
 
 

Delft University of Technology

GPU Implementation of the RRB-solver

de Jong, Martijn; Vuik, Kees

Publication date
2016
Document Version
Final published version
Citation (APA)
de Jong, M., & Vuik, K. (2016). GPU Implementation of the RRB-solver. (Reports of the Delft Institute of
Applied Mathematics; Vol. 16-06). Delft University of Technology.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



DELFT UNIVERSITY OF TECHNOLOGY

REPORT 16-06

GPU implementation of the RRB-solver

M.A. de Jong, and C. Vuik

ISSN 1389-6520

Reports of the Delft Institute of Applied Mathematics

Delft 2016



Copyright  2016 by Delft Institute of Applied Mathematics, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.



1 Introduction

Throughout this report a linear system of equations

Ax = b (1.1)

is considered, where A ∈ Rn×n is a large symmetric positive definite (SPD) pentadiagonal
matrix, x ∈ Rn the solution vector, and b ∈ Rn the right-hand side (RHS) vector. Among
other solution methods, see Figure 1, the Conjugate Gradient (CG) algorithm, an example
of a Krylov method, is a good choice to solve (1.1) with the listed properties.

Direct methods Iterative methods

Cholesky factorization
(A = LLT )

Basic iterative methods
(Jacobi / Gauss-Seidel /

SSOR / . . . )
smoother preconditioner

Multigrid Krylov
(CG)

coarse grid solver

preconditioner

Figure 1: Solution methods to solve (1.1). Methods based on (incomplete) Cholesky factorization
and basic iterative methods (BIMs) can be used to construct a preconditioner for CG.

In exact arithmetic, the CG algorithm finds an approximate solution such that the
A-norm of the residual is minimized over the Krylov subspace

Kk(A, r0) = span{r0, Ar0, A2r0, . . . , A
k−1r0},

where r0 = b − Ax0 is the initial residual. A frequently used upper bound for the error
after k steps is [9]:

‖xk − x‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k

‖x0 − x‖A, (1.2)

where ‖ · ‖A denotes the A-norm, and κ(A) the spectral condition number of matrix A
defined as follows:

κ(A) :=
λmax(A)

λmin(A)
,

where λmax(A) and λmin(A) are the largest and smallest eigenvalue of A, respectively. We
see that, in general, the smaller κ(A), the better the convergence rate. The convergence
rate can often strongly be improved by applying CG to a preconditioned system

M−1Ax = M−1b, (1.3)

3



where non-singular matrix M is called the preconditioner. The matrix M is constructed
such that κ(M−1A)� κ(A).

When the CG algorithm is applied to the preconditioned system (1.3) the precondi-
tioned conjugate gradient (PCG) algorithm is obtained, see Algorithm 1 (cf. [8]; Algo-
rithm 9.1).

Algorithm 1 The PCG algorithm.

1. r = b− Ax
2. Solve Mz = r for z
3. ρ1 = 〈r, z〉
4. Set p = z
5. While (not converged) % Termination criterium
6. ρ0 = ρ1
7. q = Ap % Matrix-vector product
8. σ = 〈p,q〉 % Inner product
9. α = ρ0/σ

10. x = x + αp % Vector update
11. r = r− αq % Vector update
12. Solve Mz = r % Preconditioner step
13. ρ1 = 〈r, z〉 % Inner product
14. β = ρ1/ρ0
15. p = z + βp % Vector update
16. End while

Lines 5 to 15 are repeated until the predefined termination criterium is met at Line 5.
Per iteration of PCG we have 3 vector updates, 2 inner products, a matrix-vector product
and a preconditioner step

Solve Mz = r for z.

This step should be relatively cheap; the computational costs should be not much larger
than those for computing the matrix-vector product with A.

2 The RRB-solver

In this report we focus on the so-called RRB-solver to solve (1.1). The RRB-solver is a
PCG-type solver where the RRB-factorization algorithm [1, 2, 3] is used to construct the
preconditioner M . RRB stands for “Repeated Red-Black” (or “Recursive Red-Black”)
which refers to how nodes in a two dimensional grid are colored and numbered.

2.1 RRB-numbering

Let
G =

{
(i, j) | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}

4



be the set of all nodes in an Nx × Ny grid. If (1, 1) is chosen to be a black node, then a
standard red-black ordering is given by:

R[1] =
{

(i, j) ∈ G | mod(i+ j, 2) = 1
}
,

B[1] = G \R[1],

where R[1] denotes the set of first level red nodes and B[1] denotes the set of first level black
nodes. Next, a standard red-black ordering is applied a second time to the B[1]-nodes as
follows:

R[2] =
{

(i, j) ∈ B[1] | mod(j, 2) = 0
}
,

B[2] = B[1] \R[2]

= G \ (R[1] ∪R[2]).

