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Abstract

The climate on Earth is changing rapidly. In order to take the right measures it is important to know with
which magnitude and rate the warming of the climate continues in the future. However, climate models cur-
rently predict different scenarios. The differing in response of shallow cumulus clouds to a warming climate
explains the largest part of the spread of climate sensitivity in these models. It is known that clustered clouds
have a different climate feedback than randomly distributed clouds and that we can expect more clustered
cloud fields in a warmer climate. It is however unknown how these clouds respond and what the exact differ-
ence in climate feedback is.

Future research must provide us with more insights and eventually a better understanding of the response
of shallow cumulus clouds to warming. However, in order to investigate this an objective measure of the
degree of cloud organization is necessary, something that is currently lacking.

In this thesis a dimensionless combined organization measure is introduced that can be applied to a
large range of cloud field organizations on different field sizes. This is a combined measure, as it makes use
of the existing organization index Ior g and the size of clouds and clear sky areas in the cloud field. A different
approach on calculating Ior g was introduced taking into account the sizes of the clouds, resulting in an useful
and more realistic values from this parameter.

The results of the combined organization measure were compared to a visual inspection of 557 cloud
fields with dimensions of 10°×10°, which showed promising results. Sub-fields of 5°×5° and 2.5°×2.5° were
also analysed, which showed that the combined organization measure could often be applied on smaller
scales as well but yielded some problems when areas contained either no or little clouds or some very large
ones.

It was concluded that the newly developed method is an improvement of the already existing method,
providing scientists with a better and more reliable index to quantify the degree of cloud organization.
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1
Introduction

All over the world, clouds appear in various shapes and sizes. Probably everyone can acknowledge that,
as sometimes the sky is dominated by these typical "woolly" cumulus clouds and other days, when stratus
clouds dominate the sky, it looks like the earth is covered by a blanket. Individual clouds can easily be distin-
guished from the earth. However, it is challenging to say something about the cloud organization, where we
look at the distribution of clouds in a large area rather than identifying individual clouds. Using satellites we
can observe large areas from above, and thus have a better overview of what a cloud field looks like. Imagery
from satellites therefore offers great opportunities for science.

Figure 1.1 shows two cloud fields with different organizations. Both fields have the same cloud cover
(24%), but the spatial distribution of the clouds is different. The cloud field on the left looks rather randomly
organized: clouds are distributed over the entire area. This is not the case for the cloud field on the right,
where clouds are clustered and large areas containing little clouds can be identified.

(a) Example of approximately evenly distributed
clouds.

(b) Example of a clustered cloud field.

Figure 1.1: Satellite true colour images (MODIS) showing two cloud fields with cloud cover = 24%.

We are interested in studying the organization of a cloud field, as this greatly improves our understanding
of our current and future climate. Climate change has been a so-called hot topic for a period of time now
and modelling it is important for many reasons, but is also very challenging. Advancements in computer
power have greatly improved our modelling capabilities in terms of sophistication and comprehensiveness.
However, different models still show a large spread in the degree of warming as a response to a doubling of
CO2. This uncertainty in climate sensitivity can largely be traced back to the response of especially marine
low level clouds to a changing environment (Bony and Dufresne, 2005; Vial et al., 2013). In particular, our
understanding of the variability of shallow cumulus clouds in the trade wind region is limited and most likely
because of that, low-level cloud feedback shows a large spread for different models in this region (Brueck
et al., 2015). Increasing computer power gives us the opportunity to create sophisticated climate models, but
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2 1. Introduction

in order to improve them we need to understand our current climate and in particular what the role of clouds
in our climate is.

Our limited understanding of how clouds, circulation and climate interact is discussed by Bony et al.
(2015). This paper states that four main questions should be answered in future research in order to get a
better understanding of the impact of clouds on climate. One of these questions is what role convective ag-
gregation plays in climate. Insights from both field and numerical studies showed that aggregation of clouds,
also referred to as clustering, has a significant different feedback on the climate compared to a randomly or-
ganized cloud field (Bretherton et al., 2005; Cahalan et al., 1994; Tobin et al., 2012). Therefore, the climate
feedback of these clouds highly depends on the way they are organized, which illustrates the interest in cloud
organization.

The cloud fields in Figure 1.1 not only look different from space, they also have a different climate climate
feedback. The images are true colour images created with satellite data from the MODIS instrument. Satel-
lites provide us with frequent and high-resolution imagery and are therefore very useful for assessing cloud
organization. MODIS imagery is available free of charge, provides data twice a day and contains a cloud
mask with 1 km resolution. It therefore offers a great opportunity to assess the organization of cloud fields on
a twice a day basis. The question however is how to assess the degree of cloud organization.

Recently an effort has been made, hosted by the International Space Science Institute, to subjectively in-
vestigate the patterns of mesoscale organization in the trade wind region. Ten years of MODIS imagery was
analysed and resulted in four recurring patterns named Sugar, Fish, Gravel and Flowers, displayed in Fig-
ures 1.2a to 1.2d. The captions contain a definition as formulated by the group of scientists working together
on this project (Stevens et al., 2019).

(a) Sugar: Dusting of very fine scale clouds, perhaps patterned
by a larger scale flow, but with little evidence of self-organization
(cold-pools or gust fronts).

(b) Fish: Large-scale (100s of km) skeletal like networks of clouds
separated from each other, or other cloud forms, by well de-
fined cloud free areas and sometimes accompanied by a strati-
form cloud shield.

(c) Gravel: Brighter clouds along meso-β (20 km to 100 km)
lines or arcs defining randomly interacting cells with interme-
diate granularity and little evidence of accompanying stratiform
cloud veils.

(d) Flowers: Large-scale (50 km to 200 km) stratiform cloud
features, typically with reduced reflectivity and appearing in
bunches (bouquets) well separated from one another by regions
devoid of clouds.

Figure 1.2: Subjective cloud organization patterns. All cloud fields span a region of 5°×7°. Definitions of these patterns as stated by the
group of scientists are provided in the caption.



1.1. Research Questions 3

Although they successfully and relatively consistently identified different cloud patterns, the results are
likely to be biased as the patterns were identified in a subjective way. To obtain consistent results, it is there-
fore of uttermost importance to objectively quantify the degree of organization of a cloud field (Seifert and
Heus, 2013).

Objective methodologies, like SC AI (Simple Convective Aggregation Index) (Tobin et al., 2012) and the
Organization Index Ior g (Seifert and Heus, 2013; Tompkins and Semie, 2017; Weger et al., 1992), are formu-
lated and applied in earlier studies (see Sections 2.2.3 and 2.2.4). However, the results of these methods are
not as desired. Therefore this thesis focusses on finding a novel approach to assess the cloud organization
successfully in an objective way.

1.1. Research Questions
As argued in this chapter, the largest uncertainty in climate models nowadays is the response of shallow cu-
mulus clouds to a changing environment. As it is important for policy makers to know with high confidence
levels what our future climate will look like and thus to what extent measures should be taken, we need a
better understanding of the climate feedback of these cloud fields. Understanding the evolution of cloud or-
ganization is important for this. Satellite imagery provides us with large amounts of useful data. In order to
analyse this imagery in a systematic and objective way, a measure must be found which quantifies the degree
of cloud organization. The main focus of this thesis therefore lies in finding this measure. Subsequently, this
measure is applied to multiple years of satellite data to investigate the temporal and spatial scales of shallow
cumulus cloud organization.

Two main questions are formulated. Sub-questions are used to find the answers to the main questions.

1. How can shallow cumulus cloud organization objectively be characterized using satellite imagery?

(a) How is shallow cumulus cloud organization defined?

(b) Which parameters have been used in the past to characterize shallow cumulus cloud organiza-
tion?

(c) What are the most important parameters to measure shallow cumulus cloud organization?

(d) Can these parameters be linked to a subjective evaluation of the organization?

(e) How robust are these parameters when different thresholds for data selection are applied?

(f) How robust are these parameters when applied to different field sizes?

2. What are the temporal and spatial scales of shallow cumulus cloud organization?

(a) On which temporal scales can trends be detected?

(b) How fast does organization change?

(c) On what spatial scales do parameters vary?

1.2. Methodology & Outline
To answer these questions satellite data from the MODIS instrument aboard two different satellites (Terra
and Aqua) will be used. An appropriate area of 10°×10° is selected (Fig. 1.3) and multiple years of data (the
months December, January and February between December 2010 and February 2018) are analysed. This
area is appropriate because shallow cumulus clouds are abundant here, which will be explained further in
Section 2.1. More specifically also because a large field campaign, EUREC4A, will be held in this region in
February 2020 (Bony et al., 2017). Only the months December, January and February are analysed because
the area of interest is dominated by shallow cumulus convection in stead of deep convection during this pe-
riod. This is due to a shift of the ITCZ (Inter Tropical Convergence Zone) to the southern hemisphere (King
et al., 2013). The measure to assess the degree of cloud organization is created from theory and a visual as-
sessment of the success of using certain parameters. Eventually, based on this visual judgement, the most
effective measure is selected.
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Figure 1.3: The area of interest, indicated by the orange box, is located close to Barbados and spans 10°×10° between 10°−20°N and
49°−59°W.

This thesis contains six chapters. After this introduction Chapter, theory on shallow cumulus clouds,
cloud fields and cloud characterization is discussed in Chapter 2. Chapter 3 discusses the MODIS instrument,
its cloud mask and the pre-processing of the data. The methodology is explained in Chaper 4. The results and
discussion are subsequently discussed in Chapter 5 and finally the conclusions are presented in Chapter 6.



2
Theory

This chapter is split up in two parts. First a short theoretical background on shallow cumulus clouds and the
trade wind region is provided. The second part discusses existing methods to characterize cloud organization.

2.1. Shallow Cumulus Clouds
As mentioned already in the introduction the main goal is to be able to find a quantitative measure of the
organization of shallow cumulus clouds in the trade wind region. This section discusses the definition of
shallow cumulus clouds and why they are so abundant in the trade wind region.

Shallow Cumulus Clouds
The World meteorological Organization (WMO) has created an International Cloud Atlas, which describes
the classification system for clouds (Howard, 1803). An example of cumulus clouds is shown in Figure 2.1.
The Cloud Atlas defines shallow cumulus clouds as described here:

"Detached clouds, generally dense
and with sharp outlines, develop-
ing vertically in the form of rising
mounds, domes or towers, ofwhich the
bulging upper part often resembles a
cauliflower. The sunlit parts of these
clouds are mostly brilliant white;
their base is relatively dark and nearly
horizontal" (Howard, 1803).

Figure 2.1: Cumulus Clouds (Burt, 2009).

Cumulus clouds are formed via atmospheric convection, which means that air warmed by the surface
starts to rise due to instability. The temperature of the rising air drops, which results in a larger relative hu-
midity. Once the relative humidity reaches 100% water vapour condenses (under the condition that nuclei
like dust are present in the atmosphere) and forms cumulus clouds. Depending on the temperature profile of
the atmosphere and the presence of any inversions, cumulus clouds vary in depth. Shallow cumulus clouds
are cumulus clouds with a depth up to approximately 5 km. A warm ocean surface in combination with a
moderate or weak large-scale subsiding motion results in the majority of marine low-level clouds being shal-
low cumulus (Nuijens et al., 2014).

The climate feedback of shallow cumulus clouds depends on different properties of the cloud field. An

5
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important climate feedback is radiation, as a changing cloud cover affects the reflectance of shortwave radi-
ation from the sun. However, reflectance does not only depend on cloud cover fraction but is also affected by
the horizontal distribution of clouds (Cahalan et al., 1994). This can also be referred to as cloud organization.

As mentioned before, shallow cumulus clouds are ubiquitous over tropical oceans and therefore their
radiative properties have a significant impact on the Earth’s radiation budget. It has been shown that their
differing in response to a warming climate explains the largest part of the spread of climate sensitivity in cli-
mate models (Bony and Dufresne, 2005; Bony et al., 2004; Boucher et al., 2013; Medeiros et al., 2008, 2015;
Vial et al., 2013; Webb et al., 2006), as was already discussed in the Introduction. Shallow cumulus clouds
span large parts of the world’s oceans and are common over land during the day in periods when fair weather
prevails. Particularly, shallow cumulus clouds are abundant in the trade wind region.

Trade Wind Region
The trade wind region is defined as the region roughly between the Inter Tropical Convergence Zone close to
the equator and delimited by the Tropic of Cancer in the north and the Tropic of Capricorn south of the equa-
tor. Trade winds are the prevailing winds at the surface near the equator, directing from northeast (southeast)
to West in the northern (southern) hemisphere. The winds strengthen during the boreal winter and act as the
steering flow for tropical storms.

Atmospheric Circulation
The trade winds are a result of the atmospheric circulation, which is a global movement of air mass. As more
sunlight reaches the earth at the equator than at the poles, energy is unevenly divided over our planet. Driven
by the temperature gradient at the surface, air mass flows from the equator towards the poles by rising at
the equator and subsequently flowing polewards at a height of approximately 17 km because it cannot ascent
further than the tropopause. However, due to the rotation of the Earth air can not flow directly from the equa-
tor towards to poles. The atmospheric circulation is instead split up in three cells on each hemisphere: the
Hadley cell, the Ferrel cell and the Polar cell. Instead of flowing all the way to the poles near the tropopause,
air descends at the subtropics and flows back towards the equator at the surface. This is schematically visu-
alized in Figure 2.2. Due to the rotation of the earth, the near surface return flows to the equator are deflected
towards the West, resulting in north-easterly trade wind in the subtropical Northern Hemisphere and south-
easterly winds at the subtropical Southern Hemisphere. These winds are denoted with green arrows in the
Figure. For this reason the region is referred to as the trade wind region.

Figure 2.2: The atmospheric circulation model showing the different cells on each hemisphere. Red and blue arrows indicate respectively
warm and cold air masses. The green arrows denote the surface winds.
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2.2. Cloud Characterization
This section describes four basic cloud field parameters and existing methods designed specifically to charac-
terize cloud organization like SC AI and Ior g . This section also provides a short explanation of their practical
implications. The way they are implemented in this thesis is described in Chapter 4.

2.2.1. Basic Cloud Parameters
In this section the basic parameters describing clouds are discussed. These basic parameters are the cloud
cover, the average cloud size, the cloud number density and the average nearest neighbour distance. The
parameters provide useful and simple method to have an initial idea about the clouds in a field. However,
they do not necessarily provide information about the organization of the cloud field.

Due to the fact that the area of interest is close to the equator, often some data is missing= which will be
explained in Chapter 3. Furthermore, as a finite area is assessed, clouds will sometimes directly be adjacent
to the edge of the area or to the no-data area. This may have consequences for the results of the basic cloud
characterization analysis and will be discussed in this section as well.

Figure 2.3 contains an example cloud field.

Figure 2.3: Example of a cloud field. Grey pixels denote no-data area, black pixels denote clouds fully within fthe field and red pixels
represent clouds adjacent to the no-data area or edge of the field. The red areas outside the area denote possible realizations of the
clouds adjacent to the edge or no data area. These cloud however can have any shape.

In this example cloud field the grey pixels denote no-data area and the orange highlighted area does con-
tain data. The red and black pixels denote cloud pixels. In particular, the red pixels show clouds adjacent to
the no-data area or the edge of the field. The red semi-transparent areas surrounded by dotted black lines
represent possible cloud realizations. However, the values of these pixels are unknown and no assumptions
on the sizes of the complete clouds at the edges of the field can be made. This yields some statistical issues,
but they reduce when the domain size increases with respect to the cloud size.

The sizes of the two areas (containing data and no-data) and the individual clouds are written down in
the Figure. The question marks in the red semi-transparent areas show that these sizes are unknown.

The theory on the basic cloud characterization will be on the basis of this field.

Cloud Cover
One of the first characteristics of a field that is usually discussed is the cloud cover, also referred to as the cloud
fraction (e.g. by Brueck et al. (2015)). This parameter is defined as the percentage of the field that is covered
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by clouds, given by:

CC =
∑N

i=1 ai

A
×100% (2.1)

Here CC is the cloud cover, ai is the area representing cloud i and A is the total area of the field.
A completely clear sky field will thus have a cloud cover of 0%, since there are no pixels representing

clouds, and a field that is completely covered in clouds has a cloud cover of 100%. However, these extremes
are not common and cloud cover usually has a value in between these values, although that also depends on
the size of the field.

The field shown in Figure 2.3 is used here as an example to calculate cloud cover. This cloud field con-
sists of 16 x 16 = 256 pixels, but only 205 pixels contain data. The total area of the field A thus equals 205
pixels. The field contains in total 79 cloud pixels (black and red pixels). Under the assumption that all pixels
represent equal-size areas (1 km2 here, although not of importance for the cloud cover) and making use of
Equation (2.1), the cloud cover of this field is found to be: 79

205 ×100 = 38.5%.
It was mentioned before that the so-called "cut-off" of the clouds at the edges and the no-data area influ-

ences the basic parameters. However, for the cloud cover it can be assumed that this effect is negligible, as the
cloud cover does not depend on the number of clouds, their sizes or their geometrical positions. Therefore
all clouds can always be taken into account when calculating the cloud cover.

