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Summary 

 By combining the extended range, flexibility, environmental and health benefits of 

cycling with the space and energy efficient transport over longer distances by train, the 

bike-train combination can offer a true and attractive alternative to the private car. Yet 

despite the increase range offered by the bicycle, many destinations are still not accessible 

within a typical cycling distance (~5km). To further increase the access radius of train 

stations, emerging electric micromobility alternatives may provide an attractive and viable 

alternative. 

 To analyse this potential of micromobility, we carry out a stated preference survey 

among the Dutch population, testing the perception and preferences for a shared e-bike, 

e-step and e-moped and compare that with existing solutions that many are familiar with, 

namely the shared bicycle (OV fiets), local public transport (bus, tram, metro) or walking. 

 Our preliminary results show that to a large degree, respondent prefer to use 

existing modes of transport. Walking is most preferred for shorter distances (up to 

~15min), after which cycling and public transport are equally likely to be selected. The 

choice for either comes down to respondent’s existing travel behaviour: frequent cyclist 

would prefer using the bicycle and vice versa. Shared electric modes have a lower 

preference level, with the e-bike showing some attractiveness, whereas the step and 

scooter are in large not considered by respondents. When accounting for experience with 

such services however, we notice a substantial improvement in the preference for these 

modes, albeit still lower than walking, cycling or public transport. 

 Policymakers should therefore continue to put most effort and emphasis into 

strengthening the existing modes, providing a better level of service, higher availability 

and improving comfort. Yet for a significant number of people, shared electric modes are 

an interesting proposition and should thus not be fully excluded from the offering. Over 

time, as more users gain experience and through word-of-mouth and positive experiences 

of others, the use of electric shared modes is also likely to increase.  
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1. Introduction 

Through its many externalities (emissions, noise, safety, space consumption,…) the 

mobility sector has a substantial impact on the quality of life of people around the world. 

Considering that mobility is the only sector where emissions have increased since 1990 

(European Environment Agency, n.d.), the need to reduce externalities is even more 

pressing. In terms of everyday mobility of individuals, private internal combustion engine 

vehicles are the primary contributor of externalities. For distances beyond a few kilometres 

(what is comfortable to walk or cycle), public transport is one of the most sustainable 

alternatives, in terms of energy efficiency, safety and space consumption. Yet it often 

represents a fairly small share within the modal split (Prieto-Curiel & Ospina, 2024). Partly 

this is due to the quality of public transport itself (crowding, long(er) travel times, 

infrequent services, inconvenient ticketing,…). However, a substantial reason for the 

unattractiveness of public transport is the first/last mile problem: if people want to use 

public transport, they need to go to a stop/station to board a vehicle. In dense cities this 

can be a few minutes walk, but in less dense urban areas, suburbs or the countryside, the 

nearest stop can be hundreds of meters or even kilometres away. This makes using public 

transport very unattractive. 

A recent study by Jonkeren & Huang (2024) analysed the potential of shifting car trips 

onto public transport in the Netherlands. Considering walking as an access/egress mode 

to public transport and no more than a 50% increase in the door-to-door travel time, only 

0.9% of all car trips (2.5% of the total distance travelled) can be substituted. Allowing for 

travellers to access/egress public transport on the bike, this mode shift potential increases 

to 3.4% of trips or 7.8% of the travel distance. While still low, it represents more than a 

3-fold increase from walking, showing the potential of the combination of bike and public 

transport. This shift is even more striking, when considering that these 3.4% of shifted car 

trips would result in a 90% increase in public transport trips. Jonkeren & Huang (2024) 

considered an upper bound of 5km for the access/egress distance, which is often used as 

the limit for a comfortable cycling commute. In one scenario, they did increase the 

maximum distance to 8km and the shifting potential increased further, to 7.8% of trips 

and 11% of the distance. 

