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a b s t r a c t 

Though much effort has been spent on designing new active learning algorithms, little attention has 

been paid to the initialization problem of active learning, i.e., how to find a set of labeled samples which 

contains at least one instance per category. This work identifies the initialization of active learning as 

a separate and novel research problem, reviews existing methods that can be adapted to be used for 

this task and, in addition, proposes a new active initialization criterion: the Nearest Neighbor Criterion. 

Experiments on 16 benchmark datasets verify that the novel method often finds an initialization set with 

fewer queried samples than other methods do. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

These days, we are witnessing a sharp increase in the amount 

f training data used in classification and regression tasks. Though 

he availability of large input data tends to boost the performance 

f machine learning models, it also leads to a big challenge: man- 

ally labeling samples can be very time-consuming and expensive 

1] . Active learning has been proposed to tackle this challenge by 

uerying only the most informative subsets from the whole data 

nd maintaining good learning performance. 

Most active learning approaches, which we refer to as super- 

ised, need an initial labeled subset to start the active learning 

ycle based on true labels obtained from a human annotator. The 

ain reason for the need of labels is that the selection criteria of- 

en depend on a trained classifier. For example, the simple margin 

ethod [2] trains a classifier on the initial labeled data and then 

hooses the sample nearest to its decision boundary. There are also 

nsupervised active learning methods, which do not use label in- 

ormation for sample selection. Transductive experimental design 

TED) [3] and graph-based variance minimization methods [4,5] , 

or instance, minimize the expected variance of a statistical model 

or which one does not need any labels. Unsupervised methods 

annot exploit any information coming from the labeling provided 

nd their performance can typically be improved by utilizing label 

nformation. For example, Zhen and Yeung [6] introduced a super- 
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ised version of TED, which adds a regularization term to incorpo- 

ate label information and Gu et al. [7] proposed a weighted TED 

here the weight is estimated by using the class probability. Both 

eport performance better than the original TED, indicating that 

upervised versions are to be preferred over unsupervised ones. 

A crucial issue for supervised active learning, however, is that 

hese methods assume to have a labeled dataset to start with. 

hough considerable effort s have been spent on seeking new ac- 

ive learning strategies, little attention has been paid to the initial- 

zation of these supervised methods. As also suggested by [8] , we 

an view active learning as a two-step process: 1) find an initial la- 

eled subset using some initialization strategy and 2) subsequently 

mploy any preferred regular active learning algorithm. This pa- 

er considers exactly the first initialization step and investigates 

ow to find an initial labeled subset to start the active learning 

rocess. 

The obvious way to initialize active learning is to randomly se- 

ect unlabeled instances until a subset containing at least one in- 

tance of each class has been obtained. This is also the most com- 

on strategy found in the literature [2,9–18] . Oftentimes, it is sim- 

ly assumed that there exists an initial set consisting of a fixed 

umber of instances per category randomly chosen from the un- 

abeled samples [12,13,15,19] . This may, in many novel application 

reas, not be realistic, as we typically do not have labeled samples 

o start with [8] . We therefore consider a more reasonable setting 

here we start the initialization without any labeled samples and 

ctively choose the initial instances to label. We still assume here 

hat the number of classes is known beforehand and the initial- 

zation phase is stopped when the initial set contains at least one 

nstance per class. 

https://doi.org/10.1016/j.patcog.2022.108836
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108836&domain=pdf
mailto:yangyazhou@nudt.edu.cn
mailto:m.loog@tudelft.nl
https://doi.org/10.1016/j.patcog.2022.108836
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.1. Contribution and Outline 

Following a review of current methods that are, with some 

inor changes, applicable to the initialization problem, we intro- 

uce our own, novel approach. Note that, as the initialization prob- 

em as such has not really been studied before, all methods pre- 

ented are new in a sense. Comparisons are carried out based 

n two different types of experiments on 16 benchmark datasets. 

ore specifically, the next section starts off presenting some fur- 

her background and related work. Section 3 then reviews vari- 

us known approaches and techniques that can be readily adapted 

o initialize active learning. That same section introduces and dis- 

usses our new strategy, which we call Nearest Neighbor Criterion 

NNC for short). Section 4 describes and analyses the first exper- 

ments in which the various initialization strategies are compared 

urely based on the initialization phase. Section 5 then investigates 

he impact of different initialization strategies on the whole active 

earning process. Section 6 concludes our work. 

. Related Work 

This work focuses on pool-based active learning where a large 

ool of unlabeled samples are readily available for querying [1] . 

his setting is the most widely studied. Reference [1] provides an 

arly overview of active learning, covering many of its ins and outs. 

ore recent complementary surveys can be found in [20–22] . 

There exist two earlier studies concerning the Initialization of 

ctive Learning (IAL for short): [23,24] , which both rely on k - 

eans clustering. The work in [24] is problematic as it needs to 

x an initialization size (e.g. 10% of the data) a priori, which is 

nwanted as it cannot guarantee that all classes have been iden- 

ified using such fixed relative size. [23] has a similar problem, as 

t just takes a single sample from every cluster. In the setting we 

onsider, the initialization stage is terminated once at least one in- 

tance from each class has been selected, which [24] and [23] can- 

ot guarantee. 

As experimental design approaches are unsupervised active 

earning techniques, they can be directly used for IAL. Examples 

re the D -optimality based transductive experimental design (TED) 

3] , V -optimality based graph variance minimization ( V -opt) [4] , 

nd the recently proposed �-optimality based graph variance min- 

mization ( �-opt) [5] . These methods select the representative 

amples which reduce the variance of a specific statistical model. 

he differences among them are the chosen optimality criterion, 

hich measures the overall variance, and the actual model they 

ely on. Subsection 3.1 provides further specifics regarding the ex- 

erimental design and clustering-based approaches. 

Further work can be found in the area of rare category detec- 

ion [25–31] . The aim in these settings is to use active learning to 

dentify interesting and useful anomalies, which are assumed to be 

ery rare and typically can be found in tiny classes. The selection 

rocedure is terminated when at least one representative sample 

rom each rare class has been found. For example, He and Car- 

onell [26] first performed density estimation and then selected 

he instance that leads to an expected maximum change in local 

ensity once queried. Haines and Xiang [27] proposed a criterion 

alled pWrong, which selects samples most likely to be wrong (i.e., 

elonging to an unseen category). Hospedales et al. [29] introduced 

en/Disc, which adaptively switches generative and discriminative 

lassifiers in the learning progress to jointly discover new cate- 

ories and maintain good learning performance. Hospedales et al. 

28] proposed a criterion called Dirichlet Process Expected Accu- 

acy (DPEA for short) to unify active learning and active class dis- 

overy. Huang et al. [30] attempted to find more instances of rare 

ategories by assuming that one labeled example of each rare cate- 

ory is already available. Constructing such an initial labeled set for 
2 
are categories remains unsolved, which implies that investigating 

LI in this work is meaningful. 

Note that IAL differs from rare category detection in two re- 

pects. First, rare category detection focuses on finding (useful 

nd useless) anomalies from normal data points, while IAL does 

ot make any assumption on whether or not anomalies exist. IAL 

nly concentrates on seeking representative samples to start active 

earning. Second, rare category detection always assumes that the 

atasets are extremely imbalanced with large majority classes and 

elatively small rare classes. IAL does not make such imbalanced 

ssumption. 

There are also some alternatives to tackle the initialization is- 

ue by using additional datasets or pre-trained models [32–34] . 

or instance, we can integrate transfer learning with active learn- 

ng by directly using the model trained on the different but re- 

ated dataset for selecting uncertain samples from our dataset. This 

rocess can be terminated when at least one example per class 

as been founded. However, this kind of approaches normally re- 

uires additional labeled datasets or pre-trained models on large- 

cale datasets, which restricts its application for IAL. 

. Adapted Techniques and a New Strategy 

We briefly discuss various approaches from Section 2 that can 

e used to initialize active learning, possibly after some minor 

daptation. Subsequently, we present a new initialization criterion: 

earest Neighbor Criterion (NNC). First, however, we make the IAL 

etup considered more precise. 

A totally unlabeled dataset P = { x i } n i =1 
is available, where x i ∈

 

d is a feature vector. I denotes the initialization set and C(I ) its

umber of classes. U is the remaining unlabeled data: U = P \ I .
lgorithm 1 presents a basic active initialization process in which 

lgorithm 1 Actively Initialize Active Learning 

equire: unlabeled data U , number of classes c, initial set I = ∅ . 
1: while C(I ) < c do 

2: Choose the sample x ∗ according to some initialization crite- 

rion. 