Number of Clouds
Another parameter used to describe a cloud field is the number of clouds that a field contains. In order to
compare this value to fields with different fractions of missing data, the number of clouds is usually presented
as the number of clouds / unit area, or in other words the cloud density. The unit area is defined as the
complete area that is evaluated, regardless of whether pixels contain data or not. For the example field in
Figure 2.3 this means that the unit area equals 16×16 = 256 km2. The cloud density is given by the following
equation:

Ncloud s =
n

A
× Auni t (2.2)

Here Ncloud s is the number of clouds per unit area, n is the number of clouds, A is the area of the field
that contains data and Auni t is the unit area.

If this equation is applied to the example field in Figure 2.3, we find that the number of clouds is 15, the
area containing data is 205 km2 and the unit area is 256 km2. Therefore the cloud density of this field is equal
to 15

205 ×256 = 18.7 clouds/256 km2.
However, since it is unknown how large the clouds adjacent to the edges and no-data areas are and thus

what their spatial extent outside this area is, these clouds must be removed from the data. Otherwise it is
likely that the cloud density gets overestimated, as the number of clouds found in the field actually cover a
larger area than that is evaluated. This was sketched with red-semitransparent areas in Figure 2.3. If these
possible cloud extensions would be true, the number of clouds would remain the same but the area A would
be larger, and thus the cloud density would be smaller.

In order to avoid such biases, the clouds adjacent to the edge or no-data area are removed. Their sizes
are subtracted from the total area A as well, otherwise the cloud density would be biased in the opposite di-
rection. Doing so for the example field in Figure 2.3 leaves us with 9 clouds. The total area A is reduced to
205−23−1−9−3−4−2 = 163 km2. The unit area remains the same, and thus we obtain a cloud density of

9
163 × 256 = 11.3 clouds / 256 km2. This value is much lower than the value found when the red clouds are
taking into account, but as argued above it also is a more realistic value.

Average Cloud Size
This parameter gives the average size of the clouds in the field and is given by the following equation:

C l oudSi ze =
∑N

i=1 ai

n
(2.3)

Where C l oudSi ze denotes the average cloud size,
∑N

i=1 ai is the sum of all cloud areas and n is the number
of clouds.

Taking the field in Figure 2.3 as an example again, in which all pixels represent a similar area of 1 km2, the
average cloud size is 5.20 km2. However, similar as for the cloud density, the clouds adjacent to the edge and
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no-data area should be removed since their size is unknown. Therefore, the number and the sum of all sizes
of the clouds denoted by black pixels must be used. In this example, n then equals 9 and the sum of these 9
cloud areas is 37 km2. This gives an average cloud size of 37

9 = 4.11 km2. This is smaller than the average cloud
size computed from all clouds in the field. This can also be expected from theory as the chance of clouds be-
ing directly adjacent to the edge or no-data area is larger for larger clouds. Removing these usually relatively
large clouds from the dataset will then results in a smaller average cloud size.

Average Cloud Nearest Neighbour
Each cloud has a geometrical centroid. The nearest neighbour of a cloud is defined as the distance to the
nearest centroid of another cloud. Therefore the nearest neighbour is found by first finding the geometrical
centroids of all cloud, and subsequently calculating its distances to the other geometrical centroids. The
shortest distance is the nearest neighbour of this cloud. The average nearest neighbour of a field is found by
taking the average of all these nearest neighbours. The geometrical centroids have an x- and a y-coordinate.
These coordinates are given by:

Cx,i =
n∑

j=1

(x j a j )

ai
(2.4)

Cy,i =
n∑

j=1

(y j a j )

ai
(2.5)

Here Cx,i and Cy,i are respectively the x- and y-coordinates of the geometrical centroid of cloud i . Fur-
thermore x j and y j are the x and y coordinates of the pixels making up the cloud, a j is the size for that pixel
and ai is the total area of cloud i . Using these centroids, the distances to all other clouds are determined
using the following equation:

N N =
∑N

i=1 mi n
{√

(Cx,i −Cx )2 + (Cy,i −Cy )2
}

n
(2.6)

Here N N stands for the average nearest neighbour distance, Cx,i and Cy,i are taken from Equations (2.4)
and (2.5) and Cx and Cy represent all centroids except for Cx,i and Cy,i . The numerator in this equation de-
fines the sum of the smallest distance to any of the other clouds (thus nearest neighbour) of all clouds. This is
divided by the number of clouds n to find the average nearest neighbour. The example field in Figure 2.3 has
an average nearest neighbour of 2.90 km when using all clouds. Again however, since the sizes of the clouds
adjacent to the edges and no-data area are unknown, and yet there centroids are unknown, these clouds
should be removed from the dataset. Doing so, an average nearest neighbour distance of 3.22 km is found.

2.2.2. Cloud Size Distribution
Instead of determining the average cloud size, one can also look at the cloud size distribution. This parameter
provides more information on the number of clouds in the field that have a given size.

The first studies on the cloud size distributions of shallow cumulus clouds using satellite data suggested
an exponential (Hozumi et al., 1982; Plank, 1969; Wielicki and Welch, 1986) or lognormal (LeMone and Zipser,
1980; López, 1977) decay of cloud sizes. More recent studies suggest a power-law decay, however only over a
restricted range of scales. Clouds larger than this scale break less common than expected (Benner and Curry,
1998; Cahalan and Joseph, 1989; Kuo et al., 1993; Machado and Rossow, 1993; Nair et al., 1998; Sengupta et al.,
1990; Zhao and Di Girolamo, 2007). The same power-law decay is suggested from numerical models (Dawe
and Austin, 2012; Heus and Seifert, 2013; Neggers et al., 2003). A schematic representation of such a typical
shallow cumulus cloud size distribution would look like the one sketched in Figure 2.4.

Note that both the x- and y-scale are logarithmic.
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Figure 2.4: Example graph of a typical shallow cumulus cloud size distribution in a log-log plot. The cloud sizes are given on the x-
axis and can have different size ranges. The y-axis shows the corresponding percentage of the clouds in the field for a given cloud size.
Typically the graph can be divided into a less steep and a steeper part.

2.2.3. Characterizing Cloud Organization
Since the main goal of this thesis is to find a representative measure for cloud organization, different parame-
ters then the aforementioned parameters are required. Although it is likely that the cloud density and average
nearest neighbour distances decrease and that the average cloud size increases for a higher degree of organi-
zation, organization can not be described using these parameters alone. In this sub-section the organization
index Ior g and the organization parameter SC AI are discussed.

Organization index Ior g

The organization index discussed in this section is referred to as Ior g and was applied in different stud-
ies (Seifert and Heus, 2013; Tompkins and Semie, 2017; Weger et al., 1992). The result is relatively simple:
it classifies an area either as regular (Fig. 2.5a), random (Fig. 2.5b) or clustered (Fig. 2.5c). This is done by
comparing the field to a theoretical field with a random organization. Although the method used for this
thesis will deviate slightly, but substantially, from the widely used parameter Ior g , the method to obtain Ior g

will be discussed here as the first steps are similar, and because the widely used method will also be used to
explain the improvements of the related parameter proposed in this thesis.

(a) Example of a regular field. (b) Example of a random field. (c) Example of a clustered field.

Figure 2.5: Different organized fields. All fields have dimensions of 10 x 10 pixels with 9 pixels representing clouds. 2.5a shows a regular
distributed field, 2.5b a random field and 2.5c shows an example of a clustered field. Ior g is promising for separating each of these
fields, despite their sizes and the total number of clouds being equal.

For the calculation of the Ior g the nearest neighbour distance of each cloud must be found. For this a part
of Equation (2.6) is used, but instead of determining the average nearest neighbour of the field directly, the
nearest neighbours of all clouds are stored in a parameter. These nearest neighbours for each cloud are thus
defined as the smallest distance from this given cloud to the other clouds in the field. In an equation this is
written as:

N Ni = mi n
{√

(Cx,i −Cx )2 + (Cy,i −Cy )2
}

(2.7)
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Here N Ni represents the nearest neighbour distance of a given cloud.
Since the area is finite, periodic boundary conditions should be taken into account. This is only possible

for rectangular shaped fields. Doing so, a schematic of the nearest neighbours looks like as depicted in Fig-
ure 2.6. Here clouds a and b are each others nearest neighbours. The same holds for clouds d and e, although
this is only true because periodic boundary conditions are considered. The nearest neighbour for cloud c is
cloud d, but the nearest neighbour of cloud d is cloud e. Clouds are thus not always pairs when looking at
nearest neighbours.

Figure 2.6: Schematic of the Nearest Neighbour calculation with Periodic Boundary Conditions. The black pixels represent clouds, the
orange dots their centroids and the green arrows the nearest neighbour of each cloud.

After obtaining all nearest neighbour values, the cumulative distribution function of these nearest neigh-
bour distances is calculated. The cumulative distribution function is given by:

FX (x) = P (X ≤ x) (2.8)

In this equation the right-hand side gives the probability that the variable X is smaller than or equal to
x. In terms of the cumulative distribution function of the nearest neighbours of a field this means that X
represents the nearest neighbour distances of all clouds and x is given by the unique values of the nearest
neighbour distances. FX (x) will from here on be referred to as the N NC DF (Nearest Neighbour Cumulative
Distribution Function).

The N NC DF will be compared to the cumulative distribution function of the nearest neighbours if clouds
in the area were organized randomly. The cloud organization can in that case be considered as a Poisson point
process for which the expected distribution for the N NC DFr an is given by a Weibul distribution (Stoyan et al.,
1987). In terms of the Nearest Neighbour distances, the Weibul distribution can be written as:

N NC DFr an = 1−exp(−λπr 2) (2.9)

Here λ is the number of clouds per unit area and r is the nearest neighbour distance, equal to the unique
nearest neighbour distances found in the actual data.

After calculating the N NC DFr an , the N NC DF of the area is compared to it. This can visually be done
by plotting the actual N NC DF against the N NC DFr an and comparing this to the diagonal. Three possible
outcomes are schematically sketched in Figure 2.7. The N NC DF is plotted on the y-axis and the N NC DFr an

on the x-axis. If the clouds in the field that is being analysed are randomly distributed, the graph of N NC DF
against the N NC DFr an will be on the diagonal. If the clouds are clustered the graph will be above the di-
agonal, because there are more small nearest neighbours in the actual field than that is expected from a
theoretical random field. For a regular organization this is the other way around: the graph will be below the
diagonal since there are less small nearest neighbours in the actual field compared to the theoretical random
field.

The organization index Ior g is defined as the area under the graph. As both the x and y axes run from 0
to 1, a random field would have value 0.5. A clustered field has a higher value and a regular field has a lower
value. This does, however, not necessary mean that organization is the same for all spatial scales. An inte-
grated value of 0.5, indicating a random field, could also be a result from cancellation: if clouds for example
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Figure 2.7: Schematic illustration of the determination of the organisation parameter Ior g . The yellow dashed line is the diagonal and
represents a random distribution. If the graph is plotted above this diagonal the clouds are clustered, below the diagonal means that the
clouds are regularly distributed.

are regularly organised for small nearest neighbours (graph is below the diagonal) and clustered for larger
values (graph is above the diagonal), integration cancels out these statistics and the field may seem random.
Therefore, to assess organization for different spatial scales, the graph should still be examined.

Although Ior g has been recognized as a powerful measure of organization, this parameter lacks one important
cloud characteristic: its size. The N NC DFr an found in equation (2.9) does assume all clouds are points,
located at the geometrical centroids of these clouds. However, in reality these centroids may represent clouds
with sizes ranging from 1 pixel up to hundreds of pixels.

The assumption used for a poisson point process leads to a bias in Ior g due to the fact that a given size of
a cloud precludes the existence of another cloud within a certain distance. In reality, clouds are thus forced
to be further apart due to their sizes than when they are considered single points. This results in an appar-
ent regularity at smaller scales and either randomness of clustering at larger scales (Benner and Curry, 1998),
because more small, and less large values for nearest neighbours are found. If the graph would be sketched
in Figure 2.7, it would initially lie below the diagonal but would be located above the diagonal for larger scales.

Benner and Curry (1998), therefore also applied a related but essentially different method to assess cloud or-
ganization. They created a randomly generated inhibition N NC DF that took not only the number of clouds
into account, but also their sizes (but not their shapes, all clouds were assumed to be circles). They showed
that a plot of the observed N NC DF versus the inhibition N NC DF provided the best means for assessing
the organization of a cloud field. The apparent regularity at smaller scales was eliminated and cloud fields
appeared to be clustered more strongly.

Here some examples for fields with a certain amount of clustering or regularity with their corresponding val-
ues for the altered Ior g are presented, calculated by applying the method of Benner and Curry (1998) which
is discussed further in Chapter 4. However, all clouds are points, as using random sizes would computation-
ally be very complicated. These examples therefore mostly show the implications and results of regular or
random fields.

First three examples of regular fields with increasing deviations from their fixed position are shown in
Figure 2.8. On the left is a completely regular field shown with dimensions of 200 x 200 pixels with 400 single-
pixel clouds placed every 10 pixels between 5 and 195 for both x and y coordinates. The field and plot in
Figure 2.8b represent a slightly more random field: each pixel deviates with a maximum of 2 pixels in all x and
y directions. In Figure 2.8c this maximum deviation from its regular position is increased to 4 in all directions.
The values for Ior g are increasing for a larger deviation from the regular positions but are still far below the
value for a random distribution of clouds of 0.5. Increasing the random deviations even further will eventually
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lead to a completely random field with the plot being on the diagonal. However, simulations have shown that
an originally regular field with large deviations will never lead to a significant clustered field. Increasing the
random signal in the regular field to infinite values will thus lead to an Ior g of 0.5.

(a) Ior g of a regular field with cloud centroids ev-
ery 5 pixels in both directions.

(b) Ior g of a semi-regular field with deviations of
maximum 2 pixels in all directions from its regular
position.

(c) Ior g of a semi-regular field with deviations of
maximum 4 pixels in all directions from its regular
position.

Figure 2.8: Ior g of different measures of regularity. (a) is completely regular with centroids every 5 pixels in both directions. Some
random deviations from these regular cloud centroids are introduced in (b), where the maximum deviation from the regular position is
2 pixels in all directions. For (c) this maximum deviation is increased to 4 pixels in all directions.

Figure 2.9 shows some clustered fields with the same dimensions and number of clouds as the (semi-)regular
fields shown in Figure 2.8.

Their locations are generated from a normal distribution with a fixed mean value µ = 100 for both x and y
coordinates and a varying standard deviation σ. The value of σ was increased from 10 to 150 pixels to achieve
a random cloud distribution. The fields shown in Figure 2.9 show the simulations of σ = 10 until σ = 90 in
steps of 10. These fields were simulated making use of certain restrictions: clouds can not be positioned in a
place if another cloud was positioned there before and they must be positioned within the fields’ boundaries.
If the randomly generated values do not meet these requirements they are generated again, until they are
assigned to a legal position. X and y coordinates are generated independently from each other. For each value
of σ the simulations is run 100 times. Variations are small but do increase for decreasing cloud numbers. The
average, minimum and maximum Ior g values out of 100 simulations for σ = 10 pixels for example are 0.93,
0.90 and 0.96 respectively. For σ = 90 pixels, these values are respectively 0.51, 0.45 and 0.56.

The average Ior g for each σ after 100 simulations is plotted in Figure 2.10 indicated by the dashed green
line. The results for a field with similar dimensions but only 100 clouds (blue solid line) and the results of a
field with 100 x 100 pixels and 100 (black solid line) or 400 clouds (dashed red line) are also shown. The Ior g

values are decreasing for an increasing standard deviation. However, at some points the scenes become ran-
dom instead of clustered and the values of Ior g have reached the value for a random distribution: 0.5. Similar
to the shift from regular to random fields, fields that are originally clustered do not become regular. Their
minimum value is 0.5. Depending on the size of the field, this value is reached at a smaller or larger value of
σ. The smaller the field, the sooner the clouds are randomly distributed. Figure 2.10 shows that this point is
reached when σ is approximately equal to half of the size of the domain (σ = 50 pixels when the domain is
100 x 100 pixels and σ = 100 pixels when the domain is 200 x 200 pixels). The number of clouds in a field also
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Figure 2.9: Realizations of clustered scenes with varying standard deviations. The fields have dimensions of 200 x 200 pixels and contain
400 single-pixel clouds. A higher standard deviation σ leads to a more random scene.

influences the value of Ior g : the lower the number of clouds, the more Ior g varies between individual runs. In
practice, fields that are analysed typically contain several thousands of clouds and the value of Ior g does not
change significantly for different runs.

Figure 2.10: Ior g compared to the standard deviation from a clustered field. The scenes have dimensions of 200 x 200 pixels and contain
400 single-pixel clouds. Cloud locations are generated using a normal distribution function with a mean value µ at 100 for both the x and
y coordinates. Increasing σ leads to a lower value of Ior g .
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2.2.4. Cloud Organization using parameter SCAI
The Simple Convective Aggregation Index (SCAI) was introduced by Tobin et al. (2012). The parameter is rel-
atively simple and takes into account the number of clusters in a domain and the average nearest neighbour
distance.

