations. Finally, the use of block ILUT as a smoother in case of a multipatch geometry will be investigated.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgements

The authors would like to thank Prof. Kees Oosterlee from TU Delft for fruitful discussions with respect to

p-multigrid methods.

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 23

A

m
f
d
f
W

a
c

ppendix A. Direct or indirect projection

To investigate the effect of a direct projection to p = 1, we consider the first benchmark. The number of
ultigrid cycles needed to achieve convergence with a direct projection and indirect projection has been determined

or different values of h and p. Table A.10 shows the number of iterations needed to achieve convergence with a
irect and indirect projection, respectively. For most configurations, the number of iterations is very similar. Only
or higher values of p, the indirect project leads to diverging method when Gauss–Seidel is applied as a smoother.

ith a direct projection, all configurations lead to a converging multigrid method.
Table A.10
Number of multigrid cycles needed to achieve convergence with p-multigrid for the first benchmark with a direct
and an indirect projection.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 61 3 163 3 473
h = 2−9 5 32 3 61 3 163 3 452

(a) p-multigrid with a direct projection

h = 2−6 4 30 3 62 3 − 3 −

h = 2−7 4 29 3 61 3 − 3 −

h = 2−8 5 30 3 61 3 − 3 −

h = 2−9 5 32 3 63 3 − 3 −

(b) p-multigrid with an indirect projection

Appendix B. Consistent vs. lumped projection

In Section 2, the prolongation and restriction operator to transfer residuals and corrections from level p to 1
nd vice versa have been defined. Note that, the mass matrix in Eqs. (22) and (24) can be lumped to reduce
omputational costs. To investigate the effect of lumping the mass matrix within the L2 projection, the first

benchmark is considered.
Table B.11 shows the number of multigrid cycles needed to achieve convergence using the lumped or consistent

mass matrix in Eqs. (22) and (24). When ILUT is adopted as a smoother, the number of multigrid cycles needed to
reach convergence is identical for all configurations. For Gauss–Seidel, the use of the consistent mass matrix leads
to a slightly lower number of iterations. Considering the decrease of computational costs, however, the lumped mass
matrix is adopted throughout the entire paper in the prolongation and restriction operator.

Table B.11
Number of multigrid cycles to reach convergence with p-multigrid adopting a lumped or consistent mass matrix
in the prolongation and restriction operator.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 4 30 3 62 3 176 3 491
h = 2−7 4 29 3 61 3 172 3 499
h = 2−8 5 30 3 61 3 163 3 473
h = 2−9 5 32 3 63 3 163 3 452

(a) Lumped mass matrix ML
k

h = 2−6 4 29 3 57 3 171 3 475
h = 2−7 4 29 3 52 3 174 3 524
h = 2−8 5 29 3 54 3 165 3 446
h = 2−9 5 31 3 52 3 164 3 441

(b) Consistent mass matrix Mk

24 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347
Appendix C. CPU times p-multigrid

Table C.12
CPU timings for the first benchmark using p-multigrid.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 0.65 0.66 1.20 1.19 2.21 2.14 3.63 3.91
h = 2−7 2.58 2.63 4.64 4.52 8.58 8.53 15.06 14.78
h = 2−8 10.22 10.77 18.93 19.41 34.77 34.07 57.95 60.81
h = 2−9 41.52 41.86 74.74 76.70 135.79 131.66 243.64 248.11

(a) Assembly costs in seconds

h = 2−6 0.10 − 0.27 − 0.55 − 0.93 −

h = 2−7 0.50 − 1.43 − 2.85 − 4.76 −

h = 2−8 2.13 − 6.70 − 13.98 − 25.32 −

h = 2−9 8.66 − 29.78 − 75.89 − 134.57 −

(b) Factorization costs in seconds

h = 2−6 0.02 0.11 0.02 0.29 0.03 1.03 0.03 3.74
h = 2−7 0.07 0.35 0.07 1.00 0.09 3.54 0.11 13.24
h = 2−8 0.32 1.46 0.26 3.82 0.36 13.62 0.49 50.39
h = 2−9 1.30 6.48 1.07 15.80 1.46 56.15 1.88 195.28

