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Abstract

Computational Fluid Dynamics (CFD) has become important in designing aerospace and trans-
port products. It allows for predicting the key flow properties. The CFD techniques were devel-
oped in the late 20th century. Mimetic schemes are relatively new in the realm of CFD, although
they have been applied to a wide range of Partial Differential equations (PDE) problems. Some
attempts have been made to draw comparisons between Finite Volume Methods and Finite Ele-
ment Methods along with other conventional CFD techniques but not much attention has been
paid towards the comparison of the Mimetic Spectral Element Method (MSEM) with these most
conventional techniques. Further analysis is required in order to make judgments regarding the
effectiveness, stability and accuracy of MSEM against conventional methods.

The purpose of this report is to present the findings and outcomes of 2D incompressible
Navier-Stokes flow simulation techniques. Then, the comparison between the MSEM and con-
ventional CFDwill be made. Themass, energy, enstrophy and vorticity conserving (MEEVC) was
chosen as a MSEM solver. MEEVC employs mixed finite element discretization which allows for
the preservation of mass, energy, enstrophy and vorticity. The phyem package for Python cre-
ated by Yi Zhang et al. is used to carry out MEEVC. Because a non-linear system needs to
be solved, a Newton linearization is implemented. ANSYS Fluent represents the conventional
CFD due to its built-in 2D solver. A coupled solver is selected as it solves for both pressure and
velocity simultaneously compared to usually used segregated methods.

Four test cases were conducted using both software, and the results were compared with the
literature for validation. They were selected in order to capture different flow conditions, including
internal and external, steady and unsteady flows. The study validates both methods against the
literature and analytical solutions. Then, a cross-case study is performed in order to answer the
research questions.
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1
Introduction

The use of Computational Fluid Dynamics (CFD) has become necessary in the design and eval-
uation of products manufactured in the aerospace and transport sectors, [1]. The CFD helps in
the early design phases of product development, [2]. The key aspects of CFD are to study the
properties of the fluids, to numerically approximate how the fluids will move with time and forces
applied and how the movement would affect the surroundings. The computing techniques and
physical models are becoming more and more advanced, [3]. They rely on the Navier–Stokes
equations (continuity, momentum and energy equations). The development of computational
fluid dynamics has been based quite significantly on the numerical formulations brought forth in
the 1970s and 1980s, [4, 5, 6]. The conventional software packages for design include ANSYS
CFX, ANSYS Fluent, Dassault Systemes XFlow and OpenFOAM. Finite Volume, Finite Element,
Finite Difference, Lattice Boltzmann and Spectral Element are the most commonly used spatial
discretization methods in computational fluid dynamics.

The Spectral Element Method was introduced in 1980s by Patera, [7]. It combined the finite
element method with the accuracy of spectral techniques. A high-order Lagrangian interpolant
is used for representation of velocity at each element through the Chebyshev grid. The discrete
versions of differential operators gradient, divergence and curl were proposed by Hyman and
Shashkov, [8]. Later, the support-operator method was used to construct second-order afore-
mentioned operators [9] as natural discrete operators from [8] were not sufficient.

In ”Principles of Mimetic Discretizations of Differential Operators”, Pavel Bochev introduces
a method for discretizing differential operators, [10] These mimetic operators are reduction and
reconstruction. The framework is compatible with finite element/volume/difference methods. Di-
rect and conforming methods are equivalent to regular reconstruction operators. This allows for
the possibility of performing error analysis on direct mimetic methods, [10].

In the context of numerical methods and discretizations, ”mimetic” refers to the approach of
imitating or reproducing specific mathematical properties. Mimetic discretization methods pre-
serve the symmetries inherent in the underlying physical system [11]. These methods adhere
to the same conservation laws as their continuous counterparts. Differential geometry and alge-
braic topology are core aspects of the mimetic discretizations, [11].

Recently, the mimetic spectral element method in CFD analysis has gained much attention.
Tonti found the geometric aspects within physical theories comprising differential geometry and
algebraic topology [12]. He explains the connection between physical variables in partial differ-
ential equations (PDEs) and geometric elements in a discrete scheme to construct a structure-
preserving method. Another area of application was computational and geophysical fluid dynam-
ics, [13]. Such approximations are supported by high-degree polynomials which approximate the

1
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solution within each element in the MSEM. It should provide a better representation of the deriva-
tive and gradient operators compared to traditional numerical methods like Finite VolumeMethod
and Finite Element Method. Also, the MSEM, unlike other CFD methods as described in [14] is
less dependent on mesh so it may be implemented in arbitrarily shaped domains. One of the
main advancements incorporated into the MSEMs are the discrete analogues of continuous dif-
ferential operators that, in most cases, act similarly to gradient, divergence and curl operators,
[15]. The correspondence of k-forms and k-cochains is built via mimetic operators like reduc-
tion, reconstruction and projection. Then the mass, energy, enstrophy and vorticity conserving
(MEEVC) was proposed in [16] by Artur Palha and Marc Gerritsma. It is a mimetic spectral
element combined with mixed finite element discretization designed for solving the 2D incom-
pressible Navier-Stokes equations. It was modified in [17] by Yi Zhang to incorporate no-slip
boundary conditions while satisfying the initial vorticity conservation law.

The MSEM offers versatile solutions for physical problems expressed in terms of partial dif-
ferential equations (PDEs). The examples include: Stokes flow [18], diffusion [19, 20], advection
[21, 22], 3D linear elasticity problems [23], geophysical flow [13, 24], electromagnetism [25, 26],
Navier-Stokes [16, 17], shallow water flows [27, 28] and viscoelastic flows [29].

Comparison studies are essential in assessing the performance and accuracy of new com-
putational methods and tools in fluid dynamics. To illustrate, the work of Liu [30] presents a
comparison of a number of CFD codes aimed at the simulation of gas-solid fluidized bed hydro-
dynamics, thus shedding some light on how well these tools represent complex flow patterns.
In a different study conducted by Herzog [31], a comprehensive comparison of the Large Eddy
Simulation (LES) model and the Reynolds Averaged Navier Stokes (RANS) model for RCCI com-
bustion was conducted. Stringer performed a comparative analysis of the commercial package
CFX and the open-source package OpenFOAM in the simulation of flow over a circular cylinder,
[32]. Jeong compared the two methods commonly employed in commercial CFD: Finite Volume
Method (FVM) and Finite Element Method (FEM), [33]. Jet impingement tests were performed
by López in OpenFOAM and ANSYS Fluent, [34]. These studies stress the need to assess and
compare the differences in the functions and behaviour of the distinct methodologies. However,
one interesting aspect has yet to be covered. No direct comparison was made between mimetic
schemes and conventional CFD. Such comparisons are necessary to check whether mimetic
schemes offer superior accuracy and stability in the simulation of Navier-Stokes equations.

The purpose of this report is to present the results of the two methods for flow simulation.
The thesis aims to comprehensively explore and analyze the Mimetic Spectral Element Method
and compare it to conventionally used CFD software. The study will be conducted for the incom-
pressible 2D Navier-Stokes. A set of benchmark test cases are chosen to cover a range of flow
scenarios. The data obtained from both MSEM and conventional CFD will be validated against
available experimental, numerical data from the literature as well as with analytical solutions if
those exist.

Four test cases were selected: Taylor Green vortex, lid-driven cavity flow, backward-facing
step and flow around a cylinder. The Taylor-Green vortex is often treated as a standard case
which involves the study of the time-evolving dissolution of vortex structures in a non-viscous
or viscous fluid. The lid-driven cavity flow is often performed to check the precision of the CFD
solvers applied to the shearing motion of the fluid located in a closed domain. The backward-
facing step flow involves an abrupt increase in the width of the channel and gives rise to separa-
tion, reattachment and recirculation regions. The backward-facing step flow finds lots of everyday
applications such as airflow over high angles of airfoils, airflow separation behind vehicles and
airflow in the entry, condenser and combustion chamber of engines, [35, 36, 37]. Finally, the
flow around a cylinder is one of the elementary problems in the field of external aerodynamics
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where accurate prediction of the boundary layer development, wake and vortex shedding in the
wake of a bluff body is the main challenge making it ideal for simulating obstructed flows and
testing turbulence models in unsteady situations, [38].

1.1. Research Formulation
In the thesis, the investigation includes the research objective as well as supportive research
questions. They are as follows:

A Comparative Study of Mimetic Spectral Element Method and Conventional CFD
Techniques for incompressible 2D Navier-Stokes.

Research Objective

How does the accuracy of the Mimetic Spectral Element Method (MSEM) compare to
conventional Computational Fluid Dynamics (CFD) techniques?

Research Question 1

How do both methods compare to literature/experimental data?

Research Question 2

How do the Mimetic Spectral Element Method and conventional CFD methods perform
across different flow types (e.g. internal, external, steady, unsteady)?

Research Question 3

1.2. Structure of the Report
The structure of the report is as follows. Firstly, in Chapter 2 the general theory of the MSEM
is presented as well as the python package used for simulations - phyem. For comparison, the
conventional CFD methods are described in Chapter 3. The numerical results are presented in
Chapter 4. The main focus of the chapter is to compare MSEM and ANSYS FLUENT results for
several test cases. The report is concluded in Chapter 5.



2
Mimetic Spectral Element Method

TheMimetic Spectral Element Method (MSEM)method imitates essential characteristics of math-
ematical and physical systems, such as conservation laws, duality and self-adjointness of differ-
ential operators. As the scope of this research is the 2-dimensional simulation, the approach
for 2D will be presented in this chapter. It simplyfies the representation and discretization of the
domain.

In this chapter, the flow of the phyem simulation package is presented, [39]. It was created by
Andrea Brugnoli, RamyRashad, Stefano Stramigioli, Yi Zhang. Themass, energy, enstrophy and
vorticity conserving (MEEVC) was initially proposed in [16] and modified in [17]. It is a mimetic
spectral element solver designed to solve the 2D incompressible Navier-Stokes equations. The
phyem package will be used for MEEVC simulations of the flow to compare with commercially
available options.

Currently, there are two ways to simulate something. The first option is to use commercial
software that works like a black box. This means we only need to understand the general con-
cepts of pre-processing and post-processing. The second option is to use open-access libraries
to set up the simulation. With this approach, we need to work out the math on paper (the abstract
stage) and then use the library’s functionalities accordingly. The phyem aims to deliver the third
option which allows the user to work out the abstract part of the problem within the code itself,
[39].

The PhyEM package enables LEGO-like multi-physics simulation by representing equations,
weak formulations and discretization at a program level. It utilizes a differential forms-based
mathematical representation. Its simplified flow is seen in Figure 2.1, [39].

4
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Figure 2.1: Simulation flow with the use of phyem package, [39].

2.1. Basis functions
Basis functions are a set of functions that form a basis for a vector space or function space. A
basis is a set of linearly independent functions.

Nodal functions, also known as nodal basis functions or nodal shape functions, are used
for representing and interpolating values within an element or mesh. Let’s consider an interval
[−1, 1] ∈ R and the nodes are then equal to:

−1 < ξ0 < ξ1 < ... < ξn−1 < ξn < 1 (2.1)

where nodes follow the Legendre-Gauss-Lobatto (LGL) grid, [40]. The LGL grid includes the
endpoints of the interval. The Lagrange polynomial is the smallest degree polynomial that passes
through a particular set of points. It is defined as:

hi (ξj) = δij =

{
1 if i = j

0 if i ̸= j
(2.2)

with δij being the Kronecker delta function. It then follows:

hi (ξj) =

N∏
j=0
j ̸=i

ξ − ξj
ξi − ξj

(2.3)

The Lagrange polynomial basis for n = 5 nodes using the Gauss-Lobatto grid is presented in
Figure 2.2. The function values for all nodes are preserved as only information from the particular
node is used. Value from node 1 at ξ = −1, from node 3 at ξ = 0 etc. However, in between nodal
points, the values are interpolated with information from all nodes. When trying to interpolate
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a set of equidistant data points, using high-degree polynomials can result in inaccuracies and
large oscillations in the interpolated function, particularly near the edges of the data interval.

Figure 2.2: Nodal Lagrange polynomial basis for n = 5.

Edge basis functions are used to discretize functions along the edges or boundaries of ele-
ments in a mesh. Let’s start with a definition of the basis functions. There exist n 1-cochains, in
contrast to the n+ 1 0-cochains as n edges are located between the n+ 1 nodes.

ei(ξ) = −
i−1∑
k=0

dhk(ξ)

dξ
dξ = −

i−1∑
k=0

dhk(ξ) (2.4)

where hk(ξ) are the nodal functions and dhk(ξ) is an exterior derivative of hk(ξ). The basis
functions, denoted as ei(ξ), can be interpreted as polynomial indicator functions which satisfy:
[11]

∫ ξj

ξj−1

ei(ξ) = δij =

{
1 if i = j

0 if i ̸= j
(2.5)

with δij being the Kronecker delta function.

In Figure 2.3 edge functions for n = 5 are shown. On the contrary to the nodal functions
in Figure 2.2, the information is not conserved on the nodes. Rather the integral of ei(ξ) is
preserved.
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Figure 2.3: Edge functions basis for n = 5.

For edge functions, the Kronecker delta is not as clearly seen as for nodal functions as it has
to satisfy the integral property (Equation 2.5). For example of edge function e1, the integral over
the range (ξ0, ξ1) equals to 1 which is indicated with shaded area in the Figure 2.3. The integral
is equal to 0 for other segments.

2.2. Mimetic operators
In order to establish a connection between differential forms and cochains, three operators will
be introduced. In the framework of mimetic methods, two key operators are introduced: the
reduction operator R and the reconstruction operator I. They give the projection operator as
π = I · R. It can be seen in Figure 2.4, [13].

Figure 2.4: Illustration of mimetic operators, [13].

2.2.1. Reduction Operator
The reduction operator, denoted by R : Λk(Ω) → Ck(D), maps differential forms into cochains.
It is also known as the De Rham map. The operator is defined by: [13]

⟨Ra(k), τ(k)⟩ =
∫
τ (k)

a(k), ∀τ (k) ∈ Ck(D), (2.6)

where τ(k) is a k-chain in the complex Ck(D) and a(k) is a k-form in Λk(Ω). It downsizes the
continuous differential form to its discrete counterpart. When taking the exterior derivative at the
continuous level and then reducing it through discretization, it is equivalent to first discretizing
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and then applying the coboundary operator. This principle holds true for all differential forms,
[14].