This method assumes that the lower the number of cloud clusters is in a domain, the more aggregated
these clouds are. Furthermore small nearest neighbours indicate more aggregation. They showed that these
parameters are not equivalent but instead provide complementary information on the degree of aggregation.
In their studies the method was applied to deep convection, but should in theory also be applicable to shallow
cumulus convection as the same assumptions (less clouds and smaller nearest neighbours indicate a higher
degree of aggregation) can be assumed for both cloud types.

The parameters can be combined in a Simple Convective Aggregation Index (SCAI) given by:

SC AI = N

Nmax

D0

L
×1000 (2.10)

Here N is the number of clouds, Nmax is a theoretical maximum number of clouds, D0 denotes the av-
erage nearest neighbour and L is the characteristic length of the field. The number of clouds in a field and
the average nearest neighbour are thus normalized by fixed parameters for a given field. The characteristic
length L is the squared root of the total area that is being evaluated and Nmax is proportional to (L/a)2 (Tobin
et al., 2012). Here, a is set to 2.

Finding the value of SCAI for the three different example fields of Figure 2.5 requires the values of the
normalizing factors Nmax and L first. Assuming each pixel is 1 km2, we can say that Nmax is proportional
to L2. The characteristic length is the average length of the sides of the field, 10 pixels (or 10 km) for these
examples. The maximum number of clouds that fit in these fields are 0.25 ∗ 102, since pixels can not be
laterally or diagonally adjacent to one another. Therefore Nmax equals 25. All fields contain the same number
of clouds: 9. Using Equation (2.10), we find for the regular field displayed in Figure 2.5a a value of SCAI of
108.0. For the random field in Figure 2.5b we find 85.7 and for the clustered field in Figure 2.5c the SCAI value
is 72.9. As a lower value for SCAI indicates more aggregation these results meet the expectations.





3
MODIS and data processing

This chapter discusses which data has been used for this research (Sections 3.1 and 3.2) and how this data was
processed (Section 3.3). In Section 3.4 the thresholds which are applied for the data processing are discussed
based on some initial results.

3.1. Earth Observation using Satellites
For this project data acquired by the MODIS instrument (more in section 3.2) is used. MODIS is aboard two
satellites: Terra and Aqua. The satellites were launched on December 18, 1999 and May 4, 2002, respectively.
Both satellites are in low-orbit, at an altitude of 705 km. The satellites are part of NASA’s Earth Observing
System (EOS) and have sun-synchronous, near-polar (inclination angle of 98.2°, see Figure 3.1) circular orbits.

Figure 3.1: Schematic representation of an orbital inclination.

A sun-synchronous orbit means that the orbit precesses around the Earth’s polar axis with a rate similar
to the Earth’s average angular speed around the sun, thus one revolution per year. The big advantage of such
an orbit is that it crosses the same latitude at the same local solar time, regardless of the longitude or date.
Terra is descending (north to south) and crosses the equator during daytime at approximately 10:30 AM (14:30
UTC), whereas AQUA is ascending and crosses the equator during daytime at approximately 1:30 PM (17:30
UTC). With an orbit period of 99 minutes, the repeat cycle is 16 days, meaning that the swaths are similar
every 16 days. The approximate orbit for Terra on December 7, 2015, is shown in Figure 3.2.

A low inclination angle implies that polar areas are not captured, whereas larger inclination mean that
some areas closer to the equator won’t be captured. With an inclination angle of 98.2° high latitude areas are
mostly captured and little area near the equator is not captured on each day. The resulting world view images
on December 7, 2015, for Terra and Aqua are shown in Figures 3.3 and 3.4 respectively. From these images it

17
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Figure 3.2: Overpass times Terra on December 7, 2015. Source: https: // www. ssec. wisc. edu/ datacenter/ terra/

can be seen that around the equator some data is missing. As the orbits are slightly different and the repeat
cycle is 16 days, the areas of missing data are similar again after 16 days. However, the latitude boundaries do
not change, only the longitude boundaries are different.

Figure 3.3: Terra swaths (descending) on December 7, 2015. Taken from https://worldview.earthdata.nasa.gov

Figure 3.4: Aqua swaths (ascending) on December 7, 2015. Taken from https://worldview.earthdata.nasa.gov

https://www.ssec.wisc.edu/datacenter/terra/
https://worldview.earthdata.nasa.gov
https://worldview.earthdata.nasa.gov
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3.2. MODIS
MODIS (Moderate Resolution Imaging Spectroradiometer) is one of the five instrument aboard the Terra and
Aqua satellites. It acquires data in 36 spectral bands ranging from the short wave visible to the long wave
infrared (0.4µm to 14.4µm), or in groups of wavelengths. Data acquired by MODIS is meant to improve our
understanding of global dynamics and processes occuring on the land, in the oceans, and in the lower at-
mosphere. Because MODIS has a scanning pattern of 55° and is at an altitude of 705 km, the viewing swath
width is 2330 km. Because of that the entire surface of the earth is viewed every 1-2 days.

The spatial resolution at nadir is 250 m for bands 1 and 2, 500 m for bands 3-7 and 1000 m for bands 8-36.
With increasing sensor zenith angle, pixels become larger. This is visualized in Figure 3.5 taken from Sayer et
al.( 2015).

Figure 3.5: The pixel size with increasing sensor zenith angle for a pixel with a resolution of 1km at nadir (M. Sayer et al., 2015).

3.2.1. MODIS Cloud Mask
From this data a cloud mask of 1km resolution at nadir is created. Table 3.1, taken from the MODIS Cloud
Mask User’s Guide (Strabala, 2005), gives an overview of all bands on the MODIS instrument and states
whether these bands are implemented in the Cloud Mask algorithm.

Table 3.1: MODIS Bands (Strabala, 2005).

Band Central
Wave-
length
(µm)

Used in
Cloud
Mask

Primary Appli-
cation

Band Central
Wave-
length
(µm)

Used in
Cloud
Mask

Primary Appli-
cation

1 0.659 Y Clouds, shadow 19 0.940 Y Shadows
2 0.865 Y Low clouds 20 3.750 Y Thin cirrus
3 0.470 N 21/22 3.959 Y(21)/N(22) Window
4 0.555 N Snow 23 4.050 N
5 1.240 Y Snow 24 4.465 N
6 1.640 Y Snow, shadow 25 4.515 N
7 2.130 N 26 1.375 Y Shadows
8 0.415 N 27 6.715 Y High moisture
9 0.443 N 28 7.325 N
10 0.490 N 29 8.550 Y Mid moisture
11 0.531 N 30 9.730 N
12 0.565 N 31 11.030 Y Window
13 0.653 N 32 12.020 Y Low moisture
14 0.681 N 33 13.335 N
15 0.750 N 34 13.635 N
16 0.865 N 35 13.935 Y High cloud
17 0.905 N 36 14.235 N
18 0.936 Y Low clouds
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The resulting Cloud Mask actually contains a 48-bit cloud mask product, containing much more informa-
tion than just a cloud classication. Some examples are:

• Sun glint flag.
• Land/Water flag classifying pixels as Water, Coastal, Desert or Land.
• Non-cloud obstruction flag (heavy aerosol).

The cloud mask information is stored in bit fields 1 and 2, because each pixel is classified as either Cloudy,
Uncertain Clear, Probably Clear or Confident Clear. Table 3.2 provides a simple overview of these bit field
values and the associated classification. The classification of pixels into one of the four classes is based on 14
different bands (Table 3.1).

Table 3.2: MODIS Cloud Classification and bit values (Strabala, 2005).

Classification Bit Field 1 Bit Field 2

Cloudy 0 0
Uncertain Clear 0 1
Probably Clear 1 0
Confident Clear 1 1

3.3. Data processing
MODIS data is available in Hierarchical Data Format (HDF), which is designed for the storage of large amounts
of data. This format is supported by different software programs, for example MATLAB. This section discusses
which steps must be taken to extract the desired information from the MODIS data.

The MODIS Cloud Mask data is free of charge and can be downloaded to a computer. The number of files
that should be downloaded per day varies because MODIS data is available in tiles, of which the boundaries
depend on the overpass and are therefore different every day. Sometimes a single tile covers the entire area of
interest and thus only one tile is downloaded on that day. But often more tiles (up to 4) are required to cover
the entire area of interest. This requires some extra work before the data can be analysed. The original cloud
mask data from Aqua and Terra on December 7, 2015, are displayed in Figure 3.6 and Figure 3.7 respectively.
It becomes clear that the cloud mask product, as mentioned in Section 3.2.1, contains more information than
just the cloud mask. Land, Water and coastal areas can be distinguished and also the sun glint is visible in
dark green colours. For this thesis, only the cloud mask will be used.

In Figure 3.7 the data is displayed in one image, but is stored in three different files. Therefore, the first
step is to mosaic (stitch) the files together in the correct way. Then a subset of the area of interest can be
extracted and the data can be converted from Hierarchical Data Format (HDF) to Tagged Image File Format
(TIFF). There are various ways to do this, but a useful and relatively fast tool is called the HDF-EOS to Geo-
TIFF Conversion TOOL, or in short HEG tool. This tool can do all the steps from mosaicking to converting in
one run. It is developed by the Synergy progam, with the support of NASA’s Earth Observing System Program
(E. Moghaddam-Taaheri, 2017) and can be downloaded for free via the NASA website. It can be operated via
a GUI or from the command line. If you want to use the tool to mosaic/convert data for a multiple days,
operating it from the command line is way more convenient. The subset_stitch_swath program is part of the
HEG tool and is used to read one or more files, stitch them together, obtain a subset of the area of interest and
convert the data to TIFF format. Again, this program can be used from the GUI or from the command line. In
the command line the following code must be used:

subset_stitch_swath -p parameter_file.prm

The parameter file contains field-value pairs as input for the program. A separate parameter file is created
for every day, every platform and every field name. Because information on the Sensor Zenith Angle and
Cloud Top Pressure is necessary for later steps, these fields must be processed on top of the Cloud Mask
Product. On top of stitching, subsetting and converting their resolution is also scaled up because the original
data of the Sensor Zenith Angle and Top Cloud Pressure has a resolution of 5km at nadir.

Creating the parameter files can be done in MATLAB. Creating a batch (.bat) file at the same time contain-
ing these code lines for every day, every platform and every field name, gives the possibility to just run one
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Figure 3.6: An example of the original
cloud mask data of Aqua on December
7, 2015. On this day only one tile was re-
quired to cover the area of interest, indi-
cated by the red square.

Figure 3.7: An example of the original cloud mask data of Terra on December 7,
2015. On this day three tiles were required to cover the area of interest, indicated
by the red square. Two of these tiles were from the same swath, the third one is
part of another swath.

file in the command line eventually. For N parameter files, your batch file would look like this:

ECHO OFF
CALL subset_stitch_swath -p parameter_file_1_CloudMask.prm
CALL subset_stitch_swath -p parameter_file_1_SensorZenith.prm
CALL subset_stitch_swath -p parameter_file_1_CloudTopPressure.prm

.

.

.
CALL subset_stitch_swath -p parameter_file_N_CloudMask.prm
CALL subset_stitch_swath -p parameter_file_N_SensorZenith.prm
CALL subset_stitch_swath -p parameter_file_N_CloudTopPressure.prm

ECHO OFF suppresses the commands to be echoed. Echoing a command can be useful sometimes but is
unnecessary here. To execute a command from a batch file, the word CALL is added before every command.

The parameter files must contain specific information. The fields, together with a short explanation, are
listed here.

• NUM_RUNS: the number of runs in file. This is always equal to one, since each swath field is processed
separately.

• BEGIN and END: after the number of runs the keyword BEGIN must be used. After all parameters (ex-
cept for NUM_RUNS) are listed, the word END is attached at the end of the file.

• NUMBER_INPUTFILES: the number of files that need to be stitched. For this project this number varies
between 1 and 4.

• INPUT_FILENAMES: the names of the input file(s). These names must also contain the directory path
from the folder where the program will run. If the number of input files is larger than 1, the different
files must be separated by a PIPE "|".

• OBJECT_NAME: the name of the swath, which is mod06 for both AQUA and TERRA.
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• FIELD_NAME: the exact name of the swath field. For this project 3 different swath fields are processed:
Cloud_Mask_1km, Sensor_Zenith_Day and Cloud_Top_Pressure_Day. The name of the field must end
with a PIPE "|", otherwise the parameter file is not read correctly.

• BAND_NUMBDER: this field contains the number for the desired band. Field data can be 3-dimensional
and in that case 2-dimensional slices from the data field must be read. For 2-dimensional data the band
number will default to 1, which is the case for all fields processed for this project.

• SPATIAL_SUBSET_UL_CORNER and SPATIAL_SUBSET_LR_CORNER: The upper-left and lower-right
corners for spatial subsetting. For this project these values are ( 20 -59 ) en ( 10 -49 ) respectively.

• OUTPUT_OBJECT_NAME: the name of the grid in the output .hdf file. This is mod06 in this case, al-
though the .hdf file will not be saved: only the .tif file is required.

• OUTGRID_X_PIXELSIZE and OUTGRID_Y_PIXELSIZE: These contain the pixel sizes along the X-axis
(longitude) and Y-axis (latitude). The default value of 999.0 is used for both axes, resulting in a grid of
1126x1099 pixels of 999.0 x 999.0 meter per pixel. Since Cloud Top Pressure and Sensor Zenith angle
values are only available in 5km resolution, their resolution is scaled up.

• RESAMPLING_TYPE: this can be nearest neighbour, bilinear cubic or cubic convolution. For this project
nearest neighbour (NN) is used.

• OUTPUT_PROJECTION_TYPE: there are multiple options but here the Universal Transverse Mercator
(UTM) is used.

• ELLIPSOID_CODE: this field is required for processing but at the moment the program always resorts
to using the WGS84 Ellipsoid.

• UTM_ZONE: this is an optional field when choosing for output projection type UTM. The area of inter-
est is located in UTM zone 21.

• OUTPUT_PROJECTION_PARAMETERS: An optional field and by default all projection parameter val-
ues will be set to zero, which is also the case for this project.

• OUTPUT_FILENAME: a required field that must include to full path directory. Files are named in a sys-
tematic way: PLATFORM_field_YYYYMMDD.tif, in which PLATFORM is either TERRA or AQUA, field is
clouds, sz or ctp for the cloud mask, sensor zenith and cloud top pressure respectively.

• SAVE_STITCHED_FILENAME: YES or NO, but the user guide asks to use NO. This field will also be re-
moved from the parameter file in the future.

• OUTPUT_STITCHED_FILENAME: the field is not used by the tool and will also be removed in the fu-
ture. The user guide suggests to use a dummy name here.

• OUTPUT_TYPE: the type of output is specified here, which is GEO for this project. It must be set to
HDFEOS for Hdf-Eos grid output, or BIN for raw binary output.

An example of such a parameter file is shown in the box below. This example is the parameter file for the
cloud mask of AQUA on December 1, 2010. The values that vary per parameter file are printed in purple.
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NUM_RUNS = 1
BEGIN
NUMBER_INPUTFILES = 3
INPUT_FILENAMES = 15-16/TERRA/MOD06_L2.A2015341.1340.061.2017324004833.hdf|
15-16/TERRA/MOD06_L2.A2015341.1515.061.2017324004805.hdf|
15-16/TERRA/MOD06_L2.A2015341.1520.061.2017324004533.hdf
OBJECT_NAME = mod06|
FIELD_NAME = Cloud_Mask_1km|
BAND_NUMBER = 1
SPATIAL_SUBSET_UL_CORNER = ( 20.0 -59.0 )
SPATIAL_SUBSET_LR_CORNER = ( 10.0 -49.0 )
OUTPUT_OBJECT_NAME = mod06|
OUTGRID_X_PIXELSIZE = 999.0
OUTGRID_Y_PIXELSIZE = 999.0
RESAMPLING_TYPE = NN
OUTPUT_PROJECTION_TYPE = UTM
ELLIPSOID_CODE = WGS84
UTM_ZONE = 21
OUTPUT_PROJECTION_PARAMETERS = ( 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 )
OUTPUT_FILENAME = F:/Thesis/Data/MODIS/MYD06/TERRA_clouds_20151207.tif
SAVE_STITCHED_FILE = NO
OUTPUT_STITCHED_FILENAME = HELLO
OUTPUT_TYPE = GEO
END

After executing the batch file and obtaining all .tif files, the next step of data processing can start. From here
on MATLAB is used.

As mentioned before in Section 3.2.1, the cloud mask is a 48-bit dataset, the bits have to be read individu-
ally using MATLAB function bitget. Bit fields 1 and 2 contain information on the classification (Table 3.2). The
bit values are converted from class int8 to class double (floating point) for further evaluation and get a value
of 1-4 for cloudy, uncertain clear, probably clear and confident clear respectively. If areas are not covered by
the swath on that day, pixels contain no data and get value 0. This happens for example to the pixels located
between the swaths in Figure 3.7. Most pixels containing data are classified either as Cloudy or as Confident
Clear.

Figure 3.8 shows the cloud classification for MODIS aboard Aqua on December 7, 2015. As can be seen
in Figure 3.6 only one tile was required to cover the entire area of interest. Stitching of tiles was therefore
not necessary for Aqua on this day. The HEG tool solely created a subset and converted the data to GeoTIFF
format. Since only bit fields 1 and 2 were read in MATLAB, the sun glint visible in Figure 3.6 can not be seen
anymore in Figure 3.8.