(c) Solver costs in seconds

h = 2−6 0.77 0.77 1.49 1.48 2.79 3.17 4.59 7.65
h = 2−7 3.15 2.98 6.14 5.52 11.52 12.07 19.93 28.02
h = 2−8 12.67 12.23 25.89 23.23 49.11 47.69 75.97 111.20
h = 2−9 51.48 48.34 105.59 92.50 213.14 187.81 380.09 443.39

(d) Total costs in seconds

Appendix D. CPU times h-multigrid

Table D.13
CPU timings for the first benchmark using h-multigrid with different smoothers.

p = 2 p = 3 p = 4 p = 5

ILUT GS ILUT GS ILUT GS ILUT GS

h = 2−6 0.47 0.50 1.11 1.08 2.31 2.16 4.32 4.14
h = 2−7 2.03 1.80 4.21 4.00 9.35 9.16 15.82 17.28
h = 2−8 7.68 7.17 17.33 17.64 36.17 33.53 64.25 68.57
h = 2−9 31.77 30.14 67.10 64.69 143.86 145.38 272.68 265.49

(a) Assembly costs in seconds

h = 2−6 0.13 − 0.35 − 0.71 − 1.22 −

h = 2−7 0.70 − 1.84 − 3.85 − 6.12 −

h = 2−8 2.93 − 8.98 − 18.74 − 32.94 −

h = 2−9 12.52 − 40.53 − 94.89 − 178.58 −

(b) Setup costs smoother in seconds

h = 2−6 0.01 0.07 0.02 0.23 0.02 0.98 0.04 4.24
h = 2−7 0.05 0.18 0.06 0.66 0.09 3.12 0.13 13.26
h = 2−8 0.21 0.70 0.21 2.49 0.34 10.85 0.49 45.14
h = 2−9 0.86 3.01 0.87 9.93 1.35 43.12 1.94 168.74

(c) Solver costs in seconds

h = 2−6 0.61 0.57 1.48 1.31 3.05 3.14 5.59 8.39
h = 2−7 2.78 1.98 6.11 4.66 13.29 12.28 22.07 30.54
h = 2−8 10.82 7.87 26.52 20.13 55.25 44.38 97.68 113.71
h = 2−9 45.15 33.15 108.50 74.62 240.10 188.50 453.20 434.22

(d) Total costs in seconds

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 25

A
ppendix E. CPU times compared to an alternative smoother
Table E.14
CPU times (in s) for convergence with p-multigrid.

p = 2 p = 3 p = 4 p = 5

ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 0.42 0.41 0.76 0.81 1.46 1.42 2.70 2.84
h = 2−7 1.62 1.62 3.04 2.94 6.26 5.91 11.74 11.22
h = 2−8 6.50 6.65 12.47 12.96 24.19 24.64 46.63 43.60
h = 2−9 26.91 25.86 47.85 49.10 93.50 94.84 184.05 178.78

(a) Assembly costs in seconds

h = 2−6 0.06 0.01 0.19 0.01 0.41 0.01 0.78 0.02
h = 2−7 0.30 0.02 0.96 0.03 2.20 0.04 4.64 0.05
h = 2−8 1.25 0.09 4.16 0.10 10.64 0.17 22.53 0.20
h = 2−9 5.26 0.34 17.44 0.37 44.30 0.66 120.64 0.77

(b) Setup costs smoother in seconds

h = 2−6 0.02 0.19 0.02 0.26 0.03 0.31 0.05 0.44
h = 2−7 0.06 0.62 0.09 0.77 0.09 1.08 0.16 1.46
h = 2−8 0.23 2.08 0.26 2.76 0.48 4.03 0.54 5.51
h = 2−9 0.80 9.05 0.99 11.54 1.82 16.72 2.02 22.31

(c) Solver costs in seconds

h = 2−6 0.50 0.61 0.97 1.08 1.90 1.74 3.53 3.30
h = 2−7 1.98 2.26 4.09 3.74 8.55 7.03 16.54 12.73
h = 2−8 7.98 8.82 16.89 15.82 35.31 28.84 69.70 49.31
h = 2−9 32.97 35.25 66.28 61.01 139.62 112.22 306.71 201.86