The second level black nodes, i.e., the B[2]-nodes, are thus the nodes in G that neither
belong to the sets R[1] nor R[2]. Generally,

R[k] =





{
(i, j) ∈ G \

(
∪k−1p=1R

[p]
) ∣∣ mod

(
i+ j, 2

k+1
2
)

= 2
k−1
2

}
, k odd;

{
(i, j) ∈ G \

(
∪k−1p=1R

[p]
) ∣∣ mod

(
j, 2

k
2
)

= 0

}
, k even.

The maximum number of levels that the Nx ×Ny-grid allows for is given by

`max = 2dlog2(max{Nx, Ny})e+ 1. (2.1)

Example

In this example the RRB-numbering procedure is applied to a matrix A ∈ R64×64 resulting
from an 8 × 8 grid of unknowns. For this matrix A the maximum number of levels is
`max = 2dlog2(8)e+ 1 = 7 according to Equation (2.1). The result of the RRB-numbering
on the ordering can be seen in Figure 2. For readability the black nodes are represented
by gray squares and the red nodes by white squares.

5



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

R[1]/B[1]

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

R[2]/B[2]

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

49 50

51 52

53 54

55 56

R[3]/B[3]

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

57 58

59 60

R[4]/B[4]

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

61

62

R[5]/B[5]

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

63

R[6]/B[6]

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

64

R[7]/B[7]

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Total

64

5

51

13

62

21

55

29

1

33

9

37

17

41

25

45

49

6

57

14

53

22

59

30

2

34

10

38

18

42

26

46

61

7

52

15

63

23

56

31

3

35

11

39

19

43

27

47

50

8

58

16

54

24

60

32

4

36

12

40

20

44

28

48

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 2: RRB-numbering for an 8× 8 grid.

The effect of the RRB-numbering on the sparsity pattern of the matrix A ∈ R64×64

belonging to the 8× 8 grid is shown in Figure 3 for the first four levels.

(a) RRB-1 (b) RRB-2 (c) RRB-3 (d) RRB-4

Figure 3: Effect of RRB-numbering on sparsity pattern.

2.2 The RRB-factorization algorithm

The RRB-factorization algorithm factorizes the matrix A into

A = LDLT +R, (2.2)

where L is a lower triangular matrix with unitary diagonal entries (1s), D a diagonal
matrix, and R a matrix that contains adjustments resulting from lumping procedures.
The RRB-factorization algorithm can be understood best by looking at two levels of red-
black reordering, i.e., RRB-2, see Figure 4. Moreover, it is convenient to suppose, for now,

6



♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
♦ ♥ ♦ ♥ ♦ ♥ ♦ ♥
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
♦ ♥ ♦ ♥ ♦ ♥ ♦ ♥
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
♦ ♥ ♦ ♥ ♦ ♥ ♦ ♥
♠ ♦ ♠ ♦ ♠ ♦ ♠ ♦
♦ ♥ ♦ ♥ ♦ ♥ ♦ ♥

Figure 4: First level red nodes (diamonds) and second level red-black nodes (hearts and spades).

that A is initially given by a 9-point stencil rather than by a 5-point stencil, i.e., suppose
that matrix A is given by the stencil



NW [0] N [0] NE[0]

W [0] C [0] E[0]

SW [0] S[0] SE[0]


 or, shortly denoted,



NW N NE
W C E
SW S SE




[0]

,

where the coefficient N [0] gives the coupling with the North neighbor, W [0] the West neigh-
bor and so on. The superscript expresses the current level.

Using the RRB-2 ordering the linear system Ax = b, Equation (1.1), can be written as



A♦ A♦♥ A♦♠
A♥♦ D♥ A♥♠
A♠♦ A♠♥ D♠






x♦
x♥
x♠


 =




b♦
b♥
b♠


 ,

where D♥ and D♠ are diagonal matrices, A♦, A♥♠ = AT
♠♥ are four-banded matrices

resulting from the NE-, SE-, SW - and NW -dependencies (×) and A♦♥ = AT
♥♦ and A♦♠ =

AT
♠♦ are four-banded matrices resulting from the N -, S-, W - and E-dependencies (+).