From the study of Jonkeren & Huang (2024), we can see that increasing the distance 

and speed of trips to/from public transport stops, public transport becomes vastly more 

attractive to replace car trips. But for longer distances, especially beyond 5km, even cycling 

becomes impractical for most. In recent years however, a variety of new forms of shared, 

often electric-powered mobility have entered the market, known collectively as 

micromobility (Abduljabbar et al., 2021). It includes modes such as bicycles, scooters, 

mopeds, hoverboards, roller-skates etc. 

Several studies have been published in recent years, investigating the potential of these 

modes, their perception among travellers and what their role is within the mobility sector. 

Abduljabbar et al. (2021) carried out a review of recent findings and summarised that 

micromobility services tend to alleviate congestion, reduce emissions and address issues 

such as inequality and accessibility. They particularly point to improving the first/last mile 

as a major benefit. Considering induvial modes, scooters and mopeds are less beneficial 

as they sometimes displace walking and bike trips, high lifecycle costs due to high turnover 

and vandalism. On the other hand, de Bortoli (2021) reports that when considering 

everything together, there is little difference between a shared bicycle and an electric 

moped. 
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Considering the user and behavioural characteristics, most studies are in agreement as 

to the types of users using shared micromobility: they tend to be younger individuals, 

male, with an above average level of education, above average income and they tend to 

be fully employed (Badia & Jenelius, 2023; Christoforou et al., 2021; Mehzabin Tuli et al., 

2021; Mouratidis, 2022; Nikiforiadis et al., 2021; Oeschger et al., 2023; Reck & Axhausen, 

2021; Yan et al., 2023). Their primary motivation for using the services varies between 

contexts, with some studies finding price to be a deciding factor (Badia & Jenelius, 2023; 

Craver, 2024; Mehzabin Tuli et al., 2021; Zhu et al., 2022), while others reporting time 

savings as the main motivation (Christoforou et al., 2021; Esztergár-Kiss & Lopez 

Lizarraga, 2021). Shared micromobility tends to be used predominantly in dense urban 

areas (Badia & Jenelius, 2023; Romm et al., 2022) and mostly for leisure/social trips 

(Christoforou et al., 2021; de Wit, 2023; Esztergár-Kiss & Lopez Lizarraga, 2021). 

One major topic of many publications is the role of (shared) micromobility in modal 

shift and particular its relation to public transport, whether it is a complement or 

competition. Most studies find mixed results, with micromobility acting both as a substitute 

as well as complement to public transport (de Wit, 2023; Luo et al., 2021; Nawaro, 2021; 

Ziedan, Darling, et al., 2021; Ziedan, Shah, et al., 2021). Micromobility tends to 

complement longer distance public transport, i.e. trains (de Wit, 2023; Liu & Miller, 2022; 

Romm et al., 2022), while substituting local public transport (buses, trams) and also 

walking and cycling (Badia & Jenelius, 2023; Christoforou et al., 2021; Nikiforiadis et al., 

2021; Wang et al., 2022). Two literature review studies on micromobility (Abduljabbar et 

al., 2021; Zhu et al., 2022) both concluded that better integration between micromobility 

and public transport is needed and that much is still unknown in this domain. 

To expand on the literature on micromobility and it’s integration with public transport, 

this paper aims to get a better understanding of people’s perception of micromobility, the 

valuation of time and different travel-related components and how they are willing to trade 

these off amongst each other. Specifically, we focus on the activity-end of the trip and how 

various shared micromobility solutions compete with existing alternatives. Research shows 

that the activity-ends of public transport trips tend to be shorter and less dominated by 

privately owned modes of transport (Stam, 2019). 

In this paper, we will primarily look into the activity-end of a public transport trip, which 

is sometimes referred to in literature as an egress trip or the last mile. Home-end and 

activity-end refer to which side of the public transport trip the particular leg is happening 

on: between home and a public transport stop or between an activity location (work, 

school, cinema, sports centre,…) and a public transport stop. Access and egress 

(sometimes also called first and last mile) often refer to the same (access is often used for 

the home-end and egress for the activity end), but an access trip is always the trip or leg 

preceding the main public transport leg of the trip, while egress is always the succeeding 

leg. We typically view trips as originating at home and going to an activity, but if looking 

at the return trip, the access trip happens on the activity side and the egress on the home 

side. A graphic explanation of the terminology is included in Figure 1. 
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Figure 1. Terminology with access/egress trip and the home- and activity-end of trips 