A choice must be made regarding which cloud classification classes will be considered cloudy in the end.
Only considering "cloudy" would result in a more conservative estimation, whereas treating both "cloudy"
and "uncertain clear" as clouds would most likely result in an overestimation of cloud pixels. Both options
will initially be used for calculations such that a quantitative argumentation can be used to decide what the
best option is in a later stage.

As mentioned before, the data fields Top Cloud Pressure and Sensor Zenith Angle are required for further steps
and were processed in the HEG tool as well. They both are signed 16-bit integer values and are converted to
double class as well in MATLAB. Also both must be multiplied by a scale factor, which is a constant and can
be found in the meta data of the original file.

The HEG tool works good for the cloud mask product, leaving no "no data" values in between files from
the same swath. However for the Top Cloud Pressure and the Sensor Zenith Angle, a thin "line" with a width
of approximately 5 pixels of "no data" exists between files from the same swath. This thin "line" is also, when
looking carefully, visible in Figure 3.7. Having this data gap is undesirable, because this data is used to mask
out high clouds or areas with large sensor zenith angles and with missing data, pixels are possibly not masked
out when actually they should have been. This problem can be overcome in MATLAB, by identifying these
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Figure 3.8: Cloud Classification for MODIS aboard Aqua on December 7, 2015. Clouds are classified as Cloudy, Uncertain Clear, Probably
Clear of Confident Clear. This image does not contain no-data, as the swath on this day contained the full area of interest (see Fig 3.6).

pixels and interpolating values from the pixels surrounding the line. It might be that this problem occurs
because the Top Cloud Pressure and Sensor Zenith Angle must be scaled up to end up with 999x999 meter
resolution, whereas the cloud mask is already available in this resolution. For interpolation data gaps are
filled with a moving average with a window length of 50 to ensure all gaps get a value. Since the input pa-
rameter file for the HEG tool set the same pixel resolution for the three data fields, their sizes are the same:
1126x1099 pixels. The resulting matrices for the Cloud Top Pressure and Sensor Zenith Angle are shown in
Figures 3.9 and 3.10.

Figure 3.9: The Cloud Top Pressure for MODIS aboard Aqua on De-
cember 7, 2015. Data is already scaled by the scale factor.

Figure 3.10: The Sensor Zenith Angle for MODIS aboard Aqua on
December 7, 2015. Data is already scaled by the scale factor.

These matrices can now be used to mask out Cloud Mask data. A Cloud Top Pressure below 550 hPa means
that these pixels represent clouds above approximately 5 km. Since this thesis focuses on shallow cumulus
clouds, these pixels are masked out and classified in a separate matrix as high clouds. Choosing the threshold
for the Sensor Zenith Angle is less straightforward. Pixels increase in size with an increasing Sensor Zenith
angle which may alter the results and on top of that clouds are observed more from the side which makes the
cloud classification less reliable, as argued by ... Therefore, analysis will be done using different Sensor Zenith
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Angles: 30°, 45° and 60° will be used and final statistics will be compared to choose the best option for this
thesis.

The last processing step is explained with an example. Again the results of MODIS aboard Terra on De-
cember 7, 2015, are used for this. In this example only pixels classified as Cloudy are considered as clouds,
pixels classified as Uncertain Clear are thus considered being clear sky. For the Sensor Zenith Angle an angle
of 45° is used as threshold. Figure 3.11 shows the intermediate results of the cloud classification and the two
masks. After applying these two masks to the initial cloud classification the final Shallow Cumulus Cloud
Classification is obtained, displayed in Figure 3.12. All cloudy pixels have value 1, all other pixels get value 0.
The information on the number of pixels classified as high clouds and the number of pixels masked out due
to their high sensor zenith angle is stored in a different parameter.

Figure 3.11: Intermediate results of the Cloud Classification, Cloud Top Pressure and Sensor Zenith Angle. The Cloud Top Pressure Mask
and the Sensor Zenith Angle Mask are used to mask the Initial Cloud Classification. The result is shown below.

Figure 3.12: Final Shallow Cumulus Clouds of MODIS aboard Terra on December 7, 2015. Pixels not classified as Shallow Cumulus Clouds
can represent clear sky, high clouds or an area with a sensor zenith angle above 45°.
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After obtaining the final result of each sensor on each day it is decided if the day is used for further analysis
or not. Following previously chosen thresholds based on the best agreement between cloud cover derived
from MODIS and from ground-based lidar instruments, days/areas are only evaluted further if both of the
following statements are true (Brueck et al., 2015):

• The area that can be evaluated is larger than 50% of the total area. A description of the definition is
given below.

• High clouds cover is less than 20% of the area that can be evaluated.

The evaluable area is defined as the total area minus the no data area and minus the high sensor zenith
angle area.

On top of doing the above analysis for each day separately, the steps are repeated for smaller portions of
the total area. By doing so, data is collected to analyse spatial variability of the cloud organization. This will
be done for different field sizes as the complete research area will be split in 4 equal fields and in 16 equal
fields. Results from smaller fields can eventually be compared to the results from the larger fields to identify
correlations.

3.4. Data selection
In the previous section it was explained that masks are applied to the initial data and depending on the
amount of high clouds and the size of the area that was left after applying the Sensor Zenith Angle mask,
it was decided whether days should be further evaluated or not. The threshold for the maximum amount
of high clouds was fixed to 20% of the area that was left after applying the Sensor Zenith Angle mask. This
section compares the results for different Sensor Zenith Angles in order to determine the best Sensor Zenith
Angle. Furthermore the different platforms (Terra or Aqua) and the different options for Cloud Classification
(only Cloudy or Cloudy and Uncertain Clear as clouds) derived from the MODIS Cloud Mask are evaluated.

The different Sensor Zenith Angles are compared in the first subsection. The second subsection discusses
the different platforms and the third subsection discusses the different options for Cloud Classification. When
not the focus of analysis, the Sensor Zenith Angle is fixed to 45°, an average value of the results of the two
platforms is taken and only pixels classified as Cloudy by the MODIS Cloud Mask are used to define clouds.
Investigation showed that changing these parameters does affect the absolute values, but does not change
the positive or negative bias that can be concluded about the parameters that are varied. Therefore the two
thresholds/options that are not under discussion in the subsection are fixed.

3.4.1. Sensor Zenith Angle
The threshold for Sensor Zenith Angle was set to different values: 30°, 45° and 60°. The number of days
that were left after applying these different masks are shown in Table 3.3. Under the column "sum", the total
number of datasets is calculated, whereas "combined" gives the total number of days that can be evaluated. It
is then assumed that Terra and Aqua are unbiased, that the physical differences between their overpass times
are insignificant and thus that their data can be combined. On days that both Terra and Aqua are evaluated
their average is taken. On days that only one of them was evaluated, that value is set as the average value for
that day. From the Table it can be derived that more days can be evaluated when the Sensor Zenith Angle
threshold is higher. This is not surprising, as with a larger threshold less data is removed and thus there is a
higher chance that more than 50% of the area is covered by data points.

Table 3.3: Number of evaluable days for different Sensor Zenith Angles separately for Terra and Aqua, the sum of the evaluable days
seperataly and for a combination of the two sensor platforms. CChi g h stands for the high-level cloud cover. Only pixels classified as
Cloudy by the MODIS Cloud Mask are used to define cloud pixels.

Mask Terra Aqua Sum Combined

No mask 720 720 1440 720
SZA = 30 °, CChigh < 20% 142 135 277 242
SZA = 45 °, CChigh < 20% 281 276 557 403
SZA = 60 °, CChigh < 20% 378 400 778 507

Not only the number of days that can be used for further evaluation is different. The average values of the
"basic" parameters like cloud cover, average nearest neighbour, the number of clouds per unit area and the
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average cloud size are also different. Figure 3.13 shows the histograms of these different parameters for the
different thresholds.

Figure 3.13: Results for different Sensor Zenith Angles.

With larger Sensor Zenith Angle the cloud cover, average nearest neighbour distance and average cloud
size increase and the number of clouds per unit area decreases. This can most likely be explained by the in-
creasing ground pixel size with increasing Sensor Zenith Angle, displayed in Figure 3.5 on page 19. From that
graph it can be derived that the effective pixel area increases exponentially for larger Sensor Zenith Angles
and that it is approximately 1.4 km2, 2.5 km2 and 6 km2 for Sensor Zenith Angles of 30°, 45° and 60° respec-
tively. The difference in effective pixel area is thus particularly large for a Sensor Zenith Angle for 60° and the
difference between 45° and 60° is much larger (+3.5 km2) than the difference between 30° and 45° (+1.1 km2).
The same can be concluded from the results presented in Figure 3.13, as the differences between 60° and 45°
are larger than the differences between 45° and 30°.

Not only are the average values different, the shapes of the histograms also vary. In the sub-plot showing
the number density, the histogram of 60° is shaped almost like a normal distribution, whereas the histograms
of 45° and 30° are both skewed with the highest bin moving to the right. This is more extreme for the Sensor
Zenith Angle set to 30° than to 45°.

3.4.2. Platform
The same sort of analysis can be done to show the difference between Terra and Aqua. Table 3.3 shows that for
Aqua the number of evaluable days is higher for Sensor Zenith Angles of 30° and 60°. For 45° this is the other
way around. The differences in the number of evaluable days become larger with increasing Sensor Zenith
Angle. The results of the basic parameters for both Terra, Aqua and their combined values, are displayed in
Figure 3.14.

This figure shows that, on average, the cloud cover, average nearest neighbour and average cloud size are
higher for Terra. The number of clouds per unit area is larger for Aqua. As mentioned before, the results are
similar when the threshold for Sensor Zenith Angle is changed, but some differences become larger with in-
creasing Sensor Zenith Angle. Therefore the results of using different platforms with different Sensor Zenith
Angles are summarized in Table 3.4. The differences of the Average Nearest Neighbour and the Number of
Clouds per Unit Area are larger when comparing a Sensor Zenith Angle of 30° with 45° than when 45° is com-
pared to 60°. This is different for the cloud cover and the average cloud size: not only are the different results
of Terra and Aqua larger when choosing different Sensor Zenith Angles, the differences also increase for larger
Sensor Zenith Angles.

Several studies on the results of the cloud cover detected by Aqua and Terra found that the values for
Terra are slightly higher in December, January and February than the values found by Aqua. Minnis et al.
(2004) for instance found that the general patterns in cloud cover are very similar for both satellites, but that
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Figure 3.14: Results for Aqua, Terra and combined results. The threshold of the Sensor Zenith Angle is set to 45° here.

regions which are dominated by low-level marine stratocumulus clouds have a smaller cloud cover at 1330
local time (Aqua) than at 1030 local time (Terra). The same study showed that during daytime the cloud cover
found by Aqua is generally smaller than the cloud cover detected by Terra. The exception is the inter-tropical
convergence zone near 10°N. Since this is exactly where the area of interest is located the results found here
do not match the conclusions presented in the paper of Minnis et al. However, a different study (King et al.,
2013) shows that the differences between Aqua and Terra are different during different times of the year. From
this more detailed study they concluded that the average cloud cover in the months December, January and
February in the years 2002 - 2011 is slightly higher for Terra, which is also observed in the results presented
here in the upper-left plot in Figure 3.14. Furthermore it was also stated that these and related results are
consistent with climatology (Minnis et al., 2004).

These differences in cloud cover between Terra and Aqua can thus be expected and are unlikely to be
caused by a bias in the data. Rather it is a physical difference between their times of overpass.

Table 3.4: Results of Terra and Aqua for different Sensor Zenith Angles.

Terra Aqua Percentual
difference
Terra and
Aqua

Combined
Cloudy

Combined
Cloudy +
Uncertain
Clear

Cloud Cover
SZA = 30° 30.33% 29.68% -2.14 % 29.96% 38.66%
SZA = 45° 32.43% 30.20% -6.81 % 31.13% 40.58%
SZA = 60° 37.01% 33.14% -10.46 % 35.05% 48.60%

Average
Nearest
Neighbour

SZA = 30° 4.67 km 4.42 km -5.35 % 4.55 km 4.28 km
SZA = 45° 4.84 km 4.63 km -4.34 % 4.74 km 4.46 km
SZA = 60° 5.29 km 5.12 km -3.21 % 5.28 km 4.99 km

Number of
Clouds / Unit
Area

SZA = 30° 12856 14371 +11.78 % 13522 16518
SZA = 45° 11977 12749 +6.45 % 12286 14997
SZA = 60° 9915 10304 +3.92 % 9750 12136

Average
Cloud Size

SZA = 30° 20.87 km2 17.20 km2 -17.59 % 19.19 km2 13.61 km2

SZA = 45° 20.29 km2 18.66 km2 -8.03 % 19.41 km2 13.85 km2

SZA = 60° 24.31 km2 24.24 km2 -0.29 % 25.29 km2 15.57 km2
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3.4.3. Cloud Classification
In this subsection the effect of the choice for cloud classification is investigated. The MODIS Cloud Mask clas-
sifies each pixel as Cloudy, Uncertain Clear, Probably Clear or Confident Clear, as explained in Chapter 3.2.1.
It is likely that only using pixels classified as Cloudy results in an underestimation of cloud pixels and that us-
ing both Cloudy and Uncertain Clear pixels would lead to an overestimation of cloud amount. To investigate
to what extent this choice influences the final statistics and which choice leads to the most realistic results,
the values are compared. The histograms of the basic parameters are displayed in Figure 3.15. The results are
also shown in Table 3.4 in the last two columns.

Figure 3.15: Results for different thresholds for Cloud Classification. The Sensor Zenith Angle threshold is set to 45° and a combination
of results of Terra and Aqua are used.

The histograms clearly show some differences, which are mostly visible in the plots of the cloud cover
and cloud density. For both parameters the histograms showing the results when both Cloudy and Cloudy +
Uncertain Clear are considered clouds are shifted to higher values. The average values also are much higher:
the cloud cover increases from 31.13% to 40.58% with factor 1.3 and the cloud density increases from 12286
to 28954 clouds / unit area even with factor 2.36. This difference is very large and can be explained (partly) by
the way the number of clouds are determined: when clouds adjacent to the masked out area or the edge of
the scene, they are removed from the dataset (see Section 4.1.1 and Equation (2.2)). Furthermore, their area is
subtracted from the area that is left of the scene. As large clouds are more likely to be situated directly adjacent
to the masked out area or edge and will therefore be removed, it is likely that the cloud density increases due to
the greatly reduced area that is left. As clouds are often on average larger when pixels classified as Uncertain
Clear are also considered cloudy, they are also more likely to be adjacent to an edge and subsequently be
removed from the dataset. This would also explain the smaller average cloud size: large clouds have a bigger
chance of being removed from the dataset and are thus not taken into account for the calculation of the
average cloud size. Since the cloud cover increases with approximately a factor of 1.3 the multiplication of
the number of clouds / unit area and the average cloud size should also be a factor 1.3 higher if no data was
removed from the database. However, the multiplication leads to an increase of factor 1.68 and thus the fact
that clouds are removed must have a large influence on the statistics.

When looking at the example of February 2, 2015 in Figure 3.16, the difference between only using the
MODIS Cloud Mask Cloudy (a) pixels or using both Cloudy and Uncertain Clear (c) becomes clear. As a
reference a snapshot of MODIS Worldview is added (b). In this case there is a clear difference between (a) and
(c), and only using MODIS Cloud Mask Cloudy as clouds gives a better approximation of (b), which shows
the corrected reflectance, also referred to as true color because it is similar to what the human eye would
see. Comparing other days gave a similar results, with the differences sometimes being more clear than other
times, but only using Cloudy as cloud pixels always results in an image that visually matches the MODIS
worldview image best.
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(a) Only MODIS Cloud Mask Cloudy pixels as
clouds.

(b) Snapshot from MODIS Worldview. (c) MODIS Cloud Mask Cloudy and Uncertain
Clear pixels as clouds.

Figure 3.16: Differences in cloud classification on February 2, 2015 (TERRA) when only using MODIS Cloud Mask Cloudy pixels as clouds
(a) or also considering MODIS Cloud Mask Uncertain Clear as clouds (c). A snapshot from MODIS Worldview (b) is added to compare.

3.4.4. Conclusions on threshold implications
Based on the results presented above a decision must be made regarding further data evaluation. A trade off
must be made between the amount of data that can be used and the representativeness of this data. Using
data representing very different effective pixel sizes is not desirable. On the other hand it is important to have
as much data as possible for further analysis: a trade off must thus be made. The results further presented in
this chapter therefore are processed using combined data of Terra and Aqua. The threshold for the Sensor
Zenith Angle is set to 45° and only pixels classified as Cloudy by the MODIS Cloud Mask are considered
cloudy. Some of these cloudy pixels may be classified as high clouds for which a threshold of 550 hPa is used.
Using these thresholds results in a total of 403 days that are analysed (see Table 3.3).



4
Methodology

This chapter provides a short overview of how existing methodology is applied in this research, and which
new methodologies are applied and incorporated.

4.1. Cloud Characteristics
After all processing steps are completed, the remaining data to be examined is a binary matrix with a value of 1
for shallow cumulus clouds and 0 for clear sky, high clouds or no data pixels. Several methods to characterize
clouds were examined. In the first subsection the methodology to obtain the basic parameters of the cloud
field is explained. The second subsection explains how the organization index, referred to as OI3, is obtained.

