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A B S T R A C T

The coupled vehicle-track system (CVTS) dynamics have been extensively investigated for decades. However,
the calculation accuracy of prevailing vehicle-track coupling models needs to be improved in the high frequency
range due to the inappropriate model simplification and neglect of material nonlinearity. In this study, we
propose a refined numerical model of the CVTS that considers the nonlinear properties of the railpads and
primary suspension using the fraction derivative Zener model. Furthermore, we more realistically simulate
the wheelset, rail and railpad configuration with the elastic axle, solid finite element and surface-support
models, respectively, and improve the computation efficiency by employing the mode superposition method.
The results demonstrate that the refined CVTS model is more accurate than the classical model in simulating
vehicle-track coupling dynamics above 2 kHz. In particular, there are significant differences in the dynamic
response of the elastic wheelset model compared to the rigid model over a broad frequency range, with an
11% difference in the bogie acceleration response at the first dominant frequency. When the railpads are
modeled using the surface-support model, the rail acceleration differences exceed 41% near 1 kHz and 44%
near 2650 Hz, compared to the point-support model. Additionally, the rail response at various locations across
the rail cross section can be calculated using the finite element method in this refined model. Overall. the
proposed CVTS model provides high accuracy and efficiency for random vibration analysis, especially in the
high frequency domain.
. Introduction

With the rapid development of high-speed railway networks, the
umulative structural damage of ballastless tracks caused by high-
requency wheel–rail interactions has increased significantly. Such
amage includes rail corrugation, irregular wheel profiles, spring bar
ractures, and track plate cracks [1–5]. The high-frequency vibration
haracteristics of wheelsets and rails are primarily determined by
he track irregularity spectrum, vehicle speed, and various nonlin-
ar dynamic parameters dependent on the frequency and amplitude
f external excitation, including viscoelastic polymer materials used
s the primary suspensions of the vehicle and railpads [6,7]. To
ccurately predict, analyze, and control the high-frequency random
ibration of the coupled vehicle-track system (CVTS), numerous theo-
etical studies [8] have focused on the elastic modeling of wheelsets

∗ Corresponding author at: 999 Xian’an Road, Pidu District, Chengdu, Sichuan Province, 610031, China.
E-mail addresses: weimike@home.swjtu.edu.cn (K. Wei), wping@home.swjtu.edu.cn (P. Wang).
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and rails, high-frequency wheel–rail interaction, and nonlinear dy-
namic characteristics of polymeric materials in the vehicle and track
systems.

The dynamic behavior of rails and vibration analysis of the cou-
pled vehicle-track system (CVTS) are typically described using the
Timoshenko beam element which considers shear deformation and
rotational bending effects [9–11]. With the advancement of computer
capacity, the finite element method (FEM) has been increasingly em-
ployed to study the wheel–rail impact response induced by such as
rail joints [12], corrugation [13], wheel flats [14] and wheel polygo-
nization [15]. Wei et al. [16,17] developed a high-frequency vibration
model for the CVTS using a solid finite element model of wheelsets,
and investigated the high-frequency vibration response of wheel–rail
interactions subjected to track irregularities. Casas et al. [18] estab-
lished a three-dimensional (3D) track model based on the moving
ttps://doi.org/10.1016/j.ijnonlinmec.2023.104444
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element method to replace the earlier Timoshenko beam model, and
used this model to obtain simulation results under various excitations.
Torstensson et al. [19], and Sladkowski et al. [20] developed an elastic
FEM of the CVTS to analyze the high-frequency vibration response of
the wheelsets and track. Knothe et al. [21] conducted a comparison be-
tween the beam model and the 2D plate model of rails to analyze their
dynamic response at high frequencies. They proposed a new model
based on the FEM to improve the accuracy of the analysis. Lei et al. [22]
developed an approach with FE to investigate the dynamic response of
the vehicle–slab track coupling system. Baeza et al. [23] proposed three
formulas for railway structure dynamics in the high frequency domain,
based on an Eulerian approach to model rotating flexible wheelset.
Xu et al. [24] proposed a 3D model for the vehicle–track interactions
based on wheel–rail coupling models and energy-variational principle.
Besides, the 3D FE approach was applied to simulate the high-frequency
vibrations and wheel–rail frictional rolling contact of the wheel–track
system [25–27]. The previous researches have focused on exploring the
high-frequency vibration of wheel–rail coupling through the develop-
ment of elastic finite element models for either the vehicle or the track.
Nevertheless, these models still fall short in accurately predicting the
response of the coupled system in the high frequency domain. This is
largely due to the lack of consideration for the material nonlinearity
of elastic rubber components, particularly the primary suspension and
railpads of the vehicle-track system.

In the vehicle-track system, rubber materials can serve as elastic
elements in the suspension system and as railpads in the fastening
systems. With increasing train speeds, the mechanical behavior of these
rubber components can have a significant impact on the dynamic inter-
action between the wheels and rails. The dynamic properties of rubber
materials, including elasticity and damping, exhibit strong dependence
on frequency and amplitude owing to their nonlinear viscoelastic na-
ture [6]. An effective way to describe these nonlinear properties of the
rubber materials is to use a constitutive relation containing fractional
derivatives (FD) [28,29]. Pritz et al. [30,31] first implemented FD
models to represent the nonlinear properties of polymeric damping
materials. Schmidt et al. [32] applied the FD scheme to create FE for-
mulations for constitutive relations of viscoelastic materials. Coulomb
forces can be incorporated into the frictional behavior model of carbon
black filled rubber [33]. Berg et al. gave a developed a smooth friction
model based on Coulomb force that is dependent on deformation and
elastic force [34,35]. Fenander et al. [36,37] proposed a railway track
model that incorporates a FD model of railpads and examined the
differences in track vibration characteristics between their model and
the conventional model. Sjöberg et al. [38,39] developed a nonlinear
FD model for the primary suspension, and its superiority over the
traditional Kelvin–Voigt model was validated. Similarly, Zhu et al. [40]
proposed a frequency-dependent model for railpads and conducted an
investigation into the nonlinear dynamics of the slab track system.
Zhang et al. [41] also developed a nonlinear model of the primary sus-
pension of a freight vehicle with FD theory and Berg’s friction model.
Yang et al. [42,43] investigated the frequency-dependent dynamic
behavior of the rubber springs in the CVTS using the FD Zener model,
which provides a better expression of the frequency dependence com-
pared to traditional models. They also applied this model to study the
random vibration of the CVTS in extreme cold weather and proposed
optimal energy harvesting approaches using a rail-bore generator [43–
45]. The above mentioned studies have high computational accuracy in
the first wheel–track resonance frequency band. However, in the high-
frequency range, further improvement is needed due to inadequate
model simplification, such as treating the wheelset as a rigid body and
the rail as a beam.