2.2.2. Reconstruction Operator
The reconstruction operator, denoted by I : Ck(D) → Λk

h(Ω;Ck) maps cochains back into differ-
ential forms. It is the inverse of the reduction operator R. The reconstructed differential forms
belong to the discrete space Λk

h(Ω;Ck), which is a subset of the continuous space Λk(Ω), [13].

I is the right inverse of R, meaning that RI = Id on Ck(D). I also commutes with differenti-
ation, ensuring that the exterior derivative of the reconstructed form follows:

dI = Iδ on Ck(D). (2.7)

2.2.3. Projection Operator
The projection operator πh is defined as the composition of the reduction and reconstruction
operators, πh = IR. It provides a way to map a continuous k-form to its discrete approximation:
[13]

a
(k)
h = πha

(k) = IRa(k), a
(k)
h ∈ Λk

h(Ω;Ck). (2.8)

2.3. Space & Form
In order to begin the simulation, the embedding space dimension has to be set. It can be either
one-, two- or three-dimensional. For the sake of this thesis, the 2D analysis will be performed.
Then, both manifold and mesh are set. At the moment, it is impossible to visualize the manifold
or mesh as everything is still at the abstract level, [41]. The size, shape and amount of the cells
are carried in later parts of the simulation (see Section 2.7).

After presetting the simulation, both space and form can be defined. Space can be both
outer- or inner-oriented as established in [42]. A form is simply an element of a space. Thus, it
is rational to define a form through a space, [41]. In 2D Navier-Stokes simulation forms are as
follows:

• Velocity ~uh ∈ Uh ⊂ H(div; Ω)

• Vorticity ωh ∈ Wh ⊂ H(curl; Ω)

• Pressure Ph ∈ Qh ⊂ L2(Ω)

With forms created, one can implement different operators to build more complex non-root
forms. These operators are presented in Table 2.1, [41]. a and b represent forms where the
operator is being implemented.

Table 2.1: Form operators in phyem.

Operator Symbol Useage

Exterior derivative d a.exterior_derivative()
Codifferential d⋆ a.codifferential()
Time derivative ∂

∂t a.time_derivative()
Wedge product ∧ phyem.wedge(a, b)
Inner product ⟨·, ·⟩ phyem.inner(a, b)

Hodge ? phyem.Hodge(a)
Trace T phyem.trace(a)
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2.4. De Rham complex
An incidence matrix is used to describe the action of the exterior derivative d. Together with the
basis functions, need to be defined in a way that, when combined, creates a discrete version of
the De Rham complex as seen in Figure 2.5, [42].

Figure 2.5: Generalized De Rham complex, [42].

In differential geometry, the exterior derivative operator d, encompasses the vector operations
of gradient ∇, divergence ∇· and curl ∇×. A general form of De Rham complex on a manifold
Ω can be written as:

0
d−→ Γ0(Ω)

d−→ Γ1(Ω)
d−→ Γ2(Ω)

d−→ ...
d−→ Γk(Ω)

d−→ 0 (2.9)

where Γk(Ω) represents the space of k-forms on the manifold Ω. d is the exterior derivative
mapping k-forms to (k+1)-forms.

In R1 it reduces to:

0 −→ H1(Ω)
∇−→ L2(Ω) −→ 0. (2.10)

And for R2 it equals to: [10]
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0 −→ H1(Ω)
∇−→ H(rot; Ω) ∇×−→ L2(Ω) −→ 0, (2.11)

0 −→ H(curl; Ω) ∇×−→ H(div; Ω) ∇·−→ L2(Ω) −→ 0. (2.12)

The discrete De Rham complex forR2 can be seen in Equation 2.14. With the Hodgematrices
necessary to convert from primal to dual mesh. C(Ω), D(Ω), S(Ω), G(Ω) and R(Ω) are used to
express finite dimensional conforming function spaces that are subsets of Sobolev spaces, [17].

C(Ω) ⊂ H(curl; Ω), D(Ω) ⊂ H(div; Ω), S(Ω) ⊂ L2(Ω),

G(Ω) ⊂ H1(Ω), R(Ω) ⊂ H(rot; Ω),
(2.13)

R ↪→ C(Ω)
∇×−−→ D(Ω)

∇·−→ S(Ω) → 0,

R ↪→ G(Ω)
∇−→ R(Ω)

∇×−−→ S(Ω) → 0.
(2.14)

2.5. Mixed weak formulation
When the space and form are created, the partial differential equations can be constructed. It is
done with the command phyem.pde, [41].

Let’s consider viscous incompressible Navier-Stokes equations

∂~u

∂t
+ ~u · ∇~u−∇ · (ν∇~u) +∇p = ~f, (2.15a)

∇ · ~u = 0, (2.15b)

where ∂t is time derivative, ~u is velocity, ν is fluid dynamic (absolute) viscosity, p is a static
pressure and ~f = 0 is a body force per unit mass as no external forces are applied to the
system.

The Equation 2.15 can be rewritten in Velocity-Vorticity-Pressure (VVP) formulation

∂t~u+ ω × ~u+ ν∇× ω +∇P = 0, (2.16a)
ω −∇× ~u = 0, (2.16b)

∇ · ~u = 0. (2.16c)

The static pressure p is substituted with total pressure P = p + 1
2~u

2 for incompressible flow.
The ω = ∇× ~u represents the vorticity.

The unknowns have to be set for the equations. These are velocity u, vorticity ω and to-
tal pressure P = p + 1

2~u · ~u with static pressure p. Then boundary conditions are set with
phyem.pde.bc.define_bc. Only two types, essential and natural, of boundary conditions are im-
plemented, [41].

Two pairs of boundary conditions are prescribed [17]

~u · n = û⊥ on Γ⊥

P = P̂ on ΓP̂ ,
(2.17)
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ω = ω̂ on Γω̂,

~u× n = û∥ onΓ∥,
(2.18)

with unit outward norm vector n and pairs of boundaries Γω̂∪Γ∥ = Γ⊥∪ΓP̂ = ∂Ω. The boundaries
are disjoint in each pair i.e. Γω̂ ∩ Γ∥ = Γ⊥ ∩ ΓP̂ = ∅.

The trace operator T restricts a function to a boundary section Γ ⊂ ∂Ω. It acts on ω ∈
H(curl; Ω), ϕ ∈ H1(Ω), ~u ∈ H(div; Ω) and σ ∈ H(rot; Ω). It is defined as follows: [17]

T ω = ω|Γ, T ϕ = ϕ|Γ, (2.19)

T ~u = ~u · n|Γ, T σ = σ × n|Γ. (2.20)

with trace spaces:
T H(curl; Ω,Γ) := {T ω | ω ∈ H(curl; Ω)}, (2.21)

T H(div; Ω,Γ) := {T ~u | ~u ∈ H(div; Ω)}, (2.22)

H1/2(Ω,Γ) := {T ϕ | ϕ ∈ H1(Ω)}, (2.23)

T H(rot; Ω,Γ) := {T σ | σ ∈ H(rot; Ω)}. (2.24)

After establishing boundary conditions, The weak formulation can be set up. One can inte-
grate by parts, the equation which results in the following. In Ω ⊂ R2, unknowns (uh, ωh, Ph) ∈
D(Ω)× C(Ω)× S(Ω), such that [17]



⟨∂tuh, ṽh⟩Ω︸ ︷︷ ︸
0−0

+ a(ωh, uh, ṽh)Ω︸ ︷︷ ︸
0−1

+ ν⟨∇ × ωh, ṽh⟩Ω︸ ︷︷ ︸
0−2

−⟨Ph,∇ · ṽh⟩Ω︸ ︷︷ ︸
0−3

+ ⟨P̂ |T ṽh⟩ΓP̂︸ ︷︷ ︸
0−4

= 0 ∀ṽh ∈ D0(Ω,Γ⊥),

⟨ωh, w̃h⟩Ω︸ ︷︷ ︸
1−0

−⟨uh,∇× w̃h⟩Ω︸ ︷︷ ︸
1−1

+ ⟨û∥|T w̃h⟩Γ∥︸ ︷︷ ︸
1−2

= 0 ∀w̃ ∈ C0(Ω,Γω̂),

⟨∇ · uh, q̃h⟩Ω︸ ︷︷ ︸
2−0

= 0 ∀q̃h ∈ S(Ω).

(2.25)
where indices below the element of the equation show the numbering of each part. P̂ ∈
H1/2(Ω,ΓP̂ ) and û∥ ∈ H(rot; Γ,Γ∥) being the natural BC while T uh = û⊥ ∈ T D(Ω,Γ⊥) and
T ωh = ω̂ ∈ T C(Ω,Γω̂) are the essential BC. The initial condition (u0h, ω

0
h) ∈ D(Ω) × C(Ω). No

external force f is present in the equations as it is assumed to be zero for all test cases.

Element 1 − 2 can be reduced for the case of the natural BC for tangential velocity being 0
all over the boundary. Moreover, when only normal velocity is prescribed on the boundary and
pressure is not, it cancels the 0− 4 element from the equation. This results in:



⟨∂tuh, ṽh⟩Ω︸ ︷︷ ︸
0−0

+ a(ωh, uh, ṽh)Ω︸ ︷︷ ︸
0−1

+ ν⟨∇ × ωh, ṽh⟩Ω︸ ︷︷ ︸
0−2

−⟨Ph,∇ · ṽh⟩Ω︸ ︷︷ ︸
0−3

= 0 ∀ṽh ∈ D0(Ω,Γ⊥),

⟨ωh, w̃h⟩Ω︸ ︷︷ ︸
1−0

−⟨uh,∇× w̃h⟩Ω︸ ︷︷ ︸
1−1

= 0 ∀w̃ ∈ C0(Ω,Γω̂),

⟨∇ · uh, q̃h⟩Ω︸ ︷︷ ︸
2−0

= 0 ∀q̃h ∈ S(Ω).

(2.26)

A mixed finite element formulation is used to spatial discretize the Navier–Stokes equations.
It means that each of the unknowns has a separate discrete degree of freedom (DoF). As it is an
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important step in normalizing the mesh when comparing with conventional CFD because it can
tell the size of the matrix system one is solving for (at each timestep). The DoF is calculated in
the following manner

PDoF = Kx ·Ky ·N2 (2.27a)
ωDoF = (Kx + 1) · (Ky + 1) ·N2 (2.27b)
uDoF = (Kx ·N + 1) · (Ky ·N) + (Kx ·N) · (Ky ·N + 1) (2.27c)

for an orthogonal mesh with Kx ×Ky grid. The total DoF is sum of PDoF, ωDoF, uDoF. For more
complex geometries, one can just divide it into segments and calculate DoF for each.

2.6. Temporal discretization
While MSEM is primarily designed for spatial discretization, it is usually combined with various
time integration schemes to solve time-dependent problems. Effective time integration schemes
are crucial for maintaining conservation properties, [43]. The primary focus of this thesis is on
incompressible 2D Navier-Stokes equations.

First, an abstract time sequence has to be set up. Then, the time intervals∆t can be defined.
For the temporal discretization, the classic implicit midpoint method is used, [44].

〈
ukh − uk−1

h

∆t
, ṽh

〉
Ω

+ a

(
ωk−1
h + ωk

h

2
,
uk−1
h + ukh

2
, ṽh

)
Ω

+ ν

〈
∇×

ωk−1
h + ωk

h

2
, ṽh

〉
Ω

−〈
P

k− 1
2

h ,∇ · ṽh
〉

Ω

= −
〈
P̂ k− 1

2 |T ṽh
〉
ΓP̂

∀ṽh ∈ D0(Ω,Γ⊥), (2.28a)〈
ωk
h, w̃h

〉
Ω
−
〈
ukh,∇× w̃h

〉
Ω
= −

〈
ûk∥|T w̃h

〉
Γ∥

∀w̃ ∈ C0(Ω,Γω̂), (2.28b)〈
∇ · ukh, q̃h

〉
Ω
= 0 ∀q̃h ∈ S(Ω) (2.28c)

with

∆t = tk − tk−1 > 0 for k ∈ {1, 2, 3, ...} (2.29)

and unknowns being (ukh, ωk
h and P k− 1

2
h ) ∈ D(Ω)× C(Ω)× S(Ω).

The law of conservation of mass is an essential principle of nature that is being upheld at
every moment in time, [17]. The incompressibility indicates that the density is constant. Then,
the discrete weak formulation of Equation 2.16c strongly enforces

∇ · ukh = 0 (2.30)

all across Ω.
Then spatial discretization on an abstract mesh is achieved by simply specifying the finite

degrees to finite-dimensional forms with phyem.space.finite(degree).
Time sequences can be defined in two ways. Either it is constant throughout the simulation

or it is described by a function. This function is defined by a user and e.g. might be dependent
on the velocity residual. After defining the time sequence, one can prescribe initial and boundary
conditions.
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2.7. MSEPY
With the fully discrete weak formulation, the algebraic proxy can be built by calling its method
mp, standing for matrix proxy, [41]. Either a linear or nonlinear algebraic system is created. The
aforementioned NS equation, it results in a non-linear system.

As the problem is non-linear, Newton’s method is used to linearize the system. It makes a
current guess of the solution and iteratively improves it. A tolerance of tol = 10−8 is implemented
to minimize iterative process errors.

MSEPY stands for mimetic spectral elements in Python. ”It means that the most computa-
tionally intensive part of the simulation, the linear system solving is done with Python”, [41]. The
advantage of it is that no API is needed for simulation. On the other hand, Python operates at a
relatively lower speed so it is not suitable for larger problems.

Implementation starts with the configuration of the manifold andmesh. All predefined MSEPY
manifolds are shown in Table 2.2.

Table 2.2: Predefined MSEPY manifolds.

Manifold Indicator

Rectangular domain ’crazy’
Multiple rectangular domains ’crazy_multi’

Backward step ’backward_step’
Cylinder channel ’cylinder_channel’

The post-processing is done by use of Matplotlib package and external software. The solution
can be saved to a VTK file and then loaded into the open-source visualization software Paraview
or directly read in Python using VTK package. Alternatively, velocity, vorticity and pressure fields
might be visualized with Matplotlib.