3: Query it for its label y and update I = I ∪ { x ∗, y } , U ← U \{ x ∗} ;
4: end while 

5: Start some preferred supervised active learning algorithm with 

initial labeled I . 

he total number of all classes is c. We sequentially select an unla- 

eled sample and ask for its labels from a human annotator. When 

ll classes have at least one instance, the initialization phase is 

topped, and one can switch to one’s preferred supervised active 

earning algorithm. 

.1. Adapted Techniques 

In this subsection, we present how to adapt unsupervised active 

earning approaches for the initialization task. k -means++ and TED 

re chosen as the adapted techniques due to their simplicity and 

fficiency. Moreover, they represent the clustering-based methods 

nd optimal design-based approaches, respectively. 

Clustering-based Approaches k -means is considered for its sim- 

licity [24,35] . Specifically, we use k -means++ which smartly 

hooses the initial seeds for k -means and performs well in prac- 

ice [36] . There is no easy way to set the parameter k , but we sug-

est the following procedure. We perform k -means++ with k = c

n which c is the number of classes and query one instance near- 

st to the centroid from each cluster. If there are still some cat- 

gories undiscovered, we continue the aforementioned procedure 

n the remaining unlabeled data until all categories own at least 
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Algorithm 2 Initialization with k -means++ 

1: I = ∅ ; 
2: while C(I ) < c do 

3: Perform k -means++ with k = c on U and set i = 1 ;
4: while C(I ) < c& i ≤ k do 

5: Choose the sample x ∗ closest to the centroid from i th 

cluster; 

6: Query its true label y and update I = I ∪ { x ∗, y } , U ← 

U \{ x ∗} , i = i + 1 ; 

7: end while 

8: end while 
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p  
ne data points. Algorithm 2 shows the overall initialization pro- 

ess. The main difference between Algorithm 2 and the approaches 

rom [24,35] is that the latter set k to equal a pre-defined budget 

nd terminate the active annotation process when the budget is 

nished. 

Optimal Design-based Approaches We show by example how to 

dapt, in a simple way, methods for experimental design for the 

nitialization of active learning. The example criterion we use is 

ED [3] . In brief, TED minimizes the variance of a regularized least 

quare model by solving the following optimization problem: 

in 

X ⊂P 
Tr (P (X 

T X + λI ) −1 P 

T ) , (1) 

here X represents a set of instances to be queried, λ is the 

egularization parameter, and I is the identity matrix. A sequen- 

ial greedy solution to TED is to select instance x such that 

r (P ( X t + 1 
T X t + 1 + λI ) −1 P 

T ) achieves its minimum value, where 

 t+1 = X t ∪ x and t represents the t-th round selection and Tr (·) 
s the trace. We query the instances one by one according to the 

ED criterion and terminate the initialization process when C(I ) is 

qual to c. Clearly, other criteria used for optimal experimental de- 

ign can be employed in the same way. 

.2. Minimum Nearest Neighbor Distance 

As a last method, we present one that is new, simple, and fast. 

e refer to it as the Nearest Neighbor Criterion (NNC). It sequen- 

ially queries the most representative instance from unlabeled data 

uch that the overall distance between queried and unlabeled data 

chieves its minimum value. The main motivation behind this is 

hat we want to minimize the dissimilarity between labeled data 

nd unlabeled data such that these labeled data can well-represent 

he remaining unlabeled data. We use the total nearest neighbor 

istance as a measure of the dissimilarity between queried data 

nd unlabeled data, which is defined as follows: 

 N D (I , U ) = 

∑ 

u ∈ U 
min 

x ∈ I 
‖ u − x ‖ , (2) 

here ‖ u − x ‖ denotes the Euclidean distance between an unla- 

eled instance u and a labeled instance x . 

N N D (I , U ) computes the sum of the Euclidean distance between 

ach unlabeled data point u ∈ U and its corresponding nearest 

eighbor x chosen from queried data I . N N D (I , U ) obtains a rela-

ively small value when each unlabeled sample is close to its near- 

st neighbor. In other words, if each unlabeled data point is similar 

o its nearest neighbor, e.g. min x ∈ I ‖ u − x ‖ is small, then the over- 

ll neighbor distance between U and I is small too. This also im- 

lies that N N D (I , U ) can be considered as a measure of how well

he queried data can represent the unlabeled data. The smaller 

he value of N N D (I , U ) , the more representative I is. Note that

 N D (I , U ) can be easily extended by using other kinds of distance

easures. For instance, the Euclidean distance can be replaced by 

anhattan distance, Hamming distance, Minkowski distance, and 
3 
ahalanobis distance. Furthermore, N N D (I , U ) can be redefined by 

sing some kind of set-to-set distance [37] . 

Therefore, to initialize active learning, we select an unlabeled 

ample s that leads to a minimum value of the dissimilarity be- 

ween queried data and unlabeled data once labeled. In other 

ords, we select an unlabel sample, denoted by s , as the next 

ueried data point such that the nearest neighbor distance be- 

ween queried data I ∪ { s } and the remaining unlabeled data U \{ s }
btains its minimum value. Our nearest neighbor criterion (NNC) 

s defined as follows: 

 

∗ = arg min 

s ∈ U 
N N D (I ∪ { s } , U \{ s } ) . (3)

lgorithm 3 provides the pseudo-code of NNC. 

lgorithm 3 Initialization with NNC 

1: I = ∅ ; 
2: while C(I ) < c do 

3: for each unlabeled sample x i ∈ U do 

4: Assume that x i is chosen as the next queried sample; 

5: Compute the nearest neighbor distance N N D (I ∪ x i , U \ x i ) ; 
6: end for 

7: Choose the sample x ∗ with minimum nearest neighbor dis- 

tance using Eq.~?? . 

8: Query its true label y and update I = I ∪ { x ∗, y } , U ← U \{ x ∗} ; 
9: end while 

NNC can be seen as a sequential clustering algorithm. The clus- 

ering problem we consider is defined as follows: 

rg min 

S ⊂P 

∑ 

u ∈ P \ S 
min 

x ∈ S 
‖ u − x ‖ (4) 

here S is a set of samples we want to query. Each instance in S

an be seen as an independent cluster seed. These seeds are used 

o cluster the remaining unlabeled data points based on the pair- 

ise Euclidean distance. The number of seeds increase by 1 each 

ime a new instance is chosen. The proposed NNC indeed pro- 

ides a sequential greedy optimization approach to the problem 

n Equation 4 . In the first iteration, since the initial set I is empty,

NC chooses the first point which is closest to the mean of all 

ata P . NNC then selects the subsequent sample by minimizing the 

earest neighbor distance using Equation 3 . 

NNC has some links with the earlier mentioned k -means++ al- 

orithm [36] . k -means++ first selects a random data point as the 

rst cluster seed, and then selects the subsequent cluster seed 

ith probability proportional to their squared distance from the 

losest existing cluster seeds. Two aspects distinguish NNC from 

 -means++. First, NNC queries the sample nearest to the mean of 

he data as the first point while k -means++ randomly chooses the 

rst seed. Secondly, NNC selects the subsequent point by minimiz- 

ng the nearest neighbor distance whereas k -means++ randomly 

hooses the next point based on some pre-defined probability. 

. Initialization Phase Experiments 

We test the performance of the proposed NNC method and the 

ain other methods covered in the foregoing. We first describe the 

xperimental setup and, afterwards, present the way we compare 

he approaches. This section only looks at the initialization phase. 

ection 5 studies how the initialization impacts subsequent super- 

ised active learning. 

.1. Experimental Setup 

NNC is compared with the following algorithms: random sam- 

ling, k -means++ [36] (See Algorithm 2 ), TED [3] , �-opt [5] ,
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Table 1 

Datasets information after pre-processing: number of instances ( n ), feature 

dimensionality ( d), number of class ( c). 

Dataset n d c Dataset n d c

MNIST 1000 60 10 USPS 1000 60 10 

CIFAR10 1000 57 10 GTSRB 1000 40 20 

UCFsports 140 100 10 Isolet 1040 40 26 

pendigits 1000 16 10 satimage 1000 36 6 

segment 1000 19 7 vowel 990 10 11 

dermatology 366 34 6 led_display 1000 7 10 

yeast 1484 8 10 ecoli 336 7 8 

lowres 531 50 9 semeion 1593 50 10 
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Wrong [27] , Gen/Disc [29] , DPEA [28] . In addition, we also com-

are with a variant of uncertainty sampling, which first uses NNC 

o find instances which belong to two different classes (in order to 

rain a classifier) and then use maximum entropy [1,38] to adap- 

ively choose the most uncertain sample. This method, what we 

efer to as MaxE, is considered because we want to see whether 

n easy adaptation of a classical supervised active learning meth- 

ds (i.e., uncertainty sampling in this case) can be suitable for the 

nitialization task. 