(d) Total costs in seconds

Appendix F. CPU times compared to an alternative smoother

Table F.15
CPU times (in s) for convergence with h-multigrid.

p = 2 p = 3 p = 4 p = 5

ILUT SCMS ILUT SCMS ILUT SCMS ILUT SCMS

h = 2−6 0.30 0.30 0.73 0.71 1.60 1.62 3.24 3.19
h = 2−7 1.13 1.19 2.90 2.86 6.42 6.47 12.78 11.73
h = 2−8 4.56 4.88 11.63 11.59 26.06 25.86 48.84 49.67
h = 2−9 19.08 19.44 46.63 46.19 95.92 104.10 202.52 202.64

(a) Assembly costs in seconds

h = 2−6 0.08 0.01 0.25 0.01 0.63 0.02 1.02 0.02
h = 2−7 0.39 0.02 1.25 0.03 2.80 0.06 5.79 0.08
h = 2−8 1.66 0.09 5.71 0.12 14.23 0.22 27.66 0.27
h = 2−9 7.27 0.33 24.74 0.43 59.12 0.88 156.73 1.04

(b) Setup costs smoother in seconds

h = 2−6 0.03 0.07 0.06 0.11 0.09 0.16 0.14 0.25
h = 2−7 0.08 0.22 0.11 0.34 0.23 0.58 0.37 0.80
h = 2−8 0.25 0.96 0.34 1.45 0.91 2.22 1.11 3.03
h = 2−9 0.88 4.34 1.17 5.72 3.19 9.11 3.85 12.13

(c) Solver costs in seconds

h = 2−6 0.41 0.38 1.04 0.83 2.32 1.80 4.40 3.46
h = 2−7 1.60 1.43 4.26 3.23 9.45 7.11 18.94 12.61
h = 2−8 6.47 5.93 17.68 13.16 41.20 28.30 77.61 52.97
h = 2−9 27.23 24.11 72.54 52.34 158.23 114.09 363.10 215.81

(d) Total costs in seconds

26 R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347
References

[1] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,
Comput. Methods Appl. Mech. Engrg. 194 (39–41) (2005) 4135–4195.

[2] T.J.R. Hughes, A. Reali, G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave
propagation: Comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg. 197 (49–50)
(2008) 4104–4124.

[3] J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg.
195 (41–43) (2006) 5257–5296.

[4] Y. Bazilevs, V.M. Calo, Y. Zhang, T.J.R. Hughes, Isogeometric fluid–structure interaction analysis with applications to arterial blood
flow, Comput. Mech. 38 (4–5) (2006) 310–322.

[5] W.A. Wall, M.A. Frenzel, C. Cyron, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg. 197 (33–40)
(2008) 2976–2988.

[6] G. Sangalli, M. Tani, Isogeometric preconditioners based on fast solvers for the Sylvester equation, SIAM J. Sci. Comput. 38 (6)
(2016) 3644–3671.

[7] L. Beirao da Veiga, D. Cho. L.F. Pavarino, S. Scacchi, Overlapping Schwarz methods for isogeometric analysis, SIAM J. Numer. Anal.
50 (3) (2012) 1394–1416.

[8] K.P.S. Gahalaut, J.K. Kraus, S.K. Tomar, Multigrid methods for isogeometric discretizations, Comput. Methods Appl. Mech. Engrg.
253 (2013) 413–425.

[9] M. Donatelli, C. Garoni, C. Manni, S. Capizzano, H. Speleers, Symbol-based multigrid methods for Galerkin B-spline isogeometric
analysis, SIAM J. Numer. Anal. 55 (1) (2017) 31–62.

[10] C. Hofreither, S. Takacs, W. Zulehner, A robust multigrid method for isogeometric analysis in two dimensions using boundary correction,
Comput. Methods Appl. Mech. Engrg. 316 (2017) 22–42.

[11] C. Hofreither, S. Takacs, Robust multigrid for isogeometric analysis based on stable splittings of spline spaces, SIAM J. Numer. Anal.
4 (55) (2017) 2004–2024.

[12] J. Sogn, S. Takacs, Robust multigrid solvers for the biharmonic problem in isogeometric analysis, Comput. Methods Appl. Mech.
Engrg. 77 (2019) 105–124.