Stencil reduction (1st time)

For the ♦-nodes the 9-point stencil is reduced to a 5-point stencil (+) by using a so-called
lumping procedure:



NW N NE
W C E
SW S SE




[0]

=⇒



· N ·
W C̃ E
· S ·




[0]

,

where C̃ [0] := C [0] +NE [0] + SE[0] + SW [0] +NW [0], i.e., the four most outer elements are
lumped towards the main diagonal. This means that

A = Ã0 +R0, (2.3)

7



i.e.,

A =




D̃♦ A♦♥ A♦♠
A♥♦ D♥ A♥♠
A♠♦ A♠♥ D♠


+




R♦ 0 0
0 0 0
0 0 0




where D̃♦ is a diagonal matrix and where

R♦ := A♦ − D̃♦
is the matrix of adjustments.

Elimination (1st time)

Elimination of the ♦-nodes by applying Gaussian elimination using D̃−1♦ yields

Ã0 = L1A1L
T
1 , (2.4)

where

L1 =




I♦ 0 0

A♥♦D̃
−1
♦ I♥ 0

A♠♦D̃
−1
♦ 0 I♠




and

A1 =




D̃♦ 0 0

0 D♥ − A♥♦D̃−1♦ A♦♠ A♥♠ − A♥♦D̃−1♦ A♦♠
0 D♠♥ − A♠♦D̃−1♦ A♦♥ D♠ − A♠♦D̃−1♦ A♦♠


 .

The four lower-right blocks in A1 correspond to a matrix given by a 9-point stencil:




· · · · ·
· · N · ·
· W C E ·
· · S · ·
· · · · ·




[0]

−N [0]

C
[0]
N




· · N · ·
· W C E ·
· · S · ·
· · · · ·
· · · · ·




[0]

N

−E[0]

C
[0]
E




· · · · ·
· · · N ·
· · W C E
· · · S ·
· · · · ·




[0]

E

−S[0]

C
[0]
S




· · · · ·
· · · · ·
· · N · ·
· W C E ·
· · S · ·




[0]

S

−W [0]

C
[0]
W




· · · · ·
· N · · ·
W C E · ·
· S · · ·
· · · · ·




[0]

W

=




· · N · ·
· NW · NE ·
W · C · E
· SW · SE ·
· · S · ·




[1]

.

Note: At this point one may stop and make a full Cholesky decomposition for the remain-
der given by the 9-point stencil.

8



Stencil reduction (2nd time)

For the ♥-nodes the 9-point stencil is reduced to a 5-point stencil (×) as well:




· · N · ·
· NW · NE ·
W · C · E
· SW · SE ·
· · S · ·




[1]

=⇒



NW · NE

· C̃ ·
SW · SE




[1]

,

where C̃ [1] := C [1] +N [1] + E[1] + S[1] +W [1]. The result is

A1 = Ã1 +R1, (2.5)

i.e.,

A1 =




D̃♦ 0 0

0 D̃♥ A♥♠ − A♥♦D̃−1♦ A♦♠
0 A♠♥ − A♠♦D̃−1♦ A♦♥ D♠ − A♠♦D̃−1♦ A♦♠


+




0 0 0
0 R♥ 0
0 0 0




with
R♥ := D♥ − A♥♦D̃−1♦ A♦♥ − D̃♥.

Elimination (2nd time)

Elimination of the ♥-nodes by applying Gaussian elimination using D̃−1♥ yields

Ã1 = L2A2L
T
2 , (2.6)

where

L2 =




I♦ 0 0
0 I♥ 0

0 (A♠♥ − A♠♦D̃−1♦ A♦♥)D̃−1♥ I♠




and

A2 =




D♦ 0 0

0 D̃♥ 0

0 0 Â♠




with
Â♠ := D♠ − A♠♦D−1♦ A♦♠ − (A♠♥ − A♠♦D̃−1♦ A♦♥)D̃−1♥ A♥♦D

−1
♦ A♦♠.

9



The matrix Â♠ is again given by a 9-point stencil but now on grid that is two times coarser
in both x- and y-direction, i.e.,




· · N · ·
· NW · NE ·
W · C · E
· SW · SE ·
· · S · ·




[1]

−NE[1]

C
[1]
NE




· · NW · NE

· · · C̃ ·
· · SW · SE
· · · · ·
· · · · ·




[1]

NE

−SE[1]

C
[1]
SE




· · · · ·
· · · · ·
· · NW · NE

· · · C̃ ·
· · SW · SE




[1]

SE

−SW [1]

C
[1]
SW




· · · · ·
· · · · ·

NW · NE · ·
· C̃ · · ·

SW · SE · ·




[1]

SW

−NW [1]

C
[1]
NW




NW · NE · ·
· C̃ · · ·

SW · SE · ·
· · · · ·
· · · · ·




[1]

SW

=




NW · N · NE
· · · · ·
W · C · E
· · · · ·

SW · S · SE




[2]

.