Among the methods compared, pWrong, Gen/Disc, and DPEA 

re three state-of-the-art rare category detection algorithms. We 

o not show results of the V -optimality based approach [4] since 

e observed that, in general, it performs worse than �-opt [5] in 

ur experiments. 

Having little or even no labeled data basically makes it impossi- 

le to tune parameters for classifiers or active learning algorithms. 

or this reason our experiments are set up with prefixed parame- 

ers, wherever possible we take their default values. More specifi- 

ally, for pWrong, Gen/Disc, and DPEA, and TED, we use the default 

arameters mentioned either in the original references or in codes 

rovided by the authors. For the remaining algorithms which do 

ot have pre-specified default parameters, i.e. �-opt and MaxE, we 

arefully set their parameters to the values that work well in our 

reliminary experiments. For �-opt, we use regularized Laplacian 

raph kernel built by 5-nearest neighbor algorithm where heat ker- 

el weighting is used. For MaxE, we use L 2 regularized logistic re- 

ression with regularization parameter C = 100 as classifier. Since 

lso k -means++ is affected by the first randomly chosen seed, we 

ry 100 different random seeds and choose the one which has low- 

st within-cluster sum of point-to-centroid distances. 

Sixteen multi-class datasets are used in our experiments. Eleven 

f them, e.g. pendigits, semeion, Isolet, vowel, are taken from the 

CI Machine Learning Repository [39] . Pendigits and semeion are 

wo handwritten digits recognition datasets. The former are pen- 

ased handwritten digits from 250 samples, using a pressure sen- 

itive tablet. The latter are scans of 1593 handwritten digits, where 

ach digit was scaled to 16 ×16 pixels. Isolet and vowel are speech 

ecognition data sets. The Isolet dataset consists of the 26 letters 

f the English alphabet, while the vowel dataset is composed of 11 

owels in British English. The yeast and ecoli datasets are used to 

redict the cellular localization of particular proteins. We also test 

n five vision datasets. MNIST [40] and USPS [41] are handwrit- 

en digit datasets. CIFAR10 [42] and GTSRB [43] are image classi- 

cation datasets. UCFsports [44] consists of 10 different categories 

f human actions collected from various sports videos, where the 

re-extracted Action Bank features [45] are used in our experi- 

ent. For the MNIST and the USPS dataset, we use the gray-scale 

ixel values as the features. The HOG feature are extracted [46] for 

IFAR10 and the GTSRB dataset. For computational efficiency, we 

se random sub-sampling and principal component analysis (PCA) 

n some datasets to reduce the sample size and feature dimen- 

ionality. Table 1 presents the properties of each dataset after pre- 

rocessing. 
4

For each dataset, we randomly choose half of the data as the 

nlabeled data with which the active initialization is conducted. 

he remaining data is used to evaluate the classification accuracy 

f the chosen initial set. We repeat the random partition 100 times 

nd average the results. We use L 2 regularized logistic regression 

rom the LIBLINEAR package [47] with regularization parameter 

 = 100 as classifier. 

.2. Results and Analysis 

Table 2 shows the performance of each method in terms of the 

eans and standard deviations of the number of queried samples 

equired to initialize active learning. The smaller the value, the bet- 

er the performance. All the experiments are repeated 100 times 

nd we use a paired t-test at a 95% significance level to check 

or statistically significant differences. The method which obtains 

he best performance or performs comparably to the best model is 

ighlighted in bold face and coloured. We also report the average 

core over all test sets and the average ranking of each algorithm 

i.e. the Mean and Average Ranking in Table 2 ). Wins counts the 

umber of datasets on which an algorithm behaves the best or acts 

omparably to the best and win/tie/loss reports the win/tie/loss 

ounts of other methods versus random initialization based on the 

aired t-test as well. Average Accuracy reports the average classifi- 

ation accuracy of all methods over all the test sets. 

First of all, we find that NNC obtains the best performance 

n most datasets except on the dermatology and ecoli dataset. It 

lso outperforms other models in terms of Mean, Average Rank- 

ng and Wins. The average number of samples required for NNC 

s around 30 while the second best needs, about, 37 data points. 

NC achieves a higher average ranking of 1.62, whereas the sec- 

nd best model DPEA gets a score of 4.38. NNC also shows a clear 

dvantage over random initialization with a win/tie/loss count of 

5/1/0, which means that it dose not perform worse than random 

ampling on the 16 test sets. 

Secondly, among the remaining compared approaches, DPEA 

nd �-opt also perform well on most datasets, achieving best per- 

ormance on 8 and 7 datasets, respectively. They require about 37 

r 38 initial data points on average. Though pWrong obtains a rea- 

onable performance in terms of Mean, i.e., 37.41, it only performs 

mong the best on a single dataset: MNIST. MaxE also performs 

ell compared to random sampling, i.e., obtaining a win/tie/loss 

ount of 9/6/1. TED and Gen/Disc obtain a slightly worse perfor- 

ance than NNC, DPEA, and �-opt. k -means++ demonstrates a 

ery poor performance with respects to the average number of re- 

uired samples. It needs around 54 instances on average to initial- 

ze active learning. This number far exceeds that of all other com- 

ared methods except random sampling. The main reason could be 

hat it is difficult to set an appropriate k beforehand. 

We observe that random sampling is surpassed by all compared 

pproaches in terms of Mean and Average Ranking. The average 

umber of required samples for random sampling is around 63, 

hile this value for the second worst model, k -means++, is around 

4. Note, however, that on the CIFAR10 dataset, random sampling 

s among the best performing. We also find that some methods, 

.g. DPEA, Gen/Disc, k -means++, fail to outperform random initial- 

zation on some particular datasets. Overall, however, a random 

nitialization seems ill-advised. 

We also evaluate the relative improvement of the active initial- 

zation criteria over random sampling. We consider the ratio 
n AI 
n R 

here n AI and n R are the number of necessary queries of active 

nitialization models and random sampling, respectively. Table 3 

eports the medians and median absolute deviations of these ratios 

ver 100 trials. We use a Wilcoxon signed-rank test at a 95% signif- 

cance level to check whether there is a statistical significant dif- 

erence between two models. The method which obtains the best 
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Table 2 

Means and standard deviations of number of queried samples (details in the main text). 

Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

USPS 32.34 ( ±14.11) 52.44 ( ±35.03) 19.57 ( ±9.13) 16.05 ( ±4.86) 24.50 ( ±10.87) 56.57 ( ±31.43) 20.15 ( ±10.03) 30.52 ( ±11.58) 15.38 ( ±3.78) 

MNIST 31.88 ( ±11.57) 47.60 ( ±22.44) 21.15 ( ±6.82) 23.60 ( ±6.71) 21.06 ( ±5.72) 47.12 ( ±26.56) 21.37 ( ±10.34) 23.34 ( ±7.65) 22.24 ( ±4.91) 

CIFAR10 29.36 ( ±11.31) 32.05 ( ±11.00) 28.61 ( ±11.59) 29.65 ( ±8.45) 35.84 ( ±10.66) 50.84 ( ±23.64) 47.60 ( ±17.36) 28.92 ( ±9.81) 28.85 ( ±11.10) 

UCFsports 31.48 ( ±11.13) 23.72 ( ±10.31) 17.86 ( ±5.31) 32.67 ( ±12.64) 32.86 ( ±12.77) 32.43 ( ±12.82) 32.86 ( ±12.77) 38.56 ( ±18.57) 15.21 ( ±4.21) 

GTSRB 69.67 ( ±20.98) 70.15 ( ±25.32) 57.88 ( ±15.61) 61.25 ( ±21.69) 66.96 ( ±18.92) 75.38 ( ±22.17) 62.53 ( ±18.45) 61.78 ( ±16.21) 60.25 ( ±21.22) 