Overall, the random vibration model of the CVTS in the high fre-
quency domain can be improved in two ways, by considering the non-
linear properties of the viscoelastic rubber materials, and by employing
the elastic models of the wheelset and track system. However, the exist-
ing studies rarely simultaneously take into account these two aspects.
 b

2

In this paper, an advanced nonlinear dynamic model of the CVTS was
developed by comprehensively including the flexible wheelset model,
the solid element rail model, and the nonlinear FD Zener model of
both primary suspensions and railpads. Besides, the computation effi-
ciency of this model is improved by employing the mode superposition
method. Therefore, the proposed model can achieve both high solution
accuracy and computation efficiency for characterizing the random
dynamic behaviors of the CVTS in a broad frequency domain.

2. Methodology

In this section, we first introduce the nonlinear FD Zener model in
a single degree of freedom system (Section 2.1), then applied it in the
refined nonlinear model of the CVTS (Section 2.2), and finally solved
its steady state vibration response in the frequency range (Section 2.3).

2.1. The nonlinear FD Zener model in a single degree of freedom system

Rubber materials display nonlinear dynamic behavior that can be
effectively characterized by employing the FD model and Coulomb
friction model, as reported in the previous study [38]. Fig. 1 illustrates
the physical and mechanical models of the railpad. In view of the
frequency and amplitude dependence of the railpad, the force acting
between the mass block and base can be divided into two components:
the viscoelastic force denoted as F𝛼, and the friction force represented
as Ff.

The force–displacement relationship for the FD Zener model can be
represented in a general form as follows [42].

𝐹𝛼 (𝑡) + 𝑎𝛼𝐷
𝛼𝐹𝛼 (𝑡) = 𝑏𝛼𝑥 (𝑡) + 𝑐𝛼𝐷

𝛼𝑥 (𝑡) (1)

here, 𝐹𝛼 is the FD viscoelastic force; x(t) is displacement; 𝑎𝛼 , 𝑏𝛼 , 𝑐𝛼 ,
nd 𝛼 are the model coefficients of railpads; 𝐷𝛼 is the FD operator.

The friction force 𝐹𝑓 , exhibiting vibration amplitude dependence, is
function of both displacement and reference state. The friction force

an be obtained by nonlinear Berg’s friction model as follows [34].

𝐹𝑓 = 𝐹𝑓𝑠, 𝑥 = 𝑥𝑠

𝐹𝑓 = 𝐹𝑓𝑠 +
𝑥 − 𝑥𝑠

𝑥2 (1 − 𝜇) +
(

𝑥 − 𝑥𝑠
)

(

𝐹𝑓𝑚𝑎𝑥 − 𝐹𝑓𝑠
)

, 𝑥 > 𝑥𝑠

𝐹𝑓 = 𝐹𝑓𝑠 +
𝑥 − 𝑥𝑠

𝑥2 (1 + 𝜇) −
(

𝑥 − 𝑥𝑠
)

(

𝐹𝑓𝑚𝑎𝑥 − 𝐹𝑓𝑠
)

, 𝑥 < 𝑥𝑠

(2)

here, 𝜇 = 𝐹𝑓𝑠/𝐹𝑓𝑚𝑎𝑥. The friction force, 𝐹𝑓 , in the present model de-
ends, like the elastic force, on the displacement x over the element. 𝑥𝑠
nd 𝐹𝑓𝑠 indicate a reference state of friction force versus displacement.
𝑓𝑚𝑎𝑥 and 𝑥2 represent the maximum friction force and displacement
hen 𝐹𝑓 is equal to 𝐹𝑓𝑚𝑎𝑥∕2, respectively.

By employing the nonlinear constitutive model of the rubber ma-
erials, the dynamic response of the rigid mass m under a harmonic
xcitation can be expressed as follows.

�̈� (𝑡) + 𝐹𝛼 (𝑡) + 𝐹𝑓 (𝑡) = 𝐹 cos(𝜔𝑡) (3)

.2. The refined nonlinear FD Zener model of the CVTS

.2.1. The refined rigid-elastic model of the vehicle
The nonlinear FD Zener model of the spatial vehicle structure

onsists of the car body, bogies, wheelsets, primary and secondary
uspensions. The primary suspension system was expressed by the non-
inear FD Zener model, while the secondary suspension was regarded
s a classic KV model(see Fig. 2a∼c). As the study focuses on the
ertical vibration of the spatial CVTS, the vehicle system (except for 4
heelsets) can be considered as a classic multi-rigid body system with
degrees of freedom (DOFs) of the car body and bogies. The 9 DOFs

nclude: (1) vertical displacement of the car body, front bogie and rear

ogie (𝑍𝑐 , 𝑍𝑡1, 𝑍𝑡2); (2) pitch angle of the car body, front bogie and
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Fig. 1. Nonlinear FD Zener model of an SDOF system. (a) physical model; (b) mechanical model.
Fig. 2. Side (a), front (b) and top (c) view of nonlinear fractional Zener model of the vehicle system. Top right inset 1: the elastic model of wheelset; Top right inset 2: Solid
element rail model.
rear bogie (𝛽𝑐𝑦, 𝛽𝑡𝑦1, 𝛽𝑡𝑦2); (3) rolling angle of the car body, front bogie
and rear bogie (𝛽𝑐𝑥, 𝛽𝑡𝑥1, 𝛽𝑡𝑥2).

The wheelsets are modeled by the elastic model combining the beam
nd mass block, as shown in Fig. 2a. In this elastic model, the wheel
xle is simulated by Timoshenko beam, while the wheel is modeled by
rigid mass block. By utilizing the proposed flexible wheelset model,

he dynamic response of the vehicle system in the high-frequency
omain can be more accurately obtained than the classic rigid wheelset
odel.

To better understand and deduce the dynamic equations of the
ehicle and track, Fig. 3 gives a schematic sketch of the serial number
f the primary suspensions and rails at both ends of the wheelsets. The
ower (right) and the upper (left) rails are numbered as No. 1 and No.
, respectively. The numbers (1∼8) of the primary suspensions are also

shown in the figure, and the numbers of wheel locations are the same
3

as the suspension numbers. The dynamic response of each part in the
vehicle system can be described as follows.

(1) The linear dynamic equations of the car body can be written as
follows [46].