Note: At this point one may stop and make a full Cholesky decomposition for the remain-
der given by the 9-point stencil.

RRB-iteration

The four steps listed above describe a first RRB-iteration. The first RRB-iteration thus
consists of:

1. Stencil reduction for ♦-nodes (2.3): A = Ã0 +R0.

2. Elimination of ♦-nodes (2.4): Ã0 = L1A1L
T
1 ;

3. Stencil reduction for ♥-nodes (2.5): A1 = Ã1 +R1;

4. Elimination of ♥-nodes (2.6): Ã1 = L2A2L
T
2 ;

All together this gives:
A = LDLT +R,

where

L = L1L2 =




I♦ 0 0

A♥♦D̃
−1
♦ I♥ 0

A♠♦D̃
−1
♦ (A♠♥ − A♠♦D̃−1♦ A♦♥)D̃−1♥ I♠


 , D = A2 =




D♦ 0 0

0 D̃♥ 0

0 0 Â♠




10



and

R = R0 + L1R1L
T
1 = R0 +R1 =




R♦ 0 0
0 R♥ 0
0 0 0


 .

It can be shown (see e.g., [5]) that the properties of the original matrix A are conserved, i.e.,
the matrices given by the 9-point stencils are also symmetric positive definite M -matrices.
Therefore, the RRB-factorization algorithm can be reapplied, i.e., another RRB-iteration
can be performed on the remainder Â♠.

Full RRB versus RRB-`

After a certain number of RRB-iterations only a single node remains. This is called full
RRB. However, after each level of red-black numbering, lumping and elimination, one can
already stop, say at level ` ≤ `max (see Equation (2.1)). The remaining black nodes B[`]

have a 9-point dependency structure and for this level a full Cholesky decomposition

M` = L`D`L
T
` (2.7)

is computed. This is called `-step RRB, denoted by RRB-`. By stopping earlier the
factorization A = LDLT + R becomes more exact; however, in that case the construction
of the Cholesky factor L requires more effort and L has more fill-in. One should strive for
a good balance; we go on with the RRB-iterations until the size of the remaining system
of equations becomes that small that the costs of solving (2.7) are about equal to, or at
least not much larger, than the costs of the rest of the factorization.

Starting with a 5-point stencil

In case the RRB-factorization algorithm is applied to the matrix A as in system (1.1),
which is given by a 5-point stencil, A♦ becomes a diagonal matrix and A♥♠ = A♠♥T = 0.
The first elimination becomes exact and accordingly R♦ = 0.

Algorithm

Pseudo code for the RRB-factorization algorithm is provided in Algorithm 2.

Example

In this example the RRB-factorization algorithm is applied to a matrix A ∈ R64×64 resulting
from an 8× 8 grid of unknowns, see Figure 5. The figure shows the effects of consecutive
red-black orderings, lumping, and elimination of red nodes on the dependency structure
and sparsity pattern of L+D + LT .

11



Algorithm 2 The RRB-factorization algorithm starting with a 9-point stencil.

1. Choose the number of levels ` ≤ `max

2. Set k = 0
3. While (k ≤ `) do
4. Apply red-black ordering: R[k]/B[k]

5. Apply lumping procedure to R[k]-nodes
6. Eliminate R[k]-nodes using 5-point stencils for R[k]-nodes
7. k = k + 1
8. End while
9. Make complete Cholesky decomposition for remaining 9-point stencil: M` = L`D`L

T
`

2.3 The RRB-factorization algorithm used as a preconditioner
in PCG

The matrix A is factorized as A = LDLT +R, see Equation (2.2). As a preconditioner for
the PCG-algorithm the matrix

M = LDLT ≈ A (2.8)

is taken. The smaller the numbers in R in absolute value are, the better M resembles A.
The combination of the PCG-algorithm and the RRB-factorization algorithm for construc-
tion of the precondioner M is called the RRB-solver.