Isolet 92.67 ( ±25.24) 102.81 ( ±37.88) 81.69 ( ±28.22) 81.30 ( ±24.84) 102.67 ( ±34.38) 90.54 ( ±26.90) 74.32 ( ±22.33) 93.70 ( ±29.71) 71.57 ( ±23.65) 

pendigits 30.10 ( ±11.09) 47.67 ( ±27.89) 24.12 ( ±7.84) 30.02 ( ±12.37) 29.55 ( ±11.59) 20.80 ( ±5.98) 41.08 ( ±11.87) 28.36 ( ±15.23) 18.45 ( ±4.89) 

satimage 20.91 ( ±10.19) 103.24 ( ±26.13) 23.15 ( ±13.19) 9.34 ( ±1.97) 19.56 ( ±9.46) 15.09 ( ±6.59) 9.65 ( ±4.23) 17.78 ( ±9.61) 9.03 ( ±1.65) 

yeast 252.70 ( ±145.10) 87.20 ( ±44.23) 66.09 ( ±40.30) 66.74 ( ±33.00) 69.88 ( ±37.98) 71.94 ( ±46.74) 58.95 ( ±27.32) 106.44 ( ±116.38) 62.08 ( ±33.95) 

segment 16.94 ( ±5.98) 20.95 ( ±8.03) 14.77 ( ±4.56) 10.82 ( ±2.84) 15.04 ( ±4.93) 26.79 ( ±10.07) 10.93 ( ±3.42) 18.26 ( ±7.84) 10.47 ( ±2.72) 

vowel 34.65 ( ±13.34) 53.57 ( ±23.34) 79.84 ( ±60.82) 30.50 ( ±9.30) 34.36 ( ±9.39) 57.38 ( ±41.73) 28.60 ( ±10.70) 30.88 ( ±10.95) 25.95 ( ±5.98) 

lowres 176.19 ( ±51.76) 108.75 ( ±82.48) 82.55 ( ±41.04) 24.55 ( ±4.52) 29.03 ( ±11.35) 73.48 ( ±18.22) 68.35 ( ±6.97) 78.14 ( ±31.87) 38.54 ( ±13.61) 

dermatology 23.53 ( ±15.76) 12.10 ( ±7.03) 8.50 ( ±3.02) 25.45 ( ±10.44) 17.11 ( ±8.27) 11.09 ( ±4.54) 22.17 ( ±8.53) 10.96 ( ±4.74) 6.46 ( ±1.35) 

led_display 29.63 ( ±12.91) 20.47 ( ±8.25) 67.20 ( ±30.40) 23.09 ( ±7.74) 24.51 ( ±7.79) 27.35 ( ±10.54) 19.19 ( ±8.48) 27.37 ( ±11.10) 18.95 ( ±8.43) 

ecoli 107.65 ( ±38.01) 49.86 ( ±46.25) 87.89 ( ±40.23) 74.18 ( ±46.68) 47.16 ( ±28.47) 62.86 ( ±44.15) 38.89 ( ±29.90) 32.68 ( ±21.49) 45.93 ( ±35.13) 

semeion 29.00 ( ±12.58) 23.58 ( ±12.58) 26.61 ( ±7.88) 75.73 ( ±19.84) 28.52 ( ±9.18) 23.69 ( ±8.44) 37.64 ( ±12.47) 20.58 ( ±6.11) 18.57 ( ±5.13) 

Mean ( ± std) 63.04 ( ±66.01) 53.51 ( ±32.21) 44.22 ( ±29.01) 38.43 ( ±24.49) 37.41 ( ±23.60) 46.46 ( ±24.54) 37.14 ( ±20.37) 40.52 ( ±28.67) 29.25 ( ±20.43) 

Average Accuracy 62.91 ( ±17.61) 64.09 ( ±17.13) 62.46 ( ±17.16) 62.51 ( ±16.02) 61.66 ( ±16.51) 61.77 ( ±17.33) 64.39 ( ±17.57) 61.38 ( ±17.38) 64.08 ( ±17.13) 

Average Ranking 6.94 6.69 4.44 4.50 5.19 6.19 4.38 5.06 1.62 

Wins 1 1 4 7 1 0 8 3 14 

win/tie/loss - 7/2/7 11/3/2 11/4/1 8/6/2 7/4/5 11/2/3 9/6/1 15/1/0 

5
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Table 3 

Medians and deviations of ratio of number of queries relative to random sampling (details in the main text). 

Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

USPS 1.00 ( ±0.00) 1.49 ( ±0.81) 0.63 ( ±0.26) 0.52 ( ±0.20) 0.72 ( ±0.27) 1.64 ( ±0.80) 0.59 ( ±0.20) 0.88 ( ±0.28) 0.52 ( ±0.16) 

MNIST 1.00 ( ±0.00) 1.35 ( ±0.52) 0.68 ( ±0.21) 0.75 ( ±0.20) 0.64 ( ±0.18) 1.41 ( ±0.45) 0.67 ( ±0.17) 0.74 ( ±0.24) 0.71 ( ±0.21) 

CIFAR10 1.00 ( ±0.00) 1.14 ( ±0.36) 0.96 ( ±0.33) 1.09 ( ±0.34) 1.24 ( ±0.32) 1.63 ( ±0.57) 1.69 ( ±0.49) 0.94 ( ±0.29) 0.95 ( ±0.26) 

UCFsports 1.00 ( ±0.00) 0.71 ( ±0.26) 0.58 ( ±0.15) 1.00 ( ±0.39) 1.03 ( ±0.40) 1.06 ( ±0.38) 1.03 ( ±0.40) 1.13 ( ±0.44) 0.48 ( ±0.14) 

GTSRB 1.00 ( ±0.00) 1.02 ( ±0.30) 0.83 ( ±0.24) 0.81 ( ±0.24) 0.94 ( ±0.24) 1.18 ( ±0.33) 0.86 ( ±0.21) 0.91 ( ±0.26) 0.89 ( ±0.28) 

Isolet 1.00 ( ±0.00) 1.08 ( ±0.36) 0.87 ( ±0.30) 0.85 ( ±0.19) 1.07 ( ±0.31) 0.93 ( ±0.26) 0.75 ( ±0.21) 1.02 ( ±0.31) 0.79 ( ±0.23) 

pendigits 1.00 ( ±0.00) 1.46 ( ±0.68) 0.83 ( ±0.27) 1.02 ( ±0.35) 1.03 ( ±0.34) 0.69 ( ±0.17) 1.53 ( ±0.48) 0.87 ( ±0.30) 0.65 ( ±0.16) 

satimage 1.00 ( ±0.00) 5.13 ( ±1.91) 1.07 ( ±0.45) 0.50 ( ±0.17) 0.93 ( ±0.37) 0.68 ( ±0.23) 0.50 ( ±0.17) 0.93 ( ±0.37) 0.47 ( ±0.17) 

yeast 1.00 ( ±0.00) 0.39 ( ±0.18) 0.27 ( ±0.13) 0.28 ( ±0.16) 0.31 ( ±0.17) 0.27 ( ±0.15) 0.25 ( ±0.11) 0.37 ( ±0.19) 0.24 ( ±0.13) 

segment 1.00 ( ±0.00) 1.31 ( ±0.45) 0.87 ( ±0.27) 0.67 ( ±0.21) 0.87 ( ±0.30) 1.64 ( ±0.58) 0.64 ( ±0.22) 1.02 ( ±0.38) 0.65 ( ±0.18) 

vowel 1.00 ( ±0.00) 1.58 ( ±0.61) 1.75 ( ±1.00) 0.95 ( ±0.30) 1.04 ( ±0.28) 1.42 ( ±0.65) 0.84 ( ±0.30) 0.84 ( ±0.26) 0.80 ( ±0.24) 

lowres 1.00 ( ±0.00) 0.49 ( ±0.29) 0.41 ( ±0.14) 0.13 ( ±0.03) 0.16 ( ±0.04) 0.41 ( ±0.10) 0.38 ( ±0.08) 0.45 ( ±0.16) 0.22 ( ±0.08) 

dermatology 1.00 ( ±0.00) 0.55 ( ±0.22) 0.43 ( ±0.19) 1.20 ( ±0.49) 0.78 ( ±0.42) 0.55 ( ±0.22) 1.09 ( ±0.50) 0.53 ( ±0.27) 0.34 ( ±0.13) 

led_display 1.00 ( ±0.00) 0.68 ( ±0.21) 2.38 ( ±0.95) 0.77 ( ±0.27) 0.88 ( ±0.27) 0.98 ( ±0.37) 0.63 ( ±0.28) 0.93 ( ±0.29) 0.60 ( ±0.24) 

ecoli 1.00 ( ±0.00) 0.29 ( ±0.15) 0.79 ( ±0.30) 0.66 ( ±0.34) 0.40 ( ±0.19) 0.52 ( ±0.32) 0.32 ( ±0.20) 0.25 ( ±0.13) 0.39 ( ±0.26) 

semeion 1.00 ( ±0.00) 0.74 ( ±0.26) 0.91 ( ±0.27) 2.90 ( ±0.84) 1.03 ( ±0.31) 0.85 ( ±0.24) 1.33 ( ±0.47) 0.74 ( ±0.23) 0.66 ( ±0.20) 

Mean ( ± std) 1.00 ( ±0.00) 1.21 ( ±1.12) 0.89 ( ±0.52) 0.88 ( ±0.61) 0.82 ( ±0.30) 0.99 ( ±0.46) 0.82 ( ±0.42) 0.78 ( ±0.25) 0.59 ( ±0.22) 

Average Ranking 6.62 6.44 4.69 4.44 5.44 6.38 4.19 4.88 1.94 

Wins 2 2 4 7 3 1 9 3 14 

win/tie/loss - 7/1/8 9/4/3 9/5/2 5/9/2 7/3/6 10/2/4 6/8/2 15/1/0 
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erformance or performs comparably to the best model is high- 

ighted in bold face and coloured. NNC clearly improves upon ran- 

om sampling and other models in terms of mean, wins, and aver- 

ge ranking. It outperforms random sampling on 15 datasets except 

he CIFAR10 on which a tie is reached. The mean of the medians 

f the ratios of NNC to random sampling is 0.59, which means that 

NC can save 41% annotation cost. DPEA, MaxE, and pWrong also 

emonstrate good performances, reducing the cost by about a fifth. 