𝑀𝑐�̈�𝑐 + 2𝐶𝑡𝑧�̇�𝑐 − 𝐶𝑡𝑧
(

�̇�𝑡1 + �̇�𝑡2
)

+ 2𝐾𝑡𝑧𝑍𝑐 −𝐾𝑡𝑧
(

𝑍𝑡1 +𝑍𝑡2
)

= 𝑀𝑐𝑔 (4)
𝐽𝑐𝑦𝛽𝑐𝑦 + 2

(

𝐶𝑡𝑧𝑙𝑐
2 + 𝐶𝑡𝑥ℎ1

2) �̇�𝑐𝑦 + 2
(

𝐾𝑡𝑧𝑙𝑐
2 +𝐾𝑡𝑥ℎ1

2) 𝛽𝑐𝑦
+ 𝐶𝑡𝑧𝑙𝑐

(

�̇�𝑡1 − �̇�𝑡2
)

+𝐾𝑡𝑧𝑙𝑐
(

𝑍𝑡1 −𝑍𝑡2
)

+ 𝐶𝑡𝑥ℎ1ℎ2
(

�̇�𝑡𝑦1 + �̇�𝑡𝑦2
)

+𝐾𝑡𝑥ℎ1ℎ2
(

𝛽𝑡𝑦1 + 𝛽𝑡𝑦2
)

= 0 (5)
𝐽𝑐𝑥𝛽𝑐𝑥 + 2

(

𝐶𝑡𝑦ℎ1
2 + 𝐶𝑡𝑧𝑑𝑠

2) �̇�𝑐𝑥 + 2
(

𝐾𝑡𝑦ℎ1
2 +𝐾𝑡𝑧𝑑𝑠

2) 𝛽𝑐𝑥
+
(

𝐶𝑡𝑦ℎ1ℎ2 − 𝐶𝑡𝑧𝑑𝑠
2) (�̇�𝑡𝑥1 + �̇�𝑡𝑥2

)

+
(

𝐾𝑡𝑦ℎ1ℎ2 −𝐾𝑡𝑧𝑑𝑠
2) (𝛽𝑡𝑥1 + 𝛽𝑡𝑥2

)

= 0 (6)
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Fig. 3. Schematic drawing of the serial number of primary suspensions.
𝑞

here, 𝑀c, 𝐾ty, 𝐾tz, 𝐶ty, 𝐶tz represent the car body mass, the lateral
nd vertical stiffness, and damping matrices of the secondary suspen-
ion; 𝐽𝑐𝑦, 𝐽𝑐𝑥 are the moment of inertia around the 𝑦-axis and 𝑥-axis,

respectively; 𝑙𝑐 is the half of the bogie spacing; ℎ1 is the distance
between the car body center and upper surface of secondary suspen-
sion; ℎ2 is distance between bogie frame center and upper surface of
secondary suspension; 𝑑s is secondary suspension lateral span.

(2) The nonlinear dynamic equations of the first bogie can be
xpressed as follows [46].

𝑡�̈�𝑡 + 𝐶𝑡𝑧�̇�𝑐 − 𝐶𝑡𝑧�̇�𝑡1 + 𝐶𝑡𝑧𝑙𝑐 �̇�𝑐𝑦 +𝐾𝑡𝑧𝑍𝑐 −𝐾𝑡𝑧𝑍𝑡1 +𝐾𝑡𝑧𝑙𝑐𝛽𝑐𝑦 − 𝐹𝑝𝛼1

− 𝐹𝑝𝛼2 − 𝐹𝑝𝛼5 − 𝐹𝑝𝛼6 − 𝐹𝑝𝑓1 − 𝐹𝑝𝑓2 − 𝐹𝑝𝑓5 − 𝐹𝑝𝑓6 = 𝑀𝑡𝑔 (7)
𝐽𝑡𝑦𝛽𝑡𝑦1 + 2

(

𝐶𝑝𝑥ℎ3
2 + 𝐶𝑡𝑥ℎ2

2) �̇�𝑡𝑦1 + 2
(

𝐾𝑝𝑥ℎ3
2 +𝐾𝑡𝑥ℎ2

2) 𝛽𝑡𝑦1
+
(

𝐹𝑝𝛼1 − 𝐹𝑝𝛼2 + 𝐹𝑝𝛼5 − 𝐹𝑝𝛼6
)

𝑙𝑡 +
(

𝐹𝑝𝑓1 − 𝐹𝑝𝑓2 + 𝐹𝑝𝑓5 − 𝐹𝑝𝑓6
)

𝑙𝑡

+ 𝐶𝑡𝑥ℎ1ℎ2�̇�𝑐𝑦 +𝐾𝑡𝑥ℎ1ℎ2𝛽𝑐𝑦 = 0 (8)
𝐽𝑡𝑥𝛽𝑡𝑥1 + 2

(

𝐶𝑡𝑦ℎ2
2 + 𝐶𝑡𝑧𝑑𝑠

2 + 𝐶𝑝𝑦ℎ3
2) �̇�𝑡𝑥1

+ 2
(

𝐾𝑡𝑦ℎ2
2 +𝐾𝑡𝑧𝑑𝑠

2 +𝐾𝑝𝑦ℎ3
2) 𝛽𝑡𝑥1 +

(

𝐶𝑡𝑦ℎ1ℎ2 − 𝐶𝑡𝑧𝑑𝑠
2) �̇�𝑐𝑥

+
(

𝐾𝑡𝑦ℎ1ℎ2 −𝐾𝑡𝑧𝑑𝑠
2) 𝛽𝑐𝑥 +

(

𝐹𝑝𝛼5 + 𝐹𝑝𝛼6 − 𝐹𝑝𝛼1 − 𝐹𝑝𝛼2
)

𝑑𝑤

+
(

𝐹𝑝𝑓5 + 𝐹𝑝𝑓6 − 𝐹𝑝𝑓1 − 𝐹𝑝𝑓2
)

𝑑𝑤 = 0 (9)

The equation of motion of the second bogie can be obtained in the
same manner. Where, 𝑀𝑡 is bogie mass matrix; 𝐹𝑡𝛼1, 𝐹𝑡𝑓1 are the FD
viscous force and nonlinear friction force of the primary suspensions,
respectively; 𝐽𝑡𝑦, 𝐽𝑡𝑥 is the moment of inertia around 𝑦-axis and 𝑥-
axis, respectively; 𝑙𝑡 is half of the wheelset spacing; 𝑑𝑤 is the primary
suspension lateral span; ℎ3 is the distance between the bogie frame
center and lower surface of the primary suspension.

(3) The nonlinear dynamic equation of vertical displacement 𝑍𝑤1 of
the first wheelset is given as follows [46].

𝑀𝑤 (𝑥)
𝜕2𝑍𝑤1 (𝑥, 𝑡)

𝜕𝑡2
+𝐾𝑤1𝑍𝑤1 (𝑥, 𝑡)

= −𝐹𝑝𝛼1 − 𝐹𝑝𝑓1 − 𝑝1 (𝑡) − 𝐹𝑝𝛼5 − 𝐹𝑝𝑓5 − 𝑝5 (𝑡) +𝑀𝑤 (𝑥) 𝑔 (10)

In this paper, the wheelset is treated as a beam and mass block
model instead of the rigid body model. In Eq. (9), 𝑀𝑤(x) is the mass
distribution function of the wheelset, 𝑍𝑤1(x,t) is the vertical displace-
ment of the first wheelset, 𝐾𝑤1 is the system stiffness of the elastic

odel of the first wheelset; 𝑝1(t) is the wheel–rail force located at the
first wheel–rail contact point.

The normalized modal function of the elastic model of wheelset is
defined as the matrix 𝛷𝑤𝑧, which can be expressed as following [47].