For trips on the activity end, we consider four different forms of shared micromobility, 

namely the bicycle, electric bicycle (e-bike), scooter and moped. The study is carried out 

in the Netherlands, where different terminology is used for scooter and mopeds: the 

standing scooter (shown on the left in Figure 2), which has emerged in the last decade, is 

known as a “step”. A traditional sit-down version (shown in the right in Figure 2) on the 

other hand is primarily called a “moped”. To avoid confusion with the word scooter, we will 

from here on out be using the words step and moped to refer to the two modes depicted 

in Figure 2. 

 
Figure 2. A step (left) and moped (right) 

The rest of the paper is structured as follows: the data collection and modelling 

approaches employed in the research are presented within the Methodology section in 

Section 2. The results are then outlined in Section 3, followed by a discussion on the 

implications of the results and an overall conclusion in Section 0. 

 

2. Methodology 

2.1 Survey design 

To gain insights into the perception of valuation of different shared micromobility 

alternatives as a solution for the activity-end, we carry out a discrete choice analysis. To 

that end, we employ a stated preference (SP) discrete choice experiment. This is preferred 

to a revealed preference approach as we are able to much more carefully control the 
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attributes and their variability. Additionally, SP experiments are better suited in instances 

investigating new alternatives with limited or no usage. 

We devise an extensive SP experiment with a total of six alternatives. To make is easier 

for respondents and to obtain additional information, each choice task is split into two: 

respondents are first tasked to choose an egress mode among four different shared 

micromobility options, namely: (1) bicycle, (2) electric bicycle (e-bike), (3) e-step and (4) 

e-moped. Their chosen mode is then presented again next to (5) public transport and (6) 

walking. This way we can uncover the preference for different micromobility options in 

isolation and how they fit into the wider array of alternatives. 

The alternatives are described by several attributes. Micromobility alternatives include 

(1) travel time, (2) travel cost, (3) walking time between the platform and vehicle, (4) 

type of rent (single or return) and (5) parking characteristics (free-floating, station-based 

or staffed station-based). The latter two are included as they form two key determinants 

of how shared micromobility services can be designed. According to Wilkesmann et al. 

(2023), micromobility sharing schemes can be one-way/single or return and free-floating 

or station-based. One-way refers to a vehicle being rented in one location and dropped off 

at another, whereas a return rent means that the vehicle must be returned at the same 

location as where it was taken. While the single rent approach gives travellers more 

flexibility and can make better use of vehicles, return rent is reliable for the return trip and 

requires little to no vehicle repositioning by the provider. Moving to parking type, the 

majority of shared micromobility services at the moment are free-floating, which means 

that a vehicle can be picked up and dropped off anywhere (within the service area). This 

often causes problems with vehicles being left on the street, on side-walks and being 

vandalised. Station-based parking (also referred to as docked) on the other hand has 

predefined locations where vehicles can be taken/left. To test if the presence of personnel 

increases the overall experience, we add that option to the station-based attribute level 

also. For public transport, (1) travel time, (2) travel cost and (3) walking time and (4) 

waiting time attributes are varied. The walking alternative only has a walking time 

attribute. An example choice task with the alternatives and attributes for the two choice 

tasks can be seen in Figure 3. 
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Figure 3. Example choice sets for the first (left) and second (right) choice task. In this example, 

the respondent chose E-bike in the first choice task, which is shown again in the second. 