[13] A. de la Riva, C. Rodrigo, F. Gaspar, An efficient multigrid solver for isogeometric analysis, 2018, arXiv:1806.05848v1.
[14] K.J. Fidkowski, T.A. Oliver, J. LU, D.L. Darmofal, p-Multigrid solution of high-order discontinuous Galerkin discretizations of the

compressible Navier–Stokes equations, J. Comput. Phys. 207 (1) (2005) 92–113.
[15] H. Luo, J.D. Baum, R. Löhner, A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids, J. Comput.

Phys. 211 (2) (2006) 767–783.
[16] H. Luo, J.D. Baum, R. Löhner, Fast p-Multigrid discontinuous Galerkin method for compressible flows at all speeds, AIAA J. 46 (3)

(2008) 635–652.
[17] P. van Slingerland, C. Vuik, Fast linear solver for diffusion problems with applications to pressure computation in layered domains,

Comput. Geosci. 18 (3–4) (2014) 343–356.
[18] B. Helenbrook, D. Mavriplis, H. Atkins, Analysis of p-multigrid for continuous and discontinuous finite element discretizations, in:

16th AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences, 2003.
[19] R. Tielen, M. Möller, C. Vuik, Efficient multigrid based solvers for Isogeometric Analysis, in: Proceedings of the 6th European

Conference on Computational Mechanics and the 7th European Conference on Computational Fluid Dynamics, Glasgow, UK, 2018.
[20] Y. Saad, ILUT: A dual threshold incomplete LU factorization, Numer. Linear Algebra Appl. 1 (4) (1994) 387–402.
[21] C. Gianelli, B. Jüttler, H. Speleers, THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design 29 (7)

(2012) 485–498.
[22] C. De Boor, A Practical Guide to Splines, first ed., Springer-Verlag, New York, 1978.
[23] A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (138) (1977) 333–390.
[24] W. Hackbush, Multi-Grid Methods and Applications, Springer, Berlin, 1985.
[25] R. Tielen, M. Möller, C. Vuik, A direct projection to low-order level for p-multigrid methods in Isogeometric Analysis, in: The

Proceedings of the European Numerical Mathematics and Advanced Applications Conference, Egmond aan Zee, the Netherlands, 2019
accepted for publication.

[26] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, in: Texts Applied Mathematics, vol. 15, Springer, New
York, 1994.

[27] W.L. Briggs, V.E. Henson, S.F. McCormick, A Multigrid Tutorial, second ed., SIAM, Philadelphia, 2000.
[28] R.S. Sampath, G. Biros, A parallel geometric multigrid method for finite elements on octree meshes, SIAM J. Sci. Comput. 32 (3)

(2010) 1361–1392.
[29] L. Gao, V. Calo, Fast isogeometric solvers for explicit dynamics, Comput. Methods Appl. Mech. Engrg. 274 (2014) 19–41.
[30] N. Collier, L. Dalcin, D. Pardo, V. Calo, The costs of continuity: performance of iterative solvers on isogeometric finite elements,

SIAM J. Sci. Comput. 35 (2) (2013) 767–784.
[31] G. Guennebaud, J. Benoît, et al., Eigen v3, 2010, http://eigen.tuxfamily.org.
[32] Y. Saad, SPARSKIT: a basic tool kit for sparse matrix computations, 1994, http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.

html.
[33] P.R. Amestoy, T.A. Davis, I.S. Duff, An approximate minimum degree ordering algorithm, SIAM J. Matrix Anal. Appl. 17 (4) (1996)
886–905.

http://refhub.elsevier.com/S0045-7825(20)30532-6/sb1
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb1
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb1
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb2
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb3
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb3
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb3
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb4
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb4
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb4
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb5
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb5
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb5
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb6
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb6
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb6
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb7
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb7
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb7
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb8
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb8
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb8
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb9
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb9
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb9
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb10
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb10
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb10
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb11
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb11
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb11
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb12
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb12
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb12
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://arxiv.org/abs/1806.05848v1
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb14
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb14
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb14
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb15
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb15
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb15
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb16
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb16
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb16
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb17
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb17
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb17
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb20
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb21
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb21
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb21
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb22
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb23
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb24
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb26
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb26
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb26
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb27
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb28
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb28
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb28
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb29
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb30
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb30
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb30
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb33
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb33
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb33

R. Tielen, M. Möller, D. Göddeke et al. / Computer Methods in Applied Mechanics and Engineering 372 (2020) 113347 27
[34] F. Calabro, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature, Comput. Methods Appl.
Mech. Engrg. 316 (2017) 606–622.