3
Conventional CFD

Conventional Computational Fluid Dynamics (CFD) refers to the established numerical tech-
niques and methods used for simulating and analyzing fluid flows through Computer Aided En-
gineering (CAE). These methods typically involve discretizing the governing equations of fluid
motion, such as the Navier-Stokes equations. The description of the model will be discussed in
Section 3.1. Mesh types will be presented in Section 3.2. Finally, convergence criteria will be
shown in Section 3.3.

3.1. Model
The selected software for the comparison is ANSYS Fluent as CFX is used predominantly for
turbomachinery. Also, there is a 2D solver provided in ANSYS FLUENT, which is advantageous
considering the research topic specified for this thesis. It provides two-dimensional and three-
dimensional imagery and visualization tools, contour and vector images, animation and stream-
line visualization tools which is quite sufficient to facilitate comparison with MSEM, [45]. The
ANSYS Fluent solver utilizes a cell-centred finite volume approach, where the flow variables are
stored at the center of each mesh element, [33].

Which turbulencemodel is appropriate for the ANSYS simulationmodel of the 2D incompress-
ible Navier-Stokes equation? The Reynolds numberRewill not exceed 1600. The transition from
laminar to turbulent flow is influenced by the degree of flow disruption caused by surface rough-
ness, pipe vibrations and upstream flow fluctuations, [46]. As the simulations are restricted to
the incompressible laminar flow regime, the laminar model was selected for ANSYS Fluent. It
operates without incorporating any turbulence modelling, as it assumes smooth, orderly fluid flow
and neglects turbulent fluctuations.

Among the popular techniques employed in this research are Finite Volume Method (FVM)
and Finite Element Method (FEM), [33]. FVM is the computational approach adopted in ANSYS
Fluent and it involves clustering the geometry being analyzed into smaller volumes known as
control volumes where the various flow parameters are stored at each volume’s center. This
technique allows the integration of the governing equations over the particular control volumes.
On the other hand, FEM, which is featured in ANSYS CFX. It uses elements containing flow
variables at the element nodes. FEM is flexible in the meshing of such geometries and is part of
a hierarchical accelerated approach which consists of an algebraic multigrid technique to improve
speed. Both discretization method are shown in Figure 3.1, [33].

14
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(a) FEM (b) FVM

Figure 3.1: Structured mesh for two discretization methods, [33].

3.1.1. Solver algorithms
The laminar model solves incompressible Navier-Stokes equations which in their vector form
follow

∂~u

∂t
+ ~u · ∇~u−∇ · (ν∇~u) = −∇p (3.1a)

∇ · ~u = 0. (3.1b)

with momentum equation (Equation 3.1a) and continuity equation (Equation 3.1b). The time
derivative of velocity ~u in the momentum equation is set to zero ∂u⃗

∂t = 0 as a steady-state is
assumed. Even when the transient simulation is solved, for every timestep the needs to reach a
steady state (RMS residuals convergence).

SIMPLE algorithms
The SIMPLE algorithm stands for Semi-Implicit Method for Pressure Linked Equations, [45] [47].
It was introduced by Patankar and Spalding in 1972, [48]. It is an iterative method of calculating
pressure and velocities. The unknowns are solved sequentially. The procedure is presented in
Figure 3.2.
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Figure 3.2: SIMPLE algorithm sequence, [48].

Firstly, the pressure p∗ is guessed. Then, themomentum equation is solved with this pressure,
yielding velocities ~u as

L~u = −∇p (3.2)

The calculated velocities do not satisfy the continuity equation yet. In order to do so, pressure
is corrected with

∇ · (A−1∇p) = ∇ · (A−1H) (3.3)

with H = A~u− L~u with velocities from previous iteration.

Finally, a new pressure field is used to correct for the velocities as follows

~u = A−1H−A−1∇p (3.4)
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The new velocities do satisfy the momentum equation and the process is repeated until both
Equation 3.1a and Equation 3.1b are satisfied.

Coupled algorithms
The coupled algorithm [45] solves the momentum and pressure-based continuity equations to-
gether. Unlike the segregated method, which solves these equations separately, the coupled
approach uses an implicit discretization for both the momentum and continuity equations.

It is based on the implicit treatment of the pressure gradient in momentum equations and
mass source in the pressure correction equation. Contrary to the SIMPLE solver, velocities and
pressure are calculated simultaneously.

The pressure gradient in the momentum equations for component Uk is computed as:

∑
f

pfAk = −
∑
j

aukp
ij pj (3.5)

where aukp
ij is the coefficient derived from the Gauss divergence theorem and the pressure inter-

polation scheme.

For any i-th cell, the discretized form of the momentum equation becomes:

∑
j

aija
ukuk
ij ukj +

∑
j

aukp
ij pj = buk

i (3.6)

In the continuity equation, the balance of fluxes is replaced using the flux expression. This
results in the discretized form:

∑
k

∑
j

apuk
ij ukj +

∑
j

appij pj = bpi (3.7)

As a result, the overall system of equations, after being transformed into δ-form, is presented
as:

∑
j

[A]ij ~Xj = ~Bi (3.8)

where the influence matrix Aij between cells i and j has the form in 2D:

[A]ij =

a
pp
ij apuij apvij
aupij auuij auvij
avpij avuij avvij

 (3.9)

and the unknown and residual vectors are given by:

~Xj =

p
′
i

u′i
v′i

 , ~Bi =

−rpi
−rui
−rvi

 (3.10)

The system of equations in (3.8) is solved using the coupled Algebraic MultiGrid (AMG) solver,
which accelerates convergence by solving pressure and velocity equations simultaneously.
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The linearized equations are solved through the use of an Algebraic MultiGrid (AMG) solver,
[45]. It generates coarse-level equations algebraically. This makes AMG particularly suitable
for use on unstructured meshes. Unlike geometric multigrid methods, AMG requires no coarse
meshes and the discretized equations are evaluated at every level. The benefit of AMG over
geometric multigrid is the ability to perform better for non-linear problems, as the non-linearities
are retained when transferring information to coarse levels.

Comparison
In Figure 3.3, two algorithms (SIMPLE and Coupled) are tested for the Taylor-Green Vortex (TGV)
problem. A more detailed description of the benchmark can be found in Section 4.1. The L2-
error is calculated against the analytical solution to access two methods. As seen from the plot,
both solving methods are performing quite similarly. It is with agreement with the literature [49]
where SIMPLE and Coupled solvers perform similarly up till around 106 gird size. The size of
TGV grid is ≈ 103 and in all test cases, it does not go over 106 cells. The test by George [49]
was performed on 3D lid cavity flow and 3D backward-facing step. For the comparison between
MSEM, a coupled solver is chosen.

Figure 3.3: L2-error for SIMPLE and Coupled algorithm over time t.

The L2-error for continuous functions is defined as:

∥f − f̂∥L2(Ω) =

(∫
Ω

(
f(x, y)− f̂(x, y)

)2
dA

) 1
2

(3.11)

where f(x, y) is the true function, f̂(x, y) is the approximate or predicted function and Ω is the
domain of integration.

3.1.2. Spatial and temporal discretiation
For spatial discretization, certain parameters have to be chosen. Firstly, the scheme for gradient
calculation which is important for computing secondary diffusion terms and velocity derivatives.
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The Least Squares Cell-Based Gradient Evaluation method was selected. The solution is as-
sumed to vary linearly between cell centroids. The change in values between cell c0 and cell ci,
along the vector δ~ri, can be expressed as: [45]

(∇φ)c0 · δ~ri = (φci − φc0) . (3.12)

By applying this relationship to all surrounding cells, the system can be written in matrix form:

[J ] (∇φ)c0 = ∆φ (3.13)

where [J ] is a coefficient matrix based on the geometry of the mesh. The cell gradient∇φ is then
determined by solving a least-squares minimization problem for the over-determined system,
typically using a Gram-Schmidt decomposition to calculate weight factors for each face of the
cell, [45].

Secondly, the Pressure Interpolation Scheme had to be selected. ANSYS Fluent uses a co-
located scheme, whereby pressure and velocity are both stored at cell centres, [45]. For this,
default Second Order scheme is used. It may provide improved accuracy over the other two
schemes (linear and standard). It reconstructs the face pressure using a central differencing
scheme: [45]

Pf =
1

2
(Pc0 + Pc1) +

1

2
(∇Pc0 · ~rc0 +∇Pc1 · ~rc1) . (3.14)

The time discretization of the transient term is done using the Second Order Backward Eu-
ler scheme. Lower-order schemes suppress the higher-wave-number components, which are
responsible for initiating asymmetry in flow around the cylinder, [50].

The generalized second-order discretization for time derivatives is given by: [45]

F (φ) =
(1 + τn+

1
2 )φn−1 − (1 + τn+

1
2 + τn−

1
2 )φn + τn−

1
2φn+1

2∆tn+1
(3.15)

where the time step ratio τ is defined as:

τn+
1
2 =

∆tn+1

∆tn+1 +∆tn
, τn−

1
2 =

∆tn

∆tn +∆tn−1
. (3.16)

3.1.3. Parallel processing
ANSYS Fluent supports parallel processing by splitting the computational domain into multiple
partitions, where each partition is assigned to a separate compute node. This parallel architec-
ture allows simulations to run on multiple CPU logical processors within the same machine or
across a network of computers. A diagram can be seen in Figure 3.4, [45]. The number of parti-
tions is typically less than or equal to the number of processors or cores available. As the number
of compute nodes increases, the overall simulation time decreases, reflecting the solver’s scala-
bility. However, excessive partitioning can lead to increased communication overhead between
compute nodes, reducing parallel efficiency. For the numerical simulations, 6 partitions were
selected in order to reduce simulation time.
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Figure 3.4: ANSYS Fluent architecture, [45].

3.2. Mesh
To discretize space, a mesh is created. The points on the grid are then used to determine the
numerical values of the variables, [51]. In CFD simulations, various types of grids are used. The
following are some of the primary grid types:

• Structured Grids: cells are topologically similar and all cells have the same number and
type of connection

• Unstructured grids: arbitrary topology of the neighbouring cells, no rule for connectivity.
• Hybrid grids: a combination of the two. Usually used on the interface of the geometries.

Both structured and unstructured grids are presented in Figure 3.5. The example shows a
mesh around a simple flat plate in a Cartesian coordinate system. As for the MEEVC structured
grid is used, the ANSYS Fluent mesh will be structured as well.
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(a) Structured grid. (b) Unstructured grid.

Figure 3.5: Computational grid for 2D flat plate.

ANSYS FLUENT uses a collocated scheme so both pressure and velocity are stored at cell
centers, [45]. A collocated grid requires less computer memory to store variables as they are
accessible at the same location, [52]. However, they can cause pressure field oscillations. They
are addressed with Rhie and Chowmomentum interpolation method proposed in [53]. It resolves
pressure checkerboard problem, [52]. The collocated grid can be seen in Figure 3.6

Figure 3.6: Collocated grid.

In a two-dimensional setup, there are 3 unknowns pressure p and velocity u with two compo-
nents (x and y direction). They are stored at cell centres the degrees of freedom for ANSYS are
as follows:

DoF = 3 ·Kxy. (3.17)
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with Kxy being the total number od cells.

3.3. Convergence criteria
The convergence of the simulation is a subjective matter. However, according to the user guide
the target of the RMS residuals is below 10−6. Acceptable values can still include those between
10−5 and 10−6, even if they are not always attainable. It is summarized in Table 3.1, [45].

Table 3.1: RMS Residual Levels

RMS value Meaning

> 10−4 May be sufficient to obtain a qualitative understanding of the
flow field.

< 10−4 Relatively loose convergence, but may be sufficient for
many engineering applications.

< 10−5 Good convergence and usually sufficient for most engineer-
ing applications.

< 10−6

Very tight convergence and occasionally required for geo-
metrically sensitive problems. It is often not possible to
achieve this level of convergence, particularly when using
a single precision solver.



4
Numerical simulations

This chapter deals with the numerical simulations carried out for comparison. The numerical
methods used in this study include the MSEM using mass, energy, enstrophy and vorticity con-
serving (MEEVC) solver and traditional Computational Fluid Dynamics (CFD) techniques repre-
sented by ANSYS Fluent software. The aim is to show the capabilities and limitations of these
methods. Four test cases are presented: Taylor-Grenn Vortex in Section 4.1, lid cavity flow in
Section 4.2, backward-facing step in Section 4.3 and flow around a circular cylinder in Section 4.4.
The chapter ends with a cross-case comparison study in Section 4.5.

4.1. Test case 1: Taylor-Green Vortex
The Taylor-Green vortex is a classical, well-studied problem in fluid dynamics that serves as a
useful test case for numerical methods in computational fluid dynamics. It involves simulating an
idealized flow structure composed of vortex pairs, first introduced by G.I. Taylor and A.E. Green
in 1937, [54]. The initial velocity field for the Taylor-Green vortex is typically prescribed in a way
that generates symmetric, alternating regions of positive and negative vorticity which evolve with
time. The main purpose of this test case is to compare the accuracy of both simulation methods.

The domain is Ω ∈ [0, L]2 with L = 2π and is illustrated in Figure 4.1. The mesh is evenly
distributed on the domain with K element in each axis so K2 elements in total. The coordinate
system origin is located in the left bottom corner of the domain Ω. The periodic boundary con-
ditions allow the Taylor-Green vortex to develop symmetrically across the domain without the
influence of boundary walls. A square grid was selected because the Taylor-Green vortex prob-
lem does not involve particularly complex regions that would require mesh refinement. The flow
features are distributed uniformly across the domain, making it appropriate to use a uniformly
spaced grid, as the entire domain is of equal interest.

The Taylor–Green vortex analytical solution becomes as follows:

ux(x, y, t) = sin(x) cos(y)e−2νt (4.1a)
uy(x, y, t) = − cos(x) sin(y)e−2νt (4.1b)
ω(x, y, t) = ∇× u = 2 · sin(x) sin(y)e−2νt (4.1c)

p(x, y, t) =
1

4
(cos(2x) + cos(2y)) e−4νt (4.1d)

where x and y are coordinates in 2D domain, t is a time and kinematic viscosity ν = 6.25 · 10−4

so the simulated Reynolds number equals Re = L0u0
ν = 1600. u0 = 1 is a magnitude of the

oscillating vortices and L0 =
L
2π = 1.