 -means++ shows performance poorer than random sampling, ob- 

aining an average ratio of 1.21 and a win/tie/loss count of 7/1/8. 

Figure 1 shows the plots of the average number of discovered 

lasses with respects to the number of queried samples. The x- 

xis is the number of queried samples and the y-axis is the ex- 

onentiation with number two as the base and average number of 

lasses as the exponent. We use the exponential function for a bet- 

er visualization of the behaviour of different methods in the latter 

art of the initialization stage. Obviously, the faster the increase, 

he better the method. Note that the maximal number of queried 

nstances (on the horizontal axis) differs from dataset to dataset. 

e observe that the NNC clearly outperforms other approaches on 

ost datasets, i.e., the USPS, UCFsports, Isolet, pendigits, satimage, 

egment, vowel, dermatology, and semeion. Random sampling per- 

orms among the best on the CIFAR10 dataset, and obtains poor 

erformance on the remaining datasets. �-opt behaves the best on 

he lowres dataset while becoming the worst one on the semeion 

ataset. Gen/Disc performs the worst on several datasets, i.e. the 

SPS, CIFAR10, GTSRB, and segment. TED is the slowest one to dis- 

over classes on the vowel and led_display dataset. Another obser- 

ation to make is that NNC is never worst performing over the 16 

est sets. 

For a better understanding of the characteristic of different ini- 

ialization criteria, we generate a synthetic dataset and provide the 

reference map [20] . As shown in Figure, this synthetic dataset 

onsists of points from six clusters with several outliers in the up- 

er left corner and points with the same color share the same class 

abels. This preference map is generated by creating the synthetic 

D dataset 100 times with different random seeds and recording 

he locations of the first six sample points chosen by different ini- 

ialization methods. We choose to count the first six queried points 

ince this synthetic dataset is composed of six clusters and any ini- 

ialization criteria requires at least six samples to finish the initial- 

zation task. We calculate the local density of chosen points and 

how the density map with pseudo-colors. Blue and red colors 
6 
ndicate the lowest and highest density, respectively. Means and 

tandard deviations of number of queried samples on the synthetic 

ataset is also reported in Table 4 . We observe that k -means++, 

Wrong, DEPA, and NNC perform among the best. 

As shown in Figure, k -means++ and NNC perform similarly and 

end to select the points near the centre of the clusters. This co- 

ncides with the incremental clustering characteristic of NNC and 

emonstrates that NNC prefers the representative samples. The 

henomenon that pWrong prefers points in the upper left corner 

mplies that pWrong may be easily affected by the outliers. NNC 

nd k -means++ are less likely to be influenced by the outliers. TED 

ith a default linear kernel fails on this synthetic dataset and is 

ess likely to query the points near the centre. We find that this 

ituation can be solved by using a radial basis function kernel TED. 

axE under-performs on this dataset and ignores the points in the 

ottom left corner. The reason may be that MaxE queries the first 

everal pints from the central points and then gets stuck in the 

oorly estimated uncertainty. �-opt and Gen/Disc performs simi- 

arly to each other and the central points are selected regardless of 

heir distribution density. 

When an initial set has been constructed, i.e., at least one in- 

tance has been queried from each class, we evaluate the classi- 

cation accuracy on the test set to evaluate how informative the 

ueried initial set is. Figure 3 illustrates the average classification 

ccuracy of the initial set chosen by different initialization crite- 

ia w.r.t. the average number of queried samples over 100 trials. 

he point in the upper left corner means that an algorithm has 

he overall best performance since it achieves the highest classifi- 

ation accuracy with the smallest number of queried samples. On 

he contrary, the point in the lower right corner indicates that this 

ethods performs poorly even with a large number of initial in- 

tances. 

We find that NNC obtains relatively high accuracy with a rea- 

onable number of queried instances on most datasets. In Figure, 

NC achieves the second highest accuracy with around 15 samples 

hile k -means++ has the best accuracy with about 50 instances. 

NC has a similar accuracy to k -means++ on the MNIST and seg- 

ent dataset, but it only needs about half of the samples. NNC 

lso performs well in terms of the average accuracy on CIFAR10, 

endigits, segment, dermatology, led_display, and semeion. 

Table 2 also reports the average classification accuracy of all 

ethods over all test sets. NNC obtains about 64% accuracy with 

ess than 30 samples. DPEA has a similar performance to NNC 
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Fig. 1. Plots of the exponential of the average number of discovered classes with number two as the base w.r.t. the number of queried samples. On the x-axis is the number 

of queried samples and on the y-axis is the exponential of the average number of classes with base two. 
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n terms of the average accuracy, but it requires around 37 in- 

tances. k -means++ obtains the second best accuracy 64.09% but 

ith a cost of requiring 24 more samples than NNC. Overall, the 

ew method shows good performance in terms of the number of 

ueried samples and also the classification accuracy. DPEA is the 
Table 4 

Means and standard deviations of number of queried samples on the synthetic data

Random k-means + TED �-opt pWrong 

17.88 ( ±7.65) 7.08 ( ±2.70) 119.80 ( ±14.16) 7.88 ( ±2.63) 6.82 ( ±1.5

7 
econd best initialization strategy, while �-opt slightly performs 

orse than DPEA. 

Table 5 reports the average computational cost of finding an ini- 

ial labeled subset on 16 datasets. On each dataset we repeat the 

xperiments 20 times and report the average time of constructing 
set. 

Gen/Disc DPEA MaxE NNC 

4) 9.87 ( ±4.63) 7.13 ( ±1.33) 154.32 ( ±111.43) 6.92 ( ±1.03) 
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Fig. 2. Preference maps of a synthetic dataset. (a) shows the distribution of a synthetic dataset and (b) demonstrates the preference maps of the compared initialization 

criteria on dataset (a). Points with different colors belong to different categories. 

Table 5 

Computational cost comparison of constructing an initial labeled set (in seconds). 

Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

USPS 0.01 2.33 0.04 201.76 1.76 1.98 46.63 0.10 0.29 

MNIST 0.01 2.52 0.04 295.25 1.65 1.74 45.96 0.07 0.48 

CIFAR10 0.01 1.91 0.07 390.75 1.82 1.72 106.00 0.08 0.76 

UCFsports 0.00 0.52 0.00 0.42 0.67 0.75 23.42 0.14 0.02 

GTSRB 0.01 2.76 0.16 801.78 2.55 3.56 348.55 0.40 2.06 

Isolet 0.01 3.22 0.21 1017.85 2.36 5.77 301.78 0.60 1.65 

pendigits 0.02 1.76 0.08 400.43 1.80 0.62 34.59 0.07 0.35 

satimage 0.02 7.71 0.08 127.56 2.64 1.06 12.70 0.07 0.17 

yeast 0.01 5.27 0.24 738.28 1.93 1.69 41.12 0.51 3.82 

segment 0.01 0.93 0.03 41.36 1.21 0.34 5.51 0.03 0.13 

vowel 0.01 2.31 0.18 245.76 1.61 1.41 22.49 0.06 0.48 

lowres 0.01 3.96 0.06 64.49 1.18 3.30 115.98 0.39 0.32 

dermatology 0.00 0.38 0.01 7.44 0.48 0.30 10.07 0.01 0.02 

led_display 0.00 0.64 0.13 181.36 0.84 0.50 9.18 0.04 0.33 

ecoli 0.00 1.12 0.02 6.58 0.43 0.57 7.74 0.02 0.09 

semeion 0.01 3.00 0.12 3359.18 1.60 0.53 69.91 0.08 0.71 

Mean 0.01 2.52 0.09 492.52 1.53 1.61 75.10 0.17 0.73 
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n initial set. The experiments are constructed with MATLAB 9.1 

n an Intel(R) Core 3.0GHz i9-9980XE CPU PC with 128 GB mem- 

ry. We see that random sampling, TED, and MaxE are highly effi- 

ient due to their simplicity. NNC is less cost-effective than random 

ampling, TED, and MaxE but clearly outperform other compared 

ethods. We also note that �-opt and DPEA have a remarkably 

eavy computational cost. The reason is that �-opt has to compute 

he inverse of matrix multiple times and DPEA requires to retrain 

he classifiers w.r.t. all possible classes and all unlabeled samples. 