In addition to the choice tasks, the context of the trip is also varied: (1) the trip 

purpose, (2) the length of the train trip preceding the egress trip and (3) the distance from 

the station to the destination. Trip purpose is known to affect people’s mode choice 

preferences and willingness to pay (Geržinič et al., 2022), so the trip is either to 

work/education or for a social activity with friends/family. The train trip is varied because 

previous research found that for longer trips, travellers are willing to make longer 

access/egress trips (Krygsman et al., 2004). In the survey, train trips vary between 15min, 

45min and 75min, capturing the majority of train trip lengths while also keeping 

equidistance between levels (see Figure 4). Finally, egress trip distance is varied to assess 

the preferences for different modes across varying trip distances and in particular if electric 

modes may be more attractive for longer distances. We test distances of 1km, 4km and 

7km. These values are not conveyed explicitly, but rather we use them to impute possible 

travel time and cost attribute levels. As we use three levels for each attribute, that provides 

with additional variation in each distance class and thus good overlap across the classes. 

The tested values also align well with the tested values of Jonkeren & Huang (2024); 

although they tested 8km as the furthest range, the additional variation we apply onto the 

7km distance class is able to capture distances of up to 8km. 

We use Ngene (ChoiceMetrics, 2021) to obtain the survey design. We use simple 

priors, indicating only the expected sign (negative) for travel time, walking time, waiting 

time and travel cost, whereas other priors are set to zero as we do not have sufficient 

information on the preference. Together with the context, we obtain a total of 54 choice 

sets, which we block over six blocks into nine choice tasks per respondent. Within those, 

a group of three choice tasks has the same context (trip purpose, train trip length, egress 
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trip distance), meaning that each respondents is shown three different context 

combinations. Respondents are randomly allocated to one of the six blocks. 

 
Figure 4. Cumulative distribution of train travel times and the context levels tested 

2.2 Model estimation 

The obtained data is modelled by means of a discrete choice model is specified using 

the Pandas Biogeme package in Python (Bierlaire, 2023). The model is estimated based on 

the assumption that respondents try to maximise their expected utility when making trade-

offs (McFadden, 1974). We estimate a series of multinomial logit (MNL) models, testing 

different specifications of parameters to capture non-linear perception of attributes, 

interaction effects and the impact of socio-demographics and current travel behaviour on 

mode choice. 

The model is then extended utilising a mixed logit model (MXL) formulation, which 

provides three additional benefits which can help in improving model fit and improving the 

understanding of preferences of individuals. Firstly, MXL models account for the panel 

effect, meaning they treat all the responses from one respondent as the same person 

(Train, 2009). Traditional MNL models consider each choice made independent of all other 

choices, including the unobserved error terms. But the unobserved error terms of the same 

respondent should stay the same throughout the choices they make. 

Secondly, MXL models allow for analysing the heterogeneity in behaviour among 

respondents (Train, 2009). Parameters can be randomised, meaning that they are 

distributed and an individual’s perception of an attribute can fall anywhere on the 

distribution. This allows us to analyse the range of trade-off behaviours that can be 

expected within a population.  

Finally, MXL models enable us to account for potential nesting structures within the 

data. MNL models assume that all alternatives are independent of each other, while this 

may not be the case (Train, 2009). In this study, there is reason to believe that all 

micromobility modes may have certain unobserved similarities, which are not shared with 

walking and public transport. Further, the bicycle and e-bike may also share similarities 

between them that is not shared with other modes. These groups are called nests and by 
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specifying a nesting parameter, we can ascertain if individuals perceive them to be more 

similar. In other words, we can determine the level of correlation between alternatives. 

To compare the many estimated models, several model outputs can be compared to 

determine the best performing model. The final loglikelihood and rho-square are direct 

indicators of how well the model fits the observed data, with the latter indicating the level 

of fit between 0 (random) and 1 (perfect fit). These indicators do not take the number of 

parameters into account, meaning they do not provide information on the efficiency 

(parsimony) of a model. To that end, we employ two indicators, namely the adjusted rho-

square and the Bayesian Information Criterion (BIC) (Train, 2009). Both take the into 

account the model fit and the number of parameters used in the model estimation, where 

the BIC is more strict in penalising additional parameters in the model formulation. 