23
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Figure 4.1: Domain Ω and mesh for a Taylor-Green Vortex with K = 30.

The initial conditions are prescribed on both velocity and vorticity. The flow is thus initially
composed of four vortices, one in each quarter of the domain. For t = 0, Equation 4.1a, Equa-
tion 4.1b, Equation 4.1c and Equation 4.1d are simplified to

ux(x, y, 0) = sin(x) cos(y) (4.2a)
uy(x, y, 0) = − cos(x) sin(y) (4.2b)
ω(x, y, 0) = 2 · sin(x) sin(y) (4.2c)

P (x, y, 0) =
1

4
(cos(2x) + cos(2y)) + 1

2
u · u (4.2d)

with P being the total pressure.

In Figure 4.2 L2-error for velocity, vorticity and pressure field are presented. The errors are
calculated after t = 1 with ∆t = 1

100 . The number of mesh elements is K ∈ {10, 20, 30, 50} with
polynomial degrees N ∈ {1, 2, 3} for MEEVC. As the number of grid points is increased so 1

K is
lowered, the convergence with analytical solution is more visible. Additionally, the convergence
rate is higher for higher-degree polynomials. This rate is indicated with a grey triangle next to
the curve. It is approximately equal to the polynomial degree N so the error decreases with the
power of N for finer gird. For ANSYS, the number of mesh elements is K ∈ {24, 47, 70, 116}.
The numbers were chosen to match the Degrees of Freedom (DoF) for MEEVC with N = 2. The
rate of convergence varies and is not as uniform across unknowns as in the MEEVC scheme. It
equals around 2.6 for velocity u so it converges faster than MEEVC with N = 2, 1.6 for vorticity
ω and 2 for pressure P . The lowest convergence for vorticity can be explained with the solver
approach. It does not solve for the ω directly but is later calculated using the velocity field gra-
dients. So the error does not only come from velocity field calculation but also from gradient
approximation.
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(a) Velocity u (b) Vorticity ω

(c) Pressure P

Figure 4.2: L2-error for velocity, vorticity and pressure.

The velocity solution of the Taylor-Green vortex simulation, obtained using the MEEVC with
K = 30 and ANSYS with K = 105, are presented in Figure 4.3. The polynomial degree for
MEEVC is set to N = 3. The ANSYS grid resolution was selected to match the DoF= 33000
of the MEEVC scheme. The snapshots for both methods are taken at t = 10 with timestep
∆t = 1

100 being used. The velocities ux and uy fields display alternating regions of positive and
negative values, consistent with the periodic and symmetric nature of the Taylor-Green vortex
(see Equation 4.1a, Equation 4.1b). There are no visual discrepancies between the two methods.
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(a) MEEVC velocity ux (b) ANSYS velocity ux

(c) MEEVC velocity uy (d) ANSYS velocity uy

Figure 4.3: Velocity contour plots for MEEVC with N = 3 and K = 30 and ANSYS with
K = 105 at t = 10.

The magnitude of vorticity ω contour plot for MEEVC and ANSYS can be seen in Figure 4.4.
The ω highlights four distinct vortical structures within the domain. There is a discrepancy in
the magnitude of vorticity in the middle of the aforementioned vertical structures. It will be later
discussed when section plots are presented. The static pressure field p (see Figure 4.5), where
the distribution of high and low-pressure regions corresponds directly to the vortex structures
observed in the velocity and vorticity fields. Similarly to velocity, no direct differences are visible
between the two methods.
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(a) MEEVC (b) ANSYS

Figure 4.4: Vorticity ω contour plots for MEEVC with N = 3 and K = 30 and ANSYS with
K = 105 at t = 10.

(a) MEEVC (b) ANSYS

Figure 4.5: Static pressure p contour plots for MEEVC with N = 3 and K = 30 and ANSYS
with K = 105 at t = 10.

The Figure 4.6 presents a comparison between the numerical solutions of MEEVC and AN-
SYS for the horizontal velocity component ux along the centerline of the domain at t = 10 with
the corresponding analytical solution. Similarly, the vertical velocity component is shown in Fig-
ure 4.7. For velocity ux the location is y = π and for velocity uy it is x = π. The analytical solution
is depicted as a solid grey line. The degree of the polynomial is in rangeN ∈ {1, 2, 3} for MEEVC
with K = 30. The mesh for ANSYS includes K ∈ {35, 70, 105} in order to match MEEVC DoF
for the respective polynomial degree N . The same DoF are indicated with one color on the plots.
The figure demonstrates that as the degree is increased, the numerical solution converges to-
wards the analytical solution. It is seen more clearly in Figure 4.6b and Figure 4.7b as the section
of the plots are enlarged. MEEVC performs better for the same DoF compared to ANSYS, except
for N = 2 where the values are close.



4.1. Test case 1: Taylor-Green Vortex 28

(a) Velocity ux (b) Zoom on the section

Figure 4.6: Velocity ux profiles at y = π at t = 10.

(a) Velocity uy (b) Zoom on the section

Figure 4.7: Velocity uy profiles at x = π at t = 10.

The Figure 4.8 shows a comparison between the numerical solutions of MEEVC and ANSYS
for the vorticity ω along y = π

2 at t = 10 with the corresponding analytical solution. Similarly to ve-
locity, as the mesh resolution/polynomial degree is increased, the numerical solution converges
towards the analytical solution. However, when zooming in on the peak at x/L = 0.25, there
are some discrepancies in ANSYS data. The vorticity is not an unknown so it is not solved for in
ANSYS. This might explain it. The error is from calculating velocity gradients as we can recall in
2D

ω = ∇× u =
duy
dx

− dux
dy

. (4.3)

Then, looking at the velocity gradient distribution in the region of interest, x = π
2 and y = π

2 .
The duy

dx and duy

dx are presented in Figure 4.9. Even though the most accurate discretization for
gradients is used - least-squares method, ANSYS fails to capture accurately gradients in the
middle of four vortices.
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(a) Vorticity ω (b) Zoom on the section

Figure 4.8: Vorticity ω profiles at y = π
2 at t = 10.

(a) dux

dy (b) duy

dx

Figure 4.9: Velocity gradients at x = π
2 , y = π

2 at t = 10.

Lastly, in Figure 4.10 a comparison between the numerical solutions of MEEVC and ANSYS
for the static pressure p along the centerline of the domain at t = 10 with the corresponding
analytical solution is shown. Similarly to velocity, the solution converges with increased reso-
lution/polynomial degree. As already mentioned, MEEVC shows better accuracy for the same
amount of DoF for the pressure as well.
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(a) Static pressure p (b) Zoom on the section

Figure 4.10: Static pressure p profiles at y = π at t = 10.

Another way of comparing both results was to calculate the maximum flow properties (u, ω,
p) at a specific timestep and compare it with an analytical solution at t = 10. Table 4.1 presents
the maximum velocity values εux , εuy , vorticity εω and static pressure εp for both ANSYS and
MEEVC numerical methods compared with the analytical solution. The analytical solution yields
a reference maximum velocity of 0.9875778, vorticity of 1.951555 and static pressure of 0.493789.
The MEEVC method exhibits systematically increased accuracy with increasing values of N .
Likewise, the ANSYS simulations are also seen getting more accurate as the meshes are refined.
Both methods are compared with each other for the same amount of DoF. As already deduced
from the section plots MEEVC performs better for a given DoF. What is presented in this section
is that the two approaches are indeed converging to the analytical solution. It turns out that the
most accurate result by far is produced by the MEEVC with N = 3.

Table 4.1: Maximum flow properties error for ANSYS and MEEVC at t = 10.

DoF εux [%] εuy [%] εω [%] εp [%]

MEEVC, N = 1 3700 1.3379 1.3352 0.8462 0.0142

ANSYS, K = 35 3700 1.4750 1.4927 13.3876 0.1629

MEEVC, N = 2 14700 0.3641 0.3641 0.0002 0.0076

ANSYS, K = 70 14700 0.2453 0.2364 6.4262 0.0010

MEEVC, N = 3 33000 0.0007 0.0002 0.0009 0.0002

ANSYS, K = 105 33000 0.0637 0.0748 5.1036 0.0309

In order to see if conserving properties of MEEVC play a role as the simulation progresses,
for DoF= 33000 simulation was carried for a bit longer to t = 20. Table 4.2 shows the findings of
this approach. As can be seen, the absolute errors ε for MEEVC have not changed significantly
compared to the state at t = 10. On the other hand, ANSYS errors have increased slightly.
It confirms the hypothesis that MEEVC accuracy becomes more prominent as simulation time
progresses due to its conserving properties.
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Table 4.2: Maximum flow properties error for ANSYS and MEEVC at t = 20.

DoF εux [%] εuy [%] εω [%] εp [%]

MEEVC, N = 3 33000 0.0007 0.0002 0.0009 0.0003

ANSYS, K = 105 33000 0.0853 0.0816 5.3314 0.0310
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4.2. Test case 2: Lid cavity flow
The next test case chosen for comparison is lid-driven cavity flow. It involves the motion of a fluid
within a square or rectangular cavity driven by the movement of the top boundary. Despite its
seemingly straightforward setup, the flow characteristics within the cavity are highly sensitive to
the Reynolds number. Therefore flow at Re = 400 and Re = 1000 were selected. The Reynolds
number is defined as

Re =
u∞ · L
ν

(4.4)

where u∞ = 1 is a tangential velocity on the top boundary, L = 1 is the length of the domainΩ and
ν is kinematic viscosity calculated based on the Reynolds number. At low Reynolds numbers,
the flow is characterized by a steady, symmetric primary vortex, while at higher Reynolds num-
bers, secondary and even tertiary vortices may emerge. To ensure that a steady-state solution
was achieved for the MEEVC simulation, the proper stopping criterion needed to be introduced.

The velocity residual
∥uk

h−uk−1
h ∥L2(Ω)

∆t ≤ 1 · 10−6 is used. The expression was divided by timestep
to make the convergence criterion independent of it. Otherwise, it could have been met by de-
creasing timestep. The timestep of ∆t = 1

100 was set. For ANSYS simulation tight convergence
was selected so RMS Residual Levels of 10−6.

Figure 4.11: Domain Ω and mesh for a lid cavity flow with K = 40.

The flow domain for a lid-driven cavity problem is shown in Figure 4.11. The domain is a
square cavity discretized with a structured grid, Ω ∈ [0, 1]2. The top boundary, or lid, is subject to
a boundary condition where the non-dimensional tangential velocity component is set to 1 (in a
positive x direction). The normal velocity component is zero, ensuring no flow across the bound-
ary. The side and bottom boundaries are stationary, with no-slip conditions applied, meaning
both the normal and tangential velocity components are zero. The coordinate system is located
in the bottom left corner of the domain Ω similar to TGV test case. The mesh used for this case
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is square mesh with refinement towards the domain edges (K = 40). It is used for MEEVC
simulation but ANSYS mesh is refined to ensure the same number of DoF are compared.

A schematic diagram for lid cavity vortex formation can be seen in Figure 4.12, [55]. The
primary vortex is a large recirculation region that dominates the flow pattern located near the
center of the domain Ω. The secondary vortices appear in the bottom corners of the cavity,
where the flow re-circulates due to the no-slip conditions at the walls. These secondary vortices
are labelled using two letters and a number. The first letter denotes the position as either bottom
(B) or top (T), while the second letter specifies right (R) or left (L). The number then indicates
whether the vortex is secondary (1) or tertiary (2). For example, BR1 stands for the Secondary
Bottom Right vortex.

Figure 4.12: Schematic diagram for lid cavity vortex formation, [55].

The set of section plots comparing the velocity components ux and uy and the vorticity mag-
nitude ω for Reynolds number Re = 400 can be seen in Figure 4.13. The plots are shown for
different polynomial degrees for MEEVC and mesh resolutions for ANSYS simulation, alongside
reference literature values, [56]. The same DoF are indicated with the same color i.e. green
for DoF = 6600, blue for DoF = 25900 and maroon for DoF = 58000. ANSYS results are
shown with a dotted line and MEEVC with a solid line. Figure 4.13a shows the variation of the
horizontal velocity ux along the vertical centerline x = 0.5, comparing the results from MEEVC
and ANSYS, respectively. Both methods demonstrate mesh convergence to the reference val-
ues. Figure 4.13c depict the vertical velocity uy along the horizontal centerline y = 0.5. Both
methods converge with increasing DoF, although MEEVC seems to be performing better for the
same number of DoF. Finally, Figure 4.13e displays the magnitude of vorticity ω along the top
boundary of the cavity y = 1. The logarithmic scale is used to capture the vorticity distribution,
highlighting the convergence of the numerical solutions towards the literature values as the mesh
is refined or the polynomial degree is increased. All the section plots are enlarged to magnify the
differences between the methods. The little spikes can be seen near the singularities (x = 0 and
x = 1) for ANSYS. Its impact is decreased as the number of mesh cells increases. The vorticity
is calculated from the velocity field and its gradients. A least-squares Gradient Scheme is used
which assumes a smooth gradient across neighbouring cells. This is not the case at singular
points in lid-driven cavity flow which may result in inaccurate gradient estimation.
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(a) ux at x = 0.5. (b) Enlarged view of ux at x = 0.5.

(c) uy at y = 0.5. (d) Enlarged view of uy at y = 0.5.

(e) ω magnitude at y = 1. (f) Enlarged view of ω magnitude at y = 1.

Figure 4.13: Section plots for ux, uy and ω at Re = 400, [56].
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(a) ux at x = 0.5. (b) Enlarged view of ux at x = 0.5.

(c) uy at y = 0.5. (d) Enlarged view of uy at y = 0.5.

(e) ω magnitude at y = 1. (f) Enlarged view of ω magnitude at y = 1.

Figure 4.14: Section plots for ux, uy and ω at Re = 1000, [57].