. Initialization Impact on Active Learning 

When the initialization stage of active learning is completed, we 

an continue with the second step, which is employing any regular 
8 
ctive learning algorithm until the labeling budget has been spent 

r some stopping criterion is satisfied. One may wonder, however, 

ow the initial data set affects the active learning strategy, as the 

uality of initial labeled data has an impact on the acquisitions of 

he subsequently queried samples. 

We briefly investigate this issue empirically. One of the chal- 

enges is that the number of possible experiments easily gets out 

f hand, as results may vary depending on the labeling budget al- 

owed and the subsequent active learning strategy employed. We 

nclude our investigation for completeness, but keep it necessarily 

imited. The specific setup is as follows. 

Uncertainty sampling and a variance maximization method 

MVAL) [48] are chosen as the subsequent active learning crite- 

ia after initialization for two reasons: (1) uncertainty sampling 
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Fig. 3. Illustration of the average accuracy w.r.t. the number of queried samples. On the x-axis is the average number of queried samples and on the y-axis is the average 

accuracy over 100 trials. 
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s one of the simplest and most widely used active learning al- 

orithms [1] and is among the top performers in an earlier ex- 

ensive benchmark experiment that the authors conducted [20] ; 

2) MVAL demonstrates a superior performance over its com- 

etitors including uncertainty sampling with a drawback of high 

omputational cost. For uncertainty sampling, we employ logis- 

ic regression as the base classifier and use entropy as the un- 

ertainty measure [1,38] . For each dataset, we start with the dif- 

erent initialization strategies and switch to the uncertainty sam- 

ling on the condition that all classes have at least one labeled 

ample and the labeling budget is not finished. It is therefore 

ossible that underperforming criteria exhaust all the budget on 
9 
he initialization, leaving none for subsequent uncertainty sam- 

ling. The actual choice of budget may differs slightly from dataset 

o dataset. For most datasets, we choose 100 because accura- 

ies do not increase much after annotating 100 instances. For GT- 

RB, CIFAR10, and vowel, we stop earlier because of the heavy 

omputation cost they incur. Like in the foregoing experiment, 

 2 regularized logistic regression with a regularization parame- 

er C = 100 from the LIBLINEAR package [47] is used. Follow- 

ng previous works [48–51] , we use the area under the learn- 

ng curve (ALC) as our performance measure. We repeat the ex- 

eriments 100 times and report the average results in Table 6 

nd 7 . 
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Table 6 

Performance in terms of the areas under the learning curve (ALC; details in the main text). Uncertainty sampling is chosen 

as the subsequent active learning method. 

Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

USPS 0.738 0.767 0.777 0.797 0.756 0.678 0.795 0.742 0.801 

MNIST 0.610 0.640 0.668 0.670 0.650 0.590 0.673 0.627 0.673 

CIFAR10 0.254 0.259 0.256 0.261 0.243 0.237 0.238 0.251 0.265 

UCFsports 0.627 0.665 0.710 0.633 0.631 0.629 0.631 0.642 0.701 

GTSRB 0.535 0.582 0.593 0.618 0.582 0.555 0.591 0.558 0.612 

Isolet 0.458 0.523 0.494 0.504 0.489 0.465 0.525 0.469 0.532 

pendigits 0.693 0.732 0.690 0.694 0.694 0.710 0.696 0.702 0.752 

satimage 0.709 0.686 0.757 0.748 0.719 0.693 0.755 0.657 0.727 

yeast 0.454 0.463 0.433 0.468 0.452 0.444 0.469 0.473 0.481 

segment 0.729 0.702 0.743 0.775 0.743 0.688 0.785 0.712 0.792 

vowel 0.346 0.324 0.354 0.353 0.366 0.309 0.357 0.351 0.352 

lowres 0.784 0.795 0.777 0.731 0.781 0.777 0.802 0.800 0.810 

dermatology 0.854 0.901 0.912 0.841 0.885 0.885 0.868 0.906 0.922 

led_display 0.572 0.616 0.502 0.587 0.575 0.566 0.607 0.563 0.609 

ecoli 0.794 0.797 0.804 0.809 0.814 0.811 0.816 0.813 0.812 

semeion 0.532 0.579 0.562 0.496 0.536 0.540 0.562 0.542 0.585 

Average ALC 0.606 0.627 0.627 0.624 0.62 0.599 0.636 0.613 0.652 

Average Ranking 7.31 4.75 4.75 4.69 5.25 7.38 3.56 5.5 1.81 

Wins 0 1 2 2 2 0 3 1 10 

win/tie/loss − 13/0/3 12/1/3 12/2/2 13/1/2 6/1/9 15/0/1 12/0/4 16/0/0 

Table 7 

Performance in terms of the areas under the learning curve (ALC; details in the main text). MVAL is chosen as the subsequent 

active learning method. 

Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

USPS 0.732 0.765 0.777 0.796 0.754 0.676 0.787 0.744 0.798 

MNIST 0.617 0.642 0.671 0.677 0.661 0.593 0.676 0.646 0.682 

CIFAR10 0.246 0.261 0.249 0.260 0.240 0.238 0.244 0.250 0.265 

UCFsports 0.574 0.670 0.706 0.631 0.631 0.638 0.631 0.643 0.700 

GTSRB 0.515 0.587 0.597 0.622 0.586 0.544 0.594 0.563 0.615 

Isolet 0.443 0.523 0.495 0.507 0.492 0.462 0.529 0.471 0.535 

pendigits 0.701 0.739 0.712 0.710 0.711 0.730 0.705 0.712 0.763 

satimage 0.713 0.686 0.763 0.755 0.734 0.716 0.764 0.677 0.733 

yeast 0.450 0.466 0.431 0.469 0.450 0.441 0.473 0.473 0.480 

segment 0.729 0.705 0.750 0.783 0.741 0.700 0.788 0.717 0.795 

vowel 0.341 0.327 0.357 0.363 0.370 0.332 0.366 0.361 0.364 

lowres 0.780 0.795 0.778 0.741 0.790 0.781 0.804 0.801 0.813 

dermatology 0.849 0.904 0.914 0.843 0.889 0.897 0.874 0.910 0.925 

led_display 0.564 0.612 0.508 0.593 0.581 0.575 0.608 0.569 0.611 

ecoli 0.778 0.795 0.803 0.807 0.813 0.810 0.812 0.810 0.810 

semeion 0.546 0.603 0.576 0.499 0.561 0.564 0.573 0.564 0.611 

Average ALC 0.599 0.63 0.631 0.628 0.625 0.606 0.639 0.619 0.656 

Average Ranking 7.75 4.75 4.81 4.88 5.25 6.75 3.75 5.25 1.81 

Wins 0 1 2 1 2 1 3 1 12 

win/tie/loss − 13/0/3 13/1/2 13/1/2 14/1/1 8/2/6 15/0/1 14/0/2 16/0/0 
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Figure 4 shows the average accuracy of the whole active learn- 

ng procedure w.r.t. the number of queried samples over 100 trials 

ith uncertainty sampling as the base active learning algorithm. 

he color coding of the lines indicated what fraction of queries 

oved into the second stage at that point. That is, the line is blue 

f most of the 100 trials are still in the initialization stage, the 

ine is red of all trials have already moved on to the regular ac- 

ive learning strategy. Colors in between indicate fraction between 

 (blue) and 1 (red). 

From Table 2 and 6 , we find that uncertainty sampling ini- 

ialized with NNC achieves the best overall performance in terms 

f the average ALC and average ranking. In addition, it performs 

mong the best over 10 datasets while the second best per- 

ormer DPEA only wins over 3 datasets. Furthermore, it outper- 

orms the active learner initialized with random initialization over 

ll the 16 test datasets. However, other initialization criteria may 

ead to performance worse than random initialization on multiple 

atasets. For instance, Gen/Disc’s performance is surpassed by ran- 

om initialization on USPS and MNIST. Similarly, on semeion, �- 

pt performs clearly worse than random initialization. Uncertainty 
10 
ampling initialized with NNC surpasses the one initialized with 

axE on most datasets except on ecoli where the latter performs 

lightly better. Note that MaxE uses uncertainty sampling to find 

ther initial labeled instances after the first two classes are found 

y employing NNC. The clearly better performance of NNC over 

axE could indicate that first employing some well-performing 

nitialization strategies and then switching to regular active learn- 

ng algorithms is more likely to succeed than directly exploiting 

ome active learning algorithms to find all the required labeled 

nstances. 