By starting from a 5-point stencil, the elimination of R[1]-nodes becomes exact. Hence,
in this case PCG can be applied to the resulting 1st Schur complement S1 instead of the
entire matrix A. This can be seen as follows. By applying a red-black numbering we can
write Ax = b as [

Dr Arb

Abr Db

] [
xr

xb

]
=

[
br

bb

]
,

where the red nodes are indicated by the subscript ‘r’ and the black nodes by the sub-
script ‘b’. Furthermore, Db and Dr are diagonal matrices and Arb = AT

br are matrices with
four diagonals, see Figure 3a (or 5b). Applying Gaussian elimination, i.e., elimination of
the red nodes, yields: [

Dr Arb

0 S1

] [
xr

xb

]
=

[
br

b1

]
,

where
S1 := Db − AbrD

−1
r Arb (2.9)

is called the 1st Schur complement of A (given by a 9-point stencil) and

b1 := bb − AbrD
−1
r br (2.10)

is the corresponding RHS. Hence the original system (1.1) can alternatively be solved as
follows:

1. Compute b1 using (2.10);

12



5-point G

(a) Original

5-point R[1] B[1]

(b) Red-black

9-point R[1] B[1]

(c) Elimination

9-point R[2] B[2]

(d) Red-black

skew 5-point R[2] B[2]

(e) Lumping

9-point stencil B[2]

(f) Elimination

Figure 5: Effects of the RRB-factorization algorithm for A ∈ A64×64 with ` = 2 on the dependency
structure and the sparsity pattern of L +D + LT . For the remaining B[2]-nodes a full Cholesky
factorization is computed.

2. Apply CG to the system
S1xb = b1, (2.11)

where S1 is the 1st Schur complement given by (2.9);

3. Compute xr via xr = D−1r (br − Arbxb).

Solving system (2.11) instead of the original system (1.1) is beneficial to the total amount
of computational work. Since S1 consists of only the B[1]-nodes, the number of flops for
computing the vector updates and inner products in the PCG-algorithm is reduced by a

13



factor two. The number of flops in the matrix-vector product q = S1p remains the same as
the matrix-vector product with A, because the matrix S1 is now given by a 9-point stencil
instead of by a 5-point stencil.

2.4 Other lumping procedures

In Section 2.2 it was explained how lumping procedures are used to reduce 9-point stencils
to 5-point stencils. Afterwards, the obtained 5-point stencils were used to eliminate the
red nodes at the current level. In this section other lumping strategies are discussed.

For k = 1, 3, 5, . . . consider:




· · N · ·
· NW · NE ·
W · C · E
· SW · SE ·
· · S · ·




[k]

=⇒



NW · NE

· C̃ ·
SW · SE




[k]

,

where
C̃ [k] = C [k] + ω

(
N [k] + E[k] + S[k] +W [k]

)
(2.12)

and for k = 0, 2, 4, . . .:




NW · N · NE
· · · · ·
W · C · E
· · · · ·

SW · S · SE




[k]

=⇒



· N ·
W C̃ E
· S ·




[k]

,

where
C̃ [k] = C [k] + ω

(
NE [k] + SE[k] + SW [k] +NW [k]

)
. (2.13)

In both (2.12) and (2.13) 0 ≤ ω ≤ 1 is called the relaxation parameter. The easiest way
is to just drop the unwanted fill-in and take ω = 0. This leads to an incomplete Cholesky
factorization. By choosing ω = 1 the four most outer elements are lumped towards the main
diagonal like we did in Section 2.2. In that case the row sum is maintained and modified
incomplete Cholesky is obtained. A modified incomplete Cholesky decomposition has the
property that the row sums of the residual matrix are zero. Hence the decomposition is
exact for a constant vector. This feature improves the quality of the preconditioner.

Next one can choose to which nodes the lumping procedure is applied in a certain level:
to the red nodes only or to both the red and the black nodes in the same level. In [5]
Ciarlet investigated four of the indicated eight options, see Table 1. A final important
observation is that the structure, i.e., the sparsity pattern, of the preconditioner does not
change; for each of the different options the remainder on the black nodes is always given
by a 9-point stencil.

14



Name preconditioner ω Nodes used
M1u 0 red
M1m 1 red
M2u 0 red and black
M2m 1 red and black

Table 1: Different lumping strategies (cf. [5]).

2.5 Spectral condition number of RRB-`

As we have seen in Section 1, is the convergence rate of PCG dependent on the eigenvalues
of M−1A. Since the preconditioner M is an approximation of the system matrix A, the
spectral condition number κ(M−1A) is expected to be smaller than κ(A). This gives a
sharper upperbound of the error (1.2) and therefore most likely a faster convergence.