4.1.1. Basic parameter analysis
The basic parameters were described in Section 2.2.1. The cloud cover (Eq. 2.1), cloud number density
(Eq. 2.2), average cloud size (Eq. 2.3) and average nearest neighbour distance (Eq. 2.6) are applied to all evalu-
able days after applying the high cloud mask and Sensor Zenith Angle mask as was explained in Sections 3.3
and 3.4. They will be applied to the complete area of interest that spans 10°×10°, and on top of that also to
smaller sub-grids of 5°×5° and 2.5°×2.5°. The basic parameters are used to test the correlation between them
and the final results of a combined organization index OI3, which will be explained in the next section.

Determining all the required properties for the basic cloud parameters the MATLAB function regionprops
can be used. This function is designed to return properties for all 8-connected components in an image or
matrix. This implies that cloud pixels are assumed to be part of one cloud when they are directly horizon-
tally, vertically or diagonally adjacent to each other. Of each cloud, the Area, Centroids and Pixel indices are
obtained using this function. From these parameters, all basic parameters can be determined.

The pixel indices of each cloud are necessary to determine whether a cloud is adjacent to the edge or
no-data/masked out area and should thus be removed from the dataset when determining the cloud number
density, the average cloud size and the average nearest neighbour. This approach in which the pixel indices
are used, is based on the following: each pixel has a number, the most upper left pixel in a matrix gets value
1, the pixel below gets value 2 and the pixel to the right gets the value equal to the sum of the vertical length
of the matrix + 1. A database is created with the pixel indices of the pixels at the edges and the pixels directly
adjacent to the no-data/masked out area. If one or more pixel indices of a cloud match at least one of these
pixels in the database, the cloud is removed from the arrays storing the area and centroids, and its area is
subtracted from the entire area containing data. The pixels making up this cloud are thus considered as
no-data area. This must be done because the clouds that are "cut-off" do not have representative sizes and
centroids for the entire cloud, which was explained in Section 2.2.1.

Determining these basic parameters is relatively simple and provides us with better insights in how they
are related to the organization of a cloud field.

4.1.2. Organization Index OI3
As discussed already in Chapter 2.2 there are various methods to assess cloud organization. For this thesis
the method for finding the organization index Ior g introduced by Benner and Curry, 1998, will be applied
in combination with parameters that provide measures for the size of clear sky areas and the largest cloud
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size in a field. Determining the Ior g involves the simulation of a random cloud field, taking into account the
number and sizes of the actual cloud field. In this section the methods for finding the Ior g and the measures
for the clear sky areas and the largest cloud size are discussed seperately. The last subsection discusses how
these separate parameters are combined in order to find the value of the organization index OI3.

Calculating Ior g

Although the procedure of creating a randomly generated inhibition NNCDF is existing and was applied by
Benner and Curry 1998, the methodology to create such a random field can not simply be copied, nor was it
explained explicitly in literature. Therefore, the applied methodology to obtain such a field is discussed here.

The first step is to find the number of clouds and their sizes of both shallow cumulus clouds and high
clouds. On top of that the centroids of the shallow cumulus clouds must be determined as well. The high
clouds are also considered in the simulation, as high clouds also imply an inhibition for shallow clouds to be
placed in this region. Therefore two binary input matrices are created: one for the shallow cumulus clouds
and one for high clouds. The clouds (shallow cumulus or high) are denoted with a 1 and all other pixels get
value 0 and can thus represent no-data areas, areas with high sensor zenith angle or high (shallow cumulus)
clouds for the input matrix representing shallow cumulus (high) clouds. An example of an input matrix for
shallow cumulus clouds is shown in Figure 3.12 on page 25. The input matrix for the high clouds is obtained
after applying the sensor zenith angle mask in Figure 3.11 (right) to Cloud Top Pressure mask representing
high clouds (middle) on page 25.

The number of clouds, their sizes and for the shallow cumulus cloud matrix their centroids are deter-
mined using the MATLAB function regionprops. The function determines the centroids as in Equations (2.4)
and (2.5). The Pixel indices are not obtained, as clouds adjacent to the edge or no-data area are not removed
to the dataset.

Eventually all clouds (both shallow cumulus and high clouds) must be placed randomly in a field. To get
the most realistic simulation of a random field with similar cloud properties (number of clouds and sizes)
as the actual field, clouds are not allowed to overlap in the simulated field. Therefore the largest clouds are
placed in the field first, which gives the highest chance of placing all clouds in the field. For that, all clouds
are stored in one matrix in the order of largest to smallest. Since using the exact shapes of the clouds is com-
putationally complicated the clouds are simplified to circles. Their radii are calculated under the assumption
that the total area of the clouds is a circle, they are thus calculated using the following equation:

Ri =
√

Acloud ,i

π
(4.1)

In which Ri is the radius of pixel i in pixel dimensions and Acloud ,i is the size of this cloud expressed in
number of pixels. The radius of each cloud is stored in column 1 of the matrix and an indicator for shallow
cumulus (value 1) or high clouds (value -1) is stored in column 2. The input for the simulation is thus one
matrix with dimensions of the number of clouds × 2, in which the number of clouds is the sum of the shallow
cumulus clouds and the high clouds.

Before they can be placed in a random field the size of this field must be determined. Since it is desired to
use periodic boundary conditions the field must be rectangular and can not have the same boundaries as the
original data left after applying the sensor zenith angle mask. Therefore the squared root of the entire area
left after applying the sensor zenith angle mask is calculated. If this value is within 0.25 km from an integer,
the value is rounded up or down to this integer and a square field is created. If the value has a larger deviation
from an integer, a rectangle with dimensions of the squared root rounded up × the squared root round down
is created. This is also the reason that clouds adjacent to the edge or no-data area do not need to be removed
for this calculation: the number of clouds and their sizes in the random field are the same as in the input data,
as well is the size of the field.

Looking at the example used before (Aqua December 07, 2015), the area that remains after applying the
Sensor Zenith Angle mask with a threshold of 45° is 853907 km2, and the squared root is 924.0709 km. Since
this is only 0.0709 km away from its nearest integer 924, an empty square matrix of 924 × 924 km is created.
This results in a field with a total area of 853776 km2.

Furthermore, two empty databases for the x and y coordinates of the clouds are created. These matrices
have dimensions of the number of clouds by 9. This is done to account for the periodic boundary conditions.
Not only the simulated location of each cloud in the actual matrix is stored, but also its coordinates of 8
locations on 8 similar matrices around the actual one. This way, 9 positions of the cloud are stored and
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periodic boundary conditions can be implemented in further calculations. An example of a simple 5 x 5 field
with 3 clouds is shown in Figure 4.1.

Figure 4.1: The main field is located in the middle, with red outside borders. The orange dots show the centroids. Cloud a is located at
(2.5, 1.5), cloud b at (3.5, 4) and cloud c at (5,2). Each field has a number that corresponds to the column of the matrix in which the data
is stored.

This field contains 3 clouds with different sizes. The actual field is located in the middle and 8 similar
fields are placed around it. To account for periodic boundary conditions, the coordinates of the centroids of
each cloud in all fields must be stored. Table 4.1 shows the way of storing each of these coordinates, using the
clouds in Figure 4.1 as an example. The clouds are placed and therefore also stored from largest to smallest. To
have 9 unique coordinate combinations for each cloud, each column gives the x and y coordinates of one of
the fields numbered from 1 to 9. Column 5 thus contains the coordinates of the field in which the simulation
takes place.

Table 4.1: Here the coordinates of clouds a, b and c, located at coordinates (2.5, 1.5), (3.5, 4) and (5,2) respectively, are stored in a similar
way as will be done to execute the random cloud simulation.

Cloud x-coordinates

a -2.5 -2.5 -2.5 2.5 2.5 2.5 7.5 7.5 7.5
b -1.5 -1.5 -1.5 3.5 3.5 3.5 8.5 8.5 8.5
c 0 0 0 5 5 5 10 10 10

y-coordinates

a -3.5 1.5 6.5 -3.5 1.5 6.5 -3.5 1.5 6.5
b -1 4 9 -1 4 9 -1 4 9
c -3 2 7 -3 2 7 -3 2 7

After the creation of these empty matrices the simulation is started. First the largest cloud is placed on a
random location using the random value generator of MATLAB: rand. Rand returns a single uniformly dis-
tributed number on the interval (0,1). The value is therefore multiplied by the dimension of the matrix in that
direction and subsequently rounded to an integer. The x and y coordinates are independently generated. If a
coordinate is zero, a new value is generated for this coordinate. The independently and uniformly randomly
generated location in the matrix gets the indicator value stored in column 2. The location of this cloud and
its locations in the matrices around the actual field are stored in the parameters for the x and y coordinates as
described above. The radius of this cloud is stored in another parameter. The combination of the centroids
of the cloud in all fields and the radius provides information on the spatial extent of the cloud, given it is a
circle.

Now the process of generating random x and y coordinates is now repeated for all clouds in the list. One
by one, from largest to smallest, they are placed in the matrix. If the randomly created coordinates assigns
the cloud to the exact same location as a previously placed cloud, new x and y coordinates are created. When
this is not the case, the distances to all clouds placed before are calculated. This is done by taking the squared
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root of the distances in the x and y directions stored in the parameters for the x and y coordinates. Periodic
boundary conditions are thus taken into account. If at least on of these distances is smaller than the radius
of the new clouds + the radius of that cloud, the clouds would overlap if the new cloud would be placed in
this location. This is not allowed and therefore the location is rejected and the process is iterated. If the
placement of the cloud was not successful after 10000 iterations, the whole process starts again with placing
the first cloud in the matrix. For this, the maximum amount is 10 attempts: after that a message pops us
saying it is not possible to create a random simulation, the Ior g is set to "Not a Number" and the program
continues to the next day. The process of the simulation of a random cloud field is summarized in Figure 4.2.

Figure 4.2: Random field simulation flowchart

An example of such a randomly generated field is shown in Figure 4.3. Each white circle represents a
shallow cumulus cloud, each gray circle a high cloud and black pixels represent clear sky area. One shallow
cumulus cloud is coloured red to highlight the implications of using periodic boundary conditions. This
cloud was placed randomly in the upper left corner and since its radius is larger than the distances to both
the y and x axes the remaining part of the cloud appear at all other corners as well.

Figure 4.4 shows the matrix with the associated centroids of the shallow cumulus clouds of this random
field. These centroids are denoted as white pixels. All other pixels are black and may represent the extent
of shallow cumulus or high clouds, or it can be clear sky. Since this is not of important for the algorithm to
determine the nearest neighbours, this matrix is used as the input for the nearest neighbour calculation as
described in Equation (2.7). Periodic boundary conditions are taken into account.

Once the nearest neighbours are found they are binned in groups of equal nearest neighbour lengths. The
cumulative sum of the frequencies in all bins is calculated and divided by the total number of clouds to find
the N NC DFr an values in the range [0,1].

The same is done with the original data to find N NC DF , although it is not possible here to take periodic
boundary conditions into account due to the dimensions of the data that is left after applying the sensor
zenith angle. The bin ranges are defined by the unique values of the nearest neighbours of both the original
data and the simulated data. The N NC DF and N NC DFr an can now be plotted against each other, which is
done in Figure 4.5.

The graph directly visualizes the clustering of the field. In this example the line is clearly plotted above the
diagonal and thus the field can be considered as clustered. To what extent the field is clustered is given by the
Ior g . The Organization Index Ior g is the area under the curve, which can well be approximated by MATLAB
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Figure 4.3: Example of a randomly generated field using data from
AQUA on December 7, 2015. White (and red) circles represent shal-
low cumulus clouds, gray circles are high clouds.

Figure 4.4: The centroids of the randomly generated field in Fig-
ure 4.3. White pixels represent centroids of shallow cumulus
clouds. Black pixels represent either the extent of a shallow cumu-
lus or high cloud, or clear sky.

Figure 4.5: NNCDF of December 7, 2015, versus the random inhibition N NC DF . The diagonal is denoted by the red dashed line, the
black curve shows the result of the N NC DF vs the N NC DFr an .

using the function trapz. This function computes the approximate integral of the N NC DF with respect to
the coordinates of N NC DFr an by making use of the trapezoidal method, which is given by:

∫ b

a
f (x)dx ≈ 1

2

N∑
n=1

(xn+1 −xn)[ f (xN )+ f (xn+1)] (4.2)

Here a =< x1 < x2 < ... < xN < xN+1 = b and xn+1 − xn is the spacing between each consecutive pair of
points.

The organization index found for the example here is 0.643.

Clear sky area parameter
A measure for the clear sky area is introduced as solely looking at the cloud size and nearest neighbours
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and subsequently calculating the Ior g does not provide a complete indication of organization. To illustrate
this problem, two fields containing the exact same amount of clouds with the exact same size and the exact
same nearest neighbour values are shown in Figure 4.6. Theoretically these fields thus have the same value
of Ior g , which intuitively is incorrect. The field on the left (Fig. 4.6a) does not seem extremely organized
as clouds are distributed over the entire area, whereas the field on the right (Fig. 4.6b) looks very clustered.
Nevertheless, the values of Ior g are similar, due to the similar size of the field, number and size of clouds and
nearest neighbour values. In order to distinguish between these two fields, a measure of the largest clear sky
area in the field is defined.

(a) Small clear sky area. Different clear sky ar-
eas can be distinguished in this case and these
areas may also overlap. The orange coloured
shape denotes the approximation of the largest
clear sky area.

(b) Large clear sky area. In this case there is
only one large clear sky area that is approxi-
mated by the orange coloured shape.

Figure 4.6: Examples of very similar fields but with different clear sky areas. (a) contains a field that intuitively is not so clustered. (b)
shows an example of a field with the same amount of clouds that have the same size and the same nearest neighbour values, but is
intuitively much more clustered than (a). In both figures orange and/or grey coloured shapes show approximations of clear sky areas.
The orange shape shows the largest approximate clear sky area of the field, which is larger in (b) and thus this field is considered more
clustered.

The clear sky areas are difficult to define, as commonly all non-cloud pixels are connected and should in
that sense thus be considered as one clear sky area. However, this is not the value we are interested in, as this
is also similar for both fields in Figure 4.6. Therefore a different approach is used to find an approximation of
clear sky regions in the field. The largest clear sky region is then used as an additional measure for organiza-
tion/clustering. Some examples of such clear sky regions are denoted with the orange and/or grey coloured
shapes in the two fields in Figure 4.6. From the field on the left it becomes clear that these clear sky regions
may overlap. However, the aim is not to connect all non-cloud pixels and thus all these shapes represent
separate clear sky regions. The field on the right only contains one large clear sky region, as all clouds are
clustered in one area. The orange shapes show approximations of the largest clear sky region in the field.

As a higher value of Ior g indicates more clustering, a larger clear sky region does the same. The clear sky
area parameter is defined as the largest clear sky area divided by the area that is left after applying the Sensor
Zenith Angle mask:

AC l ear Sk y,max =
√

max
{

AC l ear Sk y
}

√
Al e f t

(4.3)

In which AC l ear Sk y,max is the parameter (ratio) in the range (0,1), max
{

AC l ear Sk y
}

is the largest clear sky
area in the field and Ale f t is the area that is left after applying the Sensor Zenith Angle mask.

It is not possible to simply determine the largest clear sky area by counting all connected clear sky pixel.
If that would be done, it would be likely to find only one, very large, clear sky area as most clear sky pixels are
connected to each other. In stead we are looking for an approximation of the largest clear sky region, as was
illustrated in Figure 4.6. Looking at the field in Figure 3.12 on page 25 we would like to find an approximation
for the black area ranging roughly between 14-16N and 51-55W as this can be considered as one region.

To find this approximation the horizontal (East-West) and vertical (North-South) distance from each pixel
representing clear sky to the first cloud or no-data pixel is determined. This is done for vertical and horizontal
directions separately, but the maximum vertical or horizontal distance is found when a cloud / no data pixel
is determined in one direction (either East or West, or North or South). Multiplying these horizontal and
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vertical distances then gives the approximation of such a clear sky area. An example cloud field is displayed
in Figure 4.7.

Here the green square represent the pixel that is the centre of the largest clear sky region. The blue arrows
show the maximum distance in all directions. However, as this maximum distance is restricted to the short-
est distance in the horizontal and vertical direction, the actual maximum ranges are smaller and are denoted
with red dashed arrows. For the horizontal distance in this example the edge is encountered. Ideally periodic
boundary conditions would be applied but since in practice the analysed data always misses some data (the
black large area on the left in Figure 3.12) this is in practice not possible for the analysis in this region of the
world. For the vertical distance the maximum range is reached because a cloud is encountered. The horizon-
tal maximum range here is 6.5+6.5 = 13 pixels. The vertical maximum range is 4.5+4.5 = 9 pixels. Therefore
the rectangle representing the size of this clear sky ara is 13×9 = 117 pixels. Making use of Equation (4.3), and
thus dividing this area by the total area of the field, results in the following calculation:

AC l ear Sk y,max = 117
320 = 0.366.

In practice these values are typically somewhat smaller: values between 0.05 and 0.25 are most common.
Figure 4.8 shows the results of the calculation in Equation 4.3 for each pixel representing clear sky area.