We observe similar results in Table 7 with MVAL as the base ac- 

ive learning method. MVAL initialized with NNC performs among 

he best over 12 datasets and obtain excellent scores in terms of 

he average ALC and average ranking. A further observation from 

able 6 and 7 is that uncertainty sampling and MVAL obtain simi- 

ar performance when they are started with the same initialization 

riterion. For instances, when initialized with NNC, the average 

LC of uncertainty sampling is 0.652 and that of MVAL is 0.656. 

imilar situations occur with other initialization criteria, e.g., un- 

ertainty sampling and MVAL with DPEA obtain 0.636 and 0.639, 
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Fig. 4. Plots of the average accuracy w.r.t. the number of queried samples. On the x-axis is the average number of queried samples and on the y-axis is the average accuracy 

over 100 trials. Each line is colored based on its initialization process. Uncertainty sampling is used as the base active learning method. 
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espectively. This implies that the initialization strategies exert 

reater influence on the learning performance over the subsequent 

ctive learning algorithms. 

To further demonstrate the effectiveness and robustness of the 

roposed method, we also report the comparison results by em- 

loying a linear SVM and a non-linear extreme learning machine. 

ore specially, we use a linear SVM from the LIBSVM package 

52] with regularization parameter C being set to 10 in all the ex- 

eriments. For extreme learning machine, we use the code avail- 

ble online 1 with a radial basis function kernel of default param- 

ter. We present the overall average performances of the com- 

ared methods using three different classifiers (i.e. logistic regres- 
1 http://www.extreme- learning- machines.org . 

M

t

o

11 
ion, linear SVM, and extreme learning machine) in combination 

ith two active learning approaches (i.e. uncertainty sampling and 

VAL) in Tables 8 and 9 . The details of the performances on each 

ingle dataset with SVM and extreme learning machine as the clas- 

ifiers are available in the appendix. 

We observe that the proposed method NNC still achieves the 

est performances in terms of Average ALC, Average Ranking, and 

ins, regardless of the classifier applied or the active learning 

ethod employed. For example, as shown in Table 8 , in case of 

ncertainty sampling being utilized, NNC obtains the best scores of 

verage ALC, average ranking, and wins, no matter which classifier 

s applied. The same phenomenon is observed in Table 9 in which 

VAL is employed as the subsequent active learning method. Note 

hat when extreme learning machine is applied, the average ALC 

f the compared methods performed slightly worse than that of 

http://www.extreme-learning-machines.org
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Table 8 

Performance in terms of the areas under the learning curve (ALC) using different classifiers on 16 datasets. Uncertainty sampling is chosen as the 

subsequent active learning method. 

Classifier Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

Logistic Regression Average ALC 0.606 0.627 0.627 0.624 0.62 0.599 0.636 0.613 0.652 

Average Ranking 7.31 4.75 4.75 4.69 5.25 7.38 3.56 5.5 1.81 

Wins 0 1 2 2 2 0 3 1 10 

Linear SVM Average ALC 0.62 0.643 0.64 0.636 0.632 0.612 0.648 0.628 0.668 

Average Ranking 6.94 4.38 5.06 4.75 5.25 7.06 4.12 5.81 1.62 

Wins 0 1 1 1 2 1 4 1 10 

Extreme Learning Machine Average ALC 0.584 0.606 0.601 0.602 0.593 0.573 0.616 0.588 0.632 

Average Ranking 7.12 4.19 4.38 4.75 5.81 7.31 3.5 6.06 1.88 

Wins 0 1 1 2 2 0 6 0 9 

Table 9 

Performance in terms of the areas under the learning curve (ALC) using different classifiers on 16 datasets. MVAL is chosen as the subsequent active 

learning method. 

Classifier Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

Logistic Regression Average ALC 0.599 0.63 0.631 0.628 0.625 0.606 0.639 0.619 0.656 

Average Ranking 7.75 4.75 4.81 4.88 5.25 6.75 3.75 5.25 1.81 

Wins 0 1 2 1 2 1 3 1 12 

Linear SVM Average ALC 0.611 0.643 0.642 0.639 0.636 0.62 0.65 0.634 0.671 

Average Ranking 7.69 4.56 4.69 4.75 5.38 6.62 3.94 5.69 1.69 

Wins 0 1 2 2 1 0 3 1 11 

Extreme Learning Machine Average ALC 0.579 0.606 0.602 0.606 0.598 0.582 0.617 0.594 0.633 

Average Ranking 7.44 4.44 4.56 4.38 5.94 6.75 4 5.81 1.69 

Wins 0 1 1 3 2 0 4 0 11 
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sing other classifiers. The possible reason could be that extreme 

earning machine is not fine-tuned in the active learning setting 

ue to a lack of additional labeled validation set. However, we ob- 

erve that NNC outperforms other methods, even in case of ex- 

reme learning machine being used as the classifier. For example, 

VAL initialized with NNC still obtains the best results over 11 

atasets with extreme learning machine being the classifier. Simi- 

arly, uncertainty sampling starting with NNC performs among the 

est on 9 datasets when extreme learning machine is employed. 

his indicates that the proposed method NNC is substantially ro- 

ust to the classifier used and active learning method employed. 

All in all, we find that the behaviour of different initialization 

trategies in the initialization task is quite related to their perfor- 

ances on the whole active learning process. For example, NNC 

nd DPEA are the top two performers in the task of initialization 

see Table 2 ) and are also the two best ones in terms of average

LC (see Table 6 ). Moreover, the average ranking of these meth- 

ds in Table 2 and 6 are similar to each other. This suggests that a

ore efficient initialization criterion is more likely to promote the 

verall performance of an active learning algorithm. A poor per- 

orming initialization strategy has a high chance of decreasing the 

erformance. 

. Discussion and Conclusion 

We investigated how to find a labeled set to initialize active 

earning algorithms with as few annotations as possible, while at 

he same time, the initial set consists of at least one instance from 

ach class. This is a relevant task that nevertheless has not really 

een studied before. Next to all the existing methods that could 

e readily adapted for the initialization task, a new criterion, NNC, 

as proposed. It selects the samples which minimizes the dissim- 

larity between unlabeled data and the queried data that has been 

abeled, where the dissimilarity is measured by the overall near- 

st neighbor distance. Experiments demonstrate that the number 

f queried samples obtained by this method is clearly less than 

hat of the algorithms compared to. In addition, the initially data 

elected by NNC shows good performance with respect to the clas- 
12 
ification accuracy in comparison to other approaches. Moreover, 

e investigated the impact of different initialization strategies on 

he complete active learning process, concluding that starting ac- 

ive learning with a more efficient initialization criterion is more 

ikely to obtain a better performance at lower cost. We can all in 

ll conclude that NNC should be considered the current method of 

reference for IAL. 

There are several other questions that may warrant further in- 

estigations. It is absolutely of interest to consider what to do if 

ne does know the number of classes in advance. All the initial- 

zation criteria presented in this work make this assumption, giv- 

ng us a clear criterion of when to stop the initialization stage. In 

eal-world applications, however, it is possible that we do not have 

rior knowledge about how many categories the data contains. In 

hat case, we have to consider finding some, possibly more elab- 

rate criteria that can also be used to decide on terminating the 

ctive initialization process. 