[35] P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, G. Sangalli, Efficient matrix computation for tensor-product isogeometric analysis: The
use of sum factorization, Comput. Methods Appl. Mech. Engrg. 285 (2015) 817–828.

[36] A. Mantzaflaris, B. Jüttler, B.N. Khoromskij, U. Langer, Low rank tensor methods in Galerkin-based isogeometric analysis, Comput.
Methods Appl. Mech. Engrg. 316 (2017) 1062–1085.

[37] C. Hofreither, W. Zulehner, Spectral analysis of geometric multigrid methods for isogeometric analysis, Numer. Methods Appl. 8962
(2015) 123–129.

[38] U. Trottenberg, C. Oosterlee, A. Schüller, Multigrid, Academic Press, 2001.
[39] G+Smo (Geometry plus Simulation modules), http://github.com/gismo.
[40] S. Takacs, Robust approximation error estimates and multigrid solvers for isogemeotric multi-patch discretizations, Math. Models

Methods Appl. Sci. 28 (10) (2018) 1899–1928.
[41] G.B. Diaz Cortes, C. Vuik, J.D. Jansen, On POD-based Deflation Vectors for DPCG applied to porous mediaproblems, J. Comput.

Appl. Math. 330 (2018) 193–213.
[42] R. Kraft, Adaptive and linearly independent multilevel B-splines, in: A. Le Méhauté, C. Rabut, L.L. Schumaker (Eds.), Surface Fitting

and Multiresolution Methods, Vanderbilt University Press, Nashville, 1997, pp. 209–218.
[43] A. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput.

Methods Appl. Mech. Engrg. 200 (2011) 3554–3567.
[44] C. Hofreither, B. Jüttler, G. Kiss, W. Zulehner, Multigrid methods for isogeometric analysis with THB-splines, Comput. Methods Appl.

Mech. Engrg. 308 (2016) 96–112.
[45] C. Bracco, D. Cho, C. Giannelli, R. Vazquez, BPX preconditioners for isogeometric analysis using (truncated) hierarchical B-spline,

arXiv:1912.12073 [math.NA].
[46] C. Hofreither, L. Mitter, H. Speleers, Local Multigrid Solvers for Adaptive Isogeometric Analysis in Hierarchical Spline Spaces,

NuMa-Report No. 2019–05, 2019.

http://refhub.elsevier.com/S0045-7825(20)30532-6/sb34
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb34
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb34
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb35
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb35
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb35
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb36
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb36
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb36
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb37
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb37
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb37
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb38
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://github.com/gismo
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb40
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb40
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb40
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb41
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb41
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb41
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb42
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb42
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb42
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb43
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb43
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb43
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb44
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb44
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb44
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://arxiv.org/abs/1912.12073
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb46
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb46
http://refhub.elsevier.com/S0045-7825(20)30532-6/sb46

	p-multigrid methods and their comparison to h-multigrid methods within Isogeometric Analysis
	Introduction
	Model problem and IgA discretization
	B-spline basis functions

	P-Multigrid method
	Prolongation and restriction
	Smoother
	Coarse grid operator
	Computational costs

	Spectral analysis
	Reduction factors
	Iteration Matrix

	Numerical results
	p-Multigrid as stand-alone solver
	h-Multigrid as stand-alone solver
	p-Multigrid as a preconditioner
	h-Multigrid as a preconditioner
	CPU times
	Comparison with an alternative smoother

	Truncated Hierarchical B-splines (THB-splines)
	Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A. Direct or indirect projection
	Appendix B. Consistent vs. lumped projection
	Appendix C. CPU times p-multigrid
	Appendix D. CPU times h-multigrid
	Appendix E. CPU times compared to an alternative smoother
	Appendix F. CPU times compared to an alternative smoother
	References