In [2], [7] and [5] the RRB-` preconditioner is investigated in detail for the Poisson
problem with Dirichlet boundary conditions on a two-dimensional uniform grid with n×n
unknowns and where n is of the form n = 2` − 1. Different upper bounds can be found in
the aforementioned literature. Notay [7] gives as an upper bound :

κ(M−1A) ≤
√

5(
√

5− 1)`−1

1 + (−1)`
(

3−
√
5

2

)`−1 ≈ 1.8 · 1.23`.

Since the mesh spacing h = 1/(n+ 1) and ` = log2(1/n) ≈ log2 h
−1, alternatively,

κ(M−1A) ≤ 1.8h−0.306.

2.6 Application of the preconditioner

At each iteration of the PCG-algorithm, we have the preconditioner step Mz = r which
needs to be solved for z. Since the preconditioner M is factorized as M = LDLT , see
Equation (2.8), the system Mz = r can be solved efficiently in three steps: set y := LTz
and x := DLTz = Dy, then:

1. solve x from Lx = r using forward substitution;

2. compute y = D−1x;

3. solve z from LTz = y using backward substitution.

Each of the three steps is computationally cheap.

Algorithm

For memory efficiency a single vector z is used instead of the three vectors x, y and
z. Moreover, if ` ≤ `max then at the final level ` a full Cholesky factorisation (2.7) is
constructed for the remaining level of black nodes B[`]. Pseudo code is provided below, see
Algorithm 3.

15



Algorithm 3 Application of the RRB preconditioner.

1. Given number of levels ` ≤ `max

2. Set k = 2
3. While (k ≤ `) do % forward substitution
4. Update z-values at B[k]-nodes using R[k]-nodes % using skew 5-point (×)
5. If (k + 1 == `) then
6. break
7. End if
8. Update z-values at B[k+1]-nodes using R[k+1]-nodes % using straight 5-point (+)
9. k = k + 2

10. End while
11. Update x-values at B[1]-nodes % diagonal scaling
12. Solve L`D`L

T
` x` = z` and update x-values in level ` % final level exact

13. Set k = `
14. While (k ≥ 2) do % backward substitution
15. Update z-values at R[k]-nodes using Bk]-nodes % using straight 5-point (+)
16. If (k − 1 == 2) then
17. break
18. End if
19. Update z-values at R[k−1]-nodes using B[k−1]-nodes % using skew 5-point (×)
20. k = k − 2
21. End while

Example

For a matrix A ∈ R64×64 resulting from an 8×8 grid of unknowns the forward substitution
steps are visualized in Figure 6a and Figure 6b. As indicated by Algorithm 3 both the
forward and backward substitution are performed level-wise in two phases. First, the z-
values at B[k]-nodes are updated using the skew 5-point stencils (×) at the R[k]-nodes,
see Figure 6a. Second, the z-values at B[k+1]-nodes are updated using the straight 5-
point stencils (+) at the R[k+1]-nodes, see Figure 6b. The backward substitution is done
level-wise in the same manner, yet in the reverse order.

3 Parallel implementation of the RRB-solver

All the basic operations in the CG-algorithm, see Algorithm 1 (the vector updates, the
inner products, and the matrix-vector product, in our case q = S1p, where S1 is the first
Schur complement), can easily be parallelized on shared memory machines [6]. Secondly,
the construction of the preconditioner, i.e., M = LDLT , can be performed level-wise in
parallel on shared memory machines. This can be seen from Algorithm 2: at each level each
of the operations lumping, elimination, and substitution can be performed fully in parallel.
Finally, the preconditioner step, i.e., solving Mz = r for z, can be performed level-wise

16



R[2] B[2]

×-dependency

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

(a) Forward substitution phase 1: skew (×).

R[3] B[3]

+-dependency

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

(b) Forward substitution phase 2: straight (+)

Figure 6: Application of the RRB preconditioner.

in parallel on shared memory machines as well. This can be seen from Algorithm 3 as
well as from Figure 6: at each level the gray nodes can be updated fully in parallel. In
Figure 7 the gray areas indicate the blocks where fill-in has been lumped, and where the
computations can be done fully in parallel.

It is however not possible to compute the different levels (the gray blocks) in parallel
since forward and backward substitution are, at least to some extent, inherently sequential.
Since the number of unknowns decreases fast, namely by a factor 2 per level, so does the
amount of work, and therefore this is not a big issue. All together, we can conclude that
the RRB-solver can be parallelized well on shared memory machines.

17



Figure 7: Sparsity pattern of L+D + LT . The gray areas indicate parallel blocks.