Figure 4.7: Largest clear sky area example. Black pixels represent
clouds and white pixels represent clear sky areas. The green square
shows the pixel with the largest horizontal and vertical distances
to clouds/edges. The blue arrows show the maximum distance in
all directions and the red dashed arrows show the maximum dis-
tance in vertical and horizontal direction, restricted by the shortest
distance calculated separately for the horizontal and vertical direc-
tions.

Figure 4.8: Largest clear sky area on December 7, 2015. The black
areas represent no-data areas, masked out areas, shallow cumulus
clouds or high clouds. For all other pixels the maximum clear sky
area is calculated according to the method illustrated in Figure 4.7.

In this Figure shallow cumulus clouds, high clouds and no data / too large Sensor Zenith Angle pixels are
coloured black. For all other pixels the analysis is executed. Most clear sky pixels are located in a small clear
sky region spanning less than one percent of the entire scene and are thus coloured blue. The clear sky region
visible in the final input data product visualized in Figure 3.12 on page 25 can also be detected here, as the
ratios are clearly larger here. The largest value found in this scene on December 7, 2015, is 0.2286, which is
relatively large.

Largest cloud size parameter
This parameter is introduced as large clouds are associated with clustering of clouds. Furthermore, with the
presence of large clouds the freedom of movement for small clouds in the simulation to obtain Ior g decreases
which tempers the value of Ior g . To correct for this tempering a measure for the largest cloud in the field is
taken into account: a larger maximum cloud size relatively increases the value of the final combined measure
and in this way reduces the effect of these large clouds on the final organization index value. The largest cloud
size is defined as the largest detected cloud in the field, divided by the total area that is left after applying the
Sensor Zenith Angle mask:
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Acloud ,max =
√

max {Acloud }√
Ale f t

(4.4)

In which Acl oud ,max is the ratio in the range (0,1), max {Acloud } is the largest cloud in the field and Al e f t

is the area that is left after applying the Sensor Zenith Angle mask.
A fully covered scene would have value 1, however in practice this will not occur for scenes as large as

analysed here. In stead the largest cloud will cover a few percent of the total scene and thus have a value of
typically 0.1 - 0.5. The ratio of the largest cloud in the scene in Figure 3.12 on page 25 is 0.2261.

The cloud sizes are obtained using the build in Matlab function regionprops. The Area is returned as a
scalar and represents the number of pixels of each cloud. For simplicity, it is assumed that all pixels have the
same dimensions: their increasing size with increasing Sensor Zenith Angle is not accounted for. The largest
returned scalar is the largest cloud in the scene.

Combined Measure OI3

The above described parameters are then combined to one measure. To give them approximately equal
weight, they are altered slightly and subsequently multiplied. In theory all three measures range between
(0,1), however in reality we are analysing fields of 10° × 10° and therefore values are unlikely to reach the min-
imum or maximum which only occurs when there are no clouds or when the area is completely covered in
clouds. The results, presented in Chapter 5, showed that the Ior g is never lower than 0.5, but instead ranges
between (0.55-0.75). Since the Clear sky parameter and Largest cloud parameter are typically much lower
and also have a relatively larger range, Ior g is rescaled by subtracting 0.5 from the value and then multiplying
the result by 2. That way, values typically range between 0.1 - 0.5, which is much closer to the typical values
of the other parameters.

The proposed organization index here, taking all three measures into account, is then calculated as fol-
lows:

OI3 = 2× (Ior g −0.5)×C l ear Sk y ×Lar g estC loud (4.5)

December 7, 2015, was used as an example to explain the individual parameters. These results should be
combined to find the combined organization measure OI3. This then equals:

OI3 = 2(0.643−0.5)×0.2286×0.2261 = 0.0148

Typically, values for OI3 are within 0.003 and 0.03. Note that whenever a cloud field would be regular and Ior g

would thus have a value between 0 and 0.5, OI3 would be negative.

4.2. Analysis of the Cloud Characteristics
The obtained data can be analysed in various ways. In order to obtain information on the spatial and tempo-
ral variability we make use of the variance parameters within the field and the autocorrelation of the values.
The methods to obtain these values are discussed here.

4.2.1. Temporal Variability
To obtain an idea about the temporal variability of a parameter we can make use of the autocorrelation. This
is a measure of the correlation between yt and yt+k , where k represents a lag with respect to t between 0 and
K . The autocorrelation for lag k is given by:

rk = ck

c0
(4.6)

In which c0 is the sample variance and ck equals:

ck = 1

T

T−k∑
t=1

(yt − y)(yt+k − y) (4.7)

Where T is the effective sample size and y is the mean value of the time series. Since not all days can be
evaluated, the effective sample size is different for each lag. The sample variance c0 is defined as:
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V = 1

N

N∑
i=1

|Ai −µ|2 (4.8)

Where N is the number of analysed days, A is the vector containing the values of the analysed days and µ is
the average of A.

The autocorrelation is calculated separately for each winter for lags k = 0, ...,20. This way an idea of the
temporal variability of the cloud characteristics can be obtained. A high autocorrelation for multiple lags in-
dicates that days at lag k are correlated to k days before that day. A negative autocorrelation at lag k indicates
a negative correlation with k days before.

4.2.2. Spatial Variability
The spatial variability can be measured by calculating the variance of the cloud characteristics of the field.
Because all parameters are calculated for the complete field that spans 10°×10°, but also for smaller individual
areas within this complete field of 5°×5° and 2.5°×2.5°, we can look at the deviations from these smaller areas
to the mean value of the complete area. The sample variance is given by Equation (4.8), but in this case N
equals the amount of areas that contain data on that day. As was explained in Section 4.1.1 not always all
areas contain data, as they do not comply with the requirements. Therefore, N is different for each day.
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Results and Discussion

The results are presented in this chapter. Data of both Terra and Aqua was analysed for the months December,
January and February between December 2010 and February 2018. This means that 90 days were analysed
for 8 years and for two platforms. In total this provides us with 90× 8× 2 = 1440 possible datasets, divided
over 720 days, to use for further evaluation. In Section 3.4 the effects of setting different thresholds for data
selection is shown. Based on a short conclusion the most suitable thresholds were selected and applied to
the data for further evaluation. The results are presented in Section 5.1 and discussed in Section 5.2.

5.1. Cloud Characteristics and Organization
The resulting days after setting the thresholds as discussed in Section 3.4.4 can now be evaluated further. This
section presents the results of the different cloud characteristics such as cloud cover, average nearest neigh-
bour distance, number of clouds, average cloud size and the combined organization index OI3. Since the
focus of this thesis is to find an effective cloud organization parameter, the performance of OI3 is discussed
first in a separate section. In the other sections the results on the parameters, their correlations and possible
trends are presented. The parameters are determined for the complete area of interest of 10°× 10° and for
smaller areas. These results are discussed separately.

5.1.1. Performance OI3
Assessing the performance of OI3 is a challenge, as the question remains what the definition of a good value is
to asses the organization. However, a comparison of the obtained results of OI3 to a subjective classification
of the area into the classes Sugar, Gravel, Fish and Flowers shows promising results. Appendix A contains all
fields (557) that were evaluated after using the Sensor Zenith Angle mask of 45°. The fields are ordered from
smallest to largest organization according the the value of OI3. From these plots a good general idea of the
performance of OI3 can be obtained. When a subjective analysis would be done, it is likely that the order
would not be very different (although this is not tested for this specific dataset), because fields with a low
OI3 value have many small clouds scattered throughout the entire area and fields with higher values have
less, but larger clouds and larger clear sky areas in between. Based on this judgement, OI3 can be considered
successful in ordering fields from least to most organised. Days would be ordered differently when only Ior g

would be considered or if it would be based on SCAI. This comparison is summarized in Appendix B. The
values of Ior g and SC AI correlate to OI3, which is shown later in this section, but there are some significant
differences and in these cases the performance of OI3 often correlates better with the subjective analysis.

Figure 5.1 shows six examples of cloud fields with different OI3 values (increasing from (a) to (d), fields (e)
and (f) have similar values for OI3).

Cloud field (a) is, according to the value of OI3, one of the least clustered fields that has been analysed.
With many small clouds that do not seem clustered when subjectively inspected, no large clouds and no large
clear sky regions this is also expected. From the subjective classification this field is classified as a mixture
Sugar and Gravel (Stevens et al., 2019). Cloud field (b) is slightly more organized. On average clouds are
larger. This field is also classified as a mix of Sugar and Gravel (Stevens et al., 2019). Cloud field (c) is the
cloud field that has been used in Chapters 3 and 4 to illustrate large parts of the data (pre)processing and the
methodology. This field contains some large clouds and little "Sugar" clouds. On top of that also a large clear
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(a) Clouds on February 14, 2013 (AQUA). OI3 is 0.0014. (b) Clouds on December 22, 2011 (TERRA). OI3 is 0.0051.

(c) Clouds on December 7, 2015 (AQUA). OI3 is 0.0148. (d) Clouds on February 14, 2017 (TERRA). OI3 is 0.0399.

(e) Clouds on February 23, 2013 (AQUA). OI3 is 0.0200. (f) Clouds on February 5, 2013 (TERRA). OI3 is 0.0201.

Figure 5.1: Cloud fields with different values for the combined organization measure OI3. Clouds are coloured white, clear sky is coloured
blue and black pixels denote either no-data areas or pixels with a sensor zenith angle larger than 45°. The OI3 values are increasing for
the cloud fields (a) to (d), with respectively values of 0.0010, 0.0051, 0.0148 and 0.0399. Cloud fields (e) and (f) respectively have OI3
values of 0.0200 and 0.0201.

sky area can be detected in the centre. Therefore this cloud field can be considered more clustered than cloud
fields (a) and (b). Stevens et al. (2019) classified this field as Flowers and Sugar. Cloud field (d) shows both
larger cloud structures and larger clear sky regions than cloud fields (a)-(c). Also, the amount of very small
"Sugar" clouds has highly reduced. Therefore, all parameters have high values and as a result this field has a
very large value of OI3. This field has not been analysed by Stevens et al. (2019), but does fit the description
of Fish best due to the large cloud structures and large clear sky areas.

Fields (e) and (f) have similar values of OI3 (0.0200 and 0.0201), but look very different. These two exam-
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ples show that a similar OI3 does not necessarily mean that all individual parameters have the same values.
In the study of Stevens et al. (2019), five out of six people classified these fields into the class ’Undefined’,
which is for example used when there are too many high clouds or when the field contains too many different
organization types.

The individual values of Ior g , the Clear Sky Parameter and the Largest Cloud Parameter of all six fields are
summarized in Table 5.1.

Table 5.1: OI3 and individual parameter values for 4 fields

Field OI3 Ior g Clear Sky Parameter Largest Cloud Parameter SCAI

a 0.0014 0.5806 0.1454 0.0592 0.2225
b 0.0051 0.5834 0.1075 0.2826 0.1604
c 0.0148 0.6433 0.2286 0.2261 0.1781
d 0.0399 0.7274 0.3164 0.2774 0.0811

e 0.0200 0.7068 0.2777 0.1743 0.1205
f 0.0201 0.6418 0.1669 0.4251 0.1344

In this Table the fields (a) to (d) are ordered from smallest to largest value of OI3 with corresponding cell
colours (from dark red to yellow). However, this order may be different for the individual parameters. The
order of the other parameters becomes clear from the cell colours. The differences between the individual
parameters for these fields are discussed here.

For instance, Ior g of fields (a) and (b) is almost similar, and the Clear Sky Parameter is even higher for field
(a). However, since the Largest Cloud Parameter is much higher for field (b), the value of OI3 for field (b) is
almost 4 times higher than the OI3 of field (a). Comparing fields (b) and (c) the opposite is true: the Largest
Cloud Parameter is higher for field (b) than for field (c), but since field (c) contains a large clear sky region and
Ior g is higher, OI3 of field (c) is significantly higher than field (b). Field (d) has a significant higher OI3 value
than the other fields and also its Ior g and Clear Sky Parameter values are higher. The Largest Cloud Parameter
however is still smaller than the one of field (b).

The possible differences for individual cloud fields becomes even more clear when comparing fields (e)
and (f). The values of Ior g , the Clear Sky Parameter and the Largest Cloud Parameter are very different, but
multiplying these values (Ior g is reduced with 0.5) results in similar values for the combined measure OI3.
This implies that OI3 can be used as a measure for cloud organization/clustering, but that it is difficult to
relate this extent of clustering to climate feedbacks of the cloud field.

The results from Stevens et al. (2019) can be compared to the values of OI3. In total, 65 days could be
compared based on the requirement that at least five out of six scientists from the project of Stevens et al.
(2019) agreed on the type of cloud field, in combination with the availability of evaluated data from this thesis.
Out of these 65 days most fields were classified as Gravel (65), then Fish (8) and Sugar (8) and for Flowers only
4 days could be compared. The results are presented in Figure 5.2.

Figure 5.2: OI3 values compared to subjective analysis results.

This Figure shows that the values of OI3 are lower for fields which are subjectively classified as Gravel and
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Sugar. From these results it also seems like the spread in values is smaller for Sugar and Flowers, but these
results may be biased due to the small number of days that can be evaluated. Nevertheless, the spread in
results classified as Fish by Stevens et al. (2019) is very large. Figure 5.3 shows the fields classified as Fish with
the smallest (left) and largest (right) values.

Figure 5.3: Cloud field classified as Fish by Stevens et al. (2019) with different OI3 values.

The probability of such high OI3 values as seen for some "Fish" fields is small. This can be derived from
Figure 5.4, in which the blue bins show the probability of OI3 values to occur and the dark red line represents
the approximation of the cumulative density function. The black dashed line marks the point at which the
cumulative density function equals 0.5 and thus this Figure shows that 50% of the days have a value of OI3

smaller than 0.01.

Figure 5.4: Probability of OI3 values.

As discussed above it remains difficult to judge the performance of OI3 in an objective way, but a subjective
judgement shows that OI3 performs as expected and cloud fields sorted based on their value of OI3 are,
when analysed subjectively, ordered from least to most clustered. However, OI3 does not provide information
on what drives the clustering. OI3 can be high because all individual parameters are (relatively) high (for
example field (d)), but the clustering can also be mostly driven by the Clear Sky Parameter (field (e)) or the
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Largest Cloud Parameter (field (f)).
Figure 5.5 contains three different scatter plots to show the correlation between the three individual pa-

rameters that are part of OI3. The markers are coloured by the corresponding value of OI3. The correlation
coefficients are printed above the scatter plots. These values show that the Clear Sky Parameter and Ior g are
highly correlated, as their correlation coefficient equals 0.76. The correlation between the Largest Cloud Pa-
rameter and Ior g however is low (0.13) and the correlation between the Largest Cloud Parameter and Clear
Sky Parameter is even non-existing (0.01).

Figure 5.5: Scatter plot of the individual parameters of OI3 against each other. The circles are coloured on a logarithmic scale after their
corresponding values of OI3.

Figure 5.6 shows the scatter plots of the individual parameters against OI3 and the corresponding cor-
relation coefficients. Note that the x-axis has a logarithmic scale. Since OI3 is a multiplication of the three
parameters high correlation coefficients are expected. The correlation coefficient with Ior g is 0.79 and is the
highest of the three. The Clear Sky Parameter also has a high correlation with OI3: the correlation coefficient
is 0.74. The Largest Cloud Parameter also clearly correlates with OI3 but to a lesser extent as the correlation
coefficient between OI3 and the Largest Cloud Parameter is 0.53. This can also be derived from Figure 5.6 as
the spread of the values on the y-axis is largest for the Largest Cloud Parameter.

Although the correlation between OI3 and Ior g is high, they do sort the analysed days in a different order.
This is summarized in a Table in Appendix B.

Figure 5.6: Scatter plot of the individual parameters of OI3 against OI3.

To get an idea about the correlation between OI3 and the so-called Basic Parameters (Cloud cover, Average
nearest neighbour, Cloud density and Average cloud size) scatter plots are also created for these parameters.
These plots are displayed in Figure 5.7. Again the x-axis has a logarithmic scale. The correlation coefficients
are relatively high for the Cloud Density (-0.68), and the Average Nearest Neighbour (0.44). The correlation
with the Cloud Cover (0.15) and Average Cloud Size (0.04) are relatively low.

The relatively high negative correlation coefficient with the Cloud Density is as expected: in general clouds
tend to merge together for higher degrees of clustering and thus the Cloud Density decreases. The average
nearest neighbour is also expected to decrease for a higher degree of clustering, as clouds are expected to be
closer together. However, the opposite seems to be true when looking at the relatively large positive corre-
lation coefficient: apparently the average nearest neighbour increases for a higher degree of clustering. This
may be due to the fact that clouds are increasing in size: their nearest neighbours are then automatically
further away from their centroid as the area that they span is larger. The relatively low correlation with the
Cloud Cover is as expected, cloud fields can be very clustered for both small (Fig. 5.1e) or high (Fig. 5.1f) cloud
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Figure 5.7: Scatter plot of the basic parameters against OI3.

covers. The correlation coefficient with the Average Cloud Size was expected to be higher, since cloud cluster
and eventually merge for high cloud organization. Apparently this is not necessarily the case and can fields
also be classified as clustered/organized without the presence of large clouds. Another reason for this low
correlation may be that clouds directly adjacent to the edge of the field and/or the no-data/masked out area
were removed from the dataset. These clouds were taken into account when calculating the OI3, Clear Sky
Parameter and Largest Cloud Parameter. As the chance of touching the edge or no-data/masked out area in-
creases with cloud size, these large clouds are more likely to get removed from the dataset which alters the
statistics.