The Figure 4.14 presents a set of section plots comparing the horizontal velocity component
ux, vertical velocity component uy and vorticity ω for Reynolds number Re = 1000. The same
number of DoF is used as for the case of Re = 400. However, data from Botella [57] is used
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as reference values as it provides also section values for static pressure p. The plots indicate
that both numerical methods closely match the literature values. For ANSYS simulation, the little
spike can be seen near x = 1 at vorticity plot Figure 4.14e. They are more prominent than in the
case of Re = 400. Similarly to the previous case, values converge to literature values as DoF is
increased.

Additionally, for Re = 1000 case pressure data was available. The section plot of static
pressure p at x = 0.5 is illustrated in Figure 4.15. As solutions had different reference values,
static pressure at centre of domain x = 0.5, y = 0.5, was set at 0. Both methods converge as
the DoF is increased and the errors to reference are very close between the two.

(a) p at x = 0.5. (b) Enlarged view of p at x = 0.5.

Figure 4.15: Section plots for static pressure p at Re = 1000, [57].

The Root Mean Squared Error (RMSE) provides ameasure of the differences between values
predicted by a model and the actual observed values. It is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.5)

where n is a number of data points, yi represents the actual value and ŷi represents the
reference value.

Table 4.3 presents the Root Mean Squared Error (RMSE) for both the MEEVC and ANSYS
simulations, compared against reference values from [56] for Re = 400 and [57] for Re = 1000
presented in the section plots before. The RMSE values for vorticity (ω) are notably higher due
to the generally larger magnitude of vorticity values which results in a correspondingly greater
absolute error. Consequently, the RMSE for vorticity exceeds that of the velocity components
ux and uy. The error for static pressure RMSEp was done only for Re = 1000 as the data
was unavailable for Re = 400. In the case of the MEEVC scheme, further increasing N to 3
yielded only marginal improvements in RMSE. ANSYS shows lower RMSE values for lower DoF.
However, at N = 2 the MEEVC and ANSYS give similar errors for velocity. The vorticity error
RMSEω is consistently lower for MEEVC by an order of magnitude at higher DoF. On the other
hand, ANSYS produces smaller errors in static pressures for a given DoF. A coupled solver
ensures that both velocity and pressure are resolved as one system which proved to be superior
to the segregated solution schemes, [45].
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Table 4.3: RMSE for MEEVC and ANSYS against reference values. [56, 57]

DoF RMSEux RMSEuy RMSEω RMSEp

Re = 400

MEEVC, N = 1 6600 0.03214 0.01301 1.0571 –
ANSYS, K = 46 6600 0.00743 0.00473 1.29247 –

MEEVC, N = 2 25900 0.00608 0.00455 0.06942 –
ANSYS, K = 93 25900 0.00657 0.00414 0.64373 –

MEEVC, N = 3 58000 0.00641 0.00438 0.04072 –
ANSYS, K = 139 58000 0.00646 0.00424 0.42300 –

Re = 1000

MEEVC, N = 1 6600 0.03183 0.03313 1.56999 0.00567

ANSYS, K = 46 6600 0.00528 0.00863 2.59503 0.00052

MEEVC, N = 2 25900 0.00509 0.00206 0.11548 0.00114

ANSYS, K = 93 25900 0.00133 0.00203 1.33846 0.00011

MEEVC, N = 3 58000 0.00089 0.00045 0.03636 0.00024

ANSYS, K = 139 58000 0.00092 0.00085 0.86331 0.00005

The Figure 4.16 and Figure 4.17 compare the vorticity field ω for a lid-driven cavity flow at
Reynolds number Re = 400 and Re = 1000 respectively. Both plots display the vorticity distri-
bution within the cavity, with values ranging from approximately −3 to 3 with 21 increments. The
results are visually similar between the two methods. However, it is worth noting that both vor-
ticity plots for ANSYS have a flattening near the top right corner (1,1). It is also visible on the
section plots for vorticity ω at y = 1 where MEEVC approaches ∞ at (0,1) and (1,1) whereas
ANSYS flattens at a certain point.

The Table 4.4 presents the main properties of primary and secondary vortices for a lid-driven
cavity flow at a Reynolds number Re = 400. It compares the results obtained from three sources:
Ghia’s Finite Differencemethod with 2572 gird [56], Abdelmigid’s Finite Volumemethod with 13012
staggered gird [55] and Vanka’s Finite Differencemethod with 3212 gird [58]. The properties listed
include the stream function Ψ, vorticity ω and the coordinates (x,y) of the vortex center for the
primary vortex, as well as for the secondary/tertiary vortices labelled BR1, BR2 and BL1. The
stream function Ψ was calculated using a given velocity field u by Runge-Kutta integration (see
Appendix A). The Primary Vortex properties are in good agreement with the references, with
slight variations in the values of Ψ and ω and a close agreement in the vortex center coordi-
nates. For BR1 and BL1, the secondary vortices located at the bottom right and bottom left, the
stream function Ψ shows minor differences across the sources, with vorticity ω and coordinates
(x, y) also showing variations but maintaining similar trends. The BR2 vortex, a tertiary vortex,
exhibits greater variability in results as it is much smaller. The values are near zero and some
references don’t even examine this area of the lid cavity. Similarly, the main properties of primary
and secondary vortices for a lid-driven cavity flow at a Reynolds number Re = 1000 are shown
in Table 4.5. The reference data consists of Abdelmigid’s Finite Volume method with 13012 stag-
gered gird [55], Botella’s Chebyshev collocation method with a polynomial of degree N = 160
[57] and Erturk’s Finite Difference method with 6012 grid [59].
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(a) MEEVC (b) ANSYS

Figure 4.16: MEEVC and ANSYS vorticity ω field for Re = 400.

Table 4.4: Primary and secondary vortices main properties at Re = 400 for DoF= 58000, [55,
56, 58].

Reference MEEVC ANSYS Abdelmigid [55] Ghia [56] Vanka [58]

Primary vortex

Ψ 0.11404682 0.11398245 0.113964 0.113909 0.1136

ω 2.29522 2.294428 2.295985 2.281 –
(x, y) (0.5543, 0.6052) (0.5543, 0.6052) (0.5541, 0.6057) (0.5547, 0.6055) (0.5563, 0.6)

BR1

Ψ 0.00064483 0.00064674 0.000645 0.00064235 0.000645

ω 0.440505 0.451267 0.44839 0.433519 -
(x, y) (0.8854, 0.1221) (0.8865, 0.1236) (0.8852, 0.1215) (0.8906, 0.1250) (0.8875, 0.1188)

BR2

Ψ 1.7499× 10−8 1.4814× 10−8 1.94847× 10−8 1.86595× 10−8 –
ω 0.0034314 0.00277 0.003591 0.00438726 –

(x, y) (0.9929, 0.0072) (0.9932, 0.0065) (0.9917, 0.0067) (0.9922, 0.0078) –

BL1

Ψ 1.4342× 10−5 1.4246× 10−5 1.443588× 10−5 1.41951× 10−5 1.46× 10−5

ω 0.0576284 0.0581056 0.05471926 0.0569697 –
(x, y) (0.0512, 0.0473) (0.0509, 0.0471) (0.0516, 0.0466) (0.0508, 0.0469) (0.05, 0.05)
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(a) MEEVC (b) ANSYS

Figure 4.17: MEEVC and ANSYS vorticity ω field for Re = 1000.

Table 4.5: Primary and secondary vortices main properties at Re = 1000 for DoF= 58000, [55,
57, 59].

Reference MEEVC ANSYS Abdelmigid [55] Botella [57] Erturk [59]

Primary vortex

Ψ 0.11896562 0.11892122 0.118866 0.1189366 0.118781

ω 2.0662 2.0678 2.066581 2.067753 2.06553

(x, y) (0.5308, 0.5652) (0.5306, 0.5658) (0.5308, 0.5657) (0.5308, 0.5625) (0.53, 0.565)

BR1

Ψ 0.00173185 0.00173127 0.001732 0.00175102 0.0017281

ω 1.1084 1.1055 1.113969 1.15465 1.115505

(x, y) (0.8641, 0.1118) (0.8641, 0.1121) (0.8636, 0.1115) (0.8594, 0.1094) (0.8633, 0.1117)

BR2

Ψ 5.12721× 10−8 4.37631× 10−8 5.46775× 10−8 5.03944× 10−8 5.4962× 10−8

ω 0.0082027 0.0073583 0.006969814 –- 0.0077076

(x, y) (0.9924, 0.0076) (0.9928, 0.0074) (0.9917, 0.0067) (0.9917, 0.0067) (0.9923, 0.0077)

BL1

Ψ 0.00023359 0.000231149 0.000233412 0.000233453 0.00023261

ω 0.3489871 0.350122 0.3409262 0.3522861 0.353473

(x, y) (0.0831, 0.0778) (0.0831, 0.0779) (0.0832, 0.0782) (0.0833, 0.0781) (0.0833, 0.0783)

The tables present a significant amount of data. To summarize the findings, it is crucial to
calculate absolute error w.r.t. literature. For the case of Re = 400, the error for the primary vortex
is similar for both methods, around 0.15%. ANSYS accurately predicts the vortices’ location
(slightly better than MEEVC) but the values for stream function Ψ and vorticity ω are off by a
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bigger margin for BR1, BR2 and BL1. Therefore it is safe to say that MEEVC demonstrates a
higher level of accuracy in capturing the secondary and tertiary vortices compared to ANSYS
for the same number of DoF. In the case of Re = 1000, MEEVC is slightly more accurate in
the secondary and tertiary vortices regions. However, the difference is not as significant as for
Re = 400. Overall, the average ANSYS error for the location of vortex coordinates is lower
ε(x,y)ANSY S

= 0.15% than for MEEVC ε(x,y)MEEV C
= 0.4%. The average stream function error

for MEEVC equals εΨANSY S
= 0.2% and for ANSYS εΨANSY S

= 0.46%. Finally, the largest
differences are seen in vorticity predictions - εωANSY S = 0.84% and εωANSY S = 1.47%.
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4.3. Test case 3: Backward-facing step
The next test case chosen for comparison is a backward-facing step. It involves fluid flow in a
channel that suddenly expands in a cross-sectional area (step). As the fluid passes over the
step, it typically experiences flow separation, leading to the formation of a recirculation zone
downstream of the step. Then it reattaches further downstream.

The Reynolds number for the backward-facing step is defined as

Re =
H · ūinlet

ν
(4.6)

with H = 2 being the height of the whole domain (not just a step), ūinlet = 1 is an average
velocity at the inlet and ν is the dynamic viscosity of the fluid. No fluid density ρ is present in the
equation. That’s because the MEEVC uses a dimensionless form of the NS. Unfortunately, it is
not possible to make a dimensionless simulation in ANSYS so the fluid density is set to ρansys = 1
kg/m3.

The domain for the backward-facing step simulation can be seen in Figure 4.18. The height
of the domain is H = 2 and the step height is set to half of that so h = 1. It makes an expansion
ratio of 2 which is comparable with the literature study of Erturk, [60]. The length of the inlet
channel is equal to Linlet = 10 and the whole domain has a span of Loutlet = 70. Boundary con-
ditions are indicated as follows. At the inlet, the non-dimensional normal component of velocity
is specified as uinlet with zero tangential velocity, the top and bottom walls of the channel, the
no-slip condition is applied. At the outlet, the static pressure is set to zero. The inlet velocity was
defined as parabolic with an average value of ūinlet = 1. The viscosity was calculated based on
the aforementioned values. It is equal to ν = 1

50 for Re = 100.

The boundary conditions are as follows. The essential BC is imposed along the whole bound-
ary. The normal velocity u · ~n is prescribed at both inlet and outlet while tangential velocity is set
to 0 along the boundary. The outlet is a pressure outlet where static pressure is equal to zero.
As the flow is incompressible, we can assume that p = P − 1

2u
2. The following inlet profile is

prescribed:

uinlet(y) = −6 · (y − 1) · (y − 2) Γ⊥ (4.7)

Figure 4.18: Domain Ω for a Backward-Facing Step.
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The final convergence criterion was set at
∥uk

h−uk−1
h ∥L2(Ω)

∆t ≤ 10−6. The timestep used for
the simulation was ∆t = 1

10 . For ANSYS simulation tight convergence was selected so RMS
Residual Levels of 10−6.

The different meshes for the MEEVC are shown in Figure 4.19. Firstly, mesh A is presented in
Figure 4.19a. The mesh size in the vertical direction is hy = 0.125 and in the horizontal direction
hx = 0.625. Similarly to mesh A, mesh B consists of a rectangular grid shown in Figure 4.19b.
Here hy = 0.1 and hx = 0.5. Mesh C which can be seen in Figure 4.19c, is refined near the walls
and after the step until around x = 24. Figure 4.19d shows mesh D which is basically mesh C
with a larger number of cells in the horizontal direction. The polynomial degree chosen for the
mesh convergence test was N = 2.

A similar mesh convergence test was performed on the ANSYS. However, in order tomaintain
the same amount of Degrees of Freedom number of nodes was increased for each selective
mesh. The shape and refinement regions were kept the same.

(a) Mesh A.

(b) Mesh B.

(c) Mesh C.

(d) Mesh D.

Figure 4.19: Different meshes used for mesh convergence test.

Table 4.6 shows relative error for the reattachment length for each mesh used. The values
are compared to [60] with a reattachment length of Lr = 2.922. Mesh C was chosen for both
methods as refining the grid to Mesh D does not reduce the error as significantly.
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Table 4.6: Error in reattachment length estimation for each mesh.

Mesh A Mesh B Mesh C Mesh D

MEEVC 2.16% 1.57% 0.22% 0.07%
ANSYS 2.81% 2.57% 0.82% 0.72%

ForRe = 100 velocity, vorticity and stream function contour plots are presented in Figure 4.20
for MEEVC and in Figure 4.21 for ANSYS. The same procedure was implemented for the Re =
800 case. The results of this simulation are shown in Figure 4.22 and Figure 4.23. In both cases,
all plots represent similar contours and range of values. The DoF for the simulation was equal
to around 32500.
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(a) Horizontal velocity ux.

(b) Vertical velocity uy.

(c) Vorticity ω.

(d) Static pressure p.

(e) Stream function Ψ.

Figure 4.20: MEEVC contour plots for Re = 100 with mesh C.
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(a) Horizontal velocity ux.