2.3 Data collection 

 The survey is distributed among the members of the Dutch Railways’ panel (NS, 

2020) between 29.07. and 31.08.2024. Preliminary results include all the responses 

collected up until 15.08.2024 and presented further in this paper. The preliminary results 

include a total of 1,703 responses. 66 did not consent to participating in the survey and 

468 did not complete all the choice tasks. On the 1,169 complete responses, we apply 

several filtering techniques. Firstly, we check for straightlining behaviour on the attitudinal 

statements; respondents who replied with the same answer to multiple/all questions. We 

apply this on the attitudinal statements, removing 5 responses that always filled in the 

same opinion. Next, we remove the speeders by analysing the response times. According 

to Qualtrics (2024), responses shorter than the median minus two standard deviations can 

be considered as too fast. Based on this criterion, a further 10 responses are removed. 

After the filtering, we are left with 1,154 valid responses. The distribution of response times 

and different groups of responses removed can be seen in Figure 5. 

 
Figure 5. Response time distribution 
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3. Results 

On the data collected up until 15.08.2024, we estimate a series of choice models. We start 

by estimating an MNL model to use as a baseline for comparison with more advanced 

models. We then estimate an MNL model with several interaction effects, to test the effect 

of different contexts and potential non-linear perceptions of parameters. Finally, we 

estimate an MXL model to account for the panel effect, test the heterogeneity in perception 

of a variety of attributes and to analyse potential nesting effects among parameters. The 

model fits of all three models are presented in Table 1. The full model outcomes, including 

parameter estimates, are only presented for the MXL model, in Table 2. 

 

Table 1. Overview of model outcomes 

 Baseline MNL MNL with interactions MXL model 

Parameters 12 58 27 

Final LL -12,226 -11,664 -9,593 

Rho-square 0.3430 0.3732 0.4845 

Adjusted Rho-square 0.3424 0.3701 0.4831 

BIC 24,564 23,865 19,435 

 

Through the three models, all three time-related parameters stay fairly consistent, 

with the willingness-to-pay (WtP) for improvements in in-vehicle time around 13€/h, 16-

17€/h for improvements in waiting time and 19-21€/h for walking time. These are well in 

line with current Dutch WtP levels (Kouwenhoven et al., 2023). Contradictory to most 

findings (Wardman, 2004), walking time is valued more negatively than waiting time. 

Nevertheless, both values are in the range of 1.5-2.5x more negative than the in-vehicle 

time, which is again within the expected range. We also test for marginally increasing 

perception of the three time parameters by estimating quadratic components. The ones 

for in-vehicle and waiting time are insignificant. The quadratic component for walking is 

significant, however the impact is minimal. 

For the cost parameter, we do not include a quadratic component, but we do test 

for the different perception of a service being offered for free. This turns out  highly 

significant and also showing a strong impact. If a service is offered for free, it is seems to 

be perceived as if the respondents are paid €2 to use it. 

 

Table 2. Parameter estimates of the MXL model 

 

Parameter 

estimate 

Robust t-stat 

[param]  

Robust t-stat 

[] 

Constants     

Bicycle     -2.5242  -16.14**      1.6221  11.09** 

E-Bike     -4.1196  -20.73**     -0.7777  -2.57* 

Step     -6.3132  -23.18**      1.1756  3.87** 

Moped     -6.9301  -26.95**      1.3927  8.21** 

Public transport     -2.2727  -14.72**      2.5527  17.20** 

Taste parameters     

Cost     -0.4372  -29.64**   
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In-vehicle time     -0.0966  -16.92**   

Waiting time     -0.1163  -10.00**   

Walking time     -0.1375  -23.73**   

Free-floating parking       -0.4380  -3.63** 

Central parking     -0.1913  -2.81**      0.2865  1.46 

Manned parking     -0.1194  -2.17*      0.0179  0.55 

Single rent       -0.5346  -3.81** 

Return rent      0.3474  6.00**     -0.5079  -3.38** 

Nesting parameters     

Bicycle nest      0.3634  2.06*   

Electric modes nest      2.3263  14.52**   

Non-shared modes nest      1.2719  3.52**   

Step-Moped nest      1.2052  5.51**   

Shared modes nest      1.6090  6.91**   

 
** p≤0.01, * p≤0.05 

 