The correlation with the earlier applied parameter SCAI was investigated as well. A scatter plot between
OI3 and SCAI is shown in Figure 5.8. Note that the x-axis again has a logarithmic scale. From this plot it can be
derived that a strong correlation is present. The correlation coefficient is -0.66 and thus shows that parameter
SCAI and OI3 are indeed relatively strongly correlated. Similar to Ior g , SC AI does sort the analysed days in a
different order than OI3. This is also summarized in Appendix B.

Figure 5.8: Scatter plot SCAI against OI3.
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The results in this section show that there is more confidence in the performance of OI3 compared to the
performances of Ior g and SC AI . Although the correlations between OI3 and the organization parameters Ior g

and SC AI are high, respectively 0.79 and -0.66, the results from OI3 are better when compared to a subjective
analysis. The order in which OI3 places the evaluated days is shown in Appendix A. Appendix B gives the
differences with Ior g and SC AI .

5.1.2. Temporal variability of OI3 and basic parameters
In this section time series of OI3, the cloud cover, the average nearest neighbour, the cloud density and the
average cloud size are presented. As data was collected for the months December, January and February
between December 2010 and February 2018, the data is presented per winter. Furthermore the correlation
between OI3 for Terra and Aqua and the autocorrelation function of OI3 are presented.

The development of OI3 during the separate winter months is plotted in Figure 5.9.

Figure 5.9: Development of OI3 for different winters. On the y-axis OI3 on a logarithmic scale. The circles denote the days that were
analysed."DJF" stands for December, January and February.

As the circles represent data points and the lines just show the connection between those data-containing
days, it can be seen that there are multiple longer periods of missing data. This can sometimes be explained
by the overpassing location of Terra and Aqua, as days with insufficient data due to the Sensor Zenith Angle
are not analysed. However, these long periods of no data can not only be explained by this. Instead, they are
most likely caused by a too large amount of high clouds in the area. This is for example the case during the
beginning of December 2011, the beginning and end of December 2013 and the beginning of February 2014.
An example of such a day is given in Figure 5.10, which shows two snapshots of the same area (area of interest)
on December 27, 2013. Figure 5.10a shows the corrected reflectance and Figure 5.10b shows the Cloud Top
Pressure. Pixels coloured (light) blue have a Cloud Top Pressure below 550 hPa and are thus considered as
high clouds. As this is more than 20% of the entire area, this day can not be analysed. These high cloud fields
often remain for multiple consecutive days and therefore cause a gap in the data time line.

From Figure 5.9 it looks like the values of OI3 are not random. Instead values tend to remain roughly
similar for multiple consecutive days or gradually increase or decrease. That the value of OI3 does usually
not change abruptly from day to day is also known from visual inspection. Especially Flower structures are
often visible for multiple days in a row.

An example of a gradually increasing value of OI3 can be found between February 11-18, 2014. The cor-
responding plots of these days are shown in Figure 5.11. These plots show Flower-like structures gradually
transforming into Fish structures. The SCAI values of these days are 0.1367, 0.1586, 0.1108, 0.0739,0.1108,
0.1567. According to those values, the cloud field is most organized on February 15, 2014.

Figure 5.12 shows a scatter plot of all OI3 values collected on a specific day during the 8 years that were
analysed accompanied by a 1-day and 10-day average line plot. From these line plots there seems to be some
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(a) Snapshot showing the corrected re-
flectance.

(b) Snapshot showing the Cloud Top Pres-
sure.

Figure 5.10: Snapshots from 2013-12-27 (TERRA), taken from the MODIS Worldview, showing large high cloud areas. (a) shows the
corrected reflectance image, whereas (b) shows the Cloud Top Pressure associated to image (a).

Figure 5.11: Consecutive days with gradually increasing OI3.

sort of trend with the organization being higher in January and February compared to December. However,
as the data record is only 8 years and only 403/720 (56%, see Table 3.3) of the days have been analysed, each
day is on average based on 4.5 days and thus prone to biases due to large extremes in the data.

Figure 5.12: Day and 10-day averages for OI3. The y-axis has a logarithmic scale.

Figure 5.13 shows the results of respectively the cloud cover, average nearest neighbour, number of clouds
and cloud size are shown. These Figures are created in a similar way as the graph of OI3. The minimum,
maximum, average and median values per parameter are summarized in Table 5.2. From this Table it can be
concluded that there are mainly some large outliers for the average cloud size and average nearest neighbour.
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(a) Cloud cover values. (b) Cloud nearest neighbour values.

(c) Cloud density values. (d) Average cloud size values.

Figure 5.13: Average values basic parameters.

Table 5.2: Smallest, largest, average and median values of parameters from 8 years of data.

Parameter Minimum Maximum Average Median

OI3 [-] 0.0010 0.0637 0.0110 0.0090
Cloud Cover [%] 9.59 64.21 31.13 30.86

Average Cloud Nearest Neighbour [km] 4.11 6.84 4.74 4.65
Number of Clouds / unit area [-] 4224 19342 12286 12541

Average Cloud Size [km2] 8.17 71.40 19.41 17.01

For all parameters it can be concluded that there seems to be some sort of trend, but it is difficult to prove
that due to the limited amount of data. The Cloud Density shows a large spread in values but does not show
very large extremes. This is different for the Average nearest neighbour and the Average cloud size, both show
some large positive extreme values.

Figure 5.14 shows the median (red line), 25th and 75th percentile (lower and upper box limits), extreme
non-outliers (lower and upper whiskers) and outliers (’+’ signs) per December-January-February period of
OI3 for Terra and Aqua separately. This way insights in the differences between different years are obtained
but also differences between Terra and Aqua can be identified. Some variability between years can be distin-
guished: the periods DJF 10-11 and DJF 12-13 are more organised than the other winters. The winter period
17-18 is least organised based on OI3. The differences between Terra and Aqua do not seem significant: 5
times the median value of Terra is higher, versus 3 times for Aqua. The height of the boxes also is equal during
most years, except for DJF 12-13 when the spread in values is higher for Terra and for DJF 15-16, when this is
the other way around.

The correlation between Terra and Aqua is high: 0.89. This is visualized in the scatter plot in Figure 5.15.
The autocorrelation is calculated for the entire dataset, without combining Terra and Aqua. This way, the

autocorrelation can be calculated in hours (as the overpass times of Terra and Aqua respectively are 10:30 AM
and 1:30 PM). The result is shown in Figure 5.16. At t - 3, 24, 27, 51, 96 and 120 hours the autocorrelation is
significant. However, as the autocorrelation is small at t = 48, 72, 75 and 99 hours it should be concluded that
the autocorrelation is significant up until 27 hours.



50 5. Results and Discussion

Figure 5.14: OI3 statistics of Terra and Aqua in box plots. The median value is indicated by the red line, 25th and 75th percentiles by the
lower and upper box limits, extreme non-outlier values by the lower and upper whiskers and the ’+’ signs indicate outliers.

Figure 5.15: Correlation between Terra and Aqua for OI3 Figure 5.16: Autocorrelation OI3.

5.1.3. Spatial variability of OI3

The spatial variability of OI3 can be investigated by looking at the results of OI3 when calculated for smaller
areas within the complete area of interest. This is done for areas of 5°×5° (4 smaller areas) and 2.5°×2.5° (16
smaller areas). Examples from two days are plotted in Figures 5.17 and 5.18. Figure 5.17 shows the smaller
fields from the full field that is plotted in Figure 5.1a, which is one of the least clustered fields that has been
analysed. Figure 5.18 shows the smaller fields from the full field that is plotted in Figure 5.1f. This field is
interesting because the variation in cloud types and organizations within this field is relatively large.

The smaller fields in Figures 5.17a and 5.17b are thus representing a rather random, non-clustered area.
The value of OI3 for the complete field is 0.0014. The largest and smallest values are found for the smallest
fields, which can also be expected. Here the largest value is 0.0127 and the smallest value is -0.0003, which
implies that Ior g was below 0.5 and thus classified this field as regular. This does not occur frequently, and
only for the smallest fields and for those fields only 16 times out of 8046 small fields that are analysed in total.
The variance of OI3 of this field is relatively small and the difference between the minimum and maximum
value is 0.0130. The variance of the four areas of 5°×5° is 3.89×10−6. The variance of the 16 areas of 1.58×10−5.

Figures 5.18a and 5.18b show the smaller fields from the complete area shown in Figure 5.1f, which has a
value of OI3 of 0.0201. Some sub-plots are missing, as the data coverage of is sub-plot was smaller than 50%.
The variance of this field is larger than the variance of the previous field and equals 6.49×10−4 and 3.41×10−4

for the 4 and 16 fields respectively. With this example it is shown that it is not always possible to calculate the
value of OI3. In these cases, it was not possible to compute Ior g , which happens when the cloud cover is very
high and the cloud sizes are large. It is then not always possible to randomly place these clouds in a field and
therefore the algorithm fails. This is very unlikely to happen when the complete area is analysed, as such large
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(a) Fields of 5°×5°. (b) Fields of 2.5°×2.5°.

Figure 5.17: Smaller fields on February 14, 2013 (AQUA).

(a) Fields of 5°×5° on February 5, 2013 (TERRA). (b) Fields of 2.5°×2.5° on February 5, 2013 (TERRA).

Figure 5.18: Smaller fields on February 5, 2013 (AQUA).

shallow cumulus clouds do not exist. However, as the size of the area is reduced, the probability that Ior g fails
increases. This is what happened to two small fields in Figure 5.18b, where the value of OI3 is denoted as
N aN .

The variance of OI3 was calculated for each analysed day. This variance was then compared to the value
of OI3 of the complete area. A scatter plot of the variance found for the 4 areas of 5°×5° against the variance
found for the 16 areas of 2.5°×2.5°, coloured by the value of OI3 for the complete area, is shown in Figure 5.19.

From this Figure it can be derived that there is a positive correlation between the variance of the 4 areas
and the 16 areas. Also, from the colours, it can be derived that both variances also exhibit a positive corre-
lation with the value of OI3 of the entire area: the variance is expected to be higher for a higher degree of
organization, and thus the spatial variability of the clouds is larger. In numbers, the correlation between OI3

and the variance of OI3 calculated for the 4 and 16 smaller areas is equal to 0.42 and 0.49 respectively. The
correlation between the variance for 4 areas of 5°×5° and the 16 areas of 2.5°×2.5° is 0.45. What is interest-
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Figure 5.19: Correlation spatial variance OI3.

ing, is that the variance is significantly higher when looking at the results from Aqua for all three cases. The
results of the correlations are summarized in Table 5.3. The values above the diagonal show the correlation
coefficients when calculated for both Aqua and Terra simultaneously. Below the diagonal the two values give
the correlation of Aqua and Terra respectively. All correlation coefficients are significantly larger for Aqua,
and the difference between Aqua and Terra is largest when looking at the correlation coefficients between
OI3 and the variance of OI3 for the 16 smaller areas.

Table 5.3: Correlation coefficients OI3 between different spatial scales. The values below the diagonal of the table show the correlation
coefficients of Aqua and Terra respectively. The values above the diagonal show the correlation coefficients when calculated for the
complete dataset.

OI3 Variance
OI3 4 areas

Variance
OI3 16 areas

OI3 - 0.42 0.49
Variance OI3 4 areas 0.46 | 0.36 - 0.45

Variance OI3 16 areas 0.58 | 0.37 0.49 | 0.41 -

5.2. Discussion
The results presented in this chapter imply interesting insights in quantifying cloud organization. However,
some uncertainties remain. For example, the relatively large difference between Aqua and Terra is not well
understood. It can partly be explained by their differences in overpass time, but this is unlikely to explain the
significant differences in the variance values for Terra and Aqua.

Furthermore, the applied method for the calculations of the basic parameters (except for the cloud cover)
where clouds adjacent to the edge or no-data area were removed from the dataset alters the statistics. For
example it was expected that the average nearest neighbour as well as the average cloud size would increase
when setting both MODIS cloud classifications Cloudy and Uncertain Clear to clouds. The results show the
opposite, most likely because the extremely large (and incorrect, see Figure 3.16) obtained clouds with both
classifications had a larger probability of being removed from the dataset, whereas the extra single cloud
pixels were mostly kept.

For the calculations of OI3 however all clouds were kept, and thus it is the question to what extent correla-
tions can be expected between OI3 and the basic parameters. The correlation with the average cloud size was
also expected to be higher, as fields with only small clouds are not often classified as very clustered. This may
be due to the fact that mostly large clouds were removed from the dataset which results in a smaller average
cloud size.

Furthermore, the correlation with SC AI is higher than expected. Most likely because no clouds were
removed in the computation of SC AI .



6
Conclusions and Recommendations

To answer the two main questions How can shallow cumulus cloud organization objectively be charac-
terized using satellite imagery and What are the temporal and spatial scales of shallow cumulus cloud
organization several sub-questions were defined. Sections 6.1 and 6.2 are devoted to answering the main
questions. In Section 6.3 general conclusions are discussed and Section 6.4 provides some recommendations
for future research.

6.1. How can shallow cumulus cloud organization objectively be charac-
terized using satellite imagery?

Shallow cumulus cloud organization can be characterized by making use of MODIS data, in particular the
MODIS Cloud Mask. This thesis focussed on finding an improved organization index for shallow cumulus
cloud fields, because confidence in existing methods (Ior g and SC AI ) lacks. Although the theory behind Ior g

is very useful and effective, the existing methodology did not take the size of clouds into account. The results
were therefore not always realistic.

The organization parameter OI3 is partly based on the existing method Ior g , but does take into account
the size of the clouds. The nearest neighbour distances of the actual field, from calculations based on cloud
fields obtained the MODIS Cloud Mask, are compared to a randomly generated cloud field. This random
cloud field generator is based on the number of clouds and their sizes. The individual clouds are simplified
to circles, so their shapes are not taken into account. The differences between the random generated cloud
field and the actual field tell us to what extent a cloud field is clustered, random or regular. OI3 is calculated
from this measure, combined with parameters of the largest cloud and the largest clear sky region in the field.

The results are promising, as comparisons with subjective analyses show high correlations. Based on
subjective judgement, OI3 performs well.

The correlation coefficients with Ior g and SC AI respectively are 0.79 and -0.66 and thus it can be argued
that these parameters should perform good as well. However, crucial differences exist when comparing the
results to a subjective analysis. OI3 performs better overall and is therefore considered an improvement on
the existing methods.

OI3 can be applied to almost all cloud fields. However, as the actual field is compared to the result of a
random simulation, fields with less than approximately 50 clouds may show significantly different outcomes
for different simulations. Therefore the field should be large enough. In this thesis the smallest fields which
were evaluated were 2.5°×2.5°, which was large enough in terms of the number of clouds that were present in
the field. However, the cloud cover may also cause the calculations to fail. When the cloud cover is extremely
high it may not always be possible to place all clouds in the random field and thus it is not possible to do all
calculations.

In general the combined organization index OI3 performs well. As all parameters are dimensionless it is
possible to apply the calculations to different field sizes.
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6.2. What are the temporal and spatial scales of shallow cumulus cloud
organization?

The results showing the results of OI3 and the basic parameters on each day (Fig. 5.12 and 5.13d) do show
some differences between December, January and February. However, due to the limited amount of data, it
is difficult to say whether these differences are significant.

The correlation between the values of OI3 obtained with Terra and Aqua with overpass times at respec-
tively 10:30AM and 1:30PM is 0.89. As it was concluded that OI3 performs effectively, this high correlation
means that the organization in the morning is not very different from the organization in the afternoon. This
can also be derived from visual inspection: the cloud field does usually not change very much over the course
of 3 hours. The autocorrelation shows significant values until t = 27 hours. This also shows that usually orga-
nization remains the same or gradually increases or decreases over the course of two days. This is also visible
in the plot of the evolution of OI3 (Fig.5.9).

In the previous section it was concluded that, based on a few requirements, OI3 can be calculated for dif-
ferent field sizes. As expected the variance of the organization values was higher when the large field was split
up in smaller areas. From subjective analysis it was known already that Flower and Fish structures are larger
than Sugar and Gravel fields. However, when evaluating the entire area of interest of 10°×10° subjectively,
often multiple organization structures can be detected. OI3 therefore rather gives an average value of the en-
tire area, whereas it can be concluded that when smaller areas are evaluated they are more often dominated
by only one (subjective) organization structure.

6.3. General Conclusions
In general it can be concluded that the combined organization index OI3 is an effective measure for cloud
organization. It can be applied on different scales and is useful for comparisons between fields due to its
dimensionless properties. Existing measures of organization like Ior g and SC AI have relatively high corre-
lations but lack to be effective for some extreme cases. When visually inspecting the analysed scenes sorted
from least to most organized according to OI3 in Appendix A, it can be concluded that OI3 performs well.
Since a broad range of scenes has been analysed, ranging from 2.5°×2.5° to 10°×10° in size, it can be assumed
that OI3 will perform well in almost all cases.