(b) Vertical velocity uy.

(c) Vorticity ω.

(d) Static pressure p.

(e) Stream function Ψ.

Figure 4.21: ANSYS contour plots for Re = 100 with mesh C.
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(a) Horizontal velocity ux.

(b) Vertical velocity uy.

(c) Vorticity ω.

(d) Static pressure p.

(e) Stream function Ψ.

Figure 4.22: MEEVC contour plots for Re = 800 with mesh C.
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(a) Horizontal velocity ux.

(b) Vertical velocity uy.

(c) Vorticity ω.

(d) Static pressure p.

(e) Stream function Ψ.

Figure 4.23: ANSYS contour plots for Re = 800 with mesh C.
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In order to validate both simulations reference literature data has to be introduced. Although
numerous studies exist on flow over a backward-facing step, these studies provide very few tab-
ulated results. Highly accurate numerical solutions of the 2-D steady incompressible backward-
facing step flow are given in the study of Erturk, [60]. The data for velocity and vorticity profiles
is only available for Re = 800. Therefore different segments were compared for both Re = 100
and Re = 800 as the reattachment points are different. x

h = 12 for Re = 100 and x
h = 6, x

h = 14
and x

h = 30 for Re = 800.

The results for Re = 800 are shown in Figure 4.25 for horizontal velocity ux, in Figure 4.26
for vertical velocity uy and in Figure 4.27 for vorticity ω. The values match the literature data.
However, for Re = 100 (presented in Figure 4.24), the profiles are collected only at x

h = 2 as it is
a region of flow recirculation. Both methods perform quite similarly. Unfortunately, no literature
data was found for the case of Re = 100. All plots are made with mesh C and DoF = 32500,
indicated with a solid line. The MEEVC shows better agreement with data from Erturk [60] for
the same DoF. ANSYS converges to literature data and becomes comparable to MEEVC with
mesh refinements. However, the required DoF are around 8.5 times higher - 276000. The most
prominent disagreement with literature values is for Re = 800 at x

h = 14 for vertical velocity v
profile. Various flow reattachment points might explain the difference. The flow is in different
stages of development after reattachment, thus, fluctuations around that region.

(a) Horizontal velocity ux (b) Vertical velocity uy (c) Vorticity ω.

Figure 4.24: Profiles for Re = 100 at x
h = 2.

(a) x
h = 6. (b) x

h = 14. (c) x
h = 30.

Figure 4.25: Profiles for horizontal velocity ux for Re = 800, [60].
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(a) x
h = 6. (b) x

h = 14. (c) x
h = 30.

Figure 4.26: Profiles for vertical velocity uy for Re = 800, [60].

(a) x
h = 6. (b) x

h = 14. (c) x
h = 30.

Figure 4.27: Profiles for vorticity ω for Re = 800, [60].

Figure 4.28: The reattachment lengths of the Backward-Facing step, [60].

As different the reattachment lengths explained fluctuations in section plots, they had to be
compared. The Figure 4.28 shows all significant lengths in the backward-facing step. For smaller
Reynolds numbers only X1 to X3 values are necessary as the other regions are simply not
formed. The bottom reattachment length is denoted as X1 and the upper recirculating region’s
left and right positions are X2 and X3, respectively. The compared values can be found in Ta-
ble 4.7. For Re = 100 Erturk data is shown [60]. For the case of Re = 800, three sources
are presented: finite difference method by Erturk [60], Galerkin-based finite element method by
Gartling [61] and pseudocompressibility method by Rogers [62]. The differences between the re-
sults at Re = 100 are very small, indicating close agreement between the methods. At Re = 800,
there is slightly more variation. MEEVC reattachment length error w.r.t. literature data equals
εX1 ≈ 0.83%. For ANSYS with the same DoF= 32500, this error increases to εX1 ≈ 6.57%.
Firstly, it might mean that the solution didn’t converge so RMS criteria were changed to residu-
als at 10−8. It did not alter the solution for ANSYS with DoF= 32500. Therefore this significant
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difference can only be compensated with mesh refinements. Only for DoF= 276000, so 8.5 times
more nodes, ANSYS produces similar results to MEEVC.

Table 4.7: Reattachment lengths, [60, 61, 62].

X1 X2 X3 X3 −X2

Re = 100

MEEVC, DoF= 32500 2.915 – – –
ANSYS, DoF= 32500 2.898 – – –
Erturk [60] 2.922 – – –

Re = 800

MEEVC, DoF= 32500 11.74 9.38 20.54 11.16

ANSYS, DoF= 32500 11.06 8.82 20.27 11.45

ANSYS, DoF= 276000 11.72 9.32 20.55 11.23

Erturk [60] 11.834 9.476 20.553 11.077

Gartling [61] 12.20 9.70 20.96 11.26

Rogers and Kwak [62] 11.48 9.15 20.26 11.11

For the test N = 3 was used in the MEEVC scheme to see if the accuracy can be further
increased. However, numerous simulations provided unexpected outcomes. Despite a few ad-
justments, the solution did not converge to a steady-state. The results can be seen in Appendix B.

The velocity gradients are shown in Figure 4.29, Figure 4.30, Figure 4.31 and Figure 4.32,
[60]. MEEVC shows good agreement but with some small deviations for x

h = 14. This deviation
might be explained by a slightly underestimated reattachment length. As flow attaches further
downstream, the velocities gradients will differ as the flow is in a different stage of development
at a certain cross-section. ANSYS errors are higher per the same amount of DoF. The ANSYS
with DoF= 32500 is way off for x

h = 14. As already established, the reattachment length error for
ANSYS was around 6.57% which explains the deviation. When DoF are increased the solution
converges to literature results by Erturk.

(a) x
h = 6. (b) x

h = 14. (c) x
h = 30.

Figure 4.29: Profiles for dux
dx for Re = 800, [60].
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(a) x
h = 6. (b) x

h = 14. (c) x
h = 30.

Figure 4.30: Profiles for dux
dy for Re = 800, [60].

(a) x
h = 6. (b) x

h = 14. (c) x
h = 30.

Figure 4.31: Profiles for duy

dx for Re = 800, [60].

(a) x
h = 6. (b) x

h = 14. (c) x
h = 30.

Figure 4.32: Profiles for duy

dy for Re = 800, [60].

Lastly, the conservation laws are checked in the following manner. Both mass conservation
∇·uh = 0 and vorticityW = ⟨ω , 1⟩ = 0. The results are shown in Figure 4.33. MEEVC sustains
both errors at around 10−15 close to the floating point precision. For ANSYS the situation is
a little different. The mass conservation error starts at a higher initial level but drops to 10−16

when the simulation progresses. Important to note that in order to reach such low levels of mass
conservation error, the convergence criteria for ANSYS had to be adjusted from RMS of 10−6

to 10−14. This change did not have any noticeable impact on the solution. ANSYS vorticity
conservation reaches ≈ 3 · 10−5 compared to MEEVC 10−15. It might be caused by MEEVC
formulation of the strong form which implies [17]
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W :=

∫
Ω
ω dΩ =

∮
dΩ
u× n dΓ (4.8)

with the help of a Stokes theorem. Therefore vorticity is conserved over time. In ANSYS general
incompressible Navier-Stokes are computed not in rotational form which would impose Equa-
tion 4.8.

Figure 4.33: Discrete mass and vorticity conservation for backward-facing step at Re = 800.
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4.4. Test case 4: Flow around the cylinder
The last test case for the comparison is a flow around a cylinder. The setup involves fluid flow past
a cylindrical object, creating flow separation, vortex shedding and characteristic wakes. Shed-
ding vortices start to occur at a critical Reynolds number Rec. This value was found to be around
Rec ≈ 46, [38, 63]. The study by Sengupta et al. [64] proposed that the critical Reynolds number
Rec may be influenced by the choice of numerical scheme and the experimental setup.

The Reynolds number for the flow around the cylinder is defined as

Re =
D · u∞
ν

(4.9)

with D = 1 being the diameter of the cylinder, u∞ = 1 is an average velocity at the inlet and
ν is the dynamic viscosity of the fluid.

Figure 4.34: Domain Ω for a flow around the cylinder.

The Figure 4.34 shows a computational domain for flow around a circular cylinder of diameter
D = 1, positioned at the center of a square domain with height H = 30. The relatively large
domain is chosen to minimize the impact of the wall boundary on the cylinder, [65]. A study by
Behr et al. [66] indicated that lateral (top and bottom) boundaries should be distant at least 8D
from a circular cylinder. Otherwise, the Strouhal number St may be artificially overestimated. At
the inlet, a uniform inflow is prescribed where the normal component of velocity is u · ~n = 1. At
the outlet, a pressure boundary condition is applied p = P − 1

2u
2 = 0. The walls are free-slip so

no normal velocity (u ·~n = 0) and no vorticity (ω = 0). On the cylinder surface, a no-slip condition
is enforced, where both the normal and tangential velocity components are zero (u · ~n = 0 and
u·~t = 0). The coordinate system is positioned at the center of the cylinder, with the x-axis pointing
to the right and the y-axis pointing upward. It is done that way so the values at cylinder surface
are easily calculated (r =

√
x2 + y2 = 1).

The convergence criteria for steady flow around the cylinder are as follows. Timestep of

∆t = 1
10 was chosen. The convergence criterion was set to be

∥uk
h−uk−1

h ∥L2(Ω)

∆t ≤ 10−5 as for this
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particular case no significant improvement was observed with previously used
∥uk

h−uk−1
h ∥L2(Ω)

∆t ≤
10−6. The order of the element is chosen to be N = 3. For ANSYS transient simulation for
Re = 200, RMS residuals are kept below 10−6 for every timestep iteration. So for each timestep,
the solution converges to a steady state before it progresses to the next timestep. Similarly
to MEEVC, ∆t = 1

10 was selected for ANSYS transient simulation. The DoF= 90000 for both
setups.

The mesh used for both ANSYS and MEEVC can be seen in Figure 4.35. The mesh is refined
around the cylinder to accurately resolve the boundary layer. Furthermore, additional points are
distributed along the surface of the cylinder, visible as a cross in the figure. This refinement is
done in order to accurately estimate both the lift coefficient (cl) and the drag coefficient (cd), as
precise pressure and vorticity data are required from the cylinder’s wall.

(a) MEEVC. (b) ANSYS.

Figure 4.35: Mesh for MEEVC and ANSYS.

Numerical results for MEEVC and ANSYS at steady Re = 40 are shown in Figure 4.36 and
Figure 4.37. Contour plots for horizontal velocity ux, vertical velocity uy, vorticity ω, stream func-
tion Ψ and static pressure p are illustrated. The full computational domain is not displayed, as
it extends significantly. Instead, the region of interest surrounding the cylinder is presented to
focus on the relevant flow characteristics.

For comparison with literature data, lift and drag coefficients need to be computed. The drag
force Fd and lift force Fl acting on a cylinder are computed using the surface integrals as follows

Fd =
1

2

∫ 2π

0
(−p cos θ − νω sin θ)Ddθ (4.10)

Fl =
1

2

∫ 2π

0
(−p sin θ + νω cos θ)Ddθ (4.11)
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(a) MEEVC horizontal velocity ux. (b) ANSYS horizontal velocity ux.

(c) MEEVC vertical velocity uy. (d) ANSYS vertical velocity uy.

Figure 4.36: Velocity contour plots for Re = 40.

These integrals account for the contributions of pressure p and vorticity ω along the surface
of the cylinder, parameterized by the angular position θ. The angular coordinate θ is measured
starting from the most downstream point of the cylinder, located at (0.5, 0) and progresses in
a counterclockwise direction. It can be seen in Figure 4.38. The factor ν, representing the
kinematic viscosity and the cylinder diameter D, scales the viscous terms. Then the lift and drag
force are normalized to obtain the coefficients

cd =
Fd

1
2ρu

2
∞D

(4.12)

cl =
Fl

1
2ρu

2
∞D

(4.13)

with fluid density ρ = 1, inlet velocity u∞ = 1 and cylinder diameter D = 1.
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(a) MEEVC vorticity ω. (b) ANSYS vorticity ω.

(c) MEEVC stream function Ψ. (d) ANSYS stream function Ψ.

(e) MEEVC static pressure p. (f) ANSYS static pressure p.

Figure 4.37: Vorticity ω, stream function Ψ and static pressure p contour plots for Re = 40.

In Figure 4.38 the characteristic dimensions of the wake structure behind a cylinder are il-
lustrated. These dimensions are essential for comparison with literature data. The parameter a
represents the distance of the cylinder to the center of the wake vortex. The width of the wake vor-
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tices is denoted as b. It is a critical measure for determining how far the flow disturbance spreads
behind the cylinder. l is the wake length which is the distance from the rear of the cylinder to
the point where the flow fully reattaches or becomes more streamlined. Finally, θ denotes the
separation angle, marking the point on the cylinder surface where the boundary layer separates
and the wake begins to form.

Figure 4.38: Definition of the characteristic dimensions of the wake structure, [65].

The flow characteristic lengths are shown in Table 4.8. A few source data were used for
comparison: Taira’s Finite Volume method with immersed boundary and 3002 grid [65], well-
renowned experimental data by Coutanceau and Bouard [67], least-square spectral element
method withN = 7 by Groot [68], Park’s numerical data with 641×241 grid [69], Finite Difference
method on 641×321 grid by Linnick and Fasel [70] and very recent new solutionmethod for infinite
domains on 1602 grid by Darif [71]. The values are normalized by a cylinder diameterD. Overall,
both methods agree with the literature data. MEEVC accurately predicts all values except for the
separation angle θsep. For MEEVC separation angle tends to be slightly underestimated.