Investigating the preferences for the different modes, we can observe the same 

pattern in all three models, whereas the magnitude of the difference is different. For the 

model with interactions, this can be explained by the latter, as many interactions are linked 

to modal preferences. For the MXL model, accounting for heterogeneity and including the 

nesting effects also affects the value of ASCs. In all three models, (1) walking (the base 

alternative) is the preferred egress mode (ceteris paribus), followed by (2) public transport 

and (3) the shared bicycle that perform very similarly in all three models. They are followed 

by the (4) shared e-bike wile the (5) step and (6) moped taking up the last spots at almost 

equal (dis)preference and not always in this order. This variation of preferences for 

different modes within the MXL model is highlighted in Figure 6.  

 
Figure 6. Preference variation for different modes 

Considering what affects modal preferences, several interactions with trip purpose 

and current travel behaviour have been tested. Firstly, we observe that trip purpose (work 

vs. leisure) has a limited impact on the overall preference for a mode, with only the 

-10 -5 0 5

Bike
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preference for moped decreasing in case of a leisure trip, whereas all other interactions 

are insignificant. 

Next, the length of the train trip also does not seem to have an effect on the mode 

preferences, with a single parameter showing a weak albeit significant effect, namely that 

for longer train trips (75min), travellers will have a slight additional preference for taking 

public transport as an egress mode. 

Turning to the influence of current travel behaviour, we highlight the significant 

interaction parameters, which are a few and with predominantly minor impacts. 

Respondents who currently use the bicycle on a weekly basis (at least 1x per week) do not 

differ substantially from the baseline. A small additional utility is observed for the ASC for 

e-bike and a small disutility for PT. Interestingly, frequent train users (at least 1x per week) 

are more likely to opt for a shared moped or step for an egress trip, compared to less 

frequent train users. For those who (almost) never use a car (infrequently on a yearly 

basis) are more likely to choose public transport, and less likely to opt for a shared scooter. 

Lastly, we asses the influence experience with different sharing services has on 

mode preference. Here, the impacts are stronger and more parameters turn out significant. 

To showcase the differing preferences given past experience, we split the sample into four 

groups, based on the experience of using OV fiets and other shared services. As we can 

see in Table 3, about a third of respondents have no experience with any shared service. 

The largest share have used OV fiets, but not other shared modes. Another quarter have 

used both, while only a small fraction used other shared modes, but not OV fiets. Those 

who have previously used OV fiets (the bike sharing service of the Dutch railways) are 

much more likely to also opt for the bike in the SP experiment. A slight preference can also 

be observed for the E-bike, and a dispreference for PT. Having used any other shared 

service before (moped, e-bike, car) has a positive and significant impact on all shared 

modes, with the impact being strongest for moped and step. 

Table 3. Contingency table for experience with different shared transport services 

Have you 

ever used: 

 Other shared modes   

  Yes No  

OV fiets Yes 279 (24%) 497 (43%) 776 

No 41 (4%) 337 (29%) 378 

  320 834 1,154 

 

Next, we look at the types of parking (Figure 7) and rental (Figure 8) approaches. 

In both cases, we see significant overlap between the different implementation schemes. 

When considering parking, it seems that a free-floating approach is preferred, although 

the overlap with the distribution of central parking is significant. And in the results of the 

MNL model with interactions also shows that when adding interactions, the difference 

between means becomes insignificant, meaning that in the form without interactions, they 

may be capturing a different effect. 

In terms of the type of rental, a return may be slightly preferred, to a value of 

~€0.80, which is not substantial. Again, this may come down to personal preferences, 

where some respondents rather opt for the flexibility of the single rent, whereas other s 

prefer the reliability of the return approach. 
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Figure 7. Distribution of preferences for 

parking policies 

 
Figure 8. Distribution of preferences for rental 

schemes 

 

Finally, we analyse the nesting effects that can be observed among the alternatives. 