∅𝑤𝑧 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜑𝑤𝑧1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥1

𝑥2

𝑥3

⋮

𝑥𝑀1

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, 𝜑𝑤𝑧2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥1

𝑥2

𝑥3

⋮

𝑥𝑀1

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, 𝜑𝑤𝑧3

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥1

𝑥2

𝑥3

⋮

𝑥𝑀1

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,…𝜑𝑤𝑧𝑁1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥1

𝑥2

𝑥3

⋮

𝑥𝑀1

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠𝑀1×𝑁1
(11)

4

where, 𝜑𝑤𝑧𝑖(𝑥𝑖) represents the modal deformation value of the 𝑖th
vertical characteristic mode of the elastic model at the coordinate 𝑥𝑖,
𝑀2 is the total number of nodes of the elastic wheelset model, 𝑁1 is
the total order of the modes.

Therefore, the solution of the equation of motion of the 𝑖th wheelset
can be written in the modal space as follows [47].

𝑍𝑤𝑖 (𝑥, t) = −∅𝑤𝑧𝑞𝑤𝑖 (t) (12)

where, 𝑞𝑤𝑖(t) is the coordinate of the displacement response of the 𝑖th
wheelset in the modal space, which can be expressed as follows [46].

𝑞𝑤𝑖 (𝑡) =
(

𝑞𝑤𝑖1 (𝑡) , 𝑞𝑤𝑖2 (𝑡) , 𝑞𝑤𝑖3 (𝑡) ,… , 𝑞𝑤𝑖𝑁1
(𝑡)
)T

(13)

In addition, 𝛺𝑤 can be used to represent the characteristic circle
frequency of the elastic model,

𝛺𝑤 =
(

2𝜋𝑓w1, 2𝜋𝑓w2, 2𝜋𝑓w3,… , 2𝜋𝑓w𝑁1

)T
(14)

where, 𝑓𝑤𝑖 is the characteristic frequency corresponding to the 𝑖th
mode.

Substituting Eq. (11) into Eq. (9), we can get equation as follows.

𝑀𝑤
(

𝑥𝑖
)

∅𝑤𝑧𝑞𝑤1 (𝑡) +𝐾𝑤1∅𝑤𝑧𝑞𝑤1 (𝑡)

= −𝐹𝑝𝛼1 − 𝐹𝑝𝑓1 − 𝑝1 (𝑡) − 𝐹𝑝𝛼5 − 𝐹𝑝𝑓5 − 𝑝5 (𝑡) +𝑀𝑤
(

𝑥𝑖
)

𝑔 (15)

Considering the orthogonality of the modes, Eq. (14) left-multiplied
with ∅w𝑧

T can be further rewritten as follows.

̈𝑤1 (𝑡) +
(

𝐷𝑖𝑎𝑔
(

𝛺𝑤
))2𝑞𝑤1 (𝑡) = −∅𝑤𝑧 (𝑚, ∶ )𝑇

(

𝐹𝑝𝛼1 + 𝐹𝑝𝑓1
)

− ∅𝑤𝑧 (𝑛, ∶ )𝑇
(

𝐹𝑝𝛼5 + 𝐹𝑝𝑓5
)

− ∅𝑤𝑧 (𝑗, ∶ )𝑇 𝑝1 (𝑡) − ∅𝑤𝑧 (𝑘, ∶ )𝑇 𝑝5 (𝑡)

+ ∅𝑤𝑧
𝑇𝑀𝑤

(

𝑥𝑖
)

𝑔 (16)

where, Diag(𝛺𝑤) represents the diagonal matrix with the element 𝛺𝑤,
m and n are the numbers of the nodes at both ends of the elastic
wheelset model which connect to the primary suspension, j and k
represent the numbers of the nodes of the elastic wheelset model
connecting to the two side wheels. The motion equations of the other
three wheelsets can be obtained in a similar manner. ∅𝑤𝑧(m, :) means
get the 𝑚th row of the matrix 𝛷𝑤𝑧.

Therefore, the dynamic equation of the vehicle system can be
described as follows [46].

𝑀𝑣�̈�𝑣 (𝑡) + 𝐶𝑣�̇�𝑣 (𝑡) +𝐾𝑣𝑍𝑣 (𝑡) = 𝐹𝑣(𝑡) (17)

where, 𝑀𝑣, 𝐾𝑣, 𝐶𝑣 indicate the generalized mass, stiffness and damp-
ing matrices; 𝑍𝑣(t) is the generalized displacement vectors; 𝐹𝑣 is the
generalized load vector.

2.2.2. The nonlinear dynamic equation of track structure
The ballastless track system with embedded sleepers consists of

rails, fastener systems, slabs, concrete bases and subgrades. Assuming
that the track system is symmetrical with respect to its center line,
the elastic model of the rail, which is discretely supported on railpads,
is established with solid element, as shown in Fig. 2. The coupling
relationship between the wheel and rail is based on Hertz contact the-
ory where the elastic half-space assumption holds [48]. Subsequently,

the nonlinear FD Zener model of the CVTS is derived by utilizing the
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vehicle-track coupling dynamics, FD method, Berg’s friction model, and
FEM. In the FE model, the rail is modeled by a large number of solid
elements, and the accuracy of the track vibration response in high
frequency range can be controlled by adjusting the element size [49]
and the total order of the track modes employed in the analysis.

In prior research, the beam model of the rail was often simplified by
using discrete point supports at sleepers. However, a more realistic ap-
proach for the solid element model of the rail is to use a surface-support
model that simulates the actual working state of the rail [50,51]. The
number of nodes of the rail model on the support surface can be set to
𝑁𝑓𝑎𝑐𝑒. Therefore, the nonlinear dynamic equation of the elastic track
model can be written as follows.

𝑀𝑟
𝜕2𝑍𝑟𝑅

(

𝑁𝑓 , 𝑡
)

𝜕𝑡2
+𝐾𝑟𝑍𝑟𝑅

(

𝑁𝑓 , 𝑡
)

= −
𝑁𝑟×𝑁𝑓𝑎𝑐𝑒

∑

𝑖=1

(

𝐹𝑟𝛼𝑅𝑖 + 𝐹𝑟𝑓𝑅𝑖
)

× 𝛿
(

𝑁𝑓 −𝑁𝑟𝑖
)

+
𝑁𝑤𝑟
∑

𝑗=1
𝑝𝑗 (𝑡) 𝛿

(

𝑁𝑓 −𝑁𝑤𝑟𝑗
)

(18)

here, 𝑍𝑟𝑅(𝑁𝑓 , t) represents the displacement of the number 𝑁𝑓 node
f the No. 1 rail, 𝑁𝑟 is the total number of the railpads, 𝑁𝑟𝑖 is the
umber i node of the FE model of the rail, 𝑁𝑤𝑟𝑗 is the number of wheel–
ail contact points of the No. 1 rail, which ranges from 1 to 4. 𝑀𝑟 and
𝑟 are the mass and stiffness matrices of the rail in the solid element
odel.

The dynamic equation of the rail can be further efficiently processed
nd solved by the modal superposition method by considerably reduc-
ng the DOFs [46]. The normalized mode functions and corresponding
atural frequencies of the elastic model can be conducted with commer-
ial FE software. The normalized mode functions of the elastic model
f the rail is defined as 𝛷𝑟𝑧 [52].

𝑟𝑧 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜑𝑟𝑧1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑁𝑓1

𝑁𝑓2

𝑁𝑓3

⋮

𝑁𝑓𝑀2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, 𝜑𝑟𝑧2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑁𝑓1

𝑁𝑓2

𝑁𝑓3

⋮

𝑁𝑓𝑀2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, 𝜑𝑟𝑧3

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑁𝑓1

𝑁𝑓2

𝑁𝑓3

⋮

𝑁𝑓𝑀2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,…𝜑𝑟𝑧𝑁1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑁𝑓1

𝑁𝑓2

𝑁𝑓3

⋮

𝑁𝑓𝑀2

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

,

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠𝑀2×𝑁2

(19)

here, 𝑀2 is the total number of nodes of the elastic rail model, and
2 is the total order of the rail mode functions, 𝜑𝑟𝑧𝑖(𝑁𝑓1) represents

he vertical displacement of the number 𝑁𝑓1 node of the 𝑖th mode
unctions.

Therefore, the displacement of the No. 1 rail can be expressed as
he form in the modal space as follows [52].

𝑟𝑅
(

𝑁𝑓 , 𝑡
)

= ∅𝑟𝑧𝑞𝑟𝑅 (𝑡) (20)

here, 𝑞𝑟𝑅(t) is the generalized coordinate of the No. 1 rail on the right
ide, which can be expressed as follows.

𝑟𝑅 (t) =
(

𝑞𝑟𝑅1 (t) , 𝑞𝑟𝑅2 (t) , 𝑞𝑟𝑅3 (t) ,… , 𝑞𝑟𝑅𝑁1
(t)

)T
(21)

Besides, 𝛺𝑟 can be used to represent the characteristic circle fre-
uency of the solid element model of the rail as follows.

𝑟 =
(

2𝜋𝑓𝑟1, 2𝜋𝑓𝑟2, 2𝜋𝑓𝑟3,… , 2𝜋𝑓𝑟𝑁1

)𝑇
(22)

here, 𝑓𝑟𝑖 is the characteristic frequency of the 𝑖th mode of the rail.
Substituting Eq. (19) into Eq. (17), the new equation can be rewrit-

en as follows.

𝑟∅𝑟𝑧𝑞𝑟𝑅 (𝑡) +𝐾𝑟∅𝑟𝑧𝑞𝑟𝑅 (𝑡)

= −
𝑁𝑟_𝑓𝑎𝑐𝑒
∑

𝑖=1

(

𝐹𝑟𝛼𝑅𝑖 + 𝐹𝑟𝑓𝑅𝑖
)

𝛿
(

𝑁𝑓 −𝑁𝑟𝑖
)

+
𝑁𝑤𝑟
∑

𝑗=1
𝑝𝑗 (𝑡) 𝛿

(

𝑁𝑓 −𝑁𝑤𝑟𝑗
)

(23)
5

Due to the orthogonality of the mode functions, Eq. (22) can be
urther rewritten after left-multiplying ∅𝑟𝑧

𝑇 as follows.

̈𝑟𝑅 (𝑡) + (Diag (𝛺𝑟))2𝑞𝑟𝑅 (𝑡) = −∅𝑟𝑧_𝑓𝑎𝑐𝑒
(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶
)T (𝐹𝑟𝛼𝑅 (𝑡)

+𝐹𝑟𝑓𝑅 (𝑡)
)

+ ∅𝑟𝑧_𝑤𝑟
(

1∶𝑁𝑤𝑟, ∶
)T 𝑝𝑅 (𝑡) (24)

here, 𝛷𝑟𝑧_𝑓𝑎𝑐𝑒 is the vertical displacement of the nodes of the rail
ode functions on the rail–railpad contact area; similarly, 𝛷𝑟𝑧_𝑤𝑟 is

he vertical displacement of the nodes of the rail mode functions on
he wheel–rail contact area. It is important to note that the nodes
f the rail modal function ∅rz can be reduced when the research

concern is the vibration characteristics of partial nodes, and then the
computation efficiency can be further improved to varying degrees.
∅𝑟𝑧_𝑓𝑎𝑐𝑒

(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶
)T means the transpose of the rows range from 1

to 𝑁𝑟_𝑓𝑎𝑐𝑒 of ∅𝑟𝑧_𝑓𝑎𝑐𝑒.

𝐹𝑟𝛼𝑅 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐹𝑟𝛼𝑅1

𝐹𝑟𝛼𝑅2

𝐹𝑟𝛼𝑅3

⋮

𝐹𝑟𝛼𝑅𝑁𝑟_𝑓𝑎𝑐𝑒

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭𝑁𝑟_𝑓𝑎𝑐𝑒×1

;𝐹𝑟𝑓𝑅 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐹𝑟𝑓𝑅1

𝐹𝑟𝑓𝑅2

𝐹𝑟𝑓𝑅3

⋮

𝐹𝑟𝑓𝑅𝑁𝑟_𝑓𝑎𝑐𝑒

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭𝑁𝑟_𝑓𝑎𝑐𝑒×1

; 𝑝𝑅 (𝑡) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝1 (𝑡)

𝑝2 (𝑡)

𝑝3 (𝑡)

𝑝4 (𝑡)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(25)

In the same manner, the dynamic equation of the No. 2 rail on the
eft side can be obtained.

Since the nonlinear wheel–rail contact model is difficult to be
pplied for the steady state vibration analysis of the CVTS, the wheel–
ail relationship was calculated as the linearized Hertzian contact
odel [42].

.3. The steady state vibration response of the CVTS

.3.1. The equation of motion of the vehicle in frequency domain
Under the harmonic excitation 𝑝𝑗𝑒𝑖𝜔𝑡, the steady state dynamic

esponse of the vehicle can be expressed as follows [46].
2𝑀𝑣𝑍𝑣 (𝜔) + 𝑖𝜔𝐶𝑣𝑍𝑣 (𝜔) +𝐾𝑣𝑍𝑣 (𝜔) = 𝐹𝑣 (𝜔) (26)

The FD Zener model of the No. 1 primary suspension at frequency
𝑘 can be expressed as follows [53].

𝐹𝑡𝛼1
(

𝜔𝑘
)

=
𝑘𝑡 + 𝑐𝑡𝛼(𝑖𝜔𝑘)𝛼

1 + 𝑎𝑡𝛼(𝑖𝜔𝑘)𝛼
(

𝑍𝑤1
(

𝜔𝑘
)

−𝑍𝑡1
(

𝜔𝑘
)

+ 𝑙𝑡𝛽𝑡𝑦1
(

𝜔𝑘
)

−𝑑𝑤𝛽𝑡𝑥1
(

𝜔𝑘
))

=
(

𝐾𝑡𝛼
(

𝜔𝑘
)

+ 𝑖𝜔𝐶𝑡𝛼
(

𝜔𝑘
)) (

𝑍𝑤1
(

𝜔𝑘
)

−𝑍𝑡1
(

𝜔𝑘
)

+ 𝑙𝑡𝛽𝑡𝑦1
(

𝜔𝑘
)

− 𝑑𝑤𝛽𝑡𝑥1
(

𝜔𝑘
))

(27)

where, 𝛼, 𝑘𝑡, 𝑐𝑡𝛼 , 𝑎𝑡𝛼 are the FD Zener model coefficients of the pri-
mary suspension, 𝐶𝑡𝛼 and 𝐾𝑡𝛼 represent the corresponding equivalent
frequency-dependent damping and stiffness of the FD Zener model,
respectively.

By employing the simplified Berg’s friction schemes, the friction
𝐹𝑡𝑓 (𝜔) of the No. 1 primary suspensions in the frequency domain can
be described as follows [42].

𝐹𝑡𝑓1(𝜔𝑘) =
(

𝐾𝑡𝑓
(

𝜔𝑘−1
)

+ 𝑖𝜔𝐶𝑡𝑓
(

𝜔𝑘−1
)) (

𝑍𝑤1
(

𝜔𝑘
)

−𝑍𝑡1
(

𝜔𝑘
)

+𝑙𝑡𝛽𝑡𝑦1
(

𝜔𝑘
)

− 𝑑𝑤𝛽𝑡𝑥1
(

𝜔𝑘
))

(28)

The FD Zener model and the simplified friction model of the No.
2∼8 primary suspensions can be obtained in the same manner.

2.3.2. The equation of motion of the track structure in the frequency
domain

Under the harmonic excitation 𝑝𝑅𝑒𝑖𝜔𝑡, the dynamic equation of the
elastic track structure modeled with FEM can be expressed as follows.
2 2 ( )𝑇 (
𝜔 𝑞𝑟𝑅 (𝜔) + (Diag (𝛺𝑟)) 𝑞𝑟𝑅 (𝜔) = −∅𝑟𝑧_𝑓𝑎𝑐𝑒 1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶ 𝐹𝑟𝛼𝑅 (𝜔)
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Fig. 4. Vertical modes of the solid element rail model. (a) The first nine modes; (b) the modes near 2∼5 kHz.
+𝐹𝑟𝑓𝑅 (𝜔)
)

+ ∅𝑟𝑧_𝑤𝑟
(

1∶𝑁𝑤𝑟, ∶
)𝑇 𝑝𝑅 (𝜔) (29)

where, 𝑝𝑅(𝜔) is the wheel–rail force of the No. 1 rail in the frequency
domain, and it can be expressed as follows.

𝑝R (𝜔) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝1 (𝜔)

𝑝2 (𝜔)

𝑝3 (𝜔)

𝑝4 (𝜔)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(30)

The fractional railpad force 𝐹𝑟𝛼𝑅𝑖(𝜔) of the FD Zener model on
each node belongs to the rail–railpad contact area can be expressed
as follows.

𝐹𝑟𝛼𝑅𝑖(𝜔𝑘) =
𝑘𝑟 + 𝑐𝑟𝛼(𝑖𝜔𝑘)𝛼

1 + 𝑎𝑟𝛼(𝑖𝜔𝑘)𝛼
𝑍𝑟𝑅(𝑁𝑟𝑖, 𝜔𝑘)∕𝑁𝑓𝑎𝑐𝑒

= (𝐾𝑟𝛼 + 𝑖𝜔𝑘𝐶𝑟𝛼)𝑍𝑟𝑅(𝑁𝑟𝑖, 𝜔𝑘)∕𝑁𝑓𝑎𝑐𝑒 (31)

where, 𝑘𝑟𝛼 , 𝑐𝑟𝛼 , 𝛼, 𝑎𝑟𝛼 are the FD Zener model coefficients of the
railpad, 𝐶𝑟𝛼 and 𝐾𝑟𝛼 indicate the corresponding equivalent frequency-
dependent damping and stiffness of the railpad, respectively.

According to the simplified Berg’s friction force model, similarly, the
friction force 𝐹𝑟𝑓𝑅𝑖(𝜔) on each node belongs to the rail–railpad contact
area can be expressed as follows [42].

𝐹𝑟𝑓𝑅𝑖(𝜔𝑘) = (𝐾𝑟𝑓 + 𝑖𝜔𝑘𝐶𝑟𝑓 )𝑍𝑟𝑅(𝑁𝑟𝑖, 𝜔𝑘)∕𝑁𝑓𝑎𝑐𝑒 (32)

where,

𝑍𝑟𝑅
(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, 𝜔𝑘
)

= ∅𝑟𝑧_𝑓𝑎𝑐𝑒
(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶
)

𝑞𝑟𝑅
(

𝜔𝑘
)

(33)

The fractional force 𝐹𝑟𝛼𝑅𝑖(𝜔) and friction force 𝐹𝑟𝑓𝑅𝑖(𝜔) of the
railpad force can be further rewritten as follows in the modal space.

𝐹𝑟𝛼𝑅𝑖(𝜔𝑘) = (𝐾𝑟𝛼 + 𝑖𝜔𝑘𝐶𝑟𝛼)∅𝑟𝑧_𝑓𝑎𝑐𝑒
(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶
)

𝑞𝑟𝑅
(

𝜔𝑘
)

∕𝑁𝑓𝑎𝑐𝑒 (34)

𝐹𝑟𝑓𝑅𝑖(𝜔𝑘) = (𝐾𝑟𝑓 + 𝑖𝜔𝑘𝐶𝑟𝑓 )∅𝑟𝑧_𝑓𝑎𝑐𝑒
(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶
)

𝑞𝑟𝑅
(

𝜔𝑘
)

∕𝑁𝑓𝑎𝑐𝑒 (35)

The displacement response of the 𝑗th wheelset at the wheel–rail
contact point in the frequency domain can be expressed as follows.

𝑍𝑤𝑗 (𝜔𝑘) = ∅𝑤𝑧 (𝑘, ∶ ) 𝑞𝑤𝑗 (𝜔𝑘) (36)

The right rail at the wheel–rail contact points can be expressed as
follows.

𝑍𝑟𝑅
(

𝑁𝑤𝑟𝑗 , 𝜔𝑘
)

= ∅𝑟𝑧_𝑤𝑟 (1∶ 4, ∶ ) 𝑞𝑟𝑅
(

𝜔𝑘
)

(37)

where,

∅𝑟𝑧_𝑤𝑟 (1∶ 4, ∶ ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

∅𝑟𝑧
(

𝑁𝑤𝑟1, ∶
)

∅𝑟𝑧
(

𝑁𝑤𝑟2, ∶
)

∅𝑟𝑧
(

𝑁𝑤𝑟3, ∶
)

∅
(

𝑁 , ∶
)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

(38)
⎩

𝑟𝑧 𝑤𝑟4
⎭
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Hence, the dynamic equation of the right rail in the modal coordi-
nates can be obtained,

𝜔2𝑞𝑟𝑅 (𝜔) + (𝐷𝑖𝑎𝑔 (𝛺𝑟))2𝑞𝑟𝑅 (𝜔) = −∅𝑟𝑧_𝑓𝑎𝑐𝑒
(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶
)𝑇

×
(

𝐾𝑟𝛼 + 𝑖𝜔𝑘𝐶𝑟𝛼 +𝐾𝑟𝑓 + 𝑖𝜔𝑘𝐶𝑟𝑓
)

∅𝑟𝑧_𝑓𝑎𝑐𝑒
(

1∶𝑁𝑟_𝑓𝑎𝑐𝑒, ∶
)

× 𝑞𝑟𝑅 (𝜔) ∕𝑁𝑓𝑎𝑐𝑒 + ∅𝑟𝑧_𝑤𝑟
(

1∶𝑁𝑤𝑟, ∶
)𝑇 𝑘ℎ

(

∅𝑤𝑧 (𝑘, ∶ ) 𝑞𝑤
(

𝜔𝑘
)

−∅𝑟𝑧_𝑤𝑟
(

1∶𝑁𝑤𝑟, ∶
)

𝑞𝑟𝑅
(

𝜔𝑘
)

− 𝑟𝑅(𝜔𝑘)
)

(39)

The dynamic equation of the left rail can be obtained in the same
manner.

3. Results and discussion

In this section, we first compare the natural vibration characteristics
of the rail with the beam model and FEM (Section 3.1), and then
analyze the effects of the FE rail model, elastic wheelset and surface-
supported railpad configuration on the dynamic behavior of the CVTS
(Section 3.2).

3.1. Natural vibration characteristics of the rail in two different models

The modal superposition method was employed to improve the
calculation efficiency of the proposed refined FDZ model of the CVTS
by considerably reducing the degrees of freedoms of the rail [52]. The
natural modes of the rail modeled by the Solid 45 can be efficiently
and accurately solved by ANSYS FE software using Block Lanczos
method. Besides, the modal analysis of the rail with the Timoshenko
beam model was also conducted to compare their different vibration
characteristics. The model length of the rail was set as 3 m, and
the boundary condition was considered as fixed constraints on each
end face. The element size in the FE model was selected as 0.03 m
through converging analysis, and the first 500 vibration modes were
extracted. Fig. 4 presents representative vertical mode shapes and their
corresponding characteristic frequencies within the range of 5000 Hz.

Fig. 4a shows the first nine mode shapes and their corresponding
natural frequencies of the modes by solid element rail model. These
mode shapes in the low frequency range are close to the theoretical sine
functions, and hence the Timoshenko beam model can have acceptable
accuracy to the solid element model while using the Ritz mode. How-
ever, the vertical mode deformations of the solid element model near
2∼5 kHz show significant differences between the rail head and rail
foot (see Fig. 4b), which contrasts with the beam model’s assumption
that the mode displacements on the rail’s cross-section are uniform. The
differences between these two models thus become significant in the
high frequency domain.

According to the modal analysis of the rail, it can be found that
the solid element model reveals more detailed deformation character-
istics in the high frequency range in comparison to the beam model,
so the random vibration analysis of the rail can be simulated more
accurately and comprehensively. The natural vibration characteristics
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Fig. 5. Comparison for the rail dynamic characteristics of the Timoshenko beam model and solid element model. (a) natural frequency; (b) harmonic response.
Fig. 6. (a) The test setup of the full-size railpad in Vossloh 300 fasteners; (b) the force–displacement hysteresis curve of experiment results; (c) the measured and fitted data of
the storage stiffness and loss factor under different frequencies.
of the rail between the solid element model and the Timoshenko beam
model were further investigated, as shown in Fig. 5. Fig. 5a compares
the natural frequencies of the rail in the two models. The analysis
indicates that, except for the fourth and eighth modes, the natural
frequency differences between the two models can be neglected within
1 kHz. Nevertheless, the differences become more pronounced when
the frequency exceeds 1 kHz, demonstrating the superior simulation
accuracy of the solid element model with accurate representation of
rail cross-section deformation.

To further compare the vibration characteristics of the two rail
models, a fixed beam model of the rail with a length of 6 m and
a damping ratio of 0.02 was analyzed through harmonic response
analysis. The model’s response to a unit load applied at the midspan
was obtained, as shown in Fig. 5b. While the harmonic responses of the
two models show negligible differences in the 2 kHz range, the disparity
increases gradually over 2 kHz. Throughout the frequency domain, the
displacement of the solid element model is slightly higher than that of
the beam model, while the solid element model’s dominant frequencies
are lower than those of the beam model. This discrepancy becomes
more significant in the higher frequency range, primarily due to the
solid element model’s lower bending stiffness compared to the stiffer
beam model [54].

3.2. Analysis of the refined nonlinear FD Zener model of the CVTS

The simulation scenario of vehicle-track coupled dynamics was
considered as a railway vehicle traveling at a speed of 300 km/h, and
the German high-speed irregularity spectrum was implemented as the
input excitation with a wavelength range of 0.02∼200 m. The nonlinear
FD Zener model parameters of railpads and the primary suspension are
present in Section 3.2.1, and the random vibration analysis of CVTS is
given in Section 3.2.2.
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Table 1
FD Zener model coefficients of the railpad.

Item 𝑎𝑟𝛼 (s−𝛼) 𝑏𝑟𝛼 (N/m) 𝑐𝑟𝛼 (N s−𝛼/m) 𝛼

Value 5.6e−3 1.96e7 5.2e6 0.3

3.2.1. Nonlinear FD zener model parameters of railpads and the primary
suspension

The parameters of the railpad used in Vossloh 300 fasteners are
obtained by laboratory experiments [42]. he mechanical properties of
the railpad were measured in a temperature range of −60 ◦C to 20 ◦C
using a full-size railpad test setup, as shown in Fig. 6a. The dynamic
response of the railpad was evaluated by measuring the hysteresis
force–displacement curve, as shown in Fig. 6b. Berg’s friction model
was used to fit the nonlinear coefficients of the railpad, which were
determined as Ffmax = 4.1 kN and x2 = 0.1 mm. The frequency-
dependent dynamic coefficients of the railpad were obtained using the
Williams–Landel–Ferry equation and the Time–Temperature Superpo-
sition principle, as shown in Fig. 6c, based on experimental data at
different temperature points. The coefficients in the FD Zener model
were determined based on the obtained frequency-dependent dynamic
coefficients, and are presented in Table 1. These nonlinear parameters
of the railpads were utilized for subsequent modeling and simulation
analyses. The nonlinear parameters of the primary suspension were
obtained from the literature [38].

3.2.2. Comparison analysis of the frequency response of the CVTS
Fig. 7 shows the acceleration responses of the bogie, wheelset, rail

and wheel–rail force in the frequency domain under the two different
rail models. The effect of the rail models on the bogie acceleration
response is negligible within 200 Hz, since the dynamic response of
the CVTS is primarily affected by the rail models in the high frequency
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Fig. 7. Acceleration of the CVTS in two different rail models. (a) Bogie; (b) Wheelset; (c) Rail; (d) Wheel–rail force.
omain, as shown in Fig. 7a. It can be observed that the dynamic
esponse of the wheelset and rail acceleration, and wheel–rail force
ave a similar variation trend within 3 kHz, and the accuracy difference
etween the two rail models is relatively small in the range of 0∼1 kHz

(see Fig. 7b∼d). Specifically, for wheel–rail force, the difference in
response peak at the first dominant frequency of 64.3 Hz is only
0.8%, while that near the dominant frequency of 723 Hz is about 3%.
However, the differences between the two models gradually increase
in the range of 0∼1 kHz, becoming significant over 2 kHz. Based
on this comparison analysis, it can be concluded that the nonlinear
FD Zener model of the CVTS, which employs the Timoshenko beam
model of rail, can achieve relatively accurate response results within
1 kHz, but its accuracy cannot be guaranteed above 1 kHz. Therefore,
when studying the random vibration characteristics above 1 kHz, a
solid element model should be utilized for the CVTS. Further field
experimental validation of this finding is expected to be performed in
future research.

he solid element model of the rail in the CVTS offers another notable
advantage, which is the ability to obtain the dynamic response of the
rail at any spatial coordinate To investigate the variation in vibration
response across different locations on the cross-section of the rail, five
representative positions were identified and labeled on the rail cross-
section, as shown in Fig. 8a. The numerical labels assigned to these
positions (①∼⑤) correspond to the five specific locations on the rail,
namely, the railhead edge, railhead, rail web, rail foot, and rail foot
edge.

Fig. 9a∼c present the comparison of the rail acceleration at different
local positions. Fig. 9a shows that the rail vibration responses at points
1 and 2 match well in most of the frequency range, except for noticeable
differences in the response peaks in the frequency range of 1.05–
1.7 kHz. The rail responses at three points 2, 3, and 5, located on
8

the symmetry axis of the rail cross-section, show slight differences (see
Fig. 9b). However, the rail vibration at points 4 and 5 have significant
differences throughout frequency domain (see Fig. 9c). The amplitude
peaks at point 5 exceed those of point 4 within 1.3 kHz, while the
inverse results appear in the frequency range of 1.3–3 kHz. This is due
to the rail foot edge’s increased susceptibility to deformation under
certain frequency excitations, which can also be distinguished by the
different deformation of the natural modes in these two local regions,
as depicted in Fig. 4.

The random vibration of the CVTS under two models of the wheel
axle, namely the elastic model and the rigid model, was investigated.
The results depicted in Fig. 9d demonstrate significant differences in the
bogie response between the two models for frequencies above 20 Hz. In
Fig. 9e, the wheelset response shows a noticeable distinction at the first
dominant frequency of approximately 65 Hz, with the elastic model
revealing three additional response peaks at 118.4 Hz, 879.4 Hz, and
2166.4 Hz, which are the characteristic modes excited by the symmetric
load of the two rails.

Previous studies on the railpad configuration for the CVTS have
generally assumed a simple support on a series of single points (see
Fig. 8b). However, in reality, the rail is supported on a certain surface
by the railpad (see Fig. 8c), which can significantly affect the random
vibration of the rail and wheelsets in the high frequency domain. The
comparison analysis results in Fig. 9 show that the bogie response under
these two railpad configuration models has only a slight difference
in the entire frequency domain. At the first dominant frequency of
64.3 Hz, the rail acceleration difference between these two support
models is only 0.1% (see Fig. 9f). However, using the simplified railpad
model as the single point-support, there is a significant impact on the
response in the frequency range of 950 Hz–1150 Hz, and the peak
difference at 1 kHz for these two models exceeds 41%. Additionally,
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Fig. 8. (a) Number of points at different positions of rail section; (b) point-support and (c) surface-support model of rail.
Fig. 9. (a), (b), (c) Comparison of rail acceleration of different points on the rail cross section; (d) Bogie and (e) wheelset acceleration of rigid wheelset model and elastic wheelset
model; (f) Rail acceleration of two constraint models of rail.
there is an obvious difference in the response in the frequency range
of 2.4 kHz to 3 kHz, with the acceleration difference of the rail
near 2650 Hz being greater than 44%. The dynamic responses of the
9

wheelsets under these two support models exhibit a similar trend to the
rail in the entire frequency domain. Therefore, optimizing the support
model of the railpad as a surface-support is essential to obtain a more



F. Yang, P. Zhang, Y. Wang et al. International Journal of Non-Linear Mechanics 154 (2023) 104444
accurate simulation of the random vibration of the CVTS in the high
frequency domain.

Conclusion
By simultaneously employing the nonlinear FD Zener models of

the railpads and primary suspension, finite element rail model, elastic
wheel axle model, and surface-support railpad configuration, a refined
numerical model of the CVTS was developed to better simulate the high
frequency dynamics. Combined with the modal superposition method,
the proposed model has high calculation accuracy as well as high
computation efficiency.

In the high frequency domain, the solid element model shows
notable differences in modal deformations between the rail head and
foot. Although the bogie response difference between the solid element
model and the classic model of the CVTS can be disregarded due to
the damping effect of the primary suspension system, the Timoshenko
beam model limits to provide accurate results for the wheel–rail force
above 1 kHz. The acceleration of different positions on the rail head
shows minor differences in most frequency ranges, except for the range
of 1.05∼1.7 kHz, while the responses of the rail foot and foot edge
exhibit conspicuous differences throughout the frequency domain.

In the CVTS, when assuming the wheel axle to be an elastic model,
there is an 11% discrepancy in the bogie response at the first dominant
frequency, while a noticeable difference in the entire frequency range is
observed in the response of the wheelset compared to those of the rigid
model. Additionally, to accurately simulate the random vibration of
the CVTS in the high-frequency domain, the railpad configuration was
modeled as a surface-support model, which resulted in peak differences
of more than 41% at 1 kHz and 44% at 2650 Hz in the rail acceleration
response, as compared to the point-support model.

This work contributes to a better understanding of the vehicle-
track coupled dynamics in the high-frequency range by the comparison
analysis of the proposed refined model and the classic model. The
refined model more realistically simulate the rail, wheel axle, nonlinear
railpads and primary suspension, and hence can better reproduce the
high-frequency vehicle-track dynamics. In future research, a thorough
validation of the proposed nonlinear model against the field experi-
ments and other published numerical model will be performed to better
demonstrate its effectiveness.
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