3.1 A key idea to maximise bandwidth

The RRB-solver consists of level 1 and level 2 BLAS routines and is therefore a memory-
intensive algorithm, i.e., the ratio

r =
#memory operations

#floating point operations

is large. For small problem sizes already, the problem is already too big to fit in the (fast)
cache of most modern computers1. Hence throughout the RRB-algorithm most data must
be read from and written to the global memory over and over again. In order to obtain
an efficient and fast solver we must deal with the issue of achieving good global memory
throughput throughout the algorithm.

Achieving high global memory throughput is certainly not trivial for the RRB-solver
because of the repeated red-black orderings. This can be seen from Figure 2. A naive
(basic, rectangular, natural, lexicographic) storage of the data would result in a solver in
which all the data required for the vector-updates, inner products and the matrix-vector
product would be read from and written to the global memory with a stride of two. This
follows from the fact that the basic routines of the RRB-solver operate on the B[1]-nodes

1Example: Solving a 2D poisson problem consisting of 1000 × 1000 unknowns with the RRB-solver
requires roughly 19 vectors of length 1 million hence 159 MB of data in case of double-precision. This is
already much larger than the last level cache size of any modern architecture.

18



only. Even worse, during application of the preconditioner step, i.e., solving Mz = r for
z, the data would be accessed with increasing stride: 2, 4, 8, 16, . . .. It is a well-known fact
that reading data from and writing data to the global memory with a stride leads to a
waste of performance.

In order to obtain maximal throughput throughout the algorithm, for the first few (the
finest) levels a different storage scheme is proposed, see Figure 8. This storage scheme is
called the r1/r2/b1/b2-storage scheme [4].

b2 r1 b2 r1

r2 b1 r2 b1

b1 r1

r2

Level 0

=⇒

Level 1

r2 b1

b2

Level 2

r1

Figure 8: The r1/r2/b1/b2 storage scheme. The b1- and b2-nodes together form the intermediate
levels with skew meshes (×). The b2-nodes form the next coarser level (+).

We see that the first level red nodes are divided into r1- and r2-nodes and the first
level black nodes are divided into b1- and b2-nodes. The first important observation is now
that, by storing the B[1] nodes into these two new arrays of b1- and b2-nodes, the data can
always be accessed in a coalesced manner, without a stride.

The second important observation is that the b2-nodes form the next coarser grid, and
that, on this coarser grid, the r1/r2/b1/b2-storage scheme can be reapplied. In general, the

odd levels k are stored into b
[k]
1 - and b

[k]
2 -nodes, and the even levels k are stored into the

b
[k]
2 -nodes.

The data used by the RRB-solver is stored using the r1/r2/b1/b2 storage scheme as
much as possible: the 5 vectors in the PCG-algorithm (r,x, z,p,q), see Algorithm 1, the
vectors that describe the first Schur complement S1 and the vectors that describe the
preconditioner matrix M .

The matrix M and the vector z occuring in the preconditioner step Mz = r are stored
in a recursive r1/r2/b1/b2-storage scheme which is at most only 1 + 1/4 + 1/16 + . . . = 4/3
times as expensive as the naive storage. From Figure 6 it can be seen that the r1/r2/b1/b2-
storage scheme can be used virtually for free during the preconditioner step Mz = r. This
can be seen as follows. In case of application of the preconditioner, the updated z-values

19



at level k are directly written into the r1/r2/b1/b2-arrays of level k + 1 in case of forward
substitution and vice versa in case of backward subsitution.

3.2 Implementation details

In this section some details are given to implement the r1/r2/b1/b2 storage format in a good
manner. For optimal performance we introduce a format that allows for aligned memory
transfers, vectorization and which makes if-statements2 unnecessary. The format is shown
in Figure 9 in which a problem of Nx × Ny = 40 × 75 unknowns is taken as an example.
The following can be seen:

1. The 40 × 75 nodes are divided into r1-, r2-, b1- and b2-nodes. Notice the slight
difference in number of r1- and r2-nodes, namely 20 × 33 versus 20 × 32. This is
due to the odd number of nodes in y-direction, namely 75. In x-direction there is no
difference in size. Similarly, there is a difference in number of b1- and b2-nodes.

2. Four compute areas indicated by the four bold rectangles, each of size cx[0]× cy[0].
Computations are only done directly for the elements that lie within one of the
compute areas. The elements that lie within the borders are not used or only used
indirectly because of the 5-point stencils. For example, consider the forward substitu-
tion Phase 1 in the application of the preconditioner, see Figure 6a. Clearly, during
this phase, the b1- and b2-nodes are updated using the r1- and r2-nodes according to
a skew (×) 5-point stencil. A double for-loop runs over the entire compute areas b1
and b2 and data is read from areas r1 and r2.

3. The entire grid consists of a collection of uniformly sized compute blocks. Here the
compute blocks are shown as squares of size dcb × dcb = 16 × 16. The compute
blocks may also be rectangular and they may also have a different size than the
width borders. In C, C++ or CUDA C, which are examples of row-major oriented
languages, the size in x-direction is important. dcb should preferably be a multiple
of 8 (double-precision) or 16 (single-precision) to meet the typical 64-byte cache lines
of modern computing devices and allowing for aligned storage and vectorization.
For row-major oriented programming languages, the size of the compute block in
y-direction is less important. In Fortran or Fortran CUDA, which are examples of
column-major oriented languages, it is the other way around: the size in y-direction
is important and the size in x-direction is less important.

4. The data is padded. There is a border of width dcb around each of the four blocks
of nodes. In this figure: dcb = 16. The entire r1/r2/b1/b2 grid has size nx[0]× ny[0].
The border ensures that all data is aligned and that no if-statements are needed: the
edge elements of the original problem (light gray) are no longer edge elements but
belong to the inside of the larger array of size nx[0]× ny[0].

2With a naive storage format if-statements are necessary for the computations along the edges of the
domain to prevent for ‘out-of-index’ runtime errors.

20



b2 r1

r2 b1

cx[0] cx[0]

nx[0]

cy
[0
]

cy
[0
]

n
y
[0
]

d
cb

dcb

compute
block

Figure 9: The r1/r2/b1/b2 storage scheme for a problem of 40× 75 unknowns.

Next we introduce, similar to the desired number of RRB-levels `, another adjustable
parameter, namely g: the desired number of r1/r2/b1/b2 grids. In this way one can balance
the algorithm between: (i) optimal memory transfers on the r1/r2/b1/b2 storage format on
the first few (the finest) levels with many unknowns and (ii) the advantage of the (fast)
cache on the last (the coarsest) levels with few unknowns. The motivation for this is

21



that from a certain point on the remaining unknowns may fit entirely in the cache of the
computing hardware.

The maximum number of r1/r2/b1/b2 grids is denoted by gmax and is dependent on:
(i) the maximal number of levels `max, and (ii) the size of the compute blocks. Similar to
Equation (2.1) one can derive:

gmax = dlog2(max{Nx, Ny}/dcb)e, (3.1)

where dcb is the size of the square compute block as mentioned above.

Example

For a problem with Nx × Ny = 411 × 277 unknowns and compute block with size dcb ×
dcb = 32 × 32, we have `max = 2dlog2(max{411, 277})e + 1 = 19, see Equation (2.1), and
gmax = dlog2(max{411, 277}/32)e = 4, see Equation (3.1). Hence the computations for
levels 1, 2, . . . , 8 are performed with the r1/r2/b1/b2 storage format, and the computations
for the remaining 11 levels 9, 10, . . . , 19 are performed with the naive storage format.

References

[1] O. Axelsson and V. Eijkhout. The nested recursive two-level factorization method
for nine-point difference matrices. Journal on Scientific and Statistical Computing,
12:1373–1400, 1991.

[2] C. Brand. An incomplete-factorization preconditioning using repeated red-black order-
ing. Numerische Mathematik, 61:433–454, 1992.

[3] C. Brand and Z. Heinemann. A new iterative solution technique for reservoir simulation
equations on locally refined grids. SPE Reservoir Engineering, 5:555–560, 1990.

[4] M. de Jong, A. van der Ploeg, A. Ditzel, and C. Vuik. Real-time computation of
interactive waves on the GPU. In 15th Numerical Towing Tank Symposium, pages
111–116, Cortona, Italy, 2012.

[5] P. Ciarlet Jr. Repeated red-black ordering: a new approach. Numerical Algorithms,
7:295–324, 1994.

[6] R. Li and Y. Saad. GPU-accelerated preconditioned iterative linear solvers. The Journal
of Supercomputing, 63(2):443–466, 2013.

[7] Y. Notay and Z. Ould Amar. A nearly optimal preconditioning based on recursive
red-black orderings. Numerical Linear Algebra with Applications, 4:369–391, 1997.

[8] Y. Saad. Iterative methods for sparse linear systems. pub-SIAM, second edition, 2003.

[9] H. van der Vorst. Iterative Krylov Methods for Large Linear Systems. University Press,
2003.

22