Table 4.8: Comparison of flow characteristics for Re = 40. [65, 67, 68, 72, 70, 71]

l/D a/D b/D θsep cd

Taira [65] 2.30 0.73 0.60 53.7◦ 1.54

Coutanceau and Bouard [67] 2.13 0.76 0.59 53.8◦ –
Groot [68] 2.17 0.68 0.58 53.77◦ 1.61

Park et al. [69] 2.25 – – 52.2◦ 1.51

Linnick and Fasel [70] 2.28 0.72 0.60 53.6◦ 1.54

Darif [71] 2.24 – – 53.6◦ 1.50

MEEVC 2.264 0.735 0.593 52.22◦ 1.552

ANSYS 2.262 0.715 0.594 52.57◦ 1.563

In Figure 4.39 two profiles are presented, horizontal velocity ux and vorticity ω. ux is accessed
from the centerline (y = 0) and compared to study by Darif in Figure 4.39a, [71]. The horizontal
velocity starts at 0 as it is the surface of the cylinder, followed by the wake region with negative
values. The Figure 4.39b presents vorticity ω vs angular coordinate θ at the upper side of the
cylinder with the numerical study by Park et al., [69]. Both methods follow the reference values
very similarly.
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(a) Horizontal velocity ux at y = 0, [71]. (b) Vorticity at the cylinder, [69].

Figure 4.39: Velocity and vorticity profile for Re = 40, [71, 69].

There are several ways to trigger the onset of flow asymmetry: impulsive start and perturba-
tion of initial condition [73], perturbation by cylinder (rotation, oscillation or surface roughness)
[74] and perturbation of inlet boundary condition [75]. In this study, the method of perturbed initial
conditions proposed by Mouna Laroussi [76] is used. The method is designed to ensure that no
additional energy is introduced into the flow. It follows the initial conditions for the flow

uinitial(y) = u∞ ·
(
1 + α · sin

(
2πy

H

))
(4.14)

where u∞ = 1 is an inlet velocity, α is a coefficient of the perturbed velocity andH = 30 is domain
height. The optimal coefficient for Re = 200 follows an expression αopt = −6.25

Re +0.34, [76] which
gives α ≈ 0.3. The simulation is carried out to tmax = 80. The vorticity at the outlet is set to zero
as otherwise, reflections are created. The same timestep as for steady case is used so ∆t = 1

10 .
The simulation diverges and thus, no results are generated. In order to prevent reflections of
waves at the outflow boundary zero vorticity is set in the case of flow past a bluff body, [77].
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(a) MEEVC horizontal velocity ux. (b) ANSYS horizontal velocity ux.

(c) MEEVC vertical velocity uy. (d) ANSYS vertical velocity uy.

Figure 4.40: Velocity contour plots for Re = 200 at t = 80.

Figure 4.41: Instantaneous in-plane flow field for stream function Ψ at Re = 200, [78].
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(a) MEEVC vorticity ω. (b) ANSYS vorticity ω.

(c) MEEVC stream function Ψ. (d) ANSYS stream function Ψ.

(e) MEEVC static pressure p. (f) ANSYS static pressure p.

Figure 4.42: Vorticity ω, stream function Ψ and static pressure p contour plots for Re = 200 at
t = 80.

The results for velocity MEEVC and ANSYS at Re = 200 are shown in Figure 4.40. Contour
plots for horizontal velocity ux and vertical velocity uy are illustrated. Figure 4.42 shows coutour
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plots for vorticity ω and stream function Ψ. Similarly to Re = 40 case, region near the cylinder is
shown. For both methods, strong alternating vorticity patterns downstream indicate the formation
of vortices. High vorticity is concentrated near the cylinder’s surface and in the shed vortices. For
validation, instantaneous flow field of stream function Ψ for Re = 200 can be seen at Figure 4.41,
[78]. The experimental results are derived from Digital Particle Imaging Velocimetry (DPIV). Both
ANSYS and MEEVC recreate streamlines similarly to Wang et al., [78].

For the unsteady simulation of flow around the cylinder at Re = 200, different convergence
conditions had to be introduced. As flow does not reach a steady-state, velocity residuals
∥uk

h−uk−1
h ∥L2(Ω)

∆t cannot be used as a convergence criterion. The Kármán vortex street is formed
from the periodic shedding of vortices. Both cl and cd fluctuate over time. The lift coefficient cl
should fluctuate around 0. Therefore two convergence conditions are introduced

1

2
(cl,max − |cl,min|) ≤ 10−3 (4.15)∫ τ2

τ1

cl(τ) · dτ ≤ 10−3 (4.16)

with cl,max and cl,min being maximal and minimal value at a given shedding period, (τ2 − τ1)
represents the shedding period. These criteria ensure that the periodic vortex shedding becomes
consistent. The period is calculated from cl data for each timestep.

The findings of the aforementioned analysis can be found in Table 4.9. Condition 1 refers to
Equation 4.15 whereas condition 2 refers to Equation 4.16. Those represent the first timestep
tc where both conditions are met. It is 38.8 for MEEVC and 40.5 for ANSYS so both methods
converge at similar timesteps.

Table 4.9: Stationary shedding conditions for Re = 200.

Convergence time tc Condition 1 (×10−3) Condition 2 (×10−3)

MEEVC 38.8 0.506 0.682

ANSYS 40.5 0.021 0.842

The Figure 4.43 presents force coefficient cl, cd and Strouhal number St for a flow around
the cylinder at Reynolds number Re = 200. The variation of the lift coefficient over time is de-
picted for both MEEVC and ANSYS. The comparison shows a close agreement between the two
methods, with periodic oscillations in the lift coefficient over time, indicative of vortex shedding.
The amplitude and frequency of the lift coefficient oscillations are well-captured by both solvers,
suggesting accurate modelling of the unsteady flow behaviour. The power spectrum of the lift
coefficient is done in order to determine the dominant frequency peak corresponding to the shed-
ding frequency f . This analysis is achieved through the application of a Fourier transform to the
time-dependent lift coefficient. Both solvers exhibit a similar power spectrum, reinforcing the
consistency of the results across the two methods. From this frequency, the Strouhal number St
is calculated using

St = f · D
u∞

. (4.17)
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(a) Lift coefficient cl and drag coefficient cd over
time t. (b) Power spectrum of lift coefficient cl.

Figure 4.43: Lift, drag coefficients over time and Strouhal number estimation for Re = 200.

In Figure 4.44, two time discretization schemes are shown: 1st and 2nd order Backward
Euler scheme. As already discussed in Chapter 3, lower-order schemes tend to suppress the
higher-wave-number components that are responsible for initiating asymmetry in flow around the
cylinder, [50]. The 1st order scheme damps both drag and lift coefficients and produces higher
errors w.r.t. literature values.

Figure 4.44: Time discretization schemes comparison for ANSYS.

A comparison of flow properties at Re = 200, including the Strouhal number St, drag co-
efficient cd and lift coefficient cl is presented in Table 4.10. Results from various studies are
shown alongside the computational results from MEEVC and ANSYS. A few data sources were
used for comparison: Taira’s Finite Volume method with immersed boundary and 3002 grid [65],
Finite Difference method on 641× 321 grid by Linnick and Fasel [70], hybrid method (FEM/FVM)
by Laroussi with 55000 elements [76], Belov’s implicit algorithm with multigrid [79], pseudo-
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compressibility method by Liu et al. on 2562 grid [80] and Smoothed Particle Hydrodynamics
(SPH) by Marrone and Colagrossi on stagerred grid [81]. The Strouhal number which repre-
sents the frequency of vortex shedding, is generally consistent across the studies, with small
variations. Both methods, ANSYS and MEEVC, share the same Strouhal number St = 0.189
which is on the lower end of reference values. The lift coefficient is also similar between the two
at around cl = 0.72 which tends to be a bit overestimated. The biggest difference is in mean
drag coefficient which is off by around εcd = 5.3% for MEEVC but only εcd = 2.1% for ANSYS
across the literature values. On the other hand, the fluctuations in the drag coefficient are better
represented with MEEVC (only 0.4% error) whereas it equals 6% for ANSYS.

Table 4.10: Comparison of computed flow properties Re = 200. [65, 70, 76, 79, 80, 81]

St cd cl

Taira [65] 0.196 1.35± 0.048 ±0.68

Linnick and Fasel [70] 0.197 1.34± 0.044 ±0.69

Laroussi [76] 0.199 1.47± 0.05 ±0.77

Belov et al. [79] 0.193 1.19± 0.042 ±0.64

Liu et al. [80] 0.192 1.31± 0.049 ±0.69

Marrone and Colagrossi [81] 0.2 1.38± 0.05 ±0.68

MEEVC 0.189 1.268± 0.047 ±0.729

ANSYS 0.189 1.368± 0.05 ±0.722

The reason for overestimated drag might be the lateral boundaries used in the studies. Lin-
nick and Fasel [70] and Laroussi [76] use 5D of lateral distance between walls and cylinder, for
Marrone and Colagrossi [81] it is equal to even lower 2.5D. As already mentioned this might lead
to artificially higher shedding frequency and as a result higher St. All of these methods estimate
Strouhal number close to 0.2 compared to 0.189 of ANSYS and MEEVC. When compared to the
rest of the studies, the error reduces from 3.7% to 2.4%.
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4.5. Cross-case study
This section presents a cross-case study comparing the performance of the MEEVC and AN-
SYS Fluent of the test cases presented in this chapter. The tests examined are the Taylor-Green
vortex, lid-driven cavity flow, backward-facing step and flow around a cylinder. The compari-
son focuses on accuracy, agreement with literature/experimental data, flow type influence and
computational efficiency.

4.5.1. Accuracy
Accuracy is the difference between a computed value and the actual value. In order to check the
accuracy, a Taylor-Green Vortex test case was carried out. An analytical solution to the Navier-
Stokes equations represents the true solution to the problem. Literature data may contain errors
or uncertainties which may alter the accuracy measurement. It is still important to compare with
literature as it reflects real-world complexities and imperfections. It showcases where certain
methods excel and where it lacks credibility.

During the Taylor-Green Vortex (TGV) test case, two types of errors were assessed to eval-
uate the accuracy of both solvers.

Firstly, the L2-error for velocity, vorticity and static pressure was computed at t = 1 in order
to analyze the p − h convergence behaviour. The results showed that, as the mesh refinement
increased, the L2-error for velocity, vorticity and pressure consistently decreased, indicating con-
vergence. MEEVC L2-error was consistent with ANSYS at the same degrees of freedom (DoF)
for velocity and pressure. However, the highest difference was found in vorticity ω where MEEVC
performed much better for the same DoF (about an order of magnitude lower L2-error). The
MEEVC showed improved convergence, particularly with higher polynomial degrees (N = 3,
N = 4). ANSYS convergence was comparable with that of MEEVC with N = 2. Slightly higher
for velocity u and lower for vorticity ω.

Subsequently, the relative error in the maximum velocity was measured at t = 10, comparing
the numerical results to the analytical solution. MEEVC’s relative error decreased significantly as
the polynomial degreeN increased. WithN = 1, the relative error for velocity was approximately
1.3379% but as the polynomial degree was increased to N = 3, the error was reduced to as low
as 0.0007%. For ANSYS, it performed better than MEEVC at low DoF but produced larger errors
at moderate and high DoF. For the highest DoF= 33000, velocity and pressure errors were 2
orders of magnitude smaller for MEEVC. The vorticity error was 5% for ANSYS and 0.0009% for
MEEVC which is a significant difference.

Additionally, similar test at t = 20 was done to check the conserving properties of both meth-
ods. The errors for MEEVC did not change at all. On the other hand, ANSYS errors increased
for all flow properties. It shows that MEEVC accuracy becomes more prominent as simulation
time progresses due to its conserving properties. For backward-facing step at Re = 800, mass
and vorticity conservation was evaluated. While ANSYS mass conservation reached levels of
MEEVC after a few hundred iterations, it required setting RMS levels to ridiculously low levels
of 10−12. At RMS of 10−6 which was used throughout the test cases, the conservation of mass
lowered to ≈ 10−8. The vorticity conservation fluctuated around 10−15 for MEEVC and 10−5 for
ANSYS. So MEEVC satisfies conservation laws with a higher degree of accuracy.

4.5.2. Comparison with literature/experimental data
Table 4.11 presents a summary of errors for both MEEVC and ANSYS methods across different
test cases where literature data was presented: lid cavity, backward-facing step and flow around
the cylinder. The errors have been averaged across different Reynolds numbers. For cd and cl
of the cylinder, only mean value was taken for comparison.
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For the lid cavity, the error in the stream function (Ψ) is low for both methods, with MEEVC
showing 0.1957% and ANSYS slightly higher at 0.4591%. The vorticity (ω) error is higher for
both methods, but MEEVC performs better, showing 0.8482% compared to ANSYS’s 1.4724%.
The error in the coordinates (x, y) is comparable for both methods, with MEEVC having higher
0.4000% and ANSYS 0.1528%.

In the backward-facing step case, MEEVC demonstrates significantly better accuracy in pre-
dicting the first recirculation length (X1), with an error of 0.5337% compared to ANSYS’s 3.6967%.
MEEVC also outperforms ANSYS in predicting the separation of second recirculation length (X2),
where the errors are 0.6566% and 6.5876%, respectively. The error in the end position second
recirculation zone (X3) is much lower for MEEVC (0.2477%) compared to ANSYS (1.5589%). Fi-
nally, for the length of the second recirculation zone between X3 − X2, MEEVC is accurate at
0.0987% while ANSYS is off by 2.6998%. In order to match the performance of MEEVC, ANSYS
required about 8.5 more DoF.

Table 4.11: Summary of error w.r.t. literature data along test cases.

εMEEV C [%] εANSY S [%]

Lid cavity

Ψ 0.1957 0.4591

ω 0.8482 1.4724

(x, y) 0.4000 0.1528

Backward-facing step

X1 0.5337 3.6967

X2 0.6566 6.5876

X3 0.2477 1.5589

X3 −X2 0.0987 2.6998

Flow around the cylidner

l/D 1.6006 1.5108

θsep 2.2921 1.6372

cd 3.0762 1.7916

cl 5.3977 4.3855

St 2.4016 2.3976

For the flow around the cylinder case, ANSYS performs better across all parameters. The
length-to-diameter ratio (l/D) and the Strouhal number (St) are quite close between the two
methods, with errors of 1.5% and 2.4%, respectively. Strouhal number error excluded a few
sources as the walls right interfered with the results. The biggest difference is in drag coefficient
(cd) which is predicted better with ANSYS with 1.7916% error compared to 3.0762% for MEEVC.
Separation angle θsep and lift coefficient are predicted similarly but with a slight advantage for
ANSYS.