Doing this by means of an MXL model allows us to test for cross-nesting as well, where an 

alternative can belong to multiple nests at the same time. In particular, we test five 

different nest specifications, namely: 

1. Non-sharing nest: Public transport, Walk 

2. Shared nest: Shared bicycle, Shared E-bike, Shared Step, Shard Moped 

3. Bicycle nest: Shared bicycle, Shared E-bike 

4. Electric nest: Shared E-bike, Shared Step, Shard Moped 

5. Step-Moped nest: Shared Step, Shard Moped 

Although all five nesting parameters are significant, most show a limited rate of correlation 

and therefore limited nesting effects among the alternatives. The weakest effect is seen 

for the bicycle nest, with a correlation of only 0.18. The non-shared, shared and step-

moped nests are all in the correlation interval of 0.4-0.5, which is still weak albeit 

somewhat influential. The Electric nests performs the strongest, with a correlation of 0.59. 

the electric nest also captures all the “new” modes in a way, as those are the shared modes 

that the majority of respondents are likely not familiar with.  

4. Conclusion and implications 

This paper presents the first insights into a larger study on passengers’ perception and 

preferences towards shared micromobility services as an access/egress mode to train 

stations. From the data already collected, we observe that overall, people prefer to reach 

their destination from the station on foot, only opting for other modes for longer egress 

journeys. We see that this switching to other modes starts at a when walking times exceed 

15min, with those who have past experience with shared services opting for a bike or PT 

at 15min egress walking time, whereas those without any past experience will switch to 

PT at 15min, but to bike or e-bike only at 25min of walking time. This highlights many 

previous findings, that familiarity with a service is one of the strongest predictors of future 

use. From our results, we see that this effect is stronger than trip purpose, train trip length 

or current travel behaviour. 

-2,00 -1,00 0,00 1,00 2,00

Free-float

Central

Manned

-2,00 -1,00 0,00 1,00 2,00

Single

Return
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With respect to design characteristics of such services, we find no strong preference 

for the type of parking (free-floating, centralised or with personnel) and for a single vs. 

return trip-type rent. In both cases, the differences were minor or even insignificant. When 

accounting for heterogeneity among participants, we conclude that the overlap between 

distributions is substantial and essentially each person will have a different preference 

order. In other words, there is not a single favourite within the population, but rather is 

user-specific. 

In terms of time parameters, we report a WtP in line with Dutch standards of ~10-

15€/h and a higher WtP for walking and waiting times, also falling within the scope of 

expected values. 

Despite the importance of past experience, our results still show that cycling and public 

transport are the dominant and most preferred access/egress modes to train stations for 

distances beyond a comfortable walking distance/time of ~15min (~1km). Policymakers 

and operators should therefore not overestimate the potential of new modes and rather 

focus on improving the quality and availability of the existing options which have proven 

themselves popular among the travelling public. 

An interesting finding to potentially investigate further is also the integration of 

access/egress travel directly in the ticket price of the train trip. By estimating the 

perception of a free egress mode (no additional cost), we notice a non-linear effect in 

attractiveness for any of the modes. Deeper integration, such as was shown through the 

many MaaS trials (of ticketing, information,…) is also proven to be more attractive option 

for individuals when travelling. 

This survey assumes that taking the train is a given and that an alternative completely 

circumventing the train trip (by car for example) is not considered in this case. Such an 

analysis may show different results and perhaps new modes may entice current car users 

to switch to train, although existing literature on this topic is not very promising. 

In the future, we will extend the survey to a second panel, capturing less frequent users 

of trains in order to obtain more information from individuals who are currently less likely 

to use trains and therefore also micromobility as an egress mode. We aim to extend the 

models by adding the attitudinal statements that have been included in the survey. We will  

estimate further MXL models and also extend the MNL formulation to a latent class (LC) 

model. Like the MXL, the LC model also accounts for heterogeneity, but rather than 

allocating individuals along a distribution, a discrete number of classes are imposed onto 

the sample, each with its own unique MNL parameters, creating distinct user groups with 

their own WtP values indicating their own unique trade-off behaviour. Additionally, we are 

able to obtain the socio-demographic and travel-related characteristics of each of the 

groups, further enhancing the information of each group. 
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