To us, however, the primary challenge seems to construct meth- 

ds for IAL that can all in all guarantee to lead to performances 

etter than random sampling. Similar question concerning active 

earning have been raised before, e.g. in [53] . Active learning and 

ts initialization stage is something one sets out to do once. If, 

owever, an active learner cannot, at least to some extent, guaran- 

ee that it will not be worse than random sampling, actually using 

uch strategies in realistic applications may never happen. 
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A

 (ALC) with SVM as the classifier. Uncertainty sampling is chosen 

�-opt pWrong Gen/Disc DPEA MaxE NNC 

0.791 0.745 0.669 0.787 0.735 0.794 

0.690 0.666 0.604 0.693 0.645 0.694 

0.273 0.257 0.251 0.252 0.264 0.278 

0.605 0.604 0.601 0.604 0.622 0.679 

0.619 0.573 0.547 0.586 0.553 0.613 

0.545 0.515 0.505 0.556 0.508 0.573 

0.745 0.748 0.764 0.740 0.754 0.808 

0.761 0.730 0.705 0.770 0.671 0.739 

0.464 0.441 0.439 0.468 0.469 0.479 

0.772 0.738 0.691 0.785 0.707 0.781 

0.430 0.435 0.363 0.432 0.425 0.435 

0.775 0.803 0.802 0.813 0.824 0.824 

0.831 0.874 0.874 0.857 0.891 0.914 

0.585 0.569 0.557 0.606 0.553 0.607 

0.795 0.800 0.798 0.803 0.794 0.798 

0.490 0.614 0.619 0.613 0.630 0.672 

0.636 0.632 0.612 0.648 0.628 0.668 

4.75 5.25 7.06 4.12 5.81 1.62 

1 2 1 4 1 10 

11/2/3 11/3/2 7/0/9 13/1/2 11/1/4 16/0/0 

 (ALC) with SVM as the classifier. MVAL is chosen as the subse- 

�-opt pWrong Gen/Disc DPEA MaxE NNC 

0.791 0.747 0.668 0.779 0.738 0.792 

0.696 0.675 0.605 0.692 0.662 0.703 

0.273 0.253 0.252 0.261 0.264 0.280 

0.606 0.605 0.614 0.605 0.623 0.679 

0.619 0.575 0.538 0.589 0.557 0.613 

0.546 0.515 0.505 0.557 0.509 0.574 

0.759 0.761 0.782 0.749 0.763 0.817 

0.764 0.744 0.732 0.775 0.688 0.738 

0.464 0.440 0.437 0.471 0.469 0.479 

0.779 0.740 0.707 0.787 0.714 0.781 

0.441 0.437 0.392 0.442 0.437 0.451 

0.784 0.810 0.808 0.814 0.824 0.826 

0.834 0.879 0.889 0.863 0.896 0.919 

0.589 0.571 0.569 0.606 0.559 0.608 

0.794 0.802 0.798 0.800 0.792 0.795 

0.491 0.622 0.629 0.616 0.642 0.673 

0.639 0.636 0.62 0.65 0.634 0.671 

4.75 5.38 6.62 3.94 5.69 1.69 

2 1 0 3 1 11 

13/2/1 14/0/2 10/0/6 14/2/0 13/1/2 16/0/0 
ppendix. > Appendix 

Table A.1 

Performance in terms of the areas under the learning curve

as the subsequent active learning method. 

Random k-means + TED 

USPS 0.736 0.764 0.763 

MNIST 0.627 0.656 0.687 

CIFAR10 0.267 0.272 0.269 

UCFsports 0.605 0.641 0.689 

GTSRB 0.535 0.586 0.583 

Isolet 0.493 0.560 0.532 

pendigits 0.748 0.774 0.747 

satimage 0.721 0.693 0.758 

yeast 0.448 0.469 0.425 

segment 0.732 0.722 0.735 

vowel 0.420 0.397 0.408 

lowres 0.792 0.802 0.801 

dermatology 0.842 0.898 0.899 

led_display 0.571 0.618 0.502 

ecoli 0.779 0.779 0.795 

semeion 0.607 0.656 0.642 

Average ALC 0.62 0.643 0.64 

Average Ranking 6.94 4.38 5.06 

Wins 0 1 1 

win/tie/loss − 12/1/3 10/3/3 

Table A.2 

Performance in terms of the areas under the learning curve

quent active learning method. 

Random k-means + TED 

USPS 0.730 0.762 0.766 

MNIST 0.632 0.660 0.689 

CIFAR10 0.260 0.273 0.263 

UCFsports 0.545 0.646 0.687 

GTSRB 0.511 0.589 0.585 

Isolet 0.477 0.558 0.532 

pendigits 0.750 0.776 0.765 

satimage 0.724 0.693 0.766 

yeast 0.448 0.470 0.421 

segment 0.729 0.720 0.741 

vowel 0.412 0.398 0.408 

lowres 0.788 0.802 0.802 

dermatology 0.839 0.900 0.900 

led_display 0.562 0.610 0.508 

ecoli 0.761 0.781 0.795 

semeion 0.604 0.658 0.642 

Average ALC 0.611 0.643 0.642 

Average Ranking 7.69 4.56 4.69 

Wins 0 1 2 

win/tie/loss − 13/0/3 13/1/2 
13
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Table A.3 

Performance in terms of the areas under the learning curve (ALC) with extreme learning machine as the classifier. Uncer- 

tainty sampling is chosen as the subsequent active learning method. 

Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

USPS 0.717 0.753 0.766 0.780 0.744 0.659 0.786 0.730 0.783 

MNIST 0.604 0.625 0.667 0.667 0.652 0.588 0.677 0.632 0.672 

CIFAR10 0.273 0.275 0.277 0.277 0.259 0.251 0.252 0.270 0.281 

UCFsports 0.237 0.248 0.268 0.241 0.241 0.237 0.241 0.248 0.261 

GTSRB 0.508 0.569 0.554 0.599 0.549 0.519 0.563 0.520 0.593 

Isolet 0.465 0.531 0.501 0.510 0.488 0.472 0.523 0.476 0.541 

pendigits 0.760 0.783 0.763 0.758 0.759 0.779 0.744 0.771 0.829 

satimage 0.719 0.699 0.753 0.768 0.729 0.703 0.776 0.670 0.750 

yeast 0.449 0.479 0.413 0.466 0.420 0.423 0.470 0.460 0.488 

segment 0.712 0.685 0.716 0.750 0.712 0.671 0.764 0.692 0.762 

vowel 0.408 0.376 0.409 0.426 0.439 0.364 0.431 0.421 0.427 

lowres 0.758 0.762 0.758 0.709 0.736 0.746 0.787 0.754 0.787 

dermatology 0.820 0.880 0.876 0.815 0.845 0.846 0.837 0.860 0.892 

led_display 0.555 0.610 0.472 0.568 0.531 0.520 0.595 0.517 0.594 

ecoli 0.783 0.791 0.799 0.805 0.799 0.795 0.806 0.788 0.804 

semeion 0.586 0.639 0.616 0.498 0.590 0.595 0.601 0.602 0.648 

Average ALC 0.584 0.606 0.601 0.602 0.593 0.573 0.616 0.588 0.632 

Average Ranking 7.12 4.19 4.38 4.75 5.81 7.31 3.5 6.06 1.88 

Wins 0 1 1 2 2 0 6 0 9 

win/tie/loss − 13/0/3 11/3/2 12/1/3 10/2/4 6/1/9 14/0/2 11/1/4 16/0/0 

Table A.4 

Performance in terms of the areas under the learning curve (ALC) with extreme learning machine as the classifier. MVAL is 

chosen as the subsequent active learning method. 

Random k-means + TED �-opt pWrong Gen/Disc DPEA MaxE NNC 

USPS 0.707 0.749 0.768 0.779 0.747 0.664 0.780 0.736 0.785 

MNIST 0.603 0.622 0.656 0.662 0.653 0.591 0.665 0.641 0.668 

CIFAR10 0.267 0.280 0.268 0.279 0.255 0.260 0.260 0.272 0.282 

UCFsports 0.229 0.245 0.265 0.240 0.238 0.239 0.238 0.247 0.259 

GTSRB 0.489 0.572 0.557 0.601 0.554 0.509 0.566 0.525 0.594 

Isolet 0.452 0.530 0.502 0.511 0.490 0.471 0.526 0.477 0.542 

pendigits 0.758 0.784 0.777 0.768 0.770 0.794 0.753 0.778 0.831 

satimage 0.723 0.699 0.761 0.771 0.740 0.730 0.780 0.689 0.744 

yeast 0.447 0.481 0.407 0.465 0.418 0.425 0.469 0.460 0.485 

segment 0.711 0.687 0.728 0.761 0.724 0.691 0.772 0.702 0.767 

vowel 0.403 0.376 0.410 0.439 0.440 0.388 0.439 0.431 0.440 

lowres 0.754 0.761 0.759 0.725 0.745 0.751 0.788 0.756 0.788 

dermatology 0.818 0.880 0.877 0.817 0.852 0.860 0.845 0.866 0.895 

led_display 0.543 0.593 0.481 0.573 0.541 0.538 0.593 0.532 0.595 

ecoli 0.770 0.792 0.801 0.804 0.801 0.795 0.801 0.785 0.798 

semeion 0.584 0.640 0.615 0.499 0.597 0.603 0.603 0.610 0.650 

Average ALC 0.579 0.606 0.602 0.606 0.598 0.582 0.617 0.594 0.633 

Average Ranking 7.44 4.44 4.56 4.38 5.94 6.75 4 5.81 1.69 

Wins 0 1 1 3 2 0 4 0 11 

win/tie/loss − 13/0/3 12/2/2 13/1/2 12/1/3 8/2/6 14/0/2 12/1/3 16/0/0 
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