The values for BR2 so tertiary vortex for lid cavity are excluded from the average. As values
are very sensitive to relatively small fluctuations in measured quantity (also measurement error),
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they can produce large relative errors. For BR2, the relative error in stream function equals 6%
for MEEVC and 20% for ANSYS. Nevertheless, these values suggest that the MEEVC tends to
be more accurate in capturing tertiary vortices compared to ANSYS.

4.5.3. Flow type influence
Table 4.12 summarizes the percentage error with respect to literature data for various Reynolds
numbers in each test case.

Table 4.12: Summary of error w.r.t. literature data along test cases for various Reynolds
numbers.

εMEEV C [%] εANSY S [%]

Lid cavity

Re = 400 Re = 1000 Re = 400 Re = 1000

Ψ 0.2008 0.1906 0.5033 0.4148

ω 1.1005 0.5960 2.1424 0.8023

(x, y) 0.4696 0.3296 0.1572 0.1482

Backward-facing step

Re = 100 Re = 800 Re = 100 Re = 800

X1 0.2396 0.8278 0.8214 6.5721

X2 – 0.6566 – 6.5876

X3 – 0.2477 – 1.5589

X3 −X2 – 0.0987 – 2.6998

Flow around the cylidner

Re = 40 Re = 200 Re = 40 Re = 200

l/D 1.6006 – 1.5108 –
θsep 2.2921 – 1.6372 –
cd 0.7792 5.3731 1.4935 2.0896

cl – 5.3977 – 4.3855

St – 2.4016 – 2.3976

The performance of MEEVC and ANSYS varies across different flow types (internal, external,
steady and unsteady). For internal flows like the lid-driven cavity, MEEVC demonstrates good
accuracy for the same DoF, especially at higher Reynolds numbers (Re). At Re = 1000, MEEVC
shows significantly reduced errors for the vorticity (0.5960%), better than ANSYS (0.8023%). For
more complex internal flows, such as the backward-facing step, MEEVC performs notably bet-
ter, especially at higher Reynolds numbers. At Re = 800, MEEVC exhibits lower errors in the
reattachment lengths for both Re = 100 and Re = 800 test cases. This indicates that MEEVC
is particularly effective in capturing flow separation and reattachment phenomena in the internal
flows.
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For external steady flows, such as flow around a cylinder at Re = 40, MEEVC accurately
captures wake characteristics. Wake length l/D and drag coefficient error is below 1% while
separation angle is underestimated with 2% error. On the other hand, ANSYS captures the
separation angle more precisely but overestimates the drag coefficient with 1.5%. Therefore, for
external steady, both methods perform similarly but excel in capturing different flow properties.

For external unsteady flows, such as flow around a cylinder at Re = 200, MEEVC struggles
to accurately capture vortex shedding. The lift coefficient (εcl = 5.4%) and drag coefficient (εcd =
5.4%) errors are quite off from the literature data. In contrast, ANSYS produces lower errors
for drag coefficients (≈ 2%) but similar for lift coefficients (4.4%). Also, Strouhal number St
is approximated very closely to MEEVC. Therefore, even though ANSYS can predict cd better,
other parameters are estimated with similar errors.

4.5.4. Computational Efficiency
When focused on computational time, MEEVC was significantly less efficient in this aspect than
ANSYS. Table 4.13 show computational time for both methods. Generally, ANSYS requires less
time to perform a simulation, especially for the lid cavity where a steady-state solver was used.
For transient simulations where timestep was prescribed, several iterations were required for
each timestep in order to achieve the residual value which increased the computational time but
not as much. It was still lower than that for MEEVC. MEEVC on average requires from 1 to 30
seconds per iteration depending on the flow regime and the polynomial degree N, thus it is not
very practical for unsteady and complex flow cases. In contrast, ANSYS completed the timesteps
in a fraction of a second. This stark difference in computational performance highlights ANSYS’s
advantage in terms of time-to-solution, especially for large-scale simulations or flows requiring a
large number of timesteps. The main drawback of this implementation is that Python’s relatively
slower performance makes it unsuitable for handling large-scale problems, [82]. The ANSYS
supports parallel processing as discussed in Section 3.1. It also reduces its computational time.
ANSYS also scales better with increasing DoF and Re, making it more suitable for scenarios that
demand finer computational grids.
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Table 4.13: Computational Data for Various Simulations

Method Re DoF Solver Iterations Time [min] Time per iteration [s]

TGV

ANSYS 1600 3700 Coupled 7847 8 0.060

ANSYS 1600 3700 SIMPLE 8073 8 0.059

ANSYS 1600 33000 Coupled 15530 15 0.058

MEEVC 1600 3700 – 2000 56 1.7

MEEVC 1600 33000 – 2000 408 12.2

Lid cavity

ANSYS 400 58000 Coupled 127 1 0.5

ANSYS 1000 58000 Coupled 292 2 0.2

MEEVC 400 58000 – 6200 846 8.18

MEEVC 1000 58000 – 16000 2118 7.94

Flow around the cylinder

ANSYS 200 90000 Coupled 17500 22 0.08

MEEVC 200 90000 – 2000 857 25.71

However, hardware and software constraints have been reducing for the last few decades,
[3]. In cloud computing, CPU performance is levelling but GPU provides a decrease in power
consumption and hardware costs. Modern GPUs have millions of cores instead of 1000s. A
single GPU can offer the same performance as more than 400 CPUs, [83]. So, the time-to-
solution might not be as big of a problem in the future as it currently is.



5
Conclusion & Recommendation

Conclusion
In this study, the Mimetic Spectral Element Method using mass, energy, enstrophy and vorticity
conserving (MEEVC) solver and conventional Computational Fluid Dynamics (CFD) approaches,
portrayed by ANSYS Fluent, were compared across a variety of benchmark flow problems. A
detailed description of the MEEVC scheme is provided in Chapter 2 where the open-source
module for Python called phyem is used to solve 2D incompressible Navier-Stokes equations
using a mimetic scheme. The conventional CFD methodology of ANSYS Fluent is outlined in
Chapter 3. The results of the test cases as well as a cross-case study are presented in Chapter 4.

Four test cases were chosen for the comparison. The tests included the Taylor-Green vortex,
lid-driven cavity flow, backward-facing step and flow around a cylinder. They were chosen in
order to answer three research questions:

• How does the accuracy of the Mimetic Spectral Element Method (MSEM) compare to con-
ventional Computational Fluid Dynamics (CFD) techniques?
The results of the Taylor-Green Vortex test case demonstrate that MEEVC consistently
outperforms ANSYS Fluent in terms of accuracy, particularly as mesh resolution and poly-
nomial degrees increase. The MEEVC has a lower L2-error for velocity, vorticity and static
pressure compared to ANSYS, achieving it with the same number of degrees of freedom
(DoF). As the polynomial degree increased, the relative error for MEEVC significantly de-
creased, with higher polynomial degrees, closely approximating the analytical solution. The
differences were mostly seen for DoF= 33000 where velocity and pressure L2-errors were
2 orders of magnitude higher for ANSYS. For the vorticity, it was 3 orders of magnitude.
Additionally, for backward-facing step mass and vorticity conservation laws were evaluated.
MEEVC satisfies conservation laws with a higher degree of accuracy compared to ANSYS.

• How are both methods compared to literature/experimental data?
In comparison with the literature data, both methods exhibited some strengths across differ-
ent test cases. MEEVC demonstrated better accuracy in the backward-facing step problem
as it predicted recirculation lengths closer to literature values. Moreover, the section plots
for velocity and vorticity were in closer agreement with the literature for MEEVC. However,
ANSYS performed better in the flow around the cylinder case, especially in predicting drag,
lift and separation angles. Both methods show similar performance in the lid cavity test
case, with only minor differences in error percentages between them. The MEEVC tended
to be more accurate in capturing tertiary vortices than ANSYS. Generally, both methods
show good agreement with the literature/experimental data.

• How do the Mimetic Spectral Element Method and conventional CFD methods perform
across different flow types (e.g. internal, external, steady, unsteady)?
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MEEVC has proven to be highly accurate in capturing the details of internal flow cases
such as backward-facing step, especially at higher Reynolds numbers. It produced lower
errors in predicting vortex recirculation lengths than ANSYS, underscoring its superior per-
formance in flows involving separation and reattachment phenomena (internal flows). In
external steady flow cases, such as flow around a cylinder at Re = 40, MEEVC and AN-
SYS provided a satisfying approximation of wake characteristics, with errors in drag coeffi-
cient and wake length below 2%, thoughMEEVC slightly underestimates separation angles.
However, in the unsteady flow cases, like the vortex shedding in flow around the cylinder
at Re = 200, ANSYS outperformed MEEVC in capturing time-dependent phenomena. It
showed lower errors in the drag coefficient. While lift coefficient and Stouhal number were
approximated similarly for both methods.

The computational efficiency of MEEVC has a notable disadvantage. It requires longer com-
putation times than ANSYS. In contrast, ANSYS uses parallel processing, making it far more
efficient with increasing DoF and Re, making it more suitable for scenarios that demand finer
computational grids. On the other hand, the GPUs are becoming more popular in computing
environments. They can offer the same performance as more than 400s CPUs which might re-
duce computational constraints. MEEVC turned out to perform better in terms of accuracy and
conservation properties. But still lacks in terms of computational efficiency compared to ANSYS.
And for the current moment, the accuracy does not outweigh the computational time. ANSYS is
preferable in the early stages of the design process. However, MEEVC might find its usage for
simulations involving complex separation phenomena where accuracy to capture it accurately is
crucial.

Recommendation
Based on the findings of this study, the results suggest that both methods have their own ad-
vantages and drawbacks. The following recommendations are proposed for future work and
practical applications.

1. Investigation of the outflow instabilities. While the backward-facing step was accurately
simulated by MEEVC, the case for N = 3 did not reach steady-state as discussed in Sec-
tion 4.3. Several adjustments were tested but with no success. Similarly, for flow around
the cylinder at Re = 200, the solution errors increased for the unsteady case. These two
instances should be thoroughly analyzed to assess the limitations of the scheme. The
original MEEVC scheme had some difficulties with handling no-slip conditions without sac-
rificing the property of vorticity conservation.

2. Further optimization of MEEVC. It consistently demonstrated great accuracy across the
test cases. Unfortunately, it is computationally more demanding, particularly at higher
polynomial degrees. Future efforts should focus on optimizing the MEEVC solver to re-
duce computation times. All the non-linear system solving is done within Python using
the Netwon iterative process. It does not linearize the discrete systems that were used in
the original MEEVC scheme. Potentially integrating parallel processing techniques might
reduce solving time as the domain is divided into segments computed individually by one
logical processor.

3. Exploration of other test cases. The current study demonstrated MEEVC’s effectiveness
in moderate Reynolds number flows in 2D. Future studies can explore higher Reynolds
number regimes as well as a 3D flow. The phyem package shows capabilities in handling
three-dimensional cases. Additionally, different boundary conditions might be tested e.g.
oscillating BC for lid cavity flow.
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A
Stream Function Calculation

This appendix contains a procedure for calculating stream function Ψ using velocity field u. The
stream function, Ψ(x, y), is a scalar function used to describe two-dimensional, incompressible
flow fields. The key property of the stream function is that the velocity components ux(x, y) and
uy(x, y) can be derived from the stream function as:

ux =
∂Ψ

∂y
, uy = −∂Ψ

∂x
(A.1)

This relationship ensures that the continuity equation for incompressible flow is automatically
satisfied. The following steps outline the procedure for calculating the stream function from a
known velocity field.

The spatial grid is defined on which the stream function will be computed. Let the grid points
be defined as (xi, yj) where i = 1, 2, . . . , Nx and j = 1, 2, . . . , Ny.

The stream function can be computed using numerical integration methods. The fourth-order
Runge-Kutta method is particularly effective for this purpose due to its balance between accuracy
and computational cost.

To compute ψ(x, y) across the grid following steps were taken. The stream function was
initialized at a reference point with ψ(x0, y0) = 0. The loop is made through each grid point
(xi, yj) and the stream function is computed using the following Runge-Kutta formulas:

ψi+1,j = ψi,j +
∆x

6
(k1 + 2k2 + 2k3 + k4) (A.2)

ψi,j+1 = ψi,j −
∆y

6
(k1 + 2k2 + 2k3 + k4) (A.3)

where:

k1 = ui,j , k2 = ui,j + 0.5∆y · vi,j , k3 = ui,j + 0.5∆y · vi,j , k4 = ui,j +∆y · vi,j (A.4)

Here, k1, k2, k3, and k4 are intermediate slopes calculated at different points, which are then
combined to estimate the stream function at the next grid point.

The example stream function results for the lid cavity can be seen Figure A.1 with reference
from [57].
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(a) MVEEC (b) ANSYS

(c) Botella

Figure A.1: MVEEC, ANSYS and Botella stream function Ψ field for lid cavity flow Re = 1000,
[57].



B
Backward facing step at higher

polynomial degree N

The Figure B.1 shows contour plots for horizontal velocity ux, vertical velocity uy and vorticity
ω for N = 3, generated using the MEEVC method. The timestep is around t = 45. As can be
seen on the plots, noticeable disturbances are present near the outlet. Most visible in the vertical
velocity uy plot.
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(a) Horizontal velocity ux.

(b) Vertical velocity uy.

(c) Vorticity ω.

Figure B.1: MEEVC contour plots for Re = 800 with N = 3.

The disturbances at the outlet progressively intensified over time, resulting in the divergence
of the solution and preventing the attainment of a steady-state condition. This outcome was
unexpected, particularly given that a steady-state solution was achieved with N = 2. Several
modifications were implemented in an effort to achieve convergence for the N = 3 simulation.
First, the outlet length was extended to loutlet = 120 to ensure a fully developed flow at the outlet.
Second, the mesh near the outlet was refined to better capture potential disturbances. Third,
N = 4 was tested to rule out any influence from the use of an odd polynomial degree. Then,
outlet BCwas changed to the outflow so the velocity was prescribed instead of the static pressure.
Lastly, the top boundary condition was changed from no-slip to free-slip. In a no-slip condition,
the fluid velocity at the boundary is forced to be zero, which can generate shear stresses and
contribute to instabilities. Despite these efforts, none of the adjustments succeeded in altering
the outcome of the simulation.
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