6.4. Recommendations
An interesting follow-up on this research would be to apply the combined organization index OI3 to larger
datasets to better investigate the temporal and spatial variability. This could also be done with data of a
geospatial satellite, such as GOES-16. When applying OI3 to for example hourly data better insights in the
development of organization can be obtained. Furthermore, it would be interesting to look at the correlation
with atmospheric conditions such as temperature, wind speed and wind inversion. This would improve our
insights and understanding of what drives shallow cumulus cloud organization.

Lastly, although this thesis shows that the combined organization index OI3 performs well, one could also
think about further fine-tuning this index by not only taking into account the sizes of the clouds but also their
shapes in the calculations of the altered Ior g .
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0.0010 0.0010 0.0011 0.0012 0.0014

0.0014 0.0014 0.0015 0.0016 0.0016

0.0017 0.0017 0.0018 0.0018 0.0018

0.0019 0.0019 0.0019 0.0019 0.0021

0.0022 0.0022 0.0022 0.0023 0.0023

0.0023 0.0023 0.0024 0.0024 0.0025

0.0025 0.0025 0.0025 0.0026 0.0026

Figure A.1: Ordered fields 1-35
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0.0026 0.0026 0.0026 0.0026 0.0026

0.0027 0.0027 0.0027 0.0027 0.0027

0.0027 0.0027 0.0027 0.0027 0.0028

0.0028 0.0028 0.0028 0.0028 0.0028

0.0029 0.0029 0.0029 0.0029 0.0029

0.0030 0.0030 0.0030 0.0030 0.0030

0.0031 0.0031 0.0031 0.0031 0.0031

Figure A.2: Ordered fields 36-70
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0.0031 0.0031 0.0032 0.0032 0.0032

0.0032 0.0032 0.0033 0.0033 0.0033

0.0034 0.0034 0.0034 0.0035 0.0035

0.0035 0.0035 0.0035 0.0036 0.0037

0.0037 0.0037 0.0037 0.0037 0.0038

0.0038 0.0038 0.0038 0.0039 0.0039

0.0039 0.0039 0.0039 0.0039 0.0039

Figure A.3: Ordered fields 71-105
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0.0039 0.0039 0.0040 0.0041 0.0041

0.0041 0.0041 0.0041 0.0042 0.0042

0.0042 0.0042 0.0042 0.0043 0.0043

0.0044 0.0044 0.0044 0.0044 0.0045

0.0045 0.0045 0.0045 0.0045 0.0045

0.0045 0.0045 0.0045 0.0045 0.0046

0.0046 0.0046 0.0047 0.0047 0.0047

Figure A.4: Ordered fields 106-140
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0.0047 0.0047 0.0047 0.0048 0.0048

0.0048 0.0048 0.0049 0.0049 0.0049

0.0049 0.0050 0.0050 0.0051 0.0051

0.0051 0.0051 0.0051 0.0051 0.0051

0.0052 0.0052 0.0052 0.0052 0.0052

0.0053 0.0053 0.0053 0.0054 0.0054

0.0055 0.0055 0.0055 0.0055 0.0056

Figure A.5: Ordered fields141-175
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0.0056 0.0056 0.0056 0.0057 0.0058

0.0058 0.0058 0.0058 0.0059 0.0059

0.0059 0.0059 0.0060 0.0060 0.0060

0.0060 0.0060 0.0061 0.0061 0.0062

0.0062 0.0063 0.0063 0.0063 0.0063

0.0064 0.0064 0.0064 0.0064 0.0064

0.0064 0.0065 0.0065 0.0065 0.0065

Figure A.6: Ordered fields 176-210
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0.0065 0.0065 0.0066 0.0066 0.0067

0.0067 0.0068 0.0068 0.0068 0.0068

0.0068 0.0069 0.0069 0.0069 0.0069

0.0069 0.0070 0.0070 0.0070 0.0070

0.0071 0.0072 0.0073 0.0073 0.0073

0.0073 0.0073 0.0074 0.0074 0.0074

0.0074 0.0074 0.0075 0.0075 0.0075

Figure A.7: Ordered fields 211-245
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0.0076 0.0076 0.0076 0.0076 0.0076

0.0076 0.0077 0.0077 0.0077 0.0077

0.0077 0.0078 0.0078 0.0078 0.0079

0.0079 0.0079 0.0079 0.0080 0.0081

0.0081 0.0081 0.0081 0.0083 0.0083

0.0083 0.0084 0.0084 0.0084 0.0084

0.0085 0.0085 0.0085 0.0087 0.0087

Figure A.8: Ordered fields 246-280
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0.0088 0.0088 0.0089 0.0089 0.0089

0.0089 0.0090 0.0090 0.0090 0.0091

0.0091 0.0092 0.0094 0.0094 0.0095

0.0095 0.0095 0.0095 0.0096 0.0096

0.0097 0.0097 0.0097 0.0098 0.0098

0.0098 0.0099 0.0099 0.0099 0.0100

0.0100 0.0100 0.0101 0.0102 0.0102

Figure A.9: Ordered fields 281-315
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0.0102 0.0103 0.0103 0.0103 0.0104

0.0105 0.0105 0.0105 0.0106 0.0107

0.0107 0.0107 0.0107 0.0107 0.0108

0.0108 0.0109 0.0109 0.0109 0.0109

0.0110 0.0110 0.0110 0.0110 0.0111

0.0111 0.0111 0.0112 0.0113 0.0113

0.0113 0.0113 0.0113 0.0114 0.0114

Figure A.10: Ordered fields 316-350
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0.0116 0.0116 0.0116 0.0117 0.0117

0.0117 0.0117 0.0117 0.0118 0.0118

0.0119 0.0119 0.0119 0.0120 0.0120

0.0120 0.0121 0.0122 0.0122 0.0122

0.0123 0.0124 0.0124 0.0124 0.0124

0.0125 0.0125 0.0125 0.0126 0.0127

0.0127 0.0127 0.0127 0.0127 0.0128

Figure A.11: Ordered fields 351-385
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0.0116 0.0116 0.0116 0.0117 0.0117

0.0117 0.0117 0.0117 0.0118 0.0118

0.0119 0.0119 0.0119 0.0120 0.0120

0.0120 0.0121 0.0122 0.0122 0.0122

0.0123 0.0124 0.0124 0.0124 0.0124

0.0125 0.0125 0.0125 0.0126 0.0127

0.0127 0.0127 0.0127 0.0127 0.0128

Figure A.12: Ordered fields 351-385
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0.0128 0.0128 0.0129 0.0129 0.0130

0.0130 0.0131 0.0131 0.0131 0.0131

0.0132 0.0133 0.0133 0.0133 0.0134

0.0135 0.0136 0.0136 0.0136 0.0137

0.0137 0.0138 0.0138 0.0139 0.0140

0.0140 0.0140 0.0140 0.0141 0.0141

0.0141 0.0141 0.0142 0.0142 0.0142

Figure A.13: Ordered fields 386-420
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0.0143 0.0144 0.0144 0.0144 0.0144

0.0145 0.0145 0.0146 0.0146 0.0146

0.0146 0.0147 0.0147 0.0147 0.0147

0.0147 0.0148 0.0149 0.0155 0.0155

0.0155 0.0157 0.0158 0.0158 0.0161

0.0161 0.0161 0.0161 0.0162 0.0163

0.0163 0.0163 0.0165 0.0166 0.0166

Figure A.14: Ordered fields 421-455
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0.0166 0.0166 0.0167 0.0167 0.0168

0.0168 0.0169 0.0169 0.0169 0.0175

0.0176 0.0176 0.0177 0.0178 0.0179

0.0179 0.0180 0.0180 0.0180 0.0183

0.0185 0.0186 0.0187 0.0188 0.0191

0.0194 0.0196 0.0199 0.0200 0.0201

0.0201 0.0204 0.0204 0.0206 0.0206

Figure A.15: Ordered fields 456-490
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0.0209 0.0209 0.0209 0.0210 0.0211

0.0212 0.0214 0.0215 0.0215 0.0217

0.0218 0.0218 0.0218 0.0219 0.0220

0.0223 0.0224 0.0224 0.0227 0.0229

0.0232 0.0233 0.0235 0.0236 0.0242

0.0242 0.0243 0.0246 0.0251 0.0252

0.0253 0.0255 0.0255 0.0257 0.0264

Figure A.16: Ordered fields 491-525
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0.0265 0.0265 0.0267 0.0267 0.0267

0.0267 0.0268 0.0269 0.0271 0.0276

0.0285 0.0295 0.0297 0.0298 0.0299

0.0302 0.0307 0.0313 0.0316 0.0319

0.0326 0.0339 0.0345 0.0348 0.0357

0.0394 0.0399 0.0410 0.0453 0.0472

0.0570 0.0705

Figure A.17: Ordered fields 525-557
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OI3 Ior g SC AI OI3 Ior g SC AI OI3 Ior g SC AI OI3 Ior g SC AI

1 6 38 51 12 6 101 134 67 151 77 17
2 39 4 52 18 150 102 89 233 152 240 293
3 50 110 53 76 12 103 126 221 153 200 99
4 3 11 54 59 195 104 152 42 154 20 79
5 86 72 55 16 112 105 53 127 155 253 90
6 17 3 56 283 319 106 101 209 156 63 315
7 155 56 57 102 157 107 66 208 157 183 394
8 2 2 58 4 30 108 160 184 158 120 257
9 1 5 59 304 234 109 38 24 159 118 74

10 35 125 60 148 103 110 131 377 160 100 354
11 22 1 61 28 178 111 69 100 161 173 239
12 110 34 62 74 20 112 217 329 162 165 290
13 236 144 63 129 249 113 137 107 163 179 227
14 113 23 64 32 25 114 185 230 164 230 126
15 11 247 65 73 54 115 97 271 165 242 167
16 87 115 66 130 62 116 171 84 166 82 135
17 5 117 67 44 27 117 70 215 167 192 14
18 7 106 68 45 13 118 46 317 168 95 141
19 10 63 69 105 9 119 190 316 169 24 129
20 65 69 70 23 65 120 51 186 170 78 48
21 9 22 71 156 360 121 177 192 171 206 123
22 15 15 72 37 51 122 380 58 172 158 275
23 49 10 73 33 97 123 229 212 173 19 146
24 58 55 74 369 130 124 237 116 174 124 224
25 25 201 75 71 277 125 132 68 175 195 140
26 27 7 76 98 165 126 157 175 176 123 59
27 259 43 77 42 143 127 80 171 177 411 374
28 163 45 78 48 281 128 83 256 178 141 28
29 247 287 79 61 292 129 352 179 179 321 349
30 99 89 80 142 180 130 114 193 180 273 226
31 92 35 81 75 214 131 104 31 181 208 98
32 29 198 82 138 8 132 79 16 182 139 36
33 8 273 83 231 124 133 167 218 183 256 44
34 88 388 84 40 328 134 189 76 184 297 367
35 109 156 85 21 46 135 47 132 185 93 244
36 103 137 86 181 318 136 188 322 186 294 228
37 112 40 87 175 93 137 186 237 187 223 80
38 34 71 88 81 81 138 149 162 188 64 326
39 67 41 89 198 197 139 364 164 189 146 73
40 219 231 90 55 381 140 62 50 190 340 433
41 52 187 91 43 185 141 249 131 191 374 216
42 108 114 92 381 152 142 36 154 192 288 91
43 60 302 93 84 33 143 225 158 193 133 312
44 41 182 94 203 18 144 308 37 194 164 444
45 14 120 95 30 47 145 313 282 195 241 331
46 257 196 96 68 29 146 295 217 196 136 205
47 54 263 97 56 88 147 346 305 197 367 173
48 135 111 98 72 356 148 125 191 198 222 357
49 172 200 99 26 145 149 13 52 199 106 53
50 122 254 100 147 92 150 128 251 200 31 19
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OI3 Ior g SC AI OI3 Ior g SC AI OI3 Ior g SC AI OI3 Ior g SC AI

201 345 240 251 279 470 301 280 119 351 520 480
202 245 294 252 275 355 302 238 190 352 268 78
203 176 139 253 246 434 303 412 450 353 202 404
204 305 269 254 302 270 304 329 189 354 475 429
205 502 109 255 376 155 305 368 424 355 355 341
206 178 456 256 96 148 306 312 361 356 486 523
207 335 286 257 250 259 307 404 323 357 254 332
208 420 102 258 414 385 308 390 430 358 392 453
209 90 121 259 174 108 309 342 229 359 378 371
210 153 60 260 332 425 310 228 379 360 325 426
211 111 66 261 226 96 311 443 105 361 264 491
212 314 382 262 218 460 312 293 500 362 419 344
213 194 369 263 85 299 313 266 363 363 370 447
214 258 285 264 363 442 314 162 75 364 388 339
215 145 172 265 251 451 315 166 202 365 461 499
216 278 421 266 255 133 316 362 283 366 351 396
217 213 258 267 193 276 317 261 203 367 263 220
218 150 82 268 292 264 318 424 389 368 389 147
219 252 296 269 248 118 319 151 359 369 382 272
220 357 204 270 282 246 320 379 497 370 339 280
221 184 149 271 344 310 321 286 398 371 220 232
222 154 122 272 260 236 322 296 241 372 331 336
223 410 113 273 243 343 323 415 159 373 523 161
224 285 298 274 474 488 324 299 39 374 395 527
225 356 134 275 244 250 325 234 94 375 482 353
226 205 358 276 430 463 326 398 541 376 196 222
227 232 160 277 107 532 327 57 219 377 431 306
228 350 207 278 303 213 328 435 278 378 227 87
229 91 169 279 318 402 329 276 445 379 216 252
230 94 181 280 489 439 330 310 284 380 479 448
231 121 335 281 406 513 331 451 199 381 538 469
232 143 26 282 449 462 332 287 378 382 311 86
233 211 303 283 289 255 333 499 534 383 375 473
234 116 248 284 384 243 334 438 509 384 484 479
235 127 32 285 204 401 335 393 364 385 341 211
236 214 210 286 215 288 336 327 413 386 436 540
237 290 85 287 161 225 337 547 384 387 408 525
238 324 370 288 140 64 338 354 552 388 532 411
239 338 206 289 442 496 339 316 128 389 387 368
240 159 307 290 337 314 340 212 49 390 333 308
241 197 61 291 450 423 341 326 188 391 397 440
242 284 136 292 180 142 342 269 366 392 199 170
243 182 304 293 334 77 343 509 406 393 191 95
244 221 399 294 348 321 344 322 459 394 426 506
245 119 21 295 235 309 345 330 505 395 365 242
246 170 104 296 169 397 346 291 266 396 416 347
247 144 101 297 224 151 347 233 70 397 358 409
248 210 177 298 201 153 348 168 168 398 300 345
249 117 183 299 239 163 349 115 57 399 301 262
250 265 383 300 187 350 350 307 494 400 522 481
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OI3 Ior g SC AI OI3 Ior g SC AI OI3 Ior g SC AI OI3 Ior g SC AI

401 472 372 451 439 507 501 503 408 551 549 529
402 298 362 452 500 550 502 270 265 552 553 548
403 464 289 453 477 194 503 537 486 553 513 544
404 518 501 454 459 340 504 490 472 554 542 503
405 306 435 455 446 403 505 524 476 555 551 530
406 481 555 456 425 342 506 465 432 556 540 557
407 281 235 457 423 351 507 485 320 557 557 556
408 359 412 458 456 461 508 429 176
409 272 391 459 405 508 509 526 539
410 492 546 460 457 419 510 399 417
411 478 295 461 360 554 511 515 437
412 317 431 462 274 330 512 514 466
413 320 482 463 371 395 513 512 536
414 527 520 464 432 400 514 445 474
415 373 465 465 400 452 515 507 478
416 391 410 466 469 392 516 504 516
417 418 338 467 539 495 517 554 549
418 361 138 468 476 390 518 546 477
419 462 517 469 483 300 519 519 515
420 471 334 470 455 333 520 494 521
421 434 458 471 353 352 521 413 376
422 277 223 472 319 405 522 510 375
423 536 427 473 448 455 523 467 538
424 267 348 474 473 416 524 394 279
425 309 414 475 315 327 525 505 386
426 427 365 476 506 492 526 511 528
427 433 526 477 402 464 527 447 311
428 530 436 478 428 418 528 544 533
429 209 543 479 470 510 529 421 535
430 366 387 480 487 467 530 409 301
431 262 174 481 349 346 531 493 324
432 422 253 482 534 420 532 517 487
433 323 238 483 497 380 533 533 438
434 377 504 484 548 489 534 463 449
435 417 261 485 372 274 535 460 297
436 383 457 486 401 454 536 528 325
437 407 268 487 454 471 537 531 511
438 498 547 488 501 337 538 488 422
439 343 446 489 453 512 539 466 313
440 508 475 490 525 415 540 521 443
441 403 428 491 437 245 541 480 502
442 550 485 492 496 373 542 555 542
443 271 83 493 440 291 543 545 551
444 207 166 494 468 490 544 444 518
445 543 468 495 385 498 545 491 531
446 535 553 496 495 545 546 541 537
447 441 522 497 556 514 547 516 524
448 328 260 498 452 493 548 396 267
449 386 484 499 529 441 549 458 519
450 347 393 500 336 407 550 552